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We consider the one-dimensional equilibrium problem of a shear-flow boundary
layer within an ‘extended-fluid model’ of a plasma that includes the Hall and the
electron pressure terms in Ohm’s law, as well as dynamic equations for anisotropic
pressure for each species and first-order finite-Larmor-radius (FLR) corrections to the
ion dynamics. We provide a generalized version of the analytic expressions for the
equilibrium configuration given in Cerri et al., (Phys. Plasmas, vol. 20 (11), 2013,
112112), highlighting their intrinsic asymmetry due to the relative orientation of the
magnetic field B, b = B/|B|, and the fluid vorticity ω = ∇ × u (‘ωb asymmetry’).
Finally, we show that FLR effects can modify the Chapman–Ferraro current layer at
the flank magnetopause in a way that is consistent with the observed structure reported
by Haaland et al., (J. Geophys. Res. (Space Phys.), vol. 119, 2014, pp. 9019–9037).
In particular, we are able to qualitatively reproduce the following key features: (i) the
dusk–dawn asymmetry of the current layer, (ii) a double-peak feature in the current
profiles and (iii) adjacent current sheets having thicknesses of several ion Larmor
radii and with different current directions.
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1. Introduction
A comprehensive modelling of magnetized plasmas and of their multi-scale

dynamics is an outstanding challenge in laboratory, astrophysical and space plasma
research. In particular, given that direct numerical simulations are nowadays the
main tool to address such complex dynamics, finding a compromise between an
exhaustive theoretical model and its actual implementation represents a major goal
for computational plasma physics.

A kinetic model based on the full Vlasov–Maxwell system of equations would
need to be solved in a six-dimensional phase space (three real-space and three
velocity-space dimensions), resolving length and time scales that typically span over
several orders of magnitude. For this reason, fully kinetic simulations that adopt
realistic parameters and/or complex geometries are still far from being realizable
because of their colossal computational cost. Moreover, there is overwhelming
difficulty in constructing an analytical description of Vlasov equilibria in realistic
settings. In fact, the few existing examples typically consider very simplified cases
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2 S. S. Cerri

(e.g. uniform and homogeneous magnetic field and/or only periodic functions) and still
one cannot fully constrain the resulting velocity profiles beforehand and/or provide
those equilibria without appealing to a numerical solution of the problem (see, e.g.
Cai, Storey & Neubert 1990; Attico & Pegoraro 1999; Mahajan & Hazeltine 2000;
Bobrova et al. 2001; Malara, Pezzi & Valentini 2018).

On the other hand, a model based on a fluid treatment such as the magnetohydro-
dynamic (MHD) equations neglects most of the characteristic length and time scales
inherent to a kinetic description of the plasma dynamics and only needs to be solved
in real space. The MHD description thus represents the simplest viable approach,
which nevertheless has led to many fundamental theoretical results (e.g. Chapman
& Ferraro 1930; Ferraro 1937; Alfvén 1942; Lüst & Schlüter 1954; Chandrasekhar
1956; Shafranov 1958; Grad 1960; Taylor 1974). Furthermore, in the last two decades,
we have been able to afford well-resolved MHD global simulations providing useful
insights (e.g. Groth et al. 2000; Siscoe et al. 2000; Jia et al. 2012, 2015; Merkin,
Lyon & Claudepierre 2013; Liu et al. 2015; Dong et al. 2017; Sorathia et al. 2017).
However, in a real system, the nonlinear plasma dynamics would naturally develop
small scales and bring the effects associated with the neglected kinetic scales back to
light, and so a MHD description eventually breaks down. Moreover, accounting for
the leading kinetic effects may already be necessary to implement a correct initial
plasma equilibrium, in order to avoid uncontrolled and spurious readjustments that
can affect the subsequent dynamics or to explain certain features of the system under
consideration (e.g. Cerri et al. 2013; Henri et al. 2013).

The fully kinetic and MHD descriptions actually represent the two extremes of a
wide variety of plasma models. There are a large number of approaches that try to
bridge the above antipodes in different ways: from the one side, by simplifying a
fully kinetic description based on the dismissal of presumably unimportant effects;
from the opposite side, by gradually including more and more kinetic effects within
a fluid framework. The former class of models are usually referred to as ‘reduced-
kinetic models’, such as the gyrokinetic (GK) (Brizard & Hahm 2007) and the hybrid
Vlasov–Maxwell (HVM) (Valentini et al. 2007) approximations; the latter are known
as ‘extended-fluid models’, in which kinetic effects are gradually included in a fluid
description. This is the case, for instance, when retaining finite-Larmor-radius (FLR)
corrections (Roberts & Taylor 1962; Macmahon 1965), or when including the effect
of linear Landau damping (Landau 1946) by modelling it with a so-called Landau-
fluid (LF) closure (e.g. Hammett & Perkins 1990). These two aspects can also be
both included within a single framework, such as in the so-called finite-Larmor-radius
Landau-fluid (FLRLF) model (Sulem & Passot 2015). However, within the range of
validity defined by each model’s assumption (‘ordering’), reduced-kinetic models still
unavoidably face the curse of high dimensionality, and so extended-fluid models still
represent an attractive choice when seeking a compromise between kinetic and fluid
descriptions.

The need to extend a standard fluid description of a collisionless plasma to include
at least these effects related to a non-gyrotropic pressure tensor is particularly evident
when a sheared flow is present: in the collisionless regime, due to FLR effects, the
pressure tensor is indeed strongly coupled to the shear flow and they interact over
very short time scales (Cerri 2012; Cerri et al. 2013, 2014; Del Sarto, Pegoraro &
Califano 2016; Del Sarto, Pegoraro & Tenerani 2017; Del Sarto & Pegoraro 2018).
This is exactly the case of the low-latitude boundary layer (LLBL) between the
solar-wind flow and the Earth’s magnetosphere, where the velocity shear drives the
Kelvin–Helmholtz instability (KHI) that generates the observed large-scale ‘MHD’
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FLR equilibrium configurations with sheared flows 3

vortices (see, e.g. Faganello & Califano 2017 and references therein). In such a region,
in addition to the vortex dynamics that naturally develops fluctuations on length scales
comparable to (or even smaller than) the ion gyroradius %i (or the ion inertial length
di), the ‘large-scale’ equilibrium fields and the sheared flow itself vary over typical
length scales L0 that do not exceed the ion characteristic scales by a large amount, and
so ‘%i/L0 corrections’ cannot be completely neglected. So far, such a system has been
modelled by means of one-dimensional isotropic MHD equilibrium configurations that
ensure the total pressure balance, i.e. a balance between the thermal and magnetic
scalar pressures of the two plasmas without involving the properties of the background
sheared flow. However, as soon as FLR effects and/or the full ion pressure tensor
are taken into account, the shear-flow properties enter the pressure-balance conditions
and the simple isotropic MHD configurations are generally no longer an equilibrium
(Cerri 2012; Cerri et al. 2013, 2014). As a result, the system naturally develops
shear-driven anisotropies (e.g. De Camillis et al. 2016; Del Sarto et al. 2016; Del
Sarto & Pegoraro 2018). This is important for (at least) two practical reasons. First,
a difficulty arises when comparing the linear evolution of the KHI using fluid and
kinetic models. As discussed in Henri et al. (2013), in which the same isotropic
MHD configuration was adopted as an initial condition for simulations using different
plasma models (namely, MHD, two-fluid, hybrid and full Particle-In-Cell (PIC)), it
was found that violent and uncontrolled readjustments were injecting large-amplitude
fluctuations into the system (see also Del Sarto et al. 2017) and changing the
configuration on top of which the instability develops (see also Nakamura, Hasegawa
& Shinohara 2010). Therefore, these spurious effects would partially mask the actual
kinetic effects on the KHI and make a genuine comparison difficult. Secondly, using
ten years of observations made by the Cluster satellites, Haaland et al. (2014) have
recently highlighted that the Earth’s magnetopause exhibits a current structure that is
more complex than the simple MHD layer described by Chapman & Ferraro (1930),
as well as a clear asymmetry between the dusk and the dawn sides. In addition to
the implications for the current system of a planet magnetosphere, these ion-kinetic
effects can indeed cause the asymmetric development of KHI at the dawn and the
dusk sides of such magnetosphere, as well as other non-ideal effects (e.g. Nagano
1978; Huba 1996; Terada, Machida & Shinagawa 2002; Nakamura et al. 2010; Henri
et al. 2012; Masters et al. 2012; Sundberg et al. 2012; Taylor et al. 2012; Delamere
et al. 2013; Paral & Rankin 2013; Haaland et al. 2014; Johnson, Wing & Delamere
2014; Liljeblad et al. 2014; Walsh et al. 2014; Gershman et al. 2015; Gingell,
Sundberg & Burgess 2015; De Camillis et al. 2016).

The aim of the present work is to show how the non-ideal behaviour of the
Chapman–Ferraro layer could be qualitatively understood in terms of a one-
dimensional equilibrium of the shear-flow layer within an extended-fluid model
that includes first-order ion-FLR corrections. The great simplicity of the treatment
presented here allows us to derive analytical equilibrium profiles in which the
ion-kinetic effects can be clearly identified. Therefore this study is meant to be a
first step – a sort of ‘proof of concept’ – towards the identification of the effects
possibly leading to the observed behaviour of the low-latitude magnetopause layer,
rather than an exhaustive description of the actual system. In order to achieve a
quantitative modelling of the global magnetopause current system within this (or a
more comprehensive) extended-fluid model, a numerical approach to the solution of
the full three-dimensional problem would likely be required.

The remainder of this paper is organized as follows. In § 2 we describe the
extended two-fluid (eTF) model of Cerri et al. (2013) and we outline the procedure
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4 S. S. Cerri

for the derivation of the equilibrium profiles (the actual derivation of a general
family of solutions for the shear-flow boundary layer equilibrium is provided in
appendix A); consequences for shear-flow instabilities, agyrotropy and links to
turbulent environments are highlighted in §§ 2.3–2.5. In § 3 we show how these
profiles can qualitatively explain the observed non-ideal behaviour of the LLBL
between the solar wind and the Earth’s magnetosphere. Finally, in § 4 conclusions are
drawn. Additionally, explicit considerations on the symmetries of the FLR expansion
and on its convergence to a full pressure tensor case are reported in appendices B
and C, respectively.

2. The extended two-fluid (eTF) model

Here, we consider a non-relativistic quasi-neutral proton–electron plasma (np' ne≡

n) in the limit of massless electrons, me/mp→ 0. The model includes the Hall and the
electron pressure terms in the generalized Ohm’s law, as well as dynamic equations for
the gyrotropic pressures of both species and first-order FLR corrections to the protons’
pressure tensor1. The fluid hierarchy is closed with a double-adiabatic approximation,
i.e. by neglecting the heat fluxes, q‖ = 0 and q⊥ = 0. Such assumption is indeed
justified within a finite-but-small Larmor-radius expansion and on time scales much
longer than the ion cyclotron time scale, ρ/L∼ω/Ω ∼ ε� 1, where ρ is the thermal
Larmor radius, L is the typical length scale of variation for macroscopic quantities
and Ω is the cyclotron frequency (see Cerri et al. 2013, for explicit equations and
further details about the eTF model ordering). In fact, by neglecting gradients in the
direction of the magnetic field (b · ∇ =∇‖ = 0; see appendix A), the expressions for
the perpendicular heat fluxes (see, e.g. Braginskii 1965; Ramos 2008) would give a
second-order contribution which is ordered out in the eTF model2. In this model, the
thermal pressure tensor of the protons and of the electrons, Πp and Πe respectively,
are written as

Πp = p‖pbb+ p⊥pτ +π(1)
p , (2.1)

Πe = p‖ebb+ p⊥eτ , (2.2)

where b ≡ B/|B| is the magnetic-field unit vector, τ ≡ I − bb is the projector onto
the plane perpendicular to B and p‖α and p⊥α are the gyrotropic thermal pressures
of the α species parallel and perpendicular to the magnetic field, respectively (Chew,
Goldberger & Low 1956). In (2.1), π(1)

p is a traceless symmetric tensor taking into
account first-order FLR corrections to the gyrotropic proton pressure (also known
as gyroviscous tensor). Neglecting the heat fluxes, a general formulation for the

1We note that in the existing literature the name ‘extended MHD’ is sometimes used to describe
magnetohydrodynamic models that include Hall terms and electron inertia effects (see, e.g. Kimura & Morrison
2014). Hereafter, we will instead refer to a model as an ‘extended fluid model’ when certain kinetic effects,
such as, for instance, finite-Larmor-radius contributions and/or linear models of Landau damping, are included
within a fluid description.

2This can be seen also from the point of view of the time scales involved. Let us consider the expressions
for the heat fluxes given in Ramos (2008), that in the configuration considered here will reduce to q⊥ =
(2p⊥/mΩ)b×∇T⊥ and q‖ = (p⊥/2mΩ)b×∇T‖. The time scale on which the divergence of these heat fluxes
would contribute on the pressure evolution is thus τ∇q ∼ (L⊥/ρ)2Ω−1

∼ ε−2Ω−1 (the time scale for q‖ would
actually involve an additional anisotropy correction, T‖/T⊥, which is not very relevant here). Therefore, the
divergence of the heat flux can be neglected with respect to the flow time scale as long as ε

√
β⊥� u/vA (u

is the typical flow velocity and vA is the Alfvén speed), which is satisfied for the cases under study.
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FLR equilibrium configurations with sheared flows 5

gyroviscous tensor components can be written as (Macmahon 1965; Schekochihin
et al. 2010; Sulem & Passot 2015)

π
(1)
p,ij =

p⊥p

4Ωcp
(εilmblSmkHkj −HikεjlmSklbm)+

2(p⊥p − p‖p)
Ωcp

(biwj + bjwi), (2.3)

where Ωcp= eB/mpc is the proton gyro-frequency, εijk is the completely antisymmetric
Levi-Civita tensor, and we have introduced Sij ≡ ∂iup,j + ∂jup,i, Hij ≡ δij + 3bibj and
wi ≡ εijk(∇‖up,j)bk, with ∇‖ ≡ b · ∇. Note that the above formulation automatically
takes into account for the asymmetry due to the magnetic field direction with respect
to the vorticity (see also appendix B and Cerri et al. 2013, for explicit symmetry
considerations).

2.1. Shear-flow layer equilibrium with FLR
Within this model, we now outline the derivation of equilibrium profiles for a
one-dimensional velocity-shear layer separating, for instance, two different plasmas.
The explicit derivation of this class of analytical solutions that generalize the
results provided in Cerri et al. (2013) and that include a much wider range of
configurations of interest for what concerns magnetospheric observations will be
provided in appendix A. The goal is to provide an equilibrium configuration with
FLR corrections for the flank magnetopause, and to discuss the implications on the
low-latitude boundary layer (LLBL) profiles. For the sake of simplicity, here we
consider the one-dimensional equilibrium problem, which can be seen as a local
approximation of the LLBL. A global treatment of the magnetospheric structure
should take into account curvature terms, as well as possible gradients parallel to
the magnetic field and compressible flows. This may need to include additional
equilibrium conditions that involve all the gyroviscous components and eventually
to go beyond the simple adiabatic FLR treatment presented here by, for instance,
including heat fluxes (see, e.g. Sulem & Passot 2015; Del Sarto & Pegoraro 2018).

We consider a given x-dependent incompressible MHD flow in the y–z plane,

u= uy(x)ey + uz(x)ez, ∇ · u= 0, (2.4a,b)

such that it becomes constant at the boundaries (i.e. we consider a localized velocity-
shear layer). The magnetic field also lies on the y–z plane,

B(x)= By(x)ey + Bz(x)ez. (2.5)

We further simplify the problem by assuming a polytropic relation for the thermal
pressures3. This assumption is not strictly necessary in order to derive the equilibrium,
but it is useful for providing density and temperature profiles from the obtained
pressure profiles. In general, the equilibrium for this configuration is found by
imposing total pressure balance:

d
dx
[Πp(x)+Πe(x)+ΠB(x)] = 0, (2.6)

3Note that, when heat fluxes are neglected, the natural closure relations for the gyrotropic pressure
components would be provided by the double-adiabatic law (Chew et al. 1956) (see, e.g. also Hau et al. 1993;
Hau 2002, for convenient formulation and extensions). In the case considered here of incompressible flow, no
heat fluxes and no gradients parallel to the magnetic field, the double-adiabatic relations and the dynamical
pressure equations in the eTF model are equivalent to two different polytropic relations for p‖ and p⊥, namely
γ⊥ = 2 and γ‖ = 1 (see, e.g. Cerri 2012; Cerri et al. 2014; Del Sarto & Pegoraro 2018).
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6 S. S. Cerri

where ΠB ≡ (B2/8π)I − BB is the magnetic pressure tensor (I being the identity
tensor). Within an (anisotropic) MHD model of plasma, the shear flow does not play
a role in the equilibrium profile. In fact, when π(1)

p is neglected, the equilibrium
condition for the above configuration simply consists of a balance between the
magnetic pressure, PB(x) = B2(x)/8π, and the perpendicular thermal pressures,
P⊥(x) = p⊥p(x) + p⊥e(x). In particular, that includes the widely adopted uniform
and homogeneous plasma configuration, namely p⊥α = p‖α,0, p⊥α = p⊥α,0, By=B0y and
Bz=B0z, that is not allowed anymore when FLR corrections (or the full pressure-tensor
equations) are included in the fluid description (Cerri 2012; Cerri et al. 2013, 2014).
In general, the solution of the MHD equilibrium condition is completely described
by the chosen magnetic profile in (2.5), which determines all the profiles of the other
relevant quantities. Let us now consider the changes of a given MHD equilibrium
profile that are induced by a velocity shear of the type described above when
first-order FLR corrections are taken into account. In this case, the only component
of π(1)

p that is relevant to the equilibrium condition is

π(1)
p,xx =−

1
2

p⊥p

Ωcp

(
bz

duy

dx
− by

duz

dx

)
. (2.7)

From (2.7), one directly identifies the connection between the fluid vorticity, ω≡∇×
u, and the magnetic field direction b, arising as a consequence of the FLR effects:

π(1)
p,xx =−

1
2

p⊥p

Ωcp
(b ·ω) −→

d
dx

[(
1−

mpc
eB

b ·ω
2

)
p⊥p + p⊥e +

B2

8π

]
= 0, (2.8)

where ωy = −u′z and ωz = u′y are the components of the fluid vorticity in our
configuration. Therefore, the FLR corrections give rise to an intrinsic asymmetry in
the system’s configurations, pressure anisotropy (and most likely also the subsequent
dynamics), which depends on the degree of alignment (or anti-alignment) between the
flow vorticity and the magnetic field, namely on the sign of b · ω. Such asymmetry
has been highlighted in previous numerical simulations and analytical studies (see,
e.g. Nagano 1978; Hazeltine, Hsu & Morrison 1987; Cai et al. 1990; Huba 1996;
Ramos 2005b; Nakamura et al. 2010; Cerri et al. 2013; Henri et al. 2013; Del Sarto
et al. 2016, 2017; Franci et al. 2016; Parashar & Matthaeus 2016; Yang et al. 2017;
Del Sarto & Pegoraro 2018). We stress, however, that the simple dependence on ω
and b in (2.7) is related to the simplified character of the configuration considered
here.

Now assume that F⊥(x), G⊥(x) and H(x) are the solutions for the anisotropic
MHD equilibrium describing the profiles of the proton perpendicular pressure,
p⊥p = p⊥p,0F⊥(x), of the electron perpendicular pressure, p⊥e = p⊥e,0G⊥(x), and of the
magnetic pressure, PB(x)= (B2

0/8π)H(x) (here p⊥p,0, p⊥e,0 and B0 are the asymptotic
constant values of the pressures and of the magnetic field away from the shear layer,
on one of the two sides – here we do not assume a symmetric shear layer; see
appendix A for details). We now seek FLR-corrected equilibrium profiles in the form
F̃⊥(x) = F⊥(x)f⊥(x), G̃⊥(x) = G⊥(x)g⊥(x) and H̃(x) =H(x)h(x), where f⊥, g⊥ and h
are the ‘correction functions’. By requiring quasi-neutrality and that the MHD profile
β⊥p(x) does not change when passing to the corresponding FLR-corrected profile, the
solution can be given in term of one function only, i.e. f⊥(x) = g⊥(x) = h(x) (see
appendix A):

f⊥(x)=

 Ũ′(x)
2
+

√√√√1+

(
Ũ′(x)

2

)2


2

, (2.9)
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FLR equilibrium configurations with sheared flows 7

where we have defined

Ũ′(x)≡
β̃⊥p,0

2
mpc
eB0

F⊥(x)
H(x)

(
B0z

B0
Hz(x)u′y(x)−

B0y

B0
Hy(x)u′z(x)

)
, (2.10)

with β̃⊥p,0 ≡ β⊥p,0/(1 + β⊥,0) for brevity. Note that the solution in (2.9) has been
obtained taking into account the FLR corrections computed with the self-consistent
(i.e. FLR-corrected) equilibrium magnetic field profile, B(x) = B0

√
H(x)f⊥(x). The

equilibrium profiles resulting from (2.9) are then naturally asymmetric with respect
to the sign of ω · b.

2.2. FLR profiles and approximate kinetic equilibria
The profiles derived above can be used to initialize the ion distribution function in
order to set-up an approximate kinetic equilibrium (see Cerri et al. 2013). For instance,
assuming the inhomogeneity direction to be along x, the magnetic field to be in the
z-direction, B= Bz(x)ez and the flow to be along the y-axis, u= uy(x)ey, one obtains
the following temperatures:

Tx(x)=
p⊥p,0

n0
(1− χ(x))(F⊥(x) f⊥(x))(γ⊥−1)/γ⊥, (2.11)

Ty(x)=
p⊥p,0

n0
(1+ χ(x))(F⊥(x) f⊥(x))(γ⊥−1)/γ⊥, (2.12)

Tz = T‖p =
p‖p,0
n0

(F⊥(x) f⊥(x))(γ‖−1)/γ⊥, (2.13)

from which the three thermal velocities, vth,x(x), vth,y(x) and vth,z(x) can be defined.
The parameter χ is defined by the first-order FLR correction to the pressure tensor in
(2.8), and provides the agyrotropy of the distribution as a function of the alignment
between the flow vorticity, ω, and the self-consistent FLR-corrected magnetic field. In
our transverse case with u= uy(x)ez and B= Bz(x)ez, it reads

χ(x)≡
1
2

mpc
e|B|

(ω · b)=
1
2

mpc
eB0

u′y(x)

Hz(x)
√

f⊥(x)
, (2.14)

where u′y(x)= duy/dx. The ‘Maxwellian-like’ particle distribution function correspond-
ing to the above profiles reads

F(FLR)
M (x, vx, vy, vz)=

(2π)−3/2n(x)√
Tx(x)Ty(x)Tz(x)

exp
{
−

v2
x

2Tx(x)
−
(vy − uy(x))2

2Ty(x)
−

v2
z

2Tz(x)

}
.

(2.15)
Note that, in the general case, a distribution function reproducing the FLR-corrected

profiles would be more complicated, since it may have to give non-diagonal pressure
terms. Nevertheless, the equilibrium profiles derived from the FLR correction function
f⊥(x) in (2.9) still holds for a generic flow and magnetic-field profile (given that they
lie in the plane perpendicular to the inhomogeneity direction; see § A.1) and can
be used to set up such ‘Maxwellian-like’ distributions. We stress anyway that a
distribution function built in this way is only an approximate kinetic equilibrium,
which nevertheless can strongly reduce the spurious fluctuations arising from a
readjustment induced by adopting MHD-like equilibrium profiles within a kinetic
(or a hybrid kinetic) framework. Unfortunately, exact solutions of the kinetic (or of
the hybrid kinetic) problem usually need to consider simplified configurations, e.g. of
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8 S. S. Cerri

the magnetic field, and/or cannot exactly constrain the resulting velocity profiles
beforehand (see, e.g. Cai et al. 1990; Attico & Pegoraro 1999; Mahajan & Hazeltine
2000; Bobrova et al. 2001; Malara et al. 2018). Which solution is better to use
clearly depends on the problem under consideration. For instance, in the context
of the Earth’s flank magnetopause we are dealing with inhomogeneous magnetic
field and density profiles (and directions), so the approach presented here is more
appropriate for that case.

2.3. Readjustment time scale of unbalanced equilibria
As mentioned in the Introduction, taking into account the leading kinetic effects (such
as the above first-order ion-FLR correction) may be necessary already at the level of
the initial plasma configuration. In fact, adopting an ideal MHD initial equilibrium in
a kinetic framework will result in a quick readjustment and in the development of
spurious large-amplitude fluctuations (see Cerri et al. 2013; Henri et al. 2013).

When MHD equilibria are employed in kinetic simulations where a sheared flow
is present, the unbalanced leading ion-FLR corrections will induce a readjustment on
time scales τπ of the order4

τ−1
π ∼ β

−1/2
i,⊥ MA

(
ρi

Lu

)2

Ωc,i ∼ β
1/2
i,⊥MA

(
di

Lu

)2

Ωc,i, (2.16)

where MA ≡ u0/vA and Lu are the Alfvénic Mach number and length scale of the
background shear flow. It may be useful to compare this readjustment time scale
with the growth rate of the fastest-growing mode (FGM) for the Kelvin–Helmholtz
instability,

γ
(KHI)
FGM ∼

1
4

kFGMu0 ∼ 0.1β−1/2
i,⊥ MA

(
ρi

Lu

)
Ωc,i ∼ 0.1MA

(
di

Lu

)
Ωc,i, (2.17)

where we have used the relation kFGMLu∼ 0.4 derived in the compressible MHD limit
(see Faganello & Califano 2017, and references therein). Therefore, the effects of such
readjustment on the KHI growth are of order

γ
(KHI)
FGM τπ ∼ 0.1

(
Lu

ρi

)
∼ 0.1β−1/2

i,⊥

(
Lu

di

)
, (2.18)

which is typically smaller than (or of the order of) unity for the magnetopause case,
meaning that any readjustment happens faster than the instability itself and therefore
will strongly change the equilibrium on top of which the KHI develops.

A sketch of the behaviour of time scales in (2.16) and (2.18) with respect to the
relevant parameters is provided in figure 1. MHD-like behaviour is recovered in the
parameter space denoted by yellow/white colours.

2.4. Sustainability of pressure agyrotropy
An interesting feature of the interaction between the pressure tensor and a sheared flow
is the sustainability and/or the generation of pressure ‘agyrotropy’ (Cerri et al. 2013,

4Here we are assuming that the corresponding electron-FLR corrections are negligible compared to those
of the ions. This assumption may break down for βe,⊥ ∼ (mi/me)βi,⊥� βi,⊥.
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(a) (b)

FIGURE 1. (a) Iso-surfaces of log(Ωciτπ) in the Lu/di versus β1/2MA plane. The same
iso-surfaces apply to the Lu/ρi versus Ms plane (Ms≡ u0/cs is the Mach number, cs being
the sound speed). (b) Iso-surfaces of log(γ (KHI)

FGM τπ) in the Lu/di versus β plane.

2014; Del Sarto et al. 2016, 2017). This means that, in addition to the typical pressure
anisotropy with respect to the magnetic-field direction that is typical of collisionless
plasmas (p⊥ 6= p‖), now additional pressure anisotropy can be present in the plane
perpendicular to B, e.g. p⊥,1 6= p⊥,2 6= p‖, where (e⊥,1, e⊥,2, e‖) is any orthogonal
basis within which the pressure tensor is diagonal and where e⊥,1 and e⊥,2 define the
plane perpendicular to the magnetic field. In this section we analyse this aspect in
terms of equilibrium configurations and their corresponding agyrotropy. However, we
stress that this feature has consequences for the dynamics of a collisionless plasma
as well, e.g. modifying linear properties of perturbations (e.g. Del Sarto et al. 2016,
2017), enhancing the kinetic activity related to vorticity, current sheets, reconnection
and energy transfer in turbulence (e.g. Greco et al. 2012; Servidio et al. 2012, 2014;
Yang et al. 2017) and possibly affecting the regulation of anisotropies in accretion
disks (e.g. Kunz, Stone & Quataert 2016).

In our configuration it is easy to show that the FLR effects introduce an agyrotropy,
∆⊥, i.e. an anisotropy in the plane perpendicular to the magnetic field (see, e.g.
Scudder & Daughton 2008, for a general formulation), given by

∆⊥ =
|ω · b|
Ωci

≡ |2χ |. (2.19)

Since only the first-order FLR corrections have been retained in the present
description, only small deviations from gyrotropy are correctly described in this
case, i.e. the condition |χ | = |ω · b/2Ωci|� 1 should hold. Also, in this approximation
the equilibrium exhibits an asymmetry with respect to the sign of ω · b, but ∆⊥ does
not. In order to have such asymmetry in the agyrotropy, next-order corrections or the
full pressure tensor must be retained. In the latter case, the agyrotropy in the plane
perpendicular to B would be (Cerri et al. 2014)

∆⊥ =

∣∣∣∣ 2χ
1+ χ

∣∣∣∣ , (2.20)

where the condition χ > −1/2 must hold because of the positivity constraint on
pressure.
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10 S. S. Cerri

FIGURE 2. Pressure anisotropy in the plane perpendicular to the magnetic field
direction, ∆⊥, versus χ ≡ ω · b/2Ωci obtained from first-order FLR corrections (dashed
line, equation (2.19)) and from the full pressure-tensor equation (continuous line,
equation (2.20)). Positivity of pressure from the full-Π treatment requires χ >−1/2 (see
Cerri et al. 2014), while the FLR treatment holds for |χ | � 1.

In figure 2 we report a comparison between the pressure anisotropy in the plane
perpendicular to the magnetic field, ∆⊥, as a function of the parameter χ , obtained via
the full pressure-tensor equation (Cerri et al. 2014) and via first-order FLR corrections.

2.5. A broader view: relevance to other instabilities and turbulent environments
As we will show in § 3, the main consequences related to the ion-FLR effects reported
in this paper have a direct effect in the current system of a planetary magnetopause.
Moreover, these ion-kinetic effects can cause the asymmetric development of KHI
at the dawn and the dusk sides of such magnetosphere, as well as other non-ideal
features (see, e.g. Nagano 1978; Huba 1996; Terada et al. 2002; Nakamura et al.
2010; Henri et al. 2012; Masters et al. 2012; Sundberg et al. 2012; Taylor et al. 2012;
Delamere et al. 2013; Paral & Rankin 2013; Haaland et al. 2014; Johnson et al. 2014;
Liljeblad et al. 2014; Walsh et al. 2014; Gershman et al. 2015; Gingell et al. 2015;
De Camillis et al. 2016). However, ion-FLR effects and their relations with anisotropy,
vorticity and current sheets can have implications on a wide variety of astrophysical
and space scenarios.

In fact there are further shear-driven instabilities that may also get relevant feedback
from anisotropy (and agyrotropy) developed (or sustained) by the underlying shear
flow within a kinetic description such as, for instance, for the case of magneto-
rotational instability (MRI) in accretion disks (e.g. Ferraro 2007; Riquelme et al. 2012;
Kunz et al. 2016; Squire, Quataert & Kunz 2017b). Furthermore, ion-kinetic effects
such as FLR and pressure-tensor dynamics can affect anisotropy-driven instabilities
themselves (e.g. Schekochihin et al. 2010; Rosin et al. 2011; Sarrat, Del Sarto &
Ghizzo 2016; Squire et al. 2017a), which are relevant, e.g. in the evolution of the
solar wind (e.g. Hellinger et al. 2006; Tenerani, Velli & Hellinger 2017; Yoon 2017)
and in magnetic reconnection (e.g. Schoeffler, Drake & Swisdak 2011; Cassak et al.
2015).

Finally, current sheets and the associated reconnection processes are fundamental
ingredients of turbulent plasmas (e.g. Matthaeus & Lamkin 1986; Biskamp 2008;
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Servidio et al. 2010, 2011; Lazarian, Eyink & Vishniac 2012; Karimabadi et al.
2013a; Servidio et al. 2015; Franci et al. 2016; Cerri et al. 2017). In this context,
currents and coherent structures are typically related to simultaneous enhancement
of vorticity, kinetic activity, turbulent transfer and dissipation (e.g. Servidio et al.
2012, 2014; Karimabadi et al. 2013b; Valentini et al. 2014, 2016; Wan et al.
2015; Franci et al. 2016; Parashar & Matthaeus 2016; Yang et al. 2017; Grošelj
et al. 2017; Camporeale et al. 2018; Sorriso-Valvo et al. 2018). Furthermore,
reconnection/structures have been recently proved to enhance/trigger the kinetic
turbulent cascades in real space (Cerri & Califano 2017; Franci et al. 2017;
Camporeale et al. 2018) and also to be related to simultaneous velocity-space
cascades (Servidio et al. 2017; Cerri, Kunz & Califano 2018; Pezzi et al. 2018). These
reconnecting current sheets and the resulting magnetic structures are quasi-equilibrium
pressure-balanced structures with embedded sheared flows even within a turbulent
environment (see e.g. Cerri & Califano 2017). Therefore ion-kinetic effects such
as FLR contributions (or the full pressure tensor; see Cerri et al. (2014), Yang
et al. (2017) and Del Sarto & Pegoraro (2018)) may play a relevant role in the
complex interplay between currents, vorticity, reconnection, non-Maxwellian features,
velocity-space cascades and dissipation in turbulent plasmas.

3. Application to the LLBL of the Earth’s magnetopause
Let us now consider an explicit application to the LLBL of the Earth’s magneto-

pause, the goal being to show that the observed deviations from the ideal Chapman–
Ferraro current system highlighted in Haaland et al. (2014) can be qualitatively
explained with the ion-FLR corrections. We want to stress that this is not meant to
be a quantitative explanation of the observed profiles, since also the three-dimensional
geometry and other effects may contribute to the actual profiles. In what follows,
equations are normalized to the proton mass, inertial length and cyclotron frequency
(mp, dp and Ωcp, respectively), and the Alfvén speed (vA).

We consider a local one-dimensional model the LLBL region in which the
inhomogeneity direction (x) is perpendicular to the plane (yz) where both the flow
and the magnetic field lie. Typically, hyperbolic tangent give a reasonably realistic
modelling of the flow,

uy(x)= u0 sin φ tanh
(

x− xu,0

Lu

)
, (3.1)

uz(x)= u0 cos φ tanh
(

x− xu,0

Lu

)
, (3.2)

where φ is the angle between the z-axis and the plane where the sheared flow velocity
lies, and of the magnetic field,

By(x) = B0

{
BG

B0
sin ϑ

[
1+

1B‖
2BG

(
1− tanh

(
x− xB,0

LB

))]
+
1B⊥
2B0

cos ϑ
[

1+ tanh
(

x− xB,0

LB

)]}
, (3.3)

Bz(x) = B0

{
BG

B0
cos ϑ

[
1+

1B‖
2BG

(
1− tanh

(
x− xB,0

LB

))]
−
1B⊥
2B0

sin ϑ
[

1+ tanh
(

x− xB,0

LB

)]}
, (3.4)
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where B0=
√

B2
G +1B2

⊥ and ϑ is the angle between the z-axis and the magnetic field
at x→−∞5. The above magnetic profile accounts both for variations that are purely
in magnitude, through 1B‖, and for rotations (magnetic shear) of the magnetic-field
direction, through 1B⊥ (see, e.g. Fadanelli et al. 2018, for the effects of 1B⊥ on KHI
at the Earth’s magnetospheric flanks). Note that usually xu,0 = xB,0 and Lu = LB are
assumed in numerical simulations (see, e.g. Miura 1987; Fujimoto & Terasawa 1995;
Otto & Fairfield 2000; Nykyri & Otto 2004; Nakamura & Fujimoto 2005; Faganello,
Califano & Pegoraro 2008; Palermo et al. 2011; Tenerani et al. 2011; Faganello et al.
2012). However, recent satellite measurements have shown that the magnetic (and
density) profiles can be slightly shifted with respect to the velocity shear and/or that
the shear length scales of these quantities may differ, i.e. xu,0 6= xn,0 and/or Lu 6=

Ln (Foullon et al. 2008; Haaland et al. 2014; Rossi 2015). This idea has been also
recently implemented in numerical simulations in order to explain some observational
features (Rossi 2015; Leroy & Keppens 2017). Therefore, here we also take into
account these features. For a magnetic profile as in (3.3)–(3.4) the MHD magnetic
pressure function, H, is given by

H(x)=
B2

G

B2
0

{[
1+

1B‖
2BG

(
1− tanh

(
x− xB,0

LB

))]2

+
1B2
⊥

4B2
G

[
1+ tanh

(
x− xB,0

LB

)]2
}
,

(3.5)

and the corresponding MHD thermal profiles are obtained in terms of

F⊥(x)= G⊥(x) = 1+
1B2
⊥

β⊥,0B2
0
−

BG1B‖
β⊥,0B2

0

[
1− tanh

(
x− xB,0

LB

)]
−

1B2
‖

4β⊥,0B2
0

[
1− tanh

(
x− xB,0

LB

)]2

−
1B2
⊥

4β⊥,0B2
0

[
1+ tanh

(
x− xB,0

LB

)]2

, (3.6)

where β⊥,0B2
0 = 2P⊥,0 ≡ 2(p⊥p,0 + p⊥e,0) and the positivity condition on pressure (see

(A 10) in § A.3) here reads as

BG1B‖ +
1B2
‖

2
6 P⊥,0 +

1B2
⊥

2
. (3.7)

The FLR corrections to the above MHD profiles are then given in terms of

Ũ′(x) =
β̃⊥p,0

2
u0

B0Lu

F⊥(x)
H(x)

cosh−2

(
x− xu,0

Lu

)
×

{
BG

B0

[
1+

1B‖
2BG

(
1− tanh

(
x− xB,0

LB

))]
sin(φ − ϑ)

−
1B⊥
2B0

[
1+ tanh

(
x− xB,0

LB

)]
cos(φ − ϑ)

}
, (3.8)

which is again related to the sign of the scalar product between the fluid vorticity and
the magnetic field through the sin(φ − ϑ) and cos(φ − ϑ) coefficients.

5The corresponding angle ϕ between the z-axis and B at x→∞ is related to ϑ and 1B⊥ by tan ϕ =
(tan ϑ +1B⊥/BG)/(1− tan ϕ1B⊥/BG), and ϕ = ϑ when 1B⊥ = 0.
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Case Flow parameters Magnetic-field parameters Plasma thermal parameters
u0 Lu xu,0 1B‖ 1B⊥ LB xB,0 β⊥,0 β‖,0 γ⊥ γ‖

A ±1 2 ±1 0.5 0.6 6 0 2 2 2 1
B ±2 2 ±1 0.7 0.7 6 0 4 4 2 1

TABLE 1. Summary of the parameters used for profiles in figure 3. All the parameters
are normalized with respect to quantities characteristic of the SW region: flow speed is in
v
(SW)
A units, lengths are in d(SW)

i units and magnetic-field variations are in B(SW)
0 = 1 units

(from which BG=
√

1−1B2
⊥ follows). The plus and minus sign in u0 and in xu,0 are for

the dusk and for the dawn side, respectively. We also remind the reader that ϑ = 0 and
φ =π/2 in both cases.

3.1. Current profiles at the Earth’s flank magnetopause: an example
Let us now consider a few explicit examples relevant for the magnetopause layer and
see how the first-order FLR corrections qualitatively modify its current profile. For
the sake of simplicity, we consider the case of ϑ = 0 and φ = π/2 and two slightly
different regimes are taken into account. A summary of the parameters adopted for
the example profiles is given in table 1. These parameters are chosen so that they are
as realistic as possible for the low-latitude flanks of the magnetopause (Haaland et al.
2014), and they are also able to somewhat emphasize some of the resulting features 6.

In figure 3 we report the current profile arising from a simple MHD configuration,
J(MHD)

y and J(MHD)
z (light blue dashed line and orange dot-dashed line, respectively),

as well as the profile accounting for the first-order FLR corrections in (3.8), J(FLR)
y

and J(FLR)
z (blue and red solid lines, respectively). The MHD profiles of the dusk

and of the dawn sides, apart from the sign, have the same shape, i.e. it is the
classic Chapman–Ferraro current layer (Chapman & Ferraro 1930). On the other
hand, the corresponding FLR-corrected profiles of the dawn and of the dusk sides are
qualitatively different. This is the effect of the ‘ωb asymmetry’ intrinsically encoded
in the FLR contributions. Furthermore, the current structure of the shear layer in this
latter case is much more complex than the Chapman–Ferraro MHD layer. In fact,
a double-peak feature asymmetrically arises in J(FLR) on the two sides of the flank
magnetopause and the different modification of the two components of the current
results in adjacent current sheets with different current directions (see figure 4, where
we report the x-dependence of the angle between J and the z-axis, α = arctan(Jy/Jz),
for the cases shown in figure 3). These three peculiar features, namely (i) the
dusk–dawn asymmetry of the current layer, (ii) the double-peak feature in the current
profiles and (iii) two (or more) adjacent current sheets having thickness of several ion
Larmor radii and with different current directions, are qualitatively consistent with the
Cluster observations reported in Haaland et al. (2014). Taking into account these FLR
effects can also be a relevant starting point for explaining certain anomalies occurring
during magnetopause distortions related to large-scale magnetosheath plasma jets (see,
e.g. Dmitriev & Suvorova 2012).

6For instance, the choice of LB = 6di is consistent with the mean thickness reported by Haaland et al.
(2014) of ' 18ρi of the dawn side, whereas there is no explicit indication for the thickness of the velocity
shear. In the present work, we have considered a velocity-shear layer that is thinner that the magnetic shear
layer and that are slightly shifted with respect to each other, in agreement with some other Cluster observations
(e.g. Foullon et al. 2008; Rossi 2015).
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(a) (b)

(c) (d)

FIGURE 3. Current profiles for cases reported in table 1. (a,b) Case A, dawn (a) and dusk
(b) sides. (c,d) Case B, dawn (c) and dusk (d) sides. The MHD current profiles, J(MHD)

y

and J(MHD)
z , are reported with dashed light blue and dot-dashed orange lines, respectively,

whereas the corresponding FLR-corrected profiles, J(FLR)
y and J(FLR)

z , are drawn in blue and
red solid lines, respectively.

Finally, we want to stress that here we focused on the FLR corrections to the
magnetic and current structures, as most of the analysis done on satellite data for
the purpose of reconstructing the characteristics of the Earth’s flank magnetopause
has been carried out in this direction. However, there are other relevant features
and signatures of non-ideal effects that one could seek for in the available satellite
data, as, for instance, the equilibrium profiles presented here would be supported by
agyrotropic particle distribution functions localized in the large-scale shear-flow layer
at the Earth’s magnetopause7.

4. Conclusions
We have derived the one-dimensional equilibrium solutions for a shear-flow

boundary layer within a so-called ‘extended two-fluid’ (eTF) model accounting
for first-order ion finite-Larmor-radius (FLR) corrections in the double-adiabatic limit.

7Clearly, here we are not taking into account additional deviations from isotropy (and from pure gyrotropy)
due to local current and vorticity sheets forming in a turbulent plasma (see, e.g. Servidio et al. 2012; Valentini
et al. 2014, 2016; Franci et al. 2016; Cerri et al. 2018; Pezzi et al. 2018) and/or during reconnection events
(see, e.g. Scudder & Daughton 2008; Aunai, Hesse & Kuznetsova 2013)
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(a) (b)

(c) (d)

FIGURE 4. Profiles of the angle between the current J and the z-axis, α, versus x for cases
reported in figure 3. (a) Case A, dawn (a,b) and dusk (b) sides. (c,d) Case B, dawn (c)
and dusk (d) sides.

These analytical solutions represent a generalization of the solutions given in Cerri
et al. 2013.

We have explicitly shown that first-order FLR corrections exhibit what we have
called ‘ωb asymmetry’, i.e. an asymmetry that depends on the relative orientation of
the fluid vorticity, ω, and of the magnetic-field direction, b, through the scalar product
ω · b. Moreover, depending again on the parameter ω · b, it has been demonstrated
that the free energy available in the shear flow is able to develop and sustain a non-
negligible level of agyrotropy, i.e. a pressure (and temperature) anisotropy that is not
limited to the directions parallel and perpendicular to the magnetic field (the so-called
gyrotropy), but that manifests also within the plane perpendicular to b as p‖ 6= p⊥,1 6=
p⊥,2.

Finally, we have applied these FLR-corrected equilibrium profiles to few cases
with parameters typical of the low-latitude flanks of the Earth’s magnetopause. The
resulting current structure has been shown to be more complex than the MHD layer
by Chapman & Ferraro (1930), in qualitative agreement with the Cluster observations
recently reported in Haaland et al. (2014). In particular, by accounting for ion-FLR
effects, we have been able to qualitatively reproduce the following key observational
features: (i) an asymmetry of the current layer with respect to the dusk and the
dawn sides of the magnetopause, (ii) a double-peak feature arising in the current
profiles and (iii) the presence of adjacent current sheets having thickness of several
ion Larmor radii and with different current directions. We want to stress that other
effects that may contribute to further corrections have been neglected, e.g. the full ion
pressure-tensor dynamics and the electron kinetic effects, so a quantitative comparison
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between the Cluster data and our profiles would be beyond the scope of the present
work. Nevertheless, the good qualitative agreement between our one-dimensional
analytical profiles and the Cluster observations reported in Haaland et al. (2014)
shows that ion-FLR corrections are a relevant ingredient to correctly describe the
Earth’s flank magnetopause layer. Further effects, including a three-dimensional
treatment of the magnetosphere–wind interface, as well as the full ion pressure tensor
and self-consistent electron kinetic effects, will clearly have to be considered for a
more quantitative comparison. In this regard, new and future space missions will also
provide better measurements of the Earth’s magnetopause structure and allow for a
deeper understanding of the relevant plasma physics at play.

Finally, we underline that the main consequences of the ion-FLR effects reported
in this work, and their relation to anisotropy, agyrotropy, vorticity and current sheets,
may have implications for a wide variety of astrophysical and space collisionless
plasmas, from the turbulent solar wind to low-luminosity accretion flows around
compact objects.
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Appendix A. Derivation of the equilibrium configurations of a shear-flow layer
with FLR effects

We now consider the case of a velocity-shear layer separating, for instance, two
different plasmas. For the sake of simplicity, here we consider the one-dimensional
equilibrium problem, which can be seen as a local approximation of the LLBL. A
class of analytical solutions to the one-dimensional case that generalize the results
provided in Cerri et al. (2013) and that include a much wider range of configurations
of interest for what concerns magnetospheric observations will be provided.

A.1. Preliminaries and assumptions
In the following, we consider a given x-dependent incompressible MHD flow in the
y–z plane,

u= uy(x)ey + uz(x)ez, ∇ · u= 0, (A 1a,b)

such that it becomes constant at the boundaries,

lim
x→±∞

uy(x)= u(±)0y , lim
x→±∞

uz(x)= u(±)0z , (A 2a,b)

i.e. we consider a localized velocity shear (the vorticity is vanishing at the boundaries,
limx→±∞ ∇× u= 0). The magnetic field also lies on the y–z plane,

B(x)= B0yHy(x)ey + B0zHz(x)ez. (A 3)

The associated magnetic pressure is

PB(x)=
B2

0

8π
H(x), H(x)≡

B2
0y

B2
0

H2
y (x)+

B2
0z

B2
0

H2
z (x)> 0 ∀x, (A 4a,b)
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FLR equilibrium configurations with sheared flows 17

where we have defined B0 as the (constant) value of |B| at the right boundary (x→
+∞):

B0 ≡ lim
x→+∞

√
B2

0yH2
y (x)+ B2

0zH2
z (x), lim

x→+∞
H(x)= 1. (A 5)

We further assume a polytropic relation for the thermal pressures8:

p⊥p= p⊥p,0 F⊥(x)= p⊥p,0

(
n(x)
n0

)γ⊥p

, p⊥e= p⊥e,0G⊥(x)= p⊥e,0

(
n(x)
n0

)γ⊥e

, (A 6a,b)

and

p‖p = p‖p,0 F‖(x)= p‖p,0

(
n(x)
n0

)γ‖p
, p‖e = p‖e,0G‖(x)= p‖e,0

(
n(x)
n0

)γ‖e
, (A 7a,b)

where F⊥, F‖, G⊥ and G‖ are functions that reduce to unity for x→+∞, as it is
for H.

A.2. General one-dimensional MHD solutions for incompressible flows
Within an (anisotropic) MHD model of plasma, the shear flow does not play a role in
the equilibrium profile. In fact, when π(1)

p is neglected, the equilibrium condition for
the above configuration simply consists of a balance between the magnetic pressure,
B2(x)/8π, and total perpendicular thermal pressures, P⊥(x):

d
dx

[
p⊥p(x)+ p⊥e(x)+

B2(x)
2

]
= 0. (A 8)

In particular, the above condition allows also the widely adopted uniform and
homogeneous plasma configuration: p⊥α = p‖α,0, p⊥α = p⊥α,0, By = B0y and Bz = B0z.
Such homogeneous profiles are not an equilibrium solution when FLR corrections
(or the full pressure-tensor equations) are included in the fluid description (Cerri
2012; Cerri et al. 2013, 2014), unless the velocity profile is a linear function of x
(see § A.3). In general, the solution of the MHD equilibrium condition in (A 8) is
completely described by the magnetic pressure profile in (A 4), which determines
all the other relevant functions, F⊥(x) and G⊥(x). In fact, assuming γ⊥e = γ⊥p for
simplicity, quasi-neutrality reads as

G⊥(x)=F⊥(x) (A 9)

and the equilibrium condition finally gives F⊥ as function of H,

F⊥(x)= 1+
1
β⊥,0
[1−H(x)], (A 10)

where β⊥,0=β⊥p,0+β⊥e,0 (with β⊥α,0≡8πp⊥α,0/B2
0), and the constant is set to 1+β⊥,0

by the boundary conditions at x→+∞ (the requirement F⊥(x)→ 1 for x→+∞ is
then automatically satisfied due to (A 5)). Furthermore, since the function F⊥(x) is

8Note that in the case considered here of incompressible flow, no heat fluxes and no gradients parallel to
the magnetic field, the double-adiabatic relations and the dynamical pressure equations in the eTF model are
equivalent to two different polytropic relations for p‖ and p⊥ (see, e.g. Cerri 2012; Cerri et al. 2014; Del
Sarto & Pegoraro 2018)
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18 S. S. Cerri

related to the thermal pressure, it cannot assume negative values, which provides the
additional condition

F⊥(x)> 0 ∀x ⇐⇒ H(x)6 1+ β⊥,0. (A 11)

This states physically that any variation of the magnetic pressure, 1B2/8π= (B2(x)−
B2

0)/8π, cannot exceed the total thermal pressure, P⊥,0= p⊥p,0+ p⊥e,0, where B0, p⊥p,0
and p⊥e,0 are the values at x → +∞. The parallel thermal pressures follow from
the polytropic assumption, e.g. F‖(x) = [F⊥(x)]γ‖p/γ⊥p . Analogously, the temperature
profiles follow from T⊥α = p⊥α/n and T‖α = p‖α/n.

Starting from this MHD class of solutions, we self-consistently derive the
corresponding equilibrium profiles with first-order FLR corrections.

A.3. General first-order FLR corrections to the one-dimensional MHD solutions
Let us now consider the changes to the MHD equilibrium profiles derived above
that are induced by the velocity shear in (A 1) when first-order FLR corrections are
taken into account. In this case, the only component of π(1)

p that is relevant to the
equilibrium condition is

π(1)
p,xx =−

1
2

mpc
e|B|

(
bz

duy

dx
− by

duz

dx

)
p⊥p. (A 12)

The equilibrium condition in (A 8) now reads

d
dx

{[
1−

1
2

Bz(x)u′y(x)− By(x)u′z(x)

eB2(x)/mpc

]
p⊥p(x)+ p⊥e(x)+

B2(x)
8π

}
= 0, (A 13)

where the prime denotes the x-derivative. The above expressions can be explicitly
written in terms of the fluid vorticity, ω≡∇× u, and of the magnetic field direction,
b:

π(1)
p,xx=−

1
2

mpc
eB
(b ·ω)p⊥p −→

d
dx

[(
1−

mpc
eB

b ·ω
2

)
p⊥p + p⊥e +

B2

8π

]
= 0, (A 14)

where ωy = −u′z and ωz = u′y are the components of the fluid vorticity in our
configuration. The dependence on b · ω highlights the intrinsic asymmetry in
the system due to FLR corrections and related to the degree of alignment (or
anti-alignment) between the flow vorticity and the magnetic field. We stress, however,
that the simple dependence on the vorticity and magnetic-field direction in (A 12) is
due to the one-dimensional character of the problem considered here.

We now seek FLR-corrected equilibrium profiles in the form F̃⊥(x) = F⊥(x)f⊥(x),
G̃⊥(x) = G⊥(x)g⊥(x) and H̃(x) = H(x)h(x), where f⊥, g⊥ and h are the ‘correction
functions’. Due to the boundary conditions on the MHD flow, (A 2), the gyroviscous
tensor vanishes at the boundaries, limx→±∞ π(1)

p = 0, and thus the correction functions
must reduce to unity accordingly, limx→±∞{ f⊥(x), g⊥(x), h(x)} = 1. Therefore, F̃⊥,
G̃⊥ and H̃ reduce to the corresponding MHD profiles away from the shear layer,
where the vorticity vanishes (or, in general, where the vorticity becomes uniform and
homogeneous). Moreover, since we want to preserve quasi-neutrality, F̃(x) = G̃(x)
must hold and therefore, using (A 9), we obtain the condition

g⊥(x)= f⊥(x). (A 15)
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In order to relate h(x) and f⊥(x), we actually need to impose a further constraint on
the equilibrium. Such a condition cannot be derived from first principles and would
rather be driven by a physical interpretation of the problem under study. Here we
provide a viable option based on the plasma beta parameter (see, e.g. Cerri et al. 2013,
2014, for examples about different constraints). Since the (thermal) Larmor radius is
sensitive to the (perpendicular) plasma beta, a very reasonable constraint is to require
that the MHD profile β⊥p(x) does not change when passing to the corresponding
FLR-corrected profile, i.e.

β⊥p(x)|MHD = β⊥p(x)|MHD+FLR H⇒ h(x)= f⊥(x). (A 16)

Then, using the above relations and the boundary conditions at x→+∞ to set the
integration constant to 1 + β⊥,0, from (A 13) we obtain the following equation for
f⊥(x):

f⊥(x)− Ũ′(x)
√

f⊥(x)− 1= 0, (A 17)
where we have defined

Ũ′(x)≡
β̃⊥p,0

2
mpc
eB0

F⊥(x)
H(x)

(
B0z

B0
Hz(x)u′y(x)−

B0y

B0
Hy(x)u′z(x)

)
, (A 18)

with β̃⊥p,0 ≡ β⊥p,0/(1 + β⊥,0) for brevity. Note that the above equation for f⊥(x)
has been obtained taking into account the FLR corrections computed with the
self-consistent equilibrium magnetic-field profile, B(x) = B0

√
H(x)f⊥(x) (we remind

that h(x)= f⊥(x) holds). Finally, since p⊥p(x) must be a positive quantity, we require
f⊥(x)> 0∀x, so that the only physical solution of (A 17) is

f⊥(x)=

 Ũ′(x)
2
+

√√√√1+

(
Ũ′(x)

2

)2


2

. (A 19)

This correctly reduces to unity for vanishing FLR terms, Ũ′→ 0, recovering the MHD
profiles. The resulting FLR-corrected profiles are therefore given by

p⊥p(x)= p⊥p,0 F⊥(x) f⊥(x), p‖p(x)= p‖p,0(F⊥(x) f⊥(x))γ‖/γ⊥, (A 20a,b)

n(x)= n0(F⊥(x) f⊥(x))1/γ⊥, (A 21)

By(x)= B0yHy(x)
√

f⊥(x), Bz(x)= B0zHz(x)
√

f⊥(x), (A 22a,b)
from which the current density, J=∇×B, follows.

Appendix B. Derivation of the first-order FLR contributions: a perturbative
approach

In this appendix, we provide a derivation of the finite-Larmor-radius corrections
to the gyrotropic pressure tensor based on a perturbative expansion of the full
pressure-tensor dynamic equation9. Further, we explicitly comment on the symmetry
properties of the perturbed equations and the corresponding solutions, which has a
direct relevance for many configurations with a velocity shear.

Note that in the remainder of this appendix we are going to drop the species index
everywhere, except when it is needed (e.g. when the sign of the charge matters).

9For a derivation based on a perturbative expansion of the distribution function, see Macmahon (1965) or
Schekochihin et al. (2010). Other classical derivations can be found in Yajima (1966), Ramos (2005b) or in
Mjølhus (2009).
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20 S. S. Cerri

B.1. Perturbative expansion of the pressure-tensor equation
Let us consider the dynamic equation for the full pressure tensor,

∂Πij

∂t
+

∂

∂xk
(Πijuk +Qijk)+Πik

∂uj

∂xk
+Πjk

∂ui

∂xk
=Ωcα(εiklΠjk + εjklΠik)bl, (B 1)

where εijk is the Levi-Civita symbol, and perturbatively expand it with respect to the
small parameter

ε≡
ρ

L
∼
ω

Ω
� 1, (B 2)

where ρ is the Larmor radius, L is the typical length scale of variation of fluid
quantities and ω∼ u/L is the characteristic frequency of the fluid dynamics. Here we
adopt the so-called ‘fast-dynamics ordering’, u∼ vth (Macmahon 1965; Ramos 2005a;
Cerri et al. 2013). Using dimensionless quantities denoted by a tilde10, equation (B 1)
rewrites as

(εiklΠ̃jk + εjklΠ̃ik)b̃l

= ε
σα

|B̃|

[
∂Π̃ij

∂ t̃
+

∂

∂ x̃k
(Π̃ijũk)+ Π̃ik

∂ ũj

∂ x̃k
+ Π̃jk

∂ ũi

∂ x̃k
+
∂Q̃ijk

∂ x̃k

]
, (B 3)

where we have defined σα ≡ sign(eα), i.e. the sign embedded in the cyclotron
frequency, Ωcα = eαB0/mαc = σα|eα|B0/mαc ≡ σα|Ωcα|. We then expand the pressure
tensor and heat-flux tensor in powers of ε, i.e.

Π̃ij =

∞∑
n=0

εnΠ̃
(n)
ij and Q̃ijk =

∞∑
n=0

εnQ̃(n)
ijk . (B 4a,b)

Hereafter, the tilde will be omitted for the sake of simplicity and all the quantities
have to be understood as dimensionless. The nth-order pressure-tensor equation then
reads

LB[Π
(n)
ij ] =Ru[Π

(n−1)
ij ] +D[Q(n−1)

ij(k) ], (B 5)

where we have introduced the following linear operators:

LB[Π] ≡ {Π × b}(sym) (B 6)

Ru[Π] ≡
dΠ
dt
+Π(∇ · u)+ {Π : ∇u}(sym) (B 7)

D[Q] ≡∇ ·Q, (B 8)

which contribute to the evolution of the pressure tensor by involving only B, u and Q,
respectively (∂/∂t + u · ∇ has been replaced by the Lagrangian time derivative d/dt
for shortness). The zero order, n= 0, gives

(εilmΠ
(0)
lj + εjlmΠ

(0)
li )bm = 0, (B 9)

10We normalize all the quantities with respect to the mass, m, the thermal speed, vth, and a reference

density and magnetic field, n0 and B0, respectively: n= n0ñ, B=B0B̃, u= vthũ, Π =mn0v
2
thΠ̃ and Q=mn0v

3
thQ̃.

The derivatives, are normalized as ∂/∂x= L−1∂/∂ x̃ and ∂/∂t= τ−1∂/∂ t̃, with the ordering L/τ ∼ u∼ vth.
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that means that Π (0)
ij belongs to the kernel of the LB operator, whereas the first-order

equation, n= 1, is

(εilmΠ
(1)
lj + εjlmΠ

(1)
li )bm =

σα

B

[
dΠ (0)

ij

dt
+Π

(0)
ij
∂uk

∂xk
+Π

(0)
ik
∂uj

∂xk
+Π

(0)
jk
∂ui

∂xk
+
∂Q(0)

ijk

∂xk

]
.

(B 10)
Before proceeding in the actual solution of the above equations, let us comment on
their symmetry properties, in particular with respect to the magnetic-field direction.

B.2. Symmetry considerations on the perturbed equations
Let us consider the three operators, LB, Ru and D. If we invert the direction of the
magnetic field, B→−B, then such operators transform as

LB[•] → L−B[•] =−LB[•] (B 11)
Ru[•] → Ru[•] (B 12)
D[•] → D[•], (B 13)

and this symmetry property has a direct consequence on the solutions.
Let us consider the zeroth-order equation, (B 9), and a possible solution Π (0)

+ . Then,
if we reverse the direction of the magnetic field, the linear operator LB also changes
sign, but the zeroth-order equation remains the same and Π(0)

+ is still a solution (i.e. if
Π
(0)
− is the solution when the magnetic-field direction is reversed, then Π

(0)
− = Π

(0)
+

must hold in order to have a unique solution). Therefore, Π(0) is invariant under
magnetic-field inversion and we can drop the ‘+’ and ‘−’ subscripts (see § B.3).

Let Π(1)
+ be a solution of the first-order equation (B 10),

LB[Π
(1)
+
] =Ru[Π

(0)
] +D[Q(0)

]. (B 14)

Now consider the same configuration, but with just the magnetic field in the opposite
direction, i.e. b→−b. Regardless of the actual behaviour of the gyrotropic heat-flux
tensor, Q(0), with respect to such inversion11, if we assume that the first-order solution
Π
(1)
+ is invariant with respect to b→−b, we then obtain a different equation:

LB[Π
(1)
+
] =−Ru[Π

(0)
] ∓D[Q(0)

], (B 15)

where the ∓ sign in front of D[Q(0)
] takes into account for any possible behaviour

of Q(0) with respect to such an inversion. Let us drop the heat-flux contribution
for a moment and consider the two equations, LB[Π

(1)
+ ] =Ru[Π

(0)
] and LB[Π

(1)
+ ] =

−Ru[Π
(0)
]. Clearly, a non-zero solution Π

(1)
+ cannot satisfy simultaneously the two

equations above, and so we must admit that there exists a different solution, Π(1)
− .

Due to the linear nature of the operators, it is immediate to see that a relation
Π
(1)
− = −Π

(1)
+ must hold. With the contribution of the heat flux the relation might

not be straightforward as Π
(1)
− = −Π

(1)
+ , but, again, being LB, Ru and D linear

operators, there will be anyway a part of Π(1) that changes sign when b → −b.
This is a feature deeply encoded in the governing equations of a plasma, but it first
emerges only when the fluid hierarchy is retained up to the pressure-tensor equation
(Cerri et al. 2014; Del Sarto et al. 2016) or first-order FLR corrections are included
(Hazeltine, Kotschenreuther & Morrison 1985; Hsu, Hazeltine & Morrison 1986;
Ramos 2005b; Cerri et al. 2013).

11One can show that Q(0) has to be a solution of LB[Q
(0)
] = 0 and it will therefore be a combination

of the type Q(0) = q‖bbb+ q⊥{τb}(sym) (Goswami, Passot & Sulem 2005). This means that the gyrotropic
heat-flux tensor changes sign when b→−b. However, this does not play a role in the following argument.
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B.3. Zeroth-order solution: gyrotopic pressure tensor
At zero order, Π(0) must satisfy LB[Π

(0)
] = 0, i.e. it will be a linear combination

of the basis vector spanning the kernel of the (self-adjoint) linear operator LB. Any
linear combination of the identity, I , and of the projector along the magnetic-field
direction, bb, i.e. Π(0)

= p1I + p2bb, is a zeroth-order solution. Defining the parallel
and perpendicular pressures as p⊥ = p1 and p‖ = p1 + p2, we recover the gyrotropic
Chew-Goldberger-Low (CGL) pressure tensor (Chew et al. 1956):

Π(0)
= p⊥τ + p‖bb. (B 16)

The zeroth-order solution is insensitive to the operation b→−b, as anticipated. Note
that the equation for n= 0, and thus its solution Π(0)

α , does not depend on the velocity
field u or on the heat-flux tensor Q, so the only information that we need is the
direction of the magnetic field, b. Finally, note that there is an interesting consequence
of this solution in an ordering for which ω/Ωcα � 1: because the gyrofrequency is
inversely proportional to the species’ mass, Ωcα ∝ 1/mα, within a low-frequency
dynamics we expect the lighter species (e.g. the electrons) to be naturally found very
close to a gyrotropic state12.

B.4. First-order solution: FLR corrections and dynamic equations for p‖ and p⊥
Before proceeding in the solution of the first-order equation in the perturbative
expansion, (B 10), we recast it in a form that is invariant under the operation b→−b.
In this way, we solve it only once for a solution Π(1) that encodes both Π

(1)
+ and

Π
(1)
− . At this stage, we need to take into account the fact that Q(0) changes sign when

we reverse the direction of B (see e.g. Goswami et al. 2005). Therefore, we introduce
a coefficient that takes into account the relative orientation of the magnetic field with
respect to the coordinate axes, sm≡ sign[b · em] = sign[bm] (such that s−1

m = sm), where
em is the unit vector along the m-axis of the reference system. The invariant equation
now reads (Cerri et al. 2013)

(εilmΠ
(1)
lj + εjlmΠ

(1)
li )bm

=
smσα

B

[
dΠ (0)

ij

dt
+Π

(0)
ij
∂uk

∂xk
+Π

(0)
ik
∂uj

∂xk
+Π

(0)
jk
∂ui

∂xk

]
+
σα

B
∂Q(0)

ijk

∂xk
. (B 17)

By evaluating every term in the above equation (see, e.g. Cerri et al. 2013), one
eventually gets the dynamic equations for the zeroth-order pressure components,

∂p‖α
∂t
+∇ · (p‖αuα)+ 2p‖α(bb : ∇uα)+∇ · (q‖αb)− 2q⊥α(∇ · b)= 0, (B 18)

∂p⊥α
∂t
+∇ · (p⊥αuα)+ p⊥α(τ : ∇uα)+∇ · (q⊥αb)+ q⊥α(∇ · b)= 0, (B 19)

and the expressions for the components of Π(1)
α ,

Π (1)
α,xx =−Π

(1)
α,yy =−

s3σα

2
p⊥α
B

(
∂uα,x
∂y
+
∂uα,y
∂x

)
(B 20)

12This might not be true everywhere, e.g. if processes such as reconnection are involved (see, e.g. Scudder
& Daughton 2008; Aunai et al. 2013).
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Π (1)
α,xy =Π

(1)
α,yx =−

s3σα

2
p⊥α
B

(
∂uα,y
∂y
−
∂uα,x
∂x

)
(B 21)

Π (1)
α,xz =Π

(1)
α,zx =−

s3σα

B

[
(2p‖α − p⊥α)

∂uα,y
∂z
+ p⊥α

∂uα,z
∂y

]
−
σα

B
∂q⊥α
∂y

(B 22)

Π (1)
α,yz =Π

(1)
α,zy =

s3σα

B

[
(2p‖α − p⊥α)

∂uα,x
∂z
+ p⊥α

∂uα,z
∂x

]
+
σα

B
∂q⊥α
∂x

(B 23)

Π (1)
α,zz = 0. (B 24)

By neglecting the parallel heat fluxes, q‖ and q⊥, the above expressions can be
compared with the classical results given in Braginskii (1965) for the collisional
case by setting η0 = η1 = η2 = 0, η3 = p⊥/2Ω and η4 = p⊥/Ω in the Braginskii’s
gyro-viscous coefficients. Moreover, in our expressions there is a contribution to
Π (1)
α,xz and to Π (1)

α,yz that is due to the pressure anisotropy, [2(p‖ − p⊥)/Ω]∂zuα,x and
[2(p‖ − p⊥)/Ω]∂zuα,y, respectively, which is missing in Braginskii (1965) because of
the assumed isotropic temperature, T‖ = T⊥ = T . The above expressions for the FLR
corrections explicitly account for the orientation of the magnetic field with respect to
the z-axis through the s3 coefficient.

Appendix C. Convergence of the FLR expansion to the full pressure tensor
We expand the pressure tensor for the species α, Πα, as a power series in the small

parameter εα ≡ ρα/L� 1:

Πα =

∞∑
n=0

εn
αΠ

(n)
α , (C 1)

and we perform an equivalent expansion for the heat-flux tensor, Qα. Within the eTF
ordering (Cerri et al. 2013), the dimensionless nth-order pressure-tensor equation reads

LB[Π
(n)
α,ij] = R̂u[Π

(n−1)
α,ij ] +D[Q(n−1)

α,ij(k)], (C 2)

where

LB[Π
(n)
α,ij] ≡ (εilmΠ

(n)
α,lj + εjlmΠ

(n)
α,li)Bm, (C 3a)

R̂u[Π
(n−1)
α,ij ] ≡ smσα

[
dΠ (n−1)

α,ij

dt
+Π

(n−1)
α,ij

∂uα,k
∂xk
+Π

(n−1)
α,ik

∂uα,j
∂xk
+Π

(n−1)
α,jk

∂uα,i
∂xk

]
, (C 3b)

D[Q(n−1)
α,ij(k)] ≡ σα

∂Q(n−1)
α,ijk

∂xk
, (C 3c)

where εijk is the Levi-Civita symbol, σα ≡ sign(eα) is the sign of the electric charge of
the α species and sm≡ sign(b · em) is the relative orientation of the magnetic field with
respect to the m-axis of the reference system (b≡ B/|B| and em are the unit vectors
along the magnetic field and along the m-axis, respectively). We want to find an exact
solution for Πα, i.e. a convergent series as in (C 1) that solves (C 2) for all n.

First of all, we note that for n = 0, the solution of (C 2), which reduces to
LB[Π

(0)
α,ij] = 0, is the gyrotropic CGL pressure tensor (Chew et al. 1956):

Π(0)
α = p⊥ατ + p‖αbb, (C 4)

where τ ≡ I − bb is the projector onto the plane perpendicular to the magnetic field.
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C.1. Assumptions and general nth-order solution
In order to find a solution of (C 2) to all orders, we first need to make four assumption
on the configuration, on the energy and on the closure. The first is to (i) neglect the
heat-flux tensor. The second is that (ii) the inhomogeneity direction, the flow direction
and the magnetic-field direction form a right-handed basis13, e.g. u= uy(x)ey and B=
Bz(x)ez. The third assumption is (iii) stationarity, i.e. no time dependence. Finally,
(iv) we assume that any contribution to the pressure tensor beyond the gyrotropic
pressure is traceless, which means that we are considering corrections at constant
thermal energy. So, summarizing the hypothesis under which we find the solution:

(i) Q(n)
= 0∀n;

(ii) ∇ · u= 0 and B× (∇× u)= 0;
(iii) ∂/∂t= 0;
(iv) Tr[Π(n)

α ] = 0∀n > 1.

Under the assumptions (i)–(iv), considering the inhomogeneity to be in x-direction
for simplicity, the solution of (C 2) ∀n > 1 is:

Π
(n)
α,ij = 0 if i 6= j,

Π (n)
α,xx =−Π

(n)
α,yy = (χ̃α(x))

np⊥α,
Π (n)
α,zz = 0,

 (C 5)

where we have defined the function χ̃α(x) as

χ̃α(x)≡−σα
ωα · b
2Ωcα

=−σα
sz

2|B|
duα,y

dx
. (C 6)

Note that, in general, Π (n)
zz is undetermined at each order, so we make the reasonable

choice to take it non-zero only for n= 0, i.e. Π (n)
zz = p‖δn0, which then, together with

the traceless condition (iv), gives us the relation Π (n)
xx +Π

(n)
yy = 2p⊥δn0.

C.2. General nth-order solution: proof
We now proceed to prove that (C 5) is the solution of (C 2), for all n. In order to do
that, we are going to use the so-called mathematical induction method. Later on, we
will omit the α index for the species for shortness.

(i) n= 1: For n= 1, (C 2) is LB[Π
(1)
α,ij] = R̂u[Π

(0)
α,ij], or written in matrix form

 2Π (1)
xy Π (1)

yy −Π
(1)
xx Π (1)

yz
Π (1)

yy −Π
(1)
xx −2Π (1)

xy −Π (1)
xz

Π (1)
yz −Π (1)

xz 0

= s3σ

|B|


d
dt
Π (0)

xx Π (0)
xx

duy

dx
0

Π (0)
xx

duy

dx
−

d
dt
Π (0)

xx 0
0 0 0

 (C 7)

whose solution under our assumptions is:

Π
(1)
α,ij = 0 if i 6= j,

Π (1)
α,xx =−Π

(1)
α,yy =−

szσ

2|B|
duy

dx
p⊥ ≡ χ̃(x)p⊥,

Π (1)
α,zz = 0,

 (C 8)

13Note that for incompressible flows, ∇ ·u= 0, this condition corresponds to the case B×ω=B× (∇×u)= 0
that has been considered by Del Sarto & Pegoraro (2018).
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where we have used the assumptions (ii) and (iii) in order to have dΠ (0)
xx /dt =

0: since every quantity can be function only of x and the flow is along the
y-direction due to assumption (ii), we get u · ∇Π (0)

xx = uy∂Π
(0)
xx /∂y= 0 and thus,

due also to the stationarity assumption (iii), (d/dt)Π (0)
xx = (∂/∂t+ uy∂/∂y)Π (0)

xx = 0.
(ii) n= 2: For n= 2, (C 2) is LB[Π

(2)
α,ij] = R̂u[Π

(1)
α,ij], with Π

(1)
α,ij given in (C 8). Such

an equation, written in matrix form reads

 2Π (2)
xy Π (2)

yy −Π
(2)
xx Π (2)

yz
Π (2)

yy −Π
(2)
xx −2Π (2)

xy −Π (2)
xz

Π (2)
yz −Π (2)

xz 0

= szσ

|B|


d
dt
Π (1)

xx Π (1)
xx

duy

dx
0

Π (1)
xx

duy

dx
−

d
dt
Π (1)

xx 0
0 0 0

 (C 9)

whose solution, using again the fact that dΠ (1)
xx /dt= 0, is:

Π
(2)
α,ij = 0 if i 6= j,

Π (2)
α,xx =−Π

(2)
α,yy =

1
4|B|2

(
duy

dx

)2

p⊥ ≡ (χ̃(x))2p⊥,

Π (2)
α,zz = 0,

 (C 10)

where we used the fact that s2
z = 1 and σ 2

= 1.
(iii) Inductive step: We now assume that (C 5) is the correct nth-order solution and

we want to solve (C 2) for the (n + 1)th order. That is, LB[Π
(n+1)
α,ij ] = R̂u[Π

(n)
α,ij],

which in matrix form reads

 2Π (n+1)
xy Π (n+1)

yy −Π (n+1)
xx Π (n+1)

yz
Π (n+1)

yy −Π (n+1)
xx −2Π (n+1)

xy −Π (n+1)
xz

Π (n+1)
yz −Π (n+1)

xz 0

= szσ

|B|


d
dt
Π (n)

xx Π (n)
xx

duy

dx
0

Π (n)
xx

duy

dx
−

d
dt
Π (n)

xx 0
0 0 0


(C 11)

whose solution, using again the fact that our assumptions are such that dΠ (n)
xx /dt=

0, is:

Π
(n+1)
α,ij = 0 if i 6= j,

Π (n+1)
α,xx =−Π

(n+1)
α,yy =

(
−

szσ

2|B|
duy

dx

)n+1

p⊥ ≡ (χ̃(x))n+1p⊥,

Π (n+1)
α,zz = 0,

 (C 12)

which finally proves the thesis.

C.3. Summability, convergence and stability of the complete pressure tensor
Now that we have proved the expression for the general nth-order solution of (C 2),
we want to go back from the FLR expansion to the full pressure tensor, (C 1). In order
to be able to do that, the series must be summable and it should converge.
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If we put all the FLR contributions together, the full pressure-tensor components
are:

Πij = 0 if i 6= j, (C 13)
Πzz = p‖, (C 14)

Πxx = [1+ χ̃ + χ̃ 2
+ · · ·]p⊥ =

[
1+ χ̃

∞∑
n=0

(χ̃)n

]
p⊥, (C 15)

Πyy = [1− χ̃ − χ̃ 2
− · · ·]p⊥ =

[
1− χ̃

∞∑
n=0

(χ̃)n

]
p⊥, (C 16)

so the main request for absolute convergence is that the geometric series
∑

n |χ̃ |
n

converge, which is true if and only if

|χ̃(x)|< 1 ⇐⇒ |ω · b|< 2Ωc ∀x, (C 17)

which is the absolute convergence condition from the mathematical point of view
and represents a limit on the shear strength. If the condition (C 17) holds, then the
resulting diagonal components of the pressure tensor are

Πxx =

(
1+

χ̃(x)
1− χ̃(x)

)
p⊥, (C 18)

Πyy =

(
1−

χ̃(x)
1− χ̃(x)

)
p⊥, (C 19)

Πzz = p‖. (C 20)

However, since the components of the (diagonal) pressure tensor cannot be negative
in order to have a physical meaning, the function χ̃(x) – and thus the shear strength
duy/dx – has to fulfil the positivity condition. This request gives a physical condition
on the shear strength which reads

χ̃(x)6 1
2 ⇐⇒ ω · b >−Ωc, (C 21)

where now, in principle, the shear can be as negative as one wishes, without no
limitations. If we put together the physical condition (C 21) and the mathematical
condition (C 17), gives the asymmetric condition

−1< χ̃(x)6 1
2 ⇐⇒ −Ωc 6ω · b< 2Ωc ∀x, (C 22)

The condition above is also a stability condition for the shear-flow configuration. In
fact, that is in agreement with Del Sarto et al. (2016), where the stability condition
is found to be Ω ′ ≡ Ω + ∂xuy > 0, which translated in our notation correspond to
χ̃(x)6 1/214.

14Note that the condition χ̃ >−1 in (C 22) originates from the fact that we are requiring that the pressure
tensor Π can be expanded in an infinite series of a small parameter ε, (C 1), and that the resulting contributions
Π (n) should converge again to Π when ‘summed back’. However those assumptions are not made when
dealing with the pressure-tensor equation, so the upper bound ω · b< 2Ωc does enter the full pressure-tensor
case (see Cerri et al. 2014).
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