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Abstract. We propose a motion and contrast enhancement separation
model in dynamic magnetic resonance imaging (MRI). Furthermore, the
reconstruction is done from partial measurements to achieve faster dy-
namic MR imaging. The algorithm minimizes a linear combination of
three terms, a data fitting functional and two regularization function-
als corresponding to the nuclear and ℓ1 norm. The proposed method
is tested on simulated and real dynamic datasets. This paper suggests
an image reconstruction model that directly induces clinically-relevant
informations from partial measurements.
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1 Introduction

Dynamic magnetic resonance imaging (MRI) consists of acquiring multiple im-
ages (frame by frame) of a dynamic object in time. Since this is a sequential and
slow acquisition process, motion artefacts are often present due to unintentional
movements of the patient. Faster dynamic MR imaging, by reducing the number
of measurements (under-sampling), can minimize the chance of motion affecting
a frame, giving a better temporal resolution for dynamic processes, or trading
the time saving for higher spatial resolution.

A few years ago, a more efficient signal acquisition than the traditional Shan-
non sampling theory was introduced for sparse or compressible signals. This the-
ory, called Compressed Sensing (CS), states that one can recover images from
only a few random measurements. This is possible providing that (1) the image
is sparse in some domain or in its own, (2) sensing and sparsifying matrices
satisfies the restricted isometry property and are incoherent, and (3) non-linear
reconstruction techniques is used to recover the signal. Since these assumptions
can generally be met in medical imaging, CS has been applied in MRI as a rapid
imaging technique [1].

Recently, the recovery of a matrix from incomplete information has attracted
interest. This research topic is known as low-rank matrix completion [2] and has
strong parallels with CS framework. Indeed, one can see the notion of matrices
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with a low-rank as an equivalent of signals with only a few significant coeffi-
cients. Similarly, analogous to ℓ1 norm minimization promoting sparse signals
is the notion of nuclear norm minimization promoting low-rank matrices. Com-
bining low-rank and sparsity constraints for matrix problems has recently been
investigated in mathematics and computational science because it has a large
spectrum of potential applications. The idea is to recover low-rank and sparse
components from a matrix which is supposed to have an underlying low-rank
structure [3–5].

In medical imaging, these type of priors have been recently studied. In par-
ticular, it has been used by Majumdar and Ward [6] for accelerating MRI, by
Lingala et al. for accelerating dynamic MRI [7] and by Gao et al. [8] to reduce
radiation dose in computed tomography (CT). While these works mostly focus
on achieving better image quality from under-sampled data than state of the
art methods, we take a different approach in this paper. The novelty is that
regularization is viewed as providing a useful decomposition of dynamic MR
images that can be used technically or is shown to be clinically relevant. The
algorithm used, a split Bregman based method proposed by Gao et al. in CT
[8], has strong links with alternating direction method for solving the low-rank
and sparse decomposition problem [4, 5].

The rest of the article is organized as the following. Section 2 provides a
brief review of the low-rank and sparse decomposition problem. In section 3,
we discuss under-sampling strategies for the proposed method. Reconstruction
model and algorithm are explained in section 4. Numerical simulations are shown
in section 5 and section 6 concludes this paper.

2 Low-rank and Sparse Decomposition

In this section, we introduce the decomposition from a mathematical and com-
putational perspective. We assume we have a matrix X ∈ Rn×m which is the
superposition of a low-rank and a sparse component. The goal is to decom-
pose the given matrix into its low-rank L and sparse S components such that
X = L+ S. This can be cast naturally as the following optimization problem,

min
L,S

rank(L) + λ‖S‖0 such that X = L+ S , (1)

but reveals to be intractable as it encloses rank and ℓ0 minimization problems,
which both are known to be NP-hard and consequently difficult to solve. From a
statistical point of view, this method can be seen as a robust variant of principal
component analysis (PCA), where one seeks a low-rank matrix from grossly
corrupted measurements.

To make the problem easier to solve, one can reformulate it as a convex one
[2–4],

min
L,S

‖L‖∗ + λ‖S‖1 such that X = L+ S . (2)

Here ‖L‖∗ and ‖S‖1 denote respectively the nuclear norm of L (the sum of its sin-
gular values), ‖L‖∗ =

∑

i σi(L) with σi(L) the i
th singular value of L, and the ℓ1
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norm of S defined as the sum of the absolute values of all entries, ‖S‖1 =
∑

i |si|
with si the ith entries of S viewed as a vector. λ can be viewed as a trade-off
parameter between low-rank and sparse components. Theoretical analysis in [5]
leads to the trade-off parameter value λ = max(n,m)−1/2 for recovering any
low-rank, incoherent matrix with high probability. The convex relaxation ap-
proach (2) is usually solved using alternating direction method, an improvement
of the augmented Lagrangian method, which exploits the favourable structure
appearing in both the objective function and the constraint [4, 5].

3 Dynamic MR Data and Sampling Scheme

In this study, the low-rank and sparse decomposition model operates as a spatio-
temporal one. The matrixX to decompose is formed as the concatenation of each
image frames {xi}

J
i=1 ∈ RN=n×n casted as column vectors of X , i.e.,

X = [x1, x2, ..., xJ ] ∈ RN×J . (3)

Hence, columns of X correspond to spatial pixels and rows correspond to tem-
poral intensity variations of the pixels in the image domain. Since each frames
xi exhibits significant correlations, the whole sequence lies in fact in a low-
complexity model, an underlying low-rank structure, and thus motivates this
decomposition. We highlight that the method relies on an appropriate number
of frames since the matrix X can be said low-rank only if rank(X) ≪ min(N, J).

To accelerate MRI, the idea is to reduce acquisition time by sampling only
partially the k-space and reconstruct images from these incomplete data. Creat-
ing better random k-space sampling trajectories for under-sampled MRI acquisi-
tion has been subject to a lot of research in the CS MRI literature, as in practice
it is conditioned by hardware and physiological considerations. Here, the pro-
posed method is more closely related to low-rank matrix completion than CS,
since we do not employ any sparsifying transform. Under-sampling is possible
because of the spatio-temporal matrix formulation and the use of nuclear norm
and ℓ1 minimization in the model.

Since we do not want to use non uniform Fourier transform in order to avoid
longer computational cost, we limit our trajectory choices to Cartesian sampling.
Experiments showed that the reconstruction quality is sensitive to the sampling
strategy. In this paper, we choose to densely sample the low spatial frequencies
and randomly select phase encoding lines elsewhere in each time-frame. This
results in a sampling scheme random in time, except for the center of the k-
space. We make this choice not only because it is easily done in practice, but
also because it is common practice in CS MRI and because we could achieve
modest acceleration rate with accurate reconstruction. Here, acceleration rates
are computed by dividing the number of k-space points acquired over the total
number of points in the k-space. For example, a 2-fold acceleration implies that
only 50% of the k-space is used.
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4 Reconstruction Model and Algorithm

In this paper, we consider the following unconstrained optimization problem for
the reconstruction,

min
L,S

1

2
‖A(L+ S)− y‖22 + µ(‖L‖∗ + λ‖S‖1) (4)

where A : RN×J → Cp is the Fourier operator providing a vector y of p < N×J
measurements. The first term in the objective function is a data fitting criterion,
and the second term encloses the original decomposition problem.

A slightly different problem has been proposed by Gao et al. in dynamic CT
[8] and solved using a split Bregman based method. We rely on this efficient
approach to solve (4). The iterative algorithm, described by equations in (5),
consists of three major steps : a quadratic problem solved using conjugate gra-
dient, an ℓ1 problem solved by shrinkage formula and a nuclear norm problem
solved by singular value thresholding.







































































(Ln+1, Sn+1) = argmin
L,S

‖A(L+ S)− y + fn‖22 + α‖L− dnL + vnL‖
2
2

+ β‖S − dnS + vnS‖
2
2

dn+1

S = argmin
dS

1

2
‖Sn+1 + vnS − dS‖

2
2 + λ

µ

β
‖dS‖1

vn+1

S = vnS + Sn+1 − dn+1

S

dn+1

L = argmin
dL

1

2
‖Ln+1 + vnL − dL‖

2
2 +

µ

α
‖dL‖∗

vn+1

L = vnL + Ln+1 − dn+1

L

fn+1 = fn +A(Ln+1 + Sn+1)− y

(5)

These three major steps have closed form solutions, hence the iterative scheme
can be rewritten as described in algorithm 1, where S and D are respectively
the shrinkage and singular value thresholding operators, defined as

Sτ (X) = sign(X)max(|X | − τ, 0) , (6)

Dτ (X) = USτ (Σ)V ∗ . (7)

Here X = UΣV ∗ represents any singular value decomposition. To ensure good
convergence, stopping criterion is met when a maximum number of iteration
(typically 500 or 1000 iterations) is achieved or when ‖A(L+S)−y‖/‖y‖ ≤ 10−5.
α and β are set equal to µ.

We emphasize the main goal of this work is not to compare image recon-
struction quality with state of the art methods in dynamic MR reconstruction
from under-sampled data. In fact, it is to provide the direct reconstruction of
the low-rank and sparse components, yielding the exploitation of the proposed
decomposition. Accordingly, we suggest that the parameter λ should be tuned
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Algorithm 1 Low-rank and sparse decomposition from partial measurements

Input: Measurements y, parameters µ (regularization) and λ (decomposition)
Output: L, S
L0 = S0 = v0L = v0S = d0L = d0S ← 0 ; α = β = µ ; f0 ← 0 ; n← 0
while stopping criterion is not met do

Sn+1 ← (ATA+ µI)−1(AT (y − fn) + β(dnS − vnS)− ATA(Ln))
Ln+1 ← (ATA+ µI)−1(AT (y − fn) + α(dnL − vnL)− ATA(Sn))
dn+1

S ← S λµ
β

(Sn+1 + vnS)

vn+1

S ← vnS + Sn+1 − dn+1

S

dn+1

L ← D µ
α
(Ln+1 + vnL)

vn+1

L ← vnL + Ln+1 − dn+1

L

fn+1 ← fn + A(Ln+1 + Sn+1)− y
n← n+ 1

end while

by visual inspection, to obtain the best possible motion and contrast enhance-
ment separation. More precisely, a correct scaling for this parameter should be
of order of λ = max(N, J)−1/2 given by Candès et al. [5].

5 Numerical Simulations

To evaluate the method, we tested the proposed model on simulated and in
vivo datasets by targeting cardiac imaging and dynamic contrast enhanced
(DCE) MRI applications. Numerical simulations were implemented on MAT-
LAB R2012a environment and run on a 2.2GHz Intel 8-core processor laptop.
Simulated dataset were created in image domain and real datasets were acquired
fully-sampled on MRI scanner. Both were then retrospectively under-sampled
with a corresponding acceleration rate. The decomposition is computed using
algorithm 1 with µ found by empirical study and λ tuned by visual inspection.

5.1 Dynamic phantom

The method is first studied on simulated data. A 2D plus time numerical phan-
tom of size 128× 128× 40 is created to mimic three time-varying components in
dynamic MRI. In particular, the phantom simulates periodic respiratory motion,
periodic local motion and abrupt local changes of intensity.

To our knowledge there is no commonly used method that provides this joint
separation and reconstruction procedure. Hence, we test our approach against
the zero filling Fourier transform and dynamic MRI acceleration method k-t
FOCUSS [9] for the reconstruction stage, followed up by a principal component
analysis decomposition for the separation stage. More precisely, the PCA stage is
done by taking only the first three principal components to model a component
with a low-rank. The difference between reconstructed data and this low-rank
component is done to obtain an equivalent of the sparse component of the pro-
posed method. Results in figure 1 show that the suggested approach is able to
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reconstruct with very good accuracy the original sequence, and provide a more
robust decomposition than the classical PCA for time-varying components such
as motion and intensity changes. We provide quantitative results in table 1.

Zero filling Fourier transform and PCA

k-t FOCUSS and PCA

Proposed method

PCA Difference

Temporal evolution
Extracted frame

Original

Original data

L S

Temporal evolution
Extracted frame

L+S

Temporal evolution
Extracted frame

k-t FOCUSS

PCA Difference

Temporal evolution
Extracted frame

Zero filling FT

PCA Difference

Fig. 1. Dynamic phantom dataset. Original data and different reconstruction methods
from partial measurements with a 2-fold acceleration along with PCA decomposition.
The sampling scheme used is the one described in section 3. For the proposed method,
parameters are set to µ = 10 and λ = 2max(N, J)−1/2.

Zero filling FT k-t FOCUSS Proposed method

Reconstruction error 0.1072 0.0449 0.0020
‖AX − y‖22 1.5010e-28 0.5869 3.3621e-05

Nuclear norm ‖.‖∗ 291.2141 299.7161 289.1930
Sparsity ‖.‖1 1.1675e+04 5.7848e+03 3.5804e+03

Table 1. Quantitative results for phantom reconstruction. Reconstruction error is com-
puted as relative reconstruction error, i.e., ‖X̃−X‖2/‖X‖2, where X̃ are reconstructed
data.

5.2 In vivo data

Cardiac imaging dataset consists of a cine MRI sequence of the heart with a
size of 224×155×50. The original dataset and its reconstruction/decomposition
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from partial k-space is presented in figure 2. We tune λ to obtain a rank-1 com-
ponent, acting as an average of the whole sequence, while completely isolating
movement of the heart in the sparse frames. Presentation of these images from
this perspective may be useful from a clinical point of view by isolating heart
movements that may help detect motion abnormalities.

Full FOV L+S L S

Fully-sampled Under-sampled 
Close up

Fig. 2. Cardiac cine MRI dataset. Left figures are fully-sampled data with full field of
view, close up and temporal evolution along a dynamic profile (corresponding dashed
line). Right figures are reconstructed images from partial measurements. Top figures
show specific frame with the separation into low-rank and sparse components. Bottom
figures present temporal evolution along corresponding dynamic profiles. Acceleration
rate is 2, parameters are set to µ = 10 and λ = 1

2
max(N, J)−1/2. Relative reconstruc-

tion error is 0.0792.

In DCEMRI, acquisition of multiple MR images are taken before, during, and
after the administration of an MR contrast agent. As in dynamic MRI, artefacts
due to patient movements (such as breathing, heartbeat, etc.) can appear during
the acquisition. A common approach is to register images to reduce important
misalignments. Here, dataset is of size 256× 256× 10 with respiratory motion.
The decomposition from partial k-space, shown in figure 3, is able to isolate
contrast enhancement in the heart through the sparse component. Since the
contrast uptake and washout is clearly separated in this decomposition, it has
been shown that it could help in the registration of the time frames of the low-
rank component to correct for respiration-induced motion [10].

6 Conclusion

We have proposed reconstruction of low-rank and sparse components of dynamic
MR data from partial k-space measurements. While providing faster dynamic
MR imaging, this method leads to a flexible separation of motion and contrast
enhancement that can be exploited in different ways.

More generally, this approach suggests a joint reconstruction model with a
clinically-relevant separation process. This is an interesting direction for fur-
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L+S L S
Fully-sampled Under-sampled

Fig. 3. DCE MRI dataset. Left figure is fully-sampled extracted frame from the se-
quence. Right figures present extracted frames of under-sampled reconstructed se-
quence along with low-rank and sparse decomposition. 2-fold acceleration, parameters
are set to µ = 10 and λ = 2max(N, J)−1/2. Relative reconstruction error is 0.0587.

ther research, where reconstruction models would extract informations related
directly to clinically-relevant measures. This might be possible through incorpo-
ration of appropriate priors and by targeting specific applications in medicine.
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