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A search for narrow resonances that decay into #7 pairs has been performed using 130 pb~! of data in
the lepton + jets channel collected by the D@ detector in pp collisions at \/s = 1.8 TeV. There is no
significant deviation observed from the standard-model predictions at a top-quark mass of 175 GeV/c?.
We therefore present upper limits at the 95% confidence level on the product of the production cross
section and branching fraction to 77 for narrow resonances as a function of the resonance mass My.
These limits are used to exclude the existence of a leptophobic top-color particle with mass My <
560 GeV/c?, using a theoretical cross section for a width I'y = 0.012My,.

DOI: 10.1103/PhysRevLett.92.221801

Narrow resonances decaying to #7 pairs are predicted
by several theories beyond the standard model. For in-
stance, in the top-color-assisted technicolor model [1]
which combines top-color [2] and technicolor [3] models,
the technicolor interactions at the electroweak scale are
responsible for electroweak symmetry breaking, and ex-
tended technicolor generates the masses of all quarks and
leptons except that of the top quark. The strong top-color
interactions, broken near 1 TeV, induce a massive dynami-
cal #f condensate and all but a few GeV of the top-quark
mass, and contribute little to electroweak symmetry
breaking. The 7 condensate, or the heavy Z' boson,
couples preferentially to the third generation. In one of
the scenarios of the top-color-assisted technicolor model
the heavy Z' boson couples preferentially to the third
quark generation, and not to leptons (leptophobic). The
cross section for the Z' boson in this model is large
enough for it to be observed over a wide range of masses
and widths in data available from the 1.8 TeV pp Tevatron
Collider at Fermilab.

In searches for such heavy particles or narrow reso-
nances, we seek an excess of events beyond that predicted
by the standard model in the distribution of the invariant
mass of ¢f decay products. This excess of events would
appear as a peak at the mass of the narrow resonance.
Previous searches at the Tevatron have limited a lepto-
phobic Z’ boson to a mass higher than 480 GeV/c? [4]. In
this paper, we describe a direct search for narrow ff
resonances in the inclusive decay modes f — {v+ =
4 jets, where £ = an electron (e) or a muon (w), using
130 pb~! of data recorded by the D@ experiment from
1992 to 1996. Having observed no significant deviation
from the standard model, we present model-independent
95% confidence-level (C.L.) upper limits on the product
of the cross section (o) and branching fraction (B) to f7,
for a narrow resonance. We also present a lower limit on
the resonance mass (My) of the Z' boson in a particular
scenario of the top-color-assisted technicolor model [1].

The D@ detector is a multipurpose particle detector
designed to study pp collisions at the Fermilab Tevatron
Collider. The detector consists of three major systems: a
nonmagnetic central tracking system, a uranium/liquid-
argon calorimeter, and a muon spectrometer. A detailed
description of the D@ detector can be found in Ref. [5].

The present search rests upon techniques developed for
the measurement of the mass of the top quark at D@ in the
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PACS numbers: 13.85.Rm, 12.60.Nz, 14.70.Pw

lepton + jets channel [6]. Because of the large mass of the
top quark (m,), the tf — €v+ = 4 jets final state is char-
acterized by a high-pr isolated lepton (e or w) and large
missing transverse energy (f;) from the undetected neu-
trino. Additional soft muons (u tags) from semileptonic
decays of b and ¢ quarks occur in = 20% of 7 events but
only in =2% of non-ff events [7], and therefore offer
discrimination between signal and background. We con-
sider two orthogonal classes of events for this analysis:
(1) a purely topological selection of lepton + jets events
denoted as e + jets and u + jets, where the jets are re-
quired not to contain a muon, and (ii) a selection based
primarily on the presence of a muon contained within a
jet (u tag), and additional selections on the topology of
the event. These events are denoted as e + jets/u and
M+ jets/ . Details of the trigger requirements, recon-
struction of events, and identification of the e, u, £r, and
jets can be found in Ref. [6]. The principal sources
of background correspond to standard-model ¢ produc-
tion, W(— €v) + jets production, and production of mul-
tijets (N; = 5), in which one of the jets is misidentified as
a lepton and £; stems from jet-energy mismeasurement.
The contribution from all other physics sources is
negligible.

In order to reduce the contribution from W + jets and
multijets we apply the selections summarized in Table L
In the untagged channels, the cuts on EY (= |E%| + |E7])
and n" are applied to further reduce the background
from multijets. The variable n" is determined by using
the smaller of the two solutions for p?, the longitudinal
component of the neutrino momentum, obtained while
performing a kinematic fit to W — [v decay using the W
mass as a constraint. In the tagged channels, the multijet
background is further reduced by applying selections on
A (£, n) which is the difference in the azimuthal angle
between £ and the highest-p; muon. We also apply a cut
on the y? from a kinematic fit to the 7 — €v + jets
hypothesis described later.

The resonance signal X — ¢f is modeled using the
PHTHIA-6.1 [8] Monte Carlo (MC) event generator, with
m, = 175 GeV/c?, and CTEQ3M [9] parton distribution
functions. Initial- and final-state radiation (ISR/FSR) is
included. About 10 000 events at eight resonance masses
between 400 and 850 GeV/c? are generated, using a
width I'y = 0.012My. This width is significantly smaller
than the =0.04My mass resolution of the D@ detector for
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TABLE I.  Summary of event selections. Here £S5 is the missing transverse energy measured just in the calorimeter.
e + jets u + jets e + jets/u o+ jets/
Lepton (I) E!. > 20 GeV ph>20GeV/c El > 20 GeV pk>20GeV/c
Inl <2 Inl <17 Inl <2 Inl <17
Er Er > 20 GeV Fr > 20 GeV Fr > 20 GeV Fr > 20 GeV
Fs' > 25 GeV ' > 20 GeV F5' > 20 GeV
Jets = 4 jets = 4 jets = 4 jets = 4 jets
E;r > 15 GeV Er > 15 GeV Er > 15 GeV Er > 15 GeV
Inl <2 Inl <2 Inl <2 Inl <2
M tag No No Yes Yes
Other |[£7] + |EL] > 60 GeV 7| + |ph| > 60 GeV Er > 35GeV Ad(Fr, ) < 170°
In"l<2 "] <2 if Ap(Bp, ) <25°  |Ap(Er, p) —90°1/90°
<F1/(45 GeV)
Events passing above
cuts and y* < 10 16 21 1 3

tt systems [10]. Hence, our upper limits on oyxB are
dominated by the detector resolution and independent
of I'y for such narrow resonances and are valid for all
choices of I'y that are reasonably small compared to the
detector resolution. The generated events are processed
through the D@GEANT detector simulation package [11]
and reconstructed using the D@ event-reconstruction
program.

The background is estimated from a combination of
Monte Carlo simulations and collider data [6]. Standard-
model 77 production is modeled using the HERWIG-5.7 [12]
MC generator with a top mass m, = 175 GeV/c?. The
W + jets background is modeled using the VECBOS [13]
parton-level event generator whose output is passed
through HERWIG for QCD evolution and fragmentation.
The background from multijets is estimated using signal-
suppressed data samples. The selections summarized in
Table I are also applied to the Monte Carlo signal and
background samples.

Each event in data, as well as in the Monte Carlo signal
and background samples, is fitted to a three-constraint
hypothesis for the ¢z production and decay:

tt— WHbW~ b; W™ — Ty W* = qq. (1)

The inputs to the fit are the measured kinematic parame-
ters of the lepton and the jets, and the missing transverse
energy vector, £7. We minimize y?> = (x — x")TG(x —
x™), where x™(x) is the vector for measured (fitted)
variables, and G ™! is its error matrix [6]. The two recon-
structed W boson masses are constrained to the pole mass
My, of the W boson, and the reconstructed ¢ and 7 quark
masses are set to m, = 173.3 GeV/c? as measured by D@
[6]. The bias introduced due to the difference in the top-
quark mass used in the fit and that in the MC simulation
of signal and background is negligible. Only the four
highest-E; jets are used in the kinematic fit. All other
jets are assumed to be due to initial-state radiation, and
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are ignored. There are six (12) possible assignments of
these jets to quarks in the events with (without) a u tag,
each having two solutions for p’. For every possible
permutation, we apply additional parton-level and
n-dependent jet corrections derived using data and
Monte Carlo simulations [6]. We apply a loose selection
on the reconstructed mass, M(qq), of the hadronically
decaying W boson, 40 < M(qq) < 140 GeV/c?, before
the fit, to reduce computation. The results of the fit with
the lowest y? are used to reconstruct the invariant mass
(M ;) of the tf system. It is observed that the jet permuta-
tion with the lowest y? is the correct choice for ~20% of
all Monte Carlo 7 events [6]. We require x> < 10 to
further reduce non-77 background, whereupon summing
all four classes of events 41 events are left in the data
sample of which four are u tagged.

For each My sample generated by Monte Carlo, we
perform a fit based on Bayesian statistics [14] to deter-
mine the number of events expected from signal and
background in the observed lepton + jets data sample.
We fit [10] the data to a three-source model comprised of
n; signal events (X — ff), n, background events from
standard-model ¢ production, and n; events due to the
combined backgrounds from W + jets and multijets in the
ratio 0.78:0.22. That ratio is based on their relative pro-
portions in the top-quark mass analysis at D@ [6]. We
define [10] a likelihood (L) and a posterior probability
P(ny, ny, n3, Mx|D) for obtaining n,, n,, and n; events
from the three respective sources, for a model specified
by My. Given the observed data set D, we can write

L(Dlnb ny, ns, MX)W(nl) ny, n2|MX)

P(ny, nyns, Mx|D) = N

2

where w denotes the joint prior probability for the three-
source strengths, and /N’ is a normalization that is ob-
tained from the requirement

221801-4
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TABLE II. The fitted number of events for signal, (n,), and background from standard-model ¢7 production, {n,), and W + jets

and multijets, (n3), for different My. After all selections, 41 events are observed in the M,; distribution of lepton + jets data.
My Background
(GeV/c?) (ny) (n7) (n3) (ny) + (n3)
400 9.0+7.0 20.5 £10.8 13.9 £ 10.2 34.4 = 14.9
500 49 *42 222+ 11.5 15.3 £ 10.5 37.5*+15.6
600 42 +32 237+ 11.6 15.4 £ 10.6 39.0 £ 15.7
750 1.6 = 1.6 26.8 £ 11.7 12.6 £ 9.9 394153
fP(nl, ny, N3, MX|D)dn1dn2dn3 = 1. (3) <}’ll> = f[[njp(n], nyp, ns, MX|D)dn1dn2dn3. (5)

We assume Poisson statistics for the likelihood and flat
priors for each of the three sources. Bayesian integration
[14] over possible signal and background populations in
each bin 7 of the M; distribution yields the likelihood

L(Dl|ny, ny, n3, My) = l_[ Z l_[<A Y >

i=1ky,ky,k3=0 j=1

pj./ 4
T+ p)ait’ @
where D; (Aj;) is the number of events in bin i for data
(Monte Carlo source j); the indices k; satisfy the multi-
nomial constraint Z%—l =D, and pj=n;/(M+
>M 1Aj;) is an estlmate of the strength of the jth source
(j=1, 2, 3), where M is the number of bins. The ex-
pected number of counts from any source j can be ob-
tained from the fit as

I—I'r'llIIIlIIIIIIIIITIITIII[IIIIIIIII
- <

14 ® DO Data y
O Signal+expected backgrounds from fit]

—
(38
T

SM tt + Wjets/multijets
B W+jets/multijets (0.78:0.22) ]

—
(=]
—T

Events / 20 GeV/c?
(o, o]

M(tt) (GeV/c?)

FIG. 1. Distributions of M; obtained from the fit, for the sum
of signal (X — f7) and all standard-model backgrounds (open
histogram), sum of all standard-model backgrounds (hatched
histogram), and W + jets and multijets (solid histogram), for
My = 400 GeV/c?. The data correspond to the dots with their
statistical errors.
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The fitted number of events for signal ((n;)) and the two
background sources ({n,) and (n3)) are listed in Table 1T
for several values of My. The observed M; distribution
and the corresponding distributions from the three
Monte Carlo sources normalized to (n;), (n,), and (ns),
respectively, for My = 400 GeV/c?, are shown in Fig. 1.
There is no significant deviation from the standard-model
prediction. Similar agreement is observed for other
choices of resonance mass.

In the absence of a signal, we proceed to set upper
limits on the product of the production cross section of X
and branching fraction to ff, oxB, by expressing n; =
A LoxB in Eq. (2), where A is the acceptance for X —
1t events and L is the integrated luminosity. Integrating
over n, and ns, we define for every My the upper limit on
oxB at the 95% confidence level as

(oxB)os
f P(oyB, My|D)d(oxB) = 0.95.  (6)

0

The expected shapes of distributions for background and
signal, and the acceptance for signal, are subject to sev-
eral sources of systematic uncertainty. The uncertainty
due to the jet-energy scale is estimated by rescaling the
jet energies by *£(2.5% + 0.5 GeV) [6] before applying
any selections to the signal Monte Carlo events. For the
contribution from ISR/FSR, we compare the acceptance
for the signal with and without ISR/FSR (in PYTHIA). For
the uncertainty from the choice of parton distribution
functions, we compare the signal acceptance for the two

TABLE III. The fractional uncertainty in the product AL
from different sources, for My = 400 GeV/c2.

MC statistics 3.3%
Trigger efficiency 3.6%
e/ u identification 3.8%
Luminosity 4.3%
Jet energy scale 7.4%
ISR/FSR 16.0%
Parton distribution functions 15.0%
Total 24.3%
221801-5



VOLUME 92, NUMBER 22 PHYSICAL

REVIEW LETTERS

week ending
4 JUNE 2004

10 1 — Leptophobic topcolor X
with Iy = 0.012M,
@® D 95% C.L. upper limit

10 T T T T v T v T r
400 450 500 550 600 650 700 750 800 850
My (GeV/c?)
FIG. 2. The 95% C.L. upper limit on oxB as a function of
resonance mass My. Included for reference is the oyB pre-

dicted by the top-color-assisted technicolor model for a width
I'y =0.012My.

parton distribution sets CTEQ3M and GRV94L [15]. We
also consider the uncertainties in trigger efficiency, lepton
identification, and integrated luminosity. All the sources
of statistical and systematic uncertainty in the product
A L are listed in Table III for My = 400 GeV/c? [10].
For each My, we convolute the posterior probability den-
sity P(oxB, Mx|D) with a Gaussian prior for A L, with
the estimated value of A L as the mean of the Gaussian
and its uncertainty as 1 standard deviation from the mean.
The upper limits on oxB at the 95% confidence level
obtained using (6), and integrating over A L, vary be-
tween 5.0 pb at My = 400 GeV/c? and 1.5 pb at My =
850 GeV/cz, as shown in Fig. 2. These limits are valid as
long as the width of the resonance, I'y, is reasonably small
compared to the D@ detector resolution. Also plotted in
Fig. 2 is the theoretical prediction for oxB for a lepto-
phobic top color of width I'y = 0.012My [10], which we
use to exclude at the 95% C.L. the existence of the
leptophobic Z' boson with mass My < 560 GeV/c?, for
a width I'y = 0.012My.

In conclusion, after investigating 130 pb~! of data, we
find no statistically significant evidence for a narrow #f
resonance at m, = 175 GeV/c?, and establish upper lim-
its on oyB at the 95% C.L. for My between 400 and
850 GeV/c2. We also exclude at the 95% C.L. the exis-
tence of a leptophobic Z' boson with mass My <
560 GeV/c?, for a width 'y = 0.012M .
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