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Abstract

This thesis discusses various schemes and protocols fatuqnanformation processing in
mesoscopic systems with particular focus on using the dpgnparticle as the bearer of infor-
mation. The first chapter introduce various aspects of thé Equantum information used
in this thesis such as qubits, entanglement, its quantditcatjuantum logic gates and entan-
glement swapping. In this chapter concepts such as AKLEstatecoherence and adiabatic
elimination are introduced as they will be relevant in thesih. In chapter 2 we introduce
the Quantum Dots as the solid state system that will pripméél used as the hardware for the
development of Quantum Information Processing (QIP). Tifferdnt properties of quantum
dots depending on their size are discussed. The excharegadtibn between tunnel coupled
quantum dots and the background of quantum computationantgmn dots is described. The
principal sources of decoherence and the measurementdaelrior spin qubits are presented.
In chapter 3, carbon nanowires filled with N@C60 dimers andistl to analyse the entangle-
ment between nuclear spins. The dimer is modelled as a twpletunuclear spin- electron
spin pair with a Heisenberg interaction. The entanglemawn¢ lbeen studied depending on the
temperature and the intensity of an external magnetic fldlidnessing the entanglement, and
particularly bound entanglement are discussed. In chdptae way to extract a singlet from a
guantum dot is explored. The system that we model will beisting of a triple dot and analyse
the best way to get the singlet out, with each electron in arsap dot. The chief motivation
is to create a singlet between separate dots in a time-scalk faster than that given by spin-
spin exchange interactions. In chapter 5, quantum logiesgiait a triple dot system has been
studied. Such gates have been widely studied in double agtesijuantum dots. Motivated
by the advent of experimental set ups of triple dots, we havdied the natural quantum gates
that came out of a triple dot system. There are still two spiargum bits in the three dots
and there is an empty intervening dot, which imparts the mehgome advantages, as well as a

substantial difference from the class of schemes studiddrsén chapter 6, we model a large
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square dot. As we describe in chapter 2, the properties dathe dots make them behave with
some interesting properties such as hosting Wigner madsafi electrons inside. We explore
the application of these structures for quantum infornmaficocessing. We show here how to
get singlet/triplet measurement, entanglement swappimghow to prepare a 1D AKLT state,
using the square dot as a construction block of the systemall{#in chapter 7 conclusions and
further work. Here we indicate the further work that coulddome with the knowledge present

in this thesis and motivated by future advances in the tdolgyo
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Chapter 1

Introduction

In this chapter we are going to introduce some of the basiceqas and tools from quantum
information science and elsewhere, that will be used intiksis. This chapter is going to focus
on more general (i.e., system independent) notions, windenext chapter, also introductory, is
going to focus on the specific system of quantum dots from tiggeaof quantum information

processing (QIP).

1.1 Qubits

Quibit is the term used for quantum two level systems or thatgua version of bits. A qubit is
known to be able to exist in a state which is an arbitrary supstion«|0) 4 5|1) of two distinct
stateg0) and|1), wherea and§ are complex numbers. The importance of the notion of qubit
arises from quantum computation [1]. They are the minimadetisional systems in which in-
formation to be manipulated and exploited quantum mechépican be encoded. When the
joint state of large collections of qubits are manipulategether then quantum computation
can be accomplished, which can far surpass the power oficdéise., “non-quantum”) com-
puters for certain classes of problems. They also have thgafuental importance of being
the simplest of quantum systems and an ideal ground fotrditisg the unique features of the
quantum world such as measurement induced collapses,wpantanglement and associated
non-locality. Some examples of qubits which have foundvaaiee in QIP are the two spin
stateg 1) and| ) of an electron, the polarization&) and|V') of a photon and any two in-
ternal levelsle) and|g) of an atom. When a quantum system of more levels are involved in
QIP, one often extends the qubit terminology to refer to tlaesmyutrits for quantum three level

systems (e.g. a spin-1 particle) or qudits for a quantunvedtystem in general.
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1.2 Quantum Entanglement and its Measures

Perhaps one of the most curious features of quantum meahardanique form of correlations
that can only exist between quantum systems. For exampisidir a pair of distinct particles
AandB prepared inasinglet sta¢ ) ap = %ﬂ MNald)ys—14)al 1)s) of their spins. It can
be proved rigorously, using simple mathematical argumertitee so-called Bell's theorem [2],
that local models describing the particles and/or the nteasents on them can never reproduce
the correlations inherent in the stdte ) 45. In fact, to reproduce the correlations entailed by
the above state, one is forced to the conclusion that theelwdithe measurement basis for one
of the particles somehow has an effect on the outcomes ofureraents on the other particle.
This goes by the nanguantum non-locality

In general, for a pure state (of, say, two systetrend B) to exhibit quantum non-locality,
it must not be of factorizable foriire., |A) 45 # |¢) 4 ® |¢) 5. Such states are callestangled
One can generalise the notion of what is called an entangétd by defining the set of all

separablestates (of two system4 and B) as those whose states can be written as
oA =Y _ pilti)(ila ® [¢:) (4l - (1.1)

Those states whictho notfall in the set of separable states are called entangleskstsbte that
not all entangled states defined in the above way will exlgjb&ntum non-locality.

In quantum information technology, entanglement is a pecresource. For example, if
an unknown state of a qubit is to be sent to a distant locadioacan do this using an entangled
state shared between distant parties, one qubit (Hagf the entangled state being held by one
of the parties, and the other qubit (s#) being held by the other party, and only two bits of
classical communication. This process is called telegiortaand in this process the initial state
is converted to a separable state. One can thereby regaugéernent as a resource, which is
consumedluring the process of teleportation. Teleportation womst lvhen the shared state is
of the form|y~) 4 (described above) or something which is obtained from taite by local
unitary rotations on qubitd and B. Thereby the entanglement of these class of state is adcribe
the value unity, and the unit is often called an ebit. All othates, pure and mixed, will have
a lower entanglement. In view of their applications (tekéation is one example, but there is
also dense coding, certain forms of quantum key distriltas well as measurement based
gquantum computation), it is worthwhile tuantifythe entanglement in any state. Usually the
quantifications are motivated by tipeinciple that entanglement is a resource which cannot be

created by local actions by two distant parties (one holdimgiantum system each) as well as
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classical communication between them. Any measure whitisfiea the above, and vanishes
for separable states (Eq.(1.1)), is a good measure of dataegt. It is often normalized (or
chosen) in such a way that it has the value unity|for) 4 5. The entanglement of two higher
dimensional systems (say two qudits) can be higher thary,wstlocal actions and classical
communication may in principle create more than one cogyof 4 5 from one of them.

In this thesis, we will be using two measures of entanglemdrite first one is called
concurrencd3] and is a measure that works for arbitrary states of twatquibo obtain it, one

first takes the density matrjx4 5 of two qubits and constructs from it the matrix
paB = 0% @0Lpapoh @0}, (1.2)

Then one computes the square roots of the eigenvalues Ao > A3 > )\ of the matrixpp.

Concurrence is given by

Ec = min{(), Al — Ao — A3 — )\4} (13)

The other measure of entanglement that we will be using m tthesis is negativity. It
guantifies the entanglement of arbitrary states of two higlreensional systems. Itis motivated
by the Peres-Horodecgartial transpositiorcriterion [4] to check for the separability of a state.
For a general states g of two higher dimensional systerasand B, a partial transposition is
defined as the operatgoa%, where the states of one of the systerBsiif this case) has been
transposed, i.e., the kets and bras have been interchaoigedly Bs part of the state. Under
this action, it is easy to see that the separable statedefined by Eq.(1.1) remains unchanged.
This in turn implies that it is still a density operator for aagptum state and its eigenvalues
are positive. Therefore, if for a certain state, the eighm&aofpi% turn out to be negative,
then this state has to be entangled. Now, the degree by whielgenvalues are negative, have
been used to frame bonafide measures of entanglement dadletegativity and logarithmic
negativity respectively [5, 6, 7]. ld; are the negative eigenvaluesdj%, then entanglement,

as quantified by negativity is given by [6]

Ev = ol (1.4)
J
Sometimes we may also use the logarithmic negativity whiakefined as

Er =logy(2EN +1). (1.5)
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Figure 1.1: The above figure depicts the process of entamgiesavapping through a Bell State

Measurement (BSM) on two qubits.

1.3 Entanglement Swapping

One of the simplest intriguing manipulations that one cakeran entangled states purely by
measurements (actually joint measurements) is callechglgiment swapping [8, 9]. For this
one first has to consider a certain complete basis for measmts on two qubits, which is

called the Bell basis, whose basis states are given by

%)z 7<\o>A|1>B+|1>A|o>>
[67) a5 = 7<\0>A|1>B — [1)al0)s)
6) a5 = <5(0)4I0) 5 + 1) 411)5)
(67045 = <5(0)410)5 = Dal1)5), (16)

where|0) and|1) 4 stand for two orthogonal qubit states such as the statésand| |) of a
spin-1/2 particle.

Now consider the situation as depicted in Fig.1.1 where tewigles A and B are en-
tangled in a stat&)*) 45, and two other particle€' and D are entangled in a state™)cp.
Suppose one does a measurement in the Bell basis on the guaitdC. This is depicted in
Fig.1.1 as the box with BSM (Bell State Measurement) wrifteside. When the outcome of
the measurement j§) s, the state of the qubitd and D, which need not ever have directly
interacted, immediately collapses|to™) 4p. Similarly for the other three outcomes, i.e., out-
comely~) g corresponds to the collapse dfand D to |/~ ) 4p and so on. As the partners
who are mutually entangled have been swapped, this prazessiéd entanglement swapping.
It is a very useful manipulation in quantum information, agnables one to build quantum

repeaters [10]. To briefly clarify this, suppose one coulel verious purification procedures to



22 Chapter 1. Introduction

create a state very close|to™) 45 over a short distance. However, the channels for transmis-
sion are so noisy that such purification procedures do ndt weer longer distances. Then one
could make various short distance maximally entangle@stand then swap the entanglement
in series to establish a long distance entangled pair oicest This long distance entangled

state is then the starting point of teleportation or othemgum protocols.

1.4 Quantum Gates

A desired qguantum computation generally involves an atyitoperation in a very large Hilbert
space of dimensior®' for n qubits. A unitary rotation on such a Hilbert space i.e., atitiary
element of theSU (2™) group is, however, possible to be generated by means ofamsbiocal
unitary operations and at least one two qubit operation vhitangles the qubits [11] (this is
called an entangling quantum gate). These two items, thierefan be regarded as fundamental
gquantum gates whose composition can result in any requinadtgm algorithm to run on
qubits. Operations on single qubits are often regardedthsrraasy — for example, for spin
qubits, as we will mostly be concerned with in this thesigntounts to applying an effective
local magnetic field to the qubits. This may be done with tHp béelectrical control of spin-
orbit interactions [12], or using micromagnets [13]. THere, usually the challenge is to design
a scheme for a useful (in the sense of being “entangling’ntyma gate. Indeed Chapter 5 of
this thesis deals largely with the above problem in a cesaiting of quantum computation
with spins. Typically an interaction between two qubits $&d for enabling a quantum gate
between them, though quantum indistinguishability andsassments may also be used [14].
A canonical example of an entangling two qubit gate is thet@dled Z or CZ gate, given by

the evolution

[ Dal s — [ Dal s
[ Dal b — [ Dald)s
[Dal e — [Dal e
[Dalde = —[Dall)s. 1.7)

1.5 Decoherence and Dephasing

The principal enemy of quantum information processing otierence. Any quantum system
is inevitably coupled to an environment, and informatioraded in the quantum system is

gradually lost to the environment. A toy example is a qubifohtstarts in a state)(0)) =
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%(w) + €™®|1)), and interacts with an environment in an initial stggeto evolve to the joint
system-environment staté (¢)) = %(|O>\§o(t)> + €¥|1)|£1(2))), has the information about

the variablep in its reduced density matrix damped by a factor as follows

1 1 2" (€1 (t) S0 (1))
2e™ (& (t)]61 (1)) !

We can see that if with time evolution for large timés, (¢)|£0(¢)) — 0, then the entire infor-
mation about is lost from the qubit’s state(t). The environment being very large, it is likely
to stay at(¢; ()| (t)) ~ 0 for all times exceeding a certain time-scale. The aboveqa®és
called dephasing and is an example of decoherence, whilebthve time-scale can be called
the dephasing time. More generally the state of the qubit beaglisrupted in more than one
way, rather than merely the loss of coherence between sthtefixed basis, for example, the
proportions of(0) and|1) may begin to differ. All these effects, due to the interactid a sys-
tem with its environment, is called decoherence. The spemifvironments with which we deal
with in this thesis, and the type of decoherence that thegesawill be described in the next

chapter.

1.6 Many-body Hamiltonians

Typical systems of nature are formed with many interactioigstituents. Moreover, generally
the interactions between these constituents are not thatiable and, in fact, permanent (i.e.,
they do vary with time). Such systems are described in tefmeay-body Hamiltonians. Such
a Hamiltonian is generally a sum of many terms, with each teeing a product of operators
for two or more of the constituent systems. An example of asctef many-body systems is a
spin system. A large collection of spins permanently cadipteeach other make macroscopic
systems such as magnets. The mutual interactions of theselspd to ferromagnetism, anti-
ferromagnetism or other interesting many-body phasenQfie spins are arranged in a regular
lattice and coupled to each other permanently with an iotena strength decreasing with dis-
tance (as shown in Fig.1.2). A common form for the Hamiltarfia a many-body spin-system

(comprising, say, spin-1/2 particles) is
H=> T 5.5 (1.8)
ij

whered;.d; = ofof + o]0} +ofo? andof, o/, o} are the Pauli operators for the component

J IR ]

of theith spin along the:, y andz directions respectively.
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Figure 1.2: The figure shows an example of a many-body systamely a spin system. The

spins perpetually coupled to each other with an interacttoength which generally decreases

with distance. The dotted lines denote weaker interactioas the solid lines.

Two many-body Hamiltonians that we actually use in part$f thesis are the fermionic

Hubbard Hamiltonian and the— J Hamiltonian. The Hubbard Hamiltonian is given by

H="Ed,di.+ > tij(df,do)

o, 0,%,]
1
a ,%,]

(1.9)

In the abovey, j stand for sitesd:.fcr creates and;, annihilates an electron at thith site in the
spin stater with energyFE;. Here we have assumed that the particles are created ortigin t
lowest energy state at the sit&;] and the higher energy levels for a single electron are sb wel
separated that they never become involved in the problénis the Coulomb repulsion at the
sited, n; =y d}adw in the total electron number operator of thk site andt;; andV;; are
tunnel and Coulomb matrix elements between different égeserallyt;; andV;; are non-zero
only for proximal sites and;; is often taken to be negligible in comparison to the strength
the other terms in the Hamiltonian. While the above Hamilonincludes both hopping (i.e.,
tunneling) and on-site interactions, there is another moaléed thet — J model, where due
to high values olJ; the double occupancy of sites is eliminated, and an eleatteracts only

with an electron on a neighbouring site by means of spin-sparactions. The — J model is
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given by the Hamiltonian
Hig =Y Eidldig+ > tydldo
o, 0,1,7
1 S5
+§ Z Jij0i0;. (1.10)

751,3

1.7 Affleck-Kennedy-Lieb-Tasaki Hamiltonian
and State

An interesting many-body Hamiltonian which has an exactipwn ground state is called the
Affleck-Kennedy-Lieb-Tasaki (AKLT) Hamiltonian [15]. Itground states are called the AKLT
states. Recently, it has been shown that one dimensionallAdtates are excellent channels
for measurement based quantum communication [16], whéwemasgimensional versions are
excellent candidates for measurement based quantum catigoutl 7]. For simplicity, we will
restrict ourselves here to the one dimensional versionghwhrivolves spin-1 particles. The

AKLT Hamiltonian is given by

I 1 R
Hakt = zz: Si.Si+1 + g ;(5¢.5¢+1)27 (1.11)
where S; are spin-1 operators for thi#h spin. The above Hamiltonian can be shown to be

equivalent to
Har = Y P2y, (1.12)
i

where the operatoa?’fﬁr1 projects theth and the + 1th spins to the highest spin, i.85 = 2
state. The above projector will have a zero value when thesstd the two spins on neighboring
sites are singlets.

Thus the ground state of the above model is constructed afisociating two fictional
spinsa; and3; with theith site and placing the nearest neighbor spins; andg; in a singlet
stateft)™)q,.,,5, @s in Fig.1.11. Then projection operatd?;Hﬁl are applied to each site (as

shown by the dotted circles in Fig.1.11). The AKLT groundesia thereby given as
|WakLT) = ® Palj,ﬁj (® |"/J_>Oéi+1,5i)7 (1.13)
7 %

where@), denotes the tensor product. While usually the AKLT state ésigint of as a ground
state, any other method of producing the same in a physigdéimentation would be useful for

the purpose of measurement based quantum communicatiocoamglutation. Indeed, in this
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thesis, we will discuss a method of preparing the above gtateigh dynamics and measure-

ments.

1.8 Thermal States

Any quantum mechanical system at thermal equilibrium istimeamal state. If the Hamiltonian
of the system i$4, then its thermal state is simply given by
_BH

7

(&

pr = (1.14)

where the indeX" stands for the temperature of the stdte- 1/(KgT'), with K the Boltz-
mann constant and = Tr(e~"™). We introduce the thermal state here as it will be required

to estimate the finite temperature entanglement in dopéetéunle chains in Chapter 3.

1.9 Adiabatic Elimination

When we study problems in quantum mechanics it is common te Yeny large Hilbert spaces
in which we study our system. As a result of the size of the éfillspace, it is usually hard to
solve the dynamics of these systems. If the energies in whéhre interested in the study of
the system are tiny compared to some states that we have hathidtonian, we can build an
effective hamiltonian in a smaller/truncated Hilbert spaonsidering that the possibility that
the system evolve to the states outside this truncated ttl8pace is negligible. This procedure
is called adiabatic elimination. Below we provide the stépe algorithm for this procedure:

1. We take a basis in the full Hilbert space of the system andrdhikebasis according to

the expectation values of energies.

2. We consider the set of states of low energy and we call thi§|gg} } and the set with
higher energy{|¢1)}.

3. Consider the time evolution of the whole system

dy) .
—o = —iH). (1.15)

Consider then the representation of the above equation

] ( o) )
o) ) ( He 9 ) ( o) ) (L.16

dt QT Hl ‘¢1>
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4. We make the assumption that

d{|v)}
S . (1.17)

This assumption is equivalent to the fact that states wigih lenergy expectation values never
take part in the dynamics (assuming the dynamics startsitothh energy sector, it continues

within this sector). This implies
Qo) + Hilr) =0 = [1h1) = H QT |aho). (1.18)

Thereby we can write

dl1o)
dt

= —iHolbo) — QY1) = d\;[);) = —iHo|vo) — iQH; QT 4g). (1.19)

5. By inspecting the above, one finds the effective hamiltotiene
Hepp = Ho+QH{'QT. (1.20)

We shall use the above procedure in Chapter 5 of this thesdeiaving an analytically
tractable effective Hamiltonian from a larger one. In thiaamter we also match the analytic
results obtained from the effective Hamiltonian with thaf¢ained from a numerical solution

to the full Hamiltonian.



Chapter 2

Quantum Dots for Quantum Information

Processing

A guantum dot is a solid state structure in which the eledtrenergy levels are quantized in
all the 3 spatial directions. Typically the size of the coafirent is hundreds of nanometers,
so that the separation between electronic energy levéisigtappropriate effective masses of
electrons, can be of the order bimeV [18]. Because of their discrete energy level structure,
such systems are often called “artificial atoms”, and giveergain number of electrons, they
do occupy the energy levels much like they would do in an atdrmder such confinement, the
repulsive energy of two electrons can also be very impartagt, of the order o/ ~ 10 meV,
making electron-electron interactions an important eleinoé the physics of quantum dots.
The electron-electron interactions can actually give tiseffective spin exchange interactions
between electrons occupying distinct dots — this is exgtbfor quantum computation with
quantum dots [19], as will be described later in this chapfBnere are usually two broad
categories of quantum dots, the “self assembled” ones @oextinaturally during the growth
of semiconductor structures) and the “gate-defined” onastwize will discuss in detail in the

next section.

2.1 Fabrication

Gate defined dots are created from two dimensional electasrgy(2DEGS) that arise at the
interface of GaAs and AlGaAs layers in heterostructuresvgrby Molecular Beam Epitaxy

(MBE) [20]. In the 2DEG, the electrons move as free partiglgh very long mean free paths
(high mobility) in two dimensions (say, in the X-Y plane),ttare completely confined in the

third dimension. Metallic (Aluminium) electrodes (or gs}ere deposited on top of the GaAs
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Electrode gates

2D Electron Gas
(interphase)

N-Doped AlGaAs —_,]

Non-Doped GaAs

Semi insulated GaAs/

Quantum Dot

Figure 2.1: This figure depicts the three dimensional hstewoture used to generate a quantum
dot. A system of three layers the top one is a N-Doped AlGa&kvibthe Non-Dopped GaAs
and in the bottom the Semi Insulated GaAs. In the interphassden the N-Doped AlGaAs
and the Non-Doped GaAs is confined the Two-Dimensional Eladbas (2DEG). The square
shaped metal electrode at the very top generates a confinadesggion for electrons in the

2DEG below, which is essentially a quantum dot.

layer and these are used to apply voltages to the 2DEG tceefurtinfine the electrons in specific
regions of the XY plane. Basically, an applied negativeagydtto a gate depletes electrons from
the region of the 2DEG directly below the gate. These theraaatonstrictions or potential
barriers for the electrons moving in the plane of the 2DEG. Vée electron is confined from
all directions, this is simply a quantum dot. The type of heg&ructure described above, with
the position of the 2DEG and the use of electrodes to createaatgm dot in the 2DEG, are
shown in Fig.2.1. In the later part of this thesis, we will beisaging the use of electrodes to

define square shaped quantum dots.
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2.2 Hamiltonian for electrons in a quantum dot

As long as there is a single electron in a quantum dot, itestedn be found by solving for
particles in a well. The solution to that, whatever the striees of the well, there will be a set
of discrete energy levels,,. In general, however, multiple electrons may occupy a guant
dot, and different numbers,,, of electrons populate the different levels. However, iis tase
they will also interact with each other through the Coulomieiaction. This can be especially
high for smaller dots as the tight confinement brings elestitoo close to each other so that
they interact strongly. For very small dots, the Kinetic gyg(which scales a$/L? with the
dimensionL of a dot — think of a free particle in a square well) dominatesrdahe Coulomb
repulsion (which scales a9 L) so that all the electrons have their peak densities at thieecef
the wells. In this configuration, we cannot regard some pdiedectrons to be closer than the
others, so that one can assume the interaction energy opeadb be of the same valdé. For

a total number ofV = > n,, electrons, the Coulombic energy is tﬁuw. In addition,
the energies of all the electrons will be shifted up or dowrabyamount which depends on the
external applied voltag¥ey. The whole Hamiltonian for multiple electrons in a small gtuam

dot is therefore

U
Hy = EN(N — 1) — eVextlNV + Z(fnzn’m (21)

For larger dots, the Coulomb term both determines and depmmnthe positions of the electrons.

This has to be determined in a self-consistent manner ahtbevdiscussed in a later section.
One of course has to solve the Schroedinger equation fonfinalit the quantized energy

levels ¢, of an electron in an arbitrary quantum dot. If the density i background 2D

electron gas ig2pre (this also depends on the gate voltage), then the potdntll) is given

by
V2V(R) = _p2pec(R)
EoEr

R = (z,y,2). (2.2)

In the relevant material the electron will have an effectivassm™* because of its dispersion
relation in the material. Thereby solving the Schroedireggration to be solved for the 1D and
2D cases respectively gives

hQ

5V e(2) + 4V (2)p(2) = Bap(2), (2.3)
and
K2 9
7V i(r) + qVesy i(r)i(r) = Ei(r) (2.4)

2mGaAs
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2.3 Numerical Schroedinger Equation Method for

multiple electrons in a quantum dot

Usually when there are multiple electrons and the quantunisdelatively large, one cannot
simply model the electronic interactions as the same beta#@airs and the potential energy
terms depend on the specific locations of the electrons. Téthad used in this thesis for
solving the hamiltonian equation for two electrons in a quamdot is numerical and is detailed

now. The Hamiltonian is

K2 e?

H= —5 (V2 4+ V2] 4+ V(r) 4+ V(r) + (2.5)

dme |ry —ra|’

where the indices 1 and 2 refer to electrons 1 and 2 resphctive consider a two dimensional
array of size) , L; x Ej M;, whereL,; andM; are the labels of the array cells, circumscribed
inside the area where one is interested to solve the Scimgedequation. We are going to
proceed to calculate for each point in the array, the kinetiergy, the potential energy and
the Coulomb term of the Hamiltonian. The boundary condgitaken are going to make the
probability of having an electron outside of the array eqoatero and it is forbidden to have
the two electrons in the same position as then the Coulombualf be infinite. Given the basis
|n1, m1, ne, mo) Wheren; andm; are the electrons positions in the array. The kinetic teri of

general state(ny, my, n2, ms) is

+

—h? (7/)(%1 —1,mq,n2,mz) — 2¢(n1, my, n2, mz) + P(n1 + 1,m1, ng, mo)
on?

P(ni,mi — 1,na,ma) — 2¢(n1, M1, ne, ma) + Y(n1, mi + 1, na, ma)

2

2m*

om
w(nhmlanQ B 17m2) B 2¢(n1,m1,ng,m2) + 7/)(”1’77117”2 + 17m2)
on?
w(nhmlanQamQ - 1) - Qw(nhmlanQam?) + w(nlaml + 17n2am2 + 1))
om? '

(2.6)

When at least one of the four positions is a boundary one in thay,athe term out-
side will be zero. The Potentid/(r;) for each electron 1,2 depends on the shape and
physical parameters of the quantum dots and can be paralichngular, squared box
with or without hardwall conditions. The Coulomb term is aibed by calculating the

square of the charge of the electrorfsdivided 47¢ times distance between each electron

V(@1 (n1,my) — z2(n2,m2))? + (y1(n1,ma) — y2(na, ma))>?.
After obtaining the whole hamiltonian ag®, L;)* x (> M;)? matrix, one can proceed

to numerically diagonalize it and compute the eigenstdiesn the ground state, one can obtain
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C. Creffield, W. Hausler, J. H. Jefferson, S. Sarkar, PRB 59, 10719 (1999)

Figure 2.2: Ground state charge distributions for the thypes of quantum dot. Dot sizes are:

(8)50 nm (b)100 nm (c)800 n . This figure has been adapted fnemeference cited above.

the average probability of presence of one electron in easltipn of the grid by making the
average of the second one in the whole array except in the gasitgon. Using as example the
solution of an squared quantum dots with hardwalls conattione finds that depending on the
size of the quantum dot there will be a prevelence of the kiretm or the Coulomb term. For
small size quantum dots, the Coulomb interaction is muchlemthan the kinetic term, and
the two electron ground state is similar to the one in the interacting ground state, with the
charge distribution being peaked at the centre of the da.sliuations for large dots when the
Coulomb term prevails and density distributions of eleasrare peaked away from each other,

are shown in Fig.2.2.
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2.4 Coupled gquantum dots and origin of the spin

exchange interaction between them

We are now going to present how an interaction between spimaiise purely from the electro-
static interaction between two quantum dots. Two proxinuargum dots, particularly the ones
in the gate defined systems as described here, can alwaysdeetonbave a tunnel coupling

between them. This is described by the Hamiltonian term [21]
Hunner= —t d'y ,dp.o + h.c., (2.7)

whered}a creates an electron of spinin the j = A, Bth dot. Essentially this tunnel coupling

t is set by varying the voltage barrier between the quanturs dot follows the rule
e‘w, whereV is the barrier height between the wells (engineered byrggttie
voltage), AL is the spatial separation between the dots &nid the energy of the electrons

in the ground states of the individual quantum dots (whenrtexaction between them is not
present). Thus two proximal quantum dots, particularlyghes in the gate defined systems as
described here, can always be made to have a tunnel cougietyveen them. Consider two
dots with a very highV >> E so that two electrons, even with the opposite spins can never
sit in the same dot — energetically it will be much more fabdeegor them to sit in two distinct

dots (with energy@ E) than on top of each other in the same dot (with endrgy %).

By adiabatic elimination of the excited state of enefgy % which will effectively never
be occupied, the exchange interaction can be estimated tb be% Below we outline
the derivation (similar methodology will be used in Chapbein the case of 3 dots). The
Hamiltonian for the full system of two dots including douldlecupancy states, is given, in the

basis

dh+dh[0), dh df, [0}, dLdb, 10), d}, df, [0}, did} [0), df,df [0), (2.8)



34 Chapter 2. Quantum Dots for Quantum Information Proogssi

E 0 0 0 0 0
0O E 0 0 0 0
00 E 0 —t —t
H= (2.9)
00 0 E ¢ t
00 —t t E+Y% 0
00 -t ¢t 0 E+Y

and now using the adiabatic elimination described in th@thdl in section 1.9 with

E 0 0 0
0 FE 0 0
Hy = ) (2.10)
0 0 E 0
0 0 0 E
0 0
0 0
Q= , (2.11)
—t —t
t ot
E+Y% 0
H, = 2 , (2.12)
0 E+Y
and
0 0 —t t
of = . (2.13)
0 0 —t t

Now we setE = % << U because the level of energy can be arbtrarily set. We use the

adiabatic elimination formula as described in section 1.9:

H.;p = Ho + QH;'QT (2.14)

so the effective Hamiltonian in the basi&,df,.[0), d} df, |0), d}.df, 0), d} d.|0) will be



2.4. Coupled quantum dots and origin of the spin exchangedaotion between them 35

J 0 0 0
0o J 0 0
Hepp = = (2.15)
0 0 —J 2J
0 0 2J —J

JEDAT T+ DA =TT T =TI AT D +2J( T [+ [INAT ) = (2.16)

Jo, Q0,4+ J(0, ® 0y + 0y Q@ 0y) = (2.17)

Hepp = Jod (2.18)

WhereJ = 2. In the deriving of the above, we have used the identificafiat},, [0) =
| 11)... in step 2.16, and,, = | 1)(} |+ | 1)(1 | o, = i(| 11| — | 1)} |) and
o, = (DT =14 |) instep 2.17. The above interaction is equivalent to the éteis
berg exchange interaction between neighbouring spins r&3uft above obtained by adiabatic
elimination can also be obtained by degenerate second pederbation theory as described in
Ref.[21].

Note that here our derivation of the exchange interactienbegen adapted to the case of
fermionic Mott insulators as we have used a higland a second order tunneling process. The
exchange coupling = % is therefore always positive, as one can see from its express
One may thus be puzzled as to how ferromagnetism at all apjreaature if our derivation
presented above is the only way one obtains an exchangeadtiter between the spins. In fact,
the exchange interaction we have derived above is ofteadccallsuper-exchange as it involves
a second order process. What is often a textbook derivatidgheoéxchange interaction can
be ferromagnetic (i.e., negativh as it involves the so called exchange integral as the energy
difference between a singlet and a triplet state of two sfinselow has been defined in terms
of giving the right singlet triplet difference of energy acding to Eq.(2.18))

2

Etiplet — Esinglet = 4J = */d7’1d7’2¢2,,4(7’1)¢273(7"2) ba,a(r2)da,B(r1), (2.19)

r1 — 2
where¢e 4(r) and ¢ g(r) are ground state wavefunctions in dotsand B. As ¢¢ a(r)
and¢¢ p(r) are positive Gaussian wavefunctions, the integral in tlevalequation is always

positive and thereby < 0, leading to ferromagnetic coupling (triplet states — gdatalpins
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have lower energy). The above energy difference betweetrifiet and singlet automatically
arises by writing the total wavefunction (spin and orbitaitp) of the two electrons in the two
guantum dots as antisymmetrized, computing the expentafithe Coulomb energy (in which
only the orbital wavefunctions take part) in the triplet ahé singlet states and taking their
difference. Note that when the dots are made narrower t@eelai high/, the direct overlap of
0, a(r) andgg, g(r) severely decreases, while the temtf%, depending only om; andr,
remains the same. Thederived from the exchange integral above becomes vanishirgin
this case when the second order exchange process, as dgrivedwith a positive/, becomes

active.

2.5 Quantum Computation with quantum dots

Qubits can be encoded in quantum dots in at least three @iffevays. The most fruitful in
our opinion are the spin qubits in view of their large decehee times. When surrounding
nuclear spins are polarized, then the coherence time fotretéc spins can be gfs time scale
[22] allowing plenty of quantum operations to be perform&afore moving to the details of
how quantum gates are accomplished between spin qubitsesezilde the two other form of
qubits in quantum dots, namely the excitonic qubits in €rdpts and charge qubits in double
dots. The excitonic qubit states are the presence and absé@n exciton (an electron-hole
excitation) in a quantum dot. Separated quantum dots carairttthrough the hopping of an
exciton from one dot to another by the so callgister-Dexter interaction. But an excitation
also leaks outside and thereby the excitons are not outatagdbits, though they interact at a
much shorter time-scale than spin-exchange interactibhis. is why there are clever schemes
exploiting the best of two worlds whereby the spins are kemjubits and converted to excitons
only when a two qubit gate is desired between separated wmashdts [23]. In a double dot,
whether a charge resides in the left or in the right dot of thieip also a qubit widely considered
[24]. However, their best decoherence times have been faubé of the order of 1 ns [25].
Quantum gates here, of course use very strong electrostractions as opposed to the much
weaker exchange interactions [26].

We will now describe the mechanism for quantum computat&ngispin qubits in quan-
tum dots. One spin is confined in each quantum dot, which canbered by the appropriate
gate voltages (this is a standard scheme these days). F-dgpicts the setup. What we es-
sentially need is a mechanism of antanglingtwo qubit gate, as along with arbitrary local

operations this forms a universal gate-set for quantum coatipn. At the time of a quantum
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Figure 2.3: Here we represent a much larger scale of singfgéd electrons in a chain of
quantum dots confined in a similar way than the one explaind€g.2.1 scaling it in a single

dimension.

gate between two spin qubits, one suddenly lowers the gatebbetween two neighbouring
quantum dots (the gates used to control this barrier areribe with triangular edges in the
figure) so as to suddenly increase the tunnel coupliagd thereby switch od ~ 2t2/U for

a precisely fixed interval of time. The Heisenberg excharoggling J for the fixed interval of
time gives entangling quantum gates. More precisely, thplaty switched on for an interval
T = 2=, we have the time evolution of two spins in two neighbouriegsdl and B to be

= 27

[ Dal M — [ DalDs

Al D5 — %u 1al D5 — il 1)al 1)5)

Dl s - %<\¢>A\T>B—z’|m|¢>3>
Dalls = 1 Dal s (2.20)

The above is called aexchange gatand as is evident can maximally entangle two qubits in
appropriate initial states. Of course, another pivotaiyortant element in any setup is the
ability to do local gates. For this reason we have, in the §garmagnetized or high-g layer
(in the high-g layer, an electron interacts more strongiywhe nuclear magnetic field). At the
time of a local gate on a spin qubit, the relevant electrorughpd towards this layer by gate

voltages for a fixed time so that a local rotation happens to it
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2.6 Decoherence and noise of qubits in quantum

dots

Spins in general may be affected by various sources of deeobe. The most relevant in the
context of quantum dots are the hyperfine interactions wvhighrtuclear spins of the material
(e.g. GaAs) in which the quantum dot is fabricated. Unlesamapde is such that the nuclei
are spinless (for example, in isotopically puré®3ieach nuclei will produce a local magnetic
field which will act as a Zeeman field for an electron in its mity. Of course, this field falls
off rapidly with distance and one only needs to take the fiélthe nuclei at the site of the
electron into account. However, the electron itself is irpeead-out wavefunctiog(r) and
thereby sees several nuclei that provide it with randonttoas of Zeeman fields. The effective

Hamiltonian acting on the electron spin is therefore [18]
Het = hVegnuc-? (2.22)

wherey, = gup/h is the gyromagnetic ratio for the electrod, = (o, oy, 0) are the Pauli
matrices,gnuc is the effective magnetic field provided Iyl nuclei taken together. Thereby,
ﬁnuc is given as

Brue=10Y by 3 [0(T 1.0) P17, (2.22)
B J

whereuy is the volume of an unit cell; stands for nuclear specids; is the effective Hyper-
fine field due to species within each unit cell,j stands for theth unit cell andl?7 for the
magnitude of the nuclear spin of specig@sAs each nucleas points in a random direction, the
total field ?nuc has a gaussian random distribution centred aroﬁmgk = 0 with a variance
Bhnuc,msWhich decreases a% by virtue of the central limit theorem. Thus ironically emu)

the larger the dot with more nuclear spins (i.e., an enviramrtarger in size), the smaller effec-
tive random field provided by the bath! Of course, you canrset dots too large because you
want to use the single electron as a qubit with two spin lesrtsonly one orbital level and the
second orbital level comes closer the wider the dots are mEgde distribution of the nuclear

field is thereby given by

1

m exp(— (gnuc'gnuc)/QBr%uc,rms)' (2.23)

P(ﬁnuc) =

where Bnycms = b1 /\/N is the variance of the random variabEnuc with the constant;
being~ 4T for GaAs. There is one more important point here, namelyfalethat this nu-

clear field fluctuates on a time-scale much higher than thamjcs of electron spins in the
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dots. At low (or vanishing) external magnetic fields the flattons of the nuclear spin can
only happen by its interaction with the electronic spin as ilimuch stronger than the dipolar
interaction between the different nuclear spins themseliiéis interaction has an effect over
a microsecond time-scale whereas quantum gates betwetrorkehappen over the time-scale
of nanoseconds. Thus, over the time-scale of the gates theanispins, and thereby the field
Bnuc can effectively be regarded as frozen. This is known aggthesistatic approximation
and greatly aids the analysis of the decoherence due to theamspin bath as one can evolve
different pure state trajectories corresponding to a difiemagnitude and orientation ﬁnuc,

and later on average over these trajectories to obtainniediolution of the system.

Another important source of decoherence that is mainly mamd for charge qubits are
charge fluctuations in the metallic gates used to contrcdineple. However, spin qubits may be
indirectly affected. For example, in certain types of quamfgate schemes, such as the one we
present in Chapter 5, time evolution may create superpositf states having different charge
distributions though ultimately the gates are on spin guiiihereby it is important to consider
the decoherence caused due to these fluctuators even foissberaes with spin qubits. These
charge fluctuators generally cause spatial fluctuationseo¥oltages in a system — for example,
they affect the voltage (and thereby the energy of the drbitdes) randomly in different dots
of a multidot system (considering small dots so that theat@m of the voltage within one
dot is negligible). The charge fluctuators are generallymesl to have a spectral function
which is inversely proportional to their frequengy and are thereby regharded as producing
1/f noise. Spin-orbit interactions may also be important inaiematerials such as GalnAs,
but are generally small in GaAs quantum dots, which are thitengefor most spin qubits in
quantum dot experiments. In GaAs they form a much smallerection than the Hyperfine
nuclear field because the length-scale over which spin orta@tactions become important is

much larger than the size of 100 nm of the quantum dots thatthel qubits.

2.7 Measurement of spin qubits

Spin of a single electron generates such a small magnetittfiat it is notoriously difficult
to sense spin by directly measuring the magnetic field. Tlaegehof a single electron, on the
other hand, can be easily sensed with the so called quantimh gantacts (QPC) [27, 28],
which is widely used these days. Therefore one can try taedgeonvert the spin alignment
information to the presence or absence of a charge at soratdindo efficiently read it. This

idea is called spin to charge conversion for readout, and iWel@scribe two specific methods
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for this. The first method is to use an energy based selectispio orientation and is depicted
in Fig.2.4. Here a lead is connected to the quantum dot hgldimelectronic spin in an up or
a down state, where the aim is to measure the spin of the dot, Al&eeman field is applied

to the quantum dot so that the energies of the up and down bptwne well separated. The
Fermi energy of the lead is set at value lower than that of e down state and higher than
that of the spin up state as shown in the figure. The spin up #tatefore cannot tunnel out of
the dot and is trapped there permanently. The spin down, statthe other hand, tunnels out
eventually through the lead. Thus, a charge mesuremeneafihntum dot after the tunneling
time will effectively measure whether the dot's spin wadially up or down — note that this

measurement destroys the spin state.

We are now going to discuss another strategy for spin measumewhich can measure
spin states in double dots. Particularly, it can precisairjuish between singlets and triplets.
However, it can also do a measurement of a single spin stag@ whother spin is initialized
to a reference state. This method uses a setup of an isolatdileddot populated with two
electrons and it take advantage of the Pauli exclusion jptigwc Initially the two dots are in
the Coulomb blockade regime so that the (1,1) state (i.ee, e@dactron in each dot) has far
lower energy that the (0,2) state (i.e., both electrons exgame right hand dot). Suppose
now the two electrons in the (1,1) state are in a singlet 8étel) or one of the three triplets
T(1,1) and we want to distinguish between these two optidvmwy, to do this measurement,
we raise (by electrodes) the energy of S(1,1) and T(1,1) tmlaeh value than the energy of
S(0,2) so that energetically now tunneling is allowed fothbihe electrons to go to the same
(second) dot. Here the phenomenon of Pauli-Blockade conmtesffect as shown in Fig.2.5.
Because of the Pauli exclusion principle, only the S(1,13$ genverted to S(0,2) by tunneling,
but the T(1,1) state remains frozen. Therefore a charge uneagnt here will allow one to
discriminate between a singlet and a triplet in the two dbtsre the time-scale of the spin to
charge conversion is set by the tunneling time of the elacral thereby happens at a random
time of the order of the tunneling time-scale. We mentios tiére in particular as in Chapter
6 we present a singlet-triplet discrimination strategyhnita single large dot where the process
of spin to charge conversion takes place at a precisely defime because that is a coherent

evolution.

Now, in presence of a nuclear bath field mostly aligned in ifipe(z) direction, the
nuclear field components in the x and y directions which ctatea./, = OtriplettoaJ, = £1

triplet are negligible (here we are referring to the (1,Igléts). Therefore only the conversion
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Figure 2.4: This figure depicts the energy selective coimers spin orientation to the presence
or absence of charge in a quantum dot. The quantum dot ctathen measured to measure

the spin.

betweenJ, = 0 triplet and the singlet is dominant. This enables one toriisnate between
ant and an|7 in the two dots. The state will never go to the (0,2) charge configuration by
tunneling due to Pauli blockade. However, tffestate, being a superposition of the singlet and
the triplet, will go to the (0,2) charge configuration withm@pability of 0.5. However, if it does
not do so in a long enough interval, and is thereby effectipebjected on to the, = 0 triplet,
then it is converted by the differences in the nuclear figldhié z direction in the two dots to a
singlet and thereby again has a probability to tunnel. Ia ¢y the|t state can eventually be
converted to a (0,2) charge configuration and be detectethidiway, as single spih or | in

one dot can be detected if the second spin is kept in a refestats].

2.8 Conclusions

In this chapter we have given a broad overview of the potbrtia of quantum dots in quantum

information processing. Firstly, we have discussed tladiri€ation, with particular emphasis on
the gate defined quantum dots relevant for our work. We haeeiatroduced the hamiltonians
that govern the electrons in QDs, as the spins of these efectrill be considered as qubits.
After introducing different models used to describe thevaht quantum dot physics, we explain
the types of quantum computation that are possible and ties gavolving QD qubits that we

achieve in our own work (described in subsequent chaptatisothesis). We describe the role

and effects of decoherence and noise while using spin gubigantum dots. For example, we
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m:tjﬁ
Y Et+

Figure 2.5: In this picture we can see how the alignment omgiradignament setups of initial

spin directions in each site will of a double dot, allowing tinneling for double occupancy or

not in a single site due to the Pauli exclusion principle.
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explain how the qubits are affected by the hyperfine int@adaif the nuclei and by the noise in
the voltage that defines the dots (this noise affect theineling and energy). We conclude the

chapter with the explanation on different ways it is posstblmeasure a spin qubit in the QDs.



Chapter 3

Entanglement in Endohedral Fullerenes

Dimers

As a new implementation of Quantum Information Process®ip], the possibility of endo-
hedral fullerenes is now being explored [29, 30]. It is pbkesito have a chain of fullerene
(Csp) molecules inside Carbon nano-tubes (or Wires), and mereivs possible to dope each
fullerene molecule with a Nitrogert V atom (this is called* N@QCy). The Carbon Nano-Wire
(CNW) plays the role of a scaffolding for the fullerenes, asveh in Fig.3.1(a). Each dopant
contributes 3 unpaired electrons, and thereby has a spto8ifibuted by electrons as shown in
Fig.3.1(b). These electronic spins of the doped fullerenéenules can be regarded as carriers
of quantum information [29, 30]. However, each dopant iegttk fullerene molecule also has
a nuclear spinl (for a nitrogen'* N dopant, as shown in Fig.3.1(b)), which have much better
coherence times and thereby are a better candidate fongtte qubits, and ideal as memory
qubits. The fullerene also will act as a Faraday cage so a padeof the electromagnetic field
will be neglected allowing better decoherence times. Whiléding chain structures and their
use for quantum computation is still somewhat away, at themem, very small dimers (e.g.,
as shown in Fig.3.1(c)) and trimers of fullerene moleculeskeing prepared in the laboratory.
In this context, it is sensible to study the entanglementben the different spins (nuclear and
electronic) present in such a dimer structure, so that samech of their behaviour as bonafide
“quantum” objects which can quantum mechanically coreeleith each other is tested. While
this is not necessarily a pre-requisite to quantum comjaumait is start towards testing quan-
tum informational quantities in endohedral fullerene eys, namely the fact that the nuclear
spins in thencan be entangled. Of course, one could entangle two nucleas $pirdynam-

ics, say by first entangling two electronic spins and thenppivay that entanglement over to
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their proximal nuclei — indeed this is the standard way ohgsiuclei as quantum memory.
However, in that case one has to induce dynamics in thismystdich is a harder task than
making the system relax to its ground state. This is why wenéxa whether we can look at
the entanglement between two nuclear spins in the groundhemchal state of the combined
nuclear and electronic spin system. Note that the directidipnteraction between two nuclear
spins is extremely weak, and is negligible compared thereleelectron and electron-nuclear
interactions. Thereby we take a model were the direct nucleelear interaction term is com-
pletely absent. This makes our investigation nontrivialthie sense that we are seeking a high

entanglement between systems which do not directly interac

3.1 Hamiltonian

The nature of the interaction Hamiltonian in fullerene dimis still not fully ascertained, and
in fact the cage holding them (or the bridging atoms) may glssential roles in determining
this coupling. As there is no apriori reason to have any prefeexternal magnetic direction,

i.e., an easy axis, the most intuitive Hamiltonian to assisme
H:gﬂ'§1+<]§1'§2+g§2’]2 (31)

where g the nuclear spin—electron spin Hyperfine couplintpfad the fullerene-fullerene cou-
pling factor (strength) due to the electronic spins of thpatus,}, the spin of nitrogerk and

I, the spin of the fullerené,S,, the spin of the nitrogen, in this casegoes from 1 to 2. The
magnitudes of the spins afiefor nuclear spin/ and 3/2 for electronic spinS. Additional
support for the above form of Hamiltonian may be obtainedftbe density functional theory
calculations performed i8c@QCs, peapod structures, where it was deduced that neigbouring

fullerene molecules have an antiferromagnefichangenteraction [31].

3.2 Entanglement in fullerene dimers

We now proceed to investigate the entanglement between atieug spins involved in a
fullerene dimer system. As we have only spin-3/2 and spigsiesns involved, and the states of
any pair of spins may be a higher dimensional mixed statelathbst appropriate measures to
use are the negativity and the logarithmic negativity dised in the introductory chapter. The
logarithmic negativity has the advantage that faf-dimensional maximally entangled state
%(|O>|O> + |D|1) +12)]2) + ... + |d — 1)|d — 1)) it has the valudog, d. We are going to

study the logarithmic negativity between the nuclear spfrtee two Nitrogen atoms in the two
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Figure 3.1: Fig.(a) shows several fullerene moleculegdasi nanotube in a peapod-like ar-
rangement. Each is doped with a Nitrogen atom as shown byaotthside the cage in the
figure. Fig.(b) shows the blow up of each doped fullerene maéewith the electron cloud of
the dopant (blue colour transparent sphere) which has3gginin the same figure, the nuclear
spin of the dopant is shown by purple colour ball. Fig.(c)ved@ multi-fullerene structure
already being made, namely a fullerene dimer, which camdjrde used as a test-bed for ex-
periments before full control over longer structures sushh& peapods depicted in Fig.(a) is

gained.



3.2. Entanglement in fullerene dimers 47

1.6

I
N
T

-
T

Logaritmic negativity
o o
(o2} ©
T T

I
IS
T

0 I I I I I
0 5 10 15 20 25 30 35 40

Coupling strength (J/g)

Figure 3.2: The figure shows how the ground state entanglebetween the nuclei of the
dopant spins of a dimer, as quantified by the logarithmic tidga varies with the relative
strength of the inter-fullerene spin-spin couplifigf the electrons and the intra-fullerene cou-

pling g of the electronic and nuclear spins. The plot is at zero teatpee.

fullerenes. As these nuclei are spin-1 systems, for tiea3, and thereby the highest value of
logarithmic negativity that one could possibly expect friram islog, 3 (the entanglement of
the maximally entangled state of two quitrits). These nualeinot directly interacting. Here we
present a method of creating entanglement between thenoim gemperature thermal state of
the dimer. Moreover, ultimately, it is these nuclear spifsoly one would intend to use as the
long memory time quantum bits (more appropriately, quintthis case) because of their long
decoherence lifetimes. Thereby it is important to verifyoa#fide quantum property displayed
by them, namely the ability to be entangled. By changing tistadce between the fullerene
cages in the dimer, presumably by longer and longer molebuidges, the relative strength of
the nuclear-electron coupling in each fullerege dnd the electron-electron coupling between
the two fullerenes will be varied and the entanglement betvike two nuclear spins, as quanti-
fied by the logarithmic negativity, will be analysed withfdifent strengths of the couplings and

in a wide range of temperatures.
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Figure 3.3: The figure shows how the entanglement betweenublei of the dopant spins
of a dimer, as quantified by the logarithmic negativity, garivith the relative strength of the
inter-fullerene spin-spin coupling of the electrons and the intra-fullerene couplingf the
electronic and nuclear spins. The plots are at a tempesdiure 0.25¢ (red bold), T’ ~ 0.15¢
(green dashed)’ ~ 0.08g (blue dotted). This figure shows that there is an optimalevétu
the J/g ratio at which the entanglement is maximal and that thisevahifts lower.J/g as the

temperature is raised.
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3.3 Entanglement as quantified by logarithmic

negativity

As mentioned above, as the nuclear spins of our Hamiltor8ak) @re spin-1 objects each, the
negativity (and logarithmic negativity) are the only aadile and suitable measure that can be
used to quantify their entanglement. Here we numericaligdnalized the system of 4 spins in
a dimer, two spin-3/2 electronic spins and two spin-1 nudeas, coupled by the Hamiltonian
(3.1) and obtained their ground and thermal states at lovpéeatures. From this the state of
the two electronic spins were traced out, to obtain the redutensity matrix of the nuclear
spins (we once again draw attention to the fact that the audpins do not have argirect
interaction with each other). The logarithmic negativifytlee state of two nuclear spins was
then calculated. The results for various values of the egleparameters are shown in a series
of figures (3.2,3.3). We see from the zero temperature caségd.2 that the entanglement
remains zero till it sharply starts rising around the pofpy ~ 1 (more precisely, in the numer-
ical resolution of the spacing of our points, it becomes rere and takes a sharp upward turn
slightly above0.9). Around.J/g ~ 9 — 10, it starts to flatten out and reach its asymptotic value
of log, 3 ~ 1.585. This proves that the nuclear qutrits go to a maximally egitthpure state
at zero temperature for sufficiently large valuegfy. Clearly zero temperature is physically
not possible in an experiment, so one must study the entaegleof thermal states. In finite
temperatures the behaviour is as follows, there is a risbedrentanglement and afer a certain
value of J/g, smaller with temperature, it will decrease until theredasemtanglement. We also
see that it achieves a lower value of maximum entanglemehtteat the peak (position of op-
timal .J/g for highest entanglement) position shifts to lower valued &y. These thermal state

behaviour is evident from Fig.3.3.

3.4 Behaviour under the presence of an external

magnetic field

It is known that the initialization of the computations caa d¢ontrolled by the application of
external magnetic fields. We discuss in this section howdbarithmic negativity is going to
depend on the intensity of an external magnetic field of umfaagnitude in the z direction.
Noting the important fact that the nuclear gyromagnetiorat about~ 10~° times smaller

than the electronic gyromagnetic ratio, the external magfield will effectively not be seen
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by the nuclear spins (or more precisely, can always be rieglen comparison to the term
coupling the magnetic field to the electronic spins), the Htamian of the system will be

1,2

HZQE§1+J§1§2 +g§2f2+ZBewt,zSz,z (32)

In the above B, . is the intensity of the external magnetic field in the z dict Firstly, it

is worth pointing out that for values d3.,; . an order of magnitude lower than no effectis
seen on the entanglement — we have therefore not plottechthegdement for such values of
Best . (the plot is identical to that oB.,: . = 0). Fig.3.4 (b) illustrates the behaviour in an
external field of high magnitude (comparable to the highaties ofJ/g that we take). We
see interesting non-trivial behaviour here, namely thetfet the entanglement has three peaks
with intermediate points were it vanishes.84; is increased fronf to its maximum value of
J/g ~ 30. Peak values are lower in the presence of the magnetic fiwichediately to the left
of Fig.3.4 (b), in Fig.3.4 (a) we have plotted the entangleniie absence of a magnetic field
for ease of comparison. We see that while the peak of the gletaent decreases in a high
magnetic field there is also a beneficial aspect of havingpagtmagnetic field in the sense the
a high entanglement can be made to appear at a valliggadt which there is no entanglement
in the absence of a magnetic field. This gives the magnetit &iglan extra handle to control
the entanglement in a given region $fg. This is nontrivial because we normally associate
magnetic field with alignment and thereby the decrease a@ngitment. The apperance of
entanglement due to an external magnetic field where thesenase it is quite interesting. We

next proceed to the explanation of our results.

3.5 Discussions and Explanations

We now discuss the interpretation of our results. At zeroperature (Fig.3.2) one sees that
entanglement (as quantified by the logarithmic negativigyains low till a threshold value of
the coupling after which it takes a sharp upward turn, qyiekdhieves an asymptotic value of
aboutlog, 3 and then stays constant. This behavior can be explainednis tef entanglement
monogamy. Basically the isotropic Heisenberg interactiemands that the ground state of the
system be a singlet (a state with a total spin of zero). Whdominates (i.e., is much larger
than.J), each of the electron-nuclear pair try to form a singlk¢lmaximally entangled state,
but they cannot because a spin-1 and a spin-3/2 togetherarggdie-1/2. For any non-vanishing
but smallg, the effective spin-1/2 moments of these two nuclear-sdait pairs will combine to

form a singlet. This state has no entanglement between ttlearspins. When the couplinds
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Figure 3.4: These are the plots of the behaviour of the sydigrto the addition of a uniform
external magnetic field and energy level plots to explain the behaviours. In figuyeB&O,
and in figure (b) B=20g, while figures (c) and (d) show the epdérgels for the magnetic fields
B = 0andB = 20g respectively. We see that a magnetic field of high enough madgcan
induce a break up of the peaks of the logarithmic negativitye temperature for this figure is

setto7T = 0.2g.
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andg are comparable, the complicated singlet state involvah@ll spins and in general there
is a low amount of entanglement between any pair of spins. édew the situation becomes
simpler and interesting when the coupling between the teotednic spins.{) becomes much
stronger thary. The electronic spins3(2) form their own singlet and then the two nuclear
spinshave toform their own singlet with each other in order for the totapin state to have a
vanishing spin moment. This is a manifestatioeofanglement monogaritythe same sense as
that used in the literature of ground state long distancargdment [32]. The central electronic
spins, having used up all their entangling ability due tartbatanglement with each other for
largeJ, cannot entangle with the nuclei any more — so despite netdnting, the nuclei form

a singlet with each other. For large enougty, the ground state is nearly a product state, of
the electron-pair state and the nuclear-pair state. Thieampair in this state is effectively
in the stately;, ;) = %(l +1,-1) —10,0) + | — 1,41)). As.J/g increases from a small
value, the proportion ofi)5, ;) in the state increases till it reaches a threshold after lwttie
entanglement, as quantified by the logarithmic negativégdmes non-zero. After a certain
large J/g, when the nuclear spins in the ground state go to the gtate,), their logarithmic
negativity reaches the maximum valuelog, 3. As this always remains the ground state even
whenJ/g — oo, we see (Fig.3.2) that the zero temperature entanglemeemasss. However, as
J/g increases, the gap between the states with a nuclear samglet nuclear triplet decreases.
This is understood from the energy level diagram of Fig.#¢(here we can see the lowest
states (red lines in colour) come closer and closey gsincreases (they end up coinciding
with each other to our degree of resolution). Thereby, for #mermal state, depending on
the temperature, which populates the nuclear state witlogoption of the nuclear triplet, the
mixing of the nuclear singlet and triplet causes the entamnght to degrade. Thereby there is
an optimumJ/g at which the entanglement is highest for each temperatuhe rie of the
entanglement is halted earlier for higher temperatureauserof the increase in proportion of
the excited states. Thus the optimulfy value for the highest entanglement shifts to the left
with temperature. The behaviour of entanglement in thenthestates has similarities with
earlier investigations on two Heisenberg coupled spingi®icles [33]. However, the work
reported here is somewhat more counter-intuitive as théeauspins whose entanglement we

are interested in are not directly coupled to each other.

The three peaked structure of entanglement in the presdraestmong magnetic field is
more interesting and also more intricate to explain. Weragppeal to an energy-level diagram

(Fig.3.4(d)) in the presence of a strong magnetic fieldGaf. As theJ/g is increased, we see
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that there are multiple avoided crossings. The ground &atemall J/g, is a non-entangled
state as the magnetic field aligns the electronic spins dedtigkly the nuclear spins have to
anti-align with them to reduce energy — resulting in a lowlyamgled state. Ad/g increases,
we see that the energy of this state (red line in colour) e till it has an avoided crossing
with another state (purple line in colour) dfg ~ 7 and changes it qualitative nature (i.e.,
becomes an entangled state with finite entanglement bettheemuclear spins). We see that
its energy separation from its next upper state continugsctease till about//g ~ 8, which

is the domain over which the entanglement in the thermaé giedws because of increasing
purity. However, the first excited state (purple line) itsgidergoes an avoided crossing with
a second excited state (green line) and starts coming downergy again fot//g between 8
and 9, which causes the entanglement to decrease due tamixier this avoided crossing at
J/g ~ 9, the ground state again changes its qualitative chardmteis still an entangled state,
at least as far as the state of the nuclear spins are concdredjap with the first excited state
is also on the increase till/g ~ 12, after which the first excited state (purple line) undergoes
another avoided crossing and starts coming down, decgeasitanglement due to increasing
mixedness, reaching a minimum fdyg ~ 16 — 17. Finally, between//g ~ 17 — 20 the
ground state has another avoided crossing, changes daratadhe statdys, ), which no
other state can overtake as the ground state any more bygioge//g. However, as in the
case forB.,; = 0, the gap of this state from its nearest excited states deeseso with//g
making the entanglement in any thermal state eventuallgggtd zero with increasing/g.
This explanation is not visible in Fig.3.4(d) because of thgolution in which we work (to
show clearly enough those excited states in the energydiegiam which take part in all those
avoided crossings that have been relevant to our explansdidar). In fact, what we have been
referring to as a the ground state so far (the red line) is aod states, with the lowest being
the actual ground state. Within this group, the states comelbse to each other for large g
exactly in the same manner as tBe,; = 0 case. In a nutshell, thé/g has to compete with
the B.,: to set up entanglement and thereby with strongr; we need highet/g to have
entanglement. However, not only this, highigr,, also create some splitting between the states

to enable one to have entanglement in a thermal state atrhighe

3.6 Witnesses and detection

Finally some comments regarding what is required to testfiodings are in order. There

seems to be no alternative but to use some sort of measurewiesingle spins. Yet these
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measurements have to be fast in comparison to all couplieggths./ andg of the system so
that no time evolution occurs Let us now justify, followingH36], that indeec{fl.fg> serves

to form an entanglement witness. Note the following simpdelra that for pure product states

(RB) = [(Ta)Tae) + (Tig)Tay) + (T12){Tos)|
< )2+ (1) + (12 (Ta0)? + (I2y)? + (De)?
< 1

)

where the penultimate line follows from the Cauchy-Schviaeguality and the last line follows
from the property of spin-1 systems (whichever directiomia $ pointing, if it is a pure spin
state, one can take it arbitrarily as the axis with (1,.)? = 1, and from symmetry;,)* and
(I,.)?* is zero). The above inequality continues to hold for any earsum of product states and
thereby for all separable states. Thus we carilise max{0, |(I;.I,)|—1} as an entanglement
witness with any nonvanishing value of this witness signglan entanglement in the nuclear
3 x 3 system. We have thereby plotted in Fig.3.5 the witnessedagradithmic negativities in
the same plot for two values of temperature. We see that fr émough// g, there is a region
at which the logarithmic negativity becomes zero, but treeparability withes$?” does not.
This implies that for these regions @f g, for the3 x 3 system, we have an example of what is
called bound entanglement [37], which has caused a signifiaterest in the literature — ours
is an example of a state going from a unbound to bound entarstigee with the increase of

effective thermal mixing (with increasingy/ g).

3.7 Conclusions

In this chapter, we studied the entanglement that ariseslimar of two fullerenes. We stud-
ied the case were the nuclear spin of a Nitrogen inside aréuieis taken as a qubit that will
effectively interact with another similar qubit in a neighilring fullerene indirectly via the sur-
rounding electron spins. We start modeling the system usiHginsenberg Hamiltonian. We
then study the entanglement using the logarithmic neggativirirst, we start to explore the
ground state entanglement between the two nuclei by tramihghe electronic spins. We find
out how this depends on the ratio of coupling strengths batwiiee nuclear-electron spin inter-
action and the electron-electron interaction. We find that éntanglement is larger for larger
electron-electron coupling. Later we study the same effgamnt in the thermal state finding
that due to the decreasing gap between the energy levels aatio J/g is increased, the entan-

glement is goes down to zero after an optimum maximum valuklgoflt is interesting that an
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Figure 3.5: The figure depicts the value of the witnBssised to detect the entangled nature of
the state of the two nuclear spins, plotted in the same figangaide the logarithmic negativity
for two different temperatures. A non-zero value of the ed#isiV that we have an inseparable
state of the nuclear spins. For= 0.25¢ the bold brown line (with LN symbol) is the logarith-
mic negativity, while the dashed brown line is the corresjiog entanglement witned®". For

T = 0.08¢g the dotted black line (with LN symbol) is the logarithmic iatigity, while the dot-
dashed black line is the corresponding entanglement vefiiesT his figure highlights the twin
facts that while the entanglement can be detected by a siwipiess, it can remain non-zero
even when logarithmic negativity vanishes, thereby datgdiound entanglement between the

nuclear spins.
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externalB changes the optimum value of J/g in which the maximum amolgianglement is
obtained. At last we compare two ways to measure the entaiegle the logarithmic negativity
and a witness defined using the spins. These together allamidsntify the parameter domains

where bound and free entanglement are present betweendle¢ inutthe dimers.



Chapter 4

Coherent extraction of Singlets for

Quantum Dots

As discussed in the introduction, the entanglement betaistimct systems is a useful resource
in quantum information processing. We have discussecdeedhiat spin qubits in quantum dots
can be entangled by a quantum gate induced by their exchategadgtion. However, the time
scale for the exchange interaction to accomplish a gateigdlysnuch longer than the tunneling
time of electrons from one quantum dot to another. Thus if qwrantum dots (QDs) could be
entangled by a mechanism where tunneling plays a key rotettii® could potentially be faster.
It is important to note, however, that incoherent tunnebetween quantum dots will occur at
random times, and that it is a problem because it is not begteyhinistic so will not be possible
to know at what times will happen. Thereby a mechanism tongatwo quantum dots that
usescoherent tunnelings potentially quite interesting. In this chapter, we prep@ scheme in
which two quantums dots are in contact with an intermedigstesn (a potential well) whose
ground state with a filling of two electrons is a singlet (tHénfy can be ensured by choosing
the appropriate potential). The basic idea is then that whée2 dot plus central intermediary
well system evolve due to the tunneling Hamiltonian so thate is coherent tunneling of the
electrons from the central well to the two outer dots in a heteistic time-scale set by the
tunnel coupling. We would like to ensure conditions so thate is precisely one electron in
each of the outer dots after a certain time due to the timeugwol Of course, there is no
evolution of their joint spin state during this process,ezsally in the absence of nuclear spin
fluctuations in the sample (this may be the case when nughias B a AlGaAs/GaAs sample
have been aligned by some process [22]). Thus the two efegtome in each dot, at the end of

time evolution for a certain period, will still be in a spimgiet state. This means that we have
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a situation where spins in separated quantum dots are éedainga Bell-state, while the time
taken to establish this entanglement is of the order of the@nt tunneling time, rather than

the much weaker exchange coupling time.

When we started on this problem, we, in effect, wanted to uslarge a well size as
possible to have a significant distance between the dots tchvthe pair of electrons in the
singlet are extracted. But such a well has very closely spacergy levels involved in the
tunneling quite a few of which can be nearly resonant withdheund energy levels of the
external QDs. Thereby such a model is not going to be entiatigfactory and we decided to
change the intervening medium to a another quantum dotaperf dimensions slightly larger
than the outer QDs to achieve better results. We will comsitieast twoqualitativelydistinct
protocols which are new and compare their advantages aadwistages with some earlier
suggestions for extracting singlets by spatially sepagatie electrons in similar setups. In one
protocol, we have a 1-D chain of three QDs, with the initiakstbeing a singlet of electrons in
the middle QD (QDC) and the ground energy level of the extedots is in resonance to the
ground energy level of QDC. Here we are going to study the gdvidity of getting the singlet
in the external dots with one electron in each dot. With theswin mind, we are going to
imagine charge measuring apparatus being present alse dyskem and can herald the success
of our extraction protocol when one charge is found in ea¢araiot. We find that, indeed, pure
coherent evolution can establish a maximally entangled Sietween the dots. After switching
on the interaction of the outer QDs with the intervening QEr@, system will evolve until we
have the maximum probability of the maximally entangledjihstate in the external quantum
dots. However, here we found the maximum probability to motéry high, though significant,
and thereby we also considered the case where the two outet@ie very narrow, so that
the Coulomb repulsion is very high, and we find that the praitwlof obtaining a maximally
entangled state successfully by a similar protocol can bdermary high. Moreover the charge
measurement can be simplified to measuring the presencesenab of charge in QDC only
and no simultaneous measurements are needed on the outass@Egiired in the case without
high repulsion in the outer QDs (the high repulsion itseluguntees that there is no more than

one charge in any of the outer QDs).

Another different protocol, that requires more adjustnadngarameters requires breaking
the left-right symmetry of the problem, as well as adjustiagefully the repulsion between
electrons in two separate quantum dots. However, even tbieqol is based on coherent tun-

neling, and thereby as fast as the previous one. We will alek ht the robustness of our
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Figure 4.1: The setup considered in this chapter for theaetitm of a spin entangled state
in two outer dots QDA and QDB from a singlet in an intermedidd¢ QDC. The blue arrow
denotes the coherent time evolution from the upper configurdo the lower configuration.

The spin state of the electrons is unaffected (i.e., renmaihé singlet) for the entire process.

suggested schemes with respect to deviations of the systemideal settings. Before proceed-
ing to the details of this chapter, it is worth pointing ouathve worked on anodificationof

the second protocol of this chapter (the one which the Igfttrsymmetry and requires careful
parameter adjustment) with other colleagues on connetiieg¢wo dots to different leads and
thereby allowing a current of entangled pairs of electronisig out of the system as long as
there is another lead connected to QDC supplying it withtedes, which has been published
[38] (the contribution of the lead author of that paper wathim context of the entangled cur-
rents, rather than the coherent evolution, which is therabmtechanism studied in this chapter
— indeed that other work, by involving the incoherent tumeto leads, make the evolution a
more complicated combination of coherent evolutions migted at random times by incoher-

ent tunnelings).
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4.1 Setup

Fig. 4.1 shows the scheme we have in mind. It is composed bytter quantums dots (QDA
and QDB) and an intervening medium (quantum dot QDC) whightiva electrons. Tunneling
between the QDA and QDB and the intervenium medium QDC alloppimg of electrons

between the different QDs. Thanks to this it is possible thattwo electrons are located in
the external QDs in an entangled state. Our aim is to suadBssttablish the entanglement
between the two external quantum dots with as high a prababg possible. Our initial state
consists of two electrons in a singlet state in the intervgmedium QDC and the QDs QDA
and QDB being empty. If we assume that the Hubbard Hamiltog@averns the system, the

electrons will occupy the nine different configurationsikake:

{ddt, 10), dhdf, |0), dEdl, [0y, df dE,[0), dE, d,[0),

(4.1)
dj,di, |0, b, di|0), didh, [0), dE, L [0)}

whered}o creates and;, annihilates an electron at tlith dot in the spin state. The Hamil-

tonian can be written as

H = Z Ei,adzo-dia + Z tijd;radja

i, 0,1,7,i7#£]
1
+ Z Uingyng + 3 2 4 Vij0i04, 4.2)
T 2,7, F]

whereinthesums j € A, B,C ando € 1, |, n;s = djadw, 0; = n; +n4 andk; , is theath
energy level of théth dot. In writing the above Hamiltonian, we have implicilgsumed that
t;; does not depend on the energy lewedf the quantum dots as this assumption will be true
for the regimes we will consider, namely that either (a) ¢hisronly one energy level in each
quantum dot at the relevant scale of energy of our dynamicfy)ahe central wider dot has
multiple closely placed energy levels while the outer onegehexactly one energy level each
(the closeness of energy here makesery similar). The meaning of the various parameters in
Eq.(4.2) is pictorially depicted in Fig.4.2. When the systewvolves with this Hamiltonian for

a while (starting in the initial state of a singlet in QDC,.j.éL.dL |0), at any instant of time,

if we want to ensure that the electrons are in the externahtgua dots, we will need at least
two measurements of charge, one per external quantum ddd. midans that we will have a
charge detector in each external quantum dot. Due to factthare projecting charge, we are
not breaking the spin entanglement. So when exactly oné¢reteis detected in each dot, the

guantum state is projected to the singlet st@te) 45 = %(dﬁmdgi — dLLd;TMO).



4.1. Setup 61

Figure 4.2: The parameters of the Hubbard model descrikingunnel coupled quantum dots.
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At first, we are going to examine what happens to the simplesiatthat is three quantum
dots with one energy level in each quantum dot. We will negllee Coulomb blockade (i.e.
assume thadll three dots are quite large so tligtare negligible) and assume that the energies
of the quantum dots are in resonance. Thereby the conditierset on the parameters Bfin
Eq.(4.2) are

Ex=Ep=FEc,EN+Ey=EnuN,M=A,B,C,U;=0,V;; =0, t;; =t. (4.3)

With the above parameters the Hamiltonian of the systemnigh@ basis of 9 states stated

above):
Epp —t —t t t 0 0 0 0
—t  Eap 0 0 0 —t 0 —t 0
-1 0 Ecp 0 0 0 t 0 —t
t 0 0 Fap 0 0 —t t 0
Hprotocol 1= t 0 0 0 FEcp t 0 0 t
0 —t 0 0 t FEac 0 0 0
0 0 t —t 0 0 FEac 0 0
0 —t 0 t 0 0 0 FEaa 0
0 0 —t 0 t 0 0 0 Ecc

Note that in the above Hamiltonian, some terms emergetay virtue of the commutation
relations of the Fermi operatoai§a.

The time evolution of the initial staﬁé&da\o) under the above Hamiltonian can then be
easily calculated so that, on measurement after an inteftimhe ~ after the time evolution has

started, the probability of finding a singlet in the outersdigtgiven by
1.
Psyccess, Protocol(f) = 5 sin? v/2tr. (4.4)

We see that Eq.(4.4) implies that at regular intervals ottira., atr = (2m + l)ﬁ, where
m is an integer, the probability of successfully finding tweatons, one each id andB in a
singlet state i8.5. This probability is quite significant, however, it leavemsiderable scope for
improvement. Note that it is eonditional scheme so that we can essentially throw away the
cases when the scheme has failed and keep only those caselnam electron was detected
in each of the outer dotd andB. In these cases which are kept, the state of the electrohsin t
outer dots is a perfect singlet, at least in the absence ofsswf spin decoherence.

We are now going to examine the possibility of improving thewe probability and anal-

yse the case in which the extenal quantum QDs have a strontgi@p Our aim is to increase
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the probability as much as possible. We are going to do thahbypging some of the properties
of the system. We are going to see what happens if we considexternal quantum dots being
so narrow, that only one electron is allowed to stay in each RIBding two electrons in the
external QDs can be neglected. In other words, we considghanregime of parameters in
which we have a very high Coulomb repulsion in the outer quandots. The simple motiva-
tion is to reduce the probability of double occupancy of theeoquantum dots. This reduction
of the possible state space is schematically depicted id BigThis has the advantage that now
the need of charge detection can be exclusively shiftedea#mtral dotC. Not finding any
electrons inC'is equivalent to finding one each ihand B, as neither4, nor B, can be doubly

occupied by virtue of the large associated energy cost. @henpeter regime is given by

Ey=Ep=Ec=E tyj=t,Uc=0,Us=Up=U>>FE; t,t?V;; =0. (4.5)

In the basis
{alydf,10), dhydf,10), dbydfy10), d) by 10), df, by 0), @)
dh,df,[0), d} dL.10), di,d}, [0), dE.df [0)}

2F —t —t ¢t t 0 0 0 0

—t 2FE 0 0 0 -t 0 —t 0

—t 0 2E O 0 0 t 0 —t

t 0 0 2E O 0 —t t 0
Hprotocol 2= t 0 0 0 2E t O 0 t 4.7

0 -t 0 0 t 2E 0 0 0

0 0 t -t 0 0 2F 0 0

0 -t 0 t 0 0 0 |2E+U 0

0 0O —t O t 0 0 0 2E+U

AsU >> Ej;,t, we can adiabatically eliminate the doubly occupied stdigshe method

as described in Chapter 1, Section 1.9) to have an effectiv& Hamiltonian given by

0 —t —1 t 4 0 0
-t L 0 £ 0 —t 0
-t 0 Y 0 -t 0 ¢
Heftprowocoi2= | ¢~ 0 £ 0 0 -t (4.8)
t 0 -2 0 £ ¢t o0
0O -t 0 0 t 0 0
0o 0 ¢t ~t 0 0 0
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Figure 4.3: The states that get eliminated from the Hanidtorvhen there is a high repulsion

in the outer dots are depicted in this figure.
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We will neglect the terms ofg as the U is very large compared b to obtain an analytic

expression for the probability of extraction of singletsvigue of H. ¢ ;. This turns out to be

8 . 3
Psuccess, Protocol(Z‘) = § SlIl4 \/;tT. (4_9)

Thus the probability of success in this case is improvegl/fy though the time scale to reach
the highest probability is only a factor ef 1.15 higher, and again, this is a periodic plot. We
also numerically simulate the full Hamiltoniafiprotoco1 3 bUt this time with a finite, but high
repulsion in the external quantum dots with~ 10¢, E; = t = 1. Results are plotted in
Fig.4.4. It is easy to see that it is much better than our pressscheme (protocol 1) and the
result we get is nearly the probability of 8/9, which matchth the theoretical limit obtained
analytically after adiabatic elimination. Note that herésilegitimate to neglecg though in
the usual form of quantum computation this is precisely #nmtthat plays the most important
role — it is the spin exchange couplinf Here the dynamics takes place through tunneling
and thereby only is important and the spin states do not evolve. Thereby timeexghange/

is unimportant. This highlights the difference of the sclkene are presenting with the usual
quantum dot based quantum computation protocols.

It is important to study the case in which the central dot idewi(which is commensurate
with our original aim of having entanglement betwee distgudntum dotsA and B), how the
probability of successful extraction is affected. As dats made wider, multiple levels will
become nearly resonant with the outer dots ground energy. Ilfwve take two such levels to
be nearly resonant with a gap 4f, i.e., Ec + A = FE 4, Eg (still considering the case of high
U in the external dots) then we find that the probability is =t As the gag\ vanishes, the
probability in this case is maximized to the value of 0.224hia limiting case (this means that
there are two closely placed nearly resonant levels in thé&raedot, but only one of them is
occupied with the singlet initially). Adding a further (td) level we find that the probability is
0.1047 in the limiting case when all the three levels arelpeasonant. When there aré such
levels, our numerics indicate that the probability fallsjézs of the original probability with
exactly one resonant level. As our original motivation haérmto have the entangled particles
as far as possible, we want to increase the size of the imienvemedium. Analyzing it a bit
further we decide to add on two wells, one in each side of trakquantum dot. Having all
these dots in resonance, in addition to the high repulsitimemuter dots we obtain a maximum
probability of 0.246.

We now proceed to discuss Protocol 3 which requires morestdgnt of parameters —

however its aim is to improve the probability further. Piaib3 was combined with extraction
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Figure 4.4: The probability of success, i.e, the probabiif extracting a singlet to the outer
dots of the triple dot system in our protocol 2 (when the rejoul in the outer dots is high). The
solid curve shows the analytic expression under the assompitl >> ¢, E;, while the dotted
curve plots the same numerically for = 10¢, 10E;. We see that in both cases the probability

of success reaches quite highg.
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on to leads to obtain a current of entangled electrons if#83f(in which both the author of this
thesis and the lead author played important roles). Howedeticate adjustment of parameters
is required for this Protocol 3, unlike the previous proisctVe will do a completely indepen-
dent presentation here as, unlike the published paper, eveatiinterested in the extraction to

leads. We require
tep =toa/V2=t,Exy=FEp=FEc=E,t <<Ug =Vop =Vap << Vac. (4.10)

While the above parameters seem difficult to achieve, we hapé&id a configuration and
size of dots in Fig.4.5 under which the above seems feasiBasically, the central wider dot
C would have the do#d close to its centre so thadfy is large. Moreoever the width of the
central dot and distances between the dots can be so adjbsteitie electrostatic repulsions
are same for the configurations of two electrong’inone each irC' and B, and one each in
A andB. By the same placement, one can make the tunneling bet&Wesard A stronger than
the tunneling betwee®&' and B. Under the above parameters, we equalize the energies of the
two electrons being i’ (energy~ 2E¢ + Uc) with one electron each i’ and B (energy

~ Ec+ Eg+Veg) and with one electron each ihandB (energy~ E4+Eg+Vag). Butwe
prohibit the chance of an electron each to g@'tand A asV, is so large (this configuration
is completely off resonant with the other three configursgjo Additionally important is the
fact, also depicted in Fig.4.5 in terms of double arrowshéat the system cannot directly go
from the configuration of two electrons {fito one each iM and B — it has to pass through the
intermediate configuration of one eachdirand B. Thereby the dynamics of the system can be

seen from the simplified effective Hamiltonian

0 V2t 0
Hett, protocol 3= \/Et 0 ﬁt R (4.112)
0 V2t 0

where the basis is the occupancy b&s@, C'B and AB, whereij means one electron in dot
and the other electron in dgt Note that spin states are not changed at all in our protaoal,
thereby, the above is a valid way of solving for the problenme-matrix element/2¢ in the
upper2 x 2 sector ofHet protocol 3SteMs from the fact that either of two electrons can tunnel to
generate the configuratiafiB from CC. As only one electron can tunnel to go frathB to
AB, there we had to explicitly choose the tunneling constantbe larger by a factor of/2.

For this3 x 3 Hamiltonian, the time required the spin singlet state toieaeted to the dots

A and B is then simply the time required to get #taB starting from the initial stat€’'C. The
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Figure 4.5: The placement and relative size of dots to oltkeirparameters of Protocol 3.
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probability for this to happen as a function of timés given by

Psyccess, Protocol(f) = sin® t7. (4.12)

As we can see from Eq.(4.12) the Probability of successfnhetion now reaches unity period-
ically, though the time needed to reach it is larger by a faotd .5. Given that faster quantum
operations are always desirable in view of decoherencecameot immediately however con-
clude that this protocol is better than our Protocol 2 whiall B8 /9 probability of success. To
indeed check this heuristically, one can do an order of @edéraheck of the relevant decoher-
ence. Firstly, the decoherence due to the nuclear spin batégligible in comparison to the
tunnel coupling {0 GHz [18]). On the other hand the decoeherence of the chaikatien
(between dots), which is the main ingredient of our protpbak some effect on the maximum
probability achievable. Assuming that the maximum prolitgbachievable is damped by a
factor ofexp (—I'T) wereI" is the decoherence rate due to charge oscillations, and tiee
charge decoherences in these regimes have been known tedpeadely byl* ~ 1 GHz [24]),
we can predict that the success probability of Protocol &pf(—0.15) is going to exceed that

of Protocol 2 of abouf8/9) exp (—0.1), though both are still abow&%.

4.2 Comparison to Previous Protocols

There have been, to our knowledge, three related works aacatiin of entanglement from

singlets. The first one, by Yamamoto et al. [39] propose aesyshvolving only a single

quantum dot, but surrounded by and connected to three |€ads.of the leads is the source
of electrons and its energy level matches the average epétbg two remaining leads, which
we call the output leads. Both of the output leads are locapgbsite to the source lead. The
energy of the quantum dot is larger than the individual epefgeach lead. Due to the energy
matching, when the electrons cross the quantum dot theytbaweve across in couples, one
in each output lead, generating a current of entangledrelest The role of the quantum dot
is to act both as a mediator between the source lead and theutpat leads, as well as a
filter between them, so that only the singlet passes throligk. source merely supplies pairs
of electrons to the dot. Only those in a singlet are allowegass through the mediating dot
because of the Pauli exclusion principle (energies are sohad that only one electronic level
of each dot is involved). This scheme, however, involvesattiabatic elimination of the central
dot resulting in a second order process in the ratio of thedlimg¢ and energy of the central
dot 2E« + U, and thus is much slower than the protocols we have presentddh have a

time-scale oft. However, their difference is that they have a current inldagls, which will
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also intrinsically be a stochastic process as incoheremteing between the leads and the dot
is involved.

Another scheme, perhaps closest to our setting, has besenped by Saraga and Loss
[40]. They propose a system that can create spin-entangleeints with a triple quantum dot.
The three dots, as in our protocols, have a coherent proo@ss gn in them, but their protocol
has leads attached to all the three dots, and thereby irs/irieeherent tunneling as well for the
spin entangled currents and this would also affect the estigrrocess in the triple dot system
which is now no more a closed system. However, even if onetadagir protocol to a closed
system there are major differences in the parameter regiméich their protocol operates and
thereby their probability of success if defined in a similaammer to us. In their scheme the
central quantum daf’ has an energ9F¢ + U in our usual notation. However, importantly, for
them the parameter regime for the schenttHs + U = E4 + Eg # Ea + Ec # Eg + E¢
so that there is a resonance betwé&ti and AB. However,C'C' and AB do not have a direct
matrix element between them, and the system has to pasgthtwa intermediate off-resonant
configurationsC A andC'B, which will, again, slow down the process to the second onter
the ratio oft to the energy off-resonance. Their Hamiltonian is givenihytli{e dot occupancy
basisCC,CA,CB, AB)

2B +U  V2tca V2tep 0
V2tca Ec+Eyx 0 tep
H Saraga-Loss— . (4. 13)
Voten 0 Ec+ Ep tca
0 tcs tca Er+Ep

Itis not easy to obtain an analytic expression for the prditabf success (as defined before by
us) and thereby we optimize over the parameters keepingdbastrained as noted above. The
probability of success at optimal parameters (shortes torpeak, combined with the highest
probability, which turned out to be realized for ~ 1, Ec = U/2) is plotted in Fig.4.6. For
the convenience of the reader our protocdknd3 are plotted on the same plot. We find that
the Saraga-Loss protocol achieves at best a probabilityarfess amounting te 0.45, which

is much lower than those of the protocols we presented here.

4.3 Conclusions

In this chapter we have achieved an important task, namelythparation of an entangled
state of two electrons on a time-scale much faster than tbleagge coupling/. If one were

to use the usual quantum dot based quantum computation sshench as that of Loss and
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Figure 4.6: This plot compares the performance of our paigo2 and 3 with the protocol of
Saraga and Loss for the extraction of spin entangled stakescontinuous (red) plot shows the
probability of obtaining the singlet state in the outer dotsthe Saraga-Loss protocol against
time, while the dashed (blue) and starred (green) plots sheveorresponding probability for
our protocols 2 and 3 respectively. We see that while the pedke Saraga-Loss protocol
may be achieved slightly earlier depending on the apprtgpaddjustment of parameters, our

protocols achieve much higher probabilities.
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DiVincenzo, quantum gates, and hence entanglement camieeaged only on a time-scale of
J. Here we simply use tunneling to prepare the desired ergdrgjhte at a time-scale set by
the tunnel coupling. Note the singlet inside the central dot, which is our stgrtiesource, is
assume to be prepared by equilibration of the central ddisttowest (ground) state. While
this process will take its due time, depending on the relaraime-scale of the dot, we do
not worry too much about that at this stage as this procests lema robust initialization. It
is only for operations to generate entanglement betweeimclisiots containing distinct qubits
that we want to reduce the time so that decoherence has tesddiact. It is true that our
method hits a bottleneck for further processing once thgleis are there. To do universal
guantum computation it does not suffice to have an ensembpaics of entangled particles
only. Further operations have to be done between them. Fonghe, entangling two spins,
one from each singlet coherently (i.e., through a unitaniwgion), will be needed if one is to
generate entangled resources needed for measurementjpaséaim computation. To this end,
we aim to study in the future where such processes are alsibpmen a time-scale set by the
tunnel, rather than the exchange couplings. An idea willdbgse the tunnel coupling to bring
two electrons coherently to tleamequantum dot inside which the intra-dot exchange coupling

between spins is much stronger than the interdot coupling.



Chapter 5

Quantum Gates in Triple Dots with Empty
middle Dot

5.1 Introduction

Quantum Dots (QDs) are regarded as a good system for thgestaral manipulation of Quan-
tum Information (QI). In these systems, the qubit could beoeed, for example, in the spin
of an electron [18, 19, 41, 42, 43, 44] or the electronic ceatiptribution [45] or even the
presence/absence of excitons [23]. Spin qubits are pktigimportant because of their long
decoherence times. The earliest proposals advocated ¢hef tise spin of a single electron
in a quantum dot as a qubit with quantum gates being realigetdriing the tunnel coupling
between two quantum dots [19]. On the other hand, some egplgrienents [41] and recent
proposals [43] have focussed on qubits encoded on two spidsuble dot systems, where
the control parameter is the energy mismatch between thewuadots. This is motivated by
the fact that the energy mismatch between dots can be simplentrol, for example, through
source-drain bias [46] or local electrostatic gates [41)wduld thus be interesting to have a
protocol where one requires only the above control (nanteyehergy mismatch between dots)
and is yet able to use a single spin as a qubit. In this papepre@ose such a protocol using
a linear triple dot system where qubits (individual electesspins) are placed in the outer dots
with the central dot being kept unfilled. An alternative naation for our work stems from the
fact that various triple dot systems are now being fabritared their charge stability diagram
with small numbers of electrons is being studied [47, 48]wkleer, most experiments in quan-
tum information context (with the exception of Ref.[48])Measo far been limited exclusively

to double dot systems. It would thereby be very timely to heweheme such as ours, which
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Y Y v

Figure 5.1: The above figure depicts the triple dot systenretve investigate the possibility of
quantum gates. There are two spins in the outer dots whicéMeedss qubits, while the central
dot is empty both before and after the quantum gates. QDA, @mDQDB in the figure stand
for quantum dots A, C and B respectively, while separatetieddes controlling the voltages of

each dot are also shown in the figure.

enhances the scope of quantum gate related experimenipléodot systems. Of course, the
most straightforward generalization of the schemes in odobts [19] would be to have three
spin qubits in three quantum dots i.e., the filling of the quemdots being 1,1, 1). Another
possibility is to have a spin in the central dot asmadiatorfor an effective coupling between
the outer dots, a configuration which has recently been etiuidi the molecular context [49].
Another possibility with a1, 1, 1) filling is to encode a single qubit in three dots [50], which
has been explored in a very recent experiment [48]. Here wleofith that a lower filling config-
uration, namely 41, 0, 1) filling, also provides a system for two qubit quantum gatethwhe
qubits being in the outer dots. Tlig, 0, 1) filling prevents one from reducing the problem to
one of distinguishable spins (labeled by their sites) axténg through exchange interactions as
in the existing schemes for quantum gates with spin qubhissdoth the tunneling of electrons
from one site to another, and careful second quantizedhegdtare important in the current

problem and make it interesting.

5.2 Setup

Our setup consists of 3 quantum dots (QDs) in a row, with tHeage applied to the central
one being controllable by some electrode, as shown in Rig\8e label the outer dots of the

chain as dot A and dot B, while we label the central dot as doiV€.will assume that the
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Mott-Hubbard Hamiltonian describes the system well (foaraple, see Refs.[51]), whereby
the relevant Hamiltonian is
H=> Eid,dic+ Y tacldh,dcs + dL,da,)

1
+ EU: tea(dl, dgs + df dcs) + 3 Z Uini(n; —1). (5.1)

In the above; stands for A, B and Cdj.a creates and;, annihilates an electron at thh dot in
the spin state with energyFE;. Here we have assumed that the particles are created omig in t
lowest energy state at the sité;{ and the higher energy levels for a single electron are sb wel
separated that they never become involved in the probiénis the Coulomb repulsion in the
QDi,n; =3, d}adw in the total electron number operator of thie dot andtac andicg are
tunnel matrix elements between dots. Here we have assuraeabther term, often present in
Hubbard models for dot arrays, namely the inter-dot elstate interaction is zero. Moreover,
we have assumed that there exists no tunneling between thaeaighboring dots, namely A
and B. This should be a good approximation in serial triplesgstems [47] asl and B have

a high separation. Some relevant experimental value€foilU;, tac andtcg from recent
experiments are given in the tableof Ref.[18], which will provide our guide for exploring
feasibility issues. The dots at the two ends (i.e., QD A andB)Rre each assumed to be filled
up by a single electron as shown in Fig.5.1. These two eleictgpins will be the two qubits in
our problem. As these qubits are identified by their sitesy tan be referred to as qubit A and
qubit B respectively. Of course, we should be able to contt@n we want to enact a quantum
gate between the aforementioned qubits, and for thosevaiseof time when we do not want
any gates, nothing should happen to the qubits (the stateafubits, whatever they are, should
remain intact). To ensure this, one has to ensure that thiescatlbly remain in 1, 0, 1) filling

as shown in Fig.5.1 and do not hop into QD C during this noregseing stage. This is achieved
by choosing an appropriate set of voltages applied to tpéetdot system and there are quite
a few experimental examples by now in which t1e0, 1) filling has already been realized.
Typically, if the Hamiltonian of Eq.(5.1) is valid withtac = tcg = ¢, then one has to set the
voltage applied to QD C to a lower value and the voltages of @2&d B to a higher equal
value. Also we have to work with systems with< < |Ec — Ea|, |Ec — Eg| so that hopping
is severely suppressed. In this "non-processing” mode psgstem, the evolution effectively
freezes. When one intends to accomplish a quantum gate, piddyreetsEc = Ea = Eg and

a time evolution starts (this is true as long as the Hamio®i with tac ~ tcg = ¢ is a good

approximation of the triple dot system in considerationdiffierent experimental realizations,
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the Hamiltonian may deviate differently from this, and thiem the processing mode, one has to
apply that voltage which ensures the electrostatic endrtfyeacconfigurationgl, 0, 1), (1,1, 0)
and(0,1,1) to be equal. We will show that a two qubit “entangling” quantgate can be
obtained between the qubits by virtue of this evolution tigto Hamiltoniar?{. Though during
the time evolution, the electrons can hop into the othengimpty QD C, and indeed this is
necessary for their spins to interact, at the end of a fixetbgpef evolution, one electron is
back in each of QD A and QD B. We will assume that single qubiega@n the spins in the
outer dots can be trivially implemented by using local fiekisthat we are going to concentrate
only on the demonstration of a two qubit entangling gate. démmonstration of the two qubit
entangling gate is at the heart of demonstrating the vigihifia system for universal quantum

computation.

5.3 The two qubit gate

The specific gate that we will demonstrate as enactable kettte spins in the outer dots by
means of their evolution through the Hamiltonianis given by the following evolution of the
computational basis state$) (up spin along any axis, say standing for the logical state))

and| ) (down spin along any axis, saystanding for the logical state)):

| Dal s — [ DalDs

Mal s — ei%%<|¢>A|¢>B—z'|¢>A|T>B>
Dal B — ei%%wmg—imum
Dalds = 194l Ose (5.2)

Note that the above gate is manifestly an entangling quaigiate as it takes the initial states
| MY al 4)s and| })a| 1) s to entangled states. Thus the above gate suffices, in cdigoneth
local unitary operations on qubits A and B, for universalmuan computation [52].

Before proceeding further, we have to briefly clarify theatimn that we will use. The
gate presented above is in the usual notation of states dipteutjubits, where all the qubits
are distinguishable and each qubit has its own distinctl.laHewever, this distinctive labels
(namely, qubit A and qubit B) are true only in the “non-pragiag” phase, i.e., before and
after the time evolution byf. The two electrons may loose their site labels (namely A and B
during the evolution and thereby a fully second quantizedttment which automatically takes

account of the indistinguishability of the electrons ise&sary. So, as basis states for writing
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down the Hamiltonian of the system, we shall use the stie&, |0) with i, j = A, B, C and
0,0’ =71,], where|0) is the state with all three dots empty, and evaluate the relegiments of
the HamiltonianH in this basis.

Let us point out that the total spin component along any axi®nserved by{. Choosing
an axis to be the axis, for example, and remembering @ur0, 1) initial filling, the problem
becomes three independent problems for the totaimponent of the spin in the three sitgs
being+1 (3, dZTd” =2),00; leTdm =1or—1(_, d;dm = 0). IntheS, = +1 sector, a
complete basis comprises three statgsi:.|0), di.df.[0) andd,.df.[0), in which the3 x 3

Hamiltonian is simply

Hs— 1= ¢t 0 0

From the above Hamiltonian it is easy to see that if the syst&ris in the two qubit state
| 1)l )& (which actually means the statig,d,[0)), then at times-,, = m-2%, wherem

is an integer, the system comes back to its original stateowitany phase factor. Thereby, if
we halt the evolution at any of these instances of time (bylealy setting the voltages to the
non-processing mode), we will have thé) 4| 1) — | 1)4| 1) part of the quantum gate
in Eq.(5.2) satisfied. Exactly the same result holds for|thea| L) — | 1)al )5 part of
the quantum gate, which evolves in the = —1 sector with an identical Hamiltonian matrix.
Therefore it remains to check whether there exist any vadfies for which the remainder of
the quantum gate of Eq.(5.2) happens,at For that we have to look at the Hamiltonian in the

S, = 0 sector.

5.4 The evolution in theS. = 0 sector and demon-

stration of the gate

IntheS. = 0 sector acomplete basis is made ofgrsatesi}, dt |0), d di.[0), dL,df |0), dE, df.[0),
dhdl, [0), di dL]0), d}.dh, 10), df.dE, |0), dL.dL, 0). The9 x 9 Hamiltonian matrix in this

basis is not reproduced here for brevity, but it is importanhote that here some elements
such as(0|dardcy Hd},d}, |0) aret, while others such a|da, dctHd},d} |0) are—t. This

sign difference is important and cannot be obtained withmoper second quantized treat-
ment. Now assumin@ >> t, one can adiabatically eliminate the double occupancestat

djdh, [0), df.db 10, dE.dL, |0) to obtain the effective Hamiltonian
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—2J 27 —J J t 0

2J  =2J J —-J 0 t

-J J =27 2J t 0
Hepr =

J —J 2J —2J 0 t

t 0 t 0 0 0

0 t 0 t 00

with J = ¢2/U. The above effective Hamiltonian is that of a 3-gite / model, with parameter
t for hopping and parametdrfor a spin-spin interactionnlywhen the spins are in neighboring
sites. We defing® = —(3J &= v/9J2 + 212) andé* = /2 + (n%)2/t2, in terms of which, the
eigenvalues of.;; are{0, —2J, —V/2t,+/2t,nT, n~}, while its eigenvectors are:

11 1 1
|’U1> - {§a537§7 53050}

111 1
|'U2> - {*575,57753();0}
|v>_{_1_1_1_111}
3 2\@7 2\@, 2\/§a 2\/532a2
e !
4 — 2\/532\&72\572\/57232
A A M M S B
° 2ET 2T AT 2L £

0" nooon n- 1 1
lve) = { (5.3)

2E— AT AT AT £
We want to show that the initial statef) 4| |)p of qubits A and B evolves t@”/“%(\ )
Yal )8 — i 1) 4| 1)) at a certain time under the action of the Hamiltontésy ;. Moreover
this time must be coincident or approximately coinciderthwi, = m% (discussed in the
previous section) for some, so that the gate of Eq.(5.2) is accomplished at the tigeThe

initial state| 1) 4| J) 5, or more accurately the second quantized sié;elg ,10), evolves with

time  as:
1 A —1 T
arm () = GV los) + eV ug))
8_“7 T e—ﬂ] T
T‘US> + 57,|UG> (5.4)

If we now once more invok& >> ¢ to neglect terms o (¢/U ), we can simplify the modulus

squared overlap di)a¢ g, (7)) with the target state”/“%ﬂ Mald)yp — i 1)al T)p) to the
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analytic expression

cos? \/itT T \9
— 1+ V2cos (31 — ol

+ {1-VZeos (3J7+ ¥ (5.5)

Notice that there are two distinct frequencies in the aboyeession, namely the higher fre-
quency+/2t, which is due to the tunneling, and the much lower frequeh&ywhich is due

to the spin-spin interactions. Also note that, as expedtesl modulus squared overlap with
the target state i9.5 at time+ = 0. However, most important to note is that at times
r;l = (2n 4 1)x/6J with n being an integer, the modulus squared overlap is unity imply
ing that at these instances, the initial statg) 4| |)p of qubits A and B has fully evolved
to the entangled state€ % %(| Mal V) — i $)al 1) s). By following identical steps as
above, one can prove that at timesthe initial state |) 4| )5 of qubits A and B evolves to
et %ﬂ Wal P =i Pal L)p). As2r/v/2t << w/6J, for anyr, there will exist several
values ofm for which 7,,, is close tor,,. Thus one can always choose somendn so that
T & 7-,’1 and at this particular time the quantum gate of Eq.(5.2) ®@amplished. Ideally we
would like to choose the shortest possible time to accoimghe quantum gate to minimize
the effects of decoherence. The earliest opportunity i'ﬂ;mzt(; as this is the earliest time the
second and third lines of the gate of Eq.(5.2) is accomplisBepending on the strength of the
tunnel couplingt, nearly always it is possible to findra such thatr,, ~ 7-0' so that the quan-
tum gate of Eq.(5.2) is accomplishedTét To convince the readers about this, we take explicit
values of parameters in scaled units. First we set the ersmag of aboulOueV, which is a
realistic typical scale of [18, 53, 39] to unity. In these units, we take= v/2 andU = 20 so
thatU >> ¢ is valid and yet] ~ 0.1 is not too small. Such ratios &f/t are available realistic
[53, 39]), and plot some relevant curves in Fig.5.2.

It is clear from the figure that the modulus squared overldphe| 1) 4| 1) State with
itself and the 1) 4| |) 5 with %q MNald)s =i 4)al 1)), both achieve values indistinguish-
able from unity at tim&(;. Further note that if one could always tune the two free patarst
andU, to ensure tha;t(') ~ 7, holds for somen. Fig.5.2 also presents a plot for the evolution of
| Hal J)s to %(\ MNal Ly — 14| $)al 1)B) from exact numerical diagonalization of Eq.(5.1)
to show that the approximations (adiabatic eliminatiorldiag to the expression of Eq.(5.5)
is valid. However, to verify the quantum gate, one also néederify the phases outside the
brackets on the right hand sides of the second and third éihEg.(5.2). We temporarily post-

pone this, and will verify these through additional plotattive make in the next section where
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Figure 5.2: Plots to demonstrate the occurrence of an elimgnguantum gate at a certain
instant of time between the spins A and B. The dotted lineésnttodulus squared overlap of
| Mal 1)p with the state it evolves to as a function of time after tharngatHamiltonian is
switched on. Both the solid and the dashed lines show the lmedquared overlap 0%(\ 0
Yal Lys —1i] 1) a| 1) 5) with the state to which 1) 4| |) 5 evolves as a function of time after the
gating Hamiltonian is switched on. The solid line is from @aumalytic expression of Eq.(5.5),
while the dashed line from numerics without approximatiofilse parameters used in the plot
aret = /2 andU = 20 in scaled units where the energy scaleV is set to unity (one unit

of the scaled time is abo0t1ns.)
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we treat decoherence.

5.5 Role of noise and decoherence

Now that we have demonstrated the possibility of an entagglate between the spin qubits in
our triple dot setting, we proceed to investigate how thig gaaffected by various sources of
decoherence. During the fleetingly small time window of gaderation (about a nanosecond)
transient charge superpositions will exist, and thereleygdite will be subject to some charge
decoherence despite operating between spin qubits. Natt¢htls isnot uniqueto our setting,
but, in fact, also automatically present when one intendsnfdement two qubit gates with
singlet-triplet qubits defined in double dots. There thgldhand the triplet have to go to distinct
charge configurations to enable gates between two doublguthiis [43]. As such decoherence
is only during the gate operation, one can suppress it @fedgtoy making the gate faster (i.e.,
J stronger). In our case, during storage of the qubits, thpagly spin decoherence, primarily
due to the hyperfine interaction with nuclear spins, will besent.

We first model the effect of charge decoherence numericafiyhe temperature is lowered
enough so that the effect of phonons is eliminated (thismaption is met in current quantum dot
experiments), decoherence due to spin-orbit interactiosigppressed. The f noise generated
in the triple dot device due to the fluctuations in the backgrbcharge is then the predominant
source of decoherence. We will phenomenologically fix theléode of this noise to set a
charge decoherence time-scale of abhbns (coherent charge oscillations have been observed
till about2 ns [25] and even much higher have been reported in non-gatédes [54]). Setting
the amplitude in this phenomenological way also has theradge that it models charge deco-
herence of the best observed strengths irrespective afutsec(for example, some phonons may
still be present). We have numerically generateld & noise and used a distinct value of the
noise in each time step. The numerical program that gersetia¢enoise guarantees that it has
1/f noise spectrum. We have also taken the tunnelilogchange with the mismatch of the dot
energies — we have takero vary with the energy mismatch with a narrow gaussian prafil
width 0.01 (this profile oft has been taken only for this phenomenological decoherestiteae
tion and not elsewhere in the paper). We then vary the avetagrggth of the fluctuations till we
get about a nanosecond time-scale of decay of the osailatibthe stat¢ 1) 4| 1) 5 during the
gate, which are essentially purely charge oscillationss ©hplotted in Fig.5.3. We now take
thesamestrength of noise for the evolution pf) 4| |) 5 under the gate and numerically plot (in
Fig.5.3) the probability of it to evolve to its ideal targéatee’ %(| Naldys =il d)al Ds).
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From the plot one can see that the effect of charge decoteignot significant (the probability
of the gate driving the initial states to their right targistigher thar0.95 for both states). This
has happened because we have chosen parameters carafulijh¢a get a/ which can give a

gate faster than the currently known charge decoherene rat

An additional form of decoherence that will be active is thelear baths in the quantum
dots, which induce decoherence of the spin states. It is kiibat the orientations of the nuclear
spins evolve at a much slower time-scale in comparison tdynamics of the electrons (time-
scales ofi /¢ and1/J) in quantum dot systems [18] so that during one operatioruofate we
may effectively regard the nuclear bath to provide a randotfiked (frozen in time) field. This
is known as the quasistatic approximation [18]. The efféclamoherence is then due to differ-
ent constant fields in various runs of the gate (a distinaeandirection and magnitude in each
of the quantum dots for each run of the gate). Following thaup&ters given in Ref.[18], we
have modeled the dynamics using a magnetic field of aboutder of magnitude less than the
tunnelingt in a random direction. The direction is chosen completetgatiom, while the mag-
nitude is chosen from a Gaussian distribution giverPéas) = m exp (—B?/2B2,,).
Here one cannot really use restricted spaces any more afullthidbert space of the problem
is involved as the nuclear magnetic field connects theseespathereby we tackle this part of
the problem numerically in the full Hilbert space consigtof the S, = 0, +1 sectors by exact
diagonalization of{ with the addition of a random magnetic field term in each dotasing a
charge decoherence of the same strength as before. This msuplotted in Fig.5.4 and show
that the probability of successful occurrence of the quargate (Eq.(5.2)) remains higher than
0.9 for Bpyc ~ 0.1 in our units, which is comparable to its experimental vald&3. In princi-
ple, though, this decoherence can be eliminated to a lagyeedy polarizing the background
nuclear spins [22] so that one can have quantum gates witlityfidaly restricted by charge
decoherence in a fleetingly small time window of gate operatEven this latter decoherence
should decrease with technology, and have already beemtedpo have very low values in
non-gated devices [54]. Alternatively it is known that gtuam dot-like experiments can be per-
formed also withneutral fermionic atoms in optical lattices [55] where charge dexehce is

inactive.

Now we return to the issue of verifying all features of theegattEq.(5.2) through appropri-
ate plots. To verify all features of a quantum gate, oneydaleally) needs to find the closeness
of the completely positive map realized in presence of dewaice with the unitary operation

corresponding to the gate i.e., the gate fidelity. Howeverave going to use, for simplicity, a
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Figure 5.3: The figure shows the effect of charge decoherencthe quantum gate of our
protocol. We induce a charge decoherence time-scale of Abmi(about 10 units of our scaled
time) by appropriately tuning &/ f noise. The time evolution of the modulus squared overlap
of an initial | 1) 4| 1) 5 state under this noise with itself (dashed curve) shows tinely charge
based decoherence effect. Keeping the parameters of thgechaise the same, we have also
plotted the modulus squared overlap of the sté%eﬂ Mal b)s — i L)al 1)) with the state

to which| 1) 4| |) 5 evolves as a function of time after the gating Hamiltoniasvistched on

(solid curve).
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Figure 5.4: This plot shows the combined effect of both hffperinteractions and charge de-
coherence on the quantum gate proposed by us. Charge nastse as to have a charge
decoherence time-scale of about 1 ns, while the strengtireofindom nuclear field causing the
spin decoherence is set to the realistic valu&gfk ~ 0.1 in scaled units (witHOueV taken as
unity). The time evolution of the modulus squared overlaprofnitial | 1) 4| 1) 5 state under
this noise with itself is shown as the dashed curve, whilentibelulus squared overlap of the
state%q Mal d)s — i I)a| 7)) with the state to which 1) 4| J) 5 evolves as a function of

time after the gating Hamiltonian is switched on is showrhassolid curve.
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poor man’s way of verifying the gate, which we think sufficesaawitness of the reliability of
the gate. Once the fidelity of the computational basis staiex) to the ideal ones are verified,
what is left to verify is the error in the relative phases lesw the computational basis states
due to the decoherence. We thus need to verify that the pbatsde the second and third lines
of Eq.(5.2), and particularly, how it gets affected by dem@mce. One way to examine this is
to use%u Mal De + | Mal 1)5) as an initial state and verify how close it evolves to the
ideal state (i.e., state under no decoherergazq)ﬂﬂ Me + 62://; (I Mal s —il bal De)

at timeT{J. This is demonstrated under only charge decoherence ahd:batge and hyperfine

interaction induced decoherences in Fig.5.5.

5.6 Gates in a high decoherence regime

Suppose one has a very high charge decoherence (so thatwohstays, say, for only1 ns)
then one can still use our triple-dot setup for a gate by stmppt the very first peak of the
oscillation of the| 1) 4] 1) p state, i.e., at atime; = 27/t ~ 0.1 ns. The resulting quantum
gate is however different and obtained by replacing thetrigind sides of the second and
third rows of Eq.(5.2)(in the >> J limit) by €*3/7/2(cos 3.J7/2| 1)a| })B — isin3J71/2| |
Ya| T B) ande®®/7/2(cos 3J7/2| 1) a| 1) B — isin3J7/2| 1) 4| |)5) respectively. This has a
lower entangling power, but is nonetheless an entanglitey gtll useful for universal quantum
computation. One merely has to halt the Hamiltonian at alieedime (before decoherence
has become too prominent) to get the gate and repeat the fgmtetames to get a maximally
entangling gate such as a CNOT from it. In Fig.5.6, we havéedothe overlap of the ideal
target state>/7/2(cos 3J7/2| 1)a| |)p — isin3J7/2| 1)a| 1)5) when one starts from the

state| 1) 4| ) g and has an evolution under the presence of both mechanistiesoffierence.

5.7 Discussions

The primary achievement in this chapter is to show that usiplg dot systems, one can encode
two single spin qubits and have an entangling quantum gateslea them merely by tuning the
voltage of the central dot (or voltage mis-alignment betwibe dots). This eases the restriction
of having to tune the tunnel couplingon a fast time-scale, which might be difficult [43] or
even impossible to tune in some setups of permanently bofit. dOne can scale this scheme
to several qubits by using a one dimensional array s A BAB...AB A scenario with thed
sites having single qubits and tligsites being empty in the non-operative state of the system.

Whenever a quantum gate between two qubits is required, veethenvoltage of only thé3
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Figure 5.5: This plot shows the effects of decoherence omlia'alistate%ﬂ PalMe+ |1
yal 4)B). It plots the evolution of the squared overlap of this staitl ¥8 intended target state at
eim/4

the end of the gate, name{%| Nal Ne+ e (I Mal ) =1 4)a|] 1) B). The dashed curve
shows the evolution when only charge decoherence is presbile solid curve presents the

evolution when both the charge as well as hyperfine inducedtdgences are present. Charge
noise is set so as to have a charge decoherence time-scddeutflans, while the strength of
the random nuclear field causing the spin decoherence ig #at tealistic value 0By ~ 0.1

in scaled units (with OueV taken as unity).
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Figure 5.6: This plot shows the effects of decoherence onitialistate| 1) 4| J) 5. It plots the
evolution of the squared overlap of this state, under botbhaeisms of decoherence, with the
state that it evolves to at any timeunder ideal conditions (i.et,<< U and no decoherence),
namelye’>’7/2(cos 3.J7/2| 1)a| 1) — isin3J7/2| })a| 1)5). The dashed curve shows the
evolution when only charge decoherence is present, whild sarve presents the evolution
when both the charge as well as hyperfine induced decoheranegresent. Charge noise is
set so as to have a charge decoherence time-scale of abqutHileghe strength of the random
nuclear field causing the spin decoherence is set to thestiealalue of B, ~ 0.1 in scaled

units (with10peV taken as unity).
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site between the qubits to enable a gate between them. Weshaven that the gate works
with high enough fidelities for a variety of input states feh&evable values of charge and spin
decoherence rates. For stronger charge decoherence ronelttne unitary evolution at earlier

pertinent times and still get an entangling gate, albeih\atver power.



Chapter 6

Singlet-Triplet Filtering in Square Dots

6.1 Introduction

Realizing quantum information and computation tasks ifdssihte physics, particularly quan-
tum dots, has attracted a lot of interest in recent yearsctiie spins in QDs are promis-
ing candidates for physical implementation of a qubit [18gdo their long coherence time
[18]. Initialization, manipulation, and readout of elexirspins have already been demonstrated
[42, 41] and ideas exist for quantum gates based on singligsqerizoded in two QDs [56]. As
it is timely for “proof of principle” demonstrations of mudgubit processes, it would be highly
desirable to establish a coherent two qubit processsinglequantum dot.

the quantum dot whereas the triplets are frozen at theialtdications. By initializing the
system in an unentangled superposition state we are theriapioject onto a singlet or triplet
state simply by a charge measurement to detect whether dhaatharge has moved during
the evolution. We use this property to propose some quanéomnation applications such as
entanglement swapping and generating the Affleck-Kenrnéely-Tasaki (AKLT) state, which
is a resource for measurement-based quantum computa@ipn [5

Recently, a dissipative method for singlet-triplet measegnt has been implemented in
the lab [41]. In this method a double QD is prepared with oreetebn in each QD, and after
lowering the barrier one of the electrons will hop to the ot® provided that they are in
a singlet state. As the singlet state is produced by a dibsgpdecay, there iso set timeat
which the electron will hop and the timescale for dissipatiglaxation is usually longer than
coherent evolution in the same range of energy. On the otimest m our coherent mechanism
time is known and since evolution is faster decoherencedsssdffect on final achievements.

Moreover, in our approach we are able to go beyond the simgbde¢t measurement to realize
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some quantum computation tasks such as: entanglementisgaggbeportation and generating
an AKLT-like state.

here we propose a mechanism for singlet-triplet measurebased on the coherent dy-
namics of two electrons in a large square quantum dot folilblye a single charge detection
. This is due to a sufficiently large energy separation betwtbe low-lying eigenstates and
higher-lying ones which allows us to construct an effeck\amiltonian. This effective Hamil-
tonian leaves the triplets unchanged while the singletdearound the quantum dot during the
evolution. It means that spin part of the wave function ocalstthe charge mobility and we have
used this property to filter singlet-triplet states fromleather. We also go beyond the singlet-
triplet measurement to propose some quantum informatiphicapions such as entanglement
swapping and generating the Affleck-Kennedy-Lieb-TasakKLT) state which is a resource
for measurement base quantum computation [59].

From a practical perspective a large square QD is easierbticéde than a small one
and will also be modeled more accurately by our effective Hamnian, since the energy gap
between the ground manifold and the lowest excited statesases rapidly with dot size, mak-
ing the ground manifold increasingly isolated. On the othend, as the absolute sizes of the
singlet-triplet splitting in the ground manifold fall expentially with dot size, large QDs have
slower operation times and are more susceptible to errangreTis thus a trade-off between
these factors, favoring QDs of intermediate size. Our satnorhs show that for square QDs of
L = 200—800 nm our effective Hamiltonian is sufficiently accurate, ape@tes at frequencies

within the range achieved in recent current experimentk [25

6.2 Effective Hamiltonian

We consider a system of two electrons held in a square sethictor Quantum Dot (QD) with

a hard-wall boundary, which can be realized in experimengdityng a two-dimensional elec-
tron gas (2DEG) at a heterojunction interface. The specteurd in particular, the structure of
the low-lying eigenstates of this system, are determinetth®ygompetition between the kinetic
energy of the electrons and the Coulomb repulsion betwesn.tihis can be governed simply
by controlling the size of the dot, since the kinetic energglas as- 1/L? while the Coulomb

energy varies as- 1/L. In small QDs the kinetic term is thus the dominant comporzént
the Hamiltonian. Consequently the ground-state will reserthat of non-interacting particles,
with a charge density that is peaked in the center of the dmv€rsely in large dots, when the

Coulomb interaction dominates, the energy of the systemingmzed by the electrons local-
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izing in space to minimize the electrostatic interactiorrgy. In analogy to the concept of the
Wigner crystal state in bulk two-dimensional systems [6@se highly-correlated quasicrys-
talline states are termed “Wigner molecules”. Thus simplaltering the size of the dot we are
able to continuously tune the system from weak to strongactens.

Assuming an effective mass™* for the electrons the square QD is modeled by:

2 2

R
H=——"[V24+ V2] +V(r)+V(ry) + ——

2m*
whereV (r) is the two-dimensional confining potential which. We chotsée hard-

Y S—— 6.1
dme|r) — ro| 6.1

wall with precisely square symmetry, though the resultotiodv are not qualitatively changed
under deviations from a perfect square, as we discuss Hierast term in Eq. (6.1) represents
the coulomb repulsion between the two electrons, screepedebdielectric constant. In the
strongly-correlated regime, in which the size of the squararge compared with the Bohr
radius ¢ 10nm in GaAs), eigenstates of this simple Hamiltonian areeswély demanding to
obtain exactly. We show in Fig. 6.1(a) the low-lying energgatrum of a GaAs QD with side-
length 800 nm, obtained by diagonalising the full two-alestSchrodinger equation. We see
that two degenerate tripletg, n = 3,4, ..., 8) sit approximately (but not precisely) midway
between two singlets.§; 2))), while all these 8 states are separated from the next ratltip
eigenstates by a relatively large gap. The charge disiwibdior the ground-statgs; ) is shown

in Fig. 6.1(b), and clearly shows how the charge densityngiyopeaks near the corners of the
QD. One can better appreciate the form of the states by dgfiimear combinations of the two

singlets

(IS1) + 182))/V2 = [@7)[v7) (6.2)
(1S1) = 1S2))/V2 = [®5) ), (6.3)

1)
12)

where|y~) = (| 11) — | I1))/V/2 is the singlet spinor, an@f(2)> is the symmetric spatial
component of the two-electron wave function. In Fig. 6.H)l 6.1(d) we plot the charge dis-
tribution of these states, clearly showing how they areliped at diagonally-opposite corners

of the QD. For the triplets we adopt a similar labeling scheme
3) = [@wT),14) = [@5)|w), [5) = @) 1), (6.4)
6) = [23)] 11,17) = @1 1), 18) = [@5)] 1), (6.5)

where|yT) = (| 11) + | I1))/v2, and|®@£) (|®4')) is the anti-symmetric charge distribution,
which resembles that of the staté$ and|2), being peaked at the same siteqbd). Note that
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Figure 6.1: (Color online) Eigensystem of a GaAs dot withdedength of, = 800 nm, ob-
tained by exact diagonalization of the effective-mass Htamian (Eq. 6.1). (a) The lowest two
multiplets of states; singlets are shown with solid (blueg$, triplets with dashed (red) lines.
We consider only the dynamics of the lowest multiplet, cstisg of two singlets|S;) and|Ss))
with two degenerate triplets lying between them. (b) Chalig&ribution of the ground-state,
showing the formation of a Wigner molecule, with peaks ledebcd near the dot corners. (c)
Charge distribution of the symmetrized singlet state= (|S;) + |S2))/+/2, localized about
bd. (d) Charge distribution of the antisymmetrised singlates), localized about.c.
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Figure 6.2: Gate structure for a large QD (central shadedrsfuconnected to two smaller QDs

(pink circles) at opposite corners.

while the tripletgn) (n = 3,4, ..., 8) are eigenvectors dfl, the singletg1) and|2) are not. We

can immediately write down an effective Hamiltonian for toe-lying energy eigenstates

8
Hett = —A1[51)(S1] + A2[S2)(S2| + Eo ) |n)(nl, (6.6)

n=3
where Ey is the energy of the two degenerate triplets, and(A,) is the energy separation
between the triplets and; ) (|S2)). By restricting ourselves to the ground manifold, and gsin
the sum ruleziz1 |n){n| = I, the effective Hamiltonian may be written in the chargeaspi
form
Hett = Eol — A([1)(2] + [2)(1) + J (5152 — 1/4), (6.7)

whereJ = (A; — Ay)/2 andA = (A1 + Ag)/2.

This form has the following simple physical interpretatio@oulomb repulsion pushes
the electrons to opposite corners on a diagonal giving tvargehstatesl) and |2) for each
combination of spin. Whilst in the corners the spins of thdeetens have an effective anti-

ferromagnetic Heisenberg exchange interaction with exgbaonstany and they may tunnel
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from one charge state to the other with amplitulle Charge-spin Hamiltonians of this form
may also be derived approximately starting with a latticeleién which electrons are confined
to one-electron states occupying the four corners, witli onk state for each corner. The one-
electron states may be constructed using a broken-symidattyee approximation and writing
the hamiltonian Eq.(6.1) in this localized basis leadsdaliyeto an extended Hubbard model
which may be mapped onto the charge-spin model Eq. (6.7) fdjvever, whilst this approx-
imation gives an appealing interpretation in terms of lzea (Heitler-London) one-electron
states, it is unnecessary and would give errors in the emen@meters’ andA compared with

the exact solutions, for which the orbital base states amselves correlated.

6.3 Dynamics

We now consider the time evolution of two electrons whichiajected into the square dot such
that one is located near corneand the other near corner(as labeled in Fig. 6.1(b)). This
could be achieved in principle using surface gates as shohemsatically in Fig. 6.2. Initially
there is an electron localized in each of the small dots adjao the large dots. These electrons
are then transferred to the large dot by lowering barriensgugatesG;, Gs and G4, G5 and
subsequently restoring them to their previous potentitds alectron transfer has completed. If
both electrons have the same spin, ie tétal= +1, then this spin will not subsequently change
with time under coherent evolution of the Hamiltonian (&Yl the two electrons will therefore
remain close to their parent corners, within a spin coheréinee. However, if the two injected
electrons are of opposite spin (occurring with probabilit§) then the state after injection will
be an equal superposition of a singlet state anf.as 0 triplet state, whichwill subsequently
change with time. To be specific, let us consider the statéhiolwa spin-up electron is injected
at cornera and a spin-down electron at cornetVe may approximate this state initially by

1) +13)

V2

_ |<I>f>+|<1>{‘>|w_|‘1>13>—|<1>‘f‘>

V2 V2

Note that both components correspond to spin-upatd spin down at since®y + & ~ 0

0(0) =
| 41). (6.8)

exceptwhem; ~ r,,ro ~r, and@lsffbf‘ ~ (0 exceptwhem; ~ r.,ry ~ r,. Hence this state
is unentangled.Under the Hamiltonian (6.7), the time-atioh of |1/(0)) can be determined

analytically as

e*iEoT T ) .
[(r)) = 5 ("7 (cos(At)[1) + isin(At)|2)) + |3)] , (6.9)
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choosing units withh = 1 and wherer is the time in which the initial state evolves under
the action of H.¢. We see directly from this equation that at time& = «/2A, for which
sin(7*A) = 1, we have a superposition of the two staft8sand |3) with the same probability
of finding either of them. The importance of this superpositis that at timer*, a simple
single charge detection any corner(let us sayb) will project ¢)(7*) into a singlet (with the
electrons in cornerg andd) or a triplet (with electrons remaining in corner@andc). Hence,
if an electron is detected at cornig{with probability of 1/2), then we know that the system
is projected into the singlet, for which the electrons wikdlate between cornetgl andac.
Conversely, if an electron is not detectethathen the system must have been projected into
the triplet state. Thus a single charge measurement wijepronto a singlet or a triplet state
with perfect probability. Furthermore, this measuremipab facto induces full entanglement
for the singlet case and thfg = 0 triplet.

The probability of detecting the singlet state at titstarting in theS, = 0 subspace, is
Py = |(2j¢(7))|* = }sin® Ar. ThusP, oscillates harmonically with maximum probability
1/2 but independent of the exchangg, which simply induces a phase factor in the singlet
component of the wave function. This independencé ohplies that our method of "filtering’
the singlet by measurement

1+ cos? AT + 2cos J7 cos AT
- 4

Pyoy = [ (0) (7)) ? (6.10)

which shows that only for special cases (elg= 0) does the system return to its starting state.

6.4 Applications

The ability to make singlet-triplet measurements pavesatg to implement some quantum
computation tasks such as entanglement swapping, or éepfilya teleportation. To achieve
these we generate two singlet pairs outside a square dobas sh Fig. 6.3(a). These pairs
may be generated via surface gates in a similar fashion tetebown in Fig. 6.2 in which
electrons are transferred from the surrounding 2DEG regeiVhe singlets are formed simply
by cooling the system [41]. We then push one electron fronh esiieglet pair to hop to the
big square QD as shown in Fig. 6.3(b). We now have two elestiorthe corners and c

in the square QD and after time we measure the charge at one corner. With probability of
1/4, the state of the electrons in the square QD collapses t@kesat sitedd. In this case two
external electrons in the small QDs get entangled as ansitigdet as shown in Fig. 6.3(c). This

process is calleéntanglement swappin@r theteleportationof entanglement) and generates
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Figure 6.3: (Color online) (a) two small QDs, with a singleimin each, beside a large square

QD (dashed lines denote entanglement); (b) One electron &ach singlet is pushed into the

square QD; (c) Entanglement swapping; (d) Scaling up thieesyto an array of QDs.
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long-range entanglement between distant particles. Tderse can be scaled up through a
geometry shown in Fig. 6.3(d) where a series of empty squateate arranged between some
small dots containing electron singlet pairs. By pushing efectron from each small dot to
its neighboring square QD, one makes all small dots emptgmxhe two which terminate
the array, where they are holding one electron each. Dyramsiteglet-triplet measurement on
all the square QDs generates a singlet between the eledtetchén the terminating small dots
when the result of all measurements is singlet. The proibabil having this is(1/4)", where

N is the number of square QDs.

Surprisingly, When the result of measurement in Fig. 6.3¢bd itriplet, rather than a
singlet, we can generate the so-called AKLT state [15]. i@ailly this was introduced as the
ground state of the AKLT Hamiltonian [15], which models tideraction of a series of spin-1
particles with two spin-1/2 particles at the boundaries ohain. The AKLT ground state can
be generated by again starting with a series of spin-1/2etm@n small QDs but this time,
projecting two particles of neighboring singlets into glet to represent their spin-1 nature.
This occurs with probabilit/4 when the result of the measurement in Fig. 6.3(b) is a triplet
This can also be scaled up with the geometry shown in Figd).8(th probability of success
is (3/4)Nthat all square QD states will be in a triplet state. The AKItAts can be used as

resource for ground-code measurement-based quantum tatopj59].

6.5 Gate Errors

The above results for the time-development of the initiatestare exact, requiring only the
energy parametetsandA, which may be obtained directly for the eigenenergies ofjtioeind-
manifold of the effective-mass Hamiltonian Eq.(6.1). Heoes these results are somewhat
contrived in that the starting state lies precisely witthie Hilbert space of the ground-manifold
and must therefore remain within this ground-manifold urtidtee evolution. In any realistic
situation these conditions will not be met and in partictitarstarting state will deviate from the
idealized form, Eq. (6.8). It will contain small admixturefsthe other base states in the ground-
manifold and excited singlet states. These admixturesnagtease with decreasing dot size but
should still give small errors fol. > 10ap, say. We may derive expressions for the fidelity
starting with a more realistic stat@;v(o)). This could be produced, for example, by applying a
positive potential to gates located near the sitesdc. In the numerical calculations, this was
modeled by dividing the square dot into four quadrants apdyap a constant positive potential

to the two diagonally opposite quadrants that contain theassa andc. In this scheme setting
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the gating potential to 0.1 V yields values for the over{a0)|«(0)) of 0.80, 0.940, and 0.97
for QDs of L = 200 nm, 800 nm and1200 nm respectively, which are reasonably close to
unity, and could be enhanced further by using more elabgatirg potentials. We may derive
an expression for the fidelity with this more realistic ialtstate by expanding)(0)) in terms

of [4(0)), (1) — |3))v/2 and the remaining eigenstates of the full effective-massikianian.

After time evolution and projection ont@) we obtain
Py = |<2|7:Z;(7)>|2 = (asin A7)? — 2a8sin J7sin AT 4 32 (6.11)

wherea = (1]4(0)) andj = (2|4(0)). Note thatP§ is independent of excited statesd since
|oa? ~ 1/2,|B]? ~ 0, it is robust to gate errors. This is illustrated in Table lerwe see only
small deviations from the idedP,, even for the smallest dot df = 100nm, the main effect

being a suppression of the maxima and enhancement of thenmini

6.6 Charge measurement

For simplicity we have so far assumed that charge detectipnbe made on a timescale much
less than the coherent charge evolution tirfie Typical values ofr*, however, being of the
order of nanoseconds for our parameters (see Table |) atierfiag to measure directly in
experiment. For practical implementation, we propose dlairacheme to Ref. [25], which is
able to achieve an acceptable time resolution. At the momfemeasurement we restore the
gquadrant gate-potentials (used previously to initiallme gystem) to freeze the dynamics of the
electrons. A strong charge measurement at one of the cashére QD can then be made to

project the state into a singlet or triplet.

6.7 Charge dephasing

Charge dephasing reduces the coherence betyigeand |2) in Eq. (6.9), but since our
measurement projects onto these states anyway, it doesmddrhentally affect our scheme.
By damping the sinusoidal oscillations betwegi and |2), charge dephasing only reduces
Py(7*) = [(2]2b(7*))|? such that in the extreme case of very strong decoherencesttgd/4.

In this case if|2) is detected successfully the scheme is completed as befuireg entangle-
ment swapping. Otherwise, we end up with a superpositigh)aind|3), as in the initial state,
which again undergoes damped oscillations. By repeatisgtbcess one can reliably (with ex-
ponential improvement according to number of trials) disarate between singlets and triplets

in the initial state. However, due to our fast dynamics thiseane case is very unlikely. As



6.8. Hyperfine Interaction 99
L (nm) | A (meV) J (meV) |af? 18/ Eny(peV)
100 0.814 -0.243 0.441| 5.23x102 1.74
200 0.145 -4.363x1072 | 0.445| 3.63x107° | 7.76 x10!
400 2.11x1072 | -5.05x107% | 0.420| 1.21x10~3 | 3.88x10~!
800 2.08x1072 | -2.20x10~* | 0.453| 2.78<10~* | 1.94x10~!
1600 9.34x107°% | -1.66x1075 | 0.490| 6.02x1076 | 9.69x 1072

Table 6.1: Physical parameters for a GaAs QB? and|3|? (Eqg. (6.11)) are the projection of
the initial state onto the singlet staté$ and|2) by applying a gating potential of 0.1 V.

an example, fol. = 400 nm we haver* = 0.2 ns, which is safely below the dephasing time

T, ~ 1 — 2 nsin a system with comparable size [25].

6.8 Hyperfine Interaction

The most destructive effect, according the decoherentieeispin qubit QD system is due to the
interaction with nuclear spins [62]. This is called “hype€i interaction which is determined
by substituting the effect of the nuclei with an effectivegnatic field? coupled to the electron
spin as follows

H, = h.B.7 (6.12)

wherev, = gup/handd = (o, oy, 0) are the Pauli matrices have a gaussian random
distribution given by

1

mexp(—(g.g)/QBz

P(B) = 2 . (6.13)

whereB,,,.. is the variance of the random varialﬁ Due to the fact that the dynamics of the
electrons are much faster than the nuclei, we can consideyuasi-static approximation which
fixes the nuclei’'s effect for the evolution of each electroB® when we generate initial state
of the system ag)(0)) the hyperfine interaction causes all triplets evolve as agthe singlet
state. Due to the random nature of the magnetic field we carsfudy the average dynamics
of the system when it evolves unddy = H + H;,. So for each random vect§ we compute

the following quantities which are overlap of thé(r)) and singlet or triplet at sitesc andbd

Py (L)), Po = (2 (1)),

(Blo(T)), o= (A1),

(6.14)

Py

(6.15)
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Figure 6.4: ((Color online) Hyperfine interaction effect fd = 25 mev, V = 3 mev and
b = 50 ev. In the figuréhy. B,.. = 0 (solid blue line) v, B,... = 0.1b (dashed red line) and
hye Brue = 0.20 (dotted-dashed green line). The probability(7) of finding the singlet in the

sitesbd as a function of time.
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where< ... > means average over all possible valuegofvhich we compute it numerically by
averaging over 1000 different randomly chosen valueﬁoResults are shown in Fig. 6.4 for
different values ofB,,,,. and typical values for the parameters of the Hamiltoniarkitn 6.4

we have plotted the probability of finding a singlet in ditk As this figure shows clearly, while
the probability of finding the singlet in sitég decreases by increasing the noise. Furthermore
this figure clearly show the decoherence effect in their daghpscillations.

Here we pause to point out to the advantage of using this pedfior doing singlet-triplet
measurement than the one proposed in [41]. First of all irdgnamical strategy when we put
electrons in the square QD we do not need any extra contklgplying a voltage or etc to
the system while the dissipative scheme [41] relies on tiepeddent controlled voltage gates.
Secondly, dissipative scheme is always a probabilistatey which is not always successful
while in our proposal since we do not use a dissipative phemanand it is based on the non-
equilibrium dynamics the result of the singlet-triplet mesement is deterministic. The third
benefit of our scheme from a practical point of view is pronglan easier manipulation of the
QD. This comes from the fact that in our scheme we need a bigrsglot which is much easier

to implement in the lab.

6.9 Conclusions

We showed that the dynamics of a pair of electrons in a largareqguantum dot can be used
to perform singlet-triplet spin measurement using jushglsi charge detection. Opposed to the
previous schemes, this is a deterministic process which doerequire any extra control dur-
ing the process. This leads us to conclude that this stragdggs complex to be realized in the
laboratory with current technology. The AKLT ground statdjch has been proposed already
for quantum computation, can be obtained in our system.dlsis possible to do teleportation
and entanglement swap through the natural dynamics of dogreh pairs. Furthermore, evolu-
tion of the system is faster than the dephasing fimamposed by hyperfine interaction into the
system. Also our analytic results, found for the pertuseategime, is valid for a wide range of
system parameters particularly it is in a very good agre¢ifioetypical experimental values of

the Hamiltonian parameters.



Chapter 7

Conclusions

In this thesis, we have discussed the possibilities to nl#atangled spins and perform some
quantum information processing protocols in two types ofasructures. Primarily the studies
have been couched in terms of electron spins in quantum widtspne study on nuclear and
electronic spins of Nitrogen atoms inside fullerene dimiareanotubes. Most of the studies
have attempted to look beyond the standard setups and pt®tpopular in literature. For
example, in quantum dot based quantum computing, usua#iyconsiders one electron per dot
encoding a qubit in its spin degree of freedom. Usually Calddlockade regime is invoked
so that the chance of two electrons per dot is suppressed. aweedone beyond this in two
quite different directions. One setup in which there is apindot (Chapter 5), offers certain
advantages in terms of control, initialization and measwets, namely that no tunnel barrier
now needs to be controlled and simply gate voltages on iddalidots suffice as the control
parameters. However, as now the electrons cannot be igentifiough which dot they belong
to throughout the dynamics, it becomes important to keaxmathe fermionic statistics of the
electrons while writing down the Hamiltonian matrices —réhare some terms withand some
with —¢, wheret is the tunnel coupling. So obtaining a quantum gate here g¢ringal (not
easy to speculate beforehand that it will indeed be posagib®th spin and orbital degrees of
freedom are involved) and we are fortunate to find that suadieigdeed happens at a specified
time. In another setup (Chapter 6), we consider multi-ebectogic inside asingle quantum

dot, which is also quite different from the conventional eggzh.

Most of the presented ideas open up many questions for fusthdies, though we have

not been able to consider all those within the scope of thesith Here we just note down



103

these further possibilities as an idea bank for the futurgigoation of the strands of work in
this thesis. For example, in Chapter 4 we have shown thatghesioan be created on distinct
dots on the fast time-scale dictated by tunneling, rathan thy exchange. As most quantum
gate ideas are exchange based, and thereby happen over thestower time scale of an
exchange coupling, it remains an important question as tat wther relevant processing can
be accomplished apart from singlet generation, on a tinaedaster than the exchange. For
example, after extraction, what can one use these fast @fedesinglets for? An interesting
idea would be to let one spin each from two distinct singletsract in a single dot remem-
bering that the single dot exchange couplings are much grotihan the exchange coupling
between two distinct dots. Again, being able to use cohdtemteling to put two electrons in
separate dots to a single dot at a predetermined time mighkie @dvantageous here. In that
type of setting, by welding one member from distinct singjlgtgether (here by welding we
mean making a maximally entangling gate), it will be possitd generate cluster states for
measurement based quantum computing if some separateolpeations on all the electron
spins are also done. Indeed, in the question we have exaimmbapter 5 with an empty dot,
one could alternatively think of using coherent tunneliogtt the two outer electrons together
in the central dot in order to have a quantum gate whose tgake $s dictated by tunneling and
the strong exchange in the single central dot, rather thahdoweak exchange between distinct
dots. As we used all the three dots in the Coulomb blockadeneegour gate in that chapter
has a time-scale of entanglement generation still set byw#ak interdot exchange coupling
though tunneling also plays an important role. One therefore has to consmiéants of the
setup of Chapter 5 in order to check whether quantum infdomatrocessing with spin qubits,
but entirely dictated by tunneling (and perhaps the Coulamsraction in a single dot giving
a intra-dot exchange) is at all possible. In a very similartegt, it is worthwhile to consider
whether the square dots considered in Chapter 6 can act asdlters” mentioned above. In
that chapterA is a tunneling time-scale, albeit inside a single dot, arsvben distinct two
electron states. Clearly, if two electrons (from say, twatidtct singlets, but now well separated
singlets in the sense of Chapter 4) in distinct states collgreinnel into two opposite vertices
(their simultaneous tunneling in is, of course, a differeaitulation) of a square dot, then the
fact that their singlet combination oscillates, while thiplet remains frozen, could perhaps be

exploited for an entangling quantum gate.
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Figure 7.1: The figure shows the correlated extraction ofisd\singlets in parallel from a line

of central dots by matching the energy of the initial and thalfconfigurations.
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An interesting question immediately stemming as an exteng) Chapter 4 is whether
a correlated tunneling of electrons can extract multipleltel singlets from multiple dots as
illustrated in Fig.7.1. This may have the advantage thatsunéag just one charge state, namely
that of a single central dot in one of the parallel copies seffito ensure that singlets in all
the parallel copies have been extracted. It might also Hawedvantage if the extraction has
to be followed by certain other protocols such as entanghrperification and repeaters in
an automated way subject to all copies being extracted. Titexion for coherent extraction
of multiple singlets at a precisely known time (i.e., resmr®between the unextracted and
extracted states) BnEc +nU 4+ (n— 1)Vo = nEa+nEp+2(n—1)Vi, whereE 4, Ep, Ec
andU have their standard meanings as defined earlier in the thgdisthe interdot interaction
with 2 electrons in each dot/; is the interdot interaction with 1 electron in each dot anid
the number of parallel channels of singlet extraction. Viéeiae here that interdot interaction is
solely between neighbouring qubits. With so many indepetparameters, one should be able
to meet such type of criterion for some valuesioiHowever,V; has to be calculated for given
dots and there are two major obstacles otherwise to theegfigiof such a multiple extraction
process. In our single singlet extraction proto¢apnnects configurations of same energy and
the extraction is completed after the system goes ftaththrough two intermediate states of
the same energg'A and C' B before ending up idB. Therefore time-scale of the process
is still t. Here we will have many intermediate configurations (cqroesling to extractions
in single dots) and thereby the time-scale can become slewleis is the price we pay if we

demand correlated (simultaneous) extraction.

Another interesting area emerging from the contents of thssis is whether one can
do interesting quantum measurements or gates with mukipletrons in polygonal dots. An
example is shown in Fig.7.2, where it might be worth considgwhether 4-spin singlets and
triplets can be distinguished from the time evolution of darge distribution, generalizing
the case we studied in Chapter 6. It is possible that the tirokiion for a fixed period also
leads to useful quantum gates between the four spins. Wetbawait a time till the charge
configurations are back to their original form irrespectievhether we started from a singlet,
a triplet or even spin-2 state (possible for 4 electrons) #eth check whether appropriate
relative phases for useful quantum gates have appeare@uds; this has similarities with the

quantum gate with an empty dot of Chapter 5 in the sense tbet Hre sites with empty charge
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Figure 7.2: The figure shows the oscillation of four electstates in a hexagonal dot. It is
possible that any 4 electron spin singlets with symmetric spatial wavefunction will oscillate,
while any 4 electron spin tripletsg with an antisymmetric spatial wavefunction will remain

frozen. In this way the total spin zero space may be projeattd
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distribution and the dynamics of charge distribution wélise some decoherence. It is possible
that the spin-2 and the triplet will not have different timekitions as they are both symmetric

spin states and thereby will have the same antisymmetrigelsdate.

In continuation with Chapter 3, it is worthwhile to look atantum gates induced between
nuclear spin qubits due to interaction of electronic spifise idea is to have a strong enough
magnetic field to effectively decouple the electronic areliclear spin qubits when the nu-
clear spins are being used as a memory. One has to probabbtepee system neali/g ~ 5
(or similar, depending of the physical system) where ounlteshow that in the presence of
a magnetic field the nuclear spins can effectively be inftial in a product state by cooling.
Local gates can then initialize each nuclear spin to amyitpaire states. On the other hand,
for suchJ/g, in the absence of a magnetic field the nuclear spins areyhatiangled in their
ground state.This latter fact provides the hope to dyndiyigenerate entanglement between
the nuclear spins when the magnetic field is suddenly swdtdfe However, we have sim-
ply assumed local gates on the nuclear spins in the abovasdisn and to implement them

probably requires other ideas.
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