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ABSTRACT
Item-based recommender systems suggest products based on the
similarities between items computed either from past user prefer-
ences (collaborative �ltering) or from item content features (content-
based �ltering). Collaborative �ltering has been proven to outper-
form content-based �ltering in a variety of scenarios. However, in
item cold-start, collaborative �ltering cannot be used directly since
past user interactions are not available for the newly added items.
Hence, content-based �ltering is usually the only viable option le�.

In this paper we propose a novel feature-based machine learning
model that addresses the item cold-start problem by jointly exploit-
ing item content features and past user preferences. �e model
learns the relevance of each content feature from the collaborative
item similarity, hence allowing to embed collaborative knowledge
into a purely content-based algorithm. In our experiments, the
proposed approach outperforms classical content-based �ltering
on an enriched version of the Net�ix dataset, showing that collabo-
rative knowledge can be e�ectively embedded into content-based
approaches and exploited in item cold-start recommendation.

1 INTRODUCTION
Item-based algorithms are widespread methods for recommend-
ing relevant items to users [4]. Because predictions rely on the
computation of similarities between pairs of items, they have good
runtime performance and their recommendations are easy to ex-
plain. Collaborative Filtering (CF) similarities usually leads to good
predictive accuracy, especially if trained with regard to suitable op-
timization objective functions [3]. �e downside of CF algorithms
is that similarities are only available for items with a – possibly
large – number of ratings. �us for entirely new items – i.e., ones
that have no ratings – CF methods are not capable of computing
recommendations. Moreover, CF are biased toward popular Block-
buster items, thus reducing the chances of novel recommendations.
�is happens because algorithms are trained (e.g., tuned) to achieve
the best performance in terms of available ratings. �is creates the
rich-get-richer e�ect for popular items, which results in reducing
the coverage of recommendations.
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�e new-item problem can be solved by using Content-Based
Filtering methods (CBF). CBF requires that items are represented
via a set of features – or a�ributes – that capture their intrinsic
characteristics. �e quality of CBF is severely limited by three
factors [7]:

• quality is linked to the availability of a number of signi�-
cant, well-structured, editorial-generated a�ributes (such
as genres, actors, directors in the movie domain); however,
many recommender systems base their recommendations
on unstructured, user-generated a�ributes (i.e., tags, re-
views) most of which are noisy or scarcely relevant;

• recommendations to each user do not use the ratings of
other users, therefore ignoring potentially useful collabo-
rative information;

• recommended items are similar to previously rated items,
thus reducing diversity of recommendations.

Because of these limitations, a signi�cant challenge to address
with CBF is feature weighting, i.e., how to identify how much a
feature is important in de�ning the perceived similarity between
items.

Feature weighting can be viewed as an extension of the feature
selection problem, where the goal is to provide an evaluation mea-
sure used to score and �lter the di�erent features. �e choice of
evaluation distinguishes between the three main categories of fea-
ture weighting algorithms: �lters, embedded methods and wrappers
[2].

Filter methods produce a feature set which is not tuned to a
speci�c type of rating predictive model. Filter methods use a proxy
measure instead of the error rate to score a feature subset. Common
�lters in recommender systems are based on TF-IDF weighting
schemes [6].

Embedded methods perform feature weighting as part of the rat-
ing model construction process. Examples in recommender systems
are Factorization Machines [10], UFSM [1] and SSLIM [8].

Wrapper methods use a pre-trained CF predictive model to score
features, with a two-step approach. A CF algorithm is used to
produce a model (step 1) and the wrapper methodology consists
in using the CF model to assess the relative usefulness of features
(step 2).

�e main contributions of this work is a general, simple and
straightforward wrapper method to make content-based algorithms
ratings-aware by plugging learnable a�ribute weights onto them.
�e core principle is that if a feature co-occurs frequently only
within similarly co-rated items, then that feature is a good candi-
date to be included as a relevant feature in de�ning the similarity
between items.
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We conducted two experimental evaluations of the proposed
method using the Net�ix dataset enriched with a�ributes from
IMDB. �e experiment results show that the proposed model out-
performs state-of-art CBF in both the warm-start and new-item
scenarios.

2 RELATEDWORKS
Some a�empts have been done to reduce the quality gap between
CF and CBF. Past works operate along two directions: �ltering and
embedded methods.

Filtering methods have underpinnings in information theory
and information retrieval [6] and evaluate features without involv-
ing any learning algorithm. Filtering methods weight features
with the goal of maximizing the information gain (e.g., TF-IDF or
entropy-based weighting) and mitigating synonymy (e.g., LSA). As
an example, the work in [9] adopts a TF-IDF approach in which
users are considered as documents and the TF-IDF component is
normalized across all users. �e main drawback of �ltering methods
is that they do not take into account the ratings of users, therefore
ignoring if the feature-based similarity between items is aligned
with the user perception of similarity.

Embedded methods incorporate feature weighting as part of the
rating learning process, and use the objective function of the learn-
ing process to guide searching for relevant features. Examples in
recommender systems are SSLIM [8], UFSM [1] and Factorization
Machines [10]. SSLIM adopts a Sparse Linear method with Side
information for learning a sparse similarity matrix that is used
for computing top-N recommendations [8]. �e training incorpo-
rate both ratings from users and features about items. �e main
drawback of this approach is that the similarity is computed di-
rectly, without computing feature weights, and therefore cannot
be used for new items. User-Speci�c Feature-based Similarity Mod-
els (UFSM) learn a personalized linear combination of similarity
functions known as global similarity functions for cold-start top-N
item recommendations. UFSM can be considered as a special case
of Factorization Machines [1]. �e main drawback of embedded
methods is the coupling between the collaborative and content
components of the model. When used on datasets with unstruc-
tured user-generated features (e.g., tags) the noise from the features
propagate to the collaborative part, a�ecting the overall quality of
the model. For this reason, when used in the new item scenario,
predictive accuracy is only marginally improved with respect to
content based techniques.

3 LEAST SQUARES FEATUREWEIGHING
As in any recommender system, we consider the problem of recom-
mending items from a set I to users in the set U , and item features
are picked from a set F . R |U |x |I | is the feedback matrix (either
explicit or implicit). A |I |x |F | is the binary item feature matrix, in
which ai f = 1 i� item i has feature f . In a generic item similar-
ity model, given a item similarity matrix S |I |x |I | , the predicted
relevance r̂ui of item i for user u is computed as

r̂ui =
∑

j ∈Nk (i)
rujsi j (1)

where Nk (i) is the set of k nearest neighbors of item i according
to the similarity model. In top-N recommendation, the N items
with the largest predicted relevance are recommended to the user.
Notice that this approach allows to estimate the predicted rating
for any item i as long as the similarities between i and any other
item j ∈ I can be computed, new items included.

Feature weighing. In its simplest formulation, feature weighing
consists in computing the array of weights w ∈ R |F | such that each
entry wf ∈ w re�ects the importance of the feature f ∈ F for the
given task. In other words, if two features f and f ′ have weights
wf > wf ′ , then feature f is more relevant than f ′ for the task.
We de�ne the weighted similarity si j between items i and j as

s
(w )
i j =

∑
f ∈F

wf ai f aj f = 〈w, ai � aj 〉 (2)

where ai , aj ∈ {0, 1} |F | are the feature vectors of items i and j
respectively and � is the element-wise product.

In the case of binary a�ribute matrices, a typical feature weight-
ing scheme is TF-IDF that weights the features in F proportionally
to their speci�city.

�e proposed approach. In this work, we propose a solution based
on least squares (LSQ) optimization to automatic feature weighing.
Automatic feature weighing aims at inferring the weights in w
from a collaborative model. Given the item-to-item weight matrix
S (CF) ∈ R |I |x |I | computed with collaborative �ltering, the optimal
weight vector w∗ can be determined by solving the following LSQ
problem:

argmin
w∗

| |S (CF) − S (w) | |2F (3)

where S (w) ∈ R |I |x |I | is the pairwise weighted similarity matrix
computed with (2). �is LSQ formulation allows to compute the
optimal weight vector w∗ capable to reconstruct the CF similarity
matrix by means of simple weighted CBF similarity with minimal
error. Since our goal is to learn a set of feature weights so that CBF
similarities mimic as close as possible CF ones, there is no need to
add a regularization term, thus greatly simplifying the optimization.
In the case of the simple linear weighing scheme of (2), the problem
boils down to the following simple linear regression

argmin
w∗

∑
i ∈I

∑
j ∈I\{i }

(
s
(CF )
i j − 〈w, ai � aj 〉

)2
(4)

which can be e�ciently solved analytically. We call our approach
LFW (Least-squares Feature Weighing).

When a new item is added to the catalog, we use w∗ to compute
its weighted similarity w.r.t. the previously existing items. �en,
it can be recommended to users by using Equation 1. We conjec-
ture that our model is capable to weight features in accordance to
their collaborative relevance. If this conjecture holds, the learned
weighting scheme should outperform traditional, fully content-
based weighting schemes (like TF-IDF) in the new item scenario
without exhibiting a severe degradation of performance in standard
(warm-start) scenario.

It is worth noting that the collaborative similarity matrix S(CF)

can be obtained with any CF algorithm. In our experiments, we
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used SLIM since it has been extensively proven to achieve state-of-
the-art performance in many CF tasks [11].

4 EVALUATION
We performed experiments to con�rm that our approach (a) is ca-
pable to produce useful recommendations in an item cold-start
scenario without (b) incurring into severe degradation of perfor-
mance in warm-start scenarios.

Dataset. For our experiments, we used a version of the Net�ix
dataset enriched with structured and unstructured a�ributes ex-
tracted from IMDB. �is dataset has 250k users, 6.5k movies and
8.8M ratings in 1-5 scale. �e rating data is enriched with 4699
binary a�ributes representing various kinds of meta-information
on movies such as director, actor, genres and user-generated tags.

Evaluation procedure. To investigate the new-item scenario, we
performed a 70/30 random hold-out split over items. To investigate
the item warm-start scenario, we instead split over users with the
same proportions. �e �nal partitioning of the dataset is show in
Figure 1. �e sub-matrix A was used to train SLIM �rst, and then
to �t SLIM similarities with our LFW model. �e hyper-parameters
of SLIM were tuned on a separate validation set extracted from A
before ��ing LFW. �e neighborhood size k was tuned on a second
validations set extracted from B by using ROC-AUC. �e models �t
on A were used to generate recommendations both in the new-item
and in the warm-start scenario.

Sub-matrices B and C were used exclusively in evaluation. In
the new-item scenario, the ratings in A were used as user-pro�le to
score the items in C, the ground truth. In the warm-start scenario,
we held-out 30% of the positive ratings (> 3) of every user as
ground truth and used the remaining ratings as user pro�les. In
both scenarios, the ground truth is composed only by items with
rating > 3. We used accuracy metrics (Precision, Recall, MRR, MAP
and NDCG) to evaluate the ranking recommendation quality. We
also evaluate the Coverage and Diversity in recommendation by
using the de�nitions in [5]. Notice that, since the user pro�les and
ground truth di�er in the two scenarios analyzed, their results are
not directly comparable.

Baselines. We used simple unweighted cosine similarity (Cosine)
and TF-IDF-weighted cosine similarity (CosineIDF) as CBF base-
lines to evaluate the performance of LFW in both scenarios 1. SLIM
was used as additional CF baseline in the warm-start scenario.

Figure 1: Dataset partitioning with dimensions.
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1We experimented also with other similarity metrics (e.g. Pearson), but those were
consistently outperformed by these baselines, so we do not report them here.

Discussion. Let us discuss the new-item scenario �rst, since it
is the main focus of our work. In Table 1, we report the accuracy
metrics for di�erent recommendation list sizes N . LFW consistently
outperforms all the baselines in all metrics at any value of N . We
want to highlight that LFW di�ers from the other CBF baselines
solely in the feature weighing scheme. �erefore, the improvement
in performance must be due to a be�er feature weighing discovered
by our approach.

In Table 2, we report the results for the item warm-start scenario.
For space reasons, we report only the values for N = 5. As expected,
the CF approach based on SLIM has the best predictive accuracy
in the warm-start scenario. Interestingly, LFW still outperforms
both Cosine and Cosine TF-IDF baselines by a even large margin
with respect to the new item scenario. In summary, LFW cannot
compete with SLIM in warm-start scenarios, also due to its CBF
nature. Still, its degradation in performance is much less evident
than the other CBF baselines.

Table 1: Performance evaluation for the new-item scenario.

Algorithm n Precision Recall MRR MAP NCDG

LFW
5 0.1323 0.0825 0.2551 0.1062 0.0940
25 0.0858 0.2406 0.2795 0.0915 0.1715
50 0.0654 0.3459 0.2822 0.0950 0.2097

Cosine
5 0.0938 0.0502 0.1984 0.0748 0.0622
25 0.0624 0.1473 0.2189 0.0573 0.1127
50 0.0485 0.2231 0.2218 0.0582 0.1411

CosineIDF
5 0.0950 0.0533 0.2068 0.0752 0.0654
25 0.0658 0.1564 0.2280 0.0605 0.1192
50 0.0510 0.2348 0.2309 0.0621 0.1486

Table 2: Performance evaluation for the warm-start sce-
nario.

Algorithm N Precision Recall MRR MAP NCDG
SLIM 5 0.1383 0.1497 0.2819 0.1342 0.1453
LFW 5 0.0640 0.0577 0.1438 0.0744 0.0597

Cosine 5 0.0334 0.0277 0.0826 0.0270 0.0302
CosineIDF 5 0.0337 0.0258 0.0855 0.0276 0.0296

Table 3: Evaluation of coverage and diversity.

Algorithm new-item warm-start
Coverage Diversity Coverage Diversity

SLIM - - 0.1683 4.0585
LFW 0.8897 5.3628 0.4891 2.1289

Cosine 0.9236 4.1529 0.5723 1.1519
CosineIDF 0.9495 4.2061 0.5684 1.1517
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In Table 3, we report the evaluation of coverage and diversity for
the top-5 recommendations in both scenarios. In the warm-start sce-
nario, “traditional” CBF algorithms have greater coverage than CF,
whereas CF has greater diversity in the warm-start scenario. nter-
estingly, LFW seems to “take the best” from both worlds, achieving
CBF-level coverage and CF-level diversity in both scenarios.

5 QUALITATIVE ANALYSIS
�e good performances in both scenarios suggest that the weight
vector w∗ is capable of highlighting the importance of the various
features in terms of the user-perceived similarity. In order to under-
stand this concept be�er, we provide a qualitative analysis on how
features are weighted di�erently by two methods, namely Cosine
TF-IDF and our method LFW.

In Table 4, we report the highest and lowest weighted features
by LFW. For example, Jay Roach is the director of both “Meet the
Parents” and “Meet the Fockers”, and of the Austin Powers series.
All these movies are comedy and target roughly the same audience,
hence they are good candidates of being recommended by a CF
algorithm despite having very di�erent casts. Lois Maxwell has
acted as Miss Moneypenny – James Bond’s secretary – in the �rst
14 Bond movies. Hence, she represents another important cluster
of movies. Interestingly, Lois Maxwell has higher importance than
the various directors or main characters of Bond movies, since
they changed frequently among them. On the other hand, the
feature “snakebite” hardly identi�es similar movies (for example, it
is shared by completely di�erent movies like “Kill Bill: Vol. 2” and
“Siddharta”). Analogously, the feature “giant spider” is shared by
two masterpieces (“�e Lord of the Rings” and “Harry Po�er”) and
a collection of 12 minor unrelated movies.

Table 4: Features relevance learned by LFW.

Most relevant features Least relevant features
Molly Ringwald snakebite

Jay Roach John Ashton
Lois Maxwell Ally Sheedy

motorcycle accident giant spider
Jayne Eastwood stable

Table 5 shows that TF-IDF, by weighing features proportionally
to their rarity, can hardly capture any interesting relationship from
the actual movie consumption. Surprisingly, features representing
genres (such as comedy and thriller) have low weights.

To shed a light on this, in Table 6 we report the features that
di�er the most between LFW and TF-IDF. �e weights vectors of
both methods were �rst normalized in [0, 1] before computing their
di�erence feature-wise. It is interesting to see that LFW raises the
relevance of genres w.r.t. TF-IDF, which are de�nitely an important
set of features that receive a really low TF-IDF weight. Conversely,
the relevance of very rare countries of origin in our dataset (e.g.
Brazil and Romania) is strongly decreased. For example, we have
only 2 Brazilian movies with just 20 ratings in common in our
dataset.

Table 5: Features relevance according to TF-IDF.

Most relevant features Least relevant features
knowledge drama

Iran comedy
Bulgaria �lm independent
China thriller

Argentina romance

Table 6: Feature importance LFW vs TF-IDF.

LFW >TF-IDF LFW < TF-IDF
USA Brazil

drama Romania
Molly Ringwald Peru

comedy Philippines
�lm independent George P. Cosmatos

6 CONCLUSION AND FUTUREWORK
In this paper, we propose a feature-based linear regression frame-
work for personalized recommendation. We presented a novel ap-
proach to compute item feature scores that de�nes their relevance
according to expressed user preferences. In contrast to traditional
recommender systems, our approach solves both the item and the
user cold start issues. Moreover, it has a linear temporal complex-
ity with respect to item features, and thus it is lighter than the
state of the art competitor models. Future directions include the
development of personalized feature weighing tools and the exten-
sive evaluation of this approaches with di�erent datasets and CF
algorithms.
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