
ar
X

iv
:1

80
6.

09
96

9v
1 

 [
as

tr
o-

ph
.H

E
] 

 2
6 

Ju
n 

20
18

Publications of the Astronomical Society of Australia (PASA)

doi: 10.1017/pas.2018.xxx.

Neutron star properties from optimized chiral nuclear

interactions

Domenico Logoteta1, Ignazio Bombaci2
1INFN, Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
2Dipartimento di Fisica, Universitá di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy

Abstract

We adopt two- and three-body nuclear forces derived at the next-to-next-to-leading-order (N2LO) in the frame-

work of effective chiral perturbation theory (ChPT) to calculate the equation of state (EOS) of β-stable neutron

star matter using the Brueckner–Hartree–Fock many-body approach. We use the recent optimized chiral two-body

nuclear interaction at N2LO derived by Ekström et al. (2014) and two different parametrizations of the three-body

N2LO interaction: the first one is fixed to reproduce the saturation point of symmetric nuclear matter while the

second one is fixed to reproduce the binding energies of light atomic nuclei. We show that in the second case

the properties of nuclear matter are not well determined whereas in the first case various empirical nuclear matter

properties around the saturation density are well reproduced. We also calculate the nuclear symmetry energy Esym

as a function of the nucleonic density and compare our results with the empirical constraints obtained using the

excitation energies of isobaric analog states in nuclei and the experimental data on the neutron skin thickness of

heavy nuclei. We next calculate various neutron star properties and in particular the mass-radius and mass-central

density relations. We find that the adopted interactions based on a fully microscopic framework, are able to provide

an EOS which is consistent with the present data of measured neutron star masses and in particular with the mass

M = 2.01 ± 0.04M⊙ of the neutron star in PSR J0348+0432. We finally consider the possible presence of hyperons

in the stellar core and we find a softening of the EOS and a substantial reduction of the stellar maximum mass in

agreement with similar calculations present in the literature.
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1 INTRODUCTION

The physics of neutron stars represents a great challenge

to test our understanding of matter under extreme condi-

tions. The huge variation of the density from the star sur-

face (ρ ∼ 10 g/cm3) to its center (ρ ∼ 1015 g/cm3) requires

the modeling of systems in very different physical condi-

tions like heavy neutron rich nuclei arranged to form a lat-

tice structure as in the outer crust of the star, or a system

of strong interacting hadrons (nucleons, and possibly hy-

perons or a phase with deconfined quarks) to form a quan-

tum fluid as in the stellar core (Prakash et al. , 1997). The

description of such a variety of nuclear systems needs for

a considerable theoretical effort and a knowledge as much

as possible accurate of the interactions between the con-

stituents present inside the star. The bulk properties of neu-

tron stars (e.g. mass, radius, mass-shed frequency) chiefly

depend on the equation of state (EOS) describing the macro-

scopic properties of stellar matter. The EOS of dense matter

is also a basic ingredient for modeling various astrophysi-

cal phenomena related to neutron stars, as core-collapse su-

pernovae (SNe) (Oertel et al. , 2017) and binary neutron star

(BNS) mergers (Bauswein & Janka , 2012; Bernuzzi et al. ,

2015; Sekiguchi et al. , 2016; Rezzolla & Takami , 2016).

We note however that in order to perform realistic nu-

merical simulations for the latter two cases the inclusion

of thermal contributions is very important. The very re-

cent detection of gravitational waves from a binary neutron

star merger (GW170817) by the LIGO-Virgo collaboration

(Abbott et al. , 2017), has strongly increased the interest to

these astrophysical phenomena and more in general to to

dense matter physics.

In the present work we model the core of neutron stars

as a uniform charge neutral fluid made of neutrons, pro-

tons, electrons and muons in equilibrium with respect to

the weak interaction. Such system is well known in liter-

ature as β-stable nuclear matter. In addition we also con-

sider the possible formation of hyperons in the inner core

of neutron stars. Accordingly we calculate various neutron

star properties making use of an EOS for the stellar core ob-

tained within a microscopic non-relativistic approach based
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the Brueckner–Bethe–Goldstone (BBG) many-body theory

and adopting the Brueckner–Hartree–Fock (BHF) approxi-

mation (Day , 1967; Baldo & Burgio , 2012). In such a mi-

croscopic approach the only inputs required are the bare

two- and three-body nuclear interactions derived in vacuum

using nucleon-nucleon (NN) scattering data and informa-

tions (binding energies and scattering observables) on light

(atomic mass number A = 3, 4) nuclei.

It is well known that three-nucleon forces (TNFs)

play a very important role in nuclear physics. For ex-

ample, TNFs are required to reproduce the experimen-

tal binding energy of few-nucleon (A = 3, 4) systems

(Kalantar-Nayestanaki et al. , 2012). TNFs are also essen-

tial to reproduce the empirical saturation point (n0 =

0.16 ± 0.01 fm−3, E/A|n0
= −16.0 ± 1.0 MeV) of symmet-

ric nuclear matter (SNM) and to give an adequately stiff

EOS which is consistent with present measured neutron

star masses and in particular with the mass M = 2.01 ±

0.04M⊙ (Antoniadis et al. (2013)) of the neutron star in PSR

J0348+0432.

A modern and very powerful approach (Weinberg , 1979)

to derive two- as well as many-body nuclear interactions

is the one provided by chiral effective field theory (see

(Epelbaum et al. , 2009) and (Machleidt & Entem , 2011)

for a detailed review). In this method two-, three- as well

as many-body nuclear interactions can be calculated order

by order according to a well defined procedure based on a

low-energy effective quantum chromodynamics (QCD) La-

grangian. This Lagrangian is built in such a way to keep

the main symmetries of QCD and in particular the approx-

imate chiral symmetry. The starting point of this chiral per-

turbation theory (ChPT) is the definition of a power count-

ing in the ratio Q/Λχ, where Q denotes a low-energy scale

wich can be identified with the momentum of the external

nucleons or with the pion mass mπ. Λχ ∼ 1 GeV is the so

called chiral symmetry breaking scale which sets up the en-

ergy range of validity of the theory. In this effective field

theory, the details of the QCD dynamics are enclosed in the

so called low-energy constants (LECs), which are parame-

ters fitted using experimental data such as scattering data and

binding energies of light nuclei. This well defined scheme is

very advantageous in the case of nucleonic systems where it

has been shown that three-nucleon forces (TNFs) play a very

important role (Kalantar-Nayestanaki et al. (2012)).

In this work, we present some microscopic calculations

of the EOS of β-stable neutron star matter using the chi-

ral potentials derived by Ekström et al. (2014) at the next-

to-next-to-leading-order (N2LO) of ChPT. Interactions de-

rived in ChPT have been calculated even at higher order

like N3LO and N4LO (Entem et al. , 2015; Epelbaum et al. ,

2015). One of the problems to perform nuclear structure

and nuclear matter calculations at a fixed order higher than

N2LO, is that the number of many-body contributions pro-

liferate very quickly increasing the order of the expan-

sion. Therefore it turns out prohibitive to take into account

all the contributions arising at a given arbitrary order of

ChPT. Conversely at the order N2LO it has been shown by

Ekström et al. (2014) that is possible to derive a NN poten-

tial with a χ2/datum ∼ 1, as well as to take into account

leading order TNFs. Previous versions of NN potentials at

N2LO based on traditional fit techniques of the experimen-

tal data, provided a χ2/datum ∼ 10 and therefore they

were not enough accurate to be used in practical calculations.

Alternatively Ekström et al. (2014) used a new optimiza-

tion technique based on the algorithm POUNDerS (Practi-

cal Optimization Using No Derivatives for sum of Squares)

(Kortelainen et al. , 2010) which drastically improved the

quality of the data fit. Thus at N2LO all the contributions

emerging from ChPT can be consistently included in a many-

body calculation.

2 CHIRAL NUCLEAR INTERACTIONS

As we have already discussed previously, in the present

work we employ two different interactions derived in ChPT

both for two and the three-body sectors. We adopt indeed a

NN potential calculated at N2LO supplemented by a three-

nucleon force calculated at the same order. More specifically

as a two-body nuclear interaction, we have used the opti-

mized chiral potentials proposed by Ekström et al. (2014).

We have already pointed out that all the possible operators

contributing to the NN potential as well as leading order

TNFs arise at N2LO of ChPT. Thus it is possible to un-

derstand several properties of nuclear structure at this order

of the perturbative expansion. The optimized parameters of

the NN potential fitted at N2LO are the constants c1, c3 and

c4 coming from the pion-nucleon (πN) Lagrangian, plus 11

partial-waves from contact terms.

The chiral NN interaction by Ekström et al. (2014) has

been optimized to the proton-proton and the proton-neutron

scattering data for laboratory scattering energies below

125 MeV, and to deuteron observables. The N2LO TNF has

been then fixed requiring to reproduce the 3H half-life and

the binding energies of 3H and 3He nuclei. The total (i.e.

two-body plus three-body) interaction has been then used

to predict the Gamow-Teller transition matrix-elements in
14C and 22,24O nuclei using consistent two-body currents. In

their paper Ekström et al. (2014) provided three different

versions of this interaction according to three different val-

ues of the cutoff Λ = 450, 500, 550 MeV used to regular-

ize the short range part of the potentials. The χ2/datum of

the NN interaction varied from 1.33 to 1.18 passing from

Λ = 450 to Λ = 550 MeV. In the present work we have

adopted the model with Λ = 550 MeV hereafter referred to

as the N2LOopt NN potential. We have checked however that

similar results could be obtained also using the other models

reported in Ekström et al. (2014).

Concerning the form of the TNF, we have used the non-

local N2LO version given by Epelbaum et al. (2002). The

non locality of the N2LO TNF depends only on the particu-

lar form of the cutoff used to regularize short range part the
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potential. It reads:

V
(2π)

3N
=

∑

i, j,k

g2
A

8 f 4
π

σi · qi σ j · q j

(q2
i
+ m2

π)(q
2
j
+ m2

π)
f
αβ

i jk
ταi τ

β

j
, (1)

V
(1π)

3N
= −

∑

i, j,k

gAcD

8 f 4
πΛχ

σ j · q j

q2
j
+ m2

π

σi · q j τi · τ j, (2)

V
(ct)

3N
=

∑

i, j,k

cE

2 f 4
πΛχ

τi · τ j, (3)

where qi = p′
i
− pi is the difference between the final and

initial momentum of nucleon i and

f
αβ

i jk
= δαβ

(

−4c1m2
π + 2c3qi · q j

)

+ c4ǫ
αβγτ

γ

k
σk ·

(

qi × q j

)

.

(4)

In equations (1)–(4) σi and τi are the Pauli matrices which

act on the spin and isospin spaces while gA = 1.29 is the

axial-vector coupling and fπ = 92.4 MeV the pion decay

constant. The labels i, j, k run over the values 1, 2, 3, which

take into account all the six possible permutations in each

sum. In eq. 4 c1, c3, c4, cD and cE denote the so called low

energy constants. We note that c1, c3 and c4 are already fixed

at two-body level by the πN Lagrangian, therefore they do

not represent free parameters. In Tab. 1 we report the values

of ci that we have adopted in the present work. The last two

parameters cD and cE are not fixed by the data from two-

body scattering and have to be set up using some specific

observable in finite nuclei or in infinite nuclear matter. In

the present work we have explored both the possibilities. In

the following of this paper the TNF fitted by Ekström et al.

(2014) to reproduce the properties of light nuclei will be de-

noted as the N2LO TNF, whereas the parametrization fitted

to provide a good saturation point of SNM will be denoted

as the N2LO1 TNF.

Finally, we have multiplied the whole interaction by a non

local cut off of the form:

FΛ(p, q) = exp

[

−

(

4p2 + 3q2

4Λ2

)n]

. (5)

This allows to regularize the short part of the interaction

which is not correctly described by ChPT and it is sensible to

the internal structure of nucleons. In Eq. 5: p = (p1 − p2)/2

and q = 2/3[p3−(p1−p2)]. Finally, following Ekström et al.

(2014), in the present work we have set Λ = 550 MeV and

n = 2.

3 THE BHF APPROACH WITH THREE-BODY

FORCES

The Brueckner–Bethe–Goldstone (BBG) many-body theory

(Day , 1967; Baldo & Burgio , 2012) allows to calculate the

ground state of nuclear matter in terms of the so-called hole-

line expansion. The different diagrams which contribute to

the energy of the system, are grouped according to the num-

ber of independent hole-lines, where the hole-lines represent

empty single particle states in the Fermi sea. The lowest

order the BBG theory is the so called Brueckner–Hartree–

Fock (BHF) approximation. In the present work we have per-

formed all the calculations in such framework. The starting

point of the BHF approach is the calculation of the so called

G-matrices which describe the interaction between two nu-

cleons taking into account the presence of all the surround-

ing nucleons of the medium; these nucleons restrict the pos-

sible final states of the nucleon-nucleon scattering.

For asymmetric nuclear matter with total nuclear density

ρ = ρn + ρp and isospin asymmetry β = (ρn − ρp)/ρ , (be-

ing ρn and ρp the neutron and proton densities) one has to

consider three different G-matrices for the nn-, np- and pp-

channels. These G-matrices are obtained solving the well

known Bethe–Goldstone equation:

Gττ′(ω) = Vττ′ +
∑

k,k′

Vττ′
| k,k′〉Qττ′ 〈k,k

′ |

ω − ǫτ(k) − ǫτ′(k′) + iε
Gττ′(ω) ,

(6)

where τ, τ′ = n, p are isospin indices, Vττ′ denotes the bare

NN interaction in a given NN channel, | k,k′〉Qττ′ 〈k,k
′ | is

the Pauli operator which projects the intermediate nucleons

states out of the Fermi sphere. In this way the Pauli exclu-

sion principle is automatically satisfied. ω is the so-called

starting energy which is given by the sum of energies of the

interacting nucleons in a non-relativistic approximation. The

single-particle energy ǫτ(k) of a nucleon with momentum k

and mass mτ is given by:

ǫτ(k) =
~

2k2

2mτ
+ Uτ(k) , (7)

where the single-particle potential Uτ(k) is the mean field

felt by one nucleon due to the interactions with the other

nucleons of the medium. In the BHF approximation, Uτ(k)

is given by the real part of the Gττ′-matrix calculated on-

energy-shell:

Uτ(k) =
∑

τ′=n,p

∑

k′≤kFτ′

Re 〈kk′
| Gττ′(ω = ω

∗) | kk′
〉A , (8)

where ω∗ = ǫτ(k) + ǫτ′ (k
′) and the sum runs over all

neutron and proton occupied states and the matrix ele-

ments are antisymmetrized. In the solution of the Bethe–

Goldstone equation, we have employed the so-called con-

tinuous choice (Jeukenne et al. , 1967; Grangé et al. , 1987)

for the single-particle potential Uτ(k). It has been shown in

Refs. Song et al. (1998); Baldo et al. (2000) that the contri-

bution to the energy per particle E/A from the diagrams com-

ing from the three-hole-lines, is strongly minimized using

this prescription. Consequently, a faster convergence of the

hole-line expansion for E/A is achieved (Song et al. , 1998;

Baldo et al. , 2000, 1990) when compared to the so-called

gap choice for Uτ(k) where the single particle potential are

set to zero above the Fermi momentum.

Eqs. (6)–(8) are solved in a self-consistent way and then
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TNF model cD cE c1 c3 c4

N2LO 0.1488 -0.747 -0.906 -3.897 3.906

N2LO1 -0.5000 0.900 -0.906 -3.897 3.906

Table 1 Values of the low energy constants (LECs) of the two TNF parametrizations used in the present work. For the two parametrizations

we have set a cut off of 550 MeV. cD and cE are dimensionless whereas c1, c3 and c4 are expressed in GeV−1.

the energy per particle of the is calculated as:

E

A
(ρ, β) =

1

A

∑

τ=n,p

∑

k≤kFτ

(

~
2k2

2mτ
+

1

2
Uτ(k)

)

. (9)

From the energy per particle, all the other relevant quantities

can be calculated using standard thermodynamical relations.

3.1 Inclusion of three-nucleon forces in the BHF

approach

Non-relativistic quantum many-body approaches are not

able to reproduce the empirical saturation point of symmet-

ric nuclear matter: ρ0 = 0.16 ± 0.01 fm−3, E/A|ρ0
= −16.0 ±

1.0 MeV. Several studies employing a large variety of dif-

ferent NN potentials have indeed shown that the saturation

points lie inside a narrow band known in literature as Coester

band (Coester et al. , 1970; Day , 1981). The various models

showed either a too large saturation density or a too small

value for the energy per particle with respect to the empirical

value. A similar behaviour has been also found for the bind-

ing energies of finite nuclei where the ground states turned

out to be too large or too small when compared to the exper-

imental ones. The inclusion of TNFs allows to improve the

description of both SNM nuclear matter (Friedman , 1981;

Baldo et al. , 1997; Akmal et al. , 1998) and finite nuclei. In

addition TNFs are very important in the case of β-stable nu-

clear matter to get an equation of state stiff enough to pro-

duce neutron star masses able to fulfill the limits put by

the measured masses M = 1.97 ± 0.04 M⊙ (Demorest et al. ,

2010) and M = 2.01 ± 0.04 M⊙ (Antoniadis et al. , 2013) of

the neutron stars in PSR J1614-2230 and PSR J0348+0432

respectively.

However in the BHF approach, as well as in almost all mi-

croscopic many body approaches, TNFs cannot be employed

directly without approximation. This is because it would

be necessary to solve very complicated three-body Bethe-

Faddeev equations in the nuclear medium (Bethe–Faddeev

equations) (Bethe , 1965; Rajaraman & Bethe , 1967). Al-

though this may be attempted in next future, for now this is a

task beyond our possibilities. In order to bypass this problem,

an average density dependent two-body force is built starting

from the original three-body one. The average is made over

the coordinates (including also spin and isospin degrees of

freedom) of one of the three nucleons (Loiseau et al. , 1971;

Grangé et al. , 1989).

In the present work, we have used the in medium effec-

tive NN force derived by Holt et al. (2010) which has the

following structure:

Ve f f (p, q) = VC + τ1 · τ2 WC

+ [VS + τ1 · τ2 WS ] σ1 · σ2

+ [VT + τ1 · τ2 WT ] σ1 · q σ2 · q

+ [VS O + τ1 · τ2 WS O] i(σ1 + σ2) · (q × p)

+
[

VQ + τ1 · τ2 WQ

]

σ1 · (q × p) σ2 · (q × p) . (10)

The subscripts on the functions Vi, Wi stand for central (C),

spin (S), tensor (T), spin-orbit (SO) and quadratic spin-orbit

(Q). (see Holt et al. (2010) for the explicit expressions of

these functions). This effective interaction can be obtained

by averaging the original three-nucleon interaction V3N over

the generalized coordinates of the third nucleon:

Ve f f = Tr(σ3 ,τ3)

∫

dp3

(2π)3
np3

V3N (1 − P13 − P23) , (11)

where

Pi j =
1 + σi · σ j

2

1 + τi · τ j

2
Ppi↔p j

(12)

are operators which exchange the spin, isospin and momen-

tum variables of the nucleons i and j. np3
is the Fermi dis-

tribution function at zero temperature of the "third" nucleon

with momentum p3. Here we assume for np3
a step function

approximation.

4 RESULTS FOR NUCLEAR MATTER

In this section we discuss the results concerning the calcu-

lation of the energy per particle E/A as a function of the

nuclear density ρ, for pure neutron matter (PNM) and SNM

using the two interaction models and the BHF approach de-

scribed previously. In order to perform a partial wave expan-

sion of the Bethe–Goldstone equation (6), we have made the

usual angular average on the Pauli operator as well as on

the energy denominator in the propagator (Grangé et al. ,

1987). For each calculation, we have included all partial

wave contributions up to a total two-body angular momen-

tum Jmax = 8. The contributions coming from higher partial

waves are completely negligible. In Fig. 1 we show the den-

sity behaviour of the energy per particle of PNM (left panel)

and SNM (right panel) for both the models considered in the

present work. The dashed dotted lines in Fig. 1 have been ob-

tained using just the N2LOopt NN interaction without TNFs.

We note that in the case of PNM employing either the N2LO

or the N2LO1 TNF, the curve of the energy per particle does

not change (red continuous line in left panel of Fig. 1). This
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Table 2 Nuclear matter properties at saturation density (ρ0) for the two models discussed in the text. In the first column of the table is

reported the model name; in the other columns we give the saturation point of SNM, (ρ0), the corresponding value of the energy per particle

(E/A), the symmetry energy (Esym), the slope L of Esym and the incompressibility K∞. All these values are referred to the saturation density

(ρ0) calculated for each model.

Model ρ0(fm−3) E/A (MeV) Esym (MeV) L (MeV) K∞ (MeV)

N2LOopt+N2LO1 0.163 -15.20 34.38 79.01 222

N2LOopt+N2LO 0.110 -10.72 24.03 35.70 134
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Figure 1. (Color online) In the figure we show the energy per particle of

pure neutron matter (left panel) and symmetric nuclear matter (right panel)

as function of the nuclear density (ρ) for the two models described in the

text. The empirical saturation point of nuclear matter ρ0 = 0.16±0.01 fm−3,

E/A|ρ0 = −16.0±1.0 MeV is represented by the grey box in the right panel.

See text for details.

happens because when performing the average of the TNF

in pure neutron matter to get the effective density dependent

two-body force Ve f f (see Eq. (11)), the terms containing the

low energy constants cD and cE vanish for symmetry reasons

(see Logoteta et al. (2016a) for more details) while the other

low energy constants c1, c3 and c4, which take contribution

to the average have the same values in the two models. Thus

in PNM Ve f f is the same both for the N2LO1 and N2LO

TNF. The effect of the TNF in both models is to produce

a stiffer EOS. This is actually needed to improve the satu-

ration point of SNM obtained using the sole NN interaction

(black dashed dotted line in right panel of Fig. 1). In the latter

case the saturation point turns out to be: ρ0 = 0.26 fm−3 and

E/A|0 = −19.23 MeV. Using the model N2LOopt+N2LO1 a

better nuclear matter saturation point is obtained: ρ0 = 0.163

fm−3 and E/A|0 = −15.20 MeV. The empirical saturation

point of SNM is represented by a grey box in Fig. 1. For the

model N2LOopt+N2LO the repulsion provided by the TNF,

needed to reproduce the binding energies of light nuclei, is

too strong in nuclear matter and the resulting curve of the

0 0.05 0.1 0.15 0.2 0.25

ρ [fm
-3

]

0

10

20

30

40

50

60

70

80

E
sy

m
 [

M
eV

]

IAS
IAS + ∆r

np

N2LO
opt

+N2LO1

N2LO
opt

+N2LO

Figure 2. (Color on line) The nuclear symmetry energy is shown as a

function of the nucleonic density for the two interaction models used in

the present work. The constraints on the symmetry energy obtained by

(Danielewicz & Lee (2014)) using the excitation energies of isobaric ana-

log states (IAS) in nuclei are represented by the black-dashed band, labeled

IAS. The smaller region covered by the red-dashed band labeled IAS+∆rnp

(Roca et al. (2013)) are additional constraints provided by the data analysis

of neutron skin thickness (∆rnp) of heavy nuclei.

energy per particle (black dashed line in right panel of Fig.

1) saturates at a too small density comparing to the empirical

one. For the model N2LOopt+N2LO the saturation point of

SNM is ρ0 = 0.110 fm−3 and E/A|0 = −10.72 MeV. The

values of the saturation density and energy per particle at

saturation for the two models considered are reported in Tab.

2.

The energy per particle of asymmetric nuclear matter,

which is essential to describe neutron stars, can be calcu-

lated with very good accuracy using the so called parabolic

approximation (Bombaci & Lombardo , 1991):

E

A
(ρ, β) =

E

A
(ρ, 0) + Esym(ρ)β2 , (13)

where Esym(ρ) is the nuclear symmetry energy (Li et al. ,

2014) and β is the asymmetry parameter defined in the pre-

vious section. Using Eq. (13), the symmetry energy can be

obtained from the difference between the energy per particle

of PNM (β = 1) and SNM (β = 0).

In Tab. 2 we show the values of the symmetry energy and
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the so called slope parameter L defined as:

L = 3ρ0

∂Esym(ρ)

∂ρ

∣

∣

∣

∣

ρ0

(14)

at the calculated saturation density ρ0 (second column in

Tab. 2) for the two interaction models considered in the

present paper. We note that the values of Esym(ρ0) and L cal-

culated with model N2LOopt+N2LO1 are in a good agree-

ment with those obtained by other calculations based on the

BHF approach including two- and three-body forces (see

e.g. (Li et al. , 2006; Li & Schulze , 2008)) and with the val-

ues derived from different experimental data as discussed by

Lattimer (2014). Our second model instead underestimates

both the values of Esym and L.

The incompressibility K∞ of SNM calculated at saturation

density is given by:

K∞ = 9ρ2
0

∂2E/A

∂ρ2

∣

∣

∣

∣

ρ0

. (15)

The value of the incompressibility K∞ can be obtained

analyzing experimental data of giant monopole resonance

(GMR) energies in medium and heavy nuclei. Such analysis

performed first by Blaizot et al. (1976), provided the value

K∞ = 210 ± 30 MeV. The refined analysis of Shlomo et al.

(2006) gave instead the value: K∞ = 240±20 MeV. Recently

Stone et al. (2010) on the basis of a re-analysis of GMR data

found: 250 MeV< K∞ < 315 MeV. In the last column of

Tab. 2 we have reported the incompressibility K∞, at the cal-

culated saturation point ρ0 for the two models considered in

the present work. Model N2LOopt + N2LO1 is in very good

agreement with the value of K∞ predicted by Blaizot et al.

(1976) and Shlomo et al. (2006). It should be noted that the

value of K∞ is a very important quantity not only for nuclear

physics but also for astrophysics. It has been shown indeed

that K∞ is strongly correlated to the physics of supernova

explosions and neutron star mergers.

Another important constraint that should be fulfilled by a

good nuclear matter EOS, concerns the behaviour of the pres-

sure of SNM as function of the nucleonic density. Such con-

straints are provided by experiments of collisions between

heavy nuclei. In such experiments matter is compressed up

to ∼ 4ρ0 and it is therefore possible to extract important in-

formations about the behaviour of the EOS at densities larger

than normal saturation density (ρ0 = 0.16 fm−3)).

The black hatched area in Fig. 3 is the region

in the pressure–density plane for SNM determined by

Danielewicz et al. (2002), performing several numerical

simulations able to reproduce the measured elliptic flow of

matter in the collision experiments between heavy nuclei.

In the same figure, we show the pressure of SNM for

the N2LOopt+N2LO1 (red continuous line) model obtained

from the calculated energy per nucleon and using the stan-

dard thermodynamical relation:

P(ρ) = ρ2 ∂(E/A)

∂ρ

∣

∣

∣

∣

A
. (16)
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Figure 3. (Color online) Pressure of SNM as a function of the nucleonic

density ρ (in units of the empirical saturation density ρ0 = 0.16 fm−3) for

the model N2LOopt+N2LO1. The black hatched area represents the region

for SNM which is consistent with the constraints provided by collision ex-

periments between heavy nuclei (Danielewicz et al. (2002))

Our results are fully consistent with the empirical constraints

given by Danielewicz et al. (2002).

5 NEUTRON STAR STRUCTURE

We next apply the model N2LOopt+N2LO1, which repro-

duces various empirical nuclear matter properties at the sat-

uration density (Tab. 2), to calculate the structure of neutron

stars.

The composition of the inner core of neutron stars

cannot be completely determined by data from ob-

servations and therefore different scenarios are cur-

rently under consideration. The appearance of hyperons

(Glendenning , 1985; Vidaña et al. , 2011) or the transi-

tion to a phase with deconfined quarks (quark matter)

(Glendenning , 1996; Bombaci et al. , 2009; Logoteta et al. ,

2012a; Bombaci & Logoteta , 2013; Logoteta et al. , 2013)

are among the most admissible possibilities.

In this work we want mainly to concentrate on the sim-

plest case of pure nucleonic matter with the aim to establish

if the modern chiral nuclear interactions considered here, can

provide an EOS which is able to fulfill the constraints put

by observational data on neutron stars properties. This first

check represents a mandatory step before to explore more so-

phisticated possibilities with additional feasible degrees of

freedom. We point out however that allowing for a quark

deconfinement phase transition and considering the possi-

ble existence of a second branch of compact stars (quark

stars) with "large" masses compatible with present mass

measurements, i.e. within the so-called two families sce-

nario (Berezhiani et al. , 2003; Bombaci et al. , 2004, 2016;

Drago et al. , 2016), is not necessary that the neutron star

branch reproduces the limit of two solar masses.

We also report a calculation of the EOS that includes, in
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addition to nucleons, hyperonic degrees of freedom and in

particular the presence of Λ and Σ− hyperons. These are

in fact the first hyperon species expected to appear in mi-

croscopic calculations of neutron star matter (Glendenning ,

1985; Vidaña et al. , 2011; Schulze et al., 2006). We thus

consider also the so-called hyperonic stars.

In order to determine the mass-radius (M(R)) and mass-

central density (M(ρc)) relations for non rotating neutron

stars one needs first to calculate the β-stable EOS of the sys-

tem. The composition of β-stable stellar matter is determined

by the relations between the chemical potentials of the var-

ious constituent species. In this paper we consider neutrino

free matter (µνe = µν̄e = µνµ = µν̄µ ) in the general case of

matter if matter with hyperons. We have:

µn − µp = µe− , µe− = µµ− , (17)

µΛ = µn , µΣ− = µn + µe− . (18)

In Eqs. (17) and (18) µn, µp, µΛ, µΣ− , µe− and µµ− are chem-

ical potentials of neutron, proton, Λ, Σ−, electron and muon.

Finally charge neutrality requires:

ρp = ρΣ− + ρe− + ρµ− (19)

The various chemical potentials of baryons (B = n, p,Λ,Σ−)

and leptons (l = e−, µ−) are determined through:

µB =
∂ǫ

∂ρB

, µl =
∂ǫ

∂ρl

(20)

where ǫ = ǫN + ǫY + ǫL is the total energy den-

sity which sums up the the nucleonic contribution ǫN ,

the hyperonic one ǫY and the leptonic one ǫL. The nu-

cleonic contribution ǫN has been calculated using the

N2LOopt+N2LO1 nuclear interaction and the thermodynam-

ical relation ǫN = ρ E/A(ρ, β), with the energy per parti-

cle E/A(ρ, β) of asymmetric nuclear matter calculated in

BHF approximation and employing the parabolic approxi-

mation (Bombaci & Lombardo , 1991). For the hyperonic

contribution ǫY we have used the parametric form of the

BHF energy per particle of asymmetric hyperonic matter

provided by Rijken & Schulze (2016) and obtained using

the nucleon-hyperon (NY) and hyperon-hyperon (YY) in-

teractions. More specifically Rijken & Schulze (2016) used

the NY Nijmegen soft core NSC08b potential (Rijken et al. ,

2010) supplemented with the new YY Nijmegen soft core

NSC08c potential (Nagels et al. , 2014). We note that these

interactions have been derived following the scheme of tra-

ditional meson exchange theory and not in the framework of

ChPT. However they provide an accurate description of the

available hypernuclear data (Rijken et al. , 2010).

We have then self-consistently solved the equations (17),

(18), (19), (20) as function of the total baryonic density ρ =

ρn+ρp+ρΛ+ρΣ− and obtained the EOS for β-stable hyperonic

matter with nucleons, hyperons, electrons and muons (µ−).

The composition of β-stable nucleonic matter is shown by

the continuous lines in Fig. 4. The black circle on the black
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Figure 4. (Color online) Particle fractions in β-stable neutron star matter for

model N2LOopt+N2LO1. The continuous lines (dashed lines) refer to parti-

cle fractions in the case of β-stable nucleonic matter (hyperonic matter).

line which represents the proton fraction, marks the density

threshold for the direct URCA processes n → p + e− + ν̄e ,

p+e− → n+νe , (Lattimer (2014)). In our model this thresh-

old is ρDU = 0.339 fm−3 which corresponds to a neutron star

mass M(ρDU ) = 0.97 M⊙. The dashed lines in Fig. 4 rep-

resent the results of the solution of the β-equilibrium equa-

tions for hyperonic matter with Λ and Σ− hyperons. The Λ

hyperon is the first hyperonic species to appear at a density

around 0.37 fm−3 while the Σ− hyperon appears at density of

0.47 fm−3. This behaviour is a new feature of modern NY in-

teractions which find a much more repulsive contribution in

the NΣ− channel to the total energy density. The same trend

has been also found by recent NY interactions derived in

ChPT by Haidenbauer & Meißner (2015). Such a repulsion

leads to the appearance of the Λ hyperon before the Σ− one

contrarily to the predictions of older NY interaction models

(Schulze et al., 2006).

In order to calculate the neutron stars structure,

we have numerically solved the equations for hydro-

static equilibrium in general relativity (Tolman , 1939;

Oppenheimer & Volkoff , 1939). For nucleonic density

smaller than 0.08 fm−3 we have matched our EOS

models of the core with the Negele & Vautherin (1973)

and Baym–Pethick–Sutherland (Baym et al. , 1971)) EOSs

which model neutron stars crust.

In Fig. 5 we show the results of our calculations. In the left

(right) panel we plot the mass-radius (mass-central density)

relations for our models. Referring now to the left panel in

Fig. 5, the hatched regions are constraints derived from the

analysis of observational data of both transiently accreting

and bursting X-ray sources obtained by Steiner et al. (2010,

2013). We note the maximum mass Mmax = 1.99 M⊙ ob-

tained for nucleonic stars, i.e. for the EOS model including

only nucleons (continuous line in Fig. 5), is compatible with

present neutron star mass measurements and in particular

with the measured mass 2.01 ± 0.04M⊙ (Antoniadis et al. ,
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Figure 5. (color online) Mass-radius (M(R)) (left panel) and mass-central density (M(ρc)) (right panel) relationships for the models described in the text.

The continuous lines refer to the calculation performed considering the EOS containing only nucleonic degrees of freedom while the dashed lines have been

obtained including also the Λ and the Σ− hyperons in the calculation. The hatched region in the left panel represents the the mass-radius constraints obtained

by Steiner et al. (2010, 2013)). The strip with boundaries marked with blue lines stands for the measured mass 2.01 ± 0.04M⊙ (Antoniadis et al. , 2013) of

the neutron stars in PSR J0348+0432.

2013) of the neutron star in PSR J0348+0432 (strip with

boundaries marked with blue lines in Fig. 5). In addition our

results are also in rather good agreement with the empiri-

cal constraints on the mass-radius relationship reported in

Steiner et al. (2010, 2013). We note however that presently

there is no general agreement on neutron star radii mea-

surements due to the large uncertainties in the techniques

used to extract this quantity. For instance small stellar radii

in the range of 9 − 12 km (Guillot et al. , 2013) are found

considering informations from spectral analysis of X-ray

emission from quiescent X-ray transients in low-mass bina-

ries (QLMXBs). Larger radii around 16 km are instead ob-

tained considering data on neutron stars with recurring pow-

erful bursts. However these last measurements are subject to

large uncertainties (Poutanen et al. , 2014). In a recent work

Lattimer & Prakash (2016) suggests that neutron star radii

should lie in the range between 10.7 − 13.1 km.

The red dashed lines in Fig. 5 represent the mass-radius

(left panel) and mass-central density (right panel) relations

for hyperonic stars (i.e. for the EOS model including hyper-

ons in addition to nucleons). In this case there is a sizable

decrease of the stellar maximum mass down to Mmax = 1.6

M⊙, a value which is incompatible with measured neutron

star masses. This outcome is caused by the softening of the

EOS due to the presence of hyperons in the stellar core

(Schulze et al., 2006; Vidaña et al. , 2011; Logoteta et al. ,

2012b).

This difficulty to reconcile the measured masses

of neutron stars with the seemingly unavoidable

presence of hyperons in their interiors is called hy-

peron puzzle (Lonardoni et al. , 2015; Bombaci , 2017;

Chatterjee & Vidaña , 2016) in neutron stars. This unsolved

puzzle is currently the subject of several investigations

and various possible solutions have been proposed. Some

researches pointed out the importance of taking into account

the effect of hyperonic three-body forces between nucleons

and hyperons (Lonardoni et al. , 2015; Vidaña et al. , 2011;

Chatterjee & Vidaña , 2016), while other investigations

(Bombaci et al. , 2016; Drago et al. , 2016) underline the

possibility for a phase transition to quark matter at large

baryonic density and the existence of a second branch of

compact stars (quark stars) with "large" masses compatible

with present mass measurements. Finally we emphasize that

also the two-body YY interaction can play a role in solving

the hyperon puzzle. In fact, as shown by Schulze et al.

(2006), the new NSC08c YY interaction makes the EOS

stiffer and allows to increase the maximum mass of about

0.25 M⊙ with respect to the case when only NN and NY

interactions are taken into account to describe the two-body

baryon-baryon interactions.

The properties of the maximum mass configuration for

our models of nucleonic and hyperonic stars are reported

in Tab. 3. These results are in good agreement with other

calculations based on microscopic approaches. Concerning
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Table 3 Mass (in unit of solar mass M⊙ = 1.989 × 1033g), corre-

sponding radius (in km) and central density (in fm−3) for the neu-

tron star configuration corresponding to the maximum masses of

Fig. 5.

Model M (M⊙) R (km) ρc (fm−3)

N2LOopt+N2LO1 1.99 10.52 1.13

N2LOopt+N2LO1+NY+YY 1.60 9.86 1.50
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Figure 6. (color online) Gravitational redshift calculated at the neutron star

surface as a function of the stellar gravitational mass for the two EOS mod-

els used in our work. The horizontal lines stand for the measured gravita-

tional redshift z = 0.35 for the X-ray bursts source in the low-mass X-ray

binary EXO 07482−676 (Cottam et al. (2002)) and z = 0.205+0.006
−0.003

for the

isolated neutron star RX J0720.4−3125 Hambaryan et al. (2017).

this point it is interesting to note that our present findings

are very similar to those reported in Taranto et al. (2013)

where nuclear matter properties and β-stable EOS have

been obtained using the BHF approach and employing two-

and three-body forces based on the meson-exchange theory.

In addition our results are in good accord with those in

Bombaci & Logoteta (2018) where the neutron stars struc-

ture was described adopting chiral potentials calculated in

the so called ∆-full theory both at two- and three-body level.

Such agreement provides an independent way to check the

correct behaviour of the interactions used in the present

work at large baryonic density. We note indeed that the in-

teractions derived in ChEFT are characterized by a low-

momentum expansion and therefore can be trusted up to

baryonic densities for which the Fermi momentum is of the

order of magnitude of the cutoff set in the regulator function.

At larger densities the EOS should be extrapolated or an ac-

curate analysis of convergence of the many-body calculation

has to be properly accounted for. We note that for neutron

stars these considerations are mandatory because the maxi-

mum density reached in the core can be even larger than 1

fm−3 (see Tab. 3).

The gravitational redshift of a signal emitted from the stel-

lar surface is given by:

zsur f =

(

1 −
2GM

c2R

)−1/2

− 1 . (21)

The measurements of zsur f of spectral lines can provide a di-

rect information on the neutron star compactness parameter:

xGR =
2GM

c2R
. (22)

and therefore on the EOS of neutron star matter. The calcu-

lation of the surface gravitational redshift for our two EOS

models is shown in Fig. 6. The two horizontal lines in the

same figure stand for the measured gravitational redshift

z = 0.35 for the X-ray bursts source in the low-mass X-

ray binary EXO 07482−676 (Cottam et al. , 2002) and z =

0.205+0.006
−0.003

for the isolated neutron star RX J0720.4−3125

(Hambaryan et al. , 2017).

6 SUMMARY

We have investigated the behaviour and the properties of β-

stable nuclear matter using two microscopic models based

on nuclear hamiltonians obtained from ChPT at the N2LO,

in the framework of many-body BHF approach. In partic-

ular we have used, the non local NN chiral potential de-

rived by Ekström et al. (2014) which is able to reproduce

the NN scattering data with a χ2/datum ∼ 1. In order to

get a good description of nuclear matter at saturation den-

sity we have included in our calculation also a TNF consis-

tently calculated at the same order of ChPT. Concerning the

TNF, we have explored two different parametrizations: the

first one (N2LO) fitted to reproduce binding energies of light

nuclei while the second one (N2LO1) fitted to reproduce a

good saturation point of symmetric nuclear matter. We have

shown that in the first case it was not possible to reproduce

also good properties of nuclear matter at saturation density.

For the second case we have shown that once the satura-

tion point of SNM was well reproduced, other nuclear mat-

ter properties at the saturation density were also well deter-

mined. We have later calculated the EOS for β-stable nuclear

matter for our best model, namely the N2LOopt+N2LO1

one, and determined the neutron stars structure. We have

found that the maximum mass obtained is compatible with

the present measured neutron star masses. In addition we

have found that the mass-radius relation for nucleonic stars

is in a quite good agreement with the mass-radius con-

straints determined by Steiner et al. (2010, 2013). Finally

we have extended our EOS model to include hyperons and

we have thus calculated the corresponding hyperonic star

properties. Confirming the results of previous studies, e.g.

(Schulze et al., 2006; Vidaña et al. , 2011; Lonardoni et al. ,

2015; Chatterjee & Vidaña , 2016), we have found that the

inclusion of hyperons leads to a substantial reduction of the

value of the maximum mass which turns out to be not com-

patible with measured neutron star masses. This so-called
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hyperon puzzle is one of the hottest topics in neutron star

physics which is stimulating copious experimental and theo-

retical research in hypernuclear physics.

Several extensions of the present model to include hyper-

onic three-body forces and quark degrees of freedom are in-

deed under consideration. In addition the inclusion of ther-

mal effects necessary for application to supernova explo-

sions and consistent neutron star merger simulations are also

in development.
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