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Abstract

Hemodialysis is the most common therapy to treat renal insufficiency. However, notwithstanding the recent

improvements, hemodialysis is still associated with a non-negligible rate of comorbidities, which could be reduced by

customizing the treatment. Many differential compartment models have been developed to describe the mass balance of

blood electrolytes and catabolites during hemodialysis, with the goal of improving and controlling hemodialysis sessions.

However, these models often refer to an average uremic patient, while on the contrary the clinical need for

customization requires patient-specific models. In this work, we assume that the customization can be obtained by

means of patient-specific model parameters. We propose and validate a Bayesian approach to estimate the patient-

specific parameters of a multi-compartment model, and to predict the single patient’s response to the treatment, in

order to prevent intra-dialysis complications. The likelihood function is obtained by means of a discretized version of the

multi-compartment model, where the discretization is in terms of a Runge–Kutta method to guarantee convergence, and

the posterior densities of model parameters are obtained through Markov Chain Monte Carlo simulation. Results show

fair estimations and the applicability in the clinical practice.

Keywords

Hemodialysis, patient-specific response, Bayesian estimation approach

1 Introduction

Hemodialysis (HD) is the elective option to treat End Stage Renal Disease (ESRD). However, despite the
improvements made in the last years, HD is still associated with a non-negligible rate of comorbidities.1,2 In
particular, due to therapy discontinuity, HD induces considerable changes in osmotic balances and rapid
variations in fluid volumes3–5 and electrolytic concentrations6 within patients’ body compartments. Thus, HD
treatments should be optimized to reduce these alterations. Moreover, a need for treatment customization emerged
over the years, to reduce the associated comorbidities, because the individual tolerance to HD may vary from
patient to patient also in the presence of similar treatment conditions.7,8

Instruments that simulate and predict the patient-specific response to HD treatment in terms of electrolyte and
catabolite kinetics are a necessary step toward customization, in order to identify the most suitable therapy for
reducing intra-dialysis complications and associated long-term dysfunctions.

In this work, we refer to the parametric multi-compartment kinetic model of Casagrande et al.,9 and we assume
that the customization can be obtained by means of patient-specific model parameters, which modulate the mass
and fluid balance across the main membranes involved in HD process. We propose and validate a Bayesian
estimation approach to determine the patient-specific parameters of this multi-compartment model and to
predict the single patient’s response to HD treatment. The likelihood function is obtained by means of a
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discretized version of the above mentioned multi-compartment model, in which the discretization is performed in
terms of a Runge–Kutta method to guarantee the convergence, while the posterior densities of model parameters
are obtained through Markov Chain Monte Carlo (MCMC) simulation.

Differently from Casagrande et al.,9 where a constrained non-linear optimization algorithm was used to get the
parameter values, the Bayesian approach allows us to formally include the clinical prior knowledge on the
parameters and to directly evaluate the uncertainty associated with the estimates, by means of their posterior
probability density functions.

The paper is structured as follows. We first present a literature analysis on both HD kinetic models and Bayesian
estimation approaches in dynamic systems. Then, we briefly describe the adopted kinetic model9 and we detail the
Bayesian approach to estimate the patient-specific model parameters. Afterwards, we show the computational
validation of the approach and the results from the application to real patients. We conclude the paper discussing
the application of the optimized model (with patient-specific parameters) in the clinical practice.

Data used for both the validation and the application to real patients have been obtained within the DialysIS
Project.

2 Literature analysis

In this section, we first revise the literature dealing with mathematical compartment models to describe the
patient’s kinetics during the HD treatment. Then, we overview some works including Bayesian approaches to
estimate the parameters in dynamic models.

2.1 Dialysis modeling

Several mathematical models have been proposed in the literature to describe solute kinetics during HD and to
assist clinicians in individualizing HD prescriptions. For these models, it has been proved that, to properly model
mass and fluid exchanges during HD, it is highly important to consider solutes compartmentalization.10 First, the
single-pool model had been applied to simulate the kinetics of small molecules (mainly urea),11–14 providing a
method for efficiently quantifying the target hemodialysis dose. Then, it became clear that two- or multiple-pool
models better simulate the kinetics of small solutes not freely permeable, e.g. creatinine and phosphate, and the
kinetics of larger molecules, e.g. �2-microglobulin.15 Several tests on single-pool variable volume or pseudo-one
compartment models have been performed for the assessment of intradialytic mass balance of single solutes, e.g.
calcium, potassium and phosphorus, that play a crucial role for hydro-electrolyte equilibria.16–18 To achieve more
effective prediction models, multi-pool models have been introduced, allowing to describe the simultaneous
contribution of different plasma solutes.19 However, none of these models aim at characterizing the patient-
specific solute kinetics in HD, apart from Ursino et al.,19 in which an individual estimation of few parameters
characterizing solute kinetics has been performed.

On the contrary, the clinical need for customization requires patient-specific models. In particular, as done in
this work, the customization can be obtained by including patient-specific parameters in models that are common
to all patients. This respects the idea that the physio-pathological mechanisms are the same, while each patient is
characterized by different parameters that tune the behavior (e.g. biorheological parameters and peripheral
resistances). Moreover, this assumption allows to exploit the existing models as clinical predictors while
pursuing HD personalization.

The only available work that includes a patient-specific characterization of solute kinetics in HD is that of
Casagrande et al.,9 where the estimates have been obtained by minimizing a weighted least-square criterion
function of the differences between clinical data and model predictions. However, in the context of HD, this
approach shows two limitations. First, estimates are given in terms of a punctual value, which does not allow to
assess if two different estimates are significantly different or not. Second, the least-square minimization does not
allow to consider any prior information different from a sub-domain in the parameter space. In the clinical
context, where the patient-specific customization relies on both literature data and few observations from the
patient, the possibility of including a prior belief (as in the Bayesian framework) is an added value.

2.2 Bayesian approaches for parameter estimation

The temporal evolution of continuous dynamic systems is usually modeled by means of differential equations.
When randomness affects the system evolution, we refer to stochastic differential equations (SDEs) and stochastic
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partial differential equations (SPDEs). Randomness can be considered in different parts of the equation, e.g.
parameters, forcing terms, initial conditions, and boundary conditions.

SDEs and SPDEs started almost 50 years ago and are becoming more and more popular for the description of
random phenomena in different applicative fields, from physics to engineering and biology. Theoretical aspects of
SDEs and SPDEs are largely described in Oksendal,20 while numerical issues are discussed in Kloeden and
Platen.21 Their use for reverse engineering problems, in which observations and/or measurements are converted
into knowledge of the structure and the parameters of the system, is largely documented.

In particular, Bayesian approaches have been successfully applied to estimate the parameters (in terms of their
stochastic probability density function) and the stochastic response of SDEs and SPDEs in different fields.22

Indeed, once the stochastic characterization of model parameters has been conducted, SDEs and SPDEs can be
solved, and the result is another stochastic process.20,21

For example, they have been applied to estimate the inertance in a hydraulic simulator of the human
circulation,23 the parameters in a stochastic predator-prey system,24 the thermal conductivity and the
temperature profile in polymers,25 and the aortic stiffness from non-invasive measurements.26 More recently,
Bayesian approaches have been considered for estimating the parameters that characterize the dynamics of
aquatic communities,27 and for the estimation of the mortality terms in a stage-structured demographic
model.28 However, to the best of our knowledge, they have been never applied to characterize the dynamics of
plasmatic electrolytes and, more in general, they have never been applied to HD patients.

3 Multi-compartment kinetic model

We consider the multi-compartment kinetic model of Casagrande et al.9 and assume that the customization is
given in terms of patient-specific model parameters, while the structure of the model remains the same for all HD
patients. An overview of the model is provided below; further details can be found in Casagrande et al.9

This model allows to evaluate, for the entire duration of a HD treatment, the temporal trend of the blood
concentration for different plasmatic electrolytes and breakdown products (defined as solutes in the following),
together with the temporal trend of blood volume. These are in fact the critical variables that are most related to

Figure 1. Body compartments of a HD patient with fluid and mass exchanges across the biological and artificial membranes (patient-

specific parameters �, kðsÞ and �ðsÞ are highlighted where they act).

Bianchi et al. 3



short- and long-term HD complications.29–31 The model is based on mass and fluid balance equations, and both
fluid and mass exchanges in patient’s body compartments and across the dialyzer membrane are taken into
account. It can reproduce both the standard hemodialysis (SHD or bicarbonate hemodialysis) and the
hemodiafiltration technique (HDF) with pre- (HDF-pre) or post-dilution (HDF-post), by changing the
equation of the molar flux across the dialyzer. The body compartments are represented as two pools
(intracellular and extracellular) for the mass exchange of solutes, and as three pools (plasmatic, interstitial and
intracellular) for the fluid transfer (Figure 1). Symbols in Figure 1 and in the following equations are defined in the
Appendix.

Mass, fluid and pressure balance equations that account for mass and fluid exchanges in the body
compartments are as follows

dM
ðsÞ
ic tð Þ

dt
¼ �ðsÞic tð Þ ð1Þ

dMðsÞex tð Þ

dt
¼ ��ðsÞic tð Þ � �ðsÞdial tð Þ þ �

ðsÞ
dil ð2Þ

dVic tð Þ

dt
¼ Qic tð Þ ð3Þ

dVis tð Þ

dt
¼ �Qic tð Þ þQfcap tð Þ ð4Þ

dVpl tð Þ

dt
¼ �Qfcap tð Þ �Quf ð5Þ

dPac tð Þ

dt
¼

1

Cc

dVpl tð Þ

dt
ð6Þ

dPis tð Þ

dt
¼ Eis

dVis tð Þ

dt
ð7Þ

Equations (1) and (2) refer to the mass balance for the intracellular and extracellular compartments,
respectively; equations (3) to (5) refer to the fluid balance in the intracellular, interstitial and plasmatic
compartments, respectively; and equations (6) and (7) refer to the pressure balance at the arterial capillary side
and in the interstitium, respectively.

Table 1. Marginal posterior densities of model parameters vs. their true values (HDF-pre, HFO case).

HDF-pre Min 25% 50% 75% Max true

�ð1Þ – sodium 0.50 0.50 0.50 0.50 0.50 0.50

�ð2Þ – potassium 0.50 0.50 0.50 0.51 0.52 0.50

�ð3Þ – chloride 0.50 0.50 0.50 0.50 0.50 0.50

�ð4Þ – calcium 0.50 0.50 0.50 0.50 0.50 0.50

�ð5Þ – bicarbonate 0.44 0.44 0.44 0.44 0.45 0.50

�ð6Þ – magnesium 0.49 0.50 0.50 0.51 0.51 0.50

�ð7Þ – urea 0.47 0.48 0.48 0.48 0.49 0.50

�ð8Þ – creatinine 0.46 0.47 0.47 0.48 0.49 0.50

� 0.86 0.86 0.86 0.87 0.87 1.00

kð1Þ – sodium 2.04�10�3 2.40�10�3 2.49�10�3 2.60�10�3 2.99�10�3 2.50�10�3

kð2Þ – potassium 1.63�10�4 1.68�10�4 1.69�10�4 1.71�10�4 1.77�10�4 1.67�10�4

kð3Þ – chloride 9.77�10�5 1.17�10�4 1.24�10�4 1.32�10�4 1.64�10�4 1.67�10�4

kð4Þ – calcium 2.40�10�19 3.01�10�19 3.20�10�19 3.42�10�19 4.35�10�19 1.67�10�4

kð5Þ – bicarbonate 6.42�10�3 6.96�10�3 7.10�10�3 7.26�10�3 7.82�10�3 3.30�10�3

kð6Þ – magnesium 1.62�10�4 1.66�10�4 1.68�10�4 1.69�10�4 1.73�10�4 1.67�10�4

kð7Þ – urea 1.37�10�3 1.39�10�3 1.39�10�3 1.39�10�3 1.41�10�3 1.30�10�3

kð8Þ – creatinine 1.27�10�4 1.28�10�4 1.28�10�4 1.29�10�4 1.30�10�4 1.30�10�4
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Individual HD control in terms of mass and fluid exchange is achieved by identifying the patient-specific
parameters �, �ðsÞ and kðsÞ related to the membranes (see Appendix).

Variables Qfcap tð Þ and �ðsÞic tð Þ depend on � and kðsÞ as follows

Qfcap tð Þ ¼ � Lc Pn tð Þ

�ðsÞic tð Þ ¼ �kðsÞ C
ðsÞ
ic tð Þ � �CðsÞis tð Þ

� �

Figure 2. Comparison between simulated and estimated trends for plasmatic volume Vpl (a), extracellular mass of urea Mð7Þex (b), and

intracellular mass of potassium M
ð2Þ
ic (c) for HDF-pre in the HFO case.
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Variables �ðsÞdial tð Þ depend on �ðsÞ in different ways, according to the dialysis technique

. Standard hemodialysis (SHD)

�ðsÞdial tð Þ ¼ 1� FRð Þ�ðsÞdiff tð Þ þ FR �ðsÞ Qin C
ðsÞ
in tð Þ

Figure 3. Comparison between simulated and estimated trends for plasmatic volume Vpl (a), extracellular mass of urea Mð7Þex (b), and

intracellular mass of potassium M
ð2Þ
ic (c) for SHD in the HFO case.
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. Hemodiafiltration technique (HDF-pre or HDF-post)

�ðsÞdial tð Þ ¼ 1� FRð Þ �ðsÞdiff tð Þ þ �
ðsÞ
conv tð Þ

� �
þ FR Qin tð Þ � 1� �ðsÞ

� �
Qf

� �
C
ðsÞ
in tð Þ

FR is the filtration ratio, i.e. the plasma water portion filtered by the dialyzer, defined as

FR ¼
Qf

Qin tð Þ

Figure 4. Comparison between simulated and estimated trends for plasmatic volume Vpl (a), extracellular mass of urea Mð7Þex (b), and

intracellular mass of potassium M
ð2Þ
ic (c) for HDF-post in the HFO case.
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and Qin tð Þ is the plasma water flow rate at the dialyzer inlet, which corresponds to the prescribed blood flow rate
disregarding the red blood cells and the protein component contributions (plasma water fraction according to
Colton et al.32). As for HDF-post and SHD, Qin is expressed as

Qin tð Þ ¼ Qb 1�
Ht tð Þ

100

� 	
1� 0:0107 Tp tð Þ
� �

while for HDF-pre, it is incremented by the dilution flow rate as follows

Qin tð Þ ¼ Qb 1�
Ht tð Þ

100

� 	
1� 0:0107 Tp tð Þ
� �

þQdil

Figure 5. Comparison between simulated and estimated trends for intracellular mass of calcium M
ð4Þ
ic (c) for HDF-pre in the HFO

case.

Table 2. Marginal posterior densities of model parameters vs. their true values (SHD, HFO case).

SHD Min 25% 50% 75% Max true

�ð1Þ – sodium 1.00 1.00 1.00 1.00 1.00 1.00

�ð2Þ – potassium 0.95 0.99 0.99 1.00 1.00 1.00

�ð3Þ – chloride 1.00 1.00 1.00 1.00 1.00 1.00

�ð4Þ – calcium 1.00 1.00 1.00 1.00 1.00 1.00

�ð5Þ – bicarbonate 0.00 0.00 0.00 0.01 0.05 1.00

�ð6Þ – magnesium 0.98 1.00 1.00 1.00 1.00 1.00

�ð7Þ – urea 0.60 0.63 0.64 0.65 0.68 1.00

�ð8Þ – creatinine 0.24 0.32 0.35 0.37 0.46 1.00

� 0.84 0.85 0.85 0.84 0.85 1.00

kð1Þ – sodium 7.23�10�4 8.38�10�3 8.65�10�4 8.89�10�4 9.72�10�4 2.50�10�3

kð2Þ – potassium 1.69�10�4 1.70�10�4 1.71�10�4 1.71�10�4 1.72�10�4 1.67�10�4

kð3Þ – chloride 1.65�10�4 2.01�10�4 2.13�10�4 2.25�10�4 2.80�10�4 1.67�10�4

kð4Þ – calcium 2.21�10�19 2.21�10�19 2.21�10�19 2.21�10�19 2.21�10�19 1.67�10�4

kð5Þ – bicarbonate 6.75�10�3 6.91�10�3 6.94�10�3 6.96�10�3 7.02�10�3 3.30�10�3

kð6Þ – magnesium 1.67�10�4 1.73�10�4 1.74�10�4 1.76�10�4 1.82�10�4 1.67�10�4

kð7Þ – urea 1.36�10�3 1.37�10�3 1.37�10�3 1.37�10�3 1.37�10�3 1.30�10�3

kð8Þ – creatinine 1.30�10�4 1.31�10�4 1.31�10�4 1.31�10�4 1.32�10�4 1.30�10�4
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4 Bayesian estimation approach

Let us denote by � ¼ f�ð1Þ, . . . , �ð8Þ, �, kð1Þ, . . . , kð8Þg the set of the 17 patient-specific parameters to estimate, and by
X̂obs the set of the available observations for the state variables in equations (1) to (7).

In the Bayesian setting, we obtain the posterior densities of the parameters f �jX̂obs

� �
given the likelihood

function f X̂obsj�
� �

and the prior density f �ð Þ of the parameters. Both ingredients are detailed below. Given the

structure of the model, the posterior densities are numerically obtained with a Markov Chain Monte Carlo
(MCMC) algorithm.

Figure 6. Comparison between simulated and estimated trends for plasmatic volume Vpl (a), extracellular mass of urea Mð7Þex (b), and

intracellular mass of potassium M
ð2Þ
ic (c) for HDF-pre in the HFO case – cross check of parameter kð4Þ.

Bianchi et al. 9



4.1 Likelihood function

The likelihood function f X̂obsj�
� �

is based on a discretized version of the multi-compartment model.

We consider an explicit discretization of the ODE system, in which a value X i thð Þ is computed for each
state variable i (i ¼ 1, . . . , n) at each time instant th based on the values of all state variables at the previous
instant th�1. To guarantee the convergence, the discretization is performed with the 4th-order Runge–Kutta
method.

Each patient-specific parameter in � is assumed to be a random variable. In this way, each discretized equation
is a random process, and we may express the density of each XiðthÞ as conditioned to � and to all values
X1ðth�1Þ, . . . ,Xnðth�1Þ at the previous time instant th�1:

XiðthÞ � L XiðthÞjX
1ðth�1Þ, . . . ,Xnðth�1Þ,�

� �
8i, h ð8Þ

Table 4. Marginal posterior densities of model parameters vs. their true values (HDF-pre, LFO case).

Parameter Min 25% 50% 75% Max true

�ð1Þ – sodium 0.06 0.12 0.14 0.16 0.23 0.50

�ð2Þ – potassium 0.77 0.95 0.97 0.99 1.00 0.50

�ð3Þ – chloride 0.69 0.86 0.92 0.96 1.00 0.50

�ð4Þ – calcium 0.00 0.50 0.67 0.79 1.00 0.50

�ð5Þ – bicarbonate 0.89 0.97 0.98 0.99 1.00 0.50

�ð6Þ – magnesium 0.06 0.74 0.86 0.94 1.00 0.50

�ð7Þ – urea 0.90 0.97 0.99 0.99 1.00 0.50

�ð8Þ – creatinine 0.01 0.59 0.77 0.89 1.00 0.50

� 0.87 0.88 0.88 0.88 0.89 1.00

kð1Þ – sodium 1.83�10�3 2.18�10�3 2.29�10�3 2.42�10�3 2.84�10�3 2.50�10�3

kð2Þ – potassium 1.14�10�4 1.58�10�4 1.69�10�4 1.80�10�4 2.30�10�4 1.67�10�4

kð3Þ – chloride 1.12�10�4 1.53�10�4 1.64�10�4 1.75�10�4 2.33�10�4 1.67�10�4

kð4Þ – calcium 1.19�10�4 1.54�10�4 1.64�10�4 1.75�10�4 2.21�10�4 1.67�10�4

kð5Þ – bicarbonate 2.55�10�3 3.24�10�3 3.43�10�3 3.66�10�3 4.56�10�3 3.30�10�3

kð6Þ – magnesium 1.31�10�4 1.58�10�4 1.68�10�4 1.77�10�4 2.12�10�4 1.67�10�4

kð7Þ – urea 1.20�10�3 1.45�10�3 1.52�10�3 1.61�10�3 1.91�10�3 1.30�10�3

kð8Þ – creatinine 9.15�10�5 1.23�10�4 1.30�10�4 1.40�10�4 1.79�10�4 1.30�10�4

Table 3. Marginal posterior densities of model parameters vs. their true values (HDF-post, HFO case).

HDF-post Min 25% 50% 75% Max true

�ð1Þ – sodium 0.52 0.52 0.53 0.53 0.53 0.50

�ð2Þ – potassium 0.45 0.46 0.47 0.47 0.49 0.50

�ð3Þ – chloride 0.52 0.52 0.52 0.52 0.53 0.50

�ð4Þ – calcium 0.52 0.52 0.53 0.53 0.53 0.50

�ð5Þ – bicarbonate 0.52 0.52 0.52 0.52 0.53 0.50

�ð6Þ – magnesium 0.47 0.48 0.48 0.49 0.50 0.50

�ð7Þ – urea 0.46 0.46 0.46 0.46 0.47 0.50

�ð8Þ – creatinine 0.38 0.39 0.40 0.40 0.42 0.50

� 0.81 0.82 0.82 0.82 0.83 1.00

kð1Þ – sodium 2.92�10�3 3.02�10�3 3.04�10�3 3.07�10�3 3.16�10�3 2.50�10�3

kð2Þ – potassium 1.63�10�4 1.63�10�4 1.63�10�4 1.63�10�4 1.63�10�4 1.67�10�4

kð3Þ – chloride 9.93�10�5 1.23�10�4 1.30�10�4 1.39�10�4 1.79�10�4 1.67�10�4

kð4Þ – calcium 1.24�10�19 1.77�10�19 1.89�10�19 2.03�10�18 2.68�10�19 1.67�10�4

kð5Þ – bicarbonate 6.81�10�4 7.72�10�3 8.00�10�4 8.26�10�4 9.47�10�4 3.30�10�3

kð6Þ – magnesium 1.63�10�4 1.64�10�4 1.65�10�4 1.65�10�4 1.67�10�4 1.67�10�4

kð7Þ – urea 1.33�10�3 1.34�10�3 1.34�10�3 1.34�10�3 1.34�10�3 1.30�10�3

kð8Þ – creatinine 1.28�10�4 1.28�10�4 1.28�10�4 1.28�10�4 1.29�10�4 1.30�10�4
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where L denotes the conditioned probability law, which does not follow any known form due to the structure of
the system.

We now consider that observations Xi
obs 2 X̂obs of state variables X

i are available only at some time instants th� ,
where the set th�f g in which observations are available is a subset of all time instants thf g. This is because the
discretization step �, chosen according to the differential equations, is usually thicker than the frequency of the
observations.

Moreover, we assume that all observations Xi
obsðth� Þ are associated with an error (e.g. a measurement error).

Thus, we model them as stochastic variables centered on the value computed from the model. We consider a
Gamma distribution, to respect the positivity of the variables, with modal value Xiðth� Þ and standard deviation
�Xiðth� Þ

Xi
obsðth� Þ � G 1þ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2
p

2�2
,
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2
p

2�2Xiðth� Þ

 !
8i, h� ð9Þ

Table 5. Marginal posterior densities of model parameters vs. their true values (SHD, LFO case).

Parameter Min 25% 50% 75% Max true

�ð1Þ – sodium 0.81 0.96 0.98 0.99 1.00 1.00

�ð2Þ – potassium 0.01 0.71 0.84 0.92 1.00 1.00

�ð3Þ – chloride 0.50 0.91 0.95 0.98 1.00 1.00

�ð4Þ – calcium 0.01 0.68 0.84 0.94 1.00 1.00

�ð5Þ – bicarbonate 0.44 0.88 0.94 0.97 1.00 1.00

�ð6Þ – magnesium 0.02 0.54 0.75 0.88 1.00 1.00

�ð7Þ – urea 0.23 0.80 0.90 0.95 1.00 1.00

�ð8Þ – creatinine 0.00 0.31 0.54 0.80 1.00 1.00

� 0.82 0.83 0.83 0.83 0.84 1.00

kð1Þ – sodium 1.74�10�3 2.24�10�3 2.41�10�3 2.58�10�3 3.23�10�3 2.50�10�3

kð2Þ – potassium 1.21�10�4 1.48�10�4 1.57�10�4 1.66�10�4 2.02�10�4 1.67�10�4

kð3Þ – chloride 1.24�10�4 1.54�10�4 3.29�10�3 1.76�10�4 1.46�10�3 1.67�10�4

kð4Þ – calcium 1.18�10�4 1.18�10�4 1.18�10�4 1.18�10�4 1.18�10�4 1.67�10�4

kð5Þ – bicarbonate 2.31�10�3 3.08�10�3 3.29�10�3 3.51�10�3 4.17�10�3 3.30�10�3

kð6Þ – magnesium 1.06�10�4 1.55�10�4 1.65�10�4 1.76�10�4 2.18�10�4 1.67�10�4

kð7Þ – urea 1.12�10�3 1.30�10�3 1.34�10�3 1.37�10�3 1.46�10�3 1.30�10�3

kð8Þ – creatinine 1.08�10�4 1.28�10�4 1.31�10�4 1.34�10�4 1.55�10�4 1.30�10�4

Table 6. Marginalposterior densities of model parameters vs. their true values (HDF-post, LFO case).

Parameter Min 25% 50% 75% Max true

�ð1Þ – sodium 0.73 0.94 0.97 0.99 1.00 1.00

�ð2Þ – potassium 0.05 0.82 0.91 0.96 1.00 1.00

�ð3Þ – chloride 0.00 0.24 0.35 0.47 0.91 1.00

�ð4Þ – calcium 0.01 0.39 0.55 0.72 0.99 1.00

�ð5Þ – bicarbonate 0.36 0.81 0.90 0.95 1.00 1.00

�ð6Þ – magnesium 0.01 0.46 0.68 0.84 1.00 1.00

�ð7Þ – urea 0.68 0.95 0.97 0.99 1.00 1.00

�ð8Þ – creatinine 0.00 0.39 0.67 0.87 1.00 1.00

� 0.82 0.83 0.83 0.83 0.84 1.00

kð1Þ – sodium 1.92�10�3 2.42�10�3 2.59�10�3 2.76�10�3 3.55�10�3 2.50�10�3

kð2Þ – potassium 1.24�10�4 1.24�10�4 1.24�10�4 1.24�10�4 1.24�10�4 1.67�10�4

kð3Þ – chloride 1.17�10�4 1.54�10�4 1.67�10�4 1.78�10�4 2.35�10�4 1.67�10�4

kð4Þ – calcium 1.21�10�4 1.54�10�4 1.65�10�4 1.76�10�4 2.17�10�4 1.67�10�4

kð5Þ – bicarbonate 2.22�10�3 2.92�10�3 3.14�10�3 3.36�10�3 4.34�10�3 3.30�10�3

kð6Þ – magnesium 1.21�10�4 1.58�10�4 1.69�10�4 1.80�10�4 2.36�10�4 1.67�10�4

kð7Þ – urea 1.16�10�3 1.46�10�3 1.54�10�3 1.61�10�3 1.95�10�3 1.30�10�3

kð8Þ – creatinine 1.03�10�4 1.24�10�4 1.31�10�4 1.39�10�4 1.66�10�4 1.30�10�4
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where G denotes the Gamma distribution, 1þ 1þ
ffiffiffiffiffiffiffiffiffiffi
1þ4�2
p

2�2
is the shape parameter, and 1þ

ffiffiffiffiffiffiffiffiffiffi
1þ4�2
p

2�2Xiðth� Þ
the rate parameter.

The choice of a probability density function centered on the value computed from the model is common in this
type of approach. More specifically, the chosen Gamma density respects the characteristics of the problem, i.e. the
positive support of the density respects the positiveness of the variable, and fitting the modal value with the model
allows to have a distribution with a peak. Such choice has been already adopted and gave fair results.28

In particular, we use three different parameters � based on the state variable, i.e. �v for Vis and Vpl, �mex for all
MðsÞex , and �mic for M

ðsÞ
ic . They are other parameters to estimate; thus, the overall set of the parameters to estimate

�� ¼ � [ �v,�mex,�micf g includes 20 elements.
The combination of equations (8) and (9) gives the conditional law of each observation at each instant th� . Their

productover th� and i gives the likelihood function f X̂obsj�
�

� �
of theobservations given theoverall parameter vector��

f X̂obsj�
�

� �
¼
Y
i, th�

G 1þ
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2
p

2�2
,
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2
p

2�2Xiðth� Þ

 !

� L̂ Xiðth� ÞjX
1ðth��1Þ, . . . ,Xnðth��1Þ,�

�
� � ð10Þ

The law L̂ is the marginal density of Xiðth� Þ given �� and the observations at the previous th��1; it is derived
combining all of the densities L in equation (8) for all variables between th��1 and th� . In the notation, � has to be
specified (�v, �mex or �mic) based on the specific variable X i.

Table 8. Time-dependent variables for the three tested patients with the respective frequency.

Variable Frequency

Plasma sodium concentration C
ð1Þ
pl tð Þ (mmol/L) Beginning, ending, and every hour

during the treatment

Plasma potassium concentration C
ð2Þ
pl tð Þ (mmol/L)

Plasma chloride concentration C
ð3Þ
pl tð Þ (mmol/L)

Plasma calcium concentration C
ð4Þ
pl tð Þ (mmol/L)

Plasma bicarbonate concentration C
ð5Þ
pl tð Þ (mmol/L)

Plasma urea concentration C
ð7Þ
pl tð Þ (mmol/L)

Hematocrit Ht tð Þ (%)

Plasma albumin concentration ½albumin� tð Þ (g/L) beginning and ending of the treatment

Plasma magnesium concentration C
ð6Þ
pl tð Þ (mmol/L)

Plasma creatinine concentration C
ð8Þ
pl tð Þ (mmol/L)

Relative volume RBV tð Þ (%) every minute

Ultrafiltration volume UFV tð Þ (L)

Table 7. Registry data (gender and age), initial weight at the beginning of the HD session, and therapy prescription (session time and

ultrafiltration) for the three tested patients.

Technique HDF-pre SHD HDF-post

Gender F M M

Age (years) 50 74 64

Initial weight (kg) 63.6 81 77.3

Session Time (h) 4 4 4.5

Ultrafiltration (L) 3 3.2 3.1
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To make simpler the notation, we did not mention above that the discretization step � can be different from
variable to variable, so that the observations of all variables are available at some instants th� while only a subset of
observations in other instants th� . However, this additional feature does not change the approach, while it only
makes the notation for L̂ more complicated.

4.2 Prior densities and computation of the posterior densities

We assume that all parameters in �� are a priori independent. According to the HD literature,9,33 which
provides some information about standard values and ranges, the following prior densities are chosen for the
parameters in �:

. �ðsÞ: Uniform density with minimum value equal to 0 and maximum value equal to 1 8s;

. �: Gamma density with mean value equal to 1 and standard deviation equal to 0.1;

. kðsÞ: Gamma density with mean value equal to 2:50 � 10�3L=sec for sodium, 3:30 � 10�3L=sec for bicarbonate,
1:30 � 10�3L=sec for urea, 1:30 � 10�4L=sec for creatinine, 1:67 � 10�4L=sec for all other solutes, and standard
deviation equal to the 10% of the respective mean value 8s.

For the additional parameters �v, �mex and �mic in ��, Gamma densities with both mean value and variance
equal to 0.05 are considered.

The posterior density of �� is numerically obtained with a Markov Chain Monte Carlo (MCMC) method. The
model has been implemented in STAN,34 through its R interface, which implements the Hamiltonian Monte Carlo
algorithm to sample from each marginal posterior density. Estimates are obtained with 1200 iterations, including a
warm up of 500 iterations. The discretization time step � is equal to 5 s.

5 Computational validation of the approach

In this section, we show the validation of the proposed approach on some simulated instances that replicate three
different HD sessions, one for each HD technique (SHD, HDF-pre and HDF-post).

5.1 Simulated instances

In each session, the values of the state variables Vpl, Vis, M
ðsÞ
ex and M

ðsÞ
ic at each th have been simulated with the

discretized model, considering mean physiological values for the parameters (both patient-specific and non-
patient-specific parameters) and initial values for the state variables from a real session.

Table 9. Marginal posterior densities of model parameters (HDF-pre, real patient).

Parameter Min 25% 50% 75% Max

�ð1Þ – sodium 0.41 0.58 0.64 0.69 0.84

�ð2Þ – potassium 0.29 0.84 0.91 0.96 1.00

�ð3Þ – chloride 0.09 0.28 0.33 0.38 0.58

�ð4Þ – calcium 0.00 0.47 0.59 0.69 0.99

�ð5Þ – bicarbonate 0.30 0.71 0.82 0.90 1.00

�ð6Þ – magnesium 0.02 0.42 0.66 0.84 1.00

�ð7Þ – urea 0.59 0.93 0.96 0.98 1.00

�ð8Þ – creatinine 0.01 0.38 0.62 0.83 1.00

� 0.71 0.73 0.73 0.73 0.75

kð1Þ – sodium 1.66�10�3 2.30�10�3 2.47�10�3 2.65�10�3 3.37�10�3

kð2Þ – potassium 1.22�10�4 1.57�10�4 1.68�10�4 1.79�10�4 2.28�10�4

kð3Þ – chloride 1.20�10�4 1.56�10�4 1.68�10�4 1.80�10�4 2.37�10�4

kð4Þ – calcium 1.20�10�4 1.55�10�4 1.65�10�4 1.76�10�4 2.22�10�4

kð5Þ – bicarbonate 2.26�10�3 3.02�10�3 3.27�10�3 3.48�10�3 4.35�10�3

kð6Þ – magnesium 1.18�10�4 1.56�10�4 1.66�10�4 1.78�10�4 2.28�10�4

kð7Þ – urea 9.80�10�4 1.29�10�3 1.38�10�3 1.48�10�3 1.87�10�3

kð8Þ – creatinine 9.39�10�5 1.22�10�4 1.30�10�4 1.39�10�4 1.78�10�4
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The values adopted for the patient-specific parameters are reported in the last column of Tables 1–3. The initial
values were acquired within the DialysIS Project at the Nephrology and Dialysis Unit of the A. Manzoni Hospital,
(Lecco, Italy) for the SHD session, at the Nephrology and Dialysis Unit of the Regional Hospital of Lugano
(Lugano, Switzerland) for the HDF-pre session, and at the Nephrology and Dialysis Unit of the Sant’Anna
Hospital (Como, Italy) for the HDF-post session.

The integration of ODE system in equations (1) to (7) has been performed with the same 4th order Runge–Kutta
method used for the estimation approach. The discretized system for simulating values has been implemented in
Matlab (The MathWorks Inc., Natick, MA, USA), with a discretization step � of 5 s and a total duration of 227min
for HDF-pre, 240min for SHD, and 264min for HDF-post (equal to the length of the respective treatment).

5.2 Validation approach

The goal of the validation is to use the simulated values to estimate the patient-specific parameters. Under the
same initial values of the state variables and the non-patient-specific parameters, we estimate the posterior
densities for the patient-specific parameters with the proposed approach, and we compare them with their true
values used to generate the simulated observations.

Two cases are considered for each simulated session, namely a high frequency observations (HFO) case and a low
frequency observations (LFO) case.

For the HFO case, the interval between two consecutive observations th� � th��1 is equal to 1 min for all
variables. Thus, as � ¼ 5 s, one value every 20 simulated values has been taken.

The LFO case reproduces the clinical conditions, where it is impossible to register all the variables with a high
frequency (e.g. every minute). In particular, we replicate the worst clinical conditions in terms of acquisition
frequency, namely:

. Vpl tð Þ is taken every minute;

. Vis tð Þ is taken every hour;

. MðsÞex tð Þ and M
ðsÞ
ic tð Þ are taken only at the beginning and the end of the treatment.

While HFO analyzes the approach in the presence of a high number of observations, as commonly in the
literature,23,25,26 LFO considers a realistic clinical setting. The goal is to quantify possible detriments of the
estimates under commonly adopted acquisition frequencies.

5.3 Results

We first consider the convergence of the MCMC chain and the computational times; then, we analyze the
estimates to assess the goodness of the approach.

Figure 7. Comparison between simulated and estimated trends for intracellular mass of calcium M
ð4Þ
ic (c) for HDF-pre in the HFO

case – cross check of parameter kð4Þ.
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Nice traceplots and autocorrelations are obtained for each session, showing a satisfactory convergence of the
MCMC chain. Moreover, values R̂ of the Gelman-Rubin convergence statistics are always equal or higher than 1
for each estimated parameter in ��, confirming the convergence of the chain. The computational times have been
equal to 14.5� 4.4 and 14.9� 6.7 h for the HFO and LFO tests, respectively, on a server equipped with processor
X86-64 AMD Opteron 6328 and 64GB of RAM. These times are largely lower than the common interval between
two consecutive HD sessions, which is a fundamental requirement to apply the method in the clinical practice,
where patient-specific parameters must be estimated with the data of a session and then used to optimize the
kinetic response of the following session.

We start the analysis considering the marginal posterior densities of the patient-specific parameters for the HFO
case, compared with the true values used to generate the simulated datasets. Results are reported in Tables 1–3
showing that in most of the cases, the posterior 25–75% credible intervals contain the true value and that the order
of magnitude is almost always correctly estimated.

Table 10. Marginal posterior densities of model parameters (SHD, real patient).

Parameter Min 25% 50% 75% Max

�ð1Þ – sodium 0.00 0.01 0.02 0.04 0.20

�ð2Þ – potassium 0.00 0.05 0.13 0.26 0.94

�ð3Þ – chloride 0.00 0.01 0.03 0.06 0.29

�ð4Þ – calcium 0.00 0.26 0.53 0.76 1.00

�ð5Þ – bicarbonate 0.00 0.02 0.03 0.07 0.62

�ð6Þ – magnesium 0.00 0.19 0.38 0.63 1.00

�ð7Þ – urea 0.00 0.04 0.13 0.27 0.95

�ð8Þ – creatinine 0.00 0.18 0.40 0.69 1.00

� 2.46 2.71 2.79 2.87 3.15

kð1Þ – sodium 2.52�10�3 3.20�10�3 3.39�10�3 3.59�10�3 4.45�10�3

kð2Þ – potassium 1.45�10�4 1.85�10�4 1.96�10�4 2.10�10�4 2.61�10�4

kð3Þ – chloride 1.18�10�4 1.46�10�4 1.56�10�4 1.68�10�4 2.05�10�4

kð4Þ – calcium 1.15�10�4 1.54�10�4 1.65�10�4 1.77�10�4 2.22�10�4

kð5Þ – bicarbonate 1.87�10�3 2.35�10�3 2.54�10�3 2.71�10�3 3.63�10�3

kð6Þ – magnesium 1.21�10�4 1.57�10�4 1.67�10�4 1.78�10�4 2.18�10�4

kð7Þ – urea 3.30�10�3 3.76�10�3 3.93�10�3 4.10�10�3 4.87�10�3

kð8Þ – creatinine 9.40�10�5 1.32�10�4 1.42�10�4 1.52�10�4 2.02�10�4

Table 11. Marginal posterior densities of model parameters (HDF-post, real patient).

Parameter Min 25% 50% 75% Max

�ð1Þ – sodium 0.73 0.94 0.97 0.99 1.00

�ð2Þ – potassium 0.05 0.82 0.91 0.96 1.00

�ð3Þ – chloride 0.00 0.24 0.35 0.47 0.91

�ð4Þ – calcium 0.01 0.39 0.55 0.72 0.99

�ð5Þ – bicarbonate 0.36 0.81 0.90 0.95 1.00

�ð6Þ – magnesium 0.01 0.46 0.68 0.84 1.00

�ð7Þ – urea 0.68 0.95 0.97 0.99 1.00

�ð8Þ – creatinine 0.00 0.39 0.67 0.87 1.00

� 1.59 1.78 1.84 1.90 2.14

kð1Þ – sodium 2.55�10�3 3.32�10�3 3.53�10�3 3.74�10�3 4.69�10�3

kð2Þ – potassium 1.48�10�4 1.98�10�4 2.11�10�4 2.23�10�4 2.79�10�4

kð3Þ – chloride 1.22�10�4 1.51�10�4 1.62�10�3 1.74�10�4 2.29�10�3

kð4Þ – calcium 1.24�10�4 1.53�10�4 1.64�10�4 1.77�10�4 2.16�10�4

kð5Þ – bicarbonate 2.71�10�3 3.26�10�3 3.48�10�3 3.72�10�3 4.61�10�3

kð6Þ – magnesium 1.22�10�4 1.63�10�4 1.74�10�4 1.86�10�4 2.42�10�4

kð7Þ – urea 2.41�10�3 2.93�10�3 3.08�10�3 3.22�10�3 3.78�10�3

kð8Þ – creatinine 9.03�10�5 1.29�10�4 1.39�10�4 1.46�10�4 2.03�10�4
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The only relevant difference concerns kð4Þ for calcium, for which our estimation is several orders of magnitude
lower than the true value in all of the three cases. This means that the estimated model discharges the contribution
of the calcium, which is nullified by the almost null coefficient kð4Þ. This neglected contribution may either result in
a bad or in an acceptable reconstruction of the temporal profiles of the state variables. In the first case, this would
invalidate the approach; in the latter, the dynamics are not sensitive to the value of kð4Þ, and this parameter is not
identifiable from the observations.

To validate the approach, we compare the simulated (generated with the true values) and the estimated trends
for three state variables, i.e. a volume, an extracellular mass and an intracellular mass. Results are reported in

Figure 8. Comparison between simulated and estimated trends for plasmatic volume Vpl (a), extracellular mass of urea Mð7Þex (b), and

intracellular mass of potassium M
ð2Þ
ic (c) for HDF-pre in the LFO case.
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Figures 2–4. As the estimated trends are stochastic, due to the posterior densities of the estimated parameters, they
are reported in terms of their median value and 2.5–97.5% credible band. Indeed, 100 samples are extracted from
the joint posterior density of the patient-specific parameters, and the discretized model has been run as many times
for each set of extracted values. Then, trends are combined for each discrete time instant, and the trends
corresponding to the median value and the 2.5–97.5% credible band are taken. Results show a
good reproducibility of the simulated datasets, with low differences between the simulated and the estimated
trends. Very strict 2.5–97.5% credible bands are also obtained, proving the capability to reproduce the
dynamics with a low degree of uncertainty. The same comparison is shown in Figure 5 for the calcium

Figure 9. Comparison between simulated and estimated trends for plasmatic volume Vpl (a), extracellular mass of urea Mð7Þex (b), and

intracellular mass of potassium M
ð2Þ
ic (c) for SHD in the LFO case.
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intracellular mass M
ð4Þ
ic . Results show that the estimation error of parameter kð4Þ marginally affects the estimated

dynamics of this specific solute, with a difference between the simulated and the estimated value below the 10% at
the end of the treatment.

Finally, we cross check the impact of the altered parameter kð4Þ by reconstructing the dynamics of the state
variables with the true value of kð4Þ and the estimated values of the other parameters (extracted 100 times from the
posterior density as for the analysis above), for the HDF-pre treatment. We obtain similar trends with comparable
errors in all other trends (Figure 6 with respect to Figure 2), and a null error for the intracellular mass of calcium
M
ð4Þ
ic (Figure 7 with respect to Figure 5). There results definitely confirm that, despite the lower order of magnitude

estimated for kð4Þ, this parameter does not affect the dynamics of the whole system besides calcium.

Figure 10. Comparison between simulated and estimated trends for plasmatic volume Vpl (a), extracellular mass of urea Mð7Þex (b), and

intracellular mass of potassium M
ð2Þ
ic (c) for HDF-post in the LFO case.
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In addition, we remark that calcium plays a crucial role in the cardiovascular stability and that the knowledge
of its compartmentalization, which is supposed to be different from that of the other electrolytes, is still limited.
This fact is proved by the presence of kinetic models specific for calcium.16

We now consider the LFO case. The marginal posterior densities of the patient-specific parameters for these
tests, compared with the true values used to generate the simulated datasets, are reported in Tables 4–6. Not only
the estimates are not deteriorated by the lower amount of information, but it is possible to observe that the order
of magnitude is always correctly estimated, also for kð4Þ. Probably, in the presence of a lower amount of

Figure 11. Comparison between estimated trends and real clinical registrations for blood volume Vb (a), plasma urea concentration

C
ð7Þ
pl (b), and plasma potassium concentration C

ð2Þ
pl (c) for the HDF-pre treatment.
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information, the contribution related to calcium plays a significant role in determining the response, and it is not
discharged any more from the model.

The comparisons between the simulated and the estimated trends are reported in Figures 8–10. We can observe
that the estimation errors are only slightly higher if compared with those obtained under the HFO case. This
confirms that we may characterize a patient in realistic clinical conditions, when few clinical data are available.

6 Application to real patients

After validation, the proposed Bayesian approach has been applied to real patients to test the ability of providing
fair estimations in line with patients’ characteristics under real measurements.

Figure 12. Comparison between estimated trends and real clinical registrations for blood volume Vb (a), plasma urea concentration

C
ð7Þ
pl (b), and plasma potassium concentration C

ð2Þ
pl (c) for the SHD treatment.
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We consider three patients, one for each type of HD treatment. These patients are the same used
to get the initial values of the state variables for the validation. Patients’ characteristics are reported in
Table 7.

As common in clinical studies, some time-dependent variables have been acquired during the treatment with
different frequencies. Those acquired in this study are reported in Table 8. Then, the observations of the state
variables have been derived using the available clinical data, by means of the equations reported in the
Supplementary Material; this additional step is made necessary because it is impossible to directly measure the
state variables in clinics. Due to the acquisition frequencies of Table 8, the available dataset in terms of state
variables is as follows:

Figure 13. Comparison between estimated trends and real clinical registrations for blood volume Vb (a), plasma urea concentration

C
ð7Þ
pl (b), and plasma potassium concentration C

ð2Þ
pl (c) for the HDF-post treatment.
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. Vpl tð Þ taken every minute;

. Vis tð Þ taken every minute;

. MðsÞex tð Þ and M
ðsÞ
ic tð Þ taken at the beginning and the ending of the treatment 8s.

Results from the Bayesian approaches are in terms of the estimated patient-specific parameters (posterior
densities) and the trends of the state variables (stochastic trends). Thus, to compare the trends with the actual

Figure 14. Comparison between estimated trends and real clinical registrations for blood volume Vb (a), plasma urea concentration

C
ð7Þ
pl (b), and plasma potassium concentration C

ð2Þ
pl (c) for the SHD treatment (2nd monitored session).
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clinical data, volumes and masses (Vpl tð Þ, Vis tð Þ, M
ðsÞ
ex tð Þ and M

ðsÞ
ic tð Þ) are translated into plasmatic concentrations

(C
ðsÞ
pl tð Þ) by means of the inverse equations of those reported in the Supplemental Material.
The simulated trends have been also compared with those obtained by using standard parameters, taken by

literature. Indeed, these trends are obtained with the same model but using standard parameters (which are
deterministic values). Standard parameters are the ones reported in the last column of Tables 1–3.

6.1 Results

Nice traceplots and autocorrelations are obtained for each session, as for the validation, showing a satisfactory
convergence of the MCMC chain. Once again, values R̂ of the Gelman-Rubin convergence statistics are always

Figure 15. Comparison between estimated trends of blood volume, urea and potassium concentrations for the HDF-pre treatment

and the same trends obtained changing some treatment settings.
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equal or higher than 1 for each parameter in ��, confirming the convergence. Finally, using the same server of that
of the validation, a computational time equal to 6.4� 6.3 h is observed.

The marginal posterior densities of the patient-specific parameters are reported in Tables 9–11. Results show
larger credible intervals than those obtained for the simulated datasets, as expected, but they are however strict
enough to identify the values. Moreover, the estimated values are in line with the expectations and the literature
data, assessing the goodness of fit.

To validate the estimates, we compare the estimated trends for three clinical variables (blood volume, plasma
urea and potassium concentrations) with the related acquired data. Results are reported in Figures 11–13. As
mentioned above, the trends are derived from the estimated values of the state variables according to the inverse
equations of those reported in the Supplemental Material. The stochastic trends are generated as for the
validation, extracting 100 samples from the joint posterior density of the patient-specific parameters and
combining the 100 trends at each discrete time instant. In the figures, they are reported in terms of median
value and 2.5–97.5% credible band.

Results show a good fitting, with low differences between estimated and clinical data. Moreover, very strict
2.5–97.5% credible bands are obtained, showing the capability of reproducing the trends with a low degree of
uncertainty and confirming the stability of the proposed approach. Results also show a better fitting of clinical
data when compared with the trends obtained with standard parameter values, i.e. better estimated trends are
found using the patient-specific parameters from the Bayesian approach.

7 Discussion and conclusion

In this paper, we present a Bayesian estimation approach for HD, to estimate the patient-specific parameters of a
multi-compartment model, with the goal of improving HD treatment customization.

Results from the computational validation show good performance of the approach, i.e. the capability to detect
the real values of the parameters and efficiently fit the trajectories, even when the acquisition frequency of the
observed variables is low. Further results from the application to real patients demonstrate that the proposed
approach is fair and provides good estimates.

The model can be a useful tool to support clinical decisions and prescription changes. In the following, we
briefly show how to use the patient-specific version of the kinetic model as a clinical support tool, thanks to the
identified patient-specific parameters. Two examples are reported.

The first evaluation deals with the possibility to predict the single patient kinetic response to the next treatment
given the patient-specific parameters estimated in the previous one, by assuming that these parameters are quite
stable from HD session to HD session. For example, the parameters estimated for the SHD patient (see Table 10)
have been used to generate the kinetic response in a second session of the same patient, whose initial conditions are
different. Results in Figure 14 show good performances in fitting the clinical data, thus confirming that the
estimated parameters can be kept for the next session and that clinicians have an effective tool to predict the
patient-specific kinetic response.

The second evaluation deals with the optimization of the HD treatment, once assumed that the patient-
specific parameters remain stable between consecutive HD treatments. The presence of a patient-specific kinetic
model allows to rapidly evaluate the impact of potential changes in the prescription before the treatment starts.
For example, the impact of changing (i) the blood flow rate, (ii) the dialysis filter, and (iii) both these parameters is
shown in Figure 15 for the real HDF-pre patient of the previous Section. Indeed, it was of clinical interest to
change the blood flow rate (Qb) from 300 ml

min to 350 ml
min and the dialyzer from a FX100 Cordiax to FX80 Cordiax

(lower clearances, Fresenius Medical Care AG and Co. KGaA, Germany), to check how the blood volume, the
plasma urea and potassium concentrations trends change. Results show that, by changing the blood flow rate or
the blood flow rate and the dialysis filter simultaneously, it is possible to obtain better profiles, associated with
lower values of Vb, C

ð7Þ
pl and C

ð2Þ
pl at the end of the HD treatment. This means that, with the alternative treatment

settings, we can get values of these variables that are closer to the clinical target. In particular, it is possible to
notice that the reference settings curve and the filter changed curve are overlapped, as well as the Qb changed and
Qbþfilter changed curves.

These achievements will be even strengthened once the tests will be performed on a wider number of HD
sessions.

To conclude, let us remark that the goal of the proposed approach is to find out patient-specific parameters to
tailor the HD treatment on the single patient. For example, we may estimate the parameters from the first HD
treatment to better design the second treatment and so on, updating the information if the patient’s characteristics
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change. Anyway, the Bayesian approach can easily include observations from multiple patients or multiple HD
treatments on the same patient, by simply including observations from different treatments in the likelihood
function (equation (10)). In case of multiple HD treatments on the same patient, this can be useful to include a
higher amount of data to estimate the patient-specific parameters (see, e.g., Lanzarone et al.28 for a multi-period
application in another context).
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Appendix

Notation

Cc capillary compliance (L/mmHg)
C
ðsÞ
ic tð Þ concentration of solute s in the intracellular compartment (mmol/L)

C
ðsÞ
in tð Þ concentration of solute s in plasma water at the dialyzer inlet (mmol/L)

C
ðsÞ
is tð Þ concentration of solute s in the interstitial compartment (mmol/L)
Eis interstitial elastance (mmHg/L)

Ht tð Þ hematocrit (%)
kðsÞ modulation of mass transfer efficiency across cell membrane for solute s (L/s)
Lc capillary permeability (L=mmHg � sec)

MðsÞex tð Þ extracellular mass of solute s (mmol)

M
ðsÞ
ic tð Þ intracellular mass of solute s (mmol)

Pac tð Þ arterial capillary pressure (mmHg)
Pis tð Þ interstitial pressure (mmHg)
Pn tð Þ Total net filtration pressure (difference between hydraulic and osmotic pressures) (mmHg)
Qb prescribed blood flow rate of the dialysis machine (L/s)
Qdil dilution flow rate present in HDF therapy (L/s)
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Qf filtration flow rate of the HD machine (L/s)
Qfcap tð Þ Fluid flow rate across the capillary membrane (L/sec)
Qic tð Þ Fluid flow rate across the cell membrane (L/s)
Quf ultrafiltration flow rate across the dialyzer membrane (L/s)

s solute index: sodium Naþ(s¼ 1); potassium Kþ (s¼ 2); chloride (Cl – s¼ 3); calcium Ca2þ (s¼ 4);
bicarbonate HCO�3 (s¼ 5); magnesium Mg2þ (s¼ 6); urea COðNH2Þ2 (s¼ 7); creatinine C4H7N3O
(s¼ 8)

t time index (s)
Tp tð Þ Total protein concentration in blood (g/dL)
Vic tð Þ intracellular volume (L)
Vis tð Þ interstitial volume (L)
Vpl tð Þ plasmatic volume (L)

� Ratio between intracellular and interstitial equilibrium concentrations35

�ðsÞ performance of dialyzer membrane in terms of filtration for solute s [adimensional]
�ðsÞdial tð Þ molar flux of solute s across the dialyzer (mmol/s)

�ðsÞdiff tð Þ diffusive molar flux of solute s across the dialyzer membrane (mmol/s)

�ðsÞdil molar dilution flux of solute s (mmol/s)
�ðsÞic tð Þ molar flux of solute s across the cell membrane (mmol/s)

� modulation of fluid transfer efficiency across capillary membrane (adimensional)
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