
A Framework for Joint Resource Allocation of MapReduce and Web Service

Applications in a Shared Cloud Cluster

Lorela Canoa,⇤, Giuliana Carelloa, Danilo Ardagnaa

a
Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)

Politecnico di Milano, Italy

⇤Corresponding author
Email address: lorela.cano@polimi.it (Lorela Cano)

Preprint submitted to Journal of Parallel and Distributed Computing January 28, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/162432327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The ongoing uptake of cloud-based solutions by di↵erent business domains and the rise of cross-

border e-commerce in the EU require for additional public and private cloud solutions. Private

clouds are an alternative for e-commerce sites to host not only Web Service (WS) applications but

also Business Intelligence ones that consist of batch and/or interactive queries and resort to the

MapReduce (MR) programming model.

In this study, we take the perspective of an e-commerce site hosting its WS and MR applications

on a fixed-size private cloud cluster. We assume Quality of Service (QoS) guarantees must be

provided to end-users, represented by upper-bounds on the average response times of WS requests

and on the MR jobs execution times, as MR applications can be interactive nowadays. We consider

multiple MR and WS user classes with heterogeneous workload intensities and QoS requirements.

Being the cluster capacity fixed, some requests may be rejected at heavy load, for which penalty

costs are incurred. We propose a framework to jointly optimize resource allocation for WS and MR

applications hosted in a private cloud with the aim to increase cluster utilization and reduce its

operational and penalty costs. The optimization problem is formulated as a non linear mathematical

programming model. Applying the KKT conditions, we derive an equivalent problem that can be

solved e�ciently by a greedy procedure. The proposed framework increases cluster utilization by

up to 18% while cost savings go up to 50% compared to a priori partitioning the cluster resources

between the two workload types.

Keywords: MapReduce, Web Service, Resource management, Shared clusters, Nonlinear

programming

⇤Corresponding author
Email address: lorela.cano@polimi.it (Lorela Cano)

Preprint submitted to Journal of Parallel and Distributed Computing January 28, 2017

1. INTRODUCTION

Despite the relatively high level of adoption cloud computing has reached in di↵erent business

domains (circa 70% of businesses in EU in 2015), Information Technology (IT) analysts expect

additional investments in public and private clouds [1]. Moreover, the recent e↵orts of the EU for

a digital single market [2] are pushing cross-border e-commerce on one side and a rising need for

scalable IT solutions on the other.

Private clouds become thus an attractive alternative for e-commerce sites to host not only tradi-

tional Web Service (WS) applications but also Business Intelligence (BI) ones accessing sometimes

sensitive data. For instance, e-commerce market leaders host both the web site and BI applications

on the same system to perform Key Performance Indicators (KPIs) analyses or to update the pa-

rameters of the recommender systems which is used in production [3, 4]. Such BI applications are

a mix of batch and/or interactive queries that resort to the MapReduce (MR) programming model

[5], e.g., log analysis, to evaluate the e↵ect of a product campaign. The benefit of shared clusters is

twofold: they allow for BI applications to consolidate multiple silos in a single “data lake” [6] while,

from a resource management perspective, for reduced costs and higher utilization of the hardware

infrastructure [7, 8].

A particular aspect of private clouds is that the available resources are finite whereas workloads

are characterized by time-variant intensities. Therefore, private clouds have to cope with varying

resource and Quality of Service (QoS) requirements, which makes admission control and capacity

allocation very important. Concerning WS applications, capacity planning tools for guaranteeing

target QoS levels for end users have been extensively addressed in the literature [9]. Instead, capacity

allocation for MR applications has gained momentum only recently. However, to the best of our

knowledge, this is the first attempt to jointly optimize WS and MR mangement.

MR applications have evolved from batch analysis on dedicated clusters based on a First In

First Out (FIFO) scheduler [10, 11] to supporting both batch and interactive data analysis [12].

Nowadays, multiple users can submit large queries carried out on shared clusters which might have

to be delivered within given deadlines. The execution time of a MapReduce job is unknown in

advance [13, 14]; as a result, determining the optimal number of nodes in a cluster shared among

multiple users that submit heterogeneous tasks is a di�cult problem [14].

In this context, we propose an optimization framework that implements Admission Control (AC)

and Capacity Allocation (CA) in a shared cluster hosting heterogeneous workloads ranging from

WS to MR applications characterized by di↵erent resource and QoS requirements. The AC&CA

determines the admitted workload (i.e., the number of concurrent MR jobs and the rate of served

WS application requests for di↵erent user classes) and the optimal amount of resources (number of

VMs) to be allocated while satisfying the QoS constraints. The goal of such framework is to optimize

the cluster resource allocation with the aim to increase cluster utilization and to reduce costs. A

classical QoS performance model has been adopted to predict the response times of WS requests

whereas approximate formulae (proposed in [15]) provide estimates on the execution times of MR

jobs so that the latter are bounded to given deadlines. The joint AC&CA problem is formulated by

2

means of a mathematical model, whose objective is to minimize the operational costs for running

the cluster and the penalty costs incurred from request rejections. Through theoretical analysis, we

derive several proprieties characterizing the optimal solution of the proposed model, which allow

to obtain closed formulae that translate the number of jobs and request rate for each MR and

WS application class, respectively, into the optimal number of VMs to be allocated. The original

problem is reduced to an equivalent one that can be solved e�ciently by a greedy procedure.

Since the proposed approach allows to dynamically use the available resources between WS and

MR application as opposed to an a priori resource partitioning between the two application types,

we expect our framework to reduce the penalty cost due to rejected jobs/requests or, alternatively,

for a given target rejection rate, to reduce the cluster size whenever the application workloads are

shifted (e.g., when requests originate from di↵erent time zones). This is verified by the conducted

experiments: for significant workload shifts, the cluster utilization is improved by up to 18% whereas

cost savings go up to 50%.

The paper is organized as follows: Section 2 describes the proposed framework and the under-

lying problem assumptions. In Section 3 we introduce an initial formulation of the problem, derive

several proprieties characterizing its optimal solution and provide a reduced linear programming

(LP) formulation. The experimental settings and the numerical results are discussed in Section 4

whereas Section 5 summarizes the related work. Conclusions are finally drawn in Section 6.

2. A FRAMEWORK FOR JOINT ADMISSION CONTROL AND CAPACITY

ALLOCATION OF MAPREDUCE AND WEB SERVICE APPLICATIONS

In this section we frame our reference scenario and describe its underlying assumptions. We

take the perspective of an e-commerce site which hosts both MR and WS applications on a private

cloud, i.e., on a fixed-size cluster. We account for QoS gurantees that need to be provided to

end-users. For MR applications, which nowadays can be interactive [12], an upper bound on the

job execution time needs to be provided. In the same way, to improve the user experience of

e-commerce customers, the average response time of a WS application request needs to be few

seconds. We consider multiple MR and WS user classes which are characterized by heterogeneous

workload intensities, resource and QoS requirements. Since the cluster capacity is fixed, that is,

the e-commerce site can allocate up to a maximum number of VMs to meet the QoS requirements,

as in other approaches [16, 8, 17, 18], some requests may have to be rejected under heavy loads.

We assume that penalty costs are incurred when requests are rejected. In addition, we account

for the operational costs incurred from running the allocated VMs of the cluster, where the main

component of such costs is the data center energy consumption. Therefore, it becomes important

to optimally allocate resources and handle rejections in order to minimize the overall cost. In this

work, we jointly address the AC&CA in a cluster which is shared between di↵erent user classes of

MR/WS applications. The goal is to find the allocation at minimum total cost while satisfying the

QoS requirements of the admitted requests. The proposed framework is illustrated in Figure 1.

In details, we make the following assumptions for the MR applications: (i) the subset of VMs

3

Job	Profiler
Logging	system

D
i

, pi
M

, H low

i

, Hup

i

, ci
M

, ci
R

R
k

, pk
W

,⇤low

k

,⇤up

k

, µ
k

, L
k

⇢, V

X

i2M
viM

X

k2W
vkW

hi

xk

↵i

AM1
1

Submitted	MR	jobs

Submitted	WS	requests

Rejected	MR	jobs

Rejected	WS	requests

Admitted	MR	jobs
Admitted	WS	
requests

VMs

N i

M

, N i

R

M i

avg

,M i

max

Ri

avg

, Ri

max

SHi

avg

, Shi

max

AM1
h1 AM|M|

1 AM|M|
h|M|

WS11 WS1r1W WS|W|
1 WS|W|

r|W|
W

…… …................. … ..… …

Node	
Manager
Container

Container

Application	
Manager

Capacity
Scheduler

R
k

, pk
W

,⇤low

k

,⇤up

k

, µ
k

, L
k

Monitoring	system

Load	
balancer

Admission	
Controller

Resource	
Manager

Optimization	
Problem

MR	tasks

Figure 1: Framework for joint capacity allocation and admission control of MR and WS applications.

allocated to MR applications relies on an external storage (which allows to grow and shrink the

number of running VMs [19]), (ii) VMs are shared among a set of competing MR user classes M,

and (iii) the YARN capacity scheduler [20] is adopted. A MR user class i 2 M represents users that

submit MapReduce jobs with the same execution profile, i.e., the jobs are characterized by a similar

number of Map and Reduce tasks with similar Map, Reduce, and shu✏e duration (e.g., users that

run the same query). We consider interactive MapReduce applications which are characterized by

given deadlines D
i

. As in [14, 15], we denote with M i

avg

, M i

max

, Ri

avg

, Ri

max

, Sh1,i
avg

, Sh1,i
max

, Shtyp,i
avg

and Shtyp,i
max

the average and maximum duration of the Map, Reduce, first Shu✏e and typical Shu✏e

phases, respectively, while N i

M

and N i

R

are the number of Map and Reduce tasks 1. According to

[14], such parameters that consist a job profile can be extracted from Hadoop logs. Job execution

times are then estimated as in [15] (see Section 3.1).

Concerning WS applications, we consider a set W of user classes where each class k 2 W
represents user requests that exhibit a similar resource demand. The QoS constraints are expressed

in terms of the average response time E [R
k

] which should not exceed a given threshold R
k

. We

assume the same application can be supported by multiple VMs that run in parallel. For the sake

of simplicity, we further assume the VMs are homogeneous in terms of RAM and CPU capacity and

therefore the workload is uniformly shared among them, which is a common practice in current cloud

solutions. As in [21, 22], we model each WS application class hosted by a VM as an M/G/1 queue in

tandem with a delay center, where the latter allows to account for network and/or protocol delays

incurred during connection establishment. We suppose a processor sharing scheduling discipline

[23] is adopted to serve requests. The maximum service rate and network delay for executing class

k WS applications are denoted by µ
k

and L
k

, respectively and are supposed to be estimated at

run-time from the monitoring system as in [24].

1In a shu✏e phase, the mapper task data are moved to the nodes where the reduce tasks will be executed. Being
the first and the typical shu✏e significantly di↵erent, we make a distinction betwen the two as in [14].

4

An Admission Controller handles submitted MR jobs and WS application requests. Thus, some

MR jobs [16, 8] and/or WS requests [17, 18] can be rejected. As far as MR applications are

concerned, once a submitted job is accepted by the Admission Controller, it is further forwarded to

the Resource Manager. The latter then allocates the job Application Master which in turn obtains

a certain number of containers. Containers within a class are assumed to be homogeneous in terms

of memory and CPUs and they are mapped one-to-one to the number of CPU cores of a VM. We

consider a Hadoop 2.x framework, thus, the entire capacity of a container can be assigned to either

Map tasks or Reduce tasks. 2 A two layer queue hierarchy in work-conserving mode is adopted for

the capacity scheduler. The first layer queue, which represents the total cluster capacity allocated

to MR applications, is partitioned among |M| queues and a fraction ↵
i

of resources is dedicated to

each MR user class.

Let us denote with h
i

the number of simultaneously executed class i MR jobs. Hup

i

denotes

a prediction for the number of class i jobs to be executed. As a result, h
i

 Hup

i

. Furthermore,

in order to avoid job starvation, we also impose h
i

to be greater than a given lower bound H low

i

.

Finally, pi
M

indicates the penalty cost for rejecting a class i MR job. Similarly, we denote by x
k

the

rate of served requests/throughput of WS applications of class k. Analogously to MR applications,

we make sure that x
k

lies within given bounds, that is, x
k

will be at most ⇤k

up

, which represents a

prediction of the request rate of class k, and at least a given lower bound ⇤k

low

. pk
W

then indicates

the penalty cost for rejecting a class k WS application request. Let ⇢ be the cost for running each

allocated VM and V the cluster size, that is, the maximum number of VMs that can be allocated

simultaneously.

In essence, the aim is to determine the optimal number of VMs allocated to each class of the two

application types, i.e., vi
M

(MR) and vk
W

(WS), the concurrency degree h
i

for each MR class i 2 M
and the throughput x

k

for each WS application class k 2 W so that the total cost incurred from

the allocated VMs and from rejections is minimized while QoS constraints are not violated, that is,

the execution times of the MR jobs do not exceed the deadlines D
i

and total average response times

of the WS requests are below the thresholds R
k

. The proposed joint AC&CA problem is formally

formulated in the next Section.

3. OPTIMIZATION PROBLEM

This section deals with several aspects of the mathematical model that lies behind our proposed

framework. In particular, the performance models that have been adopted to estimate the execution

2Unlike in Hadoop 1.X, where the resources of each node can be split between slots assigned to Map and Reduce
tasks, in Hadoop 2.x, the resource capacity of a container is configured so that it suits both Map and Reduce tasks
and cannot be further partitioned [25]. YARN is responsible for pooling together the memory and CPU resources
provided by the cluster nodes and handling the requests for containers needed to carry out the Map and Reduce tasks
of a given job. It also determines the slot count, that is, the maximum number of simultaneous mappers and reducers,
according to administrator settings [26]. A task can be carried out by a node when its available memory and CPU
can accommodate the task resource requirements. Thus, under such assumptions, the configuration settings make
sure that there are no idle vCPU due to incorrect parameter setting.

5

times of the MR jobs and the average response times of the WS requests are described in Section 3.1.

In Section 3.2, we give an initial formulation of the problem and study the proprieties of its optimal

solution which allows us to map the QoS requirements into resource requirements and eventually

obtain a reduced problem formulation. Proprieties characterizing the optimal solution of the reduced

problem and a greedy procedure which solves it to optimality are presented in Section 3.3.

3.1. MR and WS Applications Performance model

The amount of resources allocated to the di↵erent classes of MR jobs and WS application

requests depends on their corresponding QoS requirements where the latter are expressed in terms

of thresholds on the execution times (D
i

for class i MR jobs) and on the average response times (R
k

for class k WS application requests). In other words, at least a minimum amount of resources will

have to be allocated to each MR/WS application class in order to avoid exceeding such thresholds

for the admitted workload. Thus, to determine the optimal allocation of the cluster resources, it is

important to appropriately estimate the execution times of the MR jobs and the average response

times of the WS application requests.

For MR applications, given the execution profile of a class i job, that is, given the triple of

positive constants A
i

, B
i

and C
i

that make up the execution profile, according to [15], the job

execution time can be approximated or upper bounded by the following formula (see Appendix A

in [27]):

T
i

=
A

i

h
i

si
M

+
B

i

h
i

si
R

+ C
i

, 8i 2M, (1)

where si
M

and si
R

represent the number of Map and Reduce slots3, respectively, devoted to the

execution of class i jobs.

Concerning the accuracy of the approximated formulae, in [15], it is experimentally shown that

the di↵erence between the actual job execution time and the estimation ranges between 5 and 10%

whereas the upper bound gap varies from 11 and 19%. Further, as a single VM can host either ci
M

Map slots of class i or ci
R

Reduce slots of class i, in order to provide si
M

and si
R

Map and Reduce

slots to class i, si
M

/ci
M

+ si
R

/ci
R

VMs need to be provisioned.

Instead, for WS applications, as we model each WS class hosted by a VM as an M/G/1 queue

in tandem with a delay center [21, 22] and we assume the workload to be evenly shared among the

VMs allocated to WS applications of class k, then, the average response time for the execution of

class k requests is given by:

E [R
k

] =
1

µ
k

� x
k

vk
W

+ L
k

, 8k 2W, (2)

where L
k

represents the network delay. Results reported in [29] demonstrated that this performance

model allows to achieve a percentage error on the average response time estimation around 20%,

which is appropriate for web systems run-time resource management [30].

3With reference to [15], the term slot is used to refer to the total number of containers vCPUs allocated for
executing a single job to be in line with other big data frameworks (see, e.g., Apache Spark [28]).

6

3.2. Problem Formulation

The aim of our joint AC&CA problem is to minimize the total cost while meeting deadlines

for MR jobs and not exceeding maximum average response times for WS applications. The total

cost includes both the operational costs associated with the allocated VMs and the penalty costs

incurred from rejections. Given T , the time for which we solve the AC&CA problem, ⇢ the cost

for operating one VM during T , pi
M

, the penalty cost for rejecting a MR job of class i 2 M, pk
W

,

the penalty cost for rejecting a WS request of class k 2 W, the total cost incurred during time T is

then calculated as:
X

i2M

⇢vi
M

+ pi
M

(Hup

i

� h
i

) +
X

k2W

⇢vk
W

+ pk
W

T (⇤up

k

� x
k

) ,

where h
i

and vi
M

, 8i 2 M are the decision variables concerning MR jobs, and they represent the

class i concurrency level, that is, the number of simultaneously admitted jobs within the class,

and its number of allocated VMs, respectively. Analogously, the decision variables concerning WS

applications are x
k

and vk
W

, 8k 2 W, and they represent the throughput of class k, that is, its rate

of served requests, and its number of allocated VMs, respectively.

In details, the objective function terms ⇢vi
M

and ⇢vk
W

represent the operational costs incurred

during time T associated with the VMs allocated to class i MR jobs and class k WS application

requests, respectively. Instead, pi
M

(Hup

i

� h
i

) and pk
W

T
�
⇤up

k

� x
k

�
represent the penalty costs

incurred from rejecting MR jobs and WS requests. In other words, such costs are paid when not

all the expected workload is accommodated, i.e., not all submitted MR jobs (h
i

< Hup

i

) and WS

requests (x
k

< ⇤up

k

) are served. However, since pi
M

Hup

i

and pk
W

T⇤up

k

are constant terms, the

objective can be reduced to:

⇢

X

i2M

vi
M

+
X

k2W

vk
W

!
�
X

i2M

pi
M

h
i

�
X

k2W

pk
W

Tx
k

.

For MR applications, we also need to decide the number of allocated Map and Reduce slots

which are represented by variables si
M

and si
R

, respectively.

Let (P0) denote the optimization problem formulation defined as follows:

min ⇢

X

i2M

vi
M

+
X

k2W

vk
W

!
�
X

i2M

pi
M

h
i

�
X

k2W

pk
W

Tx
k

A
i

h
i

si
M

+
B

i

h
i

si
R

+ E
i

 0, 8i 2M (3)

si
M

ci
M

+
si
R

ci
R

 ⌅
i

vi
M

, 8i 2M (4)

1
µ
k

� xk

v

k
W

+ L
k

 R
k

, 8k 2W (5)

x
k

< µ
k

vk
W

, 8k 2W (6)
X

i2M

vi
M

+
X

k2W

vk
W

 V (7)

Hlow

i

 h
i

 Hup

i

, 8i 2M (8)

⇤low

k

 x
k

 ⇤up

k

, 8k 2W (9)

7

vi
M

� 0, si
M

� 0, si
R

� 0, 8i 2M (10)

vk
W

� 0, 8k 2W (11)

where the objective is to minimize the total cost while meeting deadlines for the MR jobs and not

exceeding the response times for WS applications.

Constraints (3) are obtained imposing that each job should be executed before the corresponding

deadline, that is, T
i

 D
i

(see Equations (1) in Section 3.1), where E
i

is the di↵erence between C
i

and D
i

, i.e., E
i

= C
i

� D
i

< 0. Constraints (4) make sure that the number of VMs allocated to

each MR job class can accommodate the Map and Reduce slots needed to execute them. 4

Constraints (5) limit the total average response time of each WS application class to its given

threshold. Constraints (6) impose the equilibrium conditions for the M/G/1 queues of each WS

application class, that is, they make sure that VMs are not saturated. Constraint (7) limits the

total number of VMs allocated to both MR and WS applications to the cluster size, that is, to

the maximum number of VMs that can be allocated. Constraints (8) and (9) bound the MR

concurrency level and the WS throughput for each MR/WS application class whereas (10) and (11)

make sure the remaining variables are nonnegative. The complete notation used throughout the

paper is summarized in Tables 1 and 2.

The proposed formulation is the continuous relaxation of the real problem since variables vi
M

,

vk
W

, si
M

, si
R

and h
i

should be integer. If we imposed integrality, the problem would be much more

di�cult. Instead, we address its approximation (this approach has also been adopted by other works,

e.g., [31] and [32]). Such approximation is justifiable, since we can round the relaxed variables in

post-processing to the closest integer with insignificant increase of the total cost, especially for real

systems that require tens or hundreds of relatively cheap VMs per application class.

Problem (P0) has a linear objective function, but two families of non-linear constraints: (3) and

(5). Linearizing Constraints (5) is quite trivial: first, we rewrite them 5 as:

vk
W

µ
k

vk
W

� x
k

 R
k

� L
k

. (12)

Let G
k

= R
k

�L
k

(maximum sojourn time) and F
k

= 1�G
k

µ
k

. Multiplying both sides of (12) by

µ
k

vk
W

�x
k

(where µ
k

vk
W

�x
k

> 0 due to Constraints (6)) and appropriately collecting linear terms,

Constraints (5) can be substituted by:

F
k

vk
W

+G
k

x
k

 0, 8k 2W. (13)

Instead, Constraints (3) are neither linear nor convex. In [15], it is shown that they can be

convexified replacing variables h
i

with 1/
i

, 8i 2 M. Such substitution transforms Constrains (3)

4We denote by ⌅
i

the ratio T/D
i

which represents the reuse factor of a VM allocated to class i MR jobs. In other
words, ⌅

i

accounts for the number of times during T a VM can be used for executing class i MR jobs as we solve
the AC&CA problem every T seconds wheres jobs are executed in at most D

i

seconds. In such a way, VMs do not
necessarily have to remain idle in the remaining period T �D

i

. See [15] for further details.
5We remark that in any feasible solution vk

W

should be non-zero. Since we consider strictly positive minimum
throughputs, that is, since x

k

� ⇤k

low

> 0 and, therefore, due to Constraints (6), we must have vk
W

> 0.

8

Parameters

T Time for which we solve the AC&CA problem
V Cluster size: maximum number of VMs that can be

allocated simultaneously during T
⇢ Operational cost during time T of one VM
M Set of MR applications classes
ci
M

Maximum number of class i Map slots that can be
hosted in a VM

ci
R

Maximum number of class i Reduce slots that can
be hosted in a VM

pi
M

Penalty cost for rejecting a class i MR job
D

i

Execution deadline of class i jobs
A

i

CPU requirement for the Map phase for class i jobs
B

i

CPU requirement for the Reduce phase for class i
jobs

C
i

Time constant factor that depends on Map, Copy,
Shu✏e, and Reduce phases of class i jobs

Hup

i

Expected number of class i jobs to be executed con-
currently

Hlow

i

Minimum number of class i MR jobs to be executed
concurrently

⌅
i

Reuse factor during T of a class i VM
W Set of WS applications classes
R

k

Maximum tolerated response time for a class k WS
application

L
k

Network delay for a class k WS application
u
k

Maximum service rate for a class k WS application
⇤up

k

Expected request rate of class k WS applications
⇤low

k

Minimum throughput of class k WS applications
pk
W

Penalty cost for rejecting a class k WS request

Table 1: Optimization model: parameters.

Decision Variables

vi
M

Number of VMs to be allocated for executing class i
MR jobs

si
M

Number of slots to be allocated to MR class i for
executing the Map tasks

si
R

Number of slots to be allocated to MR class i for
executing the Reduce tasks

h
i

Number of class i MR jobs to be executed concur-
rently

vk
W

Number of VMs to be allocated for serving class k
WS application requests

x
k

Throughput of class k WS application requests

Table 2: Optimization model: decision variables.

of (P0) into Constraints (14), where the latter are convex (see Appendix B in [15] for the proof).

Finally, problem (P0) becomes equivalent to problem (P1):

min ⇢

X

i2M

vi
M

+
X

k2W

vk
W

!
�
X

i2M

pi
M

1

i

�
X

k2W

pk
W

Tx
k

A
i

si
M

i

+
B

i

si
R

i

+ E
i

 0, 8i 2M (14)

si
M

ci
M

+
si
R

ci
R

 ⌅
i

ri
M

, 8i 2M (15)

F
k

vk
W

+G
k

x
k

 0, 8k 2W (16)

x
k

< µ
k

vk
W

, 8k 2W (17)
X

i2M

vi
M

+
X

k2W

vk
W

 V (18)

 low

i

i

 up

i

, 8i 2M (19)

⇤low

k

 x
k

 ⇤up

k

, 8k 2W (20)

vi
M

� 0, si
M

� 0, si
R

� 0, 8i 2M (21)

vk
W

� 0, 8k 2W (22)

where low

i

= 1/Hup

i

and up

i

= 1/H low

i

.

9

A thorough investigation of the optimal solutions of problem (P1) provides several interesting

closed formulae that establish relations among the di↵erent problem variables and allow us to obtain

a much simpler problem formulation (Theorem 3.3). In particular, given a certain job profile (A
i

,

B
i

, E
i

, ci
M

, ci
R

) and its admitted concurrency level h
i

(i.e., number of class i jobs that are served

simultaneously), we can determine the optimal scheduling parameters for MR applications, that is,

the number of Map and Reduce slots allocated to that job class and therefore its scheduling ratio

(Theorem 3.1). Moreover, we are able to map the demand of each application class into the amount

of resources needed to accommodate such demand (Theorem 3.2), that is, the concurrency level h
i

for MR applications and the rate of the served requests for WS applications x
k

can be translated

into the number of VMs, vi
M

and vk
W

, to be allocated to their respective application classes.

In the remaining part of this section we go through the demonstration of these theorems.

Theorem 3.1. Constraints (14) hold as equalities in any optimal solution of problem (P1). The

number of Map and Reduce slots that have to be assigned to class i jobs, si
M

and si
R

, can be deter-

mined as follows:

si
M

= � 1
E

i

i

A

i

+

s
A

i

B
i

ci
M

ci
R

!
, (23)

si
R

= � 1
E

i

i

B

i

+

s
A

i

B
i

ci
R

ci
M

!
. (24)

Proof. Given that in problem (P1) all constraints are convex ([33], [15]) and Slater constraints

qualification hold (see Appendix B in [27]), we can use the Karush-Kuhn-Tucker (KKT) conditions.

The Lagrangian function of problem (P1), L
(P1)

�
vi
M

, si
M

, si
R

,
i

, vk
W

, x
k

�
, is:

L
(P1)

= ⇢

X

i2M

vi
M

+
X

k2W

vk
W

!
�
X

i2M

pi
M

1

i

�
X

k2W

pk
W

Tx
k

+
X

i2M

�
(1)

i

✓
A

i

si
M

i

+
B

i

si
R

i

+ E
i

◆
+
X

i2M

�
(2)

i

✓
si
M

ci
M

+
si
R

ci
R

� ⌅
i

vi
M

◆

+
X

k2W

⌫
(1)

k

⇣
F
k

vk
W

+G
k

x
k

⌘
+
X

k2W

⌫
(2)

k

⇣
x
k

� µ
k

vk
W

⌘

+⇠

X

i2M

vi
M

+
X

k2W

vk
W

� V

!

+
X

i2M

�
(3)

i

(low

i

�
i

) +
X

i2M

�
(4)

i

(
i

� up

i

) +
X

k2W

⌫
(3)

k

⇣
⇤low

k

� x
k

⌘
+
X

k2W

⌫
(4)

k

(x
k

� ⇤up

k

)

�
X

i2M

�
(5)

i

vi
M

�
X

i2M

�
(6)

i

si
M

�
X

i2M

�
(7)

i

si
R

�
X

k2W

⌫
(5)

k

vk
W

.

10

The KKT conditions for optimality are:

⇢� �
(2)

i

⌅
i

+ ⇠ � �
(5)

i

= 0, 8i 2M, (25)

� �
(1)

i

A
i

(si
M

)2
i

+
�
(2)

i

ci
M

� �6

i

= 0, 8i 2M, (26)

� �
(1)

i

B
i

(si
R

)2
i

+
�
(2)

i

ci
R

� �7

i

= 0, 8i 2M, (27)

pi
M

 2

i

� �
(1)

i

A
i

si
M

 2

i

� �
(1)

i

B
i

si
R

 2

i

� �
(3)

i

+ �
(4)

i

= 0, 8i 2M, (28)

⇢+ ⌫
(1)

k

F
k

� ⌫
(2)

k

µ
k

+ ⇠ � ⌫
(5)

k

= 0, 8k 2W, (29)

�pk
W

T + ⌫
(1)

k

G
k

+ ⌫
(2)

k

� ⌫
(3)

k

+ ⌫
(4)

k

= 0, 8k 2W, (30)

whereas the complementary slackness (CS) constraints are:

�
(1)

i

✓
A

i

si
M

i

+
B

i

si
R

i

+ E
i

◆
= 0, �

(1)

i

� 0, 8i 2M, (31)

�
(2)

i

✓
si
M

ci
M

+
si
R

ci
R

� ⌅
i

vi
M

◆
= 0, �

(2)

i

� 0, 8i 2M, (32)

⌫
(1)

k

⇣
F
k

vk
W

+G
k

x
k

⌘
= 0, ⌫

(1)

k

� 0, 8k 2W, (33)

⌫
(2)

k

⇣
x
k

� µ
k

vk
W

⌘
= 0, ⌫

(2)

k

� 0, 8k 2W, (34)

⇠

X

i2M

vi
M

+
X

k2W

vk
W

� V

!
= 0, ⇠ � 0, (35)

�
(3)

i

(low

i

�
i

) = 0, �
(3)

i

� 0, 8i 2M, (36)

�
(4)

i

(
i

� up

i

) = 0, �
(4)

i

� 0, 8i 2M, (37)

⌫
(3)

k

⇣
⇤low

k

� x
k

⌘
= 0, ⌫

(3)

k

� 0, 8k 2W, (38)

⌫
(4)

k

(x
k

� ⇤up

k

) = 0, ⌫
(4)

k

� 0, 8k 2W, (39)

�
(5)

i

vi
M

= 0, �
(5)

i

� 0, 8i 2M, (40)

�
(6)

i

si
M

= 0, �
(6)

i

� 0, 8i 2M, (41)

�
(7)

i

si
R

= 0, �
(7)

i

� 0, 8i 2M, (42)

⌫
(5)

k

vk
W

= 0, ⌫
(5)

k

� 0, 8k 2W. (43)

Due to Constraints (14), si
M

, and si
R

are strictly positive. As a result, from the CS con-

straints (41) and (42), in any optimal solution, the dual variables �(6)
i

and �(7)
i

are equal to zero,

8i 2 M. Since si
M

> 0 and si
R

> 0, from Constraints (15), also vi
M

> 0. Thus, also dual variables

�
(5)

i

should be equal to zero for the CS constraints (40) to hold.

Setting �(5)
i

= 0 in the KKT conditions (25), we obtain �
(2)

i

= ⇢+⇠

⌅

i

> 0 (since ⇢ > 0, ⌅
i

> 0

and ⇠ � 0). Being
i

> 0 (due to Constraints (14)), si
M

> 0, �(2)
i

> 0, �6
i

= 0 and, from

the KKT conditions (26), �(1)
i

=

i

(s

i

M

)

2

�

(2)

i

A

i

c

i

M

, we also have that �(1)
i

> 0. Then, due to the CS

constraints (31), Constraints (14) hold as equalities. Combining the KKT conditions (26) and (27)

with Constraints (14), we can express variables si
M

and si
R

in terms of variables
i

. We first express

11

si
R

in terms of si
M

using the KKT conditions (26) and (27):

A
i

ci
M

(si
M

)2
=

B
i

ci
R

(si
R

)2
=) si

R

= si
M

s
B

i

ci
R

A
i

ci
M

. (44)

Replacing si
R

with si
M

q
(B

i

ci
R

)/(A
i

ci
M

) in (14), we can express si
M

and si
R

in closed form as

follows:

si
M

= � 1
E

i

i

A

i

+

s
A

i

B
i

ci
M

ci
R

!
, (45)

si
R

= � 1
E

i

i

B

i

+

s
A

i

B
i

ci
R

ci
M

!
. (46)

Remark 1. Theorem 3.1 allows to compute the optimal weights ↵
i

of the YARN capacity scheduler

in terms of the optimal number of Map and Reduce slots, si
M

and si
R

:

↵
i

=
si
M

+ si
RP

j2M

�
sj
M

+ sj
R

� . (47)

Theorem 3.2. In any optimal solution of problem (P1) Constraints (15) and (16) hold as equalities.

The demand of each MR and WS class can be translated into the amount of resources needed to

support it, that is, the number of VMs allocated to class i MR jobs (vi
M

) can be expressed in terms

of its concurrency level (h
i

) whereas the number of VMs allocated to class k WS application requests

(vk
W

) as a function of the throughput (x
k

):

vi
M

=
�
i

⌅
i

h
i

, 8i 2M, (48)

vk
W

= �G
k

F
k

x
k

, 8k 2W. (49)

Proof. When proving Theorem 3.1, we have shown that �(2)
i

> 0. Therefore, because of the CS

constraints (32), Constraints (15) hold as equalities. Since we consider strictly positive lower bounds

on the MR jobs concurrency level (H low

i

> 0) and WS requests throughput (⇤low

i

> 0), then x
k

> 0

and consequently due to Constraints (16) and (17), vk
W

> 0. Thus, for the CS constraints (43) to

hold, dual variables ⌫(5)
k

are equal to zero. Moreover, given that Constraints (17) are strict, due to

Constraints (34), also dual variables ⌫(2)
k

are equal to zero. Then, from the KKT conditions (29),

⌫
(1)

k

= � 1

F

k

(⇢ � ⌫
(2)

k

µ
k

+ ⇠ � ⌫
(5)

k

) = � 1

F

k

(⇢ + ⇠). Since F
k

< 0 6, ⇢ > 0 and ⇠ � 0 =) ⌫
(1)

k

> 0.

Thus, because of the CS constraints (33), also Constraints (16) hold as equalities.

6Since the service time 1

µk
should be smaller than the average sojourn time E[R

k

]�L
k

, that is, 1

µk
< (E[R

k

]�L
k

),

then 1

µk
< (R

k

� L
k

) and F
k

= 1� (R
k

� L
k

)µ
k

< 0

12

According to Theorem 3.1, we can express si
M

and si
R

in terms of
i

and thus in terms of h
i

.

Let us denote by �1
i

and �2
i

the followings:

�1

i

= � 1

E
i

ci
M

A

i

+

s
A

i

B
i

ci
M

ci
R

!
=

1

ci
M

si
M

i

, (50)

�2

i

= � 1

E
i

ci
R

B

i

+

s
A

i

B
i

ci
R

ci
M

!
=

1

ci
R

si
R

i

. (51)

Under this notation and replacing
i

= 1/h
i

we can rewrite (23) and (24) as:

si
M

= �1

i

ci
M

h
i

, (52)

si
R

= �2

i

ci
R

h
i

. (53)

Thus, replacing si
M

/ci
M

and si
R

/ci
R

in Constraints (15) we obtain the equivalent Constraints (54):

�
i

h
i

= ⌅
i

vi
M

, 8i 2M, (54)

where �
i

= �1
i

+ �2
i

. Finally, (48) derive directly from (54), whereas (49) from Constraints (16)

since the latter hold as equalities.

Theorem 3.3. Problem (P1) can be reduced to problem (P2):

min
X

i2M

⇣
⇢� pi

M

⌘
vi
M

+
X

k2W

⇣
⇢� pk

W

⌘
vk
W

X

i2M

vi
M

+
X

k2W

vk
W

 V (55)

V low,i

M

 vi
M

 V up,i

M

, 8i 2M (56)

V low,k

W

 vk
W

 V up,k

W

, 8k 2W (57)

where the decision variables are vi
M

, 8i 2 M and vk
W

, 8k 2 W and pi
M

= ⌅

i

�

i

pi
M

and pk
W

= � F

k

G

k

Tpk
W

.

Proof. Since in any optimal solution of (P1) Constraints (14), (15) and (16) hold as equalities

(Theorem 3.1 and Theorem 3.2), they allow us to establish the relations among the optimal values

of the di↵erent decision variables of problem (P1). According to Theorem 3.1, the optimal values

of si
M

and si
R

can be expressed as function of h
i

, where the latter, according to Theorem 3.2, can

be expressed in terms of vi
M

. Along the same lines, the optimal values of x
k

are expressed in terms

of vk
W

(Theorem 3.2). As a result, the decision variables of problem (P2) are vi
M

and vk
W

.

Constraints (56) are obtained translating the bounds on the concurrency level of class i MR

jobs, 8i 2 M (Constraints (19) of problem (P1)) into bounds on the number of the VMs allocated

to the jobs of that class as follows:

V low,i

M

=
�
i

⌅
i

Hlow

i

, 8i 2M, (58)

V up,i

M

=
�
i

⌅
i

Hup

i

, 8i 2M. (59)

Analogously, Constraints (57) are obtained translating the bounds on the throughput of class k

WS application requests, 8k 2 W (Constraints (20) of problem (P1)) into bounds on the number

13

of VMs allocated to the requests of that class:

V low,k

W

= �G
k

F
k

⇤low

k

, 8k 2W, (60)

V up,k

W

= �G
k

F
k

⇤up

k

, 8k 2W. (61)

Finally, since Constraints (16) of problem (P2) hold as equalities (Theorem 3.2) we have that:

x
k

vk
W

= � F
k

G
k

=
µ
k

G
k

� 1
G

k

= µ
k

� 1
G

k

< µ
k

=) x
k

< u
k

vk
W

.

Therefore, Constraints (17) become redundant and are not present in the reduced problem (P2) as

they are implied by Constraints (16).

Remark 2. While �
i

represents the number of VMs needed to serve one MR job of class i, 1/�
i

,

represents instead the number of MR jobs of class i served by one VM. We recall that ⌅
i

= T/D
i

indicates how many times during T a VM can be used for executing class i jobs as we solve the

AC&CA problem every T seconds whereas jobs are executed in at most D
i

seconds; if we did not

account for ⌅
i

, VMs could remain idle in the remaining period T �D
i

.

Remark 3. pi
M

represents the penalty cost for not activating a VM to serve class i MR jobs.

Similarly, pk
W

represent the penalty cost for not activating a VM to serve class k WS application

requests.

Remark 4. Being (evi
M

,evk
W

) the optimal solution of the problem (P2), the optimal solution of

problem (P0), (eh
i

,esi
M

,esi
R

,evi
M

,ex
k

,evk
W

) can be derived as follows:

eh
i

=
⌅

i

�
i

evi
M

, 8i 2M, (62)

esi
M

= �⌅i

�
i

1
E

i

A

i

+

s
A

i

B
i

ci
M

ci
R

!
evi
M

, 8i 2M, (63)

esi
R

= �⌅i

�
i

1
E

i

B

i

+

s
A

i

B
i

ci
R

ci
M

!
evi
M

, 8i 2M, (64)

ex
k

= � F
k

G
k

evk
W

, 8k 2W. (65)

3.3. Problem Properties

Similarly to Section 3.2, we derive several proprieties characterizing the optimal solutions of

problem (P2) by applying the KKT conditions. Given the cluster size V , the minimum/maximum

demand of each application class (V low,i

M

/V up,i

M

for the MR and V low,k

W

/ V up,k

W

for the WS) and the

penalties per application class, pi
M

and pk
W

, we can determine whether the cluster size is large

enough to fully satisfy the demand of all classes. In conditions of limited resources, we show how

classes with higher penalty costs are prioritized over lower penalty ones, which results in request

rejections for the latter.

Let us denote with M
1

the subset of M consisting of MR job classes for which the cost for

14

operating a VM during T is larger than the penalty for not activating it 7, i.e., M
1

= {i 2 M|⇢ >

pi
M

} whereas M
2

= M\M
1

. We partition W in the same fashion: W
1

= {k 2 W|⇢ > pk
W

} and

W
2

= W \W
1

. Let U
1

= M
1

[W
1

and U
2

= M
2

[W
2

. To keep the notation light, when we refer

to elements of U
1

and U
2

we drop the subscript M and W indicating the application type (i.e., MR

or WS, respectively) in all parameters and variables.

The intuition behind the problem proprieties introduced in this section is the following: since

allocating a VM to serve requests of a class u 2 U
2

reduces the objective function value by ⇢ � p
u

(as ⇢ � p
u

 0), while, vice versa, allocating it to a class r 2 U
1

increases its value by ⇢ � p
r

(as

⇢ � p
r

> 0), requests of class u are more likely to be admitted (given the VM availability) while

class r will be served to the minimum demand.

Remark 5. The following proprieties concern feasible instances of the proposed AC&CA problem,

that is, instances for which
P

i2M V low,i

M

+
P

k2W V low,k

W

 V . In other words, the cluster size should

be at least large enough to serve all MR and WS classes at the minimum expected concurrency

level and throughput, respectively.

Theorem 3.4. Any optimal solution of (P2), (evi
M

,evk
W

), satisfies the following:

i) MR jobs of class i 2 M
1

and WS application requests of class k 2 W
1

are served to the

minimum concurrency level and throughput, respectively:

a. evi
M

= V low,i

M

, i.e., eh
i

= Hlow

i

, 8i 2M
1

,

b. evk
W

= V low,k

W

, i.e., ex
k

= ⇤low

k

, 8k 2W
1

.

ii) If

P
i2M

1

V low,i

M

+
P

k2W
1

V low,k

W

+
P

i2M
2

V up,i

M

+
P

k2W
2

V up,k

W

< V , then no MR jobs from classes in

M
2

and no WS requests from classes in W
2

will be rejected:

a. evi
M

= V up,i

M

, i.e., eh
i

= Hup

i

, 8i 2M
2

,

b. evk
W

= V up,k

W

, i.e., ex
k

= ⇤up

k

, 8k 2W
2

.

iii) Instead, if U
2

6= ; and

P
i2M

1

V low,i

M

+
P

k2W
1

V low,k

W

+
P

i2M
2

V up,i

M

+
P

k2W
2

V up,k

W

> V , there will be

at least one class from U
2

, that is, from either M
2

or W
2

, whose requests will be rejected.

Let r be a class such that r 2 U
2

and V low

r

< ev
r

< V up

r

, then:

a. ev
l

= V low

l

, 8 l 2 U
2

| l 6= r, p
l

< p
r

,

b. ev
q

= V up

q

, 8 q 2 U
2

| q 6= r, p
q

> p
r

.

7Notice that such subdivision of the application classes into sets is done in order to account also for particular
scenarios, e.g., when operational (energy costs) may vary over time whereas penalties are fixed. Instead, for the
instances we have considered, penalty costs are always larger w.r.t. the VM operational cost. Thus, M

1

and W
1

are
empty sets.

15

Proof. The Lagrangian function of problem (P2), L
(P2)

�
vi
M

, vk
W

�
, is:

L
(P2)

=
X

i2M

⇣
⇢� pi

M

⌘
vi
M

+
X

k2W

⇣
⇢� pk

W

⌘
vk
W

+⇠

X

i2M

vi
M

+
X

k2W

vk
W

� V

!

+
X

i2M

�
(1)

i

⇣
V low,i

M

� vi
M

⌘
+
X

i2M

�
(2)

i

⇣
vi
M

� V up,i

M

⌘

+
X

k2W

⌫
(1)

k

⇣
V low,k

W

� vk
W

⌘
+
X

k2W

⌫
(2)

k

⇣
vk
W

� V up,k

W

⌘
.

The KKT conditions associated with problem (P2) can be written as:

⇢� pi
M

� �
(1)

i

+ �
(2)

i

+ ⇠ = 0, 8i 2M, (66)

⇢� pk
W

� ⌫
(1)

k

+ ⌫
(2)

k

+ ⇠ = 0, 8i 2M, (67)

whereas the CS constraints are:

�
(1)

i

(V low,i

M

� vi
M

) = 0, �
(1)

i

� 0, 8i 2M, (68)

�
(2)

i

(vi
M

� V up,i

M

) = 0, �
(2)

i

� 0, 8i 2M, (69)

⌫
(1)

k

(V low,k

W

� vk
W

) = 0, ⌫
(1)

k

� 0, 8k 2W, (70)

⌫
(2)

k

(vk
W

� V up,k

W

) = 0, ⌫
(2)

k

� 0, 8k 2W, (71)

⇠(
X

i2M

vi
M

+
X

k2W

vk
W

� V) = 0, ⇠ � 0. (72)

Proof of propriety (i):

a. From the KKT condition (66), �(1)
i

= �
(2)

i

+⇠+⇢�pi
M

. Since �(2)
i

� 0, ⇠ � 0 and ⇢ > pi
M

, 8i 2
M

1

=) �
(1)

i

> 0. As the optimal solution evi
M

should satisfy the CS constraint (68), we

have that evi
M

= V low,i

M

.

b. Similarly, from the KKT condition (67), ⌫(1)
i

= ⌫
(2)

i

+ ⇠ + ⇢ � pk
W

. Since ⌫(2)
k

� 0, ⇠ � 0 and

⇢ > pk
W

, 8k 2 W
1

, =) ⌫
(1)

k

> 0. For evk
W

to satisfy the CS constraint (70), then evk
W

= V low,k

W

.

Proof of propriety (ii): If the cluster size is strictly larger than the number of VMs needed to

satisfy the minimum demand of classes in M
1

and W
1

(which is optimal due to propriety (i)) and

not to reject any MR/WS request from classes of M
2

and W
2

, respectively, in any optimal solution,

Constraints (55) will be strict inequalities. As a result, due to the CS constraints (72), ⇠ should be

equal to 0.

a. From the KKT condition (66), �(2)
i

= �
(1)

i

� ⇠ + pi
M

� ⇢ = �
(1)

i

+ pi
M

� ⇢. Being �(1)
i

� 0 and

8i 2 M
2

| pi
M

> ⇢ =) �
(2)

i

> 0. Thus, because of Constraint (69), we have evi
M

= V up,i

M

, 8i 2
M

2

. Instead, for the particular case when pi
M

= ⇢, we have that �(2)
i

= �
(1)

i

: it cannot be

that �(2)
i

= �
(1)

i

> 0, as both the lower and upper bound on evi
M

would have to be satisfied

(for Constraints (68), (69) to hold). Finally, �(2)
i

= �
(1)

i

= 0, which means that any number

16

of VMs in the range within the bounds is optimal8, i.e., V low,i

M

 evi
M

 V up,i

M

.

b. Analogous to point a.

Proof of propriety (iii):

a. Combining the KKT conditions (66) for classes r and l we have that: �(1)
l

= p
r

� p
l

+ �
(2)

l

+

�
(1)

r

� �
(2)

r

. Since ev
r

< V up

r

, due to Constraints (69)/(71), �(2)
r

are equal to zero. Being

�
(2)

l

� 0, �(1)
r

� 0 and p
r

> p
l

=) �
(1)

l

> 0, thus, from Constraints (68)/(70) we have that

ev
l

= V low

l

.

b. Similarly to point a., we have that: �(2)
q

= p
q

� p
r

+ �
(1)

q

+ �
(2)

r

� �
(1)

r

. Since ev
r

> V low

r

, due

to Constraints (68)/(70), �(1)
r

= 0. Thus, being p
q

> p
r

and �(1)
q

� 0, �(2)
r

� 0 =) �
(2)

q

> 0.

As a result, for Constraints (69)/(71) to hold, we should have ev
q

= V up

q

.

Based on these proprieties, we propose a greedy algorithm that solves problem (P2) to optimality

(see Proposition 1 in Appendix C of [27]).

Algorithm 1 Greedy procedure

1: if V <

✓ P
i2M

V low,i

M

+
P

k2W
V low,k

W

◆
then

2: End

3: else

4: evi
M

 V low,i

M

, 8i 2M
5: evk

W

 V low,k

W

, 8k 2W

6: V V �
✓ P

i2M
V low,i

M

+
P

k2W
V low,k

W

◆

7: R U
2

8: while (V > 0 & R 6= ;) do
9: q argmax

q2R
p
q

10: R R \ {q}
11: if V > (V up

q

� V low

q

) then
12: ev

q

 V up

q

13: V V � (V up

q

� V low

q

)
14: else

15: ev
q

 ev
q

+ V
16: End

17: End

The algorithm starts with a feasibility check (Step 1): if the given cluster size, i.e., number

of VMs, cannot satisfy the minimum demand of all MR and WS classes, then the procedure is

terminated (Step 2); otherwise, the minimum number of VMs is allocated to each class (Steps 4-5)

and the residual number of VMs (V) is calculated (Step 6). A set R containing all elements of set

U
2

is defined in Step 7. The procedure then enters a while loop in Steps 8-16 which is repeated

as long as there are still VMs that have not been allocated yet (V > 0) and MR/WS classes with

8This is quite intuitive since classes for which ⇢ = pi
M

have zero contribute in the objective function value.

17

penalty cost larger than operational cost (R 6= ;). In the while loop body, the current MR/WS

class with the largest penalty cost (q) is selected (Step 9) and removed from set R (Step 10). If

the current number of available VMs is large enough to fully satisfy all the demand of class q (Step

11), then all requested VMs are assigned to it (Step 12), the number of available VMs is updated

(Step 13) and then the procedure moves on to the next largest penalty cost class from set U
2

(if

any). Otherwise, all available VMs are assigned to application class q (Step 15) and the procedure

terminates (Step 16).

Moreover, if instead of considering the exact9 minimum and maximum resource demands of

each MR and WS class as obtained in closed form (Theorem 3.2), which are not necessarily integer

values, we consider the corresponding upperbounds, that is, dV low,i

M

e and dV up,i

M

e, 8i 2 M and

dV low,k

W

e and dV up,k

W

e 8k 2 W , the proposed greedy procedure provides an integer solution since,

for such instances, problem (P2) has the integrality propriety (see Proposition 2 in Appendix C of

[27]).

4. EXPERIMENTAL RESULTS

In this section we summarize the results of the tests that we have performed to analyze several

aspects of the proposed framework. The section is organized as follows: Section 4.1 describes the

tests environment and the parameter setting for the di↵erent considered instances. In Section 4.2,

we investigate how the total cluster cost is a↵ected by the cluster size for several scenarios and

instance sizes. Section 4.3 focuses on a particular setting and provides a detailed analysis of the

cluster cost and of the utilization.

4.1. Experimental setting

Tests were run on an Ubuntu 14.04.3 LTS VM hosted on an Intel Xeon E5530 @2.4GHz system

with 6 GB RAM and 4 cores. The optimization models have been implemented in AMPL [34]. We

have solved the reduced problem (P2) with CPLEX 10.1 [35] whereas the convex problem (P1) with

KNITRO 9.0.1 [36].

We have set up a large set of randomly generated instances; their parameter setting is explained

in detail in Section 4.1.1.

4.1.1. Problem instances

The AC&CA problem is solved every hour (T=3600s)10 within a day [37, 17, 38, 39]. The VM

cost ⇢ accounts for the energy cost related to the operation of the physical servers hosting the VMs,

9For the demands obtained in closed form according to Theorem 3.2 (which are not necessarily integer values) we
have also solved problem (P2) forcing variables ri

M

and rk
W

to be integer. For all considered instances, it results that
imposing integrality increases the cluster cost by no more than 4% w.r.t. to solving (P2) in continuous variables (see
Section 4.4. in [27]).

10We remark that the time to solve the problem under either formulation (P1) or (P2) is below 10 seconds for all
considered instances (see Section 4.5. in [27]).

18

the overhead energy cost due to cluster maintenance (mainly related to server room cooling) and

the price of physical servers [40]. The VM unit cost per hour ⇢ (e cents) is then calculated as:

⇢ = (PUE "+ S)
c

d
, (73)

where " is an estimate of the energy consumption cost of one hour of operation of a single core

server which is then multiplied by the PUE (power usage e↵ectiveness) coe�cient to account for

indirect energy costs (such as cooling, lighting etc.), S represents the unit (per hour) price of a

physical server (obtained depreciating the price of a physical server over 4 years lifetime), c is the

number of virtual cores per VM whereas d is the virtual-to-physical core ratio.

The parameters related to the di↵erent classes of MR and WS applications are set as follows.

We have used realistic job profiles extracted from MapReduce execution logs considering the data

reported in [14] and in [41] which considered the TPC-DS benchmark [42], widely used today

to analyze data warehouse performance. The job profile parameter values are reported in Table 3,

whereas A
i

, B
i

, C
i

are derived from the latter as explained in Appendix A of [27]. Instead, deadlines

of each MR class (D
i

) are set to values in the range 15 to 25 minutes [40].

The parameters of the M/G/1 queue model µ
k

and L
k

of each WS application class k are

randomly extracted from the uniform distributions in the ranges reported in Table 5a as in [39, 17,

43, 44, 45]. The maximum response time R
k

is then set equal to 10/µ
k

+ 1.5max
k2W L

k

.

We have used real-life traces for the distribution of WS applications requests throughout a day

which were obtained from a large anonymous website. The original workload traces consist of 10

minutes samples logs for 12 days. The workload is periodic and follows a bimodal distribution

with two peaks around 11am (11:00) and 4pm (16:00). We normalize the samples of each daily

trace with respect to the daily peak and scale them using a random multiplier extracted from

the uniform distribution in the range (1000,2000). Thus, using di↵erent daily traces and di↵erent

random multipliers, we obtain distinct workload intensities for each WS application class. An hourly

prediction for the request rate of each WS class (⇤up

k

) is obtained averaging over the 6 available

samples per hour and then applying white noise as in [39, 45, 43]. In order to limit request rejections,

we set ⇤low

k

= 0.8⇤up

k

. Hourly predictions for the submitted concurrency level of the MR classes

(Hup

i

) are obtained in the same fashion; random multipliers, extracted from the uniform distribution

in the range (5,20), are used for scaling the normalized samples of the original trace to which white

noise is added. To avoid job starvation, we also set H low

i

= d0.8Hup

i

e.
In order to account for reasonable values for the penalty costs, we calculate the cost for executing

a single MR job of class i, ci
mr

, setting H low

i

= Hup

i

and thus deactivating the admission control

mechanism (i.e., setting V low,i

M

= V up,i

M

in problem (P2)). Being ⇢V low,i

M

the cost of allocating V low,i

M

VMs, which in turn allows to executeH low

i

= (⌅
i

/�
i

)V low,i

M

class i concurrent jobs (see Theorem 3.2),

ci
mr

is then equal to (�
i

/⌅
i

)⇢. Finally, we set pi
M

to random values extracted from the uniform

distribution in the range 10⇢ (min
i2M �

i

/⌅
i

,max
i2M �

i

/⌅
i

) so that penalties are at least one order of

magnitude larger w.r.t. the operational cost ([46]). Along the same lines, being the cost for executing

a single WS request, ck
ws

, equal to (�G
k

/(T F
k

)) ⇢, the respective penalties pk
W

are set to random

values from the uniform distribution in range 10⇢ (min
k2W �G

k

/(T F
k

),max
k2W �G

k

/(T F
k

)).

19

N i

M

N i

R

M i

avg

(s) M i

max

(s) Sh1,i

max

(s) Shtyp,i

avg

(s) Shtyp,i

max

(s) Ri

avg

(s) Ri

max

(s)

370 64 30 42 11 37 40 22 44
1024 64 5 16 13 30 50 53 75
168 64 34 40 11 24 30 11 14
425 64 99 120 27 115 142 26 34

Table 3: MapReduce job profiles

We have generated two sets of instances. For all instances of the first set, we consider 4 MR

user classes (one for each job profile reported in Table 3) and 5 WS ones whereas the remaining

parameters are set as reported in Table 5a. To investigate the impact of the time zone diversity, we

have set up 5 families of instances within the first set, denoted by S1, S2, S3, S4 and S5; each family

represents a scenario in which requests for applications of di↵erent classes originate from di↵erent

time zones as shown in Table 4 (note that this can be easily achieved for large e-commerce sites,

e.g. the Amazon infrastructure is spread on 35 data centers world-wide).

The original workload traces, which represent the reference time zone, are shifted appropriately

to reflect the correct daily pattern of request arrivals from di↵erent time zones.

MR WS

m
1

m
2

m
3

m
4

w
1

w
2

w
3

w
4

w
5

S1 0 0 0 0 0 0 0 0 0
S2 0 +1 +3 -6 0 0 +1 +3 -6
S3 0 -6 -6 -6 0 0 0 0 -6
S4 -6 -6 -6 -6 0 0 0 0 0
S5 -9 -9 -9 -9 0 0 0 0 0

Table 4: Shifts in hours of the time zone of each application class w.r.t. the reference time zone for instances S1–S5

An example of generating workload predictions is provided in Figure 2 which illustrates an

original workload trace for one day (24 hours) and the corresponding normalized, scaled and shifted

workload trace that represents requests for a WS application class from a time zone 3 hours ahead

the reference one.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time [hrs]

0

200

400

600

800

1000

1200

R
eq

ue
st

s
[re

q/
s]

10 min granularity original workload trace
scaled and shifted workload trace
hourly workload prediction

Figure 2: Example of a workload prediction from a time zone 3 hours ahead w.r.t. the original trace

For the second set of instances, we vary |M| and |W| from 100 to 500 with a step of 100. We de-

20

note the families of these instances as L1 (|M|=|W|=100), L2 (|M|=|W|=200), L3 (|M|=|W|=300),

L4 (|M|=|W|=400) and L5 (|M|=|W|=500). The MR job profiles for instances L1–L5 are ran-

domly generated as reported in Table 5b using significant ranges obtained from the 4 original job

profiles (Table 3). The cluster cost parameter values are set as in Table 5b, whereas the remaining

parameters as described in Section 4.1.1. For all instances of the second set, we consider a 9 hour

time shift between all user classes of the two application types, in order to represent an extreme

scenario in which all WS application requests are submitted from a time zone 9 hours ahead w.r.t.

to the MR ones.

WS MR

L

k

(0.01, 0.5) [s] D

i

{900, 1100, 1300, 1500} [s]

µ

k

(10,20) [requests/s] c

i

M

, c

i

R

2

Cluster

PUE 1.9

" 0.0669 [e cents/hour]

S 2.0615 [e cents/hour]

c 2

d 4

⇢ 1.094 [e cents/hour]

T 3600 [s]

(a) Instances S1–S5

MR job profiles Cluster

N

i

M

(70, 1120)

N

i

R

(64, 64) " (0.06008, 0.06690)[e cents/hour]

M

i

max

(s) (16, 120) S 2.0615 [e cents/hour]

Sh

typ,i

max

(s) (30, 150) PUE (1.2, 2.2)

R

i

max

(s) (15, 75) c 2

Sh

1,i

max

(s) (10, 30) d (3, 5)

c

i

M

, c

i

R

(1,4)

(b) Instances L1–L5

Table 5: Parameter setting

4.1.2. Resource management approaches

As mentioned, we solve the AC&CA problem for each hour within a day. The cluster size (V)

is fixed throughout the 24 hours span whereas the per-hour prediction of the MR job concurrency

level (Hup

i

) and rate of WS requests (⇤up

k

) vary as explained in Section 4.1.1.

We investigate two resource management approaches: (i) a pre-partitioned cluster approach, for

which we a priori partition the cluster into a sub-cluster for MR applications (consisting of V
MR

VMs) and a sub-cluster for WS applications (consisting of the remaining V
WS

= V � V
MR

VMs)

and (ii) a shared cluster approach, for which MR and WS requests can be assigned to any of the V

VMs in the cluster.

For the pre-partioned cluster approach, we split the V VMs of the cluster among the MR and

the WS applications proportionally to their respective daily peak demands, that is,

V
MR

=

max
t21...24

P
i2M

V up,i,t

M

max
t21...24

P
i2M

V up,i,t

M

+ max
t21...24

P
k2W

V up,k,t

W

V ,

V
WS

=

max
t21...24

P
k2W

V up,k,t

W

max
t21...24

P
k2W

V up,k,t

W

+ max
t21...24

P
i2M

V up,i,t

M

V .

21

4.2. Cluster size analysis

In this section, we compare the total cost of the shared cluster and pre-partitioned cluster

approaches when varying the cluster size V .

Let V
max

be the minimum number of VMs needed to have no rejections under the pre-partitioned

cluster approach, that is, V
max

= V max

WS

+ V max

MR

and V
min

= V min

MR

+ V min

WS

be the minimum number

of VMs for the AC&CA problem to be feasible for both the MR and WS sub-clusters. We vary

the cluster size V from 1.1V
max

to V
min

decreasing it in 40 steps by the same number of VMs

�V=(1.1V
max

� V
min

) /40. The size of the MR and WS sub-clusters are decreased accordingly,

that is, V
MR

is decreased from 1.1V max

MR

to V min

MR

by �V
MR

=
�
1.1V max

MR

� V min

MR

�
/40 at each step

and analogously for V
WS

. For each cluster size, we then solve the AC&CA problem with both

approaches. Notice that, for each cluster size, under the pre-partitioned cluster approach, we solve

problem (P2) twice, that is, once for the MR sub-cluster (setting V in (P2) to V
MR

and ignoring

WS applications) and once for the WS sub-cluster (setting V in (P2) to V
WS

and ignoring MR

applications). Thus, the total cost of the pre-partitioned cluster approach is obtained as the sum of

the total cost of the two sub-clusters.

We generate 30 random instances for each family/scenario S1–S5 and for each instance and

cluster size calculate the relative di↵erence between the total cost of the pre-partitioned cluster and

shared cluster approaches. The average relative di↵erence (over 30 instances) as a function of V

has been plotted in Figure 3a for each scenario. We can observe a similar trend for all scenarios: as

long as the cluster size is large enough not to reject any requests (V in the range V
max

to 1.1V
max

),

both approaches incur the same total cost (represented by a 0% relative di↵erence) as no penalty

costs are incurred; however, for V < V
max

, if we read this plot from right to left, we observe an

increasing relative cost di↵erence with the decrease of the cluster size. Thus, the smaller the cluster

size (and as a result the larger the rejection rate/penalty costs), the larger the benefit of the shared

cluster approach.

Further, we can assess the impact of the time zone diversity in the cost di↵erence of the two

approaches: the shared cluster approach provides the smallest gain (up to 5%) in case of no time

zone diversity (i.e., for scenario S1 in which all MR and WS requests originate from the same time

zone) while such gain goes up to 25% for scenario S5 which represents the largest time zone shift

(i.e., 9 hours between all MR and all WS requests).

Figure 3b illustrates the relative cost di↵erence between the two approaches as a function of

V for the large scale families of instances L1–L5 (|M|=|W|=100. . . 500); the reported values are

obtained as averages over 10 random instances per family. We can see how the overall trend is very

similar to the one observed in Figure 3a. However, such trend depends little on the instance size

(number of classes) and, at the minimum cluster size, cost penalties are reduced by up to 50%.

Although L1–L5 have the same time diversity as S5 (i.e., a 9 hour shift between all MR and all WS

requests), having an overall larger number of user classes and equal number of user classes for the

two application types, allows to further benefit from the time zone diversity and thus decrease the

cost.

22

Note that, even if the results we achieved are limited in case of no time zone diversity between

MR and WS workloads, we argue that our approach can be beneficial also under these circumstances

if MR and WS peak ratio changes during the year (which is very common if marketing campaigns

are implemented at the e-commerce site).

V
min

V
max

1.1V
max

Cluster size (V)

0

5

10

15

20

25

30

R
el
at
iv
e
co
st

d
iff
er
en

ce
% S1

S2
S3
S4
S5

(a) Instances S1–S5

V
min

V
max

1.1.V
max

Cluster size (V)

0

10

20

30

40

50

60

R
el
at
iv
e
co
st

d
iff
er
en

ce
% L1

L2

L3

L4

L5

(b) Instances L1–L5

Figure 3: Relative cost di↵erence between pre-partitioned and shared cluster approaches vs cluster size

4.3. Cluster cost and utilization analysis

In this section we analyze in detail the cluster cost and utilization for a representative S4

instance, where MR and WS workloads are characterized by a 6 hours shift.

We report the total cost and the relative cost di↵erence as a function of the cluster size for the

two resource management approaches in Figure 4a and Figure 4b, respectively. V is varied from

1.1V
max

to 0.83V
max

so that the AC&CA problem is feasible for both approaches; for the shared

cluster approach the problem can be feasible for a smaller cluster size w.r.t. to the pre-partitioned

one since it can exploit unallocated VMs of one sub-cluster for the other.

Assuming we have a fixed budget (i.e., maximum total cost, or alternatively, a maximum level of

rejections), from Figure 4a, we can compare the minimum cluster size to guarantee the given level

of rejection under both resource management approaches. For instance, fixing the daily budget to

160 e, the cluster size should be at least 0.84V
max

VMs under the shared cluster approach and at

least 0.93V
max

VMs under the pre-partitioned cluster approach, that is, the latter requires a 9%

larger cluster for the same budget/target level of rejections.

85 90 95 100 105 110

Cluster size (% V
max

)

140

160

180

200

220

T
o

ta
l
c
o

s
ts

 [
E

U
R

] total costs (24 hrs) pre-partioned cluster

total costs (24 hrs) shared cluster

(a)

85 90 95 100 105 110

Cluster size (% V
max

)

0

5

10

15

20

25

 %

relative cost difference

(b)

Figure 4: Total cost (a) and relative cost di↵erence (b) between pre-partitioned and shared cluster approaches for
increasing cluster size — scenario S4

Figure 5 provides a detailed illustration of the AC&CA for each hour within a day for the MR

23

and WS sub-clusters under the pre-partitioned cluster approach (Figures 5a, 5b) and for the shared

cluster under the shared cluster approach (Figure 5c). We set V = 0.85V
max

, which corresponds to

a cluster of 667 VMs for the considered instance, represented by the red curve spanning 24 hours in

Figure 5c. For the pre-partitioned cluster approach, the cluster is split between the MR and the WS

applications proportionally to the daily peak which corresponds to 269 VMs for the MR sub-cluster

and to 398 VMs for the WS sub-cluster (also represented by red curves in Figure 5a and Figure 5b,

respectively). The blue curves in the Figure 5 plots represent the minimum number of VMs that are

needed each hour to have no rejections, that is, to satisfy the predicted concurrency level per hour

(Hup

i

) for all MR classes and the request rate per hour (⇤up

i

) for all WS classes. Instead, the green

curves represent the total operational costs per hour whereas the orange curves, the total penalty

costs per hour.

We can see how the hourly operational costs follow the demand (blue curve) as long as the

demand is below the cluster size (blue curve below the red one). Instead, the same operational

costs are incurred whenever the demand cannot be fully satisfied (blue curve above the red one) as

all available VMs of the cluster are being used. In addition, penalty costs are present only in the

latter case as part of the requests have to be rejected. Notice that under the pre-partitioned cluster

approach, some requests have to be rejected (and thus penalties are incurred) during hours 0-4 and

23 for the MR applications (Figure 5a), which can be avoided under the shared cluster approach

(Figure 5c) exploiting the idle VMs of the WS sub-cluster (Figure 5b). Similarly, for WS request

rejections during hours 15-19 (Figure 5b). For the considered instance, the shared cluster approach

allows to reduce the total cost by 19%.

For the same instance (scenario S4, V=0.85V
max

), Figure 6 reports the cluster utilization (i.e.,

the ratio between the number of allocated VMs w.r.t. to the available VMs in the cluster) for all MR

(Figure 6a) and WS classes (Figure 6b) and the total utilization (Figure 6c) under both resource

management approaches. We can observe a 5% larger cluster utilization under the shared cluster

approach during hours 0-4 and 23 for the MR applications (Figure 6a) and up to 10% larger for

the WS applications during hours 15-19 (Figure 6b). In particular, during hours 20-22, the cluster

is fully utilized under the shared cluster approach (Figure 6c) and some MR and/or WS requests

are still rejected (see Figure 5c); as the AC&CA applies jointly to all MR and WS classes, classes

with larger penalties are prioritized to obtain an overall lower cost. This explains the lower cluster

utilization of the MR applications during hours 20 and 21 when the cluster is shared compared to

when the cluster is partitioned11.

The largest cluster utilization increase (i.e., for V=V
min

) from adopting the shared instead of

the pre-partitioned cluster approach is reported in Table 6a for S1–S5 and in Table 6b for L1–L5

(the values are calculated as an average over 30 random instances per family for S1–S5 and 10

random instances per family for L1–L5). As expected, the largest cluster utilization increase (15%)

across scenarios S1–S5 is obtained for S5 having the largest time zone shift (Table 6a). Instead, the

11As we are investigating randomly generated instances, this does not mean we are prioritizing WS applications for
MR ones; to do so, penalties would have to be set deterministically.

24

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223
Time [hrs]

0

200

400

600

800

1000

#
V

M
s
 /
 c

o
s
ts

 [
E

U
R

 c
e
n
t]

#VMs for no rejections each hour

size of MR sub-cluster (VMR)

operational costs each hour

penalty costs each hour

(a) MR sub-cluster

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

Time [hrs]

0

200

400

600

800

1000

#
V

M
s
 /
 c

o
s
ts

 [
E

U
R

 c
e
n
t]

#VMs for no rejections each hour

size of WS sub-cluster (VWS)

operational costs each hour

penalty costs each hour

(b) WS sub-cluster

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

Time [hrs]

0

200

400

600

800

1000

#
V

M
s
 /
 c

o
s
ts

 [
E

U
R

 c
e
n
t]

#VMs for no rejections each hour

size of shared cluster (V)

operational costs each hour

penalty costs each hour

(c) Shared cluster

Figure 5: Hourly operational and penalty cost — sce-
nario S4, V = 85% V

max

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time [hrs]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

U
til

iz
at

io
n

cluster utilization by Map Reduce apps - pre-partioned cluster

cluster utilization by Map Reduce apps - shared cluster

(a) Cluster utilization by MR apps

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time [hrs]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
U

til
iz

at
io

n

cluster utilization by Web Service apps - pre-partioned cluster
cluster utilization by Web Service apps - shared cluster

(b) Cluster utilization by WS apps

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time [hrs]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

U
til

iz
at

io
n

cluster utlization - pre-partioned cluster
cluster utilization - shared cluster

(c) Total cluster utilization

Figure 6: Cluster utilization — scenario S4, V = 85% V
max

25

instance size has little impact on the cluster utilization (Table 6b).

Instance Cluster utilization increase (%)

S1 3.4340
S2 8.6620
S3 9.6922
S4 12.9158
S5 15.0597

(a) Impact of the time zone diversity

Instance Cluster utilization increase (%)

L1 17.6642
L2 17.8778
L3 18.2546
L4 18.3204
L5 18.2197

(b) Impact of the number of application classes

Table 6: Largest utilization increase due to the shared cluster approach

5. RELATED WORK

The contribution of the research community on QoS models for management of cloud systems is

quite vast [9]. A subset of such works focuses on problems of AC and CA, while other application

domains, such as load balancing, pricing and energy management, are identified [9]. In our work,

we jointly address the problems of AC and CA from the perspective of an e-commerce site hosting

its applications on a private cloud. In particular, a joint AC&CA algorithm for Web applications

deployed in a virtualized infrastructure is also proposed in [17]. A QoS performance model that

allows to account for SLAs between Web application users and virtualized infrastructure providers is

embedded in an optimization framework whose goal is the maximization of the provider profit while

minimizing the data center energy and penalty costs due to requests rejections and SLA violations.

As far as MR applications are concerned, scheduling and capacity management of Hadoop

clusters have also become of particular interest within the research community. The main drivers are

the inability of Hadoop schedulers to deal with interactive MapReduce jobs [47] and the paradigm

shift from dedicated Hadoop clusters to cloud-based ones [48] which are further shared among

several job classes that compete for resources [15]. In [48], authors investigate homogeneous and

heterogeneous cloud alternatives for deploying Hadoop clusters at minimum cost while given MR

application performance targets, i.e., maximum makespans, have to be met. Di↵erently from our

work, a simulation-based framework is proposed, no AC applies and only one application type is

considered. We share the MR performance model with [15]. However, in [15] only MR applications

are considered and the submitted workload can be hosted by a mixture of reserved and on-demand

VMs in a cloud environment, while we consider a fixed-size private cluster.

Aspects similar to our MR performance model are also considered in the ARIA framework [14].

The problem in [14] is to determine the number of slots to allocate to Map and Reduce tasks so

that a soft deadline associated with a submitted job is satisfied while over-provisioning costs are

reduced. In their performance model, a job execution time estimate is derived from a job profile

which reflects the applications characteristics in terms of duration of map, shu✏e, sort, and reduce

phases. This model has been improved and validated experimentally in [49].

Driven by the need to run multiple computing frameworks (e.g., MapReduce, Dryad, Pregel,

etc.) over the same pool of data, [6] proposes Mesos with the aim to avoid costly data replication

over multiple framework-dedicated clusters. Mesos introduces a second level scheduler which lies

26

between the individual schedulers of the di↵erent framework and the available cluster resources that

are o↵ered to the frameworks based on a fair scheme. Similarly to our work, Mesos was benchmarked

against a static approach in which the cluster is evenly partitioned among the di↵erent frameworks.

It is shown to improve cluster utilization, reduce execution times for most types of framework

workloads and scale e�ciently up to 50,000 emulated nodes.

Similarly to our work, a virtualized cluster shared among interactive (Web applications) and

batch (Hadoop jobs but with given deadlines) workloads has been analyzed in [8]. However, the

focus of this work is on mitigating the interference introduced from assigning workloads of di↵erent

characteristics to VMs hosted in the same physical server, while our framework optimizes resource

allocation to improve cluster utilization and reduce operational costs. In essence, authors in in

[8] improve the performance of the shared cluster by altering the Xen (hypervisor) scheduler to

prioritize interactive workloads over batch ones and by adapting the Earliest Deadline First (EDF)

Hadoop scheduler to better match jobs to the residual resources of the cluster. They rely on a

regression-based model to estimate job execution times as function of the residual capacity with

a prediction error below 10%. An admission controller is used to further improve the Hadoop job

performance in overload conditions. Such approach improves the throughput of the interactive

workload and reduces the number of missed job deadlines despite the variability of the available

resources for the latter.

In the context of heterogeneous clusters, in [7], the spare capacity of underutilized clusters

running interactive workloads is combined with dedicated nodes for reducing the cost and energy

consumption of running data analytics jobs.

6. CONCLUSIONS

We have introduced a novel framework for joint resource management in a fixed-size cloud cluster

shared among heterogeneous Web Service and MapReduce applications. Our framework accounts

for di↵erent QoS requirements and time-varying workload intensities. An admission controller

was adopted to handle request rejections during overload, which in turn incur penalty costs. The

goal was to optimize the resource allocation in order to reduce operational and penalty costs while

meeting QoS targets of the admitted requests. A classical performance model was adopted to model

the response times for Web Service applications whereas approximate formulae allow to obtain

estimates on the execution times of MR applications. We provide a mathematical model for the

joint admission control and capacity allocation problem in which we embed the QoS performance

models. The proprieties of the model optimal solution allow to directly translate the workload

intensities and QoS requirements of each user class of the two workload types into the optimal

amount of required resources (number of VMs). An equivalent reduced problem formulation is then

obtained, which can be optimally and e�ciently solved with a greedy procedure. We benchmark

the joint resource management approach against a static approach in which the cluster VMs are a

priori partitioned among the two application types. The two approaches are compared in terms of

cluster utilization and total cost for several scenarios of interest representing di↵erent mixtures of

27

time zones from which requests can originate. The proposed approach scales well for instances with

hundreds of classes per workload type and provides average cost savings up to 50% while increasing

the cluster utilization by up to 18%.

ACKNOWLEDGMENT

This research did not receive any specific grant from funding agencies in the public, commercial,

or not-for-profit sectors.

REFERENCES

[1] European Commission, Uptake of Cloud in Europe. Follow-up of IDC Study on Quantitative estimates of the
demand for Cloud Computing in Europe and the likely barriers to take-up. Digital Agenda for Europe report.,
Publications O�ce of the European Union, Luxembourgdoi:10.2759/791317.

[2] European Commission, A Digital Single Market for Europe: Commission sets out 16 initiatives to make it happen,
Press Release. 6 May 2015. [Online] Accessible:, http://europa.eu/rapid/press-release_IP-15-4919_en.htm.

[3] Evolution of the Netflix Data Pipeline, http://techblog.netflix.com/2016/02/

evolution-of-netflix-data-pipeline.html (2016).

[4] Amazon’s recommendation secret, http://fortune.com/2012/07/30/amazons-recommendation-secret/

(2012).

[5] ONLINE, MapReduce for Business Intelligence and Analytics. Accessible:,
http://www.dbta.com/Columns/Applications-Insight/MapReduce-for-Business-Intelligence-and-Analytics-56043.

aspx.

[6] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz, S. Shenker, I. Stoica, Mesos: A
platform for fine-grained resource sharing in the data center., in: NSDI, Vol. 11, 2011, pp. 22–22.

[7] R. B. Clay, Z. Shen, X. Ma, Accelerating batch analytics with residual resources from interactive clouds, in:
Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS), 2013 IEEE 21st
International Symposium on, IEEE, 2013, pp. 414–423.

[8] W. Zhang, S. Rajasekaran, S. Duan, T. Wood, M. Zhu, Minimizing interference and maximizing progress for
hadoop virtual machines, SIGMETRICS Performance Evaluation Review 42 (4) (2015) 62–71. doi:10.1145/

2788402.2788411.
URL http://doi.acm.org/10.1145/2788402.2788411

[9] D. Ardagna, G. Casale, M. Ciavotta, J. F. Pérez, W. Wang, Quality-of-service in cloud computing: modeling
techniques and their applications, Journal of Internet Services and Applications 5 (1) (2014) 1–17.

[10] J. Polo, D. Carrera, Y. Becerra, J. Torres, E. Ayguad, M. Steinder, I. Whalley, Performance-driven task co-
scheduling for mapreduce environments, in: NOMS, 2010.

[11] B. T. Rao, L. S. S. Reddy, Survey on improved scheduling in hadoop mapreduce in cloud environments, CoRR
abs/1207.0780.
URL http://arxiv.org/abs/1207.0780

[12] C. Shanklin, Benchmarking Apache Hive 13 for Enterprise Hadoop, https://hadoop.apache.org/docs/r2.4.
1/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html.

[13] M. Lin, L. Zhang, A. Wierman, J. Tan, Joint optimization of overlapping phases in MapReduce, SIGMETRICS
Performance Evaluation Review 41 (3) (2013) 16–18.

28

http://dx.doi.org/10.2759/791317
http://europa.eu/rapid/press-release_IP-15-4919_en.htm
http://techblog.netflix.com/2016/02/evolution-of-netflix-data-pipeline.html
http://techblog.netflix.com/2016/02/evolution-of-netflix-data-pipeline.html
http://fortune.com/2012/07/30/amazons-recommendation-secret/
http://www.dbta.com/Columns/Applications-Insight/MapReduce-for-Business-Intelligence-and-Analytics-56043.aspx
http://www.dbta.com/Columns/Applications-Insight/MapReduce-for-Business-Intelligence-and-Analytics-56043.aspx
http://doi.acm.org/10.1145/2788402.2788411
http://doi.acm.org/10.1145/2788402.2788411
http://dx.doi.org/10.1145/2788402.2788411
http://dx.doi.org/10.1145/2788402.2788411
http://doi.acm.org/10.1145/2788402.2788411
http://arxiv.org/abs/1207.0780
http://arxiv.org/abs/1207.0780
https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html

[14] A. Verma, L. Cherkasova, R. H. Campbell, ARIA: Automatic Resource Inference and Allocation for Mapreduce
Environments, in: ICAC, 2011. doi:10.1145/1998582.1998637.
URL http://doi.acm.org/10.1145/1998582.1998637

[15] M. Malekimajd, D. Ardagna, M. Ciavotta, A. M. Rizzi, M. Passacantando, Optimal map reduce job capacity
allocation in cloud systems, SIGMETRICS Perform. Eval. Rev. 42 (4) (2015) 51–61. doi:10.1145/2788402.

2788410.
URL http://doi.acm.org/10.1145/2788402.2788410

[16] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan, R. Ramakrishnan, S. Rao, Reservation-based scheduling: If
you’re late don’t blame us!, in: SoCC, 2014.

[17] J. Almeida, V. Almeida, D. Ardagna, Í. Cunha, C. Francalanci, M. Trubian, Joint admission control and resource
allocation in virtualized servers, Journal of Parallel and Distributed Computing 70 (4) (2010) 344–362.

[18] L. Cherkasova, P. Phaal, Session-based admission control: a mechanism for peak load management of commercial
web sites, Computers, IEEE Transactions on 51 (6) (2002) 669–685. doi:10.1109/TC.2002.1009151.

[19] Amazon Elastic Map Reduce Nodes, http://docs.aws.amazon.com/ElasticMapReduce/latest/

DeveloperGuide/emr-nodes.html.

[20] Capacity scheduler, http://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-yarn-site/

CapacityScheduler.html.

[21] D. Kumar, L. Zhang, A. Tantawi, Enhanced inferencing: Estimation of a workload dependent performance
model, in: Proceedings of the Fourth International ICST Conference on Performance Evaluation Methodologies
and Tools, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering),
2009, p. 47.

[22] L. Zhang, X. Meng, S. Meng, J. Tan, K-scope: Online performance tracking for dynamic cloud applications,
Proceedings of the 10th ICAC.

[23] B. Addis, D. Ardagna, B. Panicucci, M. S. Squillante, L. Zhang, A hierarchical approach for the resource
management of very large cloud platforms, Dependable and Secure Computing, IEEE Transactions on 10 (5)
(2013) 253–272.

[24] D. Ardagna, M. Ciavotta, M. Passacantando, Generalized Nash Equilibria for the Service Provisioning Problem
in Multi-Cloud Systems, IEEE Transactions on Services Computing. To Appear.

[25] Getting MapReduce 2 Up to Speed, http://blog.cloudera.com/blog/2014/02/

getting-mapreduce-2-up-to-speed/.

[26] Apache Hadoop YARN: Avoiding 6 Time-Consuming ”Gotchas”, http://blog.cloudera.com/blog/2014/04/
apache-hadoop-yarn-avoiding-6-time-consuming-gotchas/.

[27] L.Cano, G.Carello, D.Ardagna, A Framework for joint resource allocation of MapReduce and Web Service ap-
plications in a shared Cloud cluster, Tech. rep. (2016).
URL http://home.deib.polimi.it/ardagna/CanoCarelloArdagna-ExtendedVer2017.pdf

[28] K. Ousterhout, A. Panda, J. Rosen, S. Venkataraman, R. Xin, S. Ratnasamy, S. Shenker, I. Stoica, The case for
tiny tasks in compute clusters, in: HotOS, 2013.

[29] D. Ardagna, S. Casolari, M. Colajanni, B. Panicucci, Dual time-scale distributed capacity allocation and load
redirect algorithms for cloud systems, J. Parallel Distrib. Comput. 72 (6) (2012) 796–808. doi:10.1016/j.jpdc.
2012.02.014.
URL http://dx.doi.org/10.1016/j.jpdc.2012.02.014

[30] E. Lazowska, J. Zahorjan, G. Graham, K. Sevcik, Quantitative system performance: computer system analysis
using queueing network models, Prentice-Hall, Inc., 1984.

[31] D. Ardagna, B. Panicucci, M. Passacantando, Generalized nash equilibria for the service provisioning problem
in cloud systems, Services Computing, IEEE Transactions on 6 (4) (2013) 429–442.

29

http://doi.acm.org/10.1145/1998582.1998637
http://doi.acm.org/10.1145/1998582.1998637
http://dx.doi.org/10.1145/1998582.1998637
http://doi.acm.org/10.1145/1998582.1998637
http://doi.acm.org/10.1145/2788402.2788410
http://doi.acm.org/10.1145/2788402.2788410
http://dx.doi.org/10.1145/2788402.2788410
http://dx.doi.org/10.1145/2788402.2788410
http://doi.acm.org/10.1145/2788402.2788410
http://dx.doi.org/10.1109/TC.2002.1009151
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-nodes.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-nodes.html
http://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
http://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
http://blog.cloudera.com/blog/2014/02/getting-mapreduce-2-up-to-speed/
http://blog.cloudera.com/blog/2014/02/getting-mapreduce-2-up-to-speed/
http://blog.cloudera.com/blog/2014/04/apache-hadoop-yarn-avoiding-6-time-consuming-gotchas/
http://blog.cloudera.com/blog/2014/04/apache-hadoop-yarn-avoiding-6-time-consuming-gotchas/
http://home.deib.polimi.it/ardagna/CanoCarelloArdagna-ExtendedVer2017.pdf
http://home.deib.polimi.it/ardagna/CanoCarelloArdagna-ExtendedVer2017.pdf
http://home.deib.polimi.it/ardagna/CanoCarelloArdagna-ExtendedVer2017.pdf
http://dx.doi.org/10.1016/j.jpdc.2012.02.014
http://dx.doi.org/10.1016/j.jpdc.2012.02.014
http://dx.doi.org/10.1016/j.jpdc.2012.02.014
http://dx.doi.org/10.1016/j.jpdc.2012.02.014
http://dx.doi.org/10.1016/j.jpdc.2012.02.014

[32] Q. Zhang, Q. Zhu, M. F. Zhani, R. Boutaba, J. L. Hellerstein, Dynamic service placement in geographically
distributed clouds, Selected Areas in Communications, IEEE Journal on 31 (12) (2013) 762–772.

[33] D. Ardagna, M. S. Squillante, Special issue on performance and resource management in big data applications,
SIGMETRICS Performance Evaluation Review 42 (4) (2015) 2. doi:10.1145/2788402.2788404.
URL http://doi.acm.org/10.1145/2788402.2788404

[34] AMPL, Ampl modeling language for mathematical programming., http://www.ampl.com/.

[35] IBM, IBM ILOG CPLEX Optimizer, http://www-01.ibm.com/software/integration/optimization/

cplex-optimizer/.

[36] KNITRO, Artelys Knitro, a non-linear optimization solver, http://www.artelys.com/en/optimization-tools/
knitro.

[37] A. Fox, R. Gri�th, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, Above the
clouds: A berkeley view of cloud computing, Dept. Electrical Eng. and Comput. Sciences, University of California,
Berkeley, Rep. UCB/EECS 28 (2009) 13.

[38] R. Birke, L. Y. Chen, E. Smirni, Data centers in the cloud: A large scale performance study, in: Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference on, IEEE, 2012, pp. 336–343.

[39] D. Ardagna, M. Ciavotta, M. Passacantando, Generalized nash equilibria for the service provisioning problem in
multi-cloud systems, IEEE Transactions on Services Computing (1) 1–1.

[40] E. Gianniti, Game theory models for mapreduce: joint admission control and capacity allocation.

[41] D. Ardagna, S. Bernardi, E. Gianniti, S. K. Aliabadi, D. Perez-Palacin, J. I. Requeno., Modeling Performance
of Hadoop Applications: A Journey from Queueing Networks to Stochastic Well Formed Nets, in: ICA3PP 2016
Proceedings. To Appear., 2016.

[42] TPC BenchmarkDS (TPC-DS): The Benchmark Standard for decision support solutions including Big Data,
http://www.tpc.org/tpcds/.

[43] D. Ardagna, S. Casolari, M. Colajanni, B. Panicucci, Dual time-scale distributed capacity allocation and load
redirect algorithms for cloud systems, Journal of Parallel and Distributed Computing 72 (6) (2012) 796–808.

[44] D. Ardagna, B. Panicucci, M. Trubian, L. Zhang, Energy-aware autonomic resource allocation in multitier
virtualized environments, Services Computing, IEEE Transactions on 5 (1) (2012) 2–19.

[45] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, G. Jiang, Power and performance management of
virtualized computing environments via lookahead control, Cluster computing 12 (1) (2009) 1–15.

[46] J. Anselmi, D. Ardagna, M. Passacantando, Generalized Nash equilibria for SaaS/PaaS Clouds, European Journal
of Operational Research 236 (1) (2014) 326–339.

[47] L. T. X. Phan, Z. Zhang, Q. Zheng, B. T. Loo, I. Lee, An empirical analysis of scheduling techniques for real-time
cloud-based data processing, in: SOCA, 2011. doi:10.1109/SOCA.2011.6166240.
URL http://dx.doi.org/10.1109/SOCA.2011.6166240

[48] Z. Zhang, L. Cherkasova, B. T. Loo, Exploiting cloud heterogeneity for optimized cost/performance mapreduce
processing, in: CloudDP, 2014.

[49] Z. Zhang, L. Cherkasova, A. Verma, B. T. Loo, Automated Profiling and Resource Management of Pig Programs
for Meeting Service Level Objectives, in: ICAC, 2012. doi:10.1145/2371536.2371546.
URL http://doi.acm.org/10.1145/2371536.2371546

30

http://doi.acm.org/10.1145/2788402.2788404
http://dx.doi.org/10.1145/2788402.2788404
http://doi.acm.org/10.1145/2788402.2788404
http://www.ampl.com/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.artelys.com/en/optimization-tools/knitro
http://www.artelys.com/en/optimization-tools/knitro
http://www.tpc.org/tpcds/
http://dx.doi.org/10.1109/SOCA.2011.6166240
http://dx.doi.org/10.1109/SOCA.2011.6166240
http://dx.doi.org/10.1109/SOCA.2011.6166240
http://dx.doi.org/10.1109/SOCA.2011.6166240
http://doi.acm.org/10.1145/2371536.2371546
http://doi.acm.org/10.1145/2371536.2371546
http://dx.doi.org/10.1145/2371536.2371546
http://doi.acm.org/10.1145/2371536.2371546

	INTRODUCTION
	A FRAMEWORK FOR JOINT ADMISSION CONTROL AND CAPACITY ALLOCATION OF MAPREDUCE AND WEB SERVICE APPLICATIONS
	OPTIMIZATION PROBLEM
	MR and WS Applications Performance model
	Problem Formulation
	Problem Properties

	EXPERIMENTAL RESULTS
	Experimental setting
	Problem instances
	Resource management approaches

	Cluster size analysis
	Cluster cost and utilization analysis

	RELATED WORK
	CONCLUSIONS

