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Abstract: In this paper, we address the problem of energy conservation and optimization
in residential environments by providing users with useful information to solicit a change in
consumption behavior. Taking care to highly limit the costs of installation and management,
our work proposes a Non-Intrusive Load Monitoring (NILM) approach, which consists of
disaggregating the whole-house power consumption into the individual portions associated to
each device. State of the art NILM algorithms need monitoring data sampled at high frequency,
thus requiring high costs for data collection and management. In this paper, we propose an
NILM approach that relaxes the requirements on monitoring data since it uses total active power
measurements gathered at low frequency (about 1 Hz). The proposed approach is based on the
use of Factorial Hidden Markov Models (FHMM) in conjunction with context information related
to the user presence in the house and the hourly utilization of appliances. Through a set of
tests, we investigated how the use of these additional context-awareness features could improve
disaggregation results with respect to the basic FHMM algorithm. The tests have been performed
by using Tracebase, an open dataset made of data gathered from real home environments.

Keywords: energy; smart grid; smart home; metering; energy efficiency;
Gaussian mixture models; Factorial Hidden Markov Models; energy disaggregation;
context awareness; non intrusive load monitoring

1. Introduction

Achieving greater energy efficiency through ICT has become an increasingly relevant research
topic in the last decade. With the steady rise in consumption and the decreasing availability of
energy resources, a remarkable slowing down in energy wasting, especially through the widespread
adoption of energy saving solutions, is increasingly targeted.

It is expected that proper use of ICT (e.g., sensing, processing and actuation capabilities)
would facilitate the achievement of this objective, in both domestic and industrial domains. The
private home domain especially absorbs a non-negligible percentage of the energy demand. Indeed,
domestic consumptions represent approximately one third of the whole energy usage in the European
Union [1] as well as in the United States [2].

Several studies on domestic consumption habits [3,4], have shown that often users are not aware
of how much energy is consumed by the devices they use. It has been recognized [5] that this may
impair the understanding and adoption of energy saving behaviors. In other words, if the user were
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informed about how much a specific device affects total consumption, he might change his behavior
in order to save energy as well as money.

Hence, in this context, the introduction of Load Monitoring techniques, which support
the continuous monitoring of electricity consumption and the consequent analysis of measured
data, can also help in providing end-users with information and suggestions for improving their
consumption behavior.

Load monitoring techniques can be grouped into three categories:

1. Non-Intrusive Load Monitoring (NILM) [6]: NILM refers to a family of techniques whose purpose
is to derive the power consumption of a specific device from the whole-house consumption profile.

2. Hardware-based sub-metering: this technique is based on the deployment of a distributed system
of low-cost metering devices (i.e., smart plugs attached onto household appliances) connected
through a wireless and/or wired network infrastructure to a data collection module.

3. Adoption of smart appliances: this approach relies on the use of household appliances enhanced
with sensing, processing and communication capabilities that can remotely be controlled
and configured.

Although the adoption of smart appliances would facilitate the user in implementing cost and
energy actions, this approach is not likely to be put in place in the short term. Moreover, only a subset
of devices are usually available as “smart appliances”, such as TVs, dishwashers, and ovens.

On the other side, smart plugs can be attached to almost any type of device. However, this
approach can be resource demanding since a fine grained monitoring would require the use of
a relevant number of smart plugs. In addition to the required financial commitment, the physical
deployment might not be easy for fixed appliances (i.e., washing machine, dishwasher, refrigerator,
etc.) or the user may be bothered by the obligation to constantly attach a smart plug to every portable
device (i.e., hair dryer, phone charger, laptop, etc.).

On the other hand, NILM approaches which are based on whole-house consumption
information can be easily deployed by leveraging existing and widely adopted smart meters.
Several NILM algorithms have been proposed in literature [7] to disaggregate the output of smart
meters. Most of them need monitoring data sampled at high frequency (at least 1 GHz frequency).
In real-world scenarios, this assumption may be resource demanding whether the computation
is performed locally in a Home Energy Management System (where data storage and processing
resource-intensive tasks are performed) or in a remote server (since a high amount of data has to
be transferred).

In this paper, we propose an NILM approach that relaxes the requirements on monitoring data
since it uses total active power measurements gathered at low frequency (about 1 Hz). On one
hand, this design choice has the advantage of allowing the use of low-cost metering devices. On the
other hand, low-frequency measurements contain less information useful for load disaggregation
than high frequency ones. To cope with this issue, in this paper, we enhance state of the art
disaggregation approaches based on Factorial Hidden Markov Models (FHMM) [8] with the use of
context information, i.e., information that can be gathered by home sensors on relevant events in the
domestic environment to improve the accuracy of the disaggregation algorithm.

Our context-based energy disaggregation approach uses probabilistic models representing
the appliances consumption behavior. More specifically, we adopted the additive Factorial
Hidden Markov Model (FHMM) [9], where the observed variables represent the aggregated power
consumption profile, while the hidden variables represent the states of appliances. Context
information (namely user consumption patterns and users presence in a room) is exploited to vary
the state transition probabilities of device models in order to improve the accuracy of results.

Moreover, the proposed approach has been tested using data gathered from real home
environments and made available as an open dataset by the Technische Universität Darmstadt (i.e.,
Tracebase [10]). In our opinion, this choice may be scientifically relevant since it eases the comparison
of results with future work and encourages further improvements.
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The paper is structured as follows: in Sections 2 and 3, we discuss Background and Related Work,
respectively. Section 4 describes the disaggregation algorithm focusing on our context conditioning
approach. In Section 5, we describe the testing activities and discuss related results. Section 6
concludes the paper with final considerations.

2. Background

This section provides background information on load monitoring and appliance profiling.
Appliance Profiling refers to the observation of an electronic device’s consumption behavior in

order to extract all the features that could characterize it in detail. It consists of defining a set of
relations between the working states of an appliance and the energy that it consumes [11]. Thanks
to the knowledge of these characterizing features, a monitoring system would be able to analyze the
output of a meter and recognize the appliance(s) in use.

As suggested by Hart [6] and Zeifman and Roth [12], depending on their power profile, home
appliances can be divided into four main categories:

1. Permanent consumer devices. Devices that are permanently on and are characterized by an almost
constant power trace (e.g., smoke alarms, telephones, etc.).

2. On-off appliances. Appliances that can be modeled with on/off states (e.g., lamp, toaster, etc.).
3. Finite State Machines (FSM) or Multistate devices. Devices that pass through several switching states.

An operation cycle can thus be represented through a Finite State Machine and can be repeated on
a daily or weekly basis. Examples are a washing machine, a dishwasher, a clothes dryer, etc.

4. Continuously variable consumer devices. Devices that are characterized by a variable non-periodic
power trace. Examples of such appliances include notebook and vacuum cleaners.

Furthermore, in order to characterize the behavior of an appliance, a minimal set of three power
mode states can be defined [13]:

• Active: the appliance is fully operational; the trend of the power consumption trace depends on
the specific appliance.

• Stand by: the appliance is turned off, but some activities continue to run. The power consumption
trace is zero, except for some sporadic low consumption samples.

• Disconnected: the device is disconnected from the electric network.

A further classification can be made by considering the type of device load: resistive, inductive
or capacitive load. This differentiation is related to the typology of device internal circuits and
strongly influences its power consumption profile. The Active Power is the real part of the Apparent
Power complex equation; it represents the amount of energy consumed by an appliance during its
ON period. Since the Apparent Power is the product between the current and voltage effective
values, then a current/voltage shifting causes a variation in the power transferred to the appliance.
This variation can be detected through the analysis of the Reactive Power, the imaginary part of the
Apparent Power equation, which represents the amount of power absorbed by inductive/capacitive
elements and therefore not exploited by the load. As stated in [13] “the larger the current/voltage shift
the grater the imaginary component” and, consequently, the lower the active power is transferred to
the appliance. Therefore, the types of component that can be found in a device can be distinguished
as follows:

• Inductive type: affects the power consumption by shifting the alternate voltage with respect to the
alternate current (e.g., washing machine).

• Capacitive type: affects the power consumption by shifting the alternate current with respect to
the alternate voltage (e.g., rechargeable battery).

• Resistive type: shows no shift of current and voltage; if the appliance is a pure resistive type, the
current and voltage waveforms will always be in phase and the imaginary part (reactive power)
of the complex apparent power is zero (e.g., toaster).
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An appliance profile, also mentioned as “appliance signature” or “appliance fingerprint”, is thus
composed by several characteristics which can help to identify that specific device (e.g., real power,
maximum power value, waveform shape, ON period duration, etc.).

A refrigerator power trace, for example, presents a periodic pattern whose periods depend on
the overcoming of an internal temperature threshold manually or automatically set. This appliance is
always connected to the electric network. A washing machine is switched on to perform a washing
program and presents a consumption cycle over a specific time interval. Instead, an LCD television,
even if it causes occasional consumption peaks due to sequences of very clear pictures, presents an
almost uniform power trace; a microwave oven has typically a minute-usage and presents uniform
peaks of high consumption. A coffee maker consumes less than the microwave oven, but they have
a similar behavior: long periods of inactivity interspersed with short duration periods of almost
uniform consumption.

3. Related Work

Non-Intrusive Load Monitoring (NILM) [6] is a research field that has been studied for more
than 20 years and has recently received particular attention for its expected benefits in energy
monitoring and conservation policies. As mentioned above, NILM techniques aim at disaggregating
consumption data, obtained from a metering device (e.g., smart meter) connected to the electric
network, in order to identify the energy consumed by single devices in private households. The
Non-Intrusive qualification refers to the fact that these approaches do not require the use of metering
hardware dedicated to each single appliance; this implies a shorter installation time and negligible
user involvement.

The first NILM method, developed by the Hart’s working group [6], was based on the
continuous monitoring of the active and reactive power measured at the electric meter. This method
allowed detecting only the status change of bi-state (ON-OFF) devices and those modeled by Finite
State Machine (FSM). The obtained results showed poor accuracy, mainly because of the poor
reliability and precision of the measuring instruments that were available in the early 90s.

3.1. Features

The NILM state of the art presents numerous works that differ in the type of features
employed. Technological progress has made possible the refinement of metering hardware and
allowed managing bigger quantity of data collected at ever higher frequencies. Nowadays, there
are a lot available metering solutions with a configurable sampling rate. With low-frequency rates,
we refer to sampling rates up to 1 kHz, which allow gathering steady-state features as opposed to
those known as high-frequency (up to 100 MHz), at which even the transient-state features can be
detected [7].

3.1.1. Low Sampling Rate

The choice to work with low sampling rates allows for analyzing steady-state features and
provides several advantages from the economic point of view; the hardware required to collect
these features has, in fact, a relatively low cost. One of the most investigated feature is the Real
Power, which has been defined in the previous section. Several works [14–17] have tried to use this
unique feature to perform disaggregation, especially regarding high-power consuming appliances
with distinctive power draw characteristics for which satisfactory accuracy results have been reached.
However, in order to distinguish devices with similar consumption traces and handle possible
simultaneous state changes, other features should be taken into account [7] too, such as Reactive
Power [6,18].

Other research works have investigated if further information could allow NILM systems to
reach better accuracy results [6,13,19,20]. Such information can be directly measured (i.e., Voltage,
Current) or derived (i.e., power peaks, Power Factor, Root Mean Squared voltage and current,
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phase differences, etc.) [7]. Furthermore, in several works [21–23], a Fourier series analysis has
been performed to determine current harmonics, although the low sampling constraint allows for
extracting only the lowest ones. These additional features have helped to identify non-linear loads
with a non-sinusoidal current trace and to discriminate between loads with constant power and
constant impedance [7].

In most works, data were sampled up to 1 kHz [6,19], while in [13] and [24], the proposed
appliance classification approaches were using samples gathered every 1 and 2 min, respectively.

3.1.2. High Sampling Rate

High frequency sampling measurements have been considered in order to reach a higher
detection accuracy, by also taking into account the transient-state.

In [14], the power shapes of transient events have been used as features; the authors have
observed that the transient behavior of several appliances is different and thus can be used as a
characterizing feature. In [25], the authors used as a feature the energy calculated during the “turning
ON” transient event. High frequency collection also allows performing a deeper Fourier analysis and
extracting higher harmonics as has been experimented in [26]. Zeifman and Roth [12] asserted that a
set of harmonics (instead of a single one) can be used as complementary features of active and reactive
power. In order to save resources and improve performance, Norford and Leeb [14] enhanced Hart’s
method introducing harmonics analysis using transient signals. In [27], Patel et al. have used the high
frequency analysis of the voltage noise during the transient events.

3.2. Disaggregation Approaches

The NILM methods implemented so far can also be distinguished for the approach type. There
are two ways to conceive the training phase of a learning method: supervised and unsupervised.
Both of them have weaknesses and strengths [28].

A supervised approach makes use of labeled data in the training phase in order to allow the
NILM system to detect device contributions from the aggregate consumption load [7]. Consequently,
an increase in terms of both computational resource investments and human effort for the system
startup phase has to be considered; however, it generally offers good accuracy results.

Starting from Hart’s work, in 1992 [6], which made use of Finite State Machine (FSM), many
other different supervised approaches have been proposed, as those based on k-Nearest Neighbor
(k-NN) [29] and Support Vector Machine (SVM) [26,30]. Kramer et al. [31] have recently performed
an analysis for comparing disaggregation accuracy results achieved by different classifiers such as
SVM, NN and Random Forests. As it has been shown that the temporal transitions information
could improve the disaggregation [12], few algorithms that could manage this combination have been
investigated. For instance, Artificial Neural Networks (ANN) have been used in many works as they
offer better extensibility, dynamicity and capability to incorporate device state transition information
such as in [13,19,25]. Ruzzelli et al. [13] proposed a supervised NILM system, called RECognition of
electrical Appliances and Profiling (RECAP), based on a single ZigBee sensor for energy monitoring
clipped to the main electrical unit.

In an unsupervised approach, the system does not have any a priori knowledge about the
devices and often requires a manual appliance labeling when the disaggregation phase has finished.
In [32] the genetic k-means clustering has been used to isolate the Real Power and Reactive Power
steady-states and to detect the number of the turned-ON devices. Zia et al. [33] propose an appliance
behavior modeling approach which uses Hidden Markov Models on Real Power traces. One of the
most recent and original unsupervised approaches is the one proposed by Kolter and Jaakkola [9]
in 2012. This method consists in fact in modeling each appliance consumption behavior with
a Hidden Markov Model and the aggregate consumption with the additive factorial version; the
authors also proposed a new inference algorithm, called Additive Factorial Approximate MAP
(AFAMAP) to separate appliances traces from the aggregated load data. Egarter et al. [34] propose
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an approach based on additive FHMM that introduces the use of Particle Filtering for estimating the
appliance states.

Few recent projects have remarked on the need to provide the system with context information
in order to both better characterize the appliance profiles and improve disaggregation performances.

In 2011, Kim et al. [35] extended the FHMM approach with an unsupervised disaggregation
algorithm that uses appliances behavior information (i.e., ON-duration, OFF-duration, dependency
between appliances, etc.). With respect to Kim’s work, our original contribution is based on the
addition of environmental and statistical features such as respectively the user presence and the
daily usage distribution of several appliances. In addition, Shahriar et al. [36] proposed a similar
approach which uses temporal and sensing information but with the aim of performing an appliance
classification of power traces of single or a combination of two devices. Furthermore, a private dataset
has been used in both [35] and [36], thus non-comparable results have been produced; conversely,
our work uses a public dataset [10], which is thus available also to other researchers. Several
open data sets are available at this time: high frequency datasets such as BLUED (Building-Level
fUlly-labeled dataset for Electricity Disaggregation) [37] or REDD (Reference Energy Disaggregation
Dataset) [38]; low frequency data sets such as TRACEBASE [10] or ultra-low frequency as AMPds
(Almanac of Minutely Power dataset) [39]. As BLUED and REDD include various features for
each analyzed appliance, TRACEBASE, provides simple active power data for each monitored
appliance. In [40] a detailed comparison among some of the above-mentioned public datasets has
been published. The authors also provide semi-automatic labeling algorithm to help researchers in
creating fully labeled energy disaggregation datasets. We chose TRACEBASE since it provides public
low frequency power consumption traces of various devices gathered in real houses. Moreover, the
whole data set is fully labeled and contains temporal information for each power sample.

4. Disaggregation Algorithm

This section describes the proposed new energy disaggregation algorithm. First, we briefly
mention the principles of the state of the art approach we adopted and then we describe how
we enhanced this approach to leverage context information (e.g., timing usage statistics and
user presence).

4.1. The Probabilistic Data Model

The observation of the devices’consumption traces has underlined that most of them usually
switch from a power consumption value to few others during each period of use; every trace can thus
be considered as a set of transitions from a consumption level to the subsequent one. Consequently,
the mean value of each power level with its associated variance can be regarded as a state.

The Hidden Markov Model (HMM) is a probabilistic learning method for time series where the
information about the past is transmitted through a single discrete variable, precisely named “hidden
state” [8]; in this work, the HMM represents the power consumption evolution as a sequence of
states. Such Markov processes are labeled starting from the outputs; analyzing the observed state,
the algorithm assess what is the most likely Markov model hidden state capable of generating the
observed output. Each device, thus, has been modeled through an HMM according with the power
states and the transition matrix which determines the probabilities of each state to evolve in another.
HMMs have been treated as Factorial HMM as described in [8] to consider the independent utilization
overlaps of each device; the observed output is thus composed as a state additive function of the
different hidden states.

The single hidden Markov model, with its conditional independencies, is graphically
represented in Figure 1a, where a sequence of observations {Yt} with t = {1, ..., T}, is modeled
by a probabilistic relation with a sequence of hidden states {St}, and a Markov transition structure
connecting the hidden states [8].
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Figure 1. (a) the single Hidden Markov Model; (b) the additive Factorial Hidden Markov Model.
Image adapted from [8]. Copyright 1997, Kluwer Academic Publishers.

The state can take one of K discrete values, St ∈ {1, ..., K}, which have been extracted from
the occurrence histogram composed by several power traces for each appliance, through the use of
a clustering technique (i.e., Gaussian Mixture Model). The transition matrix has therefore a K × K
dimension and represents the state transition probabilities, P(St|St1). Figure 1b shows the additive
FHMM in which each independent HMM for each monitored device evolves in parallel; the sequence
of observed output {Yt} represents the aggregate hidden states; the algorithm thus estimates which
is the most probable sequence of Markov hidden states that could have produced that output.

4.2. Inference

As mentioned above, Kolter and Jaakkola [9] in 2012 proposed an approach based on additive
Factorial Hidden Markov Model that aimed at improving inference complexity performances and
avoiding local optima issues [9]. As the number of devices to disaggregate grows; in fact, the
evaluation of all the possible HMM evolutions that could have generated the aggregate output,
implies an increase in the computational complexity of the disaggregation process. Therefore, the
authors proposed an algorithm called Additive Factorial Approximate MAP (AFAMAP) which is able
to bypass the unreachable exact inference through the approximation of the Maximum A Posteriori
Probability [9]. Kolter and Jaakkola [9] have released a Matlab version of the AFAMAP algorithm
(2012); in their paper, they provide some test results and discuss the effectiveness of the algorithm
compared to other inference algorithms (i.e., Maximum A Posteriori Probability, Structured Mean
Field, etc.) in terms of disaggregation error.

For simplicity, we do not quote the mathematical model as it is available in detail in [9] with
some comparative results.

4.3. Context-Based Disaggregation

The contextual conditioning has been realized by adopting and extending the Conditional
FHMM [35] solution, which allows integrating context information to the classical FHMM in order to
obtain dynamical, rather than static, state transition matrices.

Among the various approaches made available in literature, including in particular the
Conditional Random Fields [41], our choice fell on Conditional FHMM as it allowed us to easily
extending the approach by Kolter and Jaakkola [9], while maintaining the use of the above-mentioned
AFAMAP inference algorithm.

We selected the following types of context information:

• timing-usage statistics, which has been generated through a statistical analysis over the
Tracebase dataset.

• user presence information, which has been synthetically generated for the purpose of this work.
In real world cases, these data could be collected through presence sensors located in the private
home rooms.
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The selection of these features has been performed taking into account cost of real-life
deployments. Therefore, we preferred to use a very small number of presence sensors, typically
one for each room in the house, instead of a huge number of different sensors (e.g., pressure, ignition
switches, movement, etc.).

4.3.1. Timing Usage Statistic Conditioning

The Tracebase dataset provides active power measurements and their relative sampling instants.
This information has allowed us to evaluate the timing-usage statistics of the different devices.
From the available daily measurements, the number of turning-ON events (OFF-ON transitions)
of each device in time intervals of 30 min has been derived. Then, the occurrence histograms of the
turning-ON events (in 24 h evaluation periods) have been generated.

The analysis of the histograms has led us to extract the information for the conditioning which
is the higher or lower probability that a device has been turned ON in a specific time of the day.

For example, Figure 2a shows the occurrence histogram of a refrigerator. Relevant trends for
the conditioning are not visible, due to the “always ON” nature of the device. Vice versa, a washing
machine (Figure 2b) shows a very low turning-ON probability during night hours; this information
can thus be employed to modify the state transition probabilities of this device.

x10

10

8

6

4

2

x103

14

12

10

8

6

4

22

0

0

5                     10                    15                     20                   25                   30                    35                    40                    45

5                     10                    15                     20                   25                   30                    35                    40                    45

O
cc
ur
re
nc
e 
of
 “
O
N
” 
sta
te

O
cc
ur
re
nc
e 
of
 “
O
N
” 
sta
te

Time interval (30 minutes)

Time interval (30 minutes)

Figure 2. Usage statistics distribution for a refrigerator (a) and a washing machine (b).

4.3.2. User Presence/Absence Conditioning

The necessary information to perform this second conditioning derives from presence sensors
appropriately deployed in the house. This type of conditioning consists in modifying the probability
associated to the “OFF-ON” transitions of a device trace, according to the presence/absence of a user
in a specific time interval. It was assumed, in fact, for specific types of appliances, the turning-ON
event cannot occur without the presence of a user.

In particular, we considered two possible time intervals of observation:

• Presence/absence of users in a single time interval;
• Presence/absence of users in two consecutive time intervals.
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The time interval duration is arbitrarily set as the longest consumption cycle that has been
detected among the analyzed traces (i.e., a washing machine cycle).

In order to clarify this critical claim, it is useful to analyze the operating characteristic
of a washing machine through a three-state Markov chain: state 1 “OFF”, state 2 “WASHING
PROGRAM”, state 3 “WATER HEATING”. In Figure 3, the Pij terms indicate the transition probability
from the state j to the state i, typical of the single device.

Figure 3. Example of a State Machine with associated transition probability modeling a washing
machine operation.

The example shows that the device in examination does not provide, among the possible
transitions, the transition from state 1 to state 3 without passing through state 2 (P13 and P31 are
nil). Table 1 shows the probabilities to transit from state i to state j and vice versa in a single step.

Table 1. Example of a transition matrix for a washing machine.

j
i S1 S2 S3

S1 0.9978 0.0022 0
S2 0.0307 0.9690 0.0003
S3 0 0.0012 0.9988

User absence in the single time interval implies that:

• If the device is ON, it will continue its customary working cycle until the end of the washing cycle;
• If the device is OFF, the transition to state 2 is not possible ON during the time interval (because

there are not users in its neighborhood), thus: P21 = 0 as it is shown in Figure 4 and in Table 2.

Figure 4. Example of a state machine for a washing machine derived by taking into account user
presence information.
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Table 2. Example of a transition matrix for a washing machine derived by taking into account user
presence information.

j
i S1 S2 S3

S1 1 0 0
S2 0.0307 0.9690 0.0003
S3 0 0.0012 0.9988

The user absence for two consecutive time intervals, instead, implies that:

• If the device was ON before the beginning of the observation (before the first interval), it will have
terminated its working cycle within the first interval; therefore, it is currently OFF (OFF in the
second interval);

• If the device was OFF, it will not have had a new turning-ON, thus it is currently OFF (always
in the second interval). The Markov chain for the device in the second time interval collapses in
a single state, precisely the OFF state, with, as the sole possible transition, itself; the probability
from state 1 to state 1 results thus unitary (P11 = 1) as shown in Figure 5 and in Table 3.

Hereafter, we will refer to these conditioning mechanisms as follows: Usage Statistic
Conditioning (USC) and User Presence (UP) single/double Interval Conditioning (IC).

Figure 5. State machine of a washing machine taking into account user presence information for two
consecutive time intervals.

Table 3. Transition matrix of a washing machine taking into account user presence information for
two consecutive time intervals.

j
i S1 S2 S3

S1 1 0 0
S2 0 0 0
S3 0 0 0

5. Experimental Results

In this section, we describe the experimental activities carried out to validate our approach. First,
we describe the dataset [10] that we used and how we extracted the HMM models for each considered
appliance. We then show and discuss a meaningful disaggregation test for each context-based
conditioning mechanism by providing both the graphical and the numerical disaggregation results
at appliance level. Averaged disaggregation results are also discussed for four different test cases
and compared them with the basic algorithm by Kolter and Jaakkola [9]. Appliance profiling has
been performed using Python scripts on a machine equipped with an Intel Core 2 Duo P8400 at
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2.26 GHz, 3 GB RAM; disaggregation test campaigns have been performed using Matlab version
R2012a on a machine equipped with an Intel Core2 Duo CPU T7500 at 2.2 GHz, 2 GB RAM and
another with Intel Core 4 i7-3610QM at 2.3 GHz, 8 GB RAM.

In order to provide experimental results which could be compared with those of other works,
the precision and recall parameters [42] have been chosen. The parameters are calculated as follows:

Precision =
True positive

True positive + False positive
(1)

Recall =
True positive

True positive + False negative
(2)

Considering the real and the disaggregated power samples for each device:

• The true positive parameter represents the number of samples that have been correctly classified
or, more precisely, the power quantity correctly assigned to that device.

• The false positive parameter represents the number of samples that have been incorrectly classified
or, more precisely, the power quantity incorrectly assigned to that device.

• The false negative parameter represents the number of samples that should be but have not been
classified or, more precisely, the power quantity that should have been assigned to that device but
has been assigned to another or has not been assigned at all.

The precision parameter measures the portion of power samples that has been correctly classified
among the power samples assigned to a given device. The recall parameter measures what power
portion of a given device is correctly classified in general, also considering that samples that would
belong to that device but have been wrongly assigned to another or not assigned at all.

In order to show a general parameter that could combine the results obtained through the
precision and recall analysis, the F-Measure parameter has been considered and calculated as follows.

F−Measure = 2
Precision Recall

Precision + Recall
(3)

Although F-Measure represents a statistical combination of precision and recall, in our
experimentation, the first parameter has a more pertinent meaning in the single appliance
disaggregation results, as it enhances the percentage of the right assigned power samples. For this
reason, in our test-cases discussed below, precision results are shown at a single appliance level, while
at a test and overall level, recall and F-Measure are also pointed out.

5.1. Data Analysis and Pre-Processing

As a preliminary step, we have evaluated Tracebase [10], which is the dataset that we adopted
in this work, and performed few preprocessing operations on the data. Tracebase, which has been
introduced in Section 3, is a public, password-protected dataset. It consists of real power consumption
traces of a range of electric appliances that have been collected in more than ten households and office
spaces. The trace collection script, described by Reinhardt et al. [10] (2012), has been configured to
gather one sample per second; furthermore, every sample is stored with its timestamp. However,
because of the topology of the data collection network and the encountered delays, the authors
stated that traces may also show a higher or lower frequency; this physical characteristic forced us
to perform an accurate data analysis and a pre-processing phase that are described below. Moreover,
this dataset is conceived to perform the appliance classification, thus it provides reliable power
consumption traces as they all have been detected with a dedicated smart plug. Therefore, it does not
include an aggregate consumption signal. In this work, we set up a synthetic aggregate power trace
consumption that is composed of a sample-sum of a selected subset of the available traces. Indeed,
Tracebase includes up to 1270 monitoring traces of 122 devices of 31 different appliances types, but
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we used a subset made by 423 traces of 43 devices belonging to 6 types (Table 4), by selecting those
devices that presented a major number of traces and less holes in the monitoring interval.

Table 4. Tracebase subset of appliances used in our approach. Data have been partially reproduced
from [10].

Device Type #Appliances #Traces

Coffee Maker 5 39
LCD TV 10 94

Microwave Oven 5 48
PC Desktop 9 90
Refrigerator 7 130

Washing Machine 7 22

As stated by Reinhardt et al. [10], Tracebase presents several detection inhomogeneities; a daily
power trace can, in fact, show more than one sample per second or a lack of data for some seconds.
Hence, we processed all the daily power trace by normalizing each one with 86,400 samples (number
of seconds in a day). We have performed the zero-padding or the average operations on the
missing/surplus samples and put the obtained values in a normalized trace. These operations have
become reasonable after the data analysis. For instance, when a device results in being disconnected
to the electric network (OFF state), the meter has obviously gathered a zero-consuming trace; thus,
we have zero-padded the missing samples and reduced in an only zero value the surplus samples
gathered at the same second. Moreover, when the device is active (ON state) we have evaluated the
samples immediately before and after the missing one/ones and performed an average operation of
them and then filled the missing value with the obtained result. An analogous operation has been
performed in the case when there was more than a sample per second.

5.2. Appliance Profiling

In order to extract the power levels that typically characterize an appliance consumption,
we analyzed all the available traces for each appliance in our subset. As mentioned above, according
to the consumption behavior and the nature of the devices, each device consumption profile can be
approximately characterized by just few power states. To identify them, we generated for each type
of device a power value occurrence histogram aimed at highlighting the most frequently achieved
values ranges.

After this operation, a further sub-sampling operation is performed. The zero power, which
corresponds to the disconnected state, could, in fact, mislead the research of accumulation values
as it reasonably represents, except for the “always ON” appliances, the most frequent sample value.
Therefore, a coherent sub-sampling has been applied by processing each sequence through a sliding
window of fixed size (10 samples); in the case where the samples observed in the window result all
0, nine values of these will be barred from the data on which to search the state value. After this
pre-processing phase, the problem of determining the intrinsic structure of the data to be grouped,
in the case that only the observed values result accessible have been considered; hence the preciseness
of the state extraction has been tested through clustering analysis [43].

Clustering analysis organizes the data according to an abstract structure in order to recognize
groups or hierarchies of groups. A cluster is composed of a number of similar objects collected or
grouped together according to a specific parameter named distance. How the distance is set up
and which parameter it represents depends on the chosen algorithm and on the type of data to
be processed. In our experimentation case, the objects are represented by the power values; the
clustering algorithm has to evaluate and group them together in order to extrapolate few power states
that could effectively describe the consumption behavior of each type of appliance. The clustering
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algorithm identifies few mean values and their associated variances that could represent as accurately
as possible each consumption state.

To solve our problem, we made preliminary tests with some clustering algorithms; k-means [44]
and Gaussian Mixture Model (GMM) [45] reported the most consistent results.

With k-means, given a set of n points defined in a d-dimensional space Rd and an integer k,
the problem consists in determining a set of k points, belonging to Rd, called centroids, such that
each mean squared distance for each point belonging to the cluster is minimal when compared to the
centroid. In our case, the centroids represent the states of the descriptive model which is associated
with each device observed. This type of technique usually fails in the general categories of clustering
that are based on the variance [46]. As mentioned above, we have also investigated a probabilistic
approach, named Gaussian Mixture Model (GMM). It is assumed that the data are generated by
a mixture of latent probability distributions in which each component represents a different group of
clusters [43]. It consists in the weighted sum of M components of Gaussian densities as described by
the following equation:

p(x|λ) =
M

∑
i=1

ωig(x|µi, ∑
i
), (4)

where x is a D-dimensional data vector (e.g., measured features), ωi (i = 1, ..., M) represent the
mixture weights and g(x|µi, ∑i) with (i = 1, . . . , M) are the components of Gaussian densities.
Each Gaussian component is represented by the following shape:

g(x|µi, ∑
i
) =

1

(2π)
D
2 |∑i |

1
2

exp{−1
2
(x− µi)

′
−1

∑
i
(x− µi)}, (5)

where µi is the mean vector and ∑i is the covariance matrix. The mixture weights meet the
following condition:

M

∑
i=1

ωi = 1. (6)

There are several variants of the GMM that have just been introduced, depending on the
calculation type of the parameters that describe the distribution. The choice of model configuration
(number of components, dense or diagonal covariance matrices, link among parameters, etc.) is often
determined by the amount of available data to estimate the parameters of GMM and the environment
in which the GMM is applied. One of the most important attributes of GMM is its ability to form
smooth approximations of arbitrary distribution densities. A GMM acts as a sort of hybrid that uses
a discrete set of Gaussian functions, each with its own parameters (mean and covariance matrices),
in order to permit a better modeling capability. In this paper the data model that have been associated
to each device is composed from the following components:

• The data x = {x1, . . . , xL} represent the sample data which is in turn a realization of
X = {X1, . . . , XL}

• Xi represents the ith data flow which is described by a d-dimensional feature space {F1, . . . , FD}.
• X can be divided in data that have been labeled as X1 but not Xu.
• K = {k1, . . . , kN} represents the set of state classes that are associated to each device.

Therefore, our clustering problem is reduced to finding the N-states which better represent each
monitored device [47].

We chose to adopt GMM because of its excellent characteristics of adaptability to the proposed
data. This approach allows in fact to more clearly extract the device representative states
characterized by an average value and its respective variance. Table 5 shows comparative results
regarding state extraction obtained with the two algorithms for a refrigerator and a washing machine.
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Table 5. Comparative results of k-means and Gaussian Mixture Model (GMM) clustering algorithm
for extracting the power levels (mean and variance) of a refrigerator and a washing machine.

Algorithm Mean Variance

Refrigerator

66.09 7.42
302.48 56597.83k-means
61.09 37.66

64.13 8.46
491.01 24501.37GMM
30.56 921.85

Washing Machine

6.72 205.39
2100.47 9339.21k-means
167.65 6804.05

2.00 0.001
2100.47 9339.21GMM
105.28 2349.91

In the refrigerator case, k-means returns two mean values that are too similar (about 66 and 61)
and thus results are not useful for the HMM model extraction aim. Instead, GMM reported more
defined low consumption mean values together with acceptable variance values. In the washing
machine case, GMM emerges for its smaller variance as the obtained mean values for each algorithm
are similar.

As introduced in Section 4, the Hidden Markov Model includes the definition of a transition
matrix. Therefore, we extracted the statistical model associated with each device, or, more precisely,
the state transition function that models the appliance power consumption behavior with its
associated probability. For each type of appliance, according to the set of states generated through
the GMM, we mapped the sequence of samples in the power traces into a sequence of states.
We then detected all the transition events (including the self transitions) and counted their occurrence
to extract the corresponding probability. Figures 1 and 3 show the state machine and transition
probability matrix that we obtained for a washing machine, respectively.

5.3. Context-Based Disaggregation

The experimentation has been composed of several phases. Firstly, each context conditioning
has been singularly applied to the algorithm and the obtained results have been compared to those
obtained in the work by Kolter and Jaakkola [9]. Secondly, disaggregation results have been evaluated
considering both context information items. Each test has been performed by providing the system
with the full-knowledge regarding each appliance that could compose the aggregated consumption
trace (Table 4), i.e., including even those turned off. As mentioned above, the aggregate consumption
trace has been composed synthetically by summing the daily traces of each single appliance. In order
to create the test set, we combined each daily trace of a given appliance for a given day with all the
daily traces of the other appliances. First, we describe how each single context-based conditioning
approach operates.

5.4. Usage Statistic Conditioning

In Figure 6, an aggregate power consumption trace is shown; as it can be noticed in this temporal
portion, a PC-Desktop is always ON just like the Refrigerator, an LCD-TV is turned ON a little after
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8:00 am and left ON until the end of the examined temporal portion. Moreover, a Coffee Maker is
used in the other two daily moments.
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Figure 6. Aggregate power consumption trace—test case 1.

Figure 7 graphically shows the results obtained by applying the disaggregation algorithm by
Kolter and Jaakkola [9].
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Figure 7. Power consumption trace disaggregated with the basic Kolter and Jaakkola [9]’s Additive
Factorial Approximate MAP (AFAMAP) algorithm - test case 1.

Figure 8 shows the graphical disaggregation results obtained by applying our NILM algorithm
with Usage Statistics Conditioning (USC).
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Figure 8. Power consumption trace disaggregated with the Usage Statistics Conditioning (USC)—test
case 1.

An improvement can be observed; this is plausible, especially for devices that are typically
switched ON and OFF in a portion of a specific time such as the coffee maker. As expected,
a typical ”Always ON" device such as the Refrigerator does not benefit from the effects of this type of
conditioning.

Table 6. Precision results obtained with Kolter and Jaakkola [9]’s Additive Factorial Approximate
MAP (AFAMAP) algorithm in basic and with Usage Statistics Conditioning version.

AFAMAP [9] USC

Refrigerator 27.88% 30.77%
LCD-TV 99.28% 100.00%

PC-Desktop 50.99% 74.07%
Coffee Maker 36.14% 77.21%

Table 6 shows the precision obtained with the timing usage statistics conditioning compared
with those obtained by using the AFAMAP algorithm [9].

5.5. User Presence Conditioning

The second conditioning is analyzed below. Figure 9 shows the real aggregate consumption
trace of a Washing Machine with the same LCD-TV trace that has been analyzed above; the graphic
shows a portion of washing cycle with a high consumption phase (corresponding to the water heating
phase) in the middle. In this case, the LCD-TV disaggregation is a little worse (demonstrating that
depending on the device traces combination, disaggregation precision can change) and this kind
of conditioning, both in the single (Figure 10) and double (Figure 11) interval version, does not
introduce relevant improvements with respect to the algorithm by Kolter and Jaakkola [9]. This
is due to the fact that in this case the TV usage lasts for a very long period, probably longer than
the user presence observation interval. Figures 10 and 11 shows an improvement in the Washing
Machine disaggregation, obtained through the Single Interval Conditioning and the Double Interval
Conditioning, respectively. The washing phase, which is characterized by low power consumption,
is difficultly distinguishable; the basic algorithm, in fact, confuse it for a PC-Desktop execution
(Figure 12). Although even with the Single Interval Conditioning few errors are encountered, a portion
of washing machine consumption is well-assigned (Figure 10). The graphical results are confirmed
by the precision percentage shown in Table 7.
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Figure 9. Aggregate power consumption trace—test case 2.
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Figure 10. Power consumption disaggregation obtained with the UP Single Interval Conditioning—test
case 2.
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Figure 11. Power consumption disaggregation obtained with the UP Double Interval Conditioning.
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Figure 12. Power consumption disaggregation obtained with Kolter and Jaakkola [9]’s AFAMAP
algorithm—test case 2.

Table 7. Precision percentages comparison between Kolter and Jaakkola [9]’s AFAMAP algorithm and
the User Presence Single and Double Interval Conditioning.

AFAMAP [9] UP Single IC UP Double IC

Refrigerator 70.73% 78.50% 94.78%
LCD-TV 93.86% 90.54% 94.04%

5.6. Discussion

Table 8 compares average results of four tests using the basic Kolter and Jaakkola [9]’s algorithm,
the User Presence Single Interval Conditioning, the User Presence Double Interval Conditioning, the Usage
Statistics Conditioning and a combination of the last two conditioning mechanisms executed together.
In almost all cases, a disaggregation precision average improvement is observed with respect to the
basic algorithm. Even if the combination of the usage statistics conditioning with the double interval
conditioning is better in most cases, percentage-wise, the most effective is the User Presence Double
Interval Conditioning. As regards the Recall parameter, the average results are a little worse than the
precision ones. This is caused by the nature of this parameter that, by definition, also considers the
wrongly assigned or unassigned samples of a given device. However, the recall improvement over
the basic algorithm tightly depends on the analyzed test case, as, for example, a greater quantity of
not assigned power samples can worsen this value.

Table 8. Average precision/recall percentage results comparison among each tested algorithm for 4 test
cases.

AFAMAP [9] UP Single IC UP Double IC USC UP Double IC + USC

Test 1 44,72/73,88 61,23/81,11 61,44/74,12 48,68/72,98 61,36/73,84
Test 2 49,63/80,49 43,06/69,39 57,48/70,46 57,40/73,45 58,18/70,68
Test 3 44,37/81,73 54,83/86,97 69,11/71,59 54,18/80,74 68,94/71,43
Test 4 50,76/59,51 41,52/70,74 53,27/55,26 53,43/55,01 52,92/54,38

The experimentation campaign, carried out with the complete test set over the basic algorithm
for each conditioning, has highlighted the average improvements that have been reported in Table 9.
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Table 9. Average Precision and F-Measure improvements over the basic AFAMAP algorithm [9].

Context-Based Conditionings Precision F-Measure

1 User Presence single interval conditioning ≈ 3% ≈ 2%
2 User Presence double interval conditioning ≈ 12% ≈ 14%
3 Usage Statistics conditioning ≈ 6% ≈ 3%
4 The combination of 2) and 3) ≈ 13% ≈ 14%

As can be observed, even though the recall parameter apparently worsened the disaggregation
results at test level, the F-Measure evaluation parameter, through the whole test set, reports
a significant improvement as well as the precision parameter.

6. Conclusions

In this article, we proposed a new energy disaggregation algorithm that takes into account
context-related information that can be gathered from low-cost sensors and statistical analysis of
energy consumption data. With respect to most existing works, which are based on the analysis
of data collected at a high sampling frequency [14,25,26], our contribution consisted of investigating
a disaggregation approach on energy monitoring data collected at low frequency. This choice has
the following advantages: it is possible to use low-cost and widely available smart meters and data
storage and transfer tasks are less resource demanding. Context features (e.g., user presence and
device usage consumption patterns) have been exploited to improve the statistical model of each
appliance.

Results of testing activities and their comparison with a state of the art solution are encouraging.
In the future, it would be useful to extend the proposed approach to include the use of additional
context information (e.g., profile of users, weather information, etc.) in order to improve the
disaggregation algorithm as well as to enhance the proposed approach with optimization algorithms
and suggestion mechanisms to help consumers in saving energy costs.

Moreover, tests described in this work are based on the use of data available from a publicly
accessible dataset, i.e., Tracebase [10]. We believe that the adoption of open data sets in this field
may speed up research and innovation processes by favoring repeatable research and easing the
comparison of different approaches.
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