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We present the Reduced Operator Approximation: a simple, physically transparent and compu-
tationally efficient method of modelling open quantum systems. It employs the Heisenberg picture
of the quantum dynamics, which allows us to focus on the system degrees of freedom in a nat-
ural and easy way. We describe different variants of the method, low- and high-order (including
the interaction operators), defining them for either general quantum harmonic oscillators baths or
specialising them for independent baths with Lorentzian spectral densities. They are applied to
different systems (coupled to different baths with different strengths) and compared with the exact
pseudomode and the popular quantum state diffusion method.

I. INTRODUCTION

The beginning of twentieth century launched a series
of major paradigm shifts which heralded the era of mod-
ern physics. It will perhaps be surprising to the mod-
ern reader that in the advent of the revolutionary Ein-
steinian theory of relativity, Maxwell and Boltzmann’s
kinetic theory and Planck’s hypothesis of quanta, the sci-
entific world was not convinced of the fact that matter is
grainy and cannot be continuously divided infinitely [1].
The seed of doubt was planted by the renowned Scottish
botanist, Robert Brown, who noticed in 1827 that pollen
in water suspension which he examined under his micro-
scope displayed a very rapid, irregular, zigzag motion.
The mystery of the “vital force” driving the Brownian
motions remained unsolved for nearly 80 years, evading
the pincer of conventional physics. The answer came
from Einstein and Smoluchowski, who showed how the
behaviour of mechanical objects is driven by the statis-
tical properties of thermal noise, postulating the exis-
tence of molecules in the fluid and linking the diffusion
strength of their motion to the friction acting on a body
moving in the fluid [2, 3]. The explanation of Brown’s
experiments, being at the same time a major diversion
from the “continuous” Newtonian dynamics forming the
core of the contemporary physics, opened a whole new
avenue of research into the behaviour of systems influ-
enced with random noise, resulting in such fundamental
discoveries as the fluctuation-dissipation theorem [4, 5].
Since that time, dissipation has been shown to affect such
key dynamical processes as electron transfer and trans-
port, surface dynamics, quantum tunneling, control and
nonadiabatic effects. More generally, scientists in many
disciplines, from physics through biology to social sci-
ences, have developed increasingly powerful methods of
modelling open systems, which interact with their envi-
ronment.

In many nano-scale systems the noise influencing the
dynamics arises from quantum fluctuations. Already in
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1928, when Nyquist proposed the fluctuation-dissipation
theorem [4], the quantum fluctuations were treated dif-
ferently than the classical ones: the energy kBT from
the classical equipartition law was replaced by the ther-
mally averaged energy of a quantum harmonic oscilla-
tor, a distinction becoming negligible at high temper-
atures. This result has been followed by the devel-
opment of the new branch of physics, the theory of
open quantum systems [6–8]. It has found applications
in almost all areas of natural sciences [9], from quan-
tum optics [10], through condensed matter physics [11],
nanotechnology [12] and spintronics [13], through quan-
tum information [14], through chemistry [15], to biol-
ogy [16] or even stochastic gravity and inflationary cos-
mology [17]. Furthermore, it has implications for such
fundamental problems as the quantum measurement the-
ory [18] and the emergence of classicality due to decoher-
ence [19].

There exists a rich variety of methods of modelling
open quantum systems, applicable to different physi-
cal regimes and based on different approximation tech-
niques [20–27]. In this paper we propose a new method,
which describes finite-dimensional quantum systems in-
teracting with non-Markovian quantum harmonic oscil-
lator baths. It handles large or infinite baths and a wide
range of interaction strengths, while having moderate
computational requirements. It uses the Heisenberg pic-
ture, which makes it particularly easy to focus the atten-
tion on the system degrees of freedom while preserving
the decoherence effects due to the coupling to the bath.

In the following section we will remind shortly the the-
oretical background of our research and the employed
formalism (Secs. IIA and IIB). Next we will present
the derivation of the Reduced Matrix Approximation ap-
proach (Sec. II C) and propose its two variants: low and
high-order in the systems and bath operators. They
will be optimised for typical cases of continuous and
Lorentzian baths in Sec. IID. In Sec. III we will present
the results of our method and compare it to other known
techniques of modelling open quantum systems, like the
pseudomode method or the quantum state diffusion. Sec-
tion IV contains a short summary of our work.
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II. THEORETICAL APPROACH

Most generally, an open quantum system is a subsys-
tem of a larger, interacting quantum system, e.g. one
of the photons in an EPR pair, an atom in a resonant
cavity, a quantum dot interacting with phonons in the
crystal or any real object “becoming classical” through
scattering of a vast number of air molecules and photons
on it. We consider the case of a finite-dimensional quan-
tum system coupled to an infinite-dimensional quantum
bath, composed of a possibly infinite number of modes.
In such an asymmetrical setup it is natural to ignore the
details of the bath dynamics and focus on the reduced
density matrix of the system. In this chapter we derive
this quantity using the proposed Reduced Operator Ap-
proximation approach.

A. Open quantum system

We consider a quantum system represented in an N -
dimensional Hilbert space Hs spanned by basis states
{|n〉}. Its internal dynamics is described by the Hamil-
tonian

Hs =

N
∑

m,n=1

Vmntmn ,

where tmn := |m〉〈n| are transition operators between the
states |n〉 and |m〉 and Vmn = Vnm. In a more concise
notation, Hs is a trace of an N ×N matrix product:

Hs = Tr V̂ T t̂ ,

where t̂ is a matrix of system operators, (t̂)mn := tmn.

The Hermitian conjugate of a matrix of operators Ô is
defined as (Ô†)mn := O†

nm. In the case of t̂, this leads to
t̂† = t̂, since t†mn = tmn.
The system is coupled to a quantum bath composed of

a collection of K independent harmonic oscillators living
in an infinite-dimensional Hilbert space Hb,

Hb =

K
∑

k=1

ωka
†
kak ,

where ak is the annihilation operator of the k-th mode
(~ ≡ 1). The coupling between the system and the bath
is described by the operator

Hi =
K
∑

k=1

(

Tr ĝk t̂
)

a†k + h.c, (1)

where (ĝk)mn = δmngkn is an N × N matrix describing
the coupling of the k-th bath mode with the system. The
fact that each ĝk is diagonal means that the bath does not
induce transitions between system basis states. However,
the matrix notation allows for easy generalisation of the

model to include such bath-induced transitions. For any
type of bath, we can define a spectral density function

Ĵ(ω) =
∑

k

ĝ†kĝkδ(ω − ωk) .

The total Hamiltonian, generating the evolution of the
system and bath in the Schrödinger picture, is given by

H = Hs +Hb +Hi =

Tr V̂ T t̂+
K
∑

k=1

ωka
†
kak +Tr

K
∑

k=1

(

a†kĝk + akĝ
†
k

)

t̂ ,
(2)

where we have employed the fact that bath and system
operators commute and t̂† = t̂.

The reduced matrix density of the system, ρs(t), is
defined as

ρs(t) := Trb ρ(t) ,

where ρ(t) is the density matrix of the system and the
bath as a whole, and the trace goes over the bath de-
grees of freedom only. From the fact that operators tmn

correspond to transitions between system basis states, it
follows that ρs(t) can also be computed from the formula

ρs(t) = Tr ρ(t)t̂ , (3)

where the trace is applied to each operator in the ρ(t)t̂
matrix of operators and taken over both system and bath
degrees of freedom. The main task of the presented
method is obtaining ρs(t) without calculating ρ(t).

B. Dynamics in the Heisenberg picture

In the Heisenberg picture the wavefunction is time-
independent, Ψ ≡ Ψ(0) (hence, the density matrix of a
system in mixed state is time-independent as well), while
an observable O (time-independent in the Schrödinger
picture) satisfies

d

dt
O(t) = i[H,O(t)] , (4)

where O(t) := eiHtOe−iHt. From the last definition it
follows that [O1(t), O2(t)] = [O1, O2](t).
We assume that at time t = 0 the system and the

bath—denoted by their initial reduced density matrices
ρs and ρb, respectively—are uncorrelated. Hence, ρ =
ρs ⊗ ρb and Eq. (3) acquires the form

ρs(t) = Trb t̂(t)ρ = Trs[ρs Trb ρbt̂(t)] . (5)

Let t̂(t) and ak(t) denote the Heisenberg-picture coun-
terparts of t̂ and ak, respectively, with t̂(0) := t̂ and
ak(0) := ak. In order to derive their equations of mo-

tions using Eq. (4) we calculate, for any Â ∈ C
N×N ,

[Tr(Ât̂(t)), tmn(t)] =

N
∑

m′,n′=1

Am′n′ [tn′m′(t), tmn(t)]

= [Â, t̂(t)]mn ,

(6)
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where we have used the identity (valid also in the
Schrödinger picture)

tmn(t)tm′n′(t) ≡ tmn′(t)δnm′ . (7)

In the matrix-of-operators notation, [Tr(Ât̂(t)), t̂(t)] =

[Â, t̂]. The above identities can be applied to equation (4)
to obtain the evolution of t̂ and â operators generated by
the Hamiltonian (2). For the system we obtain

˙̂t(t) = i[V̂ T , t̂(t)] + i

K
∑

k=1

(

[ĝk, ŝ
†
k(t)] + [ĝ†k, ŝk]

)

, (8)

where ŝk(t) := t̂(t)ak(t) are system-bath interaction op-
erators and, since t̂†(t) = t̂(t) and bath operators com-

mute with system operators, ŝ†k(t) = t̂(t)a†k(t). For
the bath, using the canonical commutation relations for
bosonic creation/annihilation operators, we obtain

ȧk(t) = −iωkak(t)− iTr ĝk t̂(t) . (9)

C. Reduced Operator Approximation

1. General description

The aim of the presented method is to model the evo-
lution of the system, including its decoherence caused by
the interaction with the bath. This information is con-
tained in the reduced density matrix of the system ρs(t).
As demonstrated in previous sections, Eqs (3) and (5), it
can be obtained from the mean values of system operators
t̂(t). Thus, to calculate ρs(t) in the Heisenberg picture,
one has to evolve t̂(t) in time. Additionally, since the
evolution equation for t̂(t) (8) involves the bath operators
ak(t), due to the system-bath interaction, it is necessary
to evolve ak(t) as well. However, a numerical description
of both groups of operators in the total system and bath
basis is impossible, as Hb is infinite-dimensional.

According to Eq. (5), given the initial system state ρs
we only need to know the partial traces of system op-
erators, Trb ρbt̂(t), to obtain ρs(t). The corresponding
partial traces of the bath operators, Trb ρbak(t), contain
part of the information on how interaction correlated the
bath and the system—if there was no such correlation,
Trb ρbak(t) would be proportional to an identity opera-
tor in Hs. Thus, even after tracing out the bath de-
grees of freedom, we can at least approximately capture
the system-bath correlations arising from the interaction
terms in Eqs. (8) and (9). This observation forms the
basis of the proposed Reduced Operator Approximation
(ROA).
We represent both system and bath operators byN×N

complex matrices in the system state basis (hence, t̂ is
represented by a matrix of matrices). LetM [O(t)] denote
this reduced representation of an operator O(t) with its
elements defined as

M [O(t)]mn := Trb ρb〈m|O(t)|n〉 . (10)

From the definition, M [O(t)†] = M [O(t)]†.
The evolution equations for the reduced representa-

tions of system and bath operators are

d

dt
M [ak(t)] = −iωkM [ak(t)]− iTr ĝkM [t̂](t) (11)

and

d

dt
M [t̂(t)] = i[V̂ T ,M [t̂(t)]]+

i
K
∑

k=1

(

[ĝk,M [ŝ†k(t)]] + [ĝ†k,M [ŝk(t)]]
)

.
(12)

Since the system and the bath are correlated,
M [ŝk(t)] 6= M [t̂(t)]M [ak(t)], which means that the above
evolution equations are not complete. The simplest
way to complete them is to approximate M [ŝk(t)] by
the product of M [t̂(t)] and M [ak(t)]. However, again
due to the system-bath coupling, M [t̂(t)]M [ak(t)] 6=
M [ak(t)]M [t̂(t)], even though [t̂(t), ak(t)] = 0. Thus, we
need to specify a concrete ordering of the multiplied re-
duced operators. We use the approximations of the form

M [ŝk(t)] ≈ θM [t̂(t)]M [ak(t)] + (1− θ)M [ak(t)]M [t̂(t)] ,

M [ŝ†k(t)] ≈ θM [ak(t)]
†M [t̂(t)] + (1− θ)M [t̂(t)]M [ak(t)]

†,

for θ ∈ [0, 1]. Numerical experiments have shown that
simulations diverge for θ 6= 1

2 . Appendix A contains a
simple theoretical explanation of this fact. Choosing θ =
1
2 , we arrive at the final form of evolution equation of the
system operators in the reduced representation,

d

dt
M [t̂(t)] = i[V̂ T ,M [t̂(t)]]

+
i

2

K
∑

k=1

[ĝk, {M [t̂(t)],M [a†k(t)]}]

+
i

2

K
∑

k=1

[ĝ†k, {M [t̂(t)],M [ak(t)]}] .

(13)

Equations (11) and (13) employ reduced representations
which are linear in the system or bath operators. Hence,
we will refer to them as the lower-order ROA.
Additional information about the system-bath corre-

lations is provided by the M [ŝk(t)] matrix. Hence, it is
beneficial to evolve it separately in addition to M [ak(t)]
and M [t̂(t)]. For this purpose, we first derive the evolu-
tion equation for ŝk(t), using Eqs. (8) and (9),

d

dt
ŝk(t) = t̂(t)

d

dt
ak(t) +

(

d

dt
t̂(t)

)

ak(t)

= i[V̂ T , ŝk(t)] + i

K
∑

k′=1

[ĝ†k′ , ŝk(t)]ak′(t)

+ i
K
∑

k′=1

a†k′(t)[ĝk′ , ŝk(t)]− iωkŝk(t)− it̂(t)ĝk ,
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where we have used the fact that, due to the associativity
of the operator product, ŝk′(t)ak(t) = t̂(t)ak′(t)ak(t) =

ak′(t)ŝk(t) and ŝ†k′(t)ak(t) = a†k′(t)ŝk(t). To de-
rive the evolution equation for M [ŝk(t)], we have to
solve a similar ordering problem as in the lower-order
method. Differently than in the case of Eq. (13), in
the evolution equation for M [ŝk(t)] we do not sym-
metrise the reduced operator products, and obtain

M [ŝk(t)ak′(t)] ≈ M [ŝk(t)]M [ak′(t)] andM [a†k′(t)ŝk(t)] ≈
M [a†k′(t)]M [ŝk(t)]. A simple argument justifying this
approach can be found in Appendix A (we have also
tested it for numerical stability). Furthermore, due
to the aforementioned associativity of the operator
product, M [ŝk(t)ak′(t)] can be approximated by either
M [ŝk(t)]M [ak′(t)], as above, or M [ŝk′(t)]M [ak(t)]. Sim-

ilarly, we can choose between M [a†k′(t)]M [ŝk(t)] and

M [ŝ†k′(t)]M [ak(t)] for M [a†k′(t)ŝk(t)]. To exploit fully
the information about the system-bath correlations con-
tained in M [ŝk′(t)] matrices, we use an equally weighted
average of the two approximations. In this way we obtain
the evolution equation for the reduced representation of
the interaction operator

d

dt
M [ŝk(t)] = i[V̂ T ,M [ŝk(t)]]+

i
2

K
∑

k′=1

(

[ĝk′ ,M [ŝ†k′(t)]] + [ĝ†k′ ,M [ŝk′(t)]]
)

M [ak(t)]

+ i
2

K
∑

k′=1

M [a†k′(t)][ĝk′ ,M [ŝk(t)]]

+ i
2

K
∑

k′=1

[ĝ†k′ ,M [ŝk(t)]]M [ak′(t)]

− iωkŝk(t)− it̂(t)ĝk .

(14)

Together with Eqs. (12) and (14) it defines the higher-

order ROA.

2. Reduced system density matrix

From evolution equations (12) or (13) we instantly see
that, since the trace of every commutator is zero,

d

dt

(

TrM [t̂(t)] ≡
N
∑

m=1

M [tmm(t)]

)

= 0 .

Inserting M [t̂(t)] instead of t̂(t) in Eq. (5), we obtain a
trace-conserving expression for the reduced density ma-
trix of the system,

ρs(t) = Tr ρsM [t̂(t)] . (15)

However, if we use it to calculate ρs(t), its positivity is
not guaranteed. To fix this problem, we make use of the
identity (7) to derive

t̂(t)t̂(t) ≡ Nt̂(t)

and replace Eq. (5) with a different approximation

ρs(t) =
1

N
Tr ρsM [t̂(t)]2 . (16)

Since tmm′(t)tm′n(t) = tmm′(t)(tnm′(t))† (and the same
for the reduced representations), the above formula guar-
antees that ρs(t) is positive-semidefinite. On the other
hand, the density matrix (16) does not possess a con-
served trace due to the fact that M [t̂(t)]2 6= M [t̂(t)t̂(t)].
Thus, we normalise the density matrix to obtain

ρs(t) =
Tr ρsM [t̂(t)]2

Tr[Tr ρsM [t̂(t)]2]
.

D. Baths with continuous spectral densities

In the limit of an infinite number of modes, spectral
density Ĵ(ω) can be a continuous function. One way to

handle this situation is to discretise Ĵ(ω) into a finite,
but large number of modes. Assuming a constant mode
frequency spacing ∆ω, we define a coupling constant for
ω = k∆ω to be

ĝk =

√

∆ωĴ(k∆ω) . (17)

Taking the square root ensures proper normalisation as
∆ω → 0. For a spectral density being a single Lorentzian
peak, the method converges quite well already for K =
100 modes per site and ∆ω ≈ γ/100, where γ is the half-
width at half-maximum of the peak.

1. Independent baths with continuous spectral densities

When each system basis state is coupled to its own
independent bath with a continuous spectral density, a
more sophisticated method is to describe these baths in
terms of collective mode excitations caused by the cou-
pling with the system.
Let us consider bath operators multiplied by their

phase factors, eiωktak(t), with dynamics given by
d
dt (e

iωktak(t)) = −iTr ĝk t̂(t)e
iωkt. Employing the fact

that trace and integration commute, we obtain

ak(t) = e−iωktak(0)− i

∫ t

0

dse−iωk(t−s) Tr ĝk t̂(s) ,

which we insert into the definition of ŝk(t),

ŝk(t) = e−iωktt̂(t)ak(0)− it̂(t)

∫ t

0

dse−iωk(t−s) Tr ĝk t̂(s)

= e−iωktt̂(t)ak(0) + ûk(t) ,

and then the above formula into Eq. (8),

˙̂t(t) = i[V̂ T , t̂(t)] + i

K
∑

k=1

(

[ĝk, û
†
k(t)] + [ĝ†k, ûk(t)]

)

+ i
K
∑

k=1

(

eiωkta†k(0)[ĝk, t̂(t)] + e−iωkt[ĝ†k, t̂(t)]ak(0)
)

.
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If each bath has an independent spectral density, each
bath mode k is coupled to exactly one basis state nk,
i.e. (ĝk)mn = gknk

δm,nk
δn,nk

. Hence,

d

dt
tmn(t) = i

N
∑

m′=1

(Vm′mtm′n(t)− Vnm′tmm′(t)) + tmn(t)×

K
∑

k=1

[
∫ t

0

e−iωk(t−s)(|gkm|2tmm(s)− |gkn|2tnn(s))ds− h.c.

]

+ tmn(t)

K
∑

k=1

[

(gkm − gkn)e
−iωktak(0) + h.c.

]

,

where we have used the fact that for independent densi-
ties, gkngkm 6= 0 only for n = m. In the limit of infinite
number of modes, using Eq. (17) we obtain

lim
K→∞

K
∑

k=1

e−iωk(t−s)|gkm|2 = αm(t− s) ,

where αm(τ) :=
∫

dωJm(ω)e−iωτ is the bath correla-
tion function. In this way we obtain a closed system
of differential-integral equations for tmn(t),

d

dt
tmn(t) = i

N
∑

m′=1

(Vm′mtm′n(t)− Vnm′tmm′(t))

+ tmn(t) [
√
κmãm(t)−√

κnãn(t)− h.c.]

(18)

where

ãm(t) :=
i√
κm

lim
K→∞

K
∑

k=1

gkmak(t) =

i√
κm

lim
K→∞

K
∑

k=1

gkme−iωktak(0) +

∫ t

0

αm(t− s)√
κm

tmm(s)ds

and κm := lim
K→∞

K
∑

k=1

|gkm|2 =

∫ ∞

−∞

Jm(ω)dω .

Operators ã†m(t) and ãm(t) satisfy canonical commu-
tation relations for bosons,

[ãm(t), ãn(t)] = 0 ,

[ã†m(t), ãn(t)] = − δmn√
κmκn

lim
K→∞

K
∑

k=1

gkngkm = −δmn .

They are pseudomode creation and annihilation opera-
tors, creating or destroying collective excitations in a sin-
gle bath [27]. Their dynamics is given by the equation

d

dt
ãm(t) = lim

K→∞

K
∑

k=1

gkm
ωke

−iωktak(0)√
κm

+
αm(0)√

κm
tmm(t)

+ κ−1/2
m

∫ t

0

tmm(s)

(

d

dt
αm(t− s)

)

ds .

(19)

Using the proposed method we have reduced signifi-
cantly the number of bath operators, from K to N (for
independent bathsK ≥ N , while in many casesK ≫ N).
However, numerical simulation of the differential-integral
equation for the evolution of the reduced representation
of ãm(t) is difficult. In the next section we show that for
a particular form of the spectral density function Jm(ω)
one can get rid of the explicit time integration at the cost
of a moderate increase of the number of simulated bath
operators.

2. Lorentzian spectral densities

Continuous spectral densities composed of Lorentzian
peaks,

Jn(ω) =
∑

j

Γnj

π

γnj
(ω − ωnj)2 + γ2

nj

, (20)

are especially popular due to their analytical tractability.
In this section, we will optimise our method for this type
of the system-bath coupling. The corresponding correla-
tion function is αm(τ) =

∑

j Γmje
−iωmjτ−γmj |τ |. Hence,

for t− s > 0,

d

dt
αm(t−s) = −

∑

j

Γmj(iωmj+γmj)e
−iωmj(t−s)−γmj(t−s).

A continuous spectral density of the form (20) is con-
structed from an infinite number of independent har-
monic oscillator modes, with different modes contribut-
ing to each Lorentzian peak. To derive the evolution
equation for pseudomode bath operators we express them
as sums of

∑

j ãmj(t), where ãmj(t) is constructed as

ãmj(t) =
i

√

Γmj

lim
K→∞

∑

k∈PK
j

gkmak(t) ,

and PK
j ⊂ [1, . . . ,K] is the set of indices of modes build-

ing the j-th peak, ∪jP
K
j = [1, . . . ,K] and PK

j ∩ PK
j′ =

δjj′P
K
j . This leads directly to [tmn(t), ãm′j′(t)] = 0,

[ãmj(t), ãnj′(t)] = 0 and [ã†mj(t), ãnj′(t)] = −δmnδjj′ .

Thus, ã†mj(t) and ãmj(t) are pseudomode creation
and annihilation operators corresponding to individual
Lorentzian peaks in bath spectral densities.
Comparing ãmj(t) with ãm(t) leads to

ãmj(t) =
i

√

Γmj

lim
K→∞

∑

k∈PK
j

gkme−iωktak(0)

+
√

Γmje
(−iωmj−γmj)t

∫ t

0

e(iωmj+γmj)stmm(s)ds .

Differentiating over t gives

d

dt
ãmj(t) = lim

K→∞

∑

k∈PK
j

gkmωke
−iωkt

√

Γmj

ak(0)

+ (−iωmj − γmj)ãmj(t) +
√

Γmjtmm(t) ,

(21)
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with the initial condition

ãmj(0) =
i

√

Γmj

lim
K→∞

∑

k∈PK
j

gkmak(0) .

By splitting ãm(t) into a sum of ãmj(t), we have simpli-
fied the differential-integral evolution equation (19). In
the reduced representation,

d

dt
M [ãmj(t)] = (−iωmj−γmj)M [ãmj(t)]+

√

ΓmjM [tmm(t)]

(22)
with the initial condition M [ãmj(0)] = 0.

Since M [tmn(t)ãm′j(t)] 6= M [tmn(t)]M [ãm′j(t)],
we evolve separately the reduced representation of
operator products smnm′j(t) := tmn(t)ãm′j(t) =

iΓ
1/2
m′j limK→∞

∑

k
′
gkm′smnk(t). Its adjoint equals

s†mnm′j(t) = tnm(t)ã†m′j(t). The relevant commutators

are [smnm′j(t), ãm′′j′(t)] = 0 and [s†mnm′j(t), ãm′′j′(t)] =

−tnm(t)δm′m′′δjj′ .

Evolution equation of the system (18) in the Lorentzian
bath acquires the form

d

dt
tmn(t) = i

N
∑

m′=1

(Vm′mtm′n(t)− Vnm′tmm′(t))

+
∑

j

√

Γmj

[

smnmj(t)− s†nmmj(t)
]

+
∑

j

√

Γnj

[

s†nmnj(t)− smnnj(t)
]

.

(23)

Hence, the operators smnm′j(t) themselves follow the evo-
lution equation

d

dt
smnm′j(t) = i

N
∑

m′′=1

(Vm′′msm′′nm′j(t)− Vnm′′smm′′m′j(t))

+
∑

j′

√

Γmj

[

smnmj′(t)− s†nmmj′(t)
]

ãm′j(t)

+
∑

j′

√

Γnj

[

s†nmnj′(t)− smnnj′(t)
]

ãm′j(t)

+ tmn(t) lim
K→∞

∑

k∈PK
j

gkm′ωke
−iωkt

√

Γm′j

ak(0)

+ (−iωm′j − γm′j)smnm′j(t) +
√

Γm′jδnm′tmn(t)

(24)

with the initial condition

smnm′j(0) =
i√
Γm′j

tmn(0) lim
K→∞

∑

k

′
gkm′ak(0) .

Evolution equations for the reduced repretentations of
the above system and interaction operators, respectively,

are

d

dt
M [tmn(t)] = i

N
∑

m′=1

(Vm′mM [tm′n(t)]− Vnm′M [tmm′(t)])

+
∑

j

√

Γmj

[

M [smnmj(t)]−M [s†nmmj(t)]
]

+
∑

j

√

Γnj

[

M [s†nmnj(t)]−M [smnnj(t)]
]

(25)

and

d

dt
M [smnm′j(t)] = i

N
∑

m′′=1

(Vm′′mM [sm′′nm′j(t)]−

Vnm′′M [smm′′m′j(t)])+

1
2

∑

j′

√

Γmj′(M [smnmj′(t)]−M [s†nmmj′(t)])M [ãm′j(t)]+

1
2M [smnm′j(t)]

∑

j′

(
√

Γmj′M [ãmj′(t)]−
√

Γnj′M [ãnj′(t)])

+ 1
2

∑

j′

√

Γnj′(M [s†nmnj′(t)]−M [smnnj′(t)])M [ãm′j(t)]−

1
2

∑

j′

(
√

Γmj′M [ã†mj′(t)]−
√

Γnj′M [ã†nj′(t)])M [smnm′j(t)]

+ (−iωm′j − γm′j)M [smnm′j(t)] +
√

Γm′jδnm′M [tmn(t)]

(26)

with initial condition M [smnm′j(0)] = 0. We use the
same operator order as in Subsec. IID 1.

Higher-order Lorentzian ROA employs Eqs. (22),
(25) and (26). Lower-order Lorentzian ROA de-
scribes the bath evolution with Eq. (22). To describe
the system evolution, we represent M [smnm′j(t)] as
1
2{M [tmn(t)],M [ãm′j(t)]}, obtaining

d

dt
M [tmn(t)] = i

N
∑

m′=1

(Vm′mM [tm′n(t)]− Vnm′M [tmm′(t)])

+
1

2

{

M [tmn(t)],
∑

j

[
√

ΓmjM [ãmj(t)]

−
√

ΓnjM [ãnj(t)]− h.c.
]}

,

(27)

where the symmetrisation of the matrix product is justi-
fied by the same arguments as in Sec. II C 1.

The Lorentzian methods use much lower number of
bath and interaction operators than the general ones, be-
cause they model the bath excitations as collective pseu-
domodes. Furthermore, thanks to the analytical integra-
tion of the spectral density, they automatically include
the tails of the spectral density, which are cut off by the
discrete method.
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III. NUMERICAL EXAMPLES AND

COMPARISON WITH OTHER METHODS

In this section we present an example application of
our method to the description of a molecular aggregate
interacting with a non-Markovian quantum bath, and
compare it with two other techniques: the pseudomode
method [27] (PM) and non-Markovian quantum state dif-
fusion [26] (QSD).
The PM method replaces each Lorentzian peak in the

spectral density by a pseudomode with a complex fre-
quency, and models the dynamics of the original system
and bath by simulating exactly, in the Schrödinger pic-
ture, the system interacting with this pseudomode bath.
As the reduced density matrix of the system ρs(t) ob-
tained in this way is exact, we use the PM method as
our reference. The downside of the PM method is that,
since it requires an exact simulation of a quantum many-
body system, its computational requirements increase ex-
ponentially with the number of system basis states and
the number of bath spectral density peaks. The other
method used for comparison, QSD, is an approximate
one, which uses a Monte-Carlo simulation to calculate
ρt(s). Its main advantage is the slow growth of the com-
putational requirements with the system size.
We model an exciton delocalised on a linear chain com-

posed of N = 3 sites coupled by the nearest-neighbour
potential, Vmn = −(δm,n+1 + δm,n−1). Each site in-
teracts with a simple zero-temperature quantum bath
with a unimodal Lorentzian spectral density J(ω) =
Γγπ−1/((ω − ω0)

2 + γ2), where we set ω0 = 1. We con-
sider four cases:

bath (Fig. 1) γ Γ

A) weak narrow 0.1 0.3

B) strong narrow 0.1 1

C) weak wide 0.5 0.3

D) strong wide 0.5 1

The “wide” Lorentzian peaks correspond to fast decreas-
ing bath correlation function, while the “narrow” ones
indicate long correlation times. The coupling strength,
“strong” or “weak”, determines the decoherence rate.
We simulate the reduced density matrix of the system

initially in the state Ψs = [1, 0, 0]T , and compare the
probabilities of finding the system in this state at later
times, i.e. (ρs(t))11. We use three variants of the ROA
method: low-order ROA (Sec. II C 1), as well as low and
high-order Lorentzian ROA (Sec. IID 2); the high-order
ROA has been skiped as the least efficient. The results
are plotted in Figs. 2–5. Comparison with the exact PM
method shows that the best results are obtained for the
Lorentzian variants of the method, which take into ac-
count the whole range of the Lorentzian spectral density
by analytical integration. At the same time QSD has the
tendency to converge too rapidly to a steady state solu-
tion, as compared to the exact PM method. The figure
captions contain a detailed analysis of the results.
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FIG. 1: Unimodal Lorentzian spectral densities used in sim-
ulations.
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FIG. 2: Comparison of the results of the ROA approach
with the PM and QSD methods for bath A. The high-order
Lorentzian ROA properly reproduced the amplitude and the
phase of the probability density oscillations (the inset shows
that it is superior to its low order variants). The QSD method
dampens the oscillations and does not reconstruct their phase.

For further comparison with the QSD method we cal-
culate the transfer of the excitation on a ring aggregate
in multimode Lorentzian bath (see Ref. [28]) in Fig. 6.
The results obtained using the low-order Lorentzian ROA
method are characterised by a much slower decoherence
rate, as shown in the inset. We attribute the faster deco-
herence observed in the QSD method to the zeroth order
functional expansion (ZOFE) [29] required to make the
method numerically feasible. It treats each path of the
Monte Carlo simulation independently and thus increases
artificially the amount of decoherence in the simulation
causing the system to converge too rapidly to a steady
state solution.
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FIG. 3: Comparison of the results of the ROA approach with
the PM and QSD methods for bath B. Although none of
the methods satisfactorily reconstructs the PM results, the
low-order Lorentzian ROA properly describes how the ampli-
tude of fluctuations of the probability density changes in time.
The inset presents a comparison of the three variants of ROA
method; the high-order Lorentzian ROA diverges.
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FIG. 4: Comparison of the results of the ROA approach
with the PM and QSD methods for bath C. The high-order
Lorentzian ROA precisely reconstructs the phase of the prob-
ability density oscillations, while its low-order variants recon-
struct the amplitude. The QSD method does not describe
correctly the amplitude of the oscillations and loses the phase.
The inset presents the comparison of the three ROA methods.

IV. SUMMARY

The presented Reduced Operator Approximation is a
simple, physically transparent and computationally ef-
ficient method of modelling open quantum systems. It
employs the Heisenberg picture of the quantum dynam-
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FIG. 5: Comparison of the results of the ROA approach with
the PM and QSD methods for bath D. The low-order ROA
methods correctly describe the amplitude and phase of the
probability density oscillations at shorter times and, together
with the high-order Lorentzian ROA (which diminishes the os-
cillation amplitudes), stabilise at the correct level. The QSD
strongly diminishes the oscillations and fails to recover the
correct steady state.

ics, which allows us to focus on the system degrees of
freedom in a natural and easy way. We have described
different variants of the method: the low-order ROA,
the high-order ROA (including the interaction operators)
and their versions for Lorentzian baths. They have been
applied to different systems (coupled to different baths
with different strengths). Comparison of our results with
the exact pseudomode and the popular quantum state
diffusion method favours the ROA approach. Further-
more, the efficiency of ROA (especially the low-order
case) is much higher than in the case of PM and QSD
approach.

The method has been derived for the simplest case of
linear coupling between the system and the bath. How-
ever, its general version can be easily extended to higher-
order couplings. Its another advantage is that a single
simulation of the reduced system operators can be used to
generate reduced density matrices for an arbitrary choice
of initial system state.
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FIG. 6: Comparison of the results of the ROA Lorentzian
method with the QSD method for a ring aggregate of 15 sites
(initially only the site 8 is excited) in multimode Lorentzian
bath (see Ref. [28] for the description of the spectral density
and definition of the units used in the plot). Inset: coherence
defined as Tr ρ2 calculated using both methods.

APPENDIX A: OPERATOR REPRESENTATION

PRODUCTS

Let us consider a Hamiltonian with N sites and N bath
modes, V̂ = 0 and (ĝk)mn = gkδm,kδn,k. It is easy to see
that in this case the system operators are diagonal and
tmm(t) = tmm(0). Hence, we can solve Eq. (9) explicitly,
obtaining

am(t) = e−iωmt

(

am(0)− gm
ωm

(eiωmt − 1)tmm(t)

)

,

(A1)
and, in the reduced representation,

M [am(t)] = − gm
ωm

(1− e−iωmt)M [tmm(t)] . (A2)

This shows that even in this simple case, the M [tmn(t)]
cannot in general commute with M [ak(t)].

Let us assume that at time t, the relation

M [tmn(t)]M [tm′n′(t)] = δnm′M [tmn′(t)] (A3)

is preserved. Hence,

M [tmn(t)]M [ak(t)] = −δnk
gn
ωn

(1− e−iωnt)M [tmn(t)] ,

M [ak(t)]M [tmn(t)] = −δmk
gm
ωm

(1− e−iωmt)M [tmn(t)] .

Applying the above results to Eq. (13), we obtain

d
dtM [tmn(t)] = i(1− δmn)[θ(αm(t)− αn(t))

+ (1− θ)(αm(t)− αn(t))]M [tmn(t)]
(A4)

where αm(t) := − |gm|2

ωm
(1−e−iωmt). It easy to see that for

n 6= m′, d
dtM [tmn(t)]M [tm′n′(t)] = 0, consistently with

Eq. (A3). For n = m′, we have

d
dtM [tmn(t)]M [tnn′(t)] = i(1− δmn)[θ(αm(t)− αn(t))

+ (1− θ)(αm(t)− αn(t))]M [tmn′(t)]

+ i(1− δnn′)[θ(αn(t)− αn′(t))

+ (1− θ)(αn(t)− αn′(t))]M [tmn′(t)] ,

while in the case of m = n,

d
dtM [tmn(t)]M [tnn′(t)] = i(1− δmn′)[θ(αm(t)− αn′(t))

+ (1− θ)(αm(t)− αn′(t))]M [tmn′(t)] =
d

dt
M [tmn′(t)] ,

again consistently with Eq. (A3). Analogous result is
obtained for n = n′. However, in the case of m 6= n and
n 6= n′, we have

d
dtM [tmn(t)]M [tnn′(t)] = i[θ(αm(t)− αn(t))+

(1− θ)(αm(t)− αn(t))]M [tmn′(t)] + i[θ(αn(t)− αn′(t))

+ (1− θ)(αn(t)− αn′(t))]M [tmn′(t)] .

It is only for θ = 1/2 that the terms with αn(t) cancel out
and the right side is equal to d

dtM [tmn′(t)]. Therefore,
for θ = 1/2 evolution equations for M [tmn(t)] preserve
product identities for tmn(t). Consequently, we obtain

d
dtM [tmn(t)] = i [Re (αm(t)− αn(t))]M [tmn(t)] ,

leading to the solution

M [tmn(t)] = M [tmn(0)] exp(i

∫ t

0

Re (αm(s)− αn(s)))ds.

For operators smnk(t), we obtain from Eq. (A1) that

M [smnk(t)] = − gn
ωn

δnk(1− e−iωnt)M [tmn(t)] , (A5)

assuming the bath was in the ground state at t = 0.
For the simple model considered in this Appendix, their
Heisenberg equations are

d
dtsmnk(t) = ismnk(t)(gmam(t)− gnan(t))

+ i(gma†m(t)− gna
†
n(t))smnk(t)

− iωksmnk(t)− iδnkgntmn(t) .

(A6)
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It is easy to notice that smnk(t)ak′(t) = smnk′(t)ak(t)

and a†k′(t)smnk(t) = s†nmk′(t)ak(t). From
Eqs. (A2) and (A5) we see that this property
is preserved in the reduced representation and
M [smnk(t)]M [ak′(t)] ∼ δnkδnk′M [tmn(t)] while

M [a†k′(t)]M [smnk(t)] ∼ δnkδmk′M [tmn(t)]. Thus,
when choosing the reduced representation of Eq. (A6) it
is irrelevant whether the index k or k′ is attached to the
s operator on the right side. For simplicity, we keep the
k index with the s operators, and use the representations

M [smnk(t)ak′(t)] = θM [smnk(t)]M [ak′(t)]

+ (1− θ)M [ak′ ]M [smnk(t)] ,

M [a†k′(t)smnk(t)] = θM [ak′(t)]†M [smnk(t)]

+ (1− θ)
(

M [smnk(t)]M [ak′ ]† −M [tmn(t)]δk,k′

)

,

where θ ∈ [0, 1]. Applying this to Eq. (A6), we obtain

d
dtM [smnk(t)] = iθM [smnk(t)](gmM [am(t)]− gnM [an(t)])

+ iθ(gmM [a†m(t)]− gnM [a†n(t)])M [smnk(t)]

+ i(1− θ)(gmM [am(t)]− gnM [an(t)])M [smnk(t)]

+ i(1− θ)M [smnk(t)](gmM [a†m(t)]− gnM [a†n(t)])

− i(1− θ)(gmδm,k − gnδn,k)M [tmn(t)]

− iωkM [smnk(t)]− iδnkgnM [tmn(t)] .

Since for m = n the θ-dependent parts are zero, we
have to consider the case m 6= n to determine the best
choice of θ. Additionally, we assume that k = m.
From Eq. (A5) we know that M [smnm(t)] = 0. Thus,
consistency requires that d

dtM [smnm(t)] calculated us-
ing the above expression should evaluate to zero. Us-
ing Eq. (A2) and the above assumptions, we transform
it to d

dtM [smnm(t)] = −i(1− θ)gmM [tmn(t)]. Thus, con-
sistency requires that we choose θ = 1 to calculate the
derivatives of M [smnk(t)].
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