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Abstract The accuracy of molecular mechanics force fields (FF) reveals critical for
applications where precise molecular structures along a conformational sampling are
required, as in the simulation of electronic spectroscopies. This implies abandoning
generalized FFs in favor of specific FFs, with non-transferable parameters able to
accurately describe the targeted species. A promising strategy in this direction con-
sists in the so-called quantum mechanically derived FFs, in which the parameters are
fitted onto reference data computed through quantum chemistry. However, in order
to obtain a global set of parameters able to reliably describe the reference potential
energy surface in different regions of the conformational space, the complexity of
the analytical expressions of the FF becomes crucial. Regarding intramolecular in-
teractions, the functional form of standard transferable FFs is restricted to terms that
depend on only one internal coordinate. It will be shown that such models may reveal
insufficient to describe systems as polyenic chains, where complex electronic effects,
e.g. conjugation, intrinsically couple different ICs. We propose a functional form for
intramolecular FFs, which includes explicit couplings between flexible dihedrals and
stiff ICs (bonds and angles), being able to properly describe the geometrical changes
arising not only from steric interactions, but also from conjugation effects, i.e. the
change of bond orders induced by conformational changes. The parameterization of
the coupled FFs is carried out by means of automated and efficient computational
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protocols, purposely developed in the present work. All procedures are tested and
validated by generating FFs for the two smallest compounds in the polyenic series
(butadiene and hexatriene).
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1 Introduction

The most reliable theoretical framework to investigate energy landscapes of atoms
and molecules is certainly quantum mechanics (QM). Yet, the computational cost of
accurate QM calculations dramatically increases along with the dimensions of the
investigated system, and even the cheapest QM techniques, as those based on density
functional theory (DFT), rapidly become infeasible when wider portions of the sur-
rounding environment and their dynamics are included in the model. In many cases,
a popular solution to circumvent this problem is to resort to classical molecular me-
chanics (MM), and explore the phase space of the target system through Monte Carlo
(MC) or molecular dynamics (MD) methods.1, 2 In such techniques the electron cloud
is not explicitly included in the model and its effects are taken into account in a effec-
tive manner, considering the ground electronic state. This drastic approximation may
undermine the quality of the energy landscape when strong electronic rearrangements
occur as a consequence of nuclear geometry distortions, precluding for instance an
accurate prediction of most spectroscopic observables.

In the past years, many protocols aimed to combine classical and QM techniques
to investigate the spectroscopic behavior of complex systems have been proposed.3

One possibility is to treat the different regions of the system (e.g.the chromophore,
the first neighbor shell, interacting surfaces or substrates, solvent, etc.) at different
level of theory, considering their different impact on the spectrum. Such QM/MM
integrated strategies can play a significant role in unraveling different contributions
to the inherent complexity of large system’s spectra. One other possibility is to adopt
MD simulations to sample the configurational space of the whole investigated system
along its dynamics, and successively employ the extracted snapshots in QM calcula-
tions to retrieve the desired spectra. It is though evident that a key ingredient for the
success of such strategies is the accuracy of the MM description, and in particular its
capability of delivering reliable molecular geometries of both the chromophore and
its embedding.

In classical numerical simulations, the accuracy of the results essentially relies in
the parameters and complexity of the adopted force field (FF),1, 2, 4 which describes
the total energy of the system through a collection of analytical functions of the nu-
clear coordinates. Each FF can be further partitioned in an intramolecular term, which
rules the flexibility of each molecule, and in an intermolecular one, which deals with
the interaction energy between two or more molecules. Within the frame of compu-
tational spectroscopy, since it governs the chromophore internal dynamics, it is the
intramolecular FF that certainly plays the most relevant role, and will be the subject
of the present work. The vast majority of MD simulations are carried out with empir-
ical FFs,4–10 parameterized towards experimental and/or quantum mechanical (QM)
data for a defined set of similar molecules. On the one hand, this strategy allows
for transferable parameters, which can be promptly adopted to describe molecular
targets outside the training set (but possibly with similar chemical features). On the
other hand, only a coarse description of the internal molecular structure can be ob-
tained,11, 12 because the same parameters are designed to describe in average a class
of compounds rather than a specific molecule. As also recently pointed out by Jor-
gensen’s group,13 a complementary strategy can be followed,14–17 based on aban-
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doning the advantages of transferability in favor of a parameterization specifically
tailored on the target molecule, which allows for higher accuracy. In this framework,
the bridging role of classical simulations between the QM microscopic description
and the macroscopic observables of complex systems can be recovered, provided
the FF is able to mimic the quantum description with high accuracy. Such specific
and accurate FFs, sometime termed as quantum mechanically derived FFs (QMD-
FFs),15, 17 are attracting a growing attention, as testified by the several different pa-
rameterization strategies reported in the past decade.15, 18–25 Among other QMD-FFs,
the JOYCE parameterization procedure was proposed by some of us,15 and success-
fully applied in several fields,26–33 including computational spectroscopy.11, 12, 34–38

As recently pointed out in Ref 12, despite a good adherence to the overall QM de-
scription, the main lack of JOYCE’s standard approach is the description of the highly
delocalized normal modes, which arise from the combination of two or more internal
coordinates (ICs).

As a matter of fact, one of the main limitations of standard intramolecular trans-
ferable FFs arises from the adopted functional form. Indeed, it is well known15, 39–42

that FFs aiming to spectroscopic accuracy require rather complex analytical expres-
sions and/or the inclusion of coupling terms as in the so called Class II FFs.42 This
is in contrast with the majority of the standard FFs, which include terms involving a
single ”bonded” coordinate (i.e. a bond, angle or dihedral, described as an harmonic
function or a Fourier-like series) and, additionally, non-bonded contributions (de-
scribed through Lennard-Jones (LJ) and Coulomb expressions) between a number of
atom pairs, not directly connected by neither a covalent bond nor a valence angle. In
such models, these non-bonded terms are capable of create indirect couplings among
all the ”bonded” ICs that are close to the interacting atom pair. If energy landscapes
are properly parameterized, this strategy can be quite successful to account for steric
effects, e.g. the repulsion between different parts of the molecule that might come too
close in distorted geometries. However, the parameterization of non-bonded terms is
not straightforward and, moreover, in some situations the coupling is due to a change
of the electronic structure resulting from the displacement of one internal coordinate,
and cannot be properly described with simple non-bonded terms.12 A paradigmatic
situation where the use of non-bonded terms is not able to properly reproduce the
quantum mechanical behavior is the geometric distortion in a polyenic chain, when
the dihedral angles defined along the chain are displaced. Concretely, as a dihedral
angle moves away from planar conformations, the effective conjugation is modified,
and the central bond changes its bond order with a consequent change of its length.
In order to properly account for these effects, additional intramolecular terms should
be included, to explicitly take into account the coupling between the dihedral and the
central bond length.

In this paper a popular FF (GAFF7), and a set of intramolecular FFs of increasing
complexity, all derived by the JOYCE code,15, 21 will be employed to investigate the
flexibility and conformational behavior of the smallest prototypes of polyenic chains,
namely the 1,3-butadiene (I) and 1,3,5-hexatriene (II) molecules displayed in Figure
1. It will be shown that a high accuracy can only be gained with the most complex
intramolecular FF, obtained including explicit couplings among pairs of ICs. The
algorithm has been purposely implemented in JOYCE for the present work.
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2 Theoretical models

2.1 Force Fields

As previously discussed, a MM FF represents the Potential Energy Surface (PES) as
an analytic function in terms of the nuclear degrees of freedom, which is parame-
terized so as to reproduce the effect of the electronic Hamiltonian. Usually, covalent
bonds are not allowed to be broken (non-reactive FFs), and the contributions to the
potential energy (EFF

tot ) can be partitioned in an intra- (EFF
intra) and in an inter-molecular

(EFF
inter) term:

EFF
tot = EFF

inter +EFF
intra (1)

The first term of equation (1) is generally computed as a sum of LJ and Coulomb
model potentials

EFF
inter =

Nsites

∑
i=1

Nsites

∑
j=1

4εi j

[(
σi j

ri j

)12

−
(

σi j

ri j

)6]
+

Nsites

∑
i=1

Nsites

∑
j=1

qi j

ri j
(2)

where i and j belong to different molecules, Nsites is the total number of interacting
sites and qi j, σi j and εi j are intermolecular parameters which describe the interaction
among molecules. Conversely, EFF

intra accounts for the intramolecular energy, and can
be computed as the sum of the single-molecule contributions (E intra

k ).

EFF
intra =

Nmolecules

∑
k=1

E intra
k (q) (3)

The E intra
k term drives the flexibility of molecule k and consists in a sum of analytical

model potentials, function of a selected set of internal coordinates (ICs) q and is
specified by a set of intramolecular parameters.

Adopting such a partition, intra- and intermolecular parameters can be derived
independently. In this work, we focus on the intramolecular potential of polyenic
chains, which can in principle be complemented with any type of intermolecular
potential.

2.1.1 Uncoupled intramolecular force fields

In the simplest intramolecular FF, each term depends on one IC qi only, and is there-
fore often classified as purely diagonal FF. For bonds and angles, such potential terms
are commonly described with harmonic potentials. Harmonic functions are also ap-
propriate for stiff dihedrals (e.g., describing the torsion around a double bond or im-
proper dihedrals keeping the co-planarity of the residues in an aromatic ring), whereas
flexible dihedrals can be conveniently described by Fourier-like expansions.

E(q) = Estretch +Ebend +ERtors +EFtors (4)
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where

Estretch =
1
2

Nbonds

∑
µ

ks
µ(rµ − r0

µ)
2 (5)

Ebend =
1
2

Nangles

∑
µ

kb
µ(θµ −θ

0
µ)

2 (6)

ERtors =
1
2

NRdihedrals

∑
µ

kt
µ(φµ −φ

0
µ)

2 (7)

and

EFtors =
NFdihedrals

∑
µ

Ncosµ

∑
j=1

kd
jµ
[
1+ cos(nµ

j δµ − γ
µ

j )
]

(8)

Note that in the above equations the label intra and the subscript k have been dropped,
(i.e., E intra

k ≡ E) as it is now obvious that the discussion is focused on the internal
energy of a single molecule. The same notation will be adopted in the following.

2.1.2 Implicit coupling terms: Lennard-Jones and Coulomb

A simple strategy to account for the coupling between different ICs in the potential
is through the inclusion of non-bonded intramolecular potential terms (ENb).

E(q) = Estretch +Ebend +ERtors +EFtors +ENb (9)

where

ENb =
Natoms−1

∑
i=1

Natoms

∑
j=i+1

4ε
intra
i j

[(
σ intra

i j

ri j

)12

−
(

σ intra
i j

ri j

)6]
+

Natoms−1

∑
i=1

Natoms

∑
j=i+1

qintra
i j

ri j
(10)

It is worth noticing that qintra
i j , σ intra

i j and ε intra
i j are intramolecular parameters which

are in general different from the analogs of the intermolecular potential qi j, σi j and
εi j entering equation (2).

The use of implicit coupling terms is a simple yet efficient way to account for
couplings among ICs. Nonetheless, it is nearly impossible to exploit this strategem
to introduce only few selected couplings between pairs of specific ICs. Indeed, even
a single non-bonded term, i.e. defined between only one pair of atoms, often couples
more than two ICs. For this reason, non-bonded intramolecular terms are usually
employed between almost all possible pairs, thus introducing on overall averaged
coupling among all diagonal ICs.
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2.1.3 Explicit couplings terms

A more elegant approach consists instead in introducing a separate coupling term for
each pair of ICs that is thought to be important for the system under study.

E(q) = Estretch +Ebend +ERtors +EFtors +ECoupl (11)

To adopt a more convenient formalism, the expression for a purely diagonal FF,
equation (4), can be re-written as

E(q) =
N f unc

∑
a=1

pa fa(qµ) (12)

where qµ indicates one internal coordinate (qµ ≡ rµ ,θµ ,φµ ,δµ ), while the pa and fa
are respectively the force constant (either ks

µ , kb
µ , etc.) and the diagonal potential func-

tions ([rµ − r0
µ ]

2, [θµ − θ 0
µ ]

2, [1+ cos(n jδµ − γ j)], etc.) assigned to qµ and entering
equations (5)-(8).

Within this formalism, the generalized coupling here proposed consists in a sum
of NCoupl pairwise linear coupling terms, defined as the product between two func-
tions, f and g, each depending only on one of the coupled ICs (e.g. qµ or qν , respec-
tively):

ECoupl =

NCoupl

∑
a

pa fa(qµ)ga(qν) (13)

For the sake of clarity, it might be convenient to describe in more detail the effect
of such couplings on the involved ICs. If one for instance focuses only on the coupling
between a specific dihedral angle δν and a neighboring IC qµ (e.g. a bond rµ or and
angle θµ ), equation (13) simplifies to

ECoupl ≡ ECoupl(qµ ,δν) = (qµ −qc
µ)G(δν) (14)

where G(δν) is a function depending only on the dihedral δν . Considering only the
subspace [qµ ,δν ], taking the uncoupled terms depending on qµ as harmonic, the FF
of such a reduced system is given by,

E(qµ ,δν) =
1
2

kharm(qµ −q0
µ)

2 +Etors(δν)+(qµ −qc
µ)G(δν) (15)

where Etors(δν), i.e. the diagonal term acting on the dihedral, stands for either ex-
pression (7) or (8). It is apparent that such a coupling induces a modification of the
equilibrium values of qµ upon changes of the dihedral angle δν . Concretely, taking
the minimum of the potential with respect to qν at its equilibrium value (qm

µ ), i.e.,
∂E
∂qµ

∣∣∣
qµ=qm

µ

= 0, implies that qm
µ is shifted with respect to q0

µ :

qm
µ (δν) = q0

µ +
G(δν)

kharm (16)
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2.1.4 Functional form of G(δ )

Equation (16) implies that the equilibrium value of qµ in terms of the dihedral angle
δν is dictated by the shape of G(δν). Therefore, it should be flexible enough so as
to reproduce the actual reference profiles obtained by QM calculations. In this sense,
a Fourier series can provide the required flexibility. Moreover, the functional form
should fulfill some additional requisites, such as ensuring that all terms of the series
have the same parity as the reference data. Additionally, each term of the series should
present a critical point (minima) at the global minima of the function, so to preserve
the equilibrium structure. Both these requisites can be verified using the following
functional form,

G(δ ) = ∑
i

kc
i [1+ sin(niδ − γ

c
i )] (17)

The parity and location of the critical points depend on the choice of γc
i . Con-

cretely, its value should be γc
i = δ 0± 90◦ in order to preserve the even parity of the

qm
µ (δν) profile. More specifically, when the energy profiles with minima at 180◦ (trans)

obtained around torsions of single bonds in polyenic chains are considered, the ade-
quate values of γc (i.e. ensuring that the equilibrium structure is preserved for each
term) are -90◦ and and 90◦ , for odd values and even values of ni, respectively.

2.2 Parameterization of the Force Field

2.2.1 Uncoupled FF and implicit couplings

The totally uncoupled FF is derived using the JOYCE program, following the usual
2-step protocol.12, 15, 21 In the first step all harmonic terms are parameterized with re-
spect to the QM Hessian at the global equilibrium structure, assigning the reference
harmonic coordinates to the equilibrium ones. In the second step, the flexible dihe-
drals are parameterized according to the QM energy at different conformations along
the relaxed scan around the torsion associated to the dihedral, adopting the Frozen
Internal Rotation Approximation15 (FIRA) to avoid additional perturbations due to
the neglected couplings.

An additional step can be performed, introducing the implicit coupling terms (LJ),
that are fitted against the energies obtained at each conformation along the relaxed
scan and the gradients along a rigid scan (i.e., varying the value of the dihedral, while
keeping the rest of internal coordinates at the equilibrium values in the minimum
energy structure).

Finally, it is interesting to use a more general set of parameters for compari-
son. Concretely, we used GAFF7 parameters, using antechamber through the acpype
parser43 to set all the parameters for the non-bonded terms (intramolecular LJ from
GAFF and Coulomb with bcc-am1 model) and flexible dihedral potentials. For a more
fair comparison, within the GAFF harmonic potentials, only the force constants were
transferred form the original GAFF values, while the equilibrium harmonic coordi-
nates are specifically taken from the reference QM optimized geometry.
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2.2.2 Explicit couplings: direct fitting against equilibrium values, qm
µ

The most straightforward procedure to parameterize the coupling terms involves the
direct fitting of the function qm

µ (δν)− q0
µ defined from equation (16), where the

database, qm
µ , is built with the equilibrium values obtained from a relaxed scan of the

dihedral angle (i.e. when the torsion is kept frozen at selected values of the dihedral,
while the rest of the structure is minimized). Adopting the form of G(δ ) indicated in
Eq. (17), the target function is thus

qm
µ (δν)−q0

µ = ∑
i

kc
i

kharm [1+ sin(niδν − γ
c
i )] (18)

The expansion is done from ni = 1 to ni = 6, taking the values of γc
i = ±90◦ as

discussed above. The coefficients to be fitted are kc
i

kharm , thus in order to obtain the
value of the coupling force constant, kc

i , the harmonic force constant, kharm, needs
to be provided. The latter is obtained from the uncoupled FF , previously obtained
through JOYCE, on top of which the couplings are added. Moreover, the complete
expression of the coupling potential, equation (13), also includes a zero order term
with respect to the rigid coordinate (qc

µ ) that does not appear in the target function
(18). One must impose a sensible value which, even though should not affect the
equilibrium value of the harmonic coordinate, may impact on the energetics of the
flexible dihedral. We use the same zero order term used in the harmonic potential, i.e.,
qc

µ = q0
µ , which is the equilibrium value for this coordinate. This choice guarantees

that the coupling will be small for values of the harmonic coordinate close to one in
the equilibrium geometry.

2.2.3 Explicit couplings: global fitting based on the whole PES (JOYCE)

The direct fitting described in the previous section is, by definition, able to accurately
reproduce the reference profiles qm

µ vs. δ (as these constitute the fitting database).
However, it does not provide a route to build a complete FF (note that the harmonic
values should be provided externally) and, in more general grounds, the independent
fitting for each term of the potential would lack any cross-effect between the coupling
terms. In this sense, a methodology where all FF parameters, including uncoupled and
both implicit and explicit couplings, are fitted altogether provides a more consistent
parameterization. In this work, such parameterization is performed using the features
of the QM intramolecular PES, i.e. energy, gradient and Hessian, at different con-
formations, following the procedure introduced some years ago by some of us15 and
herein refined and implemented in the JOYCE program. Briefly, the fitting involves
the minimization of the following general objective function,

I = ∑
g

Ig (19)

where the sum run over all geometries considered. For each geometry g, the func-
tional take the form,

Ig = IE
g + IG

g + IH
g (20)
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with

IE
g =Wg

[
∆Ug−EFF

g
]2

(21)

IG
g =

3N−6

∑
K

W ′gK

3N−6

[
GgK−

(
∂ 2EFF

∂QK

)
g

]2

(22)

and

IH
g =

3N−6

∑
K≤L

2W ′′KL
(3N−6)(3N−5)

[
HgKL−

(
∂ 2EFF

∂QK∂QL

)
g

]2

(23)

In the above equations the indices in the sums (K,L) run over 3N − 6 orthogonal
vibrational coordinates, ∆Ug is the potential energy relative to the absolute minimum
evaluated with the QM method, GgK is its first derivative with respect to the K-th
vibrational coordinate (QK), and HgKL is the second derivative (i.e. a QM Hessian
matrix element), with respect to QK and QL. The FF energy is indicated as EFF

as introduced above. Each term of the sum reports the deviation between different
descriptors of the PES computed either with a suitable reference QM method and the
target FF, weighting each term with Wg (energies), W ′gK (first derivatives) and W ′′gKL
(second derivatives). In practice, not all terms are used at each geometry: for instance,
the second derivatives terms are here only evaluated at the equilibrium structure.

The minimization of the objective function (19) allows for fitting the linear terms
in the potential, i.e., the force constants associated to each potential term, while for
the non-linear parameters sensible values should be given. In the case of uncouple
terms, the equilibrium values associated to the harmonic terms, q0

µ , can be assigned
to the values in the equilibrium structure, while γ values in flexible torsions can be
also derived from the equilibrium geometry imposing that both the function and its
first derivative vanish. As for the coupling terms, the considerations discussed in Sec-
tion 2.1.4 provide a rationale to select the value of γc (±90◦ in our case). As indicated
in Eq. 16, the zero-order term should not influence the constrained equilibrium value
of the harmonic coordinate, qm

µ . However, such term indirectly affects the FF gradi-
ents, which are used in the fitting procedure. Consequently, its choice may have a
remarkable impact on the performance of the fitting algorithm used by JOYCE (mini-
mization of the merit function), and the actual fitted parameters may vary depending
on the selected value. In practice, the choice of qm

µ , which by default is set to the
equilibrium one value, q0

µ , can actually be used in order to tune the fitting.
The fitting with JOYCE is performed following a 3-step procedure , outlined as

follows:

1. As done for the uncoupled FF, only the harmonic terms are fitted against the
Hessian at the equilibrium geometry.

2. The couplings with bond lengths are added together with the uncoupled terms
related to the flexible dihedrals, and they are fitted simultaneously against the
energies along the relaxed scan and the gradients along the rigid scan related to
the flexible torsions.
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3. The couplings between flexible dihedrals and angles are fitted against the same
reference data as in Step 2, but keeping the rest of the parameters fixed at their
already derived values. In this last step, it was found that in order to obtain a
reasonable fitting, the value of qc

µ corresponding to the angle should be slightly
increased with respect to the equilibrium value, i.e., θ c

µ = θ 0
µ +∆ c, where ∆ c ≈ 1◦

turned out to be adequate.

3 Computational Details

Quantum mechanical (QM) data (energy, gradient and Hessian) were computed at
DFT level as implemented in Gaussian09 program.44 We adopted the M06 func-
tional45 along with the 6-31G(d) basis set. In the present context the quality of the
method is not critical for our application, since the only role of QM calculations is
to provide a set of reference data. In principle, the fitting procedures can be applied
to QM data obtained at any theoretical level. The Hessian is computed at the global
energy minimum (trans conformer). Further conformations are generated by rotating
the flexible dihedral angles while the remaining ICs are either kept frozen (rigid scan)
or optimized (relaxed scan). The gradient is evaluated at each point of the rigid scan.

Molecular mechanics (MM) calculations, used to validate the generated FFs, are
performed with a modified version of Gromacs 4.5.546 that implements the cou-
pling functions introduced in section 2.1.3. The developed parametrization method
has been included in the JOYCE package.

4 Results

In this work we aim at providing accurate FFs for polyenic chains, which account
not only for the conjugation effects (which result in different lengths of C−C bonds,
depending on their position within the chain) but also on the more intricate geomet-
rical variations associated to the torsion around the C−C bond itself. In order to
deeply investigate such effects, we here focus on the two smaller members of the
polyenic chain series namely 1,3-butadiene (I) and 1,3,5-hexatriene (II), which are
respectively characterized by one and two torsional ICs (δ and δ1/2, see Figure 1),
and whose flexibility induces significant changes in the conjugation length.

Fig. 1 Structure of 1,3-butadiene (I) and 1,3,5-hexatriene (II), including the labeling of the carbon atoms
used in the text. The principal dihedrals δ , δ1 and δ2 connected with the torsional flexibility is evidenced
with a red arrow.
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4.1 1,3-butadiene

4.1.1 QM features

We first focus on compound I, which constitutes the smallest polyenic prototype
where conjugation effects are present and can be modulated by the torsion of the
central C−C bond. The potential energy and some selected key structural parame-
ters (C−C bond lengths and ̂C−C−C valence angles) were obtained by a relaxed
energy scan around δ (see Figure 1) and monitored as a function of such dihedral in
Figure 2. Reference QM results, display an energetic profile with a global minimum
at δ = 180◦ (trans conformer) and two additional local minima at δ ∼ ±30◦, which
are 12 kJ/mol above the global minimum. The highest energy barriers (∼ 30 kJ/mol)
are located at δ =±90◦, while at δ = 0◦ (cis conformer) there is a small barrier con-
necting the two local minima at ±30◦. Such profile can be rationalized in terms of
two main effects: i) the changes in the conjugation patterns and ii) the steric effects
that arise as parts of the molecule get closer upon rotation of the main dihedral δ .
On the one hand, the conjugation length indicates the extent of the conjugation of
adjacent double bonds, which significantly depends on their coplanarity: the more
coplanar they are, the larger is the conjugation length. This in turn leads to a more
localized electronic density, thus reducing the energy of the system. If one accounts
for this effect only, the most favorable conformations would be cis and trans. On the
other hand, steric effects will prevent that during the torsion two atoms might get too
close, as could happen in the cis conformation. Indeed, when δ=0◦, the external CH2
groups are constrained at a relatively short distance, and the consequent repulsive
contribution increases the potential energy in this conformation.

The profile of the geometrical parameters can also be rationalized as an inter-
play between conjugation and steric encumbrance. In the case of the central bond
(R2−3), the minimum length is reached in the trans conformation, where the con-
jugation between the two double bonds increases the R2−3 effective bond order. As
the conjugation is broken upon rotation of the δ dihedral, the bond order decreases
and the R2−3 bond length increases, reaching its maximum at ±90◦. In the vicinity
of the cis conformation, the equilibrium bond length, intermediate between the val-
ues reached at 0◦ and ±90◦, results from the delicate balance between the increased
conjugation and the repulsion of the CH2 groups. The behavior of the external bonds
(R1−2) is clearly the opposite: as the conjugation increase, its double bond character
decreases and the bond length reaches its maximum value for coplanar chains, i.e., in
the cis and trans conformations. Finally, regarding the valence angle, its value seems
not significantly affected by the conjugation of double bonds and its profile is mainly
a result of steric effects: the angle drastically increases in the region around the cis
conformation, pushed toward larger values by the repulsion between the CH2 groups.

4.1.2 MM models

The first attempted FF parameterization was carried out employing the most simple
FF expression, namely the uncoupled FF (FF0) provided by equation (4). Explicit
or implicit coupling terms will be successively introduced on top of this model. FF0
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was obtained through the JOYCE code, making use of the QM Hessian matrix in the
equilibrium geometries and the relaxed QM energies, i.e.including in equation (19)
only the terms given by (23) and (21). By looking at the results displayed with blue
lines in Figure 2, it appears that FF0 is able to accurately reproduce the QM relaxed
energies upon δ rotation (top panel), but fails in reproducing the variations of the
equilibrium values of the monitored structural parameters (lower panels). This was
not unexpected, since this behavior arises from the coupling between the torsion with
the other investigated ICs, which is missing by construction in the purely diagonal
FF0 model. In fact, it is evident that all the monitored ICs do not depend on the
scanned δ coordinate.

The next step is to account for the coupling between different ICs by including
it implicitly, through the standard LJ and Coulomb potentials appearing in equation
(9). In this case, two sets of FFs were prepared, differing in the parameters entering
in their expression: the widely used GAFF description (herein labeled FFG), which
includes both LJ and Coulomb terms, and the FFJLJ force field, built through the
JOYCE program by fitting LJ potentials on top of the previously obtained FF0. At
difference with FF0, FFJLJ was obtained including in the JOYCE objective function
(19) the term specified by equation (22): beside the equilibrium Hessian matrix and
the previous relaxed torsional energy scan, the FF parameters were fitted also against
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QM energy gradients, obtained by a purposely computed rigid energy scan of the
δ dihedral. The results obtained with both these FFs are displayed in Figure 2 with
cyan and green lines, respectively. The first noticeable feature is that the empirical
FFG force field is significantly less accurate than the other tested FFs in reproducing
the QM reference energetic profile, notwithstanding the harmonic equilibrium bond
lengths and angles were taken from the optimized QM geometry. On the contrary,
FFJLJ quantitatively reproduces the QM data, as the energetic profile is not affected
by the inclusion of the LJ terms. This is a direct consequence of the adopted proto-
col, since the QM energy profile is indeed one of the targets of both FF0 and FFJLJ
JOYCE fitting. Turning to the monitored structural parameters (i.e. equilibrium bond
lengths and angle), it is evident that neither the GAFF model nor FFJLJ are able to re-
trieve a very accurate geometry along the relaxed scan. In the first case, where both LJ
and Coulomb terms are included, the changes in bond length are not properly repro-
duced, as their variation during the δ rotation is negligible. Conversely, it adequately
describes the variations of the monitored angle, being in good agreement with the ref-
erence one. The FFJLJ shows rather similar results: for both bond lengths, LJ terms
are not able to reproduce the reference profiles, while in the case of the angle, the
general trend, i.e a rapid increase around the cis geometry, is qualitatively observed,
although FFJLJ is does not provide a quantitative agreement. In global, these results
indicate that implicit coupling terms as LJ or charge-charge interactions, are able to
account for steric repulsion (main responsible of the changes in the angle), but they
completely fail at accounting for the effects related to the conjugation length.

A further refinement of the FFs tested so far involves the explicit inclusion of
the coupling between two ICs through the additional terms appearing in equation
(11). With this aim, two different sets of FF parameters were derived from the pre-
viously computed QM data. The first set was obtained on top of FF0, by directly
fitting equation (16), with respect to the QM equilibrium values of the harmonic co-
ordinates along the relaxed scan. Since this fitting was performed with an ”in house”
code, external to the JOYCE package, the resulting FF was labeled FFEc. The sec-
ond set of FF parameters, named FFJc, was obtained through the JOYCE code, using
equation (11) for the intramolecular potential terms, and fitted over the usual QM
database (i.e. Hessian, relaxed energies and gradients from the rigid scan). By look-
ing at Figure 2, it is evident that the QM torsional profile is very well reproduced
for both sets of parameters. In the FFJc case, this is not surprising, since the relaxed
energies are included in the reference QM database. The good agreement found for
FFEc may seem conversely somewhat more unexpected. Yet, it should be reminded
that the FFEc force-field differs from FF0 only for the ECoupl term in equation (11),
whereas all the parameters defining the other potential terms were not fitted, and are
therefore unchanged with respect to the uncoupled FF. Since in the top panel of Fig-
ure 2 the FFEc and FFJc are practically superimposed, it can be concluded that the
importance of the coupling terms in the total energy is only marginal. Turning to the
geometrical values, it can be observed that both strategies are able to nicely repro-
duce the QM variation of the bond length along the relaxed scan. It is worth noticing
that while such a good agreement had to be expected for FFEc, where the QM geo-
metrical equilibrium values were the target of the external fitting, the results obtained
with FFJc indicate that the inclusion of the gradients in the QM database is able to
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properly predict the equilibrium structure consistent with such gradients. From a dif-
ferent point of view, both FFEc and FFJc results suggest that a functional form for
ECoupl like the one here proposed and shown in equations (13), (14) and (17) is able
to reproduce the purely electronic effect related with the variations of the conjugation
length. Finally, as far as the variation of the bending angle is concerned the agree-
ment is slightly worse in the case of the external fitting, which may indicate that the
coupling between other pairs of internal coordinates may be involved. A somewhat
better agreement results for the FFJc force field, where the parameterization of the
coupling term between the backbone bending angle and the δ dihedral required the
tuning of the θ c parameter (see equation 14) ), which was set 1◦ above θ 0.

4.2 1,3,5-hexatriene

A slightly more complex model can be found in compound II, because 1,3,5-hexatriene
includes two rotable C−C bonds, namely C2−C3 and C4−C5 (see δ1 and δ2 in Fig-
ure 1). The QM relaxed torsional energy profile, associated with one of the possible
rotations is displayed in Figure 4. The energy curve is very similar to the one com-
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Fig. 3 Changes in the equilibrium bond lengths (R1 - R4) obtained in the constraint minima generated
from a relaxed scan around the torsion of the R2 bond.

puted for I and it can find a very similar rationale, in terms of conjugation and steric
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effects. The most relevant difference between the two compounds is that the five dif-
ferent C−C bond length and four ̂C−C−C angles can be affected by the rotation of
either δ1 or δ2 dihedrals. Since the effect over an IC is expected to be modulated by
its distance from the scanned dihedral, the investigated ICs are labeled increasingly
starting from the edge closer to the rotated bond. Concretely, assuming that the ro-
tation takes place around the C2−C3 bond, we labeled the monitored bonds as R1
(C1 = C2), R2 (C2−C3), R3 (C3 = C4), R4 (C4−C5), R5 (C5−C6) and the angles
as θ1 ( ̂C1 = C2−C3), θ2 ( ̂C2−C3 = C4), θ3 ( ̂C3 = C4−C5) and θ4 ( ̂C4−C5 = C6).
Moreover, the analysis of the reference data indicate that the most distant coordinates
from the rotation are hardly affected and the profiles for coordinates R5 and θ4 (which
are nearly flat) are not included in Figures 3 and 4.
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Fig. 4 Changes in the relative potential energy (∆E) and equilibrium valence angles (θ1-θ3), obtained in
the constrained minima generated from a relaxed scan around the torsion of R2 the bond, described by the
dihedral δ1.

In keeping with the analysis for butadiene, we now describe the variations in ge-
ometrical parameters along the relaxed scan, evaluated with different FFs. It is worth
mentioning that each FF was specifically re-parameterized over the QM data obtained
for compound II. Nonetheless, since each label refers to the fitting protocol more
than to the values of each parameter set, to ease the discussion and the comparison
between the two compounds the same FF labels employed for butadiene were em-
ployed for hexatriene. As expected, when the uncoupled FF0 is used, all geometrical
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Fig. 5 Torsional energy profiles (∆E, kJ/mol) at different constrained minima, characterized by fixing the
value of both flexible dihedrals δ1 and δ2, computed with the reference QM method (Ref, first column), and
with the two FFs that include explicit couplings: FFJc and FFEc (second and third column, respectively.

parameters remain constant along the scan. As in the case of butadiene, the use of the
implicit coupling model with GAFF leads to an incorrect estimation of the changes
observed in the bond lengths in the QM reference, while the change in the angles
(mainly related to steric effects) is reproduced with a reasonable agreement. Again,
the use of explicit coupling terms (FFEc and FFJc), provides a way to include the
right behavior of the bond length along the relaxed scan. As commented above, the
effect on the bond length is reduced as the bonds involved are more distant from the
rotated bond and, in the case of FFJc explicit couplings are only considered between
the torsion and R1, R2 and R3.

The results in Figures 3 and 4 refer to mono-dimensional scans, obtained by vary-
ing only one dihedral and allowing the other one to relax. Hexatriene, however, has
two rotable dihedrals, and it is interesting to investigate up to what extent the parame-
terization performed using the mono-dimensional scans as database is able to provide
accurate parameters to describe the effective two-dimensional PES. With this aim fur-
ther QM calculation were performed, constraining the two dihedrals over a defined
grid, and optimizing the rest of the molecule’s ICs. Next, the variation of bond lengths
along the 2D relaxed scans was monitored using the QM reference method and the
two FF with explicit couplings (FFJc and FFEc). All results are displayed in Figures
5 and 6. In Figure 5, we first report the energy landscapes. Interestingly, both cou-
pled FFs are able to capture the main features of the reference bi-dimensional plot.
More in detail, JOYCE parameterization provides results in better agreement with
the reference one, which seems to indicate that a global fitting of all terms in the FF
provides a more consistent parameterization, when the number of relevant couplings
is increased. Regarding the variation of the bond lengths, displayed in Figure 6, again
both FFs are able to reproduce the main trends observed within the reference QM
values. In this case, the coupling between the two dihedrals is more evident. It should
be noticed that the bond labeled R1 corresponds to the bond closer to the rotated one
taking δ1 as reference, but it corresponds to R5 with respect to a rotation of δ2. Since
the coupling between the dihedral and R5 was not included in the global fitting, this
explains why its effect is completely absent when using FFJc. The changes in this
case are however rather limited and the neglection of the coupling would not result
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in significant errors along a simulation. Turning to R2, it becomes R4 with respect
to δ2. The primary effect is again the one due to the displacements in δ1, which is
the torsion defined around R2. Here the trends of the cross couplings are well repro-
duced with both FFs, and a similar behavior is observed for R3 (which maintains the
same label with respect to both dihedrals). In all cases, FFJc deviates more from the
QM reference in the conformations where one of the angles (or both) is close to 90◦,
which correspond to unstable repulsive conformations.

Finally, it is interesting to compare how analogous coupling constants vary be-
tween the two compounds, as this provides information about the transferability of
these parameters. In Table 1, we show the values corresponding to the coupling be-
tween the dihedral angle and the central C-C bond, including the results correspond-

Fig. 6 Changes in bond lengths (R1, R2 and R3, all in Å, in the first, second and third row, respectively) at
different constrained minima, characterized by fixing the value of both flexible dihedrals, δ1 and δ2, com-
puted with the reference QM method (Ref, first column), and the two FF that include explicit couplings:
FFJc and FFEc (second and third column).
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Table 1 Coupling force constants, kc
i [kJ (mol nm)−1], corresponding to the coupling between a dihe-

dral angle and the central single bond, computed for both butadiene and hexatriene with FFJc and FFEc
strategies.

FFJc FFEc
i Butadiene Hexatriene Butadiene Hexatriene
1 -75.37 -73.63 -91.09 -85.61
2 -264.88 -336.61 -264.58 -325.98
3 -97.45 -81.89 -110.98 -92.63
4 12.62 7.99 52.50 63.33
5 -21.04 -30.25 24.84 24.07
6 -0.45 -0.29 1.72 -4.11

ing to both FFJc and FFEc force fields. We first focus on the results obtained with
FFJc, and compare the coupling constants (kc

i , i = 1−6) obtained for butadiene and
hexatriene. From a qualitative level, the same general trend is observed regarding
the relative values of each order of the Fourier series: in both molecules the largest
value is obtained for i = 2, and the sign of the force constant for each order is the
same. A closer inspection of the quantitative values reveals however significant dif-
ferences between the two molecules. For instance, the major coefficient (kc

2) changes
from ∼ −265 kJ/(molnm) in butadiene to ∼ −337 kJ/(molnm) in hexatriene, i.e., it
undergoes an increase (in absolute value) of ∼ 26%. Similar effects are observed
with FFEc. Interestingly, the relative changes on each term of the Fourier series are
in the same direction in both cases and, for instance, kc

2 increases in FFEc by∼ 23%.
Turning to the C=C bonds adjacent to the torsion, the corresponding force constants
are shown in Table 2. Note that for hexatriene the two adjacent C=C bonds are not
equivalent and they are marked as outer (R1) and inner (R3). In this case, the relative
values between the terms along the Fourier series also follows the same trend for both
molecules (and in the case of hexatriene, also for both outer and inter bonds), with all
terms of the same order having the same sign. Nevertheless, at a quantitative level,
also in this case the variations between both molecules, and even between the non
equivalent C=C bonds in hexatriene, are non-negligible. After analyzing the values
reported in Tables 1 and 2, the general message is that even though some degree of
transferability is observed, it would be more convenient to carry out the parameter-
ization of the couplings for new molecules if we aim at high accuracy. In any case,
guessed sets of parameters based on the ones computed for butadiene and hexatriene,
may be adequate to account for the conjugation effect in larger polyenic chains at a
qualitative level.

5 Conclusions

In this contribution we have investigated the effect of explicit coupling terms added
to standard intramolecular force fields, in which only diagonal functions (i.e, depend-
ing on one IC) are considered. Concretely, we take into account the coupling between
two ICs, where one of them is flexible, such as some molecular torsions, and the other
one is stiff, including either stretching of bending degrees of freedom. Such coupling
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Table 2 Coupling force constants, kc
i [kJ (mol nm)−1], corresponding to the coupling between a dihedral

angle and the adjacent double bonds, computed for both butadiene and hexatriene with FFJc and FFEc
strategies. In the case of hexatriene, two possible adjacent double bonds are possible, either outer or inner,
with respect to the polyenic chain.

FFJc FFEc
i Butadiene Hexatriene Butadiene Hexatriene

(outer) (inner) (outer) (inner)
1 -18.79 -33.65 -32.07 5.93 2.48 3.38
2 129.91 187.34 159.16 130.00 177.56 143.11
3 40.68 45.63 39.20 14.15 13.17 9.05
4 2.90 2.46 159.16 -23.99 -30.63 -26.79
5 -4.86 -6.46 -6.62 -4.77 -8.62 -7.75
6 -3.40 -4.86 -3.56 4.24 4.97 4.44

terms consist in the product of two functions, each of them depending on one of the
ICs only. The stiff coordinates are described by a harmonic function, while the flex-
ible one can be conveniently represented by Fourier-likes series. Namely, a function
of the form ∑i[1+ sin(niδν − γc

i )], setting γc
i to ±90◦, revealed specially well suited

for our purposes. The resulting coupled FF was indeed found capable of increased
accuracy with respect to diagonal ones. For instance, it is able to describe the change
in the equilibrium geometry of the stiff coordinates at different fixed position of the
flexible one.

Different parameterization strategies have been presented, either involving the
coupled terms only (external fitting) or concerning all terms of the whole FF. In both
cases, FF parameters were derived exclusively based on purposely computed quan-
tum mechanical data. In the case of the external fitting, where each coupling term
is parameterized independently, the QM database consisted in purely geometrical
parameters, such as the profile of the stiff coordinate, along a relaxed scan of the flex-
ible one. As far as the global fitting of the whole FF, is concerned, specific features of
the QM PES as relative energies, gradients and Hessian were employed as reference
database. This choice is indeed the basis of the strategy developed by some of us and
implemented in the code JOYCE,15 which has been here adapted to properly account
for the coupling terms using the same fitting strategy.

In order to investigate the performance of the coupled FFs in practice, we focused
on the two simplest members of the polyenic series: butadiene (with one flexible dihe-
dral) and hexatriene (with two flexible dihedrals). In both cases, the torsion along the
flexible dihedrals perturbs the conjugation along the chain which, in turn, modifies
the equilibrium carbon-carbon bond lengths in the chain. It is indeed a perfect work-
bench to test our protocols and, moreover, they represent minimal models of more
relevant pigments, such as carotenoids, for which the development of coupled FFs is
specially attractive within QM/MM methodologies to investigate their photophysical
properties (e.g., spectroscopy or excitation energy transfer processes).

Our results on butadiene and hexatriene show that conjugation effects dominate
the changes in bond lengths along the relaxed scan of flexible dihedrals, while steric
effects played a major role in determining the changes of CCC angles. While stan-
dard diagonal FFs with the inclusion intramolecular non-bonded terms are only able
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to mimic the latter effect, coupled FFs proved to be able to provide an accurate de-
scription also of changes in the PES due to conjugation effects. Yet, non-bonded
terms are better suited to describe steric effects, and refined strategies may therefore
require a wise combination of both types of terms.

In more general grounds, in this work we showed how the combination of the
flexibility of coupled FFs with automatic parameterization procedures, such as the
ones implemented in JOYCE, provides a promising strategy to obtain accurate molec-
ular mechanics FFs. In this sense, it is worth to note that, although here the focus
was on the conjugation effects, couplings can be inherent to other systems such as
constrained cyclic structures. Actually, the protocols presented in this work do not
assume any a priory specific effect, and the very same methodologies can, in princi-
ple, be used to deal with any other type of system.

As perspective, the strategies presented in this work can be applied to parametrize
relevant polyenic type compounds, such as carotenoids. The resulting FFs would im-
prove the already successful QMD-FFs already developed for this kind of molecules
which, already, can trivially account for the static effects of conjugation, as the change
in bond length along the polyenic chain in the equilibrium structure.12 Coupled FFs
can improve the geometries out of equilibrium, such as the distorted dihedral angles
along the polyenic chain that can arise along MD simulations. These conformations
may be specially relevant within complex biological environments, such as cell mem-
branes47 or photosystems,48 where they can be dictated by the specific interactions
between the pigment and the heterogeneous surroundings.
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