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Abstract

The understanding of pathological processes is based on the comparison between physiological and pathological
conditions, and transcriptomic analysis has been extensively applied to various diseases for this purpose. However, the way
in which the transcriptomic data of pathological cells relate to the transcriptomes of normal cellular counterparts has not
been fully explored, and may provide new and unbiased insights into the mechanisms of these diseases. To achieve this, it is
necessary to develop a method to simultaneously analyse components across different levels, namely genes, normal cells,
and diseases. Here we propose a multidimensional method that visualises the cross-level relationships between these
components at three different levels based on transcriptomic data of physiological and pathological processes, by adapting
Canonical Correspondence Analysis, which was developed in ecology and sociology, to microarray data (CCA on Microarray
data, CCAM). Using CCAM, we have analysed transcriptomes of haematological disorders and those of normal
haematopoietic cell differentiation. First, by analysing leukaemia data, CCAM successfully visualised known relationships
between leukaemia subtypes and cellular differentiation, and their characteristic genes, which confirmed the relevance of
CCAM. Next, by analysing transcriptomes of myelodysplastic syndromes (MDS), we have shown that CCAM was effective in
both generating and testing hypotheses. CCAM showed that among MDS patients, high-risk patients had transcriptomes
that were more similar to those of both haematopoietic stem cells (HSC) and megakaryocyte-erythroid progenitors (MEP)
than low-risk patients, and provided a prognostic model. Collectively, CCAM reveals hidden relationships between
pathological and physiological processes and gene expression, providing meaningful clinical insights into haematological
diseases, and these could not be revealed by other univariate and multivariate methods. Furthermore, CCAM was effective
in identifying candidate genes that are correlated with cellular phenotypes of interest. We expect that CCAM will benefit a
wide range of medical fields.
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Introduction

In order to fully understand pathological processes in clinical

settings at the genomic level, it is necessary to compare the

transcriptomes of pathological processes in individual patients with

those of the physiological processes of normal counterparts.

Although transcriptomic analysis has been extensively applied to

various diseases, the way in which the transcriptomic data of

pathological cells relate to the transcriptomes of normal cellular

counterparts has not been fully explored, and may provide new

and unbiased insights into the mechanisms of these diseases. To

achieve this, it is necessary to develop a method to simultaneously

analyse components across different levels, namely genes and

physiological and pathological processes (e.g. normal and abnor-

mal cellular phenotypes). It is anticipated, if successful, this

approach will reveal hidden relationships between pathogenesis,

developmental mechanisms, and gene regulation.

Gene signature has been a most commonly employed approach

to address this type of problem. A number of methods have been

proposed to measure the degree of inclination towards a certain

signature in individual disease samples: correlation coefficient to

the average gene expression of the signature genes [1,2]; the

median fold change [3]; the (weighted) sum of the expression levels

of signature genes [4,5]. Sandberg et al developed a method using

Singular Value Decomposition (SVD) to measure the similarities

between cancer subtypes and cell lines [6], providing univariate

scores for individual cell lines. Although these approaches are easy

to deal with and can be understood intuitively, there is a pitfall

when they are applied to compare disease and normal cellular

phenotypes: it cannot be assumed that the two cell signatures to be

analysed are independent from each other. For example lymphoid

and myeloid signatures cannot be equally compared and therefore

the analysed results of these gene signature scores should not be

plotted on the same plot, as the relationship between these two

signatures is unknown. This fundamental problem complicates
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comparisons between multiple gene expression signatures of

different haematopoietic cell populations. Considering that hae-

matopoietic cells are classified into tens of different populations by

cell lineage and developmental stage, and that each cell population

is closely related to others [7], those existing methods are

apparently insufficient for obtaining an integral view. Therefore,

multidimensional analysis is required to effectively address this

problem.

Among multidimensional analysis methods, principal compo-

nent analysis (PCA) is most commonly used to analyse the

relationships between samples, although PCA is vulnerable to the

addition of subtle phenotypes and aberrant samples, and is more

suitable for visualising data structure [8,9]. In addition, although it

may be more straightforward to estimate the identity of cells by

directly comparing their transcriptomes with other microarray

datasets using multivariate analysis, for example using Multidi-

mensional Scaling [10,11], this is often not successful because large

between-experimental variations can easily dominate relatively

small differences in gene modification between experimental and

control groups even with meta-analysis methods. Considering that

the variations between malignant cells and normal cells are

generally much bigger than between-group variations of different

normal cell phenotypes, as often seen in the analysis using

hierarchical clustering [12], a new multidimensional approach is

required to make a direct comparison of malignant cell phenotypes

and their corresponding normal counterparts.

Thus, in order to reveal the cross-level relationships between

diseases, genes, and normal cells, we have adapted a multidimen-

sional approach, Canonical Correspondence Analysis (CCA), to

microarray data. Currently, CCA is widely used in ecology and

social science, as it can simultaneously analyse two totally different

types of data – one as response data and another as explanatory data,

revealing the relationships between these two data [9]. CCA is a

variant of Correspondence Analysis (CA), which has previously been

employed to analyse a single microarray dataset, visualising the

associations between samples (arrays) and genes in single datasets

[13,14]. Baty et al reported a method using a variant of CCA for the

analysis of microarray expression data with respect to binary

response data [15]. As far as we know, the present study is the first to

adapt CCA so as to simultaneously analyse two microarray data,

which is designated as CCA on Microarray data (CCAM).

In order to examine the validity and efficiency of our method,

we have analysed two haematological disorders: leukaemias and

myelodysplastic syndromes (MDS). Table 1 is the summary of

microarray datasets used in this study.

Haematological disorders are classified and understood by

referring to normal haematopoietic cell differentiation. Leukae-

mias are classified on the basis of the cell type involved and the

state of maturity of the leukaemic cells, and categorized into major

four groups: acute lymphoblastic leukaemia (ALL), acute myeloid

leukaemia (AML), chronic lymphocytic leukaemia (CLL), and

chronic myelogenous leukaemia (CML) [16]. The classification of

leukaemias has been further developed by assigning leukaemic

cells to normal haematopoietic cell counterparts based on

morphology, cytochemistry, immunophenotype, genetics and

clinical features, so as to define clinically significant disease entities

[17,18]. This framework is based on the well-known hypothesis

that the genetic lesions of leukaemia result in a block of

differentiation (maturation arrest) that allows leukaemic cells to

continue to proliferate and/or prevents the terminal differentiation

and apoptosis seen in normal white blood cells [19].

MDS are a group of clonal haematopoetic disorders marked by

ineffective haematopoiesis, peripheral cytopenias, and an in-

creased risk of transformation to AML [20]. MDS have been

classified into subgroups, and individual patients are scored, in

order to predict prognosis, especially for assessing the risk of

leukaemic transformation. The International Prognostic Score

System (IPSS) for MDS is composed of three factors: blasts in bone

marrow (BM), karyotype, and cytopenia, and higher scores are

associated with poorer prognosis [21]. The World Health

Organization (WHO) classification of MDS is based on morpho-

logic evaluation of bone marrow cells and genetic abnormalities,

and classifies MDS into 6 major subtypes: refractory anaemia (RA,

or Refractory cytopenia with unilineage dysplasia (RCUD)),

refractory anaemia with ring sideroblasts (RARS), and refractory

cytopenia with multi-lineage dysplasia (RCMD), and 5q-syndrome

(MDS associated with isolated del(5q)), and refractory anaemia

with excess blasts (RAEB-1 [blasts v5%] and RAEB-2 [5{19%
blasts]) [22,23]. Blast percentage of more than 20% is defined as

AML, and reasonably, RCMD and RA show better prognosis with

longer leukaemia-free survival than RAEB-1 and RAEB-2 [24,25].

Genome-wide gene expression analysis (transcriptomic analysis)

has been extensively used for improved understanding of the

diagnosis, prognosis, and pathogenesis of these haematological

diseases [22,26]. In these transcriptomic studies, gene expression

signature (or, gene expression profiles [GEP]) has been most

commonly used to classify haematologic diseases and predict

prognosis [26]. Gene expression signature is typically composed of

tens to hundreds of genes, so that all these genes stably contribute

to classify samples in cross-institutional settings [4,27]. Hierarchi-

cal clustering is most often employed in analyses using gene

expression signatures to classify samples into disease subtypes [28].

Results

Analysis 1: Leukaemia
Based on the assumption that leukaemia is classified by referring

to normal haematopoietic cell differentiation, we attempted to

Table 1. Summary of microarray datasets used in this study.

ID Study design #samples
Microarray
platform Ref

GSE2779 Purified CD34+ progenitor cells from normal karyotype, low blast count
MDS patients,age-matched controls and patients with non-MDS anaemia

28 HG-U133A [49]

GSE13159 BM or blood samples of acute and chronic leukaemia patients 2096 HG-U133 plus 2 [29]

GSE15061 BM samples from MDS and non-leukaemia;
AML data were not used in this study

233 HG-U133 plus 2 [22]

GSE24759 Flow-sorted 38 haematopoietic cell populations;
Pooled samples from 4 to 7 independent donors

211 U133AAofAv2 [30]

doi:10.1371/journal.pone.0053544.t001
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analyse using transcriptomic data the relationships between

leukaemia disease samples and normal haematopoietic lineage

cells. We aimed in this analysis to determine the transcriptomic

identities of individual leukaemia patients by analysing a

transcriptomic dataset of leukaemia (GSE13159 [29]) and that of

haematopoietic cell differentiation (GSE24759 [30]). As this is the

first exemplary analysis using a univariate approach by gene

signature, we also show why we need to introduce a multidimen-

sional method. In the subsequent section, we demonstrate how

CCAM is applied to microarray datasets, and examine the validity

of the method by addressing haematologically well-known

relationships between pathological and physiological processes.

A univariate approach using gene expression

signature. First, we employed a univariate approach to address

this problem, using provisional gene signatures of haematopoietic

cell populations (see Methods). Here, we aim to score individual

disease samples by the degree of maturation into each cell

population. Given that some haematopoietic cell populations may

be too similar to each other to provide meaningful results that

discriminate disease samples, hierarchical clustering was used to

cluster haematopoietic cell gene signatures based on their correla-

tions to individual disease samples (Fig. S1). Based on this clustering,

we chose four distinct (classified in different groups) gene signatures

from relatively immature cells (proxy to haematopoietic stem cells

[HSC]): granulocyte-monocyte progenitor (GMP; CD34z

CD34zCD38zCD45RAz), neutrophilic metamyelocyte (NM;

CD34{SSChiCD45zCD11bzCD16{), immature B cells (Pro-B;

CD34{CD10zCD19z) and mature B cells (Mat-B; mature B cells

with class switched; CD19zIgD{CD27z) [30]. We analysed the

distribution of gene signature scores of disease samples for these cell

populations. As shown in Fig. S2, CLL showed high correlations

with the signature of Mat-B (Fig. S2a), while CML and AML

showed higher correlations with those of NM and GMP (Fig. S2b

and S2c). Generally, ALL showed higher correlations with the

signature of Pro-B (Fig. S2d). These results seemed haematologi-

cally appropriate, considering the immunophenotype of these

leukaemia subtypes [31–34]. It was, however, unclear how these

four results in Fig. S2 were related.

Cross-level relationships between leukaemia subtypes,

haematopoietic cell differentiation, and genes by

CCAM. The results above indicated that it was necessary to

simultaneously analyse components at three different levels: genes,

normal haematopoietic cells, and individual disease samples. To

achieve this, we have developed a new multidimensional and

canonical analysis of two microarray datasets by adapting

Canonical Correspondence Analysis, which was developed in

ecology and sociology, to microarray analysis (we designate the

method as CCA on Microarray data, CCAM) (see Methods, Fig. 1a).

Briefly, in our application of CCAM, pathological data (disease

data) are treated as response data, and physiological data (normal

haematopoietic cell differentiation) are used as explanatory

variables (environmental variables), and thereby we aim to reveal

the relationships between gene expression and pathological and

physiological processes. Assuming that leukaemias are classified by

referring to normal haematopoietic cell differentiation, CCAM is

expected to assign individual disease samples to most correlated

normal counterparts. We used the four representative haemato-

poietic lineage cells that were analysed in the gene signature

approach in Fig. S2 (GMP, NM, Pro-B, and Mat-B).

We have employed a map approach in our method in order to

avoid the pitfalls of simultaneously analysing the complex

relationships between components at three different levels [9].

CCAM provides a map that shows the correlations between genes,

normal haematopoietic cells, and disease samples. In other words,

the more correlated, the nearer components are positioned on the

map [9]. Fig. 1b shows all the components that were analysed at

all the levels (gene, normal cell, and disease). On the map, CLL

showed high correlations with Mat-B, and not with Pro-B and

myeloid cells, compatible with the fact that the phenotype of CLL

is similar to antigen-experienced B cells rather than immature B

cells [31,34] (Fig. 1b and 1c). Although the number of samples is

small, mature B cell-ALL (mature B-ALL) showed a clear

correlation with CLL and Mat-B [33] (Fig. 1d), which is also a

reasonable result. On the other hand, ALL (excluding T cell-ALL

[T-ALL] and mature B-ALL) showed higher correlations with the

signature of Pro-B, which is consistent with the immunophenotype

of non T cell, immature B cell ALL [32,33]. CML and AML

showed higher correlations with the signatures of NM and GMP,

and comparing with AML, CML was more distinct from

lymphocytic leukaemias (ALL and CLL) and deviated more to

the direction to which NM and GMP were correlated (Fig. 1b–1e),

confirming a more differentiated granulocytic phenotype of CML

than AML. T-ALL was distinct from other ALL, and positioned

between B-ALL and AML (Fig. 1d–1e).

By analysing CCA triplot at the gene level, B cell- and B-

leukaemia-related genes have high (positive) scores in axis 1, while

genes related to myeloid cell differentiation and myeloid leukaemia

have low (negative) scores (Fig. 1b). Myeloid genes such as MMP8

and CD33 are in quadrant I (Axis1loAxis2hi ), which is correlated

with myeloid lineage NM and GMP. Genes related to nave or

immature B cell (e.g. POU2AF1, CD19, ID3, VPREB3, RAG1) are

apparently enriched in quadrant III (Axis1hiAxis2lo), which is

correlated with Pro-B. Genes related to mature, antigen-experi-

enced B cells (e.g. CD40, CD86) are found in quadrant II

(Axis1hiAxis2hi), which is correlated with Mat-B. The associations

of components at the three different levels could be observed in

this analysis. For example, in quadrant II, CCL and mature B cells

are correlated with FCER2 (CD23, FcReII), CD180 (RP105), and

CXCR5 (Fig. 1b). In fact, increased expression of these genes is

characteristic in CLL and also associated with maturation of B

cells [35–39]. Interestingly, quadrant IV (Axis1loAxis2lo), which is

not annotated by haematopoietic cells but correlated with AML

and T-ALL, includes RUNX1, ERG, and MYB, which have well-

established roles in AML and early haematopoietic differentiation

including myeloid and T-lymphocyte lineages [40–43] (Fig. 1b).

Thus, the map analysis in Fig. 1 can be summarised as follows:

Axis 1 represents‘‘myeloid cells vs. B lymphocyte’’, while Axis 2

represents ‘‘immature vs. mature cells’’. Individual leukaemia

samples and gene expression were successfully characterised on

this map. The analysis of variation (precisely, inertia [9]; see

Methods) showed that Axis 1, 2, and 3 comprised 68%, 17%, 11%

of variations, respectively. This means that the leukaemia data that

was interpretable by the haematopoietic cell data was mostly

visualised (85% and 97% of the information in the constrained

data in Fig. 1d and 1e, respectively), and that the difference

between myeloid and lymphocytic lineages dominated that of the

maturity of cells in this dataset.

Next, we further analysed the phenotypes of AML subtypes by

CCAM (Fig. S3). We included in the analysis the cell populations

of the myeloid lineage that are relevant in AML, namely,

Common myeloid progenitor (CMP), Colony forming unit-

monocyte (CFU-M), Neutrophilic metamyelocyte, and mature

Neutrophils. CCAM classified AML subtypes with the features of

the granulocytic and monocytic lineages (Fig. S3). CCAM showed

that the subtypes AML with 11q23/MLL and AML with inv(16)/

t(16;16) were more associated with CFU-Monocyte than other

granulocyte lineage cells, which is consistent with the facts that

these subtypes are morphologically more correlated with the
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monocytic lineage [44,45]: a study showed that a majority (81%)

of AML with 11q23/MLL showed an involvement of the

monocytic lineage [44]; AML with inv(16)/t(16;16) has the fusion

gene CBFb/MYH11, and is morphologically associated with the

French-American-British (FAB) AML-M4 subtype (acute myelo-

monocytic leukaemia with an abnormal eosinophil compo-

nent)[45]. In addition, CCAM showed that the subtypes AML

with t(15;17) and AML with t(8;21) were more related to

Neutrophil, which is consistent with their morphological associ-

ations with the granulocytic lineage: AML with t(15;17) has the

PML-RARA fusion gene and corresponds to the FAB M3 subtype

(acute promyeolocytic leukaemia) [46,47]; AML with t(8;21) has

the fusion gene AML1(RUNX1)/ETO and corresponds to the

AML-M2 (acute myeloid leukaemia with maturation) [48]. See

File S1 and Fig. S4 for the further analysis of these two datasets.

Analysis 2: Myelodysplastic Syndromes (MDS)
The analyses above showed that CCAM successfully revealed

known relationships between leukaemia, haematopoietic cell

differentiation, and genes in a concise and transparent way. In this

section, we examined whether the approach was effective in

generating and testing hypotheses, and questioned whether this

method could provide meaningful insights into clinical problems.

Accordingly, we analysed two independent MDS datasets. The first

analysis was carried out in order to generate a new hypothesis. We

then tested the hypothesis by analysis of another independent

dataset.

Analysis for hypothesis-generation: comparison of MDS

and normal bone marrow (BM). We analysed the transcrip-

tomic data by Sternberg et al (GSE2779 [49]) along with that of

haematopoietic cell differentiation (GSE24759). Sternberg et al

showed that CD34z progenitor cells from normal-karyotype, low-

blast-count MDS patients consistently showed decreased expres-

sion of B-cell lineage-affiliated genes [49]. We attempted to

confirm this result, while obtaining a bigger picture using not only

the data of immature B cells (Pro-B) but also those of other

progenitors including MEP (megakaryocyte-erythroid progenitor),

GMP, and CMP, and haematopoietic stem cells (HSC). In order

to find the unique features of MDS BM using the relatively small

number of disease samples analysed in this dataset, we filtered

genes using the disease data.

CCA triplot showed that axis 1, which was composed of the

largest variation in the dataset, is primarily represented by the

difference between MDS and normal BM as well as that between

HSC/MEP and CMP/Pro-B. As Sternberg et al reported, MDS

samples had negative correlations with Pro-B (Fig. 2a). In addition,

CCA triplot showed that MDS samples had positive correlations

with HSC and MEP. Although the number of samples is small,

non-MDS anaemia samples were in the middle of MDS and

normal BM in axis1 (Fig. 2b). Interestingly, KIT and NPM1, the

mutations in which are suggested to play roles in leukaemic

transformation [50,51], were correlated with MDS and HSC/

MEP. B cell-related genes including POU2AF1, PAX5, and CD19,

were associated with normal BM as reported [49] (Fig. 2a).

Examination of hypothesis: BMs from high-risk MDS

patients showed the deviation towards HSC/MEP at

transcriptomic level. Based on these findings, we generated

a hypothesis that MDS patients with higher correlations with both

HSC and MEP (and negative correlation with Pro-B) had a higher

risk for leukaemic transformation. To test this hypothesis, we have

applied CCAM to another independent dataset of MDS that is

composed of only MDS patients (without normal), and analysed

the results in conjunction with the clinical data (GSE15061 [22]).

First, using CCAM, we determined the relationships between

individual MDS patients and haematopoietic cells based on their

transcriptomes (Fig. 3a). Next, we superimposed clinical data onto

this plot. Interestingly, MDS patients with high scores in IPSS

scores (cytopenia, and blast) had higher values in axis1 compared

with those with low scores (pv0:001 for cytopenia [cytopenia

score w0:5 vs. 0], pv0:05 or pv0:001 for blast [blast v5% vs.

blastw5% or 11%, respectively], Fig. 3b). IPSS category itself had

a similar tendency: individuals with IPSS w1:5 had significantly

higher scores in axis 1 (pv0:01). According to the WHO

classification, RAEB-2 had significantly higher axis 1 scores than

others (pv0:05). Importantly, principal component analysis (PCA)

could not reveal these characteristics of MDS patients (Fig. S5),

demonstrating the value of CCAM.

CCAM created a new scoring system that has a prognostic

value and biological relevance in haematopoietic cell

development. The results in Fig. 3 suggest that a positive

association with HSC/MEP and a negative association with CMP

has a prognostic value. Thus, using top ranked genes (top 100 and

bottom 100 genes by the wa score of CCAM, see Method), we

analysed the relationships between individual patients and their

associations with the four haematopoietic cell populations, and

thereby established a scoring system for MDS patients (designated as

the HSC-CMP score). As expected, genes with high HSC-CMP scores

were specific to HSC/MEP, while those with low scores were

specific to CMP/GMP (Fig. S6). MDS patients were stratified into

two or three groups by the HSC-CMP score, and two to four groups

by well-established prognostic scores and the disease categories in

the WHO classification. Kaplan-Meier survival analysis showed

that the HSC-CMP score had prognostic values for overall survival:

patients with scores above the 50th percentile showed worse survival

(Fig. 4a pv0:02) and those above the 95th percentile had the worst

prognosis by log-rank test (Fig. 4b pv2|10{4). While the IPSS and

cytopenia scores showed p-values just above the significant

level(p~0:054 and p~0:055, respectively), disease categories

showed significant difference between patient groups (Fig. 4g,

pv0:002). Similarly, Kaplan-Meier survival analysis for time to

Figure 1. CCAM of transcriptomic data of leukaemias with haematopoietic cell differentiation as explanatory variables. Leukaemia
data were analysed with those of haematopoietic cell populations at distinct differentiation states (Granulocyte-monocyte progenitor [GMP],
Neutrophilic metamyelocyte, Pro-B cell, and Mature B cell class switched,). (a) Schematic presentation of CCAM. Transcriptomic datasets of leukaemias
(including AML, CML, ALL, and CLL) and haematopoietic cells were processed by CCA and the cross-level relationships between components at three
different levels, namely disease, cell, and gene, were analysed. (b) All three levels are shown on a map (CCA triplot). Centroids of disease samples are
shown by large closed circles, and 95% confident intervals (CI) are indicated by ellipsoids. Genes are shown by closed grey circles, and well-known
genes that are key for either leukaemia or haematopoietic cell differentiation are annotated. Haematopoietic cells are represented by blue arrows,
towards which genes and diseases that are closely related to the corresponding cell are aggregated. (c, d) The levels of disease and cell are shown. (c)
Individual disease samples are shown in addition to 95% CI. (d) Two-dimensional plot of disease samples and haematopoietic cell populations. The
amount of information (eigenvalue) retained in each axis is 68% and 18% of the total variation (precisely, constrained inertia, see Methods) for Axis 1
and 2, respectively. (e) Three-dimensional plots of disease samples and haematopoietic cell populations. The amount of information (eigenvalue)
retained in each axis is 68%, 18%, and 11% (of the constrained inertia) for Axis 1, 2, and 3, respectively. See legend for symbols and colours in (d) and
(e).
doi:10.1371/journal.pone.0053544.g001
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AML transformation showed that patients who scored above the

50th percentile had worse prognosis (Fig. 5a, pv0:02), while the

stratification of patients into three groups by the HSC-CMP score

was less significant (Fig. 5b, p~0:054). Regarding the AML

transformation, reasonably, blast score and disease categories

showed the lowest p-values (Fig. 5d and 5g, pv1|10{5 and

pv1|10{4, respectively).

To further address the significance of the HSC-CMP score, we

employed a Cox proportional hazard regression analysis for

overall survival and time to AML transformation. The univariate

Cox analysis showed that the HSC-CMP score and the IPSS score

were significant both for time to AML transformation (pv0:02
and pv0:002, respectively) and for overall survival (pv0:001 and

pv0:05, respectively, Table 2). Cytopenia and Blast scores were

also significant for time to AML transformation (pv0:05 and

pv0:0005, respectively). Next, we performed a multivariate Cox

regression analysis with the IPSS score and the HSC-CMP score

(three stratified groups), which showed that the HSC-CMP score

remained significant for overall survival but the IPSS score did not

(pv0:01, hazard ratio [HR]~2:11; and p~0:90, HR~1:02;

respectively), while the IPSS score remained significant for time to

AML transformation but the HSC-CMP score did not (pv0:05,

hazard ratio [HR]~1:43; and p~0:50, HR~1:78; respectively).

Lastly, we performed a multivariate Cox regression analysis with

the HSC-CMP score, Cytopenia score, Blast score, and Karyotype

score. The analysis for time to AML transformation did not show

any statistically significant results except that Blast score was

significant (pv0:01,HR~2:52). The analysis for overall survival

showed that the HSC-CMP score had the largest impact

(pv0:005, HR~2:29), and other scores failed to show significance

(Table 2). These results suggest that although the HSC-CMP score

was not independent from the IPSS and other scores, it was a

dominant prognostic factor for overall survival.

Discussion

CCAM has provided novel insights into the cross-level

relationships between gene expression and pathological and

physiological processes, which could not be obtained by the

analysis at each single level. Importantly, many medical problems

require the analysis of disease samples in the context of some

particular biological processes (e.g. cell differentiation), which are

most often multidimensional in nature and are often not

straightforward. CCAM has effectively solved this type of

problems by analysing two independent transcriptomic data.

Visualisation of the analysed results has made it transparent which

cell populations are being compared for the relationship with

disease samples. In addition, CCAM allows the exploration of

novel molecular mechanisms that are highly associated with

particular cell and/or disease. For example, in Fig. 1, CCAM has

identified known genes that had roles in haematopoietic cell

differentiation and leukaemia. This result suggested that other

genes that are associated with (in juxtaposition to) these known

genes and with particular diseases and cells are reasonably good

candidates for undefined molecular mechanisms of these diseases

and cells, considering the nature of the underlying algorithm,

Correspondence Analysis [9,14]. Thus, CCAM with the map

approach is useful for generating hypotheses with least assump-

tions, and is expected to lead to hypothesis-driven studies. In

addition, we used CCAM effectively to test a hypothesis on the

transcriptomic characteristics of MDS patients. Furthermore, the

proposed approach can identify individuals with worse clinical

outcomes, and infer the mechanisms underlying poor prognosis, as

shown by the analysis of MDS. The clinical utility of this approach

is thus demonstrated.

New biological insights from CCAM: the positive
correlation of transcriptomes of high risk MDS patients
and those of HSC/MEP (and the negative correlation of
MDS with CMP)

Consistent with a previous report [49], MDS samples showed

decreased or negative correlations with the process of early B cell

differentiation compared with healthy controls. In adddition, our

analysis has revealed that MDS samples are more correlated with

the processes of both HSC maintenance and MEP differentiation.
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Figure 2. CCAM of MDS transcriptomic data of CD34z cells from MDS, non-MDS anaemia, and normal BM, analysed
together with those of haematopoietic cell differentiation. Microarray data of CD34z cells from MDS, non-MDS anaemia, and healthy
controls were analysed by CCAM using five haematopoietic cell populations (Haematopoitic stem cell [HSC], Megakaryocyte-erythroid progenitors
[MEP], Common myeloid progenitor [CMP], Granulocyte-monocyte progenitor [GMP], Pro-B cell) as explanatory variables. Genes were filtered by MDS
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Interestingly, while the process of early B cell differentiation did

not show correlation with the severe phenotype of MDS, the

transcriptomic statuses of HSC and MEP showed remarkable

correlations with it (Fig. 3). The leukaemic transition of MDS is

widely known to be associated with the immaturity (the acquisition

of stem-ness [HSC]) [22,23], while the association between MDS

and MEP (in comparison with myeloid/lymphoid differentiation)

has not been recognised. This is the power of the new approach: to

simultaneously and fairly consider multiple phenotypes, providing

an integral view on the system.

As RNA for hybridization was extracted from unsorted,

mononuclear BM cells from MDS patients in this dataset

(GSE15061) [22], the result should be interpreted considering

possible compensatory mechanisms in BM by non-MDS cells. It is

noticed, however, that another dataset, GSE2779, analysed

purified CD34z progenitor cells, resulting in a similar conclusion.

In addition, our results showed that RARS BM, which charac-

teristically show hyperplastic ineffective erythropoiesis [52], did

not have positive correlations with MEP and HSC, and that 5q-

syndrome, which typically shows normal to increased megakar-

yocytes [23], did not show positive correlations with MEP. Rather,

5q-syndrome and RARS showed lower values in Axis 1, and were

more correlated with CMP (Fig. 3f). Given that the largest

variation can be observed in axis 1 of CCAM results, these results
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indicate that the distinct feature of BM from severe MDS patients

dominated the variations in MDS including those compensatory

mechanism and secondary responses. Interestingly, a recent report

showed that decreased expression of erythroid-specific genes was

correlated with the responsiveness to the thalidomide derivative

lenalidomide in patients with 5q-syndrome, which is the most

homogenous subtype of MDS [53]. Our results, along with the

results of this study, suggest that MDS with higher correlations
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with the erythroid lineage (and HSC) are more difficult to treat

with lenalidomide.

Importantly, the HSC-CMP score showed a prognostic value

for overall survival (Fig. 4–5 and Table 2). Given that the HSC-

CMP score was correlated with the characteristic gene expression

in HSC/MEP and CMP/GMP (Table S1 and Fig. S6), those

genes can be investigated to elucidate the molecular mechanisms

of MDS pathogenesis in relation to the cellular and differentiation

processes of these haematopoietic cell populations. These findings

above suggests that disease progression in MDS is accelerated by

the aberrant utilisation of the molecular mechanisms of erythroid/

megakaryocyte (MEP) differentiation and stemness (HSC) and the

loss of the mechanisms of CMP and/or GMP. The investigation of

these processes may provide clues to identify new therapeutic

targets that improve overall survival. Thus, CCAM provides

biologically effective and meaningful solutions because it analyses

simultaneously and cohesively two different phenotypic levels -in

this case, MDS pathology and normal haematopoietic cell

development.

Our analyses using transcriptomic data obtained from batch

samples have revealed the transcriptomic identities of the

phenotype of dominant cells or ‘average’ cells in the context of

normal haematopoietic cell differentiation. It is known that

variations can occur within individual cancers, in which the

cancer cells often have a range of functional properties and diverse

expression of markers [54]. In addition, it is thought that

leukaemia has a hierarchical organization similar to that of

normal haematopoiesis in which there is a rare subpopulation with

limitless self-renewal potential (leukaemic stem cells) that gives rise

to progeny that lack such potential [55]. Considering this, in

conjunction with the use of our method, gene expression analysis

at the single cell level will be the key to reveal further relationships

between normal cells, cells of origin, and leukaemia stem cells.

CCAM provides the framework to analyse this type of data.

Technical considerations on the use of CCAM
CCAM does not produce ready-to-go results, but provides a

platform where the existing hypotheses are examined and new

hypotheses are formed and generated. Depending on how

explanatory variables are set and used, CCAM can be used for

exploratory purposes in a data-oriented way (c.f. Fig. 1) or for

examining the original hypothesis (c.f. Fig. 3). The map approach

enables the comparisons of more than two variables, while the

regression process in CCAM allows the analysis across two

different experiments. These are advantages of CCAM but can

mislead the analysis if inappropriately used. The users should be

aware of the following two points. First, because the underlying

algorythm, CCA, uses multiple regression, one needs to avoid the

pitfalls of multiple regression when choosing explanatory variables:

the number of explanatory variables should be less that that of

samples, in order not to overfit the data to explanatory variables;

and the interpretability of the results is directly dependent on the

choice and quality of the explanatory variables [56]. Second, when

the final result of CCAM has only a very small part of the original

‘‘information’’ (i.e. %Explained is very low [e.g. v5%], see

Methods), interpretation should be cautious. Although the

absolute value of %Explained does not reflect the biological

relevance, if %Explained is comparable between analyses (see

Methods), the results with larger %Explained values may be

biologically more reasonable and straightforward.

Importantly, the effective use of CCAM requires deep

knowledge of both biology/medical science and multidimensional

analysis. Because CCAM can help the process of hypothesis

generation and testing, this method is best performed when

biologists/medical scientists actively participate in the analysis.

Readers with biological backgrounds are encouraged to under-

stand the procedures of CCAM in Fig. 6, and those with

bioinformatics/statistical knowledge can refer Fig. S7 for the

theoretical background of CCAM, and use an R script of CCAM

in File S1. If successfully applied, CCAM will allow one to address

more complex questions which could not be done by conventional

Table 2. Results of the univariate and multivariate Cox proportional hazard regression analysis.

Time to AML transformation Overall survival

Covariate P Hazard ratio Confidence interval P Hazard ratio Confidence interval

Univariate hazard ratios

HSC-CMP score ,.02* 2.57* 1.17–5.64 ,.001* 2.15* 1.37–3.38

IPSS score ,.002* 1.99 1.29–3.06 .03* 1.34 1.03–1.74

Cytopenia score ,.05* 2.92* 1.15–7.41 .059 1.66 0.98–2.80

Blast score ,.0005* 2.85* 1.64–4.97 .27 1.21 0.86–1.70

Karyotype score .08 1.84 0.93–3.62 .061 1.49 1.00–2.26

Multivariate hazard ratios

HSC-CMP score .50 1.43 0.51–4.03 ,.01* 2.11* 1.20–3.71

IPSS score ,.05* 1.78 1.03–3.07 .90 1.02 0.72–1.45

Multivariate hazard ratios

HSC-CMP score .86 1.10 0.37–3.26 ,.005* 2.30* 1.29–4.10

Cytopenia score .89 0.91 0.24–3.40 .84 1.08 0.54–2.16

Blast score .01* 2.82* 1.27–6.27 .28 0.79 0.51–1.22

Karyotype score .92 1.04 0.50–2.18 .33 1.25 0.79–1.98

HSC-CMP score is the score made by CCAM, and stratified patients into three groups (w95%, 95{50%, and v50%). Cytopenia, Blast, and Karyotype scores are the
scores that constitute the IPSS score. These scores were examined for their impacts on overall survival and time to AML transformation.
Pv0.05 or hazard ratio w2.0.
doi:10.1371/journal.pone.0053544.t002
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methodologies. The use of CCAM and related multidimensional

methods will extend the power of experimental technologies, as it

has benefited the field of ecology [56,57]. Table 3 summarises the

features of CCAM in comparison with univariate approaches

including gene signature and multivariate/multidimensional ap-

proaches including PCA and CA.

Notably, CCAM has clarified in the analysis exactly what is

compared and analysed, with the power of the map approach.

Although it might be obvious to haematologists that HSC is

correlated with the progression of MDS, CCAM revealed this

without prior knowledge, and more importantly, showed that this

statement was true only when patient samples were compared with

not only HSC but also some more differentiated cells. CCAM

identified that CMP was an appropriate cell population to be

compared with HSC (c.f. Fig. 3). In addition, CCAM showed that

MEP was correlated with MDS patients with worse prognosis at

an equivalent level to HSC (Fig. 2–3). These led to the

establishment of the HSC-CMP score, which had a prognostic

value and biological relevance in haematopoietic cell development

(Fig. 4–5, Table 2, Table S1). Such a complicated comparison of

multiple phenotypes is important for a deep understanding of the

system, but this is generally difficult by conventional approaches.

The power of CCAM lies in its ability to deal with multiple

phenotypic data based on quantitative measurements (i.e. gene

expression).

Conclusions

CCAM provides a practical solution for comparing multiple

groups of samples with multiple cellular phenotypes. In addition,

CCAM reveals hidden relationships between pathological and

physiological processes and gene expression, providing novel

clinical insights into haematological diseases. In fact, CCAM

provided new insights such as the correlation of the severe

phenotype of MDS and MEP, in addition to the known

correlation with HSC. Furthermore, CCAM can be effectively

used for exploring the genes that are correlated with cellular

phenotypes of interest using the map approach (c.f. Fig. 1).

The strength of CCAM is its ability to explore datasets for

hypotheses-generation using the map approach. Once a hypoth-

esis is generated, we can test the hypothesis by this method using

other datasets (c.f. Fig. 3) or by other methods such as statistical

comparison of a few selected groups. The map-based approach is

popular in social science and ecology [9], because in these research

fields it is mandatory to analyse the relationships between many

different, but closely associated qualitative data (e.g. different

human attitudes [9,58], species, and the analysis without
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visualisation can be misleading [9,59]). In fact, qualitative data

(e.g. disease classification, cell subtype) are becoming more and

more complex in modern medicine with the emergence of

genomics, and we believe that this type of approach is essential

and should be incorporated into medical genomics. In addition,

considering the generality of the method, the proposed approach

can be applied to common problems in broad fields of molecular

biology.

Materials and Methods

Canonical Correspondence Analysis on Microarray data
(CCAM)

Conceptual definition of CCAM. CCA is a variant of

Correspondence Analysis (CA), which is a key method in

sociology, and is developed in ecology for identifying the

relationships between ecological data at three different levels

[9,59]. We have chosen CCA because it can analyse the rows and

columns of two transcriptomic data that are derived from two

independent experiments with totally different experimental

designs and materials. When these data are analysed by

conventional approaches, the distance between different experi-

ments (between-experiment variations) dominates important

biological effects in the datasets, and compromises the direct

comparison of leukaemic cells and normal haematopoietic cells.

On the other hand, CCA looks at the intersection of the two

completely different datasets (but obtained for the same genes) and

thus avoids this problem. CCA in our method analyses the

relationships between genes and disease samples in the context of

haematopoietic cell differentiation (corresponding to geological

locations, species, and environmental variables, respectively, by ter Braak

[59]; gene expression levels correspond to frequencies). Note that

in CCAM, CCA is applied to a matrix of data with genes in rows

(observations, equivalent to geological locations by ter Braak) and

cellular phenotypes in columns (variables, equivalent to species and

environmental variables by ter Braak).

Briefly, first, CCAM projects the dataset of disease samples onto

the data of haematopoietic cell differentiation, which are averaged

for each cell population using scaled data with an average of zero

and standard deviation of one for each gene (Fig. S7). Importantly,

the gene expression data of haematopoietic cells represent the

environmental variables that define the phenotypes of each cell

population. Thus, CCAM analyses the interpretable part of the

original disease dataset by haematopoietic cell data [9,59]. Mostly

the interpretable part (%Explained, see below) was 10–20% of the

original data in the presented analyses [9]. Next, CCAM finds new

axes by assigning numerical values to samples and genes so that

the dispersion of samples is maximized [59].

Instructions on the practical usage of CCAM. Fig. 6a

depicts how to use CCAM. (1) Prepare datasets. ‘‘Dataset to be

explained’’ will be the data that analysed more ambiguous

materials (e.g. disease samples) and are of most interest in the

analysis. ‘‘Dataset to explain’’ will provide explanatory (environ-

mental) variables, and be the one that analysed well-characterised

materials (e.g. normal cells). (2) Choose genes using ‘‘dataset to

explain’’ by some statistical method (e.g. a moderated t-test).

Besides, prepare explanatory variables from ‘‘Dataset to explain’’

by taking the average for each group. Carefully choose explan-

atory variables by both biologically thinking and statistically

examining: identify and exclude the variables that have high

correlations with others. (3) Perform CCA using ‘‘Dataset to be

explained’’ and explanatory variables. CCA regresses the former

on the latter and thereby identifies the interpretable part of

‘‘Dataset to be explained’’ (designated as ‘‘Constrained data’’).

Subsequently CCA perfomes singular value decomposition of

Constrained data and obtain ‘‘uncorrelated’’ axes (components).

The axes are ordered by variation (eigenvalue), and first axes have

largest eigenvalues. (4) Visualise the result of CCA using the first

axes, and perform map analysis. Use two-dimensional map

analysis before using three-dimensional plot (c.f. Fig. 1). First,

interpret axes using a deep knowledge on the biological system and

the experimental settings, although axes are not always interpret-

able [9]. It is generally helpful to analyse the relationships between

axes and explanatory variables. Second, identify key sample

clusters. Note that correlated elements gather towards the same

direction from the origin. Strictly speaking, the size of the sample

space is different from that of the gene space [9], therefore, do not

use the Euclidean distance to measure the similarities between

elements across different levels (e.g. cell samples and genes), but

use angular distance instead to analyse the relationships between

them. Third, explore key genes that are correlated with key

clusters of samples and explanatory variables. (5) Lastly, design the

next analysis. Optimise the combination of explanatory variables

by performing CCAM using the same genes, and comparing

%Explained of the analyses with different combinations of

variables. It is also important to consider to remove unnecessary

samples and/or genes, which can blunt the important difference

between elements. The outputs of CCAM can be used as a scoring

system.

The analysis of variations in CCAM: decomposition of
inertia

Fig. 6b summarises how the variation in ‘‘Dataset to be

explained’’ is decomposed and retained in the result of CCAM. In

the analysis using CA and CCA, the variation in data is measured

by inertia, which plays the same role as the total variance in PCA.

Technically, inertia is the sum of total Pearson x2 divided by the

Table 3. The features of CCAM and other univariate and multivariate/multidimensional methods for microarray analysis.

Method
Analysis for a single
variable

Simultaneous analysis of
$2 variables

Analysis across 2
different experiments Exploratory analysis

Hypothesis driven
analysis

Univariate1) ! ! !

PCA ! !

CA ! !

CCAM (CCA) ! ! ! ! !

Although the methods can be used for the application without ‘‘ticks’’ in some limited situations, the maximal productivity may be obtained by those with ‘‘ticks’’.
1) Includes various methods for the signature approach. Commonly analysed using clustering methods.
doi:10.1371/journal.pone.0053544.t003
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total sum [9]. Total inertia, IT , is decomposed into two parts,

constrained inertia, IC , and unconstrained inertia (IT{IC ).

%Explained~IC=IT defines how much of the information in the

original data is retained at this stage, and is useful for addressing

the relevance of the findings by CCAM in terms of variation. Next,

CCAM performs singular value decomposition, and constrained

inertia is decomposed and distributed into new axes,

IC~a1,a2,a3.... %Visualised is defined as a ratio of (The sum of

eigenvalues in the visualised space)=(Constrained inertia), and is

useful to determine how many dimensions should be used.

%Explained is comparable between the results from different

combinations of explanatory variables, when the same genes are

used and the main data matrix is the same.

Algebraic definition of CCAM. Suppose that the normal-

ised gene expression of reference cell subsets (environmental variables)

is F~½d1,:::,dq�[<l|q, and the microarray data Z[<l|p. We

assume that F is standardized using r as weights for rows in the

calculation of means and variances (see the constrained conditions

of g in the previous subsection). CA standardizes Z in the x2-

metric, and subsequently performs singular value decomposition

(SVD) as in the following steps (Fig. S7): (1) Using n, Dr~diag(r)

and Dc~diag(c) (see above), Z can be standardized in the x2-

metric, S~D
{1

2
r (

1

n
Z{rcT )D

{1
2

c . (2) CCA projects S onto D,

while probes are always weighted by the sums of rows of Z. Thus,

the projection matrix is Q~D
1
2
rZ(ZT DrZ){1ZT D

1
2
r, and the

projected (constrained) matrix is S�~QS. (3) Calculate the SVD

of S�: S�~UDaVT where UT U~VT V~I , and Da is the

diagonal matrix of singular values in descending order

(a1§a2§:::). (4) Gene scores are given by D
{1

2
r UDa, and sample

scores are by D
{1

2
c V . (5) Constrained inertias are

l�k~a2
k(k~1,:::,K), where K~min(l{1,p{1,q). The percentage

of the explained information in the k-th axis is expressed by

%Explained (of constrained inertia)~
a2

kP
k a2

k

. (6) In order to

display environmental variables in triplots, environmental vari-

ables ~ddn in F are linearly regressed to each axis of U~(u1,:::,uK ).

Suppose that ~ddn(n~1,::,q) is standardized, the standardized

regression coefficient b�~cov(~ddn,uj)(n~1,::,q; j~1,:::,K), which

is used for displaying environmental variables in triplots. (7) Using

r~(r1,:::,rl) and c~(c1,:::,cp), total inertia of the original gene

expression matrix is w2~
Xl

i~1
ri

Xp

j~1
(

1

n
zij

ri

{cj)
2 1

cj

.

%Explained~

P
k a2

k

w2
is an estimate of how much of the original

information is retained in the solution.

Microarray data and processing
We have used GSE24759 for haematopoietic cell differentiation

[30], GSE2779 and GSE15061 for MDS data (Table 1) [22,49],

GSE13159 for leukaemia data [29]. Microarray data were

normalised by rma of the Bioconductor package, affy. Cross-

platform comparisons were made by a commonly employed

algorithm [60]. Batch-effects within each dataset, if any, were

adjusted by an established approach using empirical Bayes

methods [61]. Data were further normalised across genes. PCA

was done by the function dudi.pca of the CRAN package ade4.

We used the CRAN package, vegan, for the computation of CCA

[62]. An R script for CCAM is available as File S1. Microarray

data of diseases and those of haematopoietic cell populations

(environmental variables) were seprately normalised, as CCA

analyses the data that were projected onto environmental

variables, and normalisation of data of diseases and environmental

variables did not have impacts on the results of CCA (data not

shown). For sample scores, we employed wa score, and biplot

arrows are based on weighted correlation of sample scores and

haematopoietic cell differentiation [62,63]. Genes were filtered by

the same method used for gene signature, using haematopoietic

cell data only, unless indicated. Thus, these analysis results are

unsupervised for disease samples and do not use clinical

information and sample identities. Sample scores of CCA results

were first analysed by Kruskal-Wallis test for comparisons of

multiple groups. Mann-Whitney U-test was used for the compar-

ison of two groups. P-value was adjusted by the Bonferroni

correction. Three-dimensional plots in Fig. 1e and Fig. S6 were

produced by the R packages, rgl and lattice, respectively.

Provisional gene signatures were identified by a moderated,

empirical Bayes t-statistic implemented in the Bioconductor

package limma [64]. The top ranked genes (n~500) in comparison

with all other cell populations by topTable of limma were designated

as the provisional signature genes of each cellular population.

Gene signature score was derived by analysing the averaged

expression of signature genes and the gene expression of each

disease sample by Pearson’s correlation coefficients. Obtained

scores were further scaled so as to have an average of zero and

standard deviation of one, because the primary interest of the

analysis is to compare between disease samples.

Statistical analysis of survival data
Log-rank test was used for analysing the survival data of the

stratified groups of patients. Cox proportional hazard models were

used for analysis of survival data. The CRAN package, survival, was

used for these computations.

Supporting Information

Figure S1 Hierarchical clustering of gene expression signatures

of haematopoietic cells by correlation to a leukaemia disease

dataset. All the haematopoietic cell populations in GSE24759

were analysed. A gene signature was identified for each

haematopoietic cell population, and gene signature score was

calculated as a correlation between each signature and individual

leukaemia sample, and shown by a heatmap. Yellow indicates

positive correlation, and red indicates negative ones. Identified

clusters of haematopoietic cell signatures are shown by colours of

cell population names and dendrograms. Rows are individual

patients. The disease categories are shown by colours on the left

side of the heatmap. This analysis did not aim to classify disease

samples, therefore reasonably, hierarchical clustering of rows did

not classify disease samples. Abbreviations: CFU, colony forming

unit; HSC, haematopoietic stem cell; CMP, common myeloid

progenitor; GMP, granulocyte monocyte progenitor; MEP,

megakaryocyte-erythroid progenitor.

(EPS)

Figure S2 Boxplots showing the distributions of gene signature

score in leukaemic disease samples for indicated haematopoietic

cell populations: (a) Mature B cell class switched; (b) Neutrophilic

metamyelocyte; (c) Granulocyte-monocyte progenitor (GMP); and

(d) Pro B cell. Positive values indicate that samples showed positive

correlations with the corresponding gene signature.

(EPS)

Figure S3 CCAM results of AML patient samples using CMP,

CFU-monocyte, Neutrophilic metamyelocyte, and mature Neu-
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trophils as explanatory variables. (a) All the AML subtypes are

displayed with haematopoietic cell data. (b) Individual disease

subtypes are separately displayed with haematopoietic cell data.

(EPS)

Figure S4 CCAM results of haematopoietic cell population data

explained by major leukaemic phenotypes. CCAM was performed

to analyse 38 hametopoietic cell populations using ‘average’

leukaemic cells (AML, ALL, CML, and CLL) as explanatory

variables. (a) Disease and Cell plot. CCAM result of 38

haematopoietic cell populations (211 samples) is displayed with

the average phenotypes of four major leukaemia subtypes. (b)

Baricentres of haematopoietic cell populations are shown.

Developmental pathways for erythrocyte, megakaryocyte, granu-

locyte, monocyte, and B cell lineages are shown by arrows. (c)

Spider plots of selected cell lineages. The barycentre of each cell

population is connected with individual cell samples, showing the

distributions of each cell population. Dashed arrows show the

developmental pathways of each cell lineage. It is not sound to use

too many explanatory variables in CCAM, as CCAM regresses

main data on explanatory variables, which is one of the major

limitations of this method. Thus, in order to analyse the

differentiation pathways of many normal haematopoietic cell

populations in terms of the features of leukaemias, haematopoietic

cell data has to be treated as main data, using leukaemic data as

explanatory variables (note that this is the opposite way of Fig. 1).

Map analysis indicates that the largest difference was observed

between myeloid and lymphoid lineages (axis 1, a), and the second

largest difference was between ALL and CML (axis 2, a). CCAM

shows that (1) acute leukaemias (AML and ALL) are more

associated with immature haematopoietic stem cells; (2) AML is

more associated with immature myeloid lineage cells including

CMP than differentiated myeloid cells; (3) CML is correlated with

relatively differentiated monocytic and granulocytic lineage cells

(especially, neutrophilic metamyelocyte and CFU-monocyte); (4)

CLL is correlated with naive and mature B cells [31,34]. (b–c).

The results were compatible with and confirm at the transcrip-

tomic level the common understandings on leukaemias and

haematopoietic cell differentiation. Abbreviations: HSC1, Hae-

matopoietic stem cells (CD133z CD34dim); HSC2, Haematopoi-

etic stem cells (CD38{ CD34z); ERY1, Erythroid CD34z

CD71z GlyA{; ERY2, Erythroid CD34{ CD71z GlyA{;

ERY3, Erythroid CD34{ CD71z GlyAz; ERY4, Erythroid

CD34{ CD71lo GlyAz; ERY5, Erythroid CD34{ CD71{

GlyAz; Mat-B1, Mature B cell class able to switch; Mat-B2,

Mature B cell; Mat-B3, Mature B cell class switched; CD4 TCM,

CD4z Central Memory T cell; CD4 TEM, CD4z Effector

Memory T cell; CD8 TCM, CD8z Central Memory T cell; CD8

TEM, CD8z Effector Memory T cell; CD8 TEM RA,

CD8zCD45RAz Effector Memory T cell; m-DC, Myeloid DC;

p-DC, Plasmacytoid DC; NKa1, Mature NK CD56{CD16z

CD3{; NKa2, Mature NK CD56zCD16zCD3{; NKa3,

Mature NK CD56{CD16{CD3{.

(EPS)

Figure S5 Comparison of the proposed method using CCA and

a conventional multivariate analysis, principal component analysis

(PCA). The CCA results are from the analysis in Fig. 3.

(EPS)

Figure S6 Three-dimensional plot of the HSC-CMP score, gene

expression (average expression in each cell population), and four

haematopoietic populations used for making the HSC-CMP score.

CCAM assigned scores to both MDS disease samples and these

genes. High scores were associated with MDS patients with poor

prognosis (c.f. Fig. 4 and 5), while, at the gene level, genes with

high scores showed higher expressions in HSC and MEP than

GMP and CMP. On the other hand, genes with low scores are

more highly expressed in CMP and GMP than HSC and MEP.

See Table S1 for the relative contributions of those four

haematopoietic populations to the HSC-CMP score.

(EPS)

Figure S7 Graphical representation of the proposed method.

Microarray data of undefined cells are standardized and

designated as S, and those of well-characterized cell subsets are

preanalysed by PCA and Canonical Variate Criterion to produce

F. Generally, the number of environmental variable q is much

smaller than that of samples p and genes l, thus the number of new

axes by singular value decomposition (SVD) is q.

(EPS)

Table S1 Excel file of the list of genes that were used for

constructing the HSC-CMP score, the gene scores of the CCAM

result, and the biological/haematological features of these genes.

(XLS)

File S1 R script for CCAM.

(R)
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