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Abstract 

The evolutionary history of echolocation in bats is poorly understood, as fossils provide 

little direct evidence, and most studies into echolocation have taken an ecological approach. 

Bats use a wide variety of echolocation call structures despite facing similar sensory 

challenges, and it is not clear how and why these echolocation call types evolved, or what 

impact they have on other aspects of the evolution of bats. 

 

Here, I use phylogenetic comparative methods and newly-collated echolocation call data 

from 410 species in 120 genera and all 19 families to investigate the origination and 

evolution of echolocation in bats (Chiroptera). I construct an updated phylogenetic 

supertree of the bats using source phylogenies from the literature between 1970 and 2009. I 

ask three main questions: (1) Are echolocation call structures really a product of present-

day ecological conditions, or are they much more constrained by evolutionary history than 

is currently thought? (2) What did the first echolocation calls sound like? (3) Are 

echolocation calls ‘key innovations’ that promote diversification? 

 

I found that early divergences and subsequent constraints in evolutionary history have 

resulted in a greater variety of bat call structures than appear to be functionally necessary. 

The structure of the first echolocation calls was predicted to be short duration, multi-

harmonic, and narrowband, suggesting that the proto-bat was a slow and manoeuvrable flier 

with an opportunistic and omnivorous diet, and may have used a perch-hunting foraging 

strategy. Finally, some echolocation call types were found to correlate with higher 

diversification rates such that they may be considered key innovations, but, unexpectedly, 

the most rapidly diversifying clades were those in which species either did not use 

echolocation at all (Pteropodidae), or where less sensory reliance was placed on 

echolocation (Stenodermatinae: Phyllostomidae). 
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1 Chapter 1: General Introduction 

1.1 Introduction 

Bats are unique in having evolved both sophisticated laryngeal echolocation and powered 

flight. It is these attributes that have been proposed as the key innovations that allowed bats 

to radiate into a niche new to mammals – the night sky (Fenton et al. 1995; Schnitzler, 

Moss, & Denzinger 2003; Sears et al. 2006; Speakman 2001). Bats are the second most 

speciose order of mammals, although arguably the most ecologically diverse: their diets 

range from pollen, nectar and fruit, through insects and other arthropods, to birds, reptiles, 

amphibians, fish, small mammals, and the blood of birds and large mammals. They roost in 

foliage, caves and rock crevices, trees and under bark, and various man-made structures, 

and forage in all terrestrial habitats (Nowak 1994). 

 

Most bats are crepuscular or nocturnal, and, although able to see, must rely on echolocation 

as their primary sensory modality (Nowak 1994). Echolocation, or biosonar, is the active 

use of calls and interpretation of their echoes to detect, localise, and classify objects 

(Griffin 1944; Jones 2005). The echo from an emitted echolocation call contains auditory 

cues relating to the direction, timing and spectral composition of nearby objects which 

allow the animal to then perceive, pinpoint and recognise potential prey and obstacles 

(Pollak & Casseday 1989; Thomas, Moss, & Vater 2004). 

 

Echolocation has evolved in environments where vision is of limited use; the nocturnal 

niche of bats reduces the efficacy of vision. In toothed whales, the turbidity of the water 

and the tendency to dive to depths where very little light permeates have contributed to the 

evolution of echolocation. Echolocating bird species (the oilbird (Steatornithidae) of South 

America, and members of the cave swiftlets (Apodidae) of Southeast Asia) do so only to 

orientate in the dark caves in which they roost (Griffin 1958; Medway 1959). Various other 

species have been proposed as echolocators, including desmans, tenrecs, solenodons, 

shrews, baleen whales, Weddell seals, and leopard seals (Schusterman et al. 2004; Siemers 

et al. 2009), though evidence suggests none of these rely exclusively on echolocation. The 
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echolocation signals of non-bat echolocators are clicks, unlike the usually longer duration 

and more complex calls produced in the larynx by bats (Thomas & Jalili 2004). 

 

1.1.1 Echolocation call frequencies 

Bat echolocation calls tend to be in the ultrasonic frequency range (sound above the upper 

limit of human hearing, standardised at 20 kHz (Pumphrey 1950)), although some 

echolocation calls are audible to humans. The lowest frequencies used in echolocation are 

emitted by the spotted bat (Euderma maculatum, Vespertilionidae), which uses frequencies 

containing most energy around 9 kHz (Fullard & Dawson 1997). In contrast, the highest 

known peak energy frequencies reach about 212 kHz in Percival’s short-eared trident bat 

(Cloeotis percivali, Hipposideridae) (Fenton & Bell 1981), and are likely to be even higher 

for non-peak energy harmonics and frequencies, such as the starting frequency of 250kHz 

in the clear-winged bat (Kerivoula pellucida, Vespertilionidae) (Schmieder et al. 2010). 

Ultrasonic frequencies are not a requirement for echolocation, although there are several 

advantages to using them. Sounds reflect most clearly from objects larger than the 

wavelength of the sound, and because high-frequency sounds have short wavelengths, they 

allow strong echoes to be generated from small objects such as flying insects (Houston, 

Boonman, & Jones 2004). High frequencies are also directional (e.g., Surlykke, Pedersen, 

& Jakobsen, 2008; see also Brudzynski & Fletcher, 2010) and can limit the spread of 

echolocation calls so that objects other than the target of interest are not detected. While 

bats may avoid using low frequencies in echolocation because of the need to detect small 

targets, extremely high frequencies are also avoided because excess atmospheric 

attenuation limits the range over which echolocation is effective (Brudzynski & Fletcher 

2010; Lawrence & Simmons 1982). Most bats utilise “compromise” frequencies to avoid 

the costs associated with very high and very low frequencies, and call between 20 and 60 

kHz (Fenton, Portfors, et al. 1998). 

 

1.1.2 Diversity in call structure 

Bats show considerable diversity in call structure (see Figure 1.1 and Table 1.1). Some bats 

do not echolocate at all, i.e., most of the bats within the family Pteropodidae (the Old 
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World fruit bats). Although species in a given family often tend to have similar call 

structures to one another, selective pressures imposed by the environment appear to have 

overridden phylogenetic constraints in some cases. For example, the common moustached 

bat Pteronotus parnellii (Mormoopidae) has independently evolved a very similar call 

structure to bats in the family Rhinolophidae, and even compensates for Doppler shifts 

caused by varying flight speeds (Schnitzler 1972). In addition, there is much intraspecific 

variation in call structure, as different structures are suited to different perceptual 

challenges (e.g., Kalko & Schnitzler, 1993). This plasticity often makes it more difficult to 

classify taxa by the echolocation call type. However, with some generalization, it is 

possible to categorise the call types of bats. For example, there are several aspects of call 

structure that define a bat’s call. The first is the duration of the call – calls may be 

extremely brief (1 ms) as in the broadband tongue clicks of the only echolocating genus in 

the Pteropodidae (Rousettus); relatively short (3-10 ms) as in the calls of some bats in the 

family Vespertilionidae (e.g., many species in the genus Myotis); or long (>10 ms - 80 ms) 

such as calls emitted by many bats in the families Myzopodidae, Rhinolophidae and some 

of the Hipposideridae. 
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Figure 1.1: The evolution of echolocation in bats. Based on an illustration in Jones & Teeling (2006) 

Trends in Ecology and Evolution 21, 149-156. Call types shown in brackets. 
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Family Call type Clade size 

Craseonycteridae (Hog-nosed bat) 4 1 

Emballonuridae (Sheath-tailed bats) 4 51 

Furipteridae (Smoky bats) no data 2 

Hipposideridae (Old World leaf-nosed bats) 8 81 

Megadermatidae (False vampire bats) 6 5 

Miniopteridae (Long-fingered bats) 3 19 

Molossidae (Free-tailed bats) 3 100 

Mormoopidae (Naked-backed bats) 4,8 10 

Mystacinidae (Short-tailed bats) 6 2 

Myzopodidae (Sucker-footed bats) 7 1 

Natalidae (Funnel-eared bats) 6 8 

Noctilionidae (Bulldog bats) 5,8 2 

Nycteridae (Slit-faced bats) 6 16 

Phyllostomidae (New World leaf-nosed bats) 6 160 

Pteropodidae (Old World fruit bats) 1, 2 186 

Rhinolophidae (Horseshoe bats) 8 77 

Rhinopomatidae (Mouse-tailed bats) 4 4 

Thyropteridae (Disk-winged bats) 4 3 

Vespertilionidae (Vesper bats) 3, 5, 6 388 

Table 1.1: Diversity of bat echolocation signals across families. Call types are categorised as follows: 1, 

no echolocation; 2, brief broadband tongue clicks; 3, narrowband dominated by fundamental 

harmonic; 4, narrowband multiharmonic; 5, short broadband dominated by fundamental harmonic; 6, 

short broadband multiharmonic; 7, long broadband multiharmonic; 8, constant frequency as in Figure 

1.1. Taxonomy following Simmons (2005) and Miller-Butterworth et al. (2007) and echolocation call 

data from Jones & Teeling (2006).  

 

A further defining aspect is the bandwidth of the call. As wavelength is inversely 

proportional to frequency, high bandwidth calls allow bats to detect different sized objects. 

Calls may be very broadband, exceeding 170 kHz in some Kerivoula species 

(Vespertilionidae) (Kingston et al. 1999; Schmieder et al. 2010), or they may be very 

narrowband, as in some species in the Rhinopomatidae and Vespertilionidae (e.g., 

Habersetzer, 1985). Using a narrow bandwidth causes concentration of the sound energy 

into a smaller range of frequencies, allowing the sound to travel a greater distance before 
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completely attenuating. Frequencies often change abruptly across the time domain, as in the 

calls of the Rhinolophidae, which start with a brief upward broadband sweep, followed by a 

long constant frequency (CF) component, before ending with a downward broadband 

sweep (e.g., Jones & Rayner, 1989). 

 

Many bats also use several harmonics in their calls, although usually with most of the call’s 

energy concentrated into either the first (the fundamental) or the second harmonic (Jones & 

Teeling 2006). Each subsequent harmonic is a multiple of the fundamental frequency. 

 

1.1.3 Phylogenetic context 

In order to understand how different call types have evolved, for example, whether similar 

call structures have evolved convergently in phylogenetically distant taxa, it is necessary to 

place these calls into a context of the evolutionary history of bats. However, any such 

inferences are dependent on the accuracy of the reconstruction of bat evolutionary 

relationships. Bat evolutionary history has been, and remains, a hotly debated topic, with 

disagreements at all levels of the phylogenetic tree, both within the order and regarding the 

relationship of bats to other mammals. This has made inferences about the evolution of call 

structures challenging. To place this into context I briefly review the most important issues 

to shape our understanding of the evolutionary relationships of bats. 

 

Bats (Order Chiroptera) are the second most speciose mammalian order after the Rodentia, 

comprising around 1,116 species in 202 genera and 18 families (Simmons 2005), although 

there may be 19 families according to the latest taxonomic revisions (Gunnell & Simmons 

2005; Miller-Butterworth et al. 2007; Simmons et al. 2008). Molecular analyses place the 

order Chiroptera in a basal position within the superorder Laurasiatheria, along with 

hedgehogs; shrews; odd-toed ungulates; even-toed ungulates and whales; carnivores; and 

pangolins, and reject its previous placement with primates, colugos and treeshrews (see 

Springer & Stanhope 2004). Being certain of the possible sister taxa of bats has important 

implications for our understanding of the evolution of echolocation in bats. For example, as 

other taxa in Laurasiatheria are known to echolocate occasionally (e.g., cetaceans and 
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shrews) (Schusterman et al. 2004; Siemers et al. 2009), it would be possible to infer how 

primitive or derived this characteristic is in bats. 

 

1.1.4 The chiropteran monophyly debate 

In the 1980s and 1990s, despite previously widespread acceptance that all bats shared a 

common ancestor, a debate began around the suggestion that bats were diphyletic rather 

than monophyletic. Pettigrew (1986) discovered that the system of neural connections 

between the midbrain and the retina of pteropodids (Pteropodidae, formerly classified in the 

suborder Megachiroptera, see below) was similar to that of primates and colugos, whereas 

other bats (the former suborder Microchiroptera) showed the putatively “primitive” system 

of connections, in common with all other mammals. This evidence, in association with 

other aspects of morphology (Buhl & Dann 1991; Kennedy, Pettigrew, & Calford 1987; 

Pettigrew 1986; Pettigrew et al. 1989; Smith 1977a; Smith & Madkour 1980) and some 

early molecular evidence (Kleinschmidt et al. 1988) suggested that the megachiropterans 

evolved from a shared ancestor with primates, in a separate lineage from that which led to 

the evolution of microchiropterans. The bat diphyly hypothesis proposed that flight evolved 

on two independent occasions in bats. However, as molecular techniques developed and 

became more widely used, support for monophyly has proven overwhelming (e.g., Murphy 

et al., 2001; Teeling, Scally, & Kao, 2000; Teeling et al., 2005; although see Pettigrew, 

Maseko, & Manger, 2008). If we accept that bats are monophyletic, then both flight and 

echolocation may have evolved from a common bat ancestor and diversified into different 

structures across the clade. 

 

1.1.5 The microchiropteran monophyly debate 

Within the 19 currently recognised extant and seven extinct bat families, familial 

interrelationships have also been debated. Bats had traditionally been placed in two 

monophyletic suborders, the Microchiroptera and the Megachiroptera (Dobson 1875) 

(Figure 1.2). Megachiroptera comprise one family, the Old World fruit bats (Pteropodidae) 

the majority of which do not use echolocation (although some (possibly all) species of 

Rousettus use broadband clicks), whereas Microchiroptera includes all the other families 



  Chapter 1  

  24 

(which all use some form of echolocation) (see Table 1.1). However, the monophyly of the 

Microchiroptera is now disputed, as molecular evidence indicates that several of the 

microchiropteran families are more closely related to Pteropodidae than to the remaining 

families (see Figure 1.2). The most widely used division of the order places the 

Pteropodidae, Rhinolophidae, Hipposideridae, Megadermatidae, Craseonycteridae, and the 

Rhinopomatidae in a new suborder, initially termed the Yinpterochiroptera. This was 

formed by the concatenation of “Yinochiroptera” introduced by Koopman (1984) and 

“ptero” by Springer, Teeling, Madsen, Stanhope, & de Jong (2001), and leaves the 

remaining families in the suborder Yangochiroptera (Figure 1.2). Yangochiroptera was 

originally named by Koopman (1984), although at that time it excluded Nycteridae and 

Emballonuridae (Gunnell & Simmons 2005; Springer, Teeling, & Madsen 2001). Given the 

recent confusion about the family members of each suborder (Yinpterochiroptera and 

Yangochiroptera) and the diphyly of the one of the previously used subordinal names 

(Microchiroptera), Hutcheon & Kirsch (2006) proposed new names for these suborders, 

using the International Code of Zoological Nomenclature’s principles of typification, 

priority and attribution (International Commission on Zoological Nomenclature 2000). The 

suborder described above as ‘Yangochiroptera’ should be known as Vespertilioniformes 

based on Linnaeus' Vespertilio of 1758 and the suborder described as ‘Yinpterochiroptera’ 

should be known as Pteropodiformes, based on Brisson’s Pteropus of 1762. In this thesis, I 

use Hutcheon and Kirsch’s names. 
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Figure 1.2: Phylogenetic relationships among 16 bat families following Teeling et al. (2005). Circles 

indicate where echolocation may have evolved, either once (Scenario 1) or twice (Scenario 2). 

 

The new understanding of the phylogenetic relationships between families suggests that the 

most parsimonious explanation under the current phylogeny is that laryngeal echolocation 

evolved once, at the root of the bat lineage, and was later lost in the Pteropodidae. This 

would suggest that the pteropodid genus Rousettus then independently evolved their 

broadband tongue clicks. Alternatively, laryngeal echolocation evolved at least twice: once 

in the ancestors of echolocating Pteropodiformes and independently in Vespertilioniformes 

(Figure 1.2). However, whether laryngeal echolocation evolved once or more than once in 

bats remains unresolved: molecular phylogenies that incorporate fossil taxa (placed 

according to morphological evidence) support a single evolutionary event, while analyses 

of genes associated with hearing (Li et al. 2008) suggest that separate evolutionary events 

may have occurred (see Section 1.1.9 below). 
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Reconstructions of the ancestral states of echolocation calls are problematic, given the 

difficulties imposed by convergence in signal structure across phylogenetically distant taxa. 

Mapping of call characteristics onto phylogenetic trees suggests that the use of calls 

dominated by the fundamental harmonic (as in many members of the Vespertilionidae and 

Molossidae) is a derived state, and that multiharmonic signals are ancestral (see Figure 1.3) 

(Jones & Teeling 2006). Schnitzler, Kalko, & Denzinger (2004) suggested that early 

echolocating bats used calls that were tonal, low intensity, short, broadband and 

multiharmonic. Conversely, Eick, Jacobs, & Matthee (2005) hypothesised that the ancestral 

proto-bat emitted high intensity calls. Much of the current literature concerning the 

ancestral echolocation call is based on supposition, and as yet there are no quantitative 

analyses to support any of the hypotheses. 

 

Some features of bat echolocation have evolved independently on several occasions. I have 

already described the independent evolution of constant frequency calls and Doppler shift 

compensation in rhinolophids (Pteropodiformes) and in Pteronotus parnellii 

(Vespertilioniformes). Furthermore, nasal emission of calls has evolved in some 

vespertilionids (e.g., Rafinesque’s big-eared bat Corynorhinus rafinesqui) (Griffin 1958), 

nycterids and phyllostomids within the Vespertilioniformes, and in megadermatids in the 

Pteropodiformes (Eick et al. 2005). 
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Figure 1.3: Linear parsimony ancestral reconstructions of eight echolocation call types using the 

family-level molecular phylogeny of Teeling et al. (2005) using MacClade v.3.8 (Maddison & Maddison 

1992). Adapted from Jones & Teeling (2006). Call types were categorised as in Table 1.1. Different 

patterns represent either the call type of the family (patterns in the terminal squares at the end of the 

branches) or ancestral reconstructions of the call types (branch patterns). Some families have more 

than one call type and this is denoted as polymorphic (i.e., Pteropodidae has call types 1 and 2; 

Noctilionidae 5 and 8; Mormoopidae 4 and 8; and Vespertilionidae 3, 5 and 6). Branches are denoted as 

equivocal where it is not possible to estimate the call type ancestral condition. Adapted from Jones & 

Teeling (2006). 

 

1.1.6 Which came first: flight or echolocation? 

Bats are thought to have evolved around between 89 (Bininda-Emonds et al. 2007) and 62 

million years ago (Jones, Bininda-Emonds, & Gittleman 2005), with the oldest known 

fossils dated to the Eocene about 53 million years ago (Simmons & Geisler 1998). Whether 

bats evolved flight before echolocation or vice versa has been hotly debated (summarised in 

Speakman (2001)). Briefly, there are three hypotheses that have been posited: echolocation 

first; flight first; and tandem origin (where the ancestral bat uses echolocation calls only for 

communication and this develops with the ability to fly). The most promising evidence to 

date to test these hypotheses is from a recent fossil Onychonycteris finneyi, dated at around 

52.5 million years ago (Simmons et al. 2008). Cranial features of this fossil, together with 
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its relatively small cochlea, initially suggest that bats may have evolved powered flight 

prior to evolving the ability to echolocate. However, this finding has since been disputed, 

based on a comparative analysis of stylohyal and tympanic bones (Veselka et al. 2010), 

suggesting that O. finneyi was a flying echolocator. Prior to the discovery of 

Onychonycteris, there was no clear evidence in support of any of the three hypotheses for 

the evolution of echolocation and flight (Speakman 2001), and given the controversy 

surrounding the new fossil, this has not changed. 

 

1.1.7 Coevolution with insects 

There is some evidence that bat echolocation behaviour may have been influenced by 

interactions with other taxa, for example, the arms race between some bat species and their 

tympanate moth prey (which can hear ultrasound) (Fullard 1998). Some bats have evolved 

the use of low echolocation frequencies that are below the range of moth hearing, and this 

enables them to prey on moths. For example, the European free-tailed bat (Tadarida 

teniotis) calls as low as 11 kHz and the spotted bat (Euderma maculatum) calls at around 9 

kHz. Both feed mainly on tympanate insects (Fullard & Dawson 1997; Rydell & Arlettaz 

1994). Hipposiderid and rhinolophid bats that emit very high frequencies tend to eat more 

moths than low-frequency congeners (Bogdanowicz, Fenton, & Daleszczyk 1999; Jones 

1993). Hence, bats may be able to catch tympanate prey by using echolocation calls at 

allotonic frequencies (i.e., by calling at frequencies outside the range of moth hearing) 

(Fenton & Fullard 1979; Schoeman & Jacobs 2003). However, whether bats evolved 

allotonic frequencies primarily to exploit tympanate prey, or initially for other reasons 

associated with improving echolocation performance (e.g., for detecting smaller targets by 

using higher frequencies) is open to question (Waters 2003). In response to the 

echolocation calls of moth-eating bats, some insects in turn have evolved tympanal organs 

(ears) which can detect frequencies with highest sensitivity roughly between 20 and 60 

kHz, and react to these sounds by changing direction or folding their wings and dropping 

out of the flight path of the bat (Jones & Rydell 2003). It is clear that predation by echolo-

cating bats is an important selection pressure shaping insect hearing, because sensitivity to 

ultrasound has evolved in at least six insect orders, including several times independently in 
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moths (Hoy 1998). Janzen (1980) defines coevolution as ‘an evolutionary change in a trait 

of the individuals in one population in response to a trait of the individuals of a second 

population, followed by an evolutionary response by the second population to the change in 

the first’. The evolution of insect hearing followed by the evolution, in response, of a 

stealth detection mechanism by bats, such as the use of allotonic frequencies, or through 

dropping call intensity on approach (Goerlitz et al. 2010), would therefore constitute 

coevolution. 

 

1.1.8 Coevolution with plants 

Similarly, we may be able to gain insight into the influence that flowering, fruiting and 

nectar-producing plants have had on the bat echolocation call structure and vice versa. For 

example, around 1,000 plant species in the Neotropics are pollinated by bats in the family 

Phyllostomidae. Adaptations of the plants to the bats include outward-facing flowers; large, 

sturdy petals with exposed stamens; inconspicuously coloured, strong-smelling, night-

opening flowers; high protein content pollen; and large volumes of nectar, released in small 

doses (Dobat & Peikert-Holle 1985). There is some evidence that bats have tailored their 

echolocation calls to the recognition of the plants they feed on, and it is likely that plants 

have evolved structures, shapes and textures that help bats to locate them and to feed (von 

Helversen & von Helversen 1999; von Helversen, Holderied, & von Helversen 2003; 

Simon et al. 2011). 

 

1.1.9 Genes and echolocation 

Our attempts to understand the evolutionary history of echolocation may soon be best 

served by the burgeoning field of genomics, especially following the sequencing of several 

bat species’ genomes (Myotis lucifugus (Vespertilionidae), Rhinolophus ferrumequinum 

(Rhinolophidae), Carollia perspicillata (Phyllostomidae), and Pteropus vampyrus 

(Pteropodidae)) (International Sequencing Consortium 2011). Two genes have already been 

identified as likely candidates for serving a role in echolocation. A transcription factor 

involved in the neural control of orofacial coordination, known as FOXP2, was identified 

as playing a role in human speech development and language comprehension (Fisher & 
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Marcus 2006). Although it had previously been thought that FoxP2 was highly conserved 

in non-human mammals, studies of this gene in bats have revealed great diversity and 

accelerated evolution compared with in other vertebrates (Li, Wang, et al. 2007). Exons 7 

and 17 show particular diversity, with 17 containing eight non-synonymous mutations in 

bats, whereas it was invariant in the other eutherian mammals considered by Li et al. 

(2007), except for a single non-synonymous mutation in the pig. FoxP2 is known to show 

strong expression in the inferior colliculus of mice (Ferland et al. 2003), a brain region that 

shows enlargement and morphological specialization in bats (Glezer et al. 2004), and which 

is fundamental in bat echolocation (Pollak & Casseday 1989). Recent work (Metzner & 

Zhang) shows that knocking-down FoxP2 expression in the anterior cingulated cortex brain 

region of Hipposideros armiger (Hipposideridae) significantly altered the bats’ ability to 

compensate for Doppler shift, but did not alter the frequency used by stationary bats (i.e., 

without the use of Doppler Shift Compensation). This suggests FoxP2 is most involved in 

controlling call parameters during more complex echolocation tasks (Metzner & Zhang).  

 

The second gene of interest is Prestin, which is known to be the motor protein of cochlear 

outer hair cells (OHCs) (Zheng et al. 2000). It works significantly quicker than other 

cellular motor proteins, and amplifies aural sensitivity up to 100-fold (Liberman et al. 

2002). It is thought to be essential for auditory sensitivity and selectivity, and possibly also 

for high-frequency hearing in mammals (Liberman et al. 2002). When Prestin’s role in bats 

was considered, it was found to have undergone positive selection in the lineage of bats 

leading to the Rhinolophoidea, members of which use long constant frequency echolocation 

calls which compensate for Doppler shift (Li et al. 2008). These bats have an ‘acoustic 

fovea’: a frequency range with extremely fine tuning and sensitivity (Schuller & Pollak 

1979), and it is thought that Prestin may be partly responsible for this (Li et al. 2008). In 

addition, a phylogeny based on Prestin sequences places all echolocating bats as a 

monophyletic clade to the exclusion of the Old World fruit bats (Pteropodidae). This 

replicates the old phylogeny of bats based on morphological characters, but is likely to be 

as a result of convergence in this functional gene (Li et al. 2008). Similarly, a phylogeny 

constructed from Prestin sequences for a selection of mammalian species places the 

bottlenose dolphin alongside the Rhinolophoidea, instead of near its closest relative of the 
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group, the cow (Li et al. 2010; Liu et al. 2010). These results suggest that echolocation, or 

at least high frequency hearing, could be the result of more than one evolutionary origin. 

However, a whole suite of genes are likely to be involved in echolocation, so further 

genetic evidence is necessary to elucidate this point. 

 

Genomic comparisons have the potential to lead to further discoveries of genes involved in 

echolocation, and in combination with the better documentation and understanding of 

echolocation call diversity in bats, to expose exciting breakthroughs in research on the 

evolution of echolocation in bats. 

 

1.1.10 Phylogenetic comparative approach 

In the absence of further candidate genes, a potentially revealing means of studying the 

evolution of echolocation in bats is through the use of phylogenetic comparative methods. 

A review of the diversity in echolocation call structure within the framework of the 

phylogeny of bats has only been formally attempted once, using a family level tree and a 

family level descriptor of echolocation call type (Jones & Teeling 2006). The potential for 

generating further insight using an up-to-date, species level phylogeny and both continuous 

and discrete measures of echolocation call structures for a large number of echolocating bat 

species is vast, as it can help us to understand the extent of phylogenetic constraints on 

echolocation call plasticity, the call structure and ecological niche of the proto-bat, and the 

impact of echolocation call structure on ecological adaptability and species diversification. 

In addition, the results of these analyses may influence ongoing postulations regarding the 

relative timings of the origins of flight and echolocation in bats, and the number of 

evolutionary origins of laryngeal echolocation. 

 

Similar studies have been carried out to look at the vocalisations of other animal groups. In 

1985, in the early days of modern comparative analysis, Ryan & Brenowitz studied the 

relative roles of body size, phylogeny and ambient noise in the evolution of bird song, and 

found that body size and phylogeny played a strong role in determining the emphasised 

frequency of the songs. Devoogd et al. (1993) assessed the relationship between song 
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repertoire size and brain volume (specifically, the high vocal centre) in oscine birds within 

a phylogenetic framework, and they found a significant correlation between them. Ryan & 

Rand (1995) reconstructed túngara frog advertisement calls at ancestral nodes and used the 

results to conduct discrimination experiments using females of each of the túngara species. 

Ricklefs (2003) looked at the causes of patterns of diversification rates in passerine birds 

worldwide and found it likely that varied clades size were a result of random processes and 

extrinsic circumstances rather than intrinsic characteristics such as key innovations. Finally, 

Cardoso & Mota (2007) carried out an assessment of variation and evolutionary similarity 

in the songs of canaries and seedeaters (Serinus), finding that song characteristics were 

evolutionarily labile and largely unrelated to body size. 

 

The varied use of comparative methods in studying vocalisations, and many other 

morphological and behavioural traits, bodes well for its extension to the echolocation calls 

of bats. Echolocation could be seen to have an additional layer of complexity to 

vocalisations made for communication reasons alone, as echolocation call structures must 

respond evolutionarily to the functional pressures associated with sensory tasks, as well as 

morphological and behavioural pressures. Learning more about the interactions between 

ecology and evolutionary history in shaping the huge variety of echolocation calls used by 

modern bats should prove extremely interesting. 

 

1.2 Thesis aims and outline 

The overall aim of this thesis is to understand how echolocation originated and diversified 

in bats, using a large database of echolocation call recordings, an up-to-date supertree, and 

phylogenetic comparative methods that have hitherto not been used in echolocation 

research. To do this, I ask the following research questions: 

 

1. Do the echolocation call structures of bats show phylogenetic patterns consistent 

with the constraints of evolutionary history, rather than present-day ecological 

pressures, and in what manner have echolocation calls evolved? 
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2. What was the structure of the earliest echolocation calls of bats and how did this 

evolve into the diversity of echolocation call structures seen today? 

3. Have any echolocation call types acted as key innovations aiding an increased rate 

of diversification in bats? 

4. What do these analyses tell us about the nature of the evolution of echolocation and 

its impact on other aspects of the evolution of bats? 

 

To answer these questions requires a large amount of echolocation call data, and a dated, 

comprehensive and well-resolved phylogenetic tree to act as a framework for carrying out 

comparative analyses. Chapter 2 describes the collection and measurement of the 

echolocation data, and Chapter 3 describes the construction and dating of a new 

phylogenetic supertree of bats. The following three chapters are analyses concerning the 

research questions above, followed by a set of general conclusions about the state of our 

understanding of the evolution of echolocation in bats. 

 

Chapter 4: Evolutionary constraint in echolocation call structure 

In Chapter 4, I investigate the degree to which echolocation call structure is constrained by 

evolutionary history. The variety of echolocation call structures is greater than would be 

expected if the sounds were shaped purely by the ecological pressures facing extant bats, 

suggesting that evolution has taken different routes in shaping bat calls that function in a 

very similar way. In this chapter I (1) review the variation across the order, (2) assess 

phylogenetic and spatial signal (autocorrelation), (3) estimate the most likely manner of 

evolutionary change, and (4) determine the best model of evolution (between Brownian 

motion (BM), Ornstein-Uhlenbeck (OU), and Early Burst (EB)), for eight echolocation call 

parameters. I find a high degree of convergent evolution in echolocation call functionality, 

with differences in call structure suggestive of independent evolutionary pathways and a 

constraining force. I conclude that all call parameters show greater influence from 

evolutionary history, a lower degree of influence from environmental conditions, and a 

tendency towards species-specific, punctuational, and directional evolution. 
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Chapter 5: The origin of echolocation calls in bats: what did the first echolocation 

calls sound like? 

In Chapter 5, I consider the evolutionary origin of echolocation and the subsequent 

diversification of bat echolocation calls. I use present-day echolocation call diversity to (1) 

reconstruct the evolutionary history of echolocation call structure using contemporary 

phylogenetic comparative methods, (2) consider the other evidence for ancestral 

echolocation call structure, and (3) infer the ancestral bat’s habitat, wing morphology, 

foraging style, and prey type from the predicted ancestral call type. All ancestral 

reconstruction techniques, discrete analyses and further evidence suggest an ancestral call 

type that was fairly short in duration, multi-harmonic, and narrowband as the ancestral 

echolocation call of bats. This call type suggests that the proto-bat was a slow and 

manoeuvrable flier with an opportunistic and omnivorous diet and that it may have used a 

perch-hunting foraging strategy. 

 

Chapter 6: Which echolocation call structures are ‘key innovations’ that promote 

diversification? 

In Chapter 6, I explore whether the bat phylogeny shows any evidence of ‘up-shifted’ 

clades that have undergone increased rates of diversification. I ask whether these clades are 

up-shifted as result of the echolocation call types used by the species they contain, and I 

explore the possible ecological models that might substantiate a link between echolocation 

call types and increased speciation rates. I find that there were two significant up-shifts in 

speciation rate, one at the root of a clade of 80 species of Old World fruit bat 

(Pteropodidae), and the other at the root of the New World fruit bat sub-family 

Stenodermatinae (Phyllostomidae). I also find that call types 1 and 9 (vision, and a 

multiharmonic, short duration, high bandwidth call), used by the two up-shifted clades, 

show increased rates of speciation compared to other call types. Analysis of speciation rates 

for all echolocation call types also highlights four other call types as causing increased 

speciation rates. I suggest that these echolocation call types should be considered key 

innovations, as (1) they are associated with increased rates of diversification; (2) I put 

forward an ecological model explaining the link between the traits and increased speciation; 

and (3) an analogous trait in toothed whales shows a similar pattern of diversification. 
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2 Chapter 2: General Methods 

2.1 Introduction 

The analyses described in chapters 4 to 6 are based on two main sets of data; a database of 

bat echolocation calls (EchoBank) and a new phylogenetic supertree of the bats (see 

Chapter 3). This chapter details how the first of these datasets, EchoBank, was compiled, 

and how measurements of search phase echolocation calls were extracted from the 

recordings it contains. Any methods and data specific to each of the analyses are described 

within each of the analysis chapters. 

 

2.2 Call consortium 

Since echolocation was discovered in the 1940s (Griffin & Galambos 1941), the calls of 

hundreds of species of bats have been recorded. Recordings have largely remained in the 

possession of recordists, or in small, incomplete online databases (see Table 2.1), the 

largest of which allows only listening access rather than the ability to view the spectral 

content of recordings using sound analysis software. Among the bat echolocation 

community, interest in a centralised online database, or reference library, has been growing 

as recordings accumulate (Korine & Kalko 2001). Research looking at echolocation in a 

phylogenetic, rather than geographic or purely ecological context, has been hampered by 

the time and cost involved in collecting echolocation calls from a group of related, yet 

perhaps widely dispersed, species. The nature of the analyses in this thesis is such that large 

numbers of calls representing a wide sample of bat families, genera and species, distributed 

across the world, were required. 
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Library Name Citation Number 

of 

Records 

Number of 

Named 

Species 

Recording 

Method 

British Sound Archive British Sound 

Archive, 2008 

~700 139 time expansion 

www.batcalls.org Wenzel 2008 91 42 time expansion 

BatCall Museum of 

Southwestern 

Biology, 2008 

3821 22 frequency division 

Wyoming Bat Call 

Library 

Keinath 2008 73 14 frequency division 

Pacific Northwest Bat 

Call Library 

Erikson & West 

2008 

33 10 frequency division 

South-eastern 

Australian Bat Call 

Library 

Herr & Klomp 

2008 

31 9 frequency division 

Macaulay Library Cornell Lab of 

Ornithology, 2008 

72 1 time expansion 

Table 2.1: Sound libraries containing bat echolocation call recordings.  Only calls recorded using the 

time expansion or real-time method are suitable for detailed analyses - see section 2.2.2 for an 

explanation of the terms ‘time expansion’, ‘real-time’ and ‘frequency division’. 

 

To create such a collection, a call consortium (for members see Table 2.2) was formed from 

a group of bat researchers who had recorded the echolocation calls of large numbers of bat 

species using methods appropriate for detailed sound analysis (see section 2.3). The call 

consortium agreement states that each consortium member will contribute their calls to the 

database, known as EchoBank, and grant access to the original sound files to all other 

members. Publications that make use of the recordings must be agreed on by all members. 

New members, who are often recommended by original members, are added only in the 

absence of objections from existing members, as this effectively provides a ‘peer review’ 

system of recordist quality, ensuring that species are competently identified and that 

recordings are made using suitable techniques and equipment. 
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Name Institution 

Michel Barataud Independent researcher, France 

Roger Coles University of Queensland, Australia 

Christian Dietz University of Tuebingen, Germany 

Brock Fenton University of Western Ontario, Canada 

Dai Fukui Hokkaido University, Japan 

David Jacobs University of Cape Town, South Africa 

Richard Jenkins Madagasikara Voakajy, Madagascar 

Nancy Jennings Dotmoth Ecological Consultancy, UK 

Gareth Jones University of Bristol, UK 

Elisabeth Kalko University of Ulm, Germany 

Alanna Collen Zoological Society of London, UK 

Martin Obrist Swiss Federal Institute for Forest, Snow and Landscape Research, 

Switzerland 

Stuart Parsons University of Auckland, New Zealand 

Sebastien Puechmaille University College Dublin, Republic of Ireland 

Table 2.2: Contributors to the EchoBank Call Consortium. 

 

2.3 Recording echolocation calls 

There are a wide range of equipment types, data capture techniques, and bat handling 

methods that can affect the quality and comparability of echolocation call reference 

recordings for a call library. In general, sound entering a microphone is captured and 

processed by a detector and recorded onto a media type in a recorder. Sets of equipment 

may keep some or all of these elements separate, whereas others incorporate all the 

elements into a single device. Detectors may have options for the data capture stage, such 

as time expansion factor, sampling rate and sample size. Microphones can vary in their 

frequency response. Recorders can vary in the media type on to which they record. 

Different media types may or may not require digitisation. Those that do are analogue and 

vary in their susceptibility to deterioration with age, and those that do not are digital and 

may be able to record various file types. 
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Additionally, a recording of a bat’s calls can be made in several different ways and must 

take into account the bat’s echolocation style.  The release type specifies the way in which 

the bat is being handled as the recording is made and the surroundings indicate the degree 

of clutter around the bat. 

 

The following show the impact that choices in each of these italicised categories can have 

on the recording, and the range that exist within the EchoBank database: 

 

1. Equipment and data capture 

a. Detector 

EchoBank contains recordings from 10 different detectors made by four different 

manufacturers (see Table 2.3). The data capture settings below determine the differences 

between these detectors. 
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Table 2.3: Detectors, recording devices and microphones used to make recordings stored in EchoBank. DAQ = Data Acquisition; DAT = Digital Audio 

Tape.

Detector Recording Device Media Microphone Recording 

Method 

Frequency 

Response (kHz) 

Reference 

UltraSound Advice S-25 Laptop with DAQ card Hard Disk Integrated Time expansion 10-180 Lemasson et al., 

2005 

UltraSound Advice S-25 Sony WM-D6C Cassette Tape Integrated Time expansion 10-180 Lemasson et al., 

2005 

UltraSoundGate 416-200 Laptop no DAQ card Hard Disk Avisoft 

CM16/CMPA 

Time expansion 20-370 Specht, 2011 

UltraSoundGate Unknown Laptop no DAQ card Hard Disk AKG Time expansion Unknown - 

Laar Bridge Box Sony TCD-D7 DAT Tape AKG Time expansion 20-170 Budenz, 2009 

Pettersson D240 Sony TCD-D100 DAT Tape Integrated Time expansion 10-120 Alana Ecology, 

2011 

Pettersson D240X NET MZ-N510 Type S MiniDisc Integrated Time expansion 10-120 Pettersson, 2011 

Pettersson D240X Sony TCD-D100 DAT Tape Integrated Time expansion 10-120 Pettersson, 2011 

Pettersson D960 Sony WM-D6C Cassette Tape Integrated Time expansion 10-150 Arak & Eiriksson, 

1992 

Pettersson D980 Laptop with DAQ card Hard Disk Integrated Time expansion 10-200 Alana Ecology, 

2011 

Pettersson D980 Marantz CP 230 Cassette Tape Integrated Time expansion 10-200 Alana Ecology, 

2011 

Pettersson D980 Sharp MD MiniDisc Integrated Time expansion 10-200 Alana Ecology, 

2011 

Pettersson D980 Sony TCD-D8 DAT Tape Integrated Time expansion 10-200 Alana Ecology, 

2011 

Pettersson D1000X Integrated in bat 

detector 

Flash Card Integrated Direct sampling 5-307.2 Pettersson, 2011 

University of Tuebingen PC 

Tape 

Integrated Unknown Integrated Time expansion 18-200 Koblitz, 2010 
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i. time expansion factor 

Echolocation calls range in frequency from around 9 kHz (Leonard & Fenton 1984) to 

around 212 kHz (Fenton & Bell 1981). The upper limit of human hearing is about 20 kHz 

(Pumphrey 1950), so techniques have been developed to record the high frequency sounds 

of bats as audible sounds. These techniques include time expansion, frequency division, 

heterodyne, and real-time recordings. Recordings of echolocation calls in EchoBank were 

recorded using either time expansion or real-time techniques. Time expansion records high 

frequency sound as audible to humans by slowing down the recording by a pre-determined 

‘time expansion factor’ (most often 10), whereas real-time recordings use analogue-to-

digital cards that operate at high sampling rates to record high frequencies directly, so they 

remain largely inaudible unless played back at reduced speed. Both of these techniques 

yield high quality sound recordings that most reliably reproduce the original sound, and are 

suitable for detailed sound analysis, though the true signal will always be illusory (Pye 

1993). 

 

The two other methods used to record bat sounds, frequency division and heterodyne, are 

not suitable for detailed sound analysis (see Parsons, Boonman, & Obrist, 2000). Frequency 

division makes high frequency sound audible by dividing the frequency by a predetermined 

ratio, so using a factor of 10 would make an inaudible frequency of 120 kHz into an audible 

frequency of 12 kHz. This method can produce a misleading output signal that does not 

show harmonic content reliably, and also typically contains no relative amplitude 

information (Parsons et al. 2000). Heterodyning produces a sound that is the difference 

between the frequency set on the heterodyne recorder and the frequency entering the 

microphone, and is therefore not a reliable representation of the original sound (Parsons et 

al. 2000). 

 

Time expansion factors in EchoBank range from 1 (≡ real-time) through 5, 8, 10, 15, and 

16, to 20. Approximately 55% of recordings were made at factor 10 and a further 35% at 

factor 1. Using lower time expansion factors requires a higher sampling rate (due to the 
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Nyquist-Shannon sampling theorem, explained below), and a faster processor, which 

allows greater precision. Once sampling rate (see below) has been accounted for, time 

expansion factor has no impact on the quality or comparability of the calls (L. Pettersson, 

Personal Communication, 2010). 

 

ii. sampling rate 

The sampling rate (kHz) is the frequency with which the sound is sampled. In order to 

sample a complete sound, the sampling rate must be at least twice the value of the highest 

frequency in the sound (the Nyquist-Shannon sampling theorem). If it is not, aliasing will 

occur, where different aspects of the signal become indistinguishable from one another 

(Nyquist 1928). 

 

Higher sampling rates produce more detailed recordings, similar to resolution in 

photographic images, and also improve the signal-to-noise ratio of the recording. Whilst all 

recordings made above the Nyquist limit are accurate, recordings with higher frequencies 

are more precise. 

 

In EchoBank, sampling frequencies used range from 11.025kHz to 500kHz. Sampling 

frequency is the number of samples per second as the recording is made, so the sound made 

by the bat is actually sampled at this rate multiplied by the time expansion factor. For 

example, 5 seconds of bat calls might be time-expanded 10 times, resulting in a 50 second 

recording, for which each second is sampled at 44,100 times, or 44.1kHz. This means the 

original 5 seconds of sound have been sampled 441,000 times per second, or 441kHz. 

Taking time expansion into account, the sampling frequencies used in EchoBank range 

from 192kHz to 882kHz, with ~45% of recordings made with an effective sampling 

frequency of 441kHz, and a further ~40% at 500kHz, 384kHz, and 250kHz. A recording 

may be subjected to a further round of sampling as it reaches the recording device. 

However, all recording devices used for EchoBank recordings that are independent of the 
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bat detector have a sampling rate of at least 44.1kHz, and given that the recordings have 

been time expanded, none exceed the Nyquist limit. 

 

Recordings made at different sampling rates are broadly compatible as long as the sampling 

rate is above the Nyquist limit and anti-aliasing filters are adequate (L. Pettersson, Personal 

Communication, 2010). 

 

iii. Sample size 

The sample size is the amount of computer memory allocated to each sample of the sound 

and is measured in bits. Eight bits are equivalent to 1 byte, so a recording of 1 second in 

length made at a sampling frequency of 500kHz and a bit rate of 16 has a file size of 

500,000 * 16 = 8,000,000 bits ≡ 1,000,000 bytes ≡ 0.95Mb (since 1Mb = 1024
2 

bytes). The 

bit rate (kbps – kilobits per second) of this file is the sample size multiplied by the sample 

rate (kHz): 16 * 500 = 8,000kbps. 

 

All but three recordings contained in EchoBank have a sample size of either 8 or 16 bits 

(the others are 24 bits). 16 bit sample sizes give greater precision and less noise than 8 bit 

sample sizes, but the two are comparable nonetheless (L. Pettersson, Personal 

Communication, 2010). 

 

b. Microphone 

Table 2.3 shows that most of the microphones used in making recordings in EchoBank 

were integrated within the bat detector. Microphones vary in many ways, but the major 

impact to recordings of bat echolocation calls are differences in the frequency response of 

different microphones. 

 

i. frequency response 

The frequency response of a microphone is a measure of the output produced from a given 

input. A frequency response curve can be made by testing the volume (in decibels) of the 



  

  

  Chapter 2  

  

  

  43 

output for a given input volume over a range of frequencies (a Bode plot). Microphones 

vary in their responses to different frequencies and this can affect measures of relative 

amplitude both within recordings and between microphones (see Table 2.3 for frequency 

responses of detectors used for recordings in EchoBank). 

 

c. Recorder 

Nine different models of recorder were used in making the recordings in EchoBank: two 

cassette recorders, three DAT (Digital Audio Tape) recorders, two MiniDisc recorders, and 

two high-speed digital recorders. Recorder type can influence the quality and comparability 

of the recordings through the media type upon which it relies. 

 

i. media type 

Recordings in EchoBank were recorded onto cassette, DAT, MiniDisc, flash memory card 

or hard disk. Approximately 70% were recorded onto flash memory or hard disk. Cassettes 

and DATs are prone to degeneration with age and require digitization (outlined in section 

2.4). Data compression methods are used with some media types to reduce the amount of 

storage space used by a recording. Some compression techniques, known as ‘Lossy data 

compression’ are less suitable for recording echolocation calls to the quality needed for 

detailed call analysis because they remove frequencies above the upper limit of human 

hearing, but others (Lossless data compression) encode all the information in a way that can 

be perfectly reconstructed. Where lossy data compression has been in use, as is often the 

case in MiniDisc recordings, recordings must be made using time expansion and for 

relatively low frequency calls, to ensure aspects of the call are not lost (Specht 2011b).  

 

2. Bat handling 

Aside from the range of technical choices available to a bat call recordist, there are several 

practical procedures to follow and choices to make when recording bat calls. The best 

methods to use depend on the echolocation style used by the bat and the surroundings in 

which the bat normally echolocates. 
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a. Echolocation style 

Bats in the families Hipposideridae (Old World leaf-nosed bats) and Rhinolophidae 

(horseshoe bats) as well as Pteronotus parnellii (Mormoopidae – moustached bats) in the 

New World, compensate for Doppler shifts on their echolocation calls induced by motion 

by altering the frequency of the emitted call. This causes the echoes of interest returning to 

the bat to be at a steady frequency; that which is best detected by the acoustic fovea 

(Schuller & Pollak 1979). Stationary bats do not normally alter their call frequency as 

Doppler shifts are less likely. This frequency is known as the resting frequency and to 

record it, bats with Doppler Shift Compensation (DSC) should be recorded for 

approximately 60 – 120 seconds whilst they are hanging free from a cave roof, hanging in a 

bat bag, or being held in the hand. It should be noted that these calls will not be 

representative of the entire repertoire of the bat, since in flight calls will be shifted 

downwards in frequency. 

 

Species belonging to all other bat families do not compensate for Doppler shift and produce 

good quality calls when in free flight. They should be released approximately 10 metres 

from the bat detector, at approximately 2 metres above ground level. The microphone is 

aimed at the bat for as long as it is in the range of the bat detector, to collect a sequence of 

echolocation calls. Calls recorded immediately after the bat’s release are ignored, to avoid 

echolocation calls that are not representative of free flight call types. 

 

b. Surroundings 

Bats alter the structure of their echolocation calls according to the surroundings in which 

they are flying (Schnitzler & Kalko 2001). In open habitats with few objects to avoid, bats 

use lower frequencies, smaller bandwidths, longer call durations, and fewer harmonics. In 

cluttered habitats, bats use higher frequencies, larger bandwidths, shorter call durations and 

pulse intervals, and more harmonics. Most bats are adapted to spend most of their time in 

habitats with a certain amount of clutter, producing mainly one kind of call structure in 
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search phase flight (Schnitzler & Kalko 2001). It is this kind of call structure, reflecting the 

bat’s normal behaviour that should be recorded for use in a reference library. This can be 

achieved most easily by recording bats in the habitat in which they are caught. The kind of 

surroundings should be noted: EchoBank categories include open, edge, cluttered, in roost, 

and roost emergence stating whether or not these were over water. Open habitats contain 

very few obstacles, edge habitats often have a tree line on one side of the foraging area but 

are otherwise open, and cluttered habitats, such as forests, have a large number of different 

sized obstacles. It is useful to know whether recordings are made over water or not, as 

water can cause interference in the recording (Kalko & Schnitzler 1989). 

 

c. Release type 

As mentioned above, when making reference recordings bats with DSC should be 

stationary and all other species should be in free flight. Recordists use a range of release 

techniques to get good quality recordings, depending on circumstances. Release types used 

for recordings in EchoBank include: in hand, in bat bag, free stationary, in net (all 

stationary ‘release types’), hand release, zip line, light tagged, flight cage, free flying, 

ground release, artificial roost site, test room/laboratory, leaving roost (all in flight release 

types), in hand followed by free flight, free flying and hanging (mixed stationary and in 

flight release types). These terms are explained in Table 2.4. 
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Release Type Explanation 

In Hand Bat is recorded whilst held in the hand. 

In Bat Bag Bat is recorded whilst hanging or lying in a bat bag. 

Free Stationary Bat is recorded whilst hanging or lying without restraint. 

In Net Bat is recorded whilst caught in a net. 

Hand Release Bat is recorded flying out of the hand until out of range of the 

detector. 

Zip Line Bat is recorded whilst tethered to a line allowing it to fly back 

and forth but not escape. This technique is particularly used 

when the bat is needed after the echolocation call has been 

recorded. 

Light Tagged Bat is recorded flying out of the hand but has a glowing light tag 

attached to its underside to allow the recordist to follow it in 

flight for as long as possible. 

Flight Cage Bat is recorded flying in a flight cage. 

Free Flying Bat is recorded in free flight. 

Ground Release Bat is recorded flying off the ground until out of range of the 

detector. 

Artificial Roost Site Bat is recorded hanging or lying in an artificial roost. 

Test Room/Laboratory Bat is recorded flying in a test room/laboratory. 

Leaving Roost Bat is recorded in free flight whilst leaving its roost. 

In Hand followed by Free 

Flight 

Bat is recorded in the hand and then flying out of the hand. 

Free Flying and Hanging Bat is recorded both free flying and hanging. 

Table 2.4: Explanations for release types (what the bat is doing during the recording) of recordings 

stored in EchoBank.  

 

2.4 Digitisation 

Echolocation call recordings in EchoBank had been made onto compact cassette tape, 

digital audio tape (DAT), and as digital wave files stored on hard disk drives and 

MiniDiscs. Compact cassette tape and DAT recordings were played through a portable 

cassette player and an external sound card and were then digitised onto an external hard 
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disk drive using BatSound (Pettersson 2008) or Avisoft-RECORDER (Specht 2008) (sound 

analysis software). Digital wave files were simply transferred to the external hard disk drive 

for storage. 

 

2.5 Field methods 

An assessment of the geographic and taxonomic coverage of the echolocation call 

recordings in EchoBank in September 2008 showed a paucity of data from Australia and 

Papua New Guinea (see Figure 2.1 – made in R (The R Core Development Team, 2010)), 

and from the many endemic taxa in that region, such as the genera Vespadelus, 

Chalinolobus, Nyctophilus and Scotorepens (Chiroptera: Vespertilionidae). I expected to 

receive further data from recordists working in South America and Africa, leaving Papua 

New Guinea and Australia the most under-represented areas. The lack of call recordings 

made of species found in this region is due to the popularity of the frequency division 

technique of call recording amongst Australian bat researchers, as opposed to the time 

expansion or real-time methods (R. Coles, Pers. Comm., 2009). 
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Figure 2.1: Top: The proportion of species held in EchoBank in September 2008 (when geographic 

coverage was assessed) out of those present in any given range according Grenyer et al. (2009).  Bottom: 

The proportion of species held in EchoBank in November 2010 out of those present in any given range 

according to Grenyer et al. (2009). The map is comprised of overlapping species’ range maps for 899 

echolocating bat species, and each 250km
2
 grid square is shaded according to the proportion of species 

present in that grid square that are represented in EchoBank. Redder areas of the map show good 

EchoBank coverage relative to species diversity, whereas paler blue areas show poor EchoBank 

coverage. 
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I conducted fieldwork to make recordings of the under-represented taxa mentioned above, 

and any other species caught. This fieldwork took place in the Southern Highlands Province 

of Papua New Guinea and in Queensland and New South Wales, Australia. Bats were 

caught using harp traps and mist nets, and by hand in caves. They were identified to species 

level, with identities confirmed by experts Dr Kris Helgen in Papua New Guinea 

(Smithsonian Institution, Washington DC, USA), Dr Lindy Lumsden in New South Wales 

(Arthur Rylah Institute, Victoria State Government, Australia) and Dr Roger Coles in 

Queensland (University of Queensland, Australia). The bats were recorded at night using a 

Pettersson D1000X bat detector with integrated microphone and compact flash card at a 

sampling rate of 384 kHz and time expansion factor 1 (real-time). Bats in the families 

Hipposideridae (Old World leaf-nosed bats) and Rhinolophidae (horseshoe bats) were 

recorded for approximately 60 – 120 seconds whilst they were hanging free from a cave 

roof, hanging in a bat bag, or being held in the hand. Species belonging to all other bat 

families were released approximately 10 metres from the bat detector, at approximately 2 

metres above ground level in the habitat in which they were caught. The microphone was 

aimed at the bat for as long as it was in range, to collect a sequence of echolocation calls. 

Calls recorded immediately after the bat’s release were ignored, to avoid echolocation calls 

that are not representative of free flight call structures. The metadata data described in 

section 2.6 were also recorded. The species recorded are listed in Table 2.5. Two species 

are thought to be new to science, and, although they are in EchoBank, they could not be 

included in my analyses as they are not yet listed in Mammal Species of the World 

(Simmons 2005). Following this fieldwork, and the receipt of recordings from South 

America and Africa, the geographic coverage of the recordings in EchoBank was much 

more even (see Figure 2.1). 
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Family Genus Species Country 
Sample 

size 

In 

analysis? 

Emballonuridae 

Emballonura dianae Papua New Guinea 15 Yes 

Emballonura furax Papua New Guinea 8 Yes 

Tadarida australis Australia 3 Yes 

Hipposideridae 

Aselliscus tricuspidatus Papua New Guinea 1 Yes 

Hipposideros ater Papua New Guinea 1 Yes 

Hipposideros calcaratus Papua New Guinea 12 Yes 

Hipposideros cervinus Papua New Guinea 5 Yes 

Hipposideros maggietaylorae Papua New Guinea 5 Yes 

Hipposideros wollastoni Papua New Guinea 3 Yes 

Miniopteridae 
Miniopterus australis Australia 5 Yes 

Miniopterus sp. nov. Papua New Guinea 1 No 

Rhinolophidae 

Rhinolophus euryotis Papua New Guinea 15 Yes 

Rhinolophus megaphyllus Australia 5 Yes 

Rhinolophus sp. nov. Papua New Guinea 2 No 

Vespertilionidae 

Chalinolobus gouldii Australia 7 Yes 

Chalinolobus morio Australia 3 Yes 

Myotis macropus Australia 1 Yes 

Nyctophilus geoffroyi Australia 4 Yes 

Vespadelus darlingtoni Australia 1 Yes 

Vespadelus regulus Australia 3 Yes 

Vespadelus vulturnus Australia 9 Yes 

Table 2.5: Species caught during fieldwork in Papua New Guinea and Australia in 2009. 

 

2.6 The EchoBank database 

EchoBank is a Microsoft Access database storing recordings and metadata. The metadata 

categories pertaining to each recording are shown in Table 2.6. The taxonomic contents of 

EchoBank can be seen in Appendix A. 



  

  

  Chapter 2  

  

  

  51 

In
d

iv
id

u
a

l Life Stage  

Sex 

Species 

Reproductive Status 

R
ec

o
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File name 

Surroundings (see section 2.3, 

sub-section 2b) 

Release Type (see section 2.3, 

sub-section 2c) 

Date 

Time 

Country 

Locality 

Latitude 

Longitude 

Sampling Rate 

Bit Rate 

Filters Used 

R
ec

o
rd

is
t 

Title 

First Name 

Last Name 

Institution 

Department 

Email Address 

Website 

E
q

u
ip

m
e
n

t 

Bat Detector 

Recording Device 

Microphone 

Media Type 

Other (filters, calibrations, etc.) 

Other Notes 

Table 2.6: Metadata collected and stored in EchoBank. 
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2.7 Parameterisation 

Bat echolocation calls can be viewed using sound analysis software programmes, which 

display sound as two-dimensional images. These images can be sonograms (or 

spectrograms) of frequency against time, or oscillograms of amplitude against time, or 

power spectra of power (energy/time) against frequency. Commonly, sonograms display 

frequency against time with amplitude indicated using a colour scale. Using these images, 

various parameters of each echolocation call can be measured. 

 

Before the echolocation calls in EchoBank were measured, each of the 5784 recordings in 

the database was checked for quality. Recordings with too many species present, or 

containing two species with overlapping echolocation call frequencies, were removed. The 

time expansion factor was checked, and the time-in-file of any social calls, approach phase 

calls, or feeding buzzes was noted, since only search phase calls (when the bat is not 

approaching an object: see Figure 2.2) were measured. 

 

 

 

Figure 2.2: A sequence of Myotis tricolor split into search phase, approach phase and feeding buzz, 

showing the different call types used for each task. 

 



  

  

  Chapter 2  

  

  

  53 

I used a customised version of SonoBat v3 (Szewczak 2010) to measure the 76 

echolocation call parameters shown in Table 2.7 for the harmonic containing the most 

energy in each call. These parameters are taken as standard by SonoBat. 

 

Parameter Explanation 

PrecedingIntrvl Time between the current call and the previous call (milliseconds). 

CallsPerSec Mean calls per second of the recording or section of recording displayed. 

The accuracy of the reported value depends both on the quality of the 

recording and the absence of other bats and other signals in the recording. 

Any other signal components that pass through the discrimination logic 

will be counted as calls and contribute to (and reduce the accuracy of) the 

calculation. 

CallDuration Duration of the call (milliseconds).  

Fc Characteristic frequency of the call. Determined by finding the point in the 

final 40% of the call having the lowest slope or exhibiting the end of the 

main trend of the body of the call (kHz).  

HiFreq Highest apparent frequency of the call (kHz).  

LowFreq Lowest apparent frequency of the call (kHz).  

Bndwdth Total frequency spread of the call. Calculated from the difference between 

the highest and lowest frequency (kHz).  

FreqMaxPwr The frequency of the maximum amplitude of the call (kHz).  

PrcntMaxAmpDur Percentage of the entire call duration at which the maximum amplitude 

occurs.  

TimeFromMaxToFc Time from the point at which the maximum amplitude occurs to the point 

in the call of the characteristic frequency (ms).  

FreqKnee Frequency at which the initial slope of the call most abruptly transitions to 

the slope of the body of the call (kHz).  

PrcntKneeDur Percentage of the entire call duration at which the knee occurs, i.e., the 

point at which the initial slope of the call most abruptly transitions to the 

slope of the body of the call.  

StartF Frequency of the start of the call. Typically the same point as the highest 

frequency, but different if the call initially rises in frequency (kHz).  

EndF Frequency of the end of the call. Typically the same point as the lowest 

frequency, but different if the call ends with a rise in frequency (kHz).  
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DominantSlope Slope of the longest sustained trend in slope of the call. Determined by 

finding the segment of the call having the minimum residue for a linear 

regression of a segment of the call of 20% the duration of the call 

(kHz/ms).  

SlopeAtFc Instantaneous slope at the point of the characteristic frequency (kHz/ms).  

StartSlope Slope at the start of the call, calculated from the first 5% of the call 

duration (kHz/ms).  

EndSlope Slope at the end of the call, calculated from the final 5% of the call 

duration (kHz/ms).  

SteepestSlope Steepest slope of the call, calculated from a linear regression of a segment 

of 10% the duration of the call (kHz/ms).  

LowestSlope Lowest slope of the call, calculated from a linear regression of a segment 

of 10% the duration of the call (kHz/ms).  

TotalSlope Total slope of the call, calculated from the difference in frequency and 

time from the point of highest frequency to the point of the characteristic 

frequency (kHz/ms).  

HiFtoKnSlope Slope of the call calculated from the difference in frequency and time from 

the point of highest frequency to the point of the knee (kHz/ms).  

KneeToFcSlope Slope of the call calculated from the difference in frequency and time from 

the point of the knee to the point of the characteristic frequency (kHz/ms).  

CummNmlzdSlp Average of the instantaneous slopes of the call (kHz/ms).  

HiFtoFcExpAmp Amplitude parameter of an exponential fit of the call from the point of high 

frequency to the point if the characteristic frequency.  

HiFtoFcDmp Damping parameter of an exponential fit of the call from the point of high 

frequency to the point if the characteristic frequency.  

KnToFcExpAmp Amplitude parameter of an exponential fit of the call from the point of the 

knee to the point if the characteristic frequency.  

KnToFcDmp Damping parameter of an exponential fit of the call from the point of the 

knee to the point if the characteristic frequency.  

HiFtoKnExpAmp Amplitude parameter of an exponential fit of the call from the point of the 

high frequency to the point if the characteristic frequency.  

HiFtoKnDmp Damping parameter of an exponential fit of the call from the point of the 

high frequency to the point if the characteristic frequency.  

FreqLedge Frequency of the ledge, i.e., the most abrupt transition to the most extended 

flattest slope section of the body of the call preceding the characteristic 

frequency, also referred to as the “ledge” of the call (kHz).   
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LedgeDuration Duration of the ledge,  i.e., the most extended flattest slope section of the 

body of the call preceding the characteristic frequency (ms). 

FreqCtr Frequency at the center of the duration of the call (kHz).  

Fbak32dB Frequency of the call 32 dB below the point of maximum amplitude of the 

call, and preceding the point of maximum amplitude of the call (kHz).  

FFwd32dB Frequency of the call 32 dB below the point of maximum amplitude of the 

call, and after the point of maximum amplitude of the call (kHz).  

Fbak20dB Frequency of the call 20 dB below the point of maximum amplitude of the 

call, and preceding the point of maximum amplitude of the call (kHz).  

FFwd20dB Frequency of the call 20 dB below the point of maximum amplitude of the 

call, and after the point of maximum amplitude of the call (kHz).  

Fbak15dB Frequency of the call 15 dB below the point of maximum amplitude of the 

call, and preceding the point of maximum amplitude of the call (kHz).  

FFwd15dB Frequency of the call 15 dB below the point of maximum amplitude of the 

call, and after the point of maximum amplitude of the call (kHz).  

Fbak5dB Frequency of the call 5 dB below the point of maximum amplitude of the 

call, and preceding the point of maximum amplitude of the call (kHz).  

FFwd5dB Frequency of the call 5 dB below the point of maximum amplitude of the 

call, and after the point of maximum amplitude of the call (kHz).  

Bndw32dB The total bandwidth covered from the point of the call 32 dB below and 

before the point of maximum amplitude and the point of the call 32 dB 

below and after the point of maximum amplitude of the call (kHz).  

Bndw20dB The total bandwidth covered from the point of the call 20 dB below and 

before the point of maximum amplitude and the point of the call 32 dB 

below and after the point of maximum amplitude of the call (kHz).  

Bndw15dB The total bandwidth covered from the point of the call 15 dB below and 

before the point of maximum amplitude and the point of the call 32 dB 

below and after the point of maximum amplitude of the call (kHz).  

Bndw5dB The total bandwidth covered from the point of the call 5 dB below and 

before the point of maximum amplitude and the point of the call 32 dB 

below and after the point of maximum amplitude of the call (kHz).  

DurOf32dB The duration of the call from the point of the call 32 dB below and before 

the point of maximum amplitude and the point of the call 32 dB below and 

after the point of maximum amplitude of the call (ms).  

DurOf20dB The duration of the call from the point of the call 20 dB below and before 

the point of maximum amplitude and the point of the call 32 dB below and 

after the point of maximum amplitude of the call (ms).  
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DurOf15dB The duration of the call from the point of the call 15 dB below and before 

the point of maximum amplitude and the point of the call 32 dB below and 

after the point of maximum amplitude of the call (ms).  

DurOf5dB The duration of the call from the point of the call 5 dB below and before 

the point of maximum amplitude and the point of the call 32 dB below and 

after the point of maximum amplitude of the call (ms).  

Amp1stQrtl Total amplitude of the first quartile of the call (relative units).  

Amp2ndQrtl Total amplitude of the second quartile of the call (relative units).  

Amp3rdQrtl Total amplitude of the third quartile of the call (relative units).  

Amp4thQrtl Total amplitude of the fourth quartile of the call (relative units).  

Amp1stMean Mean of the first quartile amplitude (relative units).  

Amp2ndMean Mean of the second quartile amplitude (relative units).  

Amp3rdMean Mean of the third quartile amplitude (relative units).  

Amp4thMean Mean of the fourth quartile amplitude (relative units).  

LnExpA_StartAmp Amplitude parameter of an exponential fit of the time-amplitude trend of 

the call from the start of the call to the point of maximum amplitude.   

LnExpB_StartAmp Damping parameter of an exponential fit of the time-amplitude trend of the 

call from the start of the call to the point of maximum amplitude.   

AmpStartLn60ExpC Time parameter of an exponential fit of the time-amplitude trend of the call 

from the start of the call to the point of maximum amplitude.   

LnExpA_EndAmp Amplitude parameter of an exponential fit of the time-amplitude trend of 

the call from the point of maximum amplitude to the end of the call.   

LnExpB_EndAmp Damping parameter of an exponential fit of the time-amplitude trend of the 

call from the point of maximum amplitude to the end of the call.   

AmpEndLn60ExpC Time parameter of an exponential fit of the time-amplitude trend of the call 

from the point of maximum amplitude to the end of the call.   

AmpK@start Slope of a logarithmic plot of the time-amplitude trend of the call from the 

start of the call to the point of maximum amplitude (kHz/ms).   

AmpK@end Slope of a logarithmic plot of the time-amplitude trend of the call from the 

point of maximum amplitude to the end of the call (kHz/ms). 

AmpKurtosis Kurtosis of the time-amplitude trend.  

AmpSkew Skew of the time-amplitude trend.  

AmpVariance Variance of the time-amplitude trend.  

AmpMoment Moment of the time-amplitude trend.  

AmpGausR2 R-squared of a Gaussian fit of the time amplitude trend.  
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Quality Quality rating (0 to 1) of the call based on the total points of the sonogram 

above a threshold value. SonoBat uses this synthesised measure to assist in 

the call trending analysis of strong and weak call signals.  

HiFminusStartF High frequency minus start frequency. This measure may be used as a 

quality control check to sort and reject improperly trended calls. For 

typical frequency modulated calls, a value greater than zero (i.e., start 

frequency less than high frequency) may indicate an improperly trended 

call (kHz).  

FcMinusEndF Characteristic frequency minus start frequency. This measure may be used 

as a quality control check to sort and reject improperly trended calls. Use 

as appropriate for different types of calls. For example, most calls from the 

genus Myotis should have a positive value for this measure indicating the 

end frequency is less than the characteristic frequency. A negative value 

might indicate an improper trend as the result of a poor signal or excessive 

echo obscuring the end of the call (kHz). 

RelPwr2ndTo1st Ratio of the strength of the harmonic that SonoBat trended (typically the 

first or primary harmonic) to the strength of the next higher harmonic 

(typically the second harmonic). A ratio of the 3
rd

 harmonic that exceeds 

the 2
nd

 harmonic’s ratio typically indicates a saturated or “clipped” signal. 

Such calls will render inaccurate assessments of power distribution through 

the call, although the time-frequency trend will remain reliable.  

RelPwr3rdTo1st Ratio of the strength of the harmonic that SonoBat trended (typically the 

first or primary harmonic) to the strength of the second higher harmonic 

(typically the third harmonic). A ratio of the 3
rd

 harmonic that exceeds the 

2
nd

 harmonic’s ratio typically indicates a saturated or “clipped” signal. 

Such calls will render inaccurate assessments of power distribution through 

the call, although the time-frequency trend will remain reliable.  

Harmonic Harmonic measured. Always the harmonic with the greatest energy in each 

call. This parameter is noted manually, after processing the call using 

SonoBat. 

Table 2.7: Parameters taken by SonoBat for each echolocation call. 

 

The customisation of the SonoBatch automatic measurement feature of SonoBat v.3 allows 

calls to be accepted (written to an output file) or rejected (not written to the output file). 

Sounds are rejected if (1) they are not bat calls, (2) the measurement line includes echo or 

background noise, (3) the measurement line fails to fit to the curve of the call, (4) the calls 

are overloaded (too loud for the microphone to capture the signal), (5) calls have low 
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signal-to-noise ratio (the signal is hidden amongst other sounds). SonoBat has an anti-

aliasing feature which automatically calculates the true position of harmonics up to 350 

kHz, so aliased calls could be included without comprising the quality of the 

measurements. 

 

Calls from all sequences (sound files) for each species were parameterised, except in the 

family Rhinolophidae (horseshoe bats) where a maximum of 30 files were measured, since 

a very large number of recordings were in EchoBank for nine of these species and 30 

recordings provided sufficient data. A total of 3,534 sequences and 53,086 calls were 

measured for each of 296 species in 95 genera and 19 families, representing 31% of 

echolocating species, 57% of echolocating genera, and 100% of families. The results were 

stored in EchoBank. 

 

The parameters for each species were checked for errors, such as time expansion factor 

mistakes, by viewing a graph of call duration against either maximum or minimum 

frequency. The calls pertaining to any extreme outliers were checked for each species in 

case of mistakes. A mean, median and variance were taken for each sound file of each 

species, and then a mean of each of these for the species as a whole, so that each of the 76 

parameters in Table 2.7 was summarised as a mean, median and variance for each species. 

 

All records in EchoBank were conformed to the taxonomy of the 3
rd

 Edition of Wilson and 

Reeder’s Mammal Species of the World (Simmons 2005). Any recordings made of newly 

discovered species were stored in EchoBank as database ‘orphans’ and were not measured 

for my analyses. Any species noted under a synonym were updated to the appropriate name 

in the current taxonomy (Simmons 2005). 
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2.8 Echolocation data from the literature 

To augment the echolocation data collected from members of EchoBank, I collected data 

from the literature (see Appendix B for reference list) for species not present in the data set 

following the parameterization of EchoBank recordings. Every species name was searched 

in conjunction with the word echolocation in Web of Science, BIOSIS Previews and 

Zoological Record. In addition, bat field guides were searched for echolocation data. This 

literature search resulted in echolocation data for an additional 115 species in 60 genera (27 

new) and 13 families (1 new). The echolocation data in the literature conform to the same 

standard as the EchoBank data. This took the total echolocation data for analysis to 410 

species in 120 genera and 19 families (see Appendix A for species list). This represents 

44% of species, 74% of genera, and 100% of families of echolocating bats. The geographic 

and phylogenetic coverage are both comprehensive (see Figure 2.3 and Figure 2.4). 

 

 

Figure 2.3: The proportion of species used in my analyses out of those present in any given range 

according to Grenyer et al. (2009). The map is comprised of overlapping species’ range maps for 899 

echolocating bat species, and each 250km
2
 grid square is shaded according to the number of species 

present in that grid square that are represented in EchoBank. Redder areas of the map show good 

EchoBank coverage relative to species diversity, whereas paler blue areas show poor EchoBank 

coverage. 
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Figure 2.4: The phylogenetic coverage of the species used in my analyses as a proportion of the total 

number of echolocating species in the 2005 edition of Mammal Species of the World (Simmons 2005), 

shown on a family level tree, collapsed from the supertree reported in Chapter 3 of this thesis. 

 

Echolocation call parameters were extracted from the literature if they matched with any of 

the parameters measured by SonoBat but did not overlap with the species in EchoBank 

(Table 2.7). The sample size, method of averaging, and metadata shown in Table 2.6 were 

also extracted, so that the data could be integrated with EchoBank data. 
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2.9 Echolocation data for analyses 

I chose to use a subset of the parameters measured by SonoBat in my analyses, since many 

of the SonoBat parameters are extremely similar to one another. The eight parameters I 

selected represent the two main dimensions of a sound: time and frequency, and summarise 

the outline features of echolocation call structure. They correspond well to parameters 

commonly reported in the literature (Bayefsky-Anand, Skowronski, M. B. Fenton, Korine, 

& Holderied, 2008; O. Berger-Tal, R. Berger-Tal, Korine, Holderied, & M. B. Fenton, 

2008; A. Boonman & H. U. Schnitzler, 2005; Fukui, Agetsuma, & Hill, 2004; Jones, 1999; 

Jung, E. K. V. Kalko, & von Helversen, 2007; Kingston, Jones, Akbar, & Kunz, 1999; 

Kingston et al., 2003; Ma, Liang, Zhang, & Metzner, 2008; Preatoni et al., 2005; Tian & H. 

U. Schnitzler, 1997; Vaughan et al., 1997; Yoshino et al., 2006; Zhao, Zhang, Zuo, & 

Zhou, 2003), and are functionally important and biologically meaningful. They, and a ninth 

parameter I recorded myself, are summarised in Table 2.8 and Figure 2.5. 

 

One issue is of particular note regarding two of these parameters. Measuring maximum and 

minimum frequency can be somewhat subjective, since the amplitude of the call can impact 

on the values of these two parameters. This is especially true of maximum frequency, to 

which attenuation and directionality effects make quantification even more difficult. Some 

researchers use an amplitude value relative to the peak to define the maximum and 

minimum frequencies, but I feel this adds an a priori assumption that influences the values 

unduly. I chose to use the direct measures of maximum and minimum frequency since the 

large amount of data measured should produce reasonably reliable averages. 
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Call parameter Description 
Functional interpretation Sample size 

(species) 

Bandwidth 
Maximum frequency – minimum frequency of the 

harmonic with the maximum energy (kHz) 

High bandwidths allow greater resolution of 

different size classes. Low allow 

concentration of energy and increased range 

365 

Call Duration 
Total duration of the harmonic with the maximum 

energy (ms) 

Short durations give better localisation 

performance and long durations give more 

temporal informtation 

392 

Characteristic 

Frequency 

The frequency measure with the lowest variance 

for each species out of maximum frequency, 

minimum frequency, and peak frequency (kHz). 

This value is more consistent than peak frequency 

at best representing all families 

Lower frequencies travel further and higher 

frequencies give greater resolution – shows 

where main energy is placed 407 

Dominant Slope 
Slope of the longest sustained trend in slope of the 

call (kHz/msec) 

Greater slope gives greater resolution and 

localisation, and lower slopes give greater 

range and more temporal information 

290 

Maximum 

Frequency 

Highest frequency in the harmonic with the 

maximum energy (kHz) 

Lower frequencies travel further and higher 

frequencies give greater resolution 
353 

Minimum 

Frequency 

Lowest frequency in the harmonic with the 

maximum energy (kHz) 

Lower frequencies travel further and higher 

frequencies give greater resolution 
353 

Peak Frequency 
Frequency with the maximum energy (amplitude) 

in the harmonic with maximum energy (kHz) 

Lower frequencies travel further and higher 

frequencies give greater resolution 
407 

Total Slope 

Total slope of the call, calculated from the point of 

highest frequency to the point of the characteristic 

frequency (sensu SonoBat) (kHz/msec) 

Greater slope gives greater resolution and 

localisation, and lower slopes give greater 

range and more temporal information 

289 

Peak Harmonic 
Harmonic that most frequently has the maximum 

energy 

Energy placement amongst harmonics 

allows movement on frequency scale 
410 

Table 2.8: The echolocation call parameters selected for analysis. 
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Figure 2.5: A spectrogram showing the echolocation call parameters selected for analysis. In this 

species (Emballonura dianae, Emballonuridae) Characteristic Frequency was equal to Maximum 

Frequency. 

 

Since the echolocation data (and body mass data) were not normally distributed, I 

transformed each parameter using log10, natural log, and square root (or square 

root(parameter+1) where some values were less than 1), and chose the transformation that 

gave the most normal distribution, judged by the shape of a histogram. The transformations 

used for the parameters are shown in Table 2.9. 
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Parameter Transformation 

Bandwidth square root(Bandwidth+1) 

Body Mass natural log 

Call Duration natural log 

Characteristic Frequency natural log 

Dominant Slope square root(DominantSlope+1) 

Maximum Frequency square root 

Minimum Frequency natural log 

Peak Frequency natural log 

Total Slope square root(TotalSlope+1) 

Table 2.9: The transformations used for the parameter data analysed in subsequent chapters. 

 

2.10 Conclusions 

EchoBank contains 5784 recordings of 322 species in 101 genera and 19 families, recorded 

by 15 data contributors, including 106 recordings of 19 species in 10 genera and 6 families 

that I recorded myself. As shown in Figure 2.6, these range from a single recording for each 

of 48 species, to 291 recordings for one species (Rhinolophus swinnyi, Rhinolophidae). Of 

these, 53086 calls in 3534 recordings of 295 species in 94 genera and 18 families were of 

high enough quality to extract parameter measurements using SonoBat (Szewczak 2010). A 

median value of each parameter was calculated for each individual, and a mean of these 

was calculated for each species, resulting in a median value for each parameter of each 

species. To these I added the echolocation data from the literature (mainly means, with 

some medians) taking the total echolocation data for analysis to 410 species in 120 genera 

and 19 families. 
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Figure 2.6: The frequency distribution of number of recordings per species. 
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3 Chapter 3: A new supertree of bats (Chiroptera) 

3.1 Abstract 

I present an updated estimate of the phylogenetic relationships among all 1116 recognised 

extant and recently extinct species of bats (Mammalia: Chiroptera).  The phylogeny was 

assembled by combining 204 estimates of bat phylogenetic relationships published between 

1970 and 2009 using the Matrix Representation with Parsimony (MRP) supertree 

construction technique. Since the first bat supertree, systematic studies have covered the 

order more evenly, with families receiving attention roughly in proportion to their 

speciosity. However, 36% of all bat species have yet to be included in a phylogenetic study. 

Resolution for a strict consensus tree has fallen since the 2002 supertree, from 46.4% to 

34.7%, which is possibly due to the contradictions often seen between trees built from 

morphological characters and molecular characters. The new bat supertree supports 

microchiropteran paraphyly with respect to Megachiroptera, whereas the 2002 analysis did 

not. This shift is due to the great increase in published phylogenies supporting the change 

since 2000. Although the supertree is not a substitute for comprehensive total evidence 

phylogeny based on raw character data, it supplies us with a well-supported tool for large-

scale phylogenetic comparative analyses. 

 

3.2 Introduction 

3.2.1 History of the bat phylogeny 

Chiroptera (bats) is the second most speciose mammalian order, after Rodentia (rodents), 

comprising around 1116 species in 204 genera and 19 families (Gunnell & Simmons 2005; 

Hoofer & Van den Bussche 2003; Miller-Butterworth et al. 2007; Simmons 2005). 

Although bats comprise over one fifth of all mammalian species, it has only been in the last 

decade or so that evolutionary relationships have become clear. The lack of reliable, 

comprehensive and detailed phylogenies of the bats has hampered efforts to understand 

evolutionary patterns and processes using comparative methods, with many studies 
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focusing on either small groups of related species from a single geographic area, or on 

higher-level taxa. The burgeoning use of molecular techniques to uncover evolutionary 

relationships (see Figure 3.1) has improved our understanding of both the relationships of 

bats at the family level, and the species-level detail (e.g., Hoofer & Van den Bussche 

(2003); Teeling et al. (2000)). 

 

 

Figure 3.1: Cumulative number of source trees appropriate for inclusion in a bat supertree-building 

process, published between 1970 and 2008. Note that the number of trees per source can be greater 

than one, and so the number of unique sources is lower. 

 

In the 1980s, despite previously widespread acceptance that all bats shared a common 

ancestor, a debate began around the possibility that bats were diphyletic. Pettigrew (1986) 

found that the system of neural connections between the mid-brain and the retina of the 

Megachiroptera (sensu lato) matched that of the primates, whereas the Microchiroptera 

(sensu lato) showed the putatively ‘primitive’ system of connections, in common with all 

other mammals. This evidence, in association with other pieces of morphological evidence 

(Buhl & Dann 1989, 1991; Kennedy 1987; Pettigrew 1986; Pettigrew et al. 1989; Smith 
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1977b; Smith & Madkour 1980) and some molecular evidence (Bennett et al. 1988; 

Kleinschmidt et al. 1988) indicated that the megabats evolved from the primate lineage, in 

a separate evolutionary event from that of the origin of the microbats. However, as 

molecular techniques developed and became more widely used, support has returned for the 

original monophyly hypothesis (Ammerman & Hillis 1992; Bailey, Slightom, & Goodman 

1992; Baker, Honeycutt, & Van Den Bussche 1991; Baker, Novacek, & Simmons 1991; 

Bennett et al. 1988; Kirsch et al. 1995; Simmons, Novacek, & Baker 1991; Thewissen & 

Babcock 1991). 

 

Within the 19 extant bat families (Gunnell & Simmons 2005; Hoofer & Van den Bussche 

2003; Miller-Butterworth et al. 2007; Simmons et al. 2008), interrelationships have also 

been in debate. Bats were previously placed in two monophyletic sub-orders, the 

Microchiroptera and the Megachiroptera (Dobson 1875). The Megachiroptera contained a 

single family of Old World fruit bats that do not use laryngeal echolocation (Pteropodidae), 

whereas the Microchiroptera included the remaining 18 families of echolocating bats.  

 

However, the monophyly of the Microchiroptera is now disputed, as molecular evidence 

suggests that several of the microchiropteran families are more closely related to the 

Megachiroptera than to the remaining families (Teeling et al. 2005). The most widely used 

division of the order places the Pteropodidae, Rhinolophidae, Hipposideridae, 

Megadermatidae, Craseonycteridae, and the Rhinopomatidae in a new suborder, the 

Yinpterochiroptera (formed by the concatenation of ‘Yinochiroptera’ (introduced by 

Koopman (1984)) and ‘ptero’ (by Springer et al. (2001)), and leaves the Nycteridae, 

Emballonuridae, Myzopodidae, Mystacinidae, Phyllostomidae, Mormoopidae, 

Noctilionidae, Miniopteridae, Thyropteridae, Furipteridae, Natalidae, Molossidae, and 

Vespertilionidae in the sub-order Yangochiroptera (named by Koopman (1984) at which 

time it excluded Nycteridae and Emballonuridae) (Gunnell & Simmons 2005; Springer, 

Teeling, & Madsen 2001) (see Figure 3.2). 

 

Given the recent confusion about the family members of each suborder (Yinpterochiroptera 

and Yangochiroptera) and the diphyly of the one of the previously used subordinal names 
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(Microchiroptera), Hutcheon & Kirsch (2006) have proposed new names for these 

suborders, using the International Code of Zoological Nomenclature’s principles of 

typification, priority and attribution (International Commission on Zoological 

Nomenclature 2000). The suborder described above as ‘Yangochiroptera’ should be known 

as Vespertilioniformes based on Linnaeus’ Vespertilio of 1758 and the suborder described 

as ‘Yinpterochiroptera’ should be known as Pteropodiformes, based on Brisson’s Pteropus 

of 1762. In this thesis, I use Hutcheon and Kirsch’s names. 

 

 

Figure 3.2: (a) Relationships amongst Chiropteran families based on more recent molecular work 

(Teeling et al. 2005); (b) The old topology, with the Pteropodidae basal to all other Chiropteran families 

(Gunnell & Simmons 2005). Figure adapted from Jones & Teeling 2006. 

 

3.2.2 Phylogenetic supertrees 

Phylogenetic supertrees are a somewhat controversial means of inferring evolutionary 

relationships between large numbers of taxa. Instead of analyzing molecular or 

morphological character data directly, the supertree approach takes topologies created from 

primary character data and combines them to form a more comprehensive phylogeny 
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(Bininda-Emonds 2004). The value in obtaining a complete phylogeny for a particular 

group was made evident in a macro-evolutionary study of the primates, based around a 

primate supertree (Purvis, Nee, & Harvey 1995), and this has been followed by numerous 

other studies, including a study of diversification rates in bats (Jones et al. 2005), an 

assessment of the factors increasing extinction risk in mammals (Fritz 2009), and a study of 

the adaptive significance of colouration in lagomorphs (Stoner, Bininda-Emonds, & Caro 

2003). 

 

One advantage of the supertree method in tree-building involving as many species as the 

Chiropteran tree (1116 species), is that it can incorporate species for which there are 

mismatched, or a complete lack of, primary character data. Alternative methods such as the 

supermatrix approach make use of a consistent set of character data to infer phylogeny, but 

until sequences of one or more particular genes are available for every species of bat, 

different character data sets will need to be combined to construct a complete phylogeny 

(Bininda-Emonds 2004). The supertree method makes this possible, and allows the 

incorporation of species for which there are no character data (and that therefore are not 

featured on any published topology) through the use of a reference taxonomy (Bininda-

Emonds 2004). 

 

In 2002, Jones et al. published a complete phylogenetic supertree of the bats (subsequently 

included in a supertree of mammals with no alterations (Bininda-Emonds et al. 2007), and 

followed by an update with branch lengths (Jones et al. 2005)) using source trees published 

between 1970 (start date chosen by Jones et al. (2002) to facilitate exclusion of less 

analytically robust studies) and 2000, and with a taxonomy corresponding to the second 

edition of the Mammal Species of the World (Koopman 1993). Since 2000 many 

phylogenetic studies of bats have been published, and the majority are based on molecular 

data. These phylogenies resolve many of the polytomies found in the 2002 supertree. In 

addition, an updated taxonomy has been published, taking the number of accepted bat 

species from 916 to 1116 (Simmons 2005). Amongst the new studies, molecular trees 

supporting microbat paraphyly have all but outweighed previous evidence in favour of 

megabats as an ancestral clade to the microbats. Because of the interfamilial 



  Chapter 3  

  71 

 

rearrangements, the extra resolution within several large genera, and changes in taxonomy, 

I have updated the 2002 supertree of Jones et al. 

 

3.3 Methods 

I updated the 2002 supertree using sources trees published in the literature between 2000 

and the end of April 2009 for all families except for one: The supertree for the third most 

speciose family of bats, the Phyllostomidae (New World leaf-nosed bats) was updated from 

the 2002 supertree by Cooper & Purvis (2009) using further source trees from the literature 

between 2000 and the end of March 2007. To ensure consistency throughout the supertree, 

I used the source trees found by Cooper & Purvis 2009, but followed the methods outlined 

below (in section 3.3.2) when reconstructing the topology of the Phyllostomidae.  

 

3.3.1 Source tree selection 

I searched for source trees between 2000 and the end of April 2009 in Web of Science, 

BIOSIS Previews and Zoological Record. The search terms used were: vespertilionid*, 

myotis, kerivoula, pipistrellus, hypsugo, lasiurus, and eptesicus, chiropter*, rhinolophid*, 

hipposiderid*, megadermatid*, rhinopomatid*, craseonycterid*, emballonurid*, nycterid*, 

myzopodid*, mystacinid*, mormoopid*, noctilionid*, furipterid*, thyropterid*, natalid*, 

and molossid*, where * represents a wildcard – any letters in use here will produce results. 

Each of these search terms was, in turn, combined with each of the following additional 

search terms: phylogen*, systematic*, cladistic*, classif*, taxonom*, cladogram*, 

phenogram*, and fossil*. 

 

I used source trees that resulted from valid analyses, as defined by Bininda-Emonds et al. 

(2004), but I did not include trees constructed using phenetic, rather than cladistic, 

methods. Phenetics is a means of classifying species based on similarity (often 

morphological similarity) regardless of evolutionary relationships, and as such, I do not 

consider its output appropriate for inclusion in a phylogenetic supertree. New sources were 

combined with pre-2000 sources from Jones et al. (2002), excluding those that were 
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phenetic or taxonomic, to assess independence using the protocol of Bininda-Emonds et al. 

(2004), as described below. Source trees must only be entered into supertree construction if 

they have data sets (taxon sets and character sets) that do not completely overlap (i.e., at 

least some characters or taxa are different) to prevent duplication of data that might lead to 

spurious signal enhancement of the duplicated clades (Bininda-Emonds 2004). When the 

taxon sets of each respective pair of trees were independent, the trees were both included in 

the analysis. For matching taxon sets, only those with independent character sets were 

included in the analysis. Character sets could be composed of morphological or molecular 

characters. Trees constructed from character sets combining several genes or morphological 

character subsets were considered independent of trees constructed from character sets 

including one of those genes or subsets. 

 

Where source trees were non-independent, the tree with the largest taxon set was included. 

If trees were non-independent and equally comprehensive (common when trees are the 

result of a single study), the tree explicitly preferred by the authors was included. If no tree 

was preferred, the consensus tree was included. If there was no consensus tree, both/all 

trees were included, but down-weighted proportionally. See Appendix C for a list of source 

trees included in the supertree matrix. 

 

The taxonomy of all terminal taxa was standardised using a source tree created from the 

reference taxonomy of Simmons (2005). This tree grouped genera, subfamilies and 

families, with the intention of incorporating all recognised species not present in the source 

trees and placing them in a likely position, i.e., with members of the same genus. All 

terminal taxa in the source trees were aligned with the species names given in the reference 

taxonomy; synonyms were brought up to date and unrecognised names were highlighted for 

corrections. This was done using a Perl script, ‘SynonoTree.pl v2.2’, (see Bininda-Emonds 

(2010)) written by Olaf Bininda-Emonds (OBE). 

 

Any taxa present on the source trees which were not defined to species level were 

standardised to the reference taxonomy: where a genus name is present, the type species for 

that genus was assigned, unless monophyly of the genus is in question, in which case it was 
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removed; where a terminal taxon contains a cf. e.g. Myotis cf. punicus, or a ‘sp., e.g. Myotis 

sp., the taxon is deleted. 

 

3.3.2 Matrix construction 

There are a large number of supertree construction methodologies, some of which are 

tailored to specific challenges, such as reproducing branch-length information. The most 

commonly used method is Matrix Representation with Parsimony (MRP). This technique 

allows multiple ‘source’ trees to be combined, despite their origins in different primary 

character data sets and the inclusion of different taxon sets. 

 

All source trees were redrawn in Mesquite v2.6 (Maddison & Maddison 2009). The 

collection of source trees was converted into a single MRP (Matrix Representation using 

Parsimony) matrix using a Perl script written by OBE, ‘SuperMRP.pl v1.2.2’ (Bininda-

Emonds 2010). This script operates by creating a matrix containing columns which 

represent characters, each of which pertains to a single node in the phylogeny. For each 

species, the value in the column is ‘1’ if the species is present in the branches subtending 

that node, ‘0’ if it is not present in those branches, and ‘?’ (missing data) if the species is 

not present in the source tree at all.  

 

3.3.3 Source tree weighting scheme 

Source trees entering the tree building stage of supertree construction were differentially 

weighted to encourage balance between different data types used in source tree 

construction, and to prevent less reliable primary data types unduly influencing the 

supertree topology. The source trees were split into the following groups according to the 

data that were used to generate them: pure morphology, pure mitochondrial DNA, pure 

nuclear DNA, mitochondrial DNA + nuclear DNA, morphology + DNA, karyotypes and 

chromosomes, other. Each of these categories was weighted equally. 
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3.3.4 Tree building 

Searches were performed in PAUP* v4.0b10 (Swofford 2010) on the MRP matrix (of all 

source trees) using four independent parsimony ratchets created by a Perl script written by 

OBE; perlRat.pl v2.0b (Bininda-Emonds 2010). The parsimony ratchet is a method of 

branch swapping during tree searching that maximises the number of tree search starting 

points so that the search does not become trapped on a small number of potentially 

suboptimal tree ‘islands’ in tree space (Nixon 1999). This means that large taxon sets can 

be analysed in a much shorter time, with the same outcome in terms of tree length. Each 

ratchet performed 50 independent batches of 200 reweighting iterations, which generated 

10050 trees. These trees were used as input trees for four heuristic searches using the Tree 

Bisection and Reconnection (TBR) branch swapping technique to speed up the analysis, 

each producing a maximum of 20,000 equally most parsimonious solutions. Of the 80,000 

output trees, 49,914 were equally the most parsimonious, and the final supertree was a 95% 

majority rule tree of these trees. 95% majority rule was preferred as a consensus method 

over strict consensus because tree searching resulted in a large number of equally most 

parsimonious trees and strict consensus therefore results in a poorly resolved tree, whereas 

95% majority rule provides a highly resolved tree; more appropriate for comparative 

analysis (Purvis & Garland 1993). 

 

3.3.5 Assessing support 

The degree of support for each node of the supertree was assessed using the relative 

Quantitative Support (rQS) index (Bininda-Emonds 2003) which was expressly designed 

for supertree analyses as it accounts for the non-independence of the characters in the MRP 

matrix, using the Perl Script QualiTree.pl v1.2.1. It compares each source tree with the 

supertree, pruned to the same taxa, and calculates the combined degree of support that the 

source trees give to the supertree at each node, normalised to between -1 (conflict) and +1 

(support). Nodal support values for each node are shown in Appendix D. 

 



  Chapter 3  

  75 

 

3.3.6 Supertree dating 

The supertree was dated by Olaf Bininda-Emonds using the techniques outlined here (and 

in the supplementary material of Bininda-Emonds et al. (2007)). Modifications to the 

Bininda-Emonds (2007) technique are detailed below. Relevant data for the 1949 nodes in 

the supertree were derived from three sources: (1) sequence data; (2) fossil data; and (3) 

relative and interpolated dates. 

 

Sequence data 

The sequence data used to obtain the relative molecular dates were based on an updated 

version of the aligned data sets used to date the mammal supertree of Bininda-Emonds et 

al. (2007) with additional sequence data that have since been added to GenBank (Benson et 

al. 2010) which was mined using the Perl script GenBankStrip.pl v2.1 (Bininda-Emonds 

2010). The following genes had sufficient species coverage among Chiroptera (≥20 

species) to be included: the mitochondrial genes MT-CYB (cytochrome b), MT-ND1, MT-

RNR1 (12S rDNA), and MT-RNR2 (16S rDNA), and the nuclear genes C-MOS, RAG2, 

and VWF. The additional sequence data were aligned to the existing data set by eye. Taxon 

names were updated to match the taxonomy of Simmons (2005) using the Perl script 

seqCleaner.pl v1.2 (Bininda-Emonds 2010), which also ensured that all sequences in a data 

set were pairwise overlapping by at least 100 base pairs. Homo sapiens and Canis lupus 

were used as outgroups because both species were available for all data sets. Thereafter, 

each data set was fitted to the topology of the supertree under the most appropriate model 

of evolution, determined using PHYML v3.0 (Guindon & Gascuel 2003) using the Perl 

script autoMT.pl v2.0 (Bininda-Emonds 2010) to direct the process. This procedure 

simultaneously yielded the branch length data needed to determine the relative branch 

lengths. In a subsequent step, the Perl script batchRAXML.pl v1.2 (Bininda-Emonds 2010) 

was used to direct the PTHREADS variant of RAxML v7.2.6 (Stamatakis 2006) to 

determine 1000 bootstrap trees for each gene. This information was used to weight the 

relative dates according to how strongly each data set supported the supertree topology (see 

below). 
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 Fossil data 

Fossil dates were taken from Eiting & Gunnell's (2009) summary of all known fossil bats, 

with greater dating precision provided by the author (T. Eiting, pers. comm., 2010) (see 

Appendix E for taxa and dates used). The midrange value was taken for all dates given as 

ranges. The oldest known bat, Onychonycteris finneyi, was used to date the root node for 

Chiroptera using the date given in (Simmons et al. 2008). Fossil taxa were assigned to 

nodes on the supertree following Renner (2005), with the oldest fossil for a given group 

being used to estimate the divergence date of the parent node for that group. Thus the oldest 

known fossil for Vespertilionidae was used to calibrate the divergence date for the node 

immediately ancestral to all vespertilionid species in the tree. If a node had several date 

estimates, the earliest date was used, since most fossil date estimates are underestimates of 

the real divergence date. If a daughter node was found to have an older date assigned to it 

than its parent node, the date on the parent node was discarded. All fossil dates were used 

as minimal age constraints with no upper limit. 

 

 Relative and interpolated dates 

The combination of molecular branch lengths and fossil data was then used to obtain an 

initial set of divergence date estimates for the bat supertree using the Perl script relDate.pl 

v3.0. Briefly, the relDate procedure converts the molecular branch lengths from each gene 

tree into relative branch lengths, where the age of a given node is expressed as a percentage 

of the age of an ancestral node based on the relative heights of the two nodes. Absolute 

ages are then obtained using the fossil data to calibrate the relative branch lengths. For a 

given node, the initial divergence date estimate was taken to be the median of all relative 

branch lengths and any fossil calibration points for that node. In cases where the median 

was younger than the calibration point, the date was taken to be the calibration point, 

thereby enforcing the latter as minimum age constraints. The standard errors (SEs) of these 

estimates were used to derive the upper and lower 95% confidence intervals (CIs) on the 

dates (as ±2 * SE). One change to the procedure provided in Bininda-Emonds et al. (2007) 

was that the individual relative branch lengths were weighted by the bootstrap frequencies 

for the focal node to account for differential support among and within the gene trees for 

the supertree topology. Agreement between the data set and the supertree topology would 
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therefore be reflected by high bootstrap values and therefore proportionately more weight 

in the analysis for the corresponding relative branch length. In this case, the initial estimate 

for a given node (and the 95% CIs) was calculated as the weighted average of all estimates 

contributing to it, with any fossil calibration data being given a neutral weight (equal to the 

average of the bootstrap frequencies for all the relative branch lengths for that node). 

 

Thereafter, the initial date estimates were corrected for any negative branch lengths that 

might have been generated as well to interpolate divergence times for nodes missing such 

estimates (divergence time estimates are only possible for clades where all subtending 

lineages have at least one species with sequence data). For the latter clades, the interpolated 

date is derived from the number of species it possesses relative to ancestral and/or daughter 

clades using a birth-death model (following Purvis et al. (1995)). Interpolated dates were 

derived from immediate daughter nodes and/or from ancestral nodes up to five levels more 

inclusive than the focal node. In all cases, dates for reference nodes could not themselves 

be interpolations but based directly on either molecular and/or fossil data.  

 

3.4 Results and Discussion 

3.4.1 Taxonomic coverage, resolution, support and dates 

The number of useable unique sources (each of which may contain more than one tree (as 

displayed in Figure 3.1)) for supertree construction increased considerably between the 

sampling end-point for the 2002 supertree (Jones et al. 2002) and the sampling end-point 

for this supertree, rising from 105 useable sources (only 61 of which were re-used) in 2000 

to 146 useable sources in April 2009. Coverage per species is still poor (0.13 sources per 

species in 2009) when compared to the 0.6 sources per species found for primates and 0.7 

sources per species for carnivores (see Jones et al. (2002)), especially when taking into 

account sampling end-points of the primate and carnivore supertrees (1993 and 1996 

respectively). However, the number of published phylogenies containing bat species is 

growing exponentially (see Figure 3.1). 
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Systematic studies of bats have not been distributed evenly across the order, with six 

families receiving a greater proportion of the total number of studies than the family 

represents as a proportion of the total number of species of bats. These are 

Megadermatidae, Thyropteridae, Emballonuridae, Miniopteridae, Natalidae, and 

Rhinopomatidae. The remaining families received less attention than their speciosity 

warrants. 

 

The phylogenetic supertree of the bats contains 1116 species and 834 nodes, which is 

74.8% of a fully bifurcating solution. This cannot easily be compared to other supertrees, 

since it was produced using 95% majority rule, rather than strict consensus. However, a 

strict consensus tree produced from the same data was 34.7% resolved, indicating an 

increase in disagreement between sources trees from the 2002 supertree, which was 46.4% 

resolved. Four hundred and three species out of the total 1116 were not represented in a 

single source tree. The degree of resolution is fairly constant in different clades, with 11 

families completely bifurcating and a further four families showing greater than 75% 

bifurcation. Four families stand out as being particularly badly resolved: Nycteridae (40%), 

Molossidae (52.5%), Vespertilionidae (65.1%) and Rhinolophidae (65.8%). Interestingly, 

Jones et al. (2002) found Molossidae to be particularly well resolved, with 65% bifurcation. 

The drop in the degree of bifurcation indicates a fall in congruence between source 

phylogenies, perhaps due to conflict between morphological and molecular topologies. 

 

The reduced Quantitative Support (rQS) index for the clades in the supertree are presented 

in Appendix B. 79.5% of the nodes have positive rQS values, 11.9% are equivocal and 

8.6% have negative rQS values, showing a broad degree of support for the supertree 

topology. 

 

Tree dating (see Figure 3.3) indicates that bats originated 54.1 million years ago (mya), and 

that the suborders, Pteropodiformes and Vespertilioniformes, diverged 54.0 mya. These 

estimates are considerably younger than any previous estimates (Delsuc, Vizcaino, & 

Douzery 2004; Eick et al. 2005; Jones et al. 2005; Springer, Murphy, & Eizirik 2003; 

Teeling et al. 2003, 2005), including both versions of the 2005 dated bat supertree (Jones et 
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al. 2005) and its inclusion in the dated mammal supertree (Bininda-Emonds et al. 2007) 

(see Table 3.1). The oldest calibration point for the new supertree is 52.5 Mya, as indicated 

by the fossil bat Onychonycteris finneyi (Simmons & Geisler 1998). Other trees have used 

calibration points outside the bats, resulting in older estimates for the origin of bats (see 

Table 3.1).  

 

The timing of the initial splitting of each of the superfamilies and of Pteropodidae shown 

by the new supertree correspond well with previous estimates, except in the case of 

Noctilionoidea (Phyllostomidae, Mormoopidae, Furipteridae, Thyropteridae, Noctilionidae, 

and Mystacinidae), where the estimate on the new supertree is on average 15 million years 

younger than previous estimates. This is a result of the younger root node forcing 

downstream nodes to appear younger. 
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Figure 3.3: New dated bat higher-level supertree. Branches are proportional to time (millions of years). 

The number next to each node represents the divergence time (million years ago). Node numbers are 

shown in Figure 3.4. 
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 Date at node for each source tree (mya) 

Node 
New 

dates 

Bininda-

Emonds 

2007 

Jones 

2005 - 

Original 

topology 

Jones 

2005 - 

Teeling 

topology 

Eick 

2005 

Teeling 

2005 

Delsuc 

2004 

Springer 

2003 
Teeling 2003 

Origination of Chiroptera 54.1 89 62 58 65 - 81 84 81 

Split between suborders 54.0 - - 56 62 64 63 65 67 

Split of Pteropodidae 26.1 - - - - 24 22 21 24 

Split of Rhinolophoidea 41.3 - - 43 54 52 52 - 56 

Split of Noctilionoidea 32.5 - - 52 44 52 - - 47 

Split of Vespertilionoidea 52.2 - - 51 50 50 - - 35 

Split of Emballonuroidea 46.2 - - 52 50 52 - - 43 

Table 3.1: Comparison of date estimates at major nodes between trees in the recent literature, to the nearest million years for dates from the literature. 
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3.4.2 Higher-level relationships 

The family-level relationships in the new supertree are shown in Figure 3.4. The 95% 

majority rule tree places Pteropodidae as a member of the suborder Pteropodiformes, rather 

than placing it as a basal group and leaving the ‘microbats’ as a monophyletic group. This 

is due to an increase in the number of sources which found it to cluster with the 

Rhinolophoidea, producing a diphyletic Microchiroptera  (e.g. Eick et al. 2005; Miller-

Butterworth et al. 2007; Teeling et al. 2003; Teeling et al. 2005). 

 

The composition of each sub-clade does not reflect the two suborders (Pteropodiformes and 

Vespertilioniformes), due to the splitting of the Nycteridae, which, in the new supertree, 

fall partly in the Vespertilioniformes (five species) and partly in the Pteropodiformes (11 

species). All other family-level topologies that include Nycteridae place it next to 

Emballonuridae as part of the Vespertilioniformes (see Figure 3.5). It appears that one 

species, Nycteris hispida, which in most source trees is representing its family (as it is the 

type species), is found in the Pteropodiformes in five sources trees, but is not found in the 

Vespertilioniformes in any source trees. Because it is the type species of the family, all 

members of Nycteridae which are not found in a source tree (10 species) are linked to N. 

hispida and are therefore also placed in the Pteropodiformes. Four of the five source trees 

that place Nycteridae in the Pteropodiformes are morphological, and one is based on the 

gene cytochrome b. Only one (Lim et al. 2008) other out of 16 molecular source tree places 

any nycterid species in the Pteropodiformes, but four morphological source trees do, 

suggesting the morphology of Nycteridae is misleading in systematics. 

 

Other than the presence of Nycteridae, the topology of the Pteropodiformes (Pteropodidae 

and superfamily Rhinolophoidea (composed of Hipposideridae, Rhinolophidae, 

Megadermatidae, Craseonycteridae and Rhinopomatidae)) is broadly similar to that seem in 

other family-level trees, except Megadermatidae tends to be more closely related to 

Rhinopomatidae and Craseonycteridae in the family-level source trees, whereas in the new 

supertree it is more closely related to Hipposideridae and Rhinolophidae (see Figure 3.5). 

This topology is the result of the source trees presented in Giannini & Simmons (2005), 
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Giannini & Simmons (2007), Gunnell & Simmons (2005), Hulva (2002), Simmons & 

Geisler (1998), Springer, Hollar, & Kirsch (1995), and Springer, Teeling, & Stanhope 

(2001). These source trees are a mixture of morphological, molecular, and mixed analyses, 

suggesting that the true topology remains uncertain. 

 

The Vespertilioniformes suborder is, according to Teeling et al. (2005) composed of three 

superfamilies: Noctilionoidea (Phyllostomidae, Noctilionidae, Mormoopidae, Furipteridae, 

Thyropteridae, Mystacinidae, and Myzopodidae), Vespertilionoidea (Vespertilionidae, 

Miniopteridae, Molossidae and Natalidae), and Emballonuroidea (Emballonuridae and 

Nycteridae). These groupings have yet to be agreed upon, particularly with respect to the 

placement of Myzopodidae, and hence the superfamily definitions await further study and 

are not in use in the third edition of Mammal Species of the World (Simmons 2005). The 

new supertree corroborates the grouping of all member families in Noctilionoidea sensu 

Teeling et al. (2005), except for Myzopodidae, which has been influenced by several other 

studies (including Eick et al. 2005; Hoofer et al. 2003), and has joined the 

Vespertilionoidea superfamily (see Figure 3.5). 

 

The composition of Vespertilionoidea reflects the sources trees well (see Figure 3.5), with 

just one anomalous point: one species of Molossidae (Tadarida teniotis) has fallen out of 

the family, and lies polyphyletically between Miniopteridae and Molossidae (see Figure 

3.4). This is due to a single source tree, in which T. teniotis is found to more closely related 

to three species of Vespertilionidae than to another species of Molossidae (Giannini et al. 

2008). This is the only occurrence of T. teniotis in all the source trees, and this particular 

tree was constructed from characters derived from premaxillae morphology alone. 

 

The superfamily Emballonuroidea is composed of families Emballonuridae and Nycteridae 

in all family-level trees containing both families (see Figure 3.5), and the new supertree 

reflects this. Apart from the splitting of Nycteridae (explained above), the composition and 

position of this superfamily is in line with current understanding (Teeling 2011, pers. 

comm.) 
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Figure 3.4: The new supertree for family-level relationships. 
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Figure 3.5: A comparison of the new supertree family-level topology with published family-level topologies. 
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3.4.3 Pteropodidae 

The Pteropodidae supertree is shown in Figure 3.6, with collapsed genera Pteropus, 

Nyctimene, Dobsonia, Epomorphorous, Cynopterus, and Acerodon shown in Figure 3.7 to 

Figure 3.12. Several subfamilial schemes have been defined in the past, but currently none 

are in place in the third edition of Mammal Species of the World (Simmons 2005). The new 

supertree does not support the subfamilies of Koopman & Jones (1970), Macroglossinae 

and Pteropodinae, nor the replacement subclades of Koopman (1994). It does, however, 

support Corbet & Hill (1992) two small subfamilies (proposed in addition to Koopman & 

Jones' (1970) subfamilies): Harpyionycterinae (Harpionycteris only) and Nyctimeninae 

(Nyctimene and Paranyctimene). 

 

Amongst genera, most are monophyletic, including all that contain just two or three 

species, but for several of the larger genera, monophyly is not supported by the supertree. 

In particular, 64 of the 65 Pteropus species are placed together, but one species (Pteropus 

leucopterus) falls with Melonycteris species instead, due to the source trees of Esselstyn et 

al. (2008). Additionally, one species of Megaerops (M. wetmorei) does not cluster with the 

other three species in the genus due to Almeida et al. (2009), which showed M. wetmorei 

with Ptenochirus jagori. Pteralopex acrodonta is found with Rousettus spinalatus, 

Pteropus spp., and Acerodon spp. because of the influence of Colgan & da Costa 2002; 

Colgan & Flannery 1995; O'Brien et al. 2009. 

 

Of particular interest in the context of echolocation is the polyphyly of the genus Rousettus, 

of which at least three species (R. amplexicaudatus, R. aegyptiacus, and R. spinalatus) use 

tongue-clicking echolocation to navigate in caves (Nowak 1999), and it is generally 

assumed that all Rousettus species do. In the supertree this genus is fragmented, with a core 

group of eight species (including two of the known echolocators (R. amplexicaudatus and 

R. aegyptiacus), and two lone species: the remaining known echolocator R. spinalatus is 

found with genera Acerodon and Pteropus, and R. bidens is found with the genus 

Harpionycteris. The position of R. spinalatus appears to be due to its use as an outgroup to 

Pteropus species in Esselstyn et al. (2008), whereas R. bidens is considered by some 
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authors to be a separate genus (Boneia) (e.g., Andersen 1912; Koopman 1993), and is found 

polyphyletically to other Rousettus species in source trees in Giannini, Cunha Almeida, & 

Simmons (2009) and Romagnoli & Springer (2000). Since a direct analysis of the 

relationships between all Rousettus species and their position within Pteropodidae has not 

been carried out, it is possible the splitting of the genus in the supertree is an artefact, and 

has no bearing on the evolution of tongue-clicking echolocation in this family. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 (Next page): Pteropodidae supertree, with six genera collapsed. The supertrees for these 

genera are shown in Figure 3.7 (Pteropus), Figure 3.8 (Nyctimene), Figure 3.9 (Epomorphorus), Figure 

3.10 (Cynopterus), Figure 3.11 (Dobsonia), and Figure 3.12 (Acerodon).
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Figure 3.7: Pteropus supertree. 

 

Figure 3.8: Nyctimene supertree. 

 

 

Figure 3.9: Epomorphorus supertree. 

 

 

Figure 3.10: Cynopterus supertree.  

 

Figure 3.11: Dobsonia supertree. 
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Figure 3.12: Acerodon supertree. 

 

3.4.4 Hipposideridae 

The Hipposideridae supertree is presented in Figure 3.13. It is fully resolved for species that 

were represented in the source trees, indicating a high level of agreement (Bogdanowicz & 

Owen 1998; Van Den Bussche & Hoofer 2004; Eick et al. 2005; Gu, He, & Ao 2008; 

Guillen-Servent & Francis 2006; Kawai et al. 2002; Li, Liang, et al. 2007; Vallo et al. 

2008; Wang et al. 2003; Zhou et al. 2009). Twenty-one species are not found in any source 

tree. The monophyly of all genera except Hipposideros are preserved (as a result of the 

morphology-based source tree of (Bogdanowicz & Owen 1998)), and the tribes Coelopsini 

(Coelops and Paracoelops) and Hipposiderini (Anthops, Asellia, Aselliscus, Cloeotis, 

Rhinonicteris, Triaenops, and Hipposideros) are not supported. 
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Figure 3.13: Hipposideridae supertree. 
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3.4.5 Rhinolophidae 

The Rhinolophidae supertree is presented in Figure 3.14. Twenty-six species of 

Rhinolophus (the only genus in the family) were not found in any source tree, and are 

therefore seen as a polytomy. Amongst the remaining 51 species resolution is extremely 

high, indicating high congruence between sources (Csorba, Ujhelyi, & Thomas 2003; Eick 

et al. 2005; Gu et al. 2008; Li et al. 2006; Li, Liang, et al. 2007; Maree & Grant 1997; 

Springer, Teeling, & Madsen 2001; Sun et al. 2008; Wang et al. 2003). Rhinolophidae is 

split into 15 species groups (Csorba et al. (2003) – adami, capensis, euryale, euryotis, 

ferrumequinum, fumigatus, hipposideros, landeri, maclaudi, megaphyllus, pearsoni, 

philippinensis, pusillus, rouxi, trifoliatus), the largest of which contains 11 species and the 

smallest, just one species. Only four of these species groups are monophyletic on the 

supertree: euryotis (six species monophyletic but three species not found in source trees), 

fumigatus (all three species monophyletic), euryale (both species together), and rouxii (all 

three species monophyletic). 
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Figure 3.14: Rhinolophidae supertree. 
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3.4.6 Megadermatidae 

The Megadermatidae supertree is presented in Figure 3.15. Three source trees have 

contributed to its topology, two containing three species (Eick et al. 2005; Giannini & 

Simmons 2007), and one containing all five (Griffiths, Truckenbrod, & Sponholtz 1992). 

Only the tree presented in Griffiths et al. (1992) influences the topology seen in the 

supertree, which contradicts both other sources, one of which finds Cardioderma cor and 

Megaderma spasma to be mostly closely related, with Megaderma lyra basal, and the other 

finds Macroderma gigas and Megaderma spasma to be most closely related, with 

Cardioderma cor basal. 

 

 

Figure 3.15: Megadermatidae supertree. 

 

3.4.7 Rhinopomatidae 

The Rhinopomatidae supertree is presented in Figure 3.16. Just one source tree contributes 

to its topology (Hulva, Horáček, & Benda 2007), presenting the relationship shown in 

Figure 3.16, but without Rhinopoma macinnesi, which, prior to the 2005 edition of 

Mammal Species of the World, was considered to be a subspecies of R. hardwickii 

(Simmons 2005). 

 

 

Figure 3.16: Rhinopomatidae supertree. 
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3.4.8 Phyllostomidae 

The Phyllostomidae supertree is shown in Figure 3.17, with subfamilies shown fully in 

Figure 3.18, Figure 3.19, and Figure 3.20. The Phyllostomidae supertree is extremely well 

resolved, and the monophyly of four of the seven subfamilies is preserved 

(Stenodermatinae, Brachyphyllinae, Phyllonycterinae, and Desmodontinae). The remaining 

polyphyletic subfamilies are Phyllostominae and Glossophaginae, which are distributed 

amongst the other subfamilies and each other, and Carollinae, which has lost Rhinophylla 

to Stenodermatinae. This is due to the source trees of Baker et al. (2003), Baker et al. 

(2000), and Lim & Engstrom (1998), which over-ride the monophyly of Carollinae seen in 

the topology of Gimenez (1993) and Wetterer, Rockman, & Simmons (2000). Otherwise, 

all genera are monophyletic. 
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Figure 3.17: The supertree for Phyllostomidae with several subfamilies collapsed. Relationships within 

these clades are shown in Figure 3.18, Figure 3.19, and Figure 3.20.
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Figure 3.18: Stenodermatinae supertree. 
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Figure 3.19: Desmodontinae supertree. 

 

 

Figure 3.20: Brachyphillinae and Phyllonycterinae supertree. 

 

3.4.9 Mormoopidae 

The Mormoopidae supertree is presented in Figure 3.21. Fifteen source trees in six papers 

contribute to its fully resolved topology. All agree on the placement of the three Mormoops 

species basal to the seven Pteronotus species. No source tree (except the reference 

taxonomy) includes Mormoops magna. Amongst the Pteronotus species, the subgenus 

Pteronotus (P. davyi and P. gymnonotus) was upheld by all source trees and the supertree, 

as is the subgenus Chilonycteris (P. macleayi and P. quadridens) excluding P. personatus 

as intimated by Simmons (2005). The final subgenus, Phyllodia, is comprised of P. 

pristinus and P. parnellii, but P. pristinus does not feature in any of the source trees, hence 

this subgenus is not upheld in the supertree. The topology of the seven Pteronotus species 

is upheld by 12 of the 16 source trees in four of the six papers (Arnold et al. 1982; Davalos 

2006; Lewis-Oritt, Porter, & Baker 2001; Van Den Bussche & Weyandt 2003 vs. Simmons 

& Conway 2001; Van Den Bussche, Hoofer, & Simmons 2002). 
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Figure 3.21: Mormoopidae supertree 

 

3.4.10 Thyropteridae 

The Thyropteridae supertree is presented in Figure 3.22. Two source trees contribute to the 

topology, and both are congruent (Gregorin et al. 2006; Solari et al. 2004). 

 

 

Figure 3.22: Thyropteridae supertree. 

 

3.4.11 Vespertilionidae 

The monophyly of the largest family of bats (388 species), Vespertilionidae, is supported 

by the supertree analysis (sensu Simmons 2005), and above genus level the topology is well 

resolved, reflecting the large number of sources tackling this family (Appleton, McKenzie, 

& Christidis 2004; Baird et al. 2008, 2009; Baker et al. 1988; Barratt et al. 1995, 1997; 

Bickham 1979; Bickham et al. 2004; Bogdanowicz, Kasper, & Owen 1998; Castella et al. 

2000; Frost & Timm 1992; Goodman et al. 2007; Hoofer & Van Den Bussche 2001; 

Hoofer et al. 2003; Hulva, Benda, et al. 2007; Hulva et al. 2004; Jones et al. 2006; Juste et 

al. 2004; Kawai et al. 2003; Kearney et al. 2002; Kiefer et al. 2002) and (Miller-

Butterworth et al. 2005; Morales & Bickham 1995; Pestano et al. 2003; Piaggio & Perkins 

2005; Piaggio et al. 2002; Qumsiyeh & Bickham 1993; Ruedi & Mayer 2001; Salgueiro et 

al. 2007; Stadelmann, Herrera, et al. 2004; Stadelmann et al. 2007; Stadelmann, Jacobs, et 

al. 2004; Thabah et al. 2007; Tumlison & Douglas 1992; Volleth & Heller 1994; Weyeneth 
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et al. 2008) (see Figure 3.23), most of which were published since the previous bat 

supertree (Jones et al. 2002). Of the five subfamilies, the three smallest, Antrozoinae, 

Kerivoulinae, and Murininae, were found to be monophyletic, with Kerivoulinae and 

Murininae forming sister clades. Myotinae (composed of the largest genus Myotis, as well 

as Cistugo and Lasionycteris) and the largest subfamily, Vespertilioninae, were both 

polyphyletic. 

 

The supertree of the subfamily Kerivoulinae, shown in Figure 3.24, maintains monophyly 

of each genus, Kerivoula and Phoniscus, since no source tree investigates both genera 

simultaneously. The subfamily is poorly resolved due to a lack of information regarding all 

but five of the 23 species. The supertree of subfamily Murininae, shown in Figure 3.25, 

maintains monophyly of each genus, Murina and Harpiocephalus, and appears to uphold 

Koopman's (1994) subgenera Murina and Harpiola, though due to a lack of information for 

10 of the 17 species, this is not clearly defined because of the low degree of resolution in 

this clade. 

 

The subfamily Myotinae includes genera Myotis, Cistugo, and Lasionycteris. The genus 

Myotis is monophyletic (see Figure 3.26), but the genera Cistugo and Lasionycteris do not 

cluster with it. In fact the two species of Cistugo form the most basal taxa of the 

Vespertilionidae supertree (see Figure 3.23), and their distance from Myotis is supported by 

every source tree in which they appear (Bickham et al. 2004; Eick et al. 2005; Jacobs et al. 

2004; Miller-Butterworth et al. 2005; Stadelmann, Jacobs, et al. 2004) 

 

The subfamily Vespertilioninae contains 238 species in seven tribes: Eptesicini, Lasiurini, 

Nycticeiini, Nyctophilini, Pipistrellini, Plecotini, and Vespertilionini. The supertree finds 

the subfamily to be polyphyletic (see Figure 3.23), but finds support for the monophyly of 

the three least speciose tribes: Lasiurini, Nyctophilini and Plecotini, echoing the findings of 

the original bat supertree (Jones et al. 2002). Lasiurini is mono-generic (Lasiurus) and has 

universal support and agreement from the three contributing source trees (Baker et al. 1988; 

Hoofer & Van den Bussche 2003; Morales & Bickham 1995) (see Figure 3.27). Amongst 

the species which appear in a source tree, there is also support for the subgenera Lasiurus 
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and Dasypterus (sensu Koopman (1994)). The tribe Nyctophilini contains genera 

Nyctophilus and Pharotis and is amongst completely unresolved, except for two species 

(see Figure 3.36) which reflect the source tree in Hoofer & Van den Bussche (2003). The 

tribe Plecotini contains six genera and the supertree shows very high resolution (see Figure 

3.39) and broad agreement between the 10 sources (Bogdanowicz et al. 1998; Van Den 

Bussche & Hoofer 2004; Frost & Timm 1992; Hoofer & Van den Bussche 2003; Hoofer & 

Van Den Bussche 2001; Juste et al. 2004; Kiefer et al. 2002; Pestano et al. 2003; Qumsiyeh 

& Bickham 1993; Tumlison & Douglas 1992). 

 

The other tribes within Vespertilioninae were found to be polyphyletic (Eptesicini, 

Nycticeiini, Pipistrellini, and Vespertilionini) (see Figure 3.23), as were the genera 

Eptesicus, Pipistrellus, Hypsugo, Neoromicia and Vespadelus. As a result, neither of Hill & 

Harrison's (1987) two putative sister clades (one containing Eudiscops, Pipistrellus, 

Nyctalus, Glischropus, Laephotis, Philetor, Hesperoptenus, and Chalinolobus, and the 

other containing Ia, Vespertilio, Histiotis, Tylonycteris, Mimetillus, and Eptesicus) were 

supported. All other genera in these four tribes were monophyletic (see Figure 3.23 and 

Figure 3.27 to Figure 3.41) though most had poor resolution and were monophyletic due to 

the influence of the Simmons (2005) reference taxonomy. 
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Figure 3.23: (Next two pages) Vespertilionidae supertree, with several subfamilies, tribes and genera 

collapsed. These clades are shown in Figure 3.24 to Figure 3.41. 
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Figure 3.24: Kerivoulinae supertree. 

 

 

 

Figure 3.25: Murininae supertree. 
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Figure 3.26: (This and next page) Myotis supertree.  
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Figure 3.27: Lasiurus supertree. 

 

 

Figure 3.28: Arielulus supertree. 

 

 

Figure 3.29: Scotophilus supertree. 

 

Figure 3.30: Scotorepens supertree. 

 

 

Figure 3.31: Falsistrellus supertree. 

 

 

Figure 3.32: Histiotus supertree. 

 

 

Figure 3.33: Laephotis supertree. 

  

Figure 3.34: Hesperoptenus supertree. 
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Figure 3.35: Chalinolobus supertree. 

 

 

Figure 3.36: Nyctophilini supertree. 

 

 

 

Figure 3.37: Nyctalus supertree. 

 

Figure 3.38: Rhogeessa supertree. 
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Figure 3.39: Plecotini supertree. 

 

 

Figure 3.40: Scotoecus supertree. 

 

 

Figure 3.41: Glauconycteris supertree. 

 

3.4.12 Miniopteridae 

The Miniopteridae supertree is presented in Figure 3.42. It is well resolved (89%), 

reflecting general agreement among the source trees. Miniopterus paululus, M. robustior 

and M. shortridgei do not appear in any source trees (except the reference taxonomy), 

hence their basal position and unresolved topology. 
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Figure 3.42: Miniopteridae supertree. 

 

3.4.13 Molossidae 

The Molossidae supertree is presented in Figure 3.43. The topology has fairly poor 

resolution (50%). The two subfamilies (Simmons 2005), Tomopeatinae (Tomopeas only) 

and Molossinae (all other Molossidae genera), are supported, with Tomopeas ravus falling 

basal to the Molossinae. Neither Freeman's (1981) two subclades nor Legendre's (1984) 

three subfamilies are supported by the supertree topology. The monophyly of all genera are 

supported except for Tadarida and Mops. Tadarida teniotis is left out of the Molossidae 

supertree and the reasons for this are explained in Section 1.1.1 above. Mops trevori does 

not cluster with the other Mops species, due to its placement with Eumops, Nyctinomops 

and Molossus in the source tree of Hoofer et al. 2003.  
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Figure 3.43: Molossidae supertree. 
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3.4.14 Natalidae 

The Natalidae supertree is presented in Figure 3.44. The two source trees contributing to it 

contain seven species, excluding Natalus primus (Davalos 2005), and six species, 

excluding N. primus and N. jamaicensis (Morgan & Czaplewski 2003). They are congruent 

and their topologies are seen in the supertree, with the addition of N. primus. 

 

 

Figure 3.44: Natalidae supertree 

 

3.4.15 Emballonuridae 

The Emballonuridae supertree is presented in Figure 3.45. The tree is fully resolved since 

all the source trees and the new supertree agree on the division between the two 

subfamilies, Taphozoinae (Taphozous and Saccolaimus) and Emballonurinae (all remaining 

emballonurid genera) (Dunlop 1998; Griffiths, Koopman, & Starrett 1991; Griffiths & 

Smith 1991; Lim et al. 2008). Within Taphozoinae, the supertree supports the monophyly 

of the two genera. Within Emballonurinae, the supertree supports the monophyly of both 

the Old World tribe Emballonurini (Emballonura, Mosia, and Coleura) and the New World 

tribe Diclidurini (Cyttarops, Diclidurus, Rhynchonycteris, Cormura, Saccopteryx, 

Balantiopteryx, Peropteryx and Centronycteris). The monophyly of all genera is supported 

in the supertree. 
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Figure 3.45: Emballonuridae supertree 

 

3.4.16 Nycteridae 

The Nycteridae supertrees are presented in Figure 3.46 and Figure 3.47. The family has 

been split, with the species in Figure 3.46 appearing in the suborder Pteropodiformes, and 

the species in Figure 3.47 appearing in the Vespertilioniformes suborder. The reasons for 

this split are explained in Section 1.1.1 above. The species forming the polytomy in Figure 

3.46 do so because they are not found in any source tree. The topology in Figure 3.47 is 

largely due to a single source tree (Eick et al. 2005) which contributes all the species except 
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Nycteris arge. This final species is brought in by another source tree (Van Den Bussche & 

Hoofer 2004). 

 

 

Figure 3.46: Nycteridae 1 supertree – species appearing in the Pteropodiformes suborder. 

 

 

Figure 3.47: Nycteridae 2 supertree – species appearing in the Vespertilioniformes suborder. 

 

3.5 Conclusions 

The bat supertree presented here is not intended as a definitive work on the phylogenetic 

relationships of bats that overrules previous phylogenetic analyses of molecular and 

morphological data. However, the lack of comparable data from each species of bat and the 

difficulty in analysing large numbers of characters and taxa simultaneously means the most 

robust methods for phylogenetic estimation are not able to compute a phylogeny that 

incorporates all bat species. Instead, this supertree allows the macro-scale comparative 

analysis of trait data using a comprehensive working hypothesis that summarises the 

consensus view of many smaller, more detailed systematic studies. 

 

As well as providing a phylogenetic framework for addressing comparative questions in bat 

biology, the new supertree allows the identification of clades that are in particular need of 

further taxonomic and systematic study. For example, the families Nycteridae, Molossidae, 
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Vespertilionidae and Rhinolophidae show the poorest resolution and would benefit most 

from increased attention. 

 

As predicted by Jones et al. (2002), the impact of the previous decade of phylogenetic 

analysis has been to shift the balance of the most fundamental aspects of tree topology, in 

that the new supertree now reflects the more recent evidence in favour of the inclusion of 

Pteropodidae into the ‘microbats’, refuting previous ideas about the basal nature of the Old 

World fruit bats. In most cases the vast majority of systematic studies on any particular 

clade show broad agreement, giving an increasingly clear picture of evolutionary 

relationships. 

 

Jones et al. (2002) hoped that in 20 years a complete phylogeny of bats based on 

simultaneous analysis of molecular and morphological data would converge on a single 

well-supported topology. The vast number of studies completed between 2000 and 2009, 

and the increasingly large numbers of taxa covered in each offer much encouragement, but 

far too many species are neglected, with 36% of bat species having not been included in a 

systematic study between 1970 and 2009. Despite this, the supertree offers a consensus of 

previous work, and allows a new level of detailed study in the comparative analysis of bats. 
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4 Chapter 4: Evolutionary constraint in echolocation call 

structure 

4.1 Abstract 

The functional roles of the different types of echolocation call are now well understood, 

and the role of habitat in shaping these structures has been established and emphasised. 

However, the impact of evolutionary history on the variation in echolocation call structures 

seen in bats is rarely acknowledged and has never been quantified. The variety of 

echolocation call structures is greater than what would be expected if the sounds were 

shaped purely by the ecological pressures facing extant bats, suggesting that evolution has 

taken different routes in shaping bat calls that function in a very similar way. Here I use 

echolocation call data from 410 species (44%), 120 genera (74%) and all 19 families of 

echolocating bats, and a complete, species-level phylogeny to (1) review the variation 

across the order, (2) assess phylogenetic and spatial signal (autocorrelation), (3) to estimate 

the most likely manner of evolutionary change, and (4) to determine the best model of 

evolution (between Brownian motion (BM), Ornstein-Uhlenbeck (OU), and Early Burst 

(EB)), for eight echolocation call parameters. I find a high degree of convergent evolution 

in echolocation call functionality, with differences in call structure suggestive of 

independent evolutionary pathways and a constraining force. Call parameters appear to 

have evolved in two ways: one set (peak frequency, characteristic frequency, call duration 

and bandwidth) has been more constrained by evolutionary history, less influenced by 

habitat, and has evolved more gradually in a directional manner towards a single selective 

optimum (OU). These parameters are more strongly associated with body mass. The other 

set of call parameters (maximum frequency, minimum frequency, total slope and dominant 

slope) are less constrained by evolutionary history, more influenced by habitat, and have 

evolved in a punctuational and directional manner towards several selective optima 

(modified OU). These parameters appear to be more important in giving echolocation calls 

task-based functionality. All call parameters show greater influence from evolutionary 

history, a lower degree of influence from environmental conditions, and a tendency towards 

species-specific, punctuational, and directional evolution. 



  Chapter 4  

  117 

 

 

4.2 Introduction 

4.2.1 Background 

Many studies of echolocation in bats have aimed to understand the functionality of different 

echolocation call structures, and how these relate to the range of sensory tasks encountered 

by bats (e.g. Aldridge & Rautenbach 1987; Jones & Rayner 1988; Kalko 1995; Kalko & 

Schnitzler 1993; Neuweiler 1984; Obrist 1995; Schnitzler & Kalko 2001; Schnitzler, Moss, 

& Denzinger 2003; Simmons, Fenton, & OFarrell 1979; Surlykke & Moss 2000). From 

these studies, we have a good comprehension of the necessary attributes of an echolocation 

call for any given task: for example, a particular bat call structure results from an interplay 

of factors such as the influence of target size on call frequency, target proximity on pulse 

duration and interval and clutter on bandwidth (see Table 4.1) (Jones & Holderied 2007). It 

is also clear what intrinsic and extrinsic factors influence, and interact to determine, the 

structure of an echolocation call: habitat, wing morphology, and prey type (Kalko & 

Schnitzler 1993; Schnitzler et al. 2003). Studies repeatedly reaffirm the influence of habitat 

(which in turn influences wing morphology and prey type) on call structure, often splitting 

bat species into ‘guilds’: groups that forage in a similar way, either for the same food 

source, or in habitats with the same degree of clutter, or a combination of both (Aldridge & 

Rautenbach 1987; Fenton 1995; Neuweiler 1990; Schnitzler & Kalko 2001, 1998). 

However, in these studies, the role of phylogeny, evolutionary history, and evolutionary 

constraints is rarely acknowledged to have an impact on echolocation call structure, and is 

thus relegated in importance compared to habitat and sensory tasks. 
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Call 

characteristic 
Value Advantage Disadvantage 

Frequency 
Low Travels further Poorer resolution 

High Greater resolution Travels less far 

Duration 

Short 

Better localisation 

performance, and less call-

echo overlap 

Less temporal information 

Long More temporal information 

Poorer localisation 

performance, and call-echo 

overlap at close range 

Bandwidth 

Narrow 
Energy concentrated - 

intensity high 

Poorer resolution of different 

size classes 

Broad 
Greater resolution of 

different size classes 

Energy spread - intensity 

reduced 

Table 4.1: The impact of variation in the three major components of echolocation call structure on 

functionality. 

 

In several other fields, the impact of evolutionary history has been assessed alongside the 

role of current ecological conditions. For example, Edwards & Naeem (1993) looked at the 

phylogenetic pattern of cooperative breeding in perching birds, and in doing so, defined 

phylogenetic inertia as the ‘tendency for traits to resist evolutionary change despite 

environmental perturbations’. Similarly, Diniz et al. (1999) considered the impact of 

evolutionary history on phenotypes in honey bees, and Morales (Morales 2000) studied 

demographic and morphological characters in plants. Such comparative studies add an 

evolutionary perspective to studies of ecology and physiology, and can enable greater 

understanding of both pattern and process. 

 

The influence of evolutionary history on the current diversity of echolocation calls in bats 

has been hinted at. For example, Schnitzler et al.’s (Schnitzler et al. 2004) vocal plasticity 

hypothesis is based on the idea that “echolocation signals reflect a phylogenetically 

determined basic call structure shaped by specific ecological conditions”. However, most 

‘comparative studies’ cited by Schnitzler do not comment on evolution, and often look at 
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only a single species. Evolutionary history is likely to be much more prominent in shaping 

echolocation calls than we have acknowledged. 

 

If habitat were solely responsible for shaping the call variation seen today, we would expect 

to see a single echolocation call type in use in search phase flight by each guild. For 

example, in Schnitzler and Kalko’s (1998) three-guild model of bats that forage in (1) 

uncluttered space, (2) background-cluttered space, and (3) highly cluttered space, we would 

expect three call types based on the requirements outlined in Table 4.1: (1) low frequency, 

long duration, low bandwidth calls, (2) mid frequency, mid duration, mid bandwidth calls, 

and (3) high frequency, short duration, high bandwidth calls. In fact, taking the final guild 

as an illustration, we see a number of different call types, most of which correspond with 

these requirements in outline, but differ in composition. They include the calls of species in 

the genus Myotis (Vespertilionidae) which are high bandwidth by virtue of an increase in 

the maximum frequency of the fundamental harmonic, as well as the calls of species in the 

family Phyllostomidae which achieve a high bandwidth by using a multiharmonic structure 

and spreading the energy over all harmonics, and also the very long, largely constant 

frequency calls of the family Rhinolophidae, which circumvent the need for a high 

bandwidth by detecting the movement of prey against a stationary background (Schnitzler 

& Kalko 1998). 

 

To determine the real impact of evolutionary history relative to current ecological 

conditions on echolocation call structures, we need to quantify the relationship between the 

bat phylogeny and the traits of interest. By using the new, complete and well resolved bat 

supertree, and measurements describing the echolocation call structures of 44% of 

echolocating bat species in 74% of genera and every family, it is possible to use 

phylogenetic comparative methods to understand the patterns and processes involved in the 

evolutionary path of echolocation in bats. 

 

One way of assessing the relative contributions of the environment and shared evolutionary 

history to the design of echolocation calls is to calculate the strength of phylogenetic signal 

for characteristic aspects of call structure. In the purest sense, phylogenetic signal is the 
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statistical non-independence of species trait values due to their phylogenetic relatedness 

(Revell, Harmon, & Collar 2008) – high signal indicates that trait values are very similar 

among related species. Biologically, it may be interpreted as measure of the impact of 

shared evolutionary history on a particular trait, since sister species must have shared a trait 

value in their most recent common ancestor. The remainder of the variation can be thought 

of as a result of recent selective pressures due to environmental conditions.  

 

One major criticism of comparative methods is the assumption of negligible variance in the 

intra-species variation of the traits in question (Garland, Bennett, & Rezende 2005; Ives, 

Midford, & Garland 2007; Martins & Hansen 1996; Rohlf 2001, 2006). This is a particular 

concern for bat echolocation call data, since the variability in call parameters within species 

is well documented, both due to geographic variation (Barclay, Fullard, & Jacobs 1999; 

Murray, Britzke, & Robbins 2001; Thomas, Bell, & Fenton 1987), sex and age (Jones & 

Kokurewicz 1994), and differing functional tasks (Schnitzler & Kalko 1998). To combat 

this potential source of error, the phylogenetic signal analysis is bootstrapped using 

randomly selected raw echolocation data, rather than species averages. 

 

When using comparative data relating to a large number of species, phylogeny is not the 

only source of statistical non-independence. Spatial autocorrelation may also be responsible 

for similar trait values among species found in close proximity (Freckleton & Jetz 2009). 

This is usually due to shared environmental conditions as a result of climate and geology, 

which may then determine habitat types and species assemblages. When assessing the 

relative contributions of shared evolutionary history and environment on echolocation calls, 

spatial autocorrelation must also be included.  

 

It is also useful to look at the tempo and mode of evolution in echolocation calls leading to 

the diversity seen today. At present, very little is understood about how changes to the 

structure of echolocation calls evolve. Here I investigate the tempo using Pagel’s kappa, 

which estimates whether evolution proceeded gradually or in bursts associated with 

speciation, and Pagel’s delta, which estimates whether evolutionary change occurred early 
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in the tree (consistent with adaptive radiation), or late (indicating species-specific changes) 

(Pagel 1999a).  

 

I also consider the mode of evolution by evaluating three main models: (1) the Brownian 

motion model (BM), (2) the Ornstein-Uhlenbeck model (OU), and (3) the Early Burst 

model (EB) (see Blomberg, Garland, & Ives 2003; Felsenstein 1973; Hansen 1997). BM 

describes a ‘random walk’ where evolution can proceed in any direction away from the 

starting value of a trait, leading to trait variance increasing over time (Felsenstein 1973). It 

is often assumed to be the mode of evolution in action in comparative studies, though its 

random nature makes this unlikely, since the subject of most comparative studies are traits 

that are likely to impact the fitness of the organism under study (Butler & King 2004). OU 

is a modified BM model, including a non-neutral parameter α, that specifies the value of a 

selective optimum for the trait, and which exerts a restraining force, pulling the value of the 

trait towards it (Felsenstein 1988). EB is characterised by change early in a lineage, such 

might occur in adaptive radiations. This early change is followed by a decreased rate of 

diversification (of species) and associated disparification (diversity of trait values - Evans 

& Smith 2009) as niches fill up.  

 

4.2.2 Hypotheses 

I would expect a high phylogenetic signal in body mass, as body mass values appear to be 

similar amongst more closely related bat taxa. I would also expect high phylogenetic signal 

in echolocation call parameters that are closely associated with body mass, i.e. peak 

frequency, characteristic frequency, and call duration. The call parameters more closely 

linked to habitat differences, i.e. maximum frequency, minimum frequency, and the 

measures of call slope (Jones & Holderied 2007; Schnitzler & Kalko 1998), should have a 

lower phylogenetic signal. 

 

For spatial signal, I would expect to see a reversal of the pattern to that seen in phylogenetic 

signal, so that call parameters closely linked to habitat show greater spatial signal, and 

those more closely related to body mass show lower spatial signal. 
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I would hypothesise that change in call parameters would be somewhat punctuational, since 

intermediate call values may be non-functional. However, for call parameters linked to 

body mass, such as peak frequency, characteristic frequency and call duration, I would 

expect a more gradual course of evolutionary change. I predict that, in terms of the timing 

of evolutionary changes in call parameters, most parameters would show late, species-

specific change, since the high diversity of call structures would not be expected if call 

parameters had evolved early in the history of bats, and had remained relatively unchanged 

since. 

 

Since echolocation is a highly functional trait, I would not expect to see a BM model of 

evolution. The importance of the call parameter values in the fitness of each species leads 

me to expect an OU model, with constraining selective optima. Just as I suspect 

evolutionary change occurred late in the phylogeny, I also would not expect the EB model 

of evolutionary change, as it hints at early diversification and disparification, followed by 

relative stasis. 

 

4.2.3 Chapter aims 

The aims of this study are threefold: (1) To illustrate the variation in echolocation call 

design from species level to family level using data from up to 410 species (44%), 120 

genera (74%) and 19 families (100%), (2) To determine to phylogenetic, spatial and 

independent components of these measures, (3) To assess the evolutionary process 

underpinning the evolution of echolocation call traits. 

 

4.3 Methods 

4.3.1 Data 

4.3.1.1 Bat call data 

I collated and measured the echolocation call data as described in Chapter 2: section 2.2. 

The echolocation data used included data from species found in EchoBank that could be 
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successfully measured (see Appendices A and E), and data from species reported in the 

literature (see Appendix B). I used the parameters chosen in section 2.2.8 in Chapter 2: 

bandwidth, call duration, characteristic frequency, maximum frequency, minimum 

frequency, peak frequency, dominant slope and total slope. Transformed data (according to 

Table 2.9 in Chapter 2 section 2.9) were used in all analyses. 

 

4.3.1.2 Supertree 

I constructed the supertree as described in Chapter 2: section 2.3. I used the EchoBank and 

Literature version of the tree, pruned to the 410 species for which I have echolocation data 

from either EchoBank or the literature. I altered the topology, however, moving the 

Molossidae species Tadarida teniotis from its location paraphyletic to the Molossidae, to 

being allied with the other Tadarida species, because this species had fallen out of its 

family due to its presence in a single morphological source tree that found it to be more 

closely related to species of Vespertilionidae than another species of Molossidae (Giannini 

et al. 2008). I also moved the Nycteridae species found amongst the Pteropodiformes to 

join the other Nycteridae species in the Vespertilioniformes. This latter topology reflects 

current consensus much more closely (Eick, Jacobs, & Matthee 2005; Miller-Butterworth et 

al. 2007; Teeling et al. 2003, 2005, pers. comm.). I chose to make these changes to ensure 

that the analyses of echolocation data are as relevant and current as possible. 

 

4.3.1.3 Body mass and spatial data 

Adult body mass data (averaged over both sexes) (see Appendix F) and spatial data (mid-

range latitude and longitude values for each species) were taken from the PanTHERIA 

database – a database of life history traits for mammalian species (Jones et al. 2009) 

according to the taxonomy of the Mammal Species of the World 2005 (Simmons 2005). 

PanTHERIA includes a value for ‘Extrapolated Adult Body Mass’, calculated from either 

adult head-body length, adult forearm length, or both, and where a direct value for body 

mass was unavailable for a species, the extrapolated body mass value was used instead. For 

the complete species list used in these analyses, 8% of body mass values were extrapolated 

in this way. Spatial data were available for 401 of the 410 species. 
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4.3.1.4 Combined data sets 

The data sets used for each analysis in this chapter are subsets of the total data set of 410 

species. There are missing data points in the EchoBank data set, where SonoBat (Szewczak 

2010) was unable to measure a particular parameter; in the Literature, where parameters 

were not reported; and in PanTHERIA, where data were unavailable (see Chapter 2 section 

2.9 for details and Appendix F for species list). In each analysis, the phylogeny was pruned 

to include only those species which were represented by data for every parameter involved 

in the analysis. 

 

4.3.2 Analysis 

All data analysis was performed using R version 2.12.0 (The R Core Development Team 

2010). 

4.3.2.1 Echolocation Call Variation 

I reviewed the variation in echolocation calls across the order visually, considering each 

family independently by placing a call for each species represented in EchoBank on a 

composite sonogram. Each sonogram was produced using BatSound (Pettersson 2002), 

keeping the time frame and frequency axis constant. Each figure uses a Hanning 1024 Fast 

Fourier Transform window and the sound threshold is set to produce images where 

echolocation calls are of roughly comparable intensity. However, the intensity shown in the 

figures does not represent relative intensities between species, merely relative amplitudes 

within a single call. Where a species has calls of alternating frequencies, such as in 

Saccopteryx bilineata, all calls in a series are shown, but the interpulse duration is not 

scaled. 

 

I used these sonograms to group similar calls and to assess the suitability of the 

echolocation call categories outlined in Jones & Teeling (2006). 
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I also compared differences in frequencies used, characteristic frequency, bandwidth and 

call duration, family-by-family, across the order. 

 

4.3.2.2 Patterns of Phylogenetic and Spatial Signal 

The analyses below assess the variation seen in echolocation call structures in a quantitative 

manner. They concentrate on understanding the patterns of trait variation across the 

phylogeny. 

 

 Pagel’s Lambda 

I estimated Pagel’s lambda (λ) values (Pagel 1999a) for each echolocation call parameter 

and for the residuals of each echolocation call parameter following a phylogenetic 

generalised least squares analysis (PGLS) run using the ‘gls’ function of the package nlme 

in R (The R Core Development Team 2010), using an Ornstein-Unlenbeck correlation 

structure where alpha was equal to the values estimated in section 4.3.2.3 below. Lambda is 

a measure of the phylogenetic signal in the data, i.e. how clumped or over-dispersed values 

are on the phylogeny, with values close to one indicating high similarity in trait values 

among closely related species, and values close to zero indicating random dispersion of trait 

values across the tree. Lambda was estimated using the ‘fitContinuous’ function of the 

package geiger in R (The R Core Development Team 2010). This function scales branch 

lengths according to the different value of lambda and uses maximum likelihood to 

estimate the most likely value for each parameter. To check the validity of using a median 

value for each species, I ran a second estimation of lambda using 100 bootstraps of 

randomly picked individual calls. 

 

 Freckleton and Jetz test 

Since the echolocation data in this study come from a worldwide distribution of bat species, 

phylogenetic autocorrelation is likely not to be the only source of statistical non-

independence affecting the dispersal of trait values. Species which occupy overlapping or 

nearby geographic ranges may have similar traits due to the impact of shared environmental 

conditions. Freckleton and Jetz (2009) developed a means of incorporating phylogenetic 
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and spatial autocorrelation into a single test, enabling the estimation of three concomitant 

parameters: lambda prime (λ´ - contribution of phylogeny (an adjusted lambda value)), phi 

(φ - contribution of space), and gamma (γ – independent/unknown). I used the custom-built 

function ‘distance2’, written by Freckleton and Jetz and implemented in the ape package of 

R to estimate lambda´, phi and gamma. 

 

4.3.2.3 Processes of Evolution 

The following analyses estimate the likely processes of evolution that have been in 

operation to produce the patterns found in echolocation call structure and the distribution of 

traits over the phylogeny of bats. 

 

 Pagel’s Kappa and Delta 

I estimated Pagel’s kappa (κ) and delta (δ) values (Pagel 1999a) for each echolocation call 

parameter and for the residuals of each echolocation call parameter following a 

phylogenetic generalised least squares analysis (PGLS) run using the ‘gls’ function of the 

package nlme in R (The R Core Development Team 2010), using an Ornstein-Unlenbeck 

correlation structure where alpha was equal to the values estimated in section 4.3.2.3 above. 

I also estimated kappa and delta for bat body mass for comparison. Kappa gives an 

indication of how gradual or punctuated change in trait values is on the phylogeny, with 

values greater than one indicating that longer branches in the phylogeny contribute more to 

trait evolution (change is gradual), and values below one suggesting that trait evolution is 

less dependent on branch length, and therefore more ‘punctuational’. Delta indicates which 

changes in traits occur early or late in the course of evolution over the phylogeny, with 

values greater than one indicating accelerating evolution over time, and values less than one 

suggesting that trait change occurred early in the phylogeny. Both parameters were 

estimated using the ‘fitContinuous’ function of the package geiger in R (Harmon et al. 

2009). This function scales branch lengths according to the different values of kappa and 

delta and uses maximum likelihood to estimate the most likely value for each parameter. 

Again, to check the validity of using a median value for each species, I ran a second 

estimation of kappa and delta using 100 bootstraps of randomly picked individual calls. 
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 Mode of Evolution 

I compared three models of evolution; Brownian Motion (BM), Ornstein-Uhlenbeck (OU), 

and Early Burst (EB), using the function ‘fitContinuous’ in the package geiger in R 

(Harmon et al. 2009). I compared corrected Akaike Information Criterion (AICc) scores to 

select the best performing model for each echolocation call parameter. Although the OU 

model is more complex than BM, in that it adds a selective optimum (α) for the trait to tend 

towards, it only specifies a single selective optimum for all the species on the phylogeny. 

Since it is possible that each echolocation call parameter could be tending towards more 

than one selective optimum across up to 410 species, I also tested between BM, OU with 

one selective optimum, and five ‘Hansen’ models (Butler & King 2004): OU models with 

more than one selective optimum. The five models contained 2, 19, 23, 30 and 38 selective 

optima, based on splitting the phylogeny according to (1) suborders (sensu Teeling et al. 

(2005)), (2) families, (3) families but with Vespertilionidae (the most speciose family) 

broken into subfamilies, (4) subfamilies, and (5) tribes, respectively (sensu Simmons 

(2005)). To do this I used the package ouch in R (King & Butler 2009). Again, I compared 

Akaikie Information Criterion (AIC) and Bayesian Information Criterion (BIC) scores to 

select the best performing model for each echolocation call parameter. 

 

4.4 Results 

4.4.1 Echolocation Call Variation 

Echolocation call structures across all 18 families of laryngeally echolocating bats vary 

dramatically and include near-vertical sweeps from high to low frequency over just a 

couple of milliseconds (for example in the genus Kerivoula, Vespertilionidae) constant 

frequency calls of up to 81 ms in duration (in the Rhinolophidae), and calls with several 

elements, either as repeated sounds at slightly different frequencies (such as in 

Emballonuridae) or as two different sound structures (Myzopodidae). Examples of a call 

from all collected species in all laryngeally-echolocating families are shown in Figure 4.1 

to Figure 4.9 according to the phylogenetic relationships found in the supertree, except for 

the largest family Vespertilionidae, for which a call for each genus is shown. Branch 



  Chapter 4  

  128 

 

lengths in the figures correspond roughly to divergence times – see Chapter 3 for accurately 

dated figures of the supertree. 

 

A large amount of variation in call structures between species is evident in the 

Emballonuridae (Figure 4.1), Molossidae (Figure 4.4) and amongst the species of the 

smaller families (Craseonycteridae, Furipteridae, Natalidae, Myzopodidae, Mystacinidae, 

Noctilionidae, Nycteridae, Rhinopomatidae, Mormoopidae, Thyropteridae, and 

Megadermatidae (Figure 4.9)). However, a surprisingly small degree of variation between 

species is seen in the Hipposideridae (Figure 4.2), Miniopteridae (Figure 4.3), 

Phyllostomidae (Figure 4.5), Rhinolophidae (Figure 4.6) and Vespertilionidae (Figure 4.7), 

particularly within the genus Myotis (Figure 4.8). There are several examples of putative 

convergent evolution, most notably in the call of Hipposideros semoni (Hipposideridae), 

which shows a constant-frequency structure more similar to that of the Rhinolophidae than 

the Hipposideridae, as does Pteronotus parnellii (Mormoopidae). To find this call structure 

in a species of Hipposideridae is extremely surprising, and due to the possibility that the 

recording had been mislabeled, or the bat misidentified, I checked the literature for 

independent verification of this species’ unusual call type. I found two references by 

different authors containing spectrograms confirming the call’s rhinolophid-like structure 

(Churchill 2010; de Oliveira & Schulz 1997). 
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Figure 4.1: Sonograms of search phase echolocation calls in 15 species of Emballonuridae. Pulse intervals are not scaled. 
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Figure 4.2: Sonograms of search phase echolocation calls emitted in 30 species of Hipposideridae. 
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Figure 4.3: Sonograms of search phase echolocation calls emitted in seven species of Miniopteridae. 
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Figure 4.4: Sonograms of search phase echolocation calls emitted in 16 species of Molossidae. 
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Figure 4.5: Sonograms of search phase echolocation calls emitted in 46 species of Phyllostomidae. 
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Figure 4.6: Sonograms of search phase echolocation calls emitted in 33 species of Rhinolophidae. 
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Figure 4.7: Sonograms of search phase echolocation calls emitted in 31 species of Vespertilionidae, each representing a single genus. 
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Figure 4.8: Sonograms of search phase echolocation calls emitted in 44 species of the genus Myotis (Vespertilionidae). 
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Figure 4.9: Sonograms of search phase echolocation calls emitted in one species of each of Craseonycteridae, Furipteridae, Thyropteridae, 

Noctilionidae, Mystacinidae, Natalidae, and Myzopodidae, two species of each of Rhinopomatidae and Nycteridae, and three species of each of 

Megadermatidae and Mormoopidae. 
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On comparison with the echolocation call categories designated by Jones and Teeling 

(2006), I found several opportunities for further divisions that I consider to be functionally 

and evolutionarily relevant (see Table 4.2). I found total agreement between Jones and 

Teeling’s call types (a) and (b) with my call types (1) and (2). I modified the description of 

call type (c) to my call type (3) and excluded Miniopteridae (which I found to be 

broadband, not narrowband), and instead included members of Emballonuridae. I split call 

type (d) into my call types (4), (5), and (6), reflecting the different types of curvature found 

under the description of ‘narrowband, multiharmonic’. I also split call type (e) into my call 

types (7) and (8), since (e) excluded broadband calls of >5ms that did not fit into any of 

Jones and Teeling’s other categories. Call type (8) absorbs the Miniopteridae that I 

removed from group (c)/(3). Call type (f) does not distinguish between the dominant 

harmonics used in short, broadband, multiharmonic calls, so I split this group into call types 

(9) and (10), and I included members of Molossidae in (10). Call type (g) includes only 

Myzopoda aurita (Myzopodidae), but I found similarities in call structure between the calls 

of this species and those of species in Mormoopidae and Molossidae, so I have included 

these in my call type (11). Call type (h) does not distinguish between brief frequency-

modulated up-sweep, long constant-frequency section, brief frequency-modulated down-

sweep calls, and brief frequency-modulated up-sweep, mid-length constant-frequency 

section, and broadband down-sweep calls. I have done this, by creating call types (12) for 

the former, and (13), for the latter. Call type (12) includes all Rhinolophidae, Pteronotus 

parnellii (Mormoopidae), and some species of Hipposideridae. Call type (13) includes most 

species of Hipposideridae, as well as Rhychonycteris naso (Emballonuridae), Molossus 

rufus (Molossidae) and Noctilionidae. 
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Table 4.2: The diversity of echolocation calls in bats: a comparison between the categories of Jones and Teeling 2006 (left hand column), and proposed 

new categories (right hand column). The right hand column includes a spectrogram for every family with calls belonging in a call type, but may not be 

limited to the species mentioned. Figure adapted from Jones & Teeling 2006. 
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Table 4.2 continued: 
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Table 4.2 continued: 
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Table 4.2 continued: 
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Table 4.2 continued: 
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Table 4.2 continued: 
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Bats use a wide range of frequencies from ~7.5kHz in Euderma maculatum 

(Vespertilionidae) to ~210kHz in Cloeotis percivali (Hipposideridae) (see Figure 4.10). In a 

single call, some bats are able to span ~95kHz (e.g., Kerivoula hardwickii, 

Vespertilionidae), or remain at such a constant frequency that the bandwidth is ~0.5kHz 

(Taphozous achates, Emballonuridae) (see Figure 4.11A). Call durations can be as short as 

0.1ms (Lampronycteris brachyotis, Phyllostomidae) and longer than 81ms (Rhinolophus 

luctus, Rhinolophidae) (see Figure 4.11B). Finally, bats use between one and four 

harmonics (doublings in frequency), sometimes extending as high as the fifth harmonic (see 

Figure 4.12).  Most families (12 out of 18) are able to switch the energy in the call between 

at least two different harmonics. Of the six families that never place the maximum energy 

in more than one harmonic, Noctilionidae, Miniopteridae, and Myzopodidae use the first 

harmonic (i.e., the fundamental), and Natalidae and Rhinolophidae use the second 

harmonic, and Furipteridae use the third. Seven families use one harmonic as the main 

harmonic (with most energy) more than 90% of the time, but not exclusively: for 

Molossidae and Vespertilionidae it is the first harmonic, and for Craseonycteridae, 

Emballonuridae, Hipposideridae, Mormoopidae and Rhinopomatidae it is the second 

harmonic. The remaining five laryngeal-echolocating families studied switch the harmonic 

with the maximum energy between three or four different harmonics: Megadermatidae and 

Phyllostomidae use harmonics one to four; Thyropteridae and Mystacinidae use harmonics 

one to three, and Nycteridae use harmonics two to five. 
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Figure 4.10: (A) shows the range of frequencies (kHz) used by each family, from the median minimum frequency used by any species in any harmonic, 

to the median maximum frequency used by any species in any harmonic. (B) shows the median characteristic frequencies (kHz) used by each species, 

grouped by family. 
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Figure 4.11: (A) shows the median bandwidths used by each species, grouped by family. (B) shows the median call durations used by each species, 

grouped by family.   
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Figure 4.12: The harmonic usage by each family: bubble area represents the usage of each harmonic as 

the harmonic with the maximum energy, as a proportion of all harmonics used in each family. 

 

4.4.2 Patterns of Phylogenetic and Spatial Signal 

The estimated lambda values for each echolocation call parameter, and body mass, indicate 

a moderately high to very high degree of phylogenetic signal for all echolocation call 
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parameters (see Figure 4.13). The residuals (the value of the echolocation call parameters 

after accounting for body mass) show very similar phylogenetic signal values to those of 

the uncorrected echolocation call parameters, although the phylogenetic signal seen in 

bandwidth is somewhat lower when body mass is accounted for. 

 

 

Figure 4.13: Degree of phylogenetic signal shown by body mass and eight echolocation call parameters 

using Pagel’s Lambda. 

 

The lambda values produced by median call parameters are very similar to the values 

produced by 100 randomly selected individual calls for each species (see Figure 4.14). 

Most call parameters actually show a small increase in phylogenetic signal, suggesting that 

median values are fairly conservative. 
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Figure 4.14: Frequency distributions of the lambda values for 100 bootstraps of individual call 

parameters, compared to the lambda score for the median values of the EchoBank calls only (as 

opposed to EchoBank calls and literature values shown in Figure 4.13), shown as a dotted blue line. 

 

Some signal seen in the echolocation parameters may be due to species proximity in space 

as well as, or instead of, their degree of relatedness. Freckleton and Jetz’s method 

(Freckleton & Jetz 2009) allows signal to be further partitioned to account for spatial signal 

as well as phylogenetic signal. This test showed that the majority of the similarity between 

species is still due to phylogenetic signal for all echolocation call parameters (see Figure 

4.15). However, spatial autocorrelation has a varying impact on different parameters, 
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tending to influence the minimum and maximum frequencies and the slope of echolocation 

calls most. 

 

Figure 4.15: Proportional phylogenetic and spatial contributions to echolocation call parameter values. 

 

4.4.3 Processes of Evolution 

The estimated kappa values for each echolocation call parameter, and body mass, as well as 

the echolocation call parameters accounting for body mass, are typically low (see Figure 

4.16), indicating that the evolution tends to have been punctuational for most echolocation 

call parameters, particularly for the slope values, call duration and bandwidth. However, 

measurement error could reduce kappa values in variables that have evolved under a 

Brownian Motion model. 
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Figure 4.16: Degree of evolutionary gradualism shown by body mass and eight echolocation call 

parameters using Pagel’s Kappa. 

 

The bootstrap analysis (see Figure 4.17) shows that the kappa values produced by 100 

randomly selected individual calls for each species are somewhat lower than the values 

produced by median call parameters, except for the three frequency parameters, which were 

kappa = 1 regardless of the values used. The results for the both the median value and the 

bootstrapped values shown in Figure 4.17 are quite different to those for the median values 

shown in Figure 4.16. The two analyses were performed on different data sets: 

bootstrapping was performed only on EchoBank data since these data included raw 

measurements from single calls, whereas the echolocation data from the literature were 

averages from many calls. The median values presented in Figure 4.17 are from EchoBank 

data only as well, whereas the much larger data set used for the analysis in Figure 4.16 

included both EchoBank data and echolocation data from the literature (see Appendix A for 

details). Because the results presented in Figure 4.16 are from a larger data set, they are 

more reliable, though the variability shown between these analyses indicates the 

unpredictable nature of kappa as an indicator of evolutionary gradualism. 
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Figure 4.17: Frequency distributions of the kappa values for 100 bootstraps of individual call 

parameters, compared to the kappa score for the median values of the EchoBank calls only (as opposed 

to EchoBank calls and literature values shown in Figure 4.16), shown as a dotted red line. 

 

The estimated delta values for each echolocation call parameter, and body mass, as well as 

the echolocation call parameters accounting for body mass, all have delta scores that 

indicate species-specific adaptation (see Figure 4.18). Although, minimum frequency has a 

lower score than the other parameters, it still strongly indicates species-specific adaptation. 
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Figure 4.18: Timing of evolutionary change shown by body mass and eight echolocation call 

parameters using Pagel’s Delta. 

 

The bootstrap analysis shows that the delta values produced by median call parameters are 

very similar to the values produced by 100 randomly selected individual calls for each 

species (see Figure 4.19), and make no difference to the interpretation of the timing of 

evolutionary change. 

 



  Chapter 4  

  155 

 

 

Figure 4.19: Frequency distributions of the delta values for 100 bootstraps of individual call 

parameters, compared to the delta score for the median values of the EchoBank calls only (as opposed 

to EchoBank calls and literature values shown in Figure 4.18), shown as a dotted green line. 

 

In the initial test between three models of evolution; Brownian Motion (BM), Ornstein-

Uhlenbeck (OU) and Early Burst (EB), all eight echolocation call parameters and body 

mass were indicated to have evolved under an OU process (see Table 4.3). 
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  AICc Weights for Evolutionary Model 

P
a

ra
m

et
er

s 

 BM OU EB 

Bandwidth 2.99E-17 1.00 1.08E-17 

Body Mass 2.14E-10 1.00 7.75E-11 

Call Duration 7.36E-28 1.00 2.67E-28 

Characteristic Frequency 2.07E-08 1.00 7.52E-09 

Dominant Slope 1.70E-16 1.00 6.14E-17 

Maximum Frequency 1.90E-09 1.00 6.86E-10 

Minimum Frequency 8.62E-05 1.00 3.12E-05 

Peak Frequency 7.19E-16 1.00 2.60E-16 

Total Slope 2.83E-15 1.00 1.02E-15 

 

Table 4.3: The relative weights for the corrected Akaike Information Criterion scores for the three 

competing evolutionary models: Brownian Motion, Ornstein-Uhlenbeck and Early Burst. 

 

Upon further investigation of the number of selective optima in the OU process, the 

Bayesian Information Criterion (BIC) indicated that Bandwidth, Call Duration, Dominant 

Slope, Maximum Frequency, Peak Frequency and Total Slope were most likely to have 

evolved under an OU process with a different selective optimum (α) for each family, except 

within the Vespertilionidae where there is a different selective optimum for each subfamily. 

However, for Body Mass, Characteristic Frequency and Minimum Frequency, the BIC 

indicated that the most likely evolutionary process was OU with a single selective optimum 

(see Table 4.4). 
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Bandwidth 1084.5 1035.5 1043.7 1078.6 986.2 999.3 1030.9 

Body Mass 607.9 600.3 610.5 674.4 689.0 714.1 743.7 

Call Duration 828.3 765.4 776.1 669.5 634.6 642.5 660.2 

Characteristic 

Frequency 
348.6 335.5 339.3 379.1 367.7 388.2 405.7 

Dominant Slope 1084.7 1016.0 1018.9 1064.2 919.8 944.6 981.9 

Maximum Frequency 1233.7 1197.0 1203.8 1245.0 1187.5 1202.7 1227.0 

Minimum Frequency 310.3 297.8 301.1 337.7 334.6 354.2 363.3 

Peak Frequency 372.0 338.0 340.4 369.8 323.3 329.1 344.2 

Total Slope 1018.6 955.7 956.5 972.8 826.8 850.1 887.3 

 

Table 4.4: The relative weights for the Bayesian Information Criterion scores for the competing 

evolutionary models: Brownian Motion, Ornstein-Uhlenbeck with a single selective optimum and five 

models based on Ornstein-Uhlenbeck with multiple selective optima. Numbers highlighted in yellow are 

the best performing models for each echolocation call parameter. 

 

4.5 Discussion 

4.5.1 Echolocation Call Variation 

The great diversity of echolocation call structures produced by bats can be seen in Figures 

4.1 to 4.9, with variations in duration, bandwidth, frequencies emphasised, harmonic 

composition, and overall shape. Some families show a remarkable consistency in the 

structure of echolocation calls between species. In particular, Hipposideridae (Figure 4.2), 

Miniopteridae (Figure 4.3), Phyllostomidae (Figure 4.5), and Rhinolophidae (Figure 4.6) all 

demonstrate a family-specific call type (see call types 8, 13, 9, and 12, respectively, in 

Table 4.2), with only a couple of exceptions. The Vespertilionidae (Figure 4.7) could also 
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be considered to show a large degree of similarity between species, despite its calls being 

classified as four different types (3, 7, 8, and 10 in Table 4.2), since these probably 

represent a continuum of oppositely changing parameters: long duration, low bandwidth 

calls (3) providing long distance detection, to short duration, high bandwidth calls (7 and 

10) which allow precise localization and high resolution interpretation (see G. Jones & 

Holderied, 2007). Indeed, intra-individual variation can span these call types as a bat 

contends with different habitats and spatial tasks (Kalko 1995). Figure 4.8 shows one genus 

of the Vespertilionidae: the Myotis. This is by far the most speciose genus in the order 

Chiroptera and the consistency of the echolocation call structure across the taxon is notable 

(call types 7 and 8 in Table 4.2). 

 

The potential for variability in echolocation call structure between species of the same 

family is evident in the Emballonuridae (Figure 4.1), Molossidae (Figure 4.4) and amongst 

the species of the smaller families (Craseonycteridae, Furipteridae, Natalidae, 

Myzopodidae, Mystacinidae, Noctilionidae, Nycteridae, Rhinopomatidae, Mormoopidae, 

Thyropteridae, and Megadermatidae (Figure 4.9)). Some of this variation is likely to be in 

response to the different habitat types occupied by each species (Fenton 1988; Fenton, 

Rautenbach, et al. 1998; Jennings & Parsons 2004; Obrist 1995), but rather than showing a 

continuum of call types as in the Vespertilionidae, these families display apparently 

discretely different call structures. For example, the Molossidae use call types 3, 4, 5, 8, 10, 

11, and 13, and Emballonuridae use call types 3, 4, 6, and 13 (Table 4.2). These call types 

are not all concurrent alterations of the opposite parameters of a call structure, but rather 

entirely different call shapes. 

 

Some of the call types illustrated in Table 4.2 demonstrate alternative echolocation call 

structures for dealing with the same functional tasks. For example, bats searching for food 

items in cluttered environments need to distinguish targets from other objects. One means 

to do this is for the bat to emit a narrowband call with a long duration, enabling detection of 

the fluttering wings of an insect against a still background (approach (a)) (call type 12 in 

Table 4.2). Alternatively the bat can increase the bandwidth of the echolocation call, which 

is the equivalent of increasing the range of wavelengths emitted, and helps the bat to 
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resolve different size classes: insect vs. leaves vs. branches, for example. There are several 

ways to increase bandwidth: (b) increase the bandwidth of the fundamental harmonic by 

increasing the maximum frequency, as in call types 7 and 8; (c) increase the bandwidth of 

all the harmonics, as in call types 9 and 10; (d) increase the energy placed in the non-

dominant harmonics, as in call types 4, 5, 6, 11, and sometimes 13 (see Table 4.2). Which 

approach is used by a species is usually a result of its evolutionary history. For example, 

Rhinolophidae only ever use approach (a), Miniopteridae only use approach (b), and 

Vespertilionidae mostly use approaches (b) and (c). 

 

However, some species approach such tasks in a manner that is not typical of their own 

family, and instead use a call structure that results from a process of convergent evolution. 

There are several examples of convergent evolution, most famously in the calls of 

Pteronotus parnellii (Mormoopidae), which shows a constant-frequency structure which is 

extremely similar to that of the Rhinolophidae. The calls of Hipposideros semoni and 

Hipposideros stenotis (Hipposideridae) are noted here for the first time to be additional 

examples of calls converging on the structure typical of rhinolophid calls. These unusual 

Hipposideridae calls are considerably longer than other hipposiderid calls, and share the 

short FM initial up-sweep and terminal down-sweep of the rhinolophid call (call type 12, 

Table 4.2), rather than the high-bandwidth down-sweep typical of hipposiderid calls (call 

type 13, Table 4.2). Although the calls of these two species have been published previously 

in a bat identification book (Churchill 2010) and the memoirs of a museum (de Oliveira & 

Schulz 1997), no attention had previously been drawn to their non-typical structure, and 

many echolocation experts are unaware of them (Jones, 2011, pers. comm.). 

 

Additionally, Rhynchonycteris naso (Emballonuridae), Molossus rufus (Molossidae), and 

the two species of Noctilionidae, have a call type similar to that of the Hipposideridae (call 

type 13, Table 4.2), although less angular, and therefore not a pure constant frequency tone, 

indicative of multiple convergent origins. The sole species of Craseonycteridae and some 

members of Emballonuridae have both demonstrated use of call type 6, and members of 

Megadermatidae, Phyllostomidae, Nycteridae, Natalidae, and Mystacinidae have converged 

upon call type 9 (Table 4.2). These examples of convergent evolution indicate the flexible 



  Chapter 4  

  160 

 

nature of echolocation call structures and the influence of ecological conditions such as 

habitat and prey type (Schnitzler & Kalko 1998). 

 

The echolocation call of Myzopoda aurita (Myzopodidae) is very unusual. I have classified 

it as call type 11: a multiharmonic decurve into down-sweep. It is considerably longer than 

other calls of its type, at around 23ms. However, most calls emitted by Myzopoda aurita 

have a silent section in the centre of this 23ms period, suggesting that the call is actually 

composed of two calls that merge together. The first resembles call type 13, and the second 

call type 4 (Table 4.2). When this call was first reported, it was described as being 

composed of four elements; three in the first half of the call and one decurve in the second 

half (Gopfert & Wasserthal 1995). Understanding more about the phylogenetic relationship 

of the Madagascan endemic species to other bat families may reveal a lot about how 

echolocation originated and diversified. 

 

Of additional note is the use by some families of very high frequencies - in particular 

members of Hipposideridae, Furipteridae and Natalidae which can have characteristic 

frequencies of over 150 kHz, giving a wavelength of less than approximately 2.5mm. 

 

Only one other study has attempted a systematic review of the diversity in bat calls in 

recent years, taking parameters and spectrograms of species belonging to all but one family 

from the literature (Jones & Teeling 2006). In Table 4.2 I compared my classification of 

echolocation calls to the categories used by Jones and Teeling, and I found a broad degree 

of agreement, but some areas of disagreement, particularly regarding the members of each 

category.  

 

Essentially, the categories designated both by Jones and Teeling and by this study are 

somewhat arbitrary, placing false divisions between call structures that often differ in a 

continuous manner. In attempting to clarify the divisions between different call types, I ran 

several phylogenetically-corrected Principal Component Analyses (PCAs) (Revell 2009) 

between various combinations of echolocation call parameters. However, no combination 

produced results which were suggestive of any particular groupings, other than between 
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call type 12 and all other call types, based on the different call durations. Groupings using 

continuous measures of calls leave out the limited combinations of call parameters that 

appear as overall call shape, and prevent effective groups from being distinguish using 

PCA. This emphasises the difficulty of attempting to understand, and especially to 

reconstruct, the evolutionary history of echolocation using categories, particularly at family 

level. This is further emphasised by the degree of polymorphism shown by some families 

using my new categories, which would lead to even more ‘equivocal’ branches in the 

reconstruction shown in Jones & Teeling 2006 (see Figure 4.20). 

 

 

Figure 4.20: Ancestral reconstruction of echolocation call types taken from Jones and Teeling 2006. 

 

4.5.2 Patterns of Phylogenetic and Spatial Signal 

I found high phylogenetic signal (λ ≥ 0.684) for all eight echolocation call parameters, 

though none was as high as for body mass (λ=0.927). The four measures of frequency had 

the highest phylogenetic signal (0.782 ≤ λ ≤ 0.859), and this is likely to be because of the 

relationship between call frequency and body mass (Jones 1999). The larger the body size, 

the larger the larynx, and the lower the sounds it produces (Pye 1979). 
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Call duration and bandwidth have the next highest phylogenetic signal (λ=0.765, λ=0.751 

respectively). Call duration has also been shown to have a relationship to body size (Jones 

1999), though less closely than measures of frequency. Both parameters are likely to 

respond to differences in habitat, as call duration relates to the proximity of objects to the 

bat, and bandwidth to the degree of resolution necessary to discriminate between objects of 

different sizes. Because of this environmental pressure on these call parameters, the values 

have been pushed away from those expected from the phylogeny, and hence the 

phylogenetic signal is lower. 

 

Total slope and dominant slope had the lowest phylogenetic signal of all the parameters 

(λ=0.709, λ=0.684). Measurements of the slope of the call co-vary with the bandwidth and 

call duration, and are likely to be closely related to habitat (Jones & Holderied 2007). 

 

Testing for phylogenetic signal in the echolocation call parameters after removing the 

effects of body mass did not significantly alter the results, simply reducing the signal 

slightly in each case. 

 

Lambda scores quantify the similarity between trait values in neighbouring species on a 

phylogeny, but they do not account for alternative causes of similarity, other than the 

impact of evolutionary history. The Freckleton and Jetz test (Freckleton & Jetz 2009) 

partitions this similarity into two sources: that due to sharing an evolutionary history (true 

phylogenetic signal – λ´), and that due to sharing ecological condition (spatial signal – φ). I 

expect to find a large portion of the phylogenetic signal revealed by the lambda scores re-

assigned to spatial signal in those parameters that are more closely related to habitat: 

bandwidth, call duration, dominant slope, total slope, minimum frequency, and maximum 

frequency. I would expect a lower degree of spatial signal in those parameters that are 

closely associated with body mass: peak frequency and characteristic frequency. 

 

In fact, virtually no spatial signal is found in body mass, bandwidth, peak frequency and 

call duration. Similarly, body mass showed very low spatial signal in carnivores, 
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artiodactyls and primates in one study (Freckleton & Jetz 2009), and again in bats, rodents, 

carnivores and primates in another similar study (Safi, Meri, & Jones 2011). The lack of 

spatial signal in body mass may be due to the dominance of phylogenetic forces, since body 

mass is well known to be closely linked to many life history traits in mammals (Charnov 

1991), though the relationship is thought to be weaker in bats (Purvis & Harvey 1995). 

Peak frequency has been shown to be highly correlated with body mass, due to the scaling 

of the larynx with body size (Jones 1999) and hence spatial signal should be similar for 

body mass and peak frequency. Call duration has also been shown to be related to body 

mass, specifically in bats that emit narrowband calls (sometimes known as quasi-constant 

frequency or QCF) and in Hipposideridae, i.e. call types (3), (4), (5), (6), and (13), since 

larger bats have a higher wing loading which results in faster flight, allowing the bats to 

cover greater distances and therefore to need to detect more distant objects. This gives the 

bats more time between emitting a call and receiving the echo, and therefore allows the use 

of longer duration calls (Jones 1999). This relationship between body mass and call 

duration explains the low spatial signal seen in call duration. 

 

The low spatial signal seen in bandwidth (= maximum frequency – minimum frequency) 

apparently contradicts the high spatial signal seen in both minimum and maximum 

frequency. Maximum and minimum frequency show high spatial signal because the values 

of these parameters relate to the degree of clutter in the habitat of each species. Forest bats 

use higher maximum frequencies because they give greater resolution of small objects, and 

open-spaced bats use lower minimum frequencies because they attenuate less quickly. 

Habitat types are clustered in space, resulting in higher spatial signal in the related call 

parameters. The spatial signal seen in bandwidth, however, is masked, because of the two 

mechanisms by which bats cope with clutter: most families increase bandwidth to improve 

the depth of field, but Rhinolophidae maintain a very low bandwidth, and increase call 

duration, to detect the fluttering wings of insects. 

 

Characteristic frequency also shows low spatial signal. This parameter is derived from the 

primary parameters of peak, minimum and maximum frequency, depending which showed 

the lowest variance in each species. It is possible that its inherent low variance is a result of 
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the close relationship between this parameter and body mass. This might explain why it 

shows only marginally more spatial signal than body mass. 

 

Total slope and dominant slope show fairly high spatial signal. This corroborates the low 

lambda scores they showed, and may be due to the impact of habitat on the slope of 

echolocation calls. Steeper slopes are used in cluttered habitats, such as forests, and 

shallower slopes in more open habitats, because of the advantageous combination of short 

call durations and high bandwidths in clutter, and of long call durations and low 

bandwidths in open space (see Table 4.1) (Jones & Holderied 2007; Fenton 1990; Kalko 

1995; Kalko & Schnitzler 1993). 

 

We have seen that there is a strong phylogenetic influence on the values seen in the eight 

key echolocation parameters, and particularly in bandwidth, call duration, peak frequency 

and characteristic frequency. These parameters are likely to be strongly linked to body 

mass, and thus are more constrained to reflect phylogenetic relationships, and have less 

need to respond to ecological pressures. 

 

It is extremely difficult to decouple the impact of evolutionary history and current 

ecological conditions when interpreting phylogenetic signal (Revell et al. 2008). 

Evolutionary history represents the trait values held by the ancestors of extant species, and 

is a result of even older evolutionary history, and past ecological conditions, which exert 

both constraints and selective pressures on any given trait. Current ecological conditions 

are related to, and a consequence of, previous ecological conditions, and trait values are 

thus an accumulation of changing selective pressures and subsequent constraints over 

evolutionary time. In finding a trait with extremely high phylogenetic signal, we cannot 

conclude that current ecological conditions are having no impact on the value of that trait, 

because those conditions might be having the same impact on that trait in all species 

equally. Likewise, a trait with no phylogenetic signal may not be responding to current 

ecological conditions, but instead may be free from selective pressures and subject entirely 

to genetic drift. Hence, evolutionary history is acting in having released any previous 

constraints. 
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However, the value of assessing the phylogenetic signal and inferring the relative impact of 

evolutionary history and current ecological conditions can be found in making comparisons 

between the different degrees of signal found between traits, without attempting to 

conclude that a trait with high signal is never subject to selective pressures imposed by its 

environment, and acknowledging the possibility of overlap between historical and current 

conditions (Revell et al. 2008). 

 

In addition to these limitations, measures of phylogenetic signal may have been over-

interpreted in the past. In particular, judgments concerning the evolutionary process or rate 

have often been attributed to values of phylogenetic signal. For example, high phylogenetic 

signal has been linked to strong stabilizing selection, niche (or evolutionary) conservatism 

and a low rate of evolution (Swenson et al. 2007; Zanne, Chapman, & Kitajima 2005), and 

low phylogenetic signal has been assumed to result from evolutionary lability or rapid 

evolutionary change (Blomberg et al. 2003; Gittleman et al. 1996). Recent work on 

simulations of evolutionary rate and process suggest these interpretations may be 

inappropriate, as low, medium and high values of phylogenetic signal can all result from 

various combinations of rates and processes of evolution (Ackerly 2009; Revell et al. 

2008). 

 

Adding spatial signal also presents complications as it is difficult to disentangle the spatial 

and environmental contributions to a pattern of trait values, since spatial autocorrelation is a 

result of many of the same factors as variation caused by the environment (many of which 

may be adaptive). Spatial signal is usually assumed to be due to shared adaptive 

evolutionary change between species living in close proximity (Safi et al. 2011), and hence 

measuring phylogenetic and spatial autocorrelation in trait data reveals three components of 

the total variation: that due to shared evolutionary history, that due to the environment, and 

the unexplained (or ‘independent’) component. 
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4.5.3 Processes of Evolution 

Having reviewed the patterns in the diversity and phylogenetic distribution of echolocation 

call structures both qualitatively and quantitatively, we can now assess the processes of 

evolution that have taken place to produce the patterns. 

 

The first two analyses looked at how change in echolocation traits was distributed over 

time, i.e. along the branches of the phylogeny. Firstly, Pagel’s kappa was estimated, to 

determine whether change was gradual (κ = 0) or punctuational (κ = 1). Punctuational 

change is expected to be concentrated at the nodes, as speciation occurs, whereas gradual 

change is distributed more evenly along the branches, throughout the history of a species. I 

expected to find a tendency towards punctuational change, as echolocation call structures 

are most likely to change in response to a change in another aspect of a bat species’ 

biology, for example, in body mass, habitat, or community structure (Kingston & Rossiter 

2004; Rice & Hostert 1993; Schluter 2001; Via 2001). Gradual change seems unlikely as 

echolocation call structure is functionally constrained. I would expect those parameters 

associated most closely with habitat to have the strongest punctuational trends, i.e. those 

parameters that showed the least phylogenetic signal. Those that are more closely linked to 

body mass, I would expect to change in a more gradual manner. 

 

The kappa scores showed that only body mass showed any tendency towards gradual 

change, and, as expected, the four measures of frequency with the highest phylogenetic 

signal (lambda), were most similar to body mass, although they tended towards a 

punctuational model of evolutionary change. The other echolocation call parameters 

showed increasing degrees of punctuational change, from bandwidth through call duration 

and total slope to dominant slope, which scored 0 – total punctuational change. This 

indicates that changes in body mass are unlikely to be precipitating speciation events, such 

as is suggested by Kingston and Rossiter (Kingston & Rossiter 2004), whereas 

echolocation parameters that are closely linked to habitat and sensory function are 

associated with speciation. Controlling for the effect of body mass on the echolocation call 

parameters had little impact on the degree of gradualism, with most parameters very similar 

with and without the effect of body mass. 
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The second indicator of the distribution of trait change over time was Pagel’s delta. This 

parameter estimates the point at which most trait change occurred over the phylogeny as a 

whole. Scores of δ < 1 indicate early change, as in adaptive radiations, and when δ > 1, 

change was late, indicating species-specific change. Although bats have been cited as an 

example of adaptive radiation due to the key innovations of flight and echolocation (Barton 

1995; Heithaus 1982; Jones & Teeling 2006; Seehausen 2004), I would not expect to find 

early change in echolocation parameters, because the diversity of call types seen would not 

be present if the majority of change had taken place in early bat lineages. However, all 

echolocation parameters and body mass showed delta values of considerably greater than 

one. All but one parameter had a score of δ = 3, and the remaining parameter, minimum 

frequency scored δ = 2.079; still significantly over 1. These scores indicate that changes in 

body mass and echolocation call parameters occur late in the phylogeny in a species-

specific manner, i.e. echolocation call structure was not determined prior to the 

diversification of bats. Controlling for the effect of body mass on the echolocation call 

parameters had no impact at all on the timing of evolutionary change. 

 

Across the bat family, the Ornstein-Uhlenbeck (OU) model is the most likely mode of 

evolution for body mass and all eight echolocation call parameters. This suggests that one 

or more selective optima have constrained these traits over the course of evolution. OU has 

been found to best explain body mass evolution in bats in a previous study using the same 

body mass dataset but an earlier derivation of the phylogenetic supertree (Cooper & Purvis 

2010). This result was in contrast to the finding of an Early Burst (EB) model in all 

mammals as a group. Cooper & Purvis (2010) suggested that the different evolutionary 

process might be the result of constraints on body size imposed by the demands of flight. 

Further to this, I suggest that the finding of an OU model in the evolution of echolocation is 

at least partially a consequence of the link between body mass and echolocation call 

parameters. 

 

Additionally, I suggest it would be extremely unlikely to find that either of the alternatives 

to OU is favoured. Echolocation is a functional trait that should affect the fitness of the 
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individuals using it, and is of interest because it is likely to be adaptive. If the mode of 

evolution had been Brownian Motion (BM), that would have suggested that either changes 

to the traits were a result of genetic drift, or that the selective optimum for each trait had 

changed randomly over time (Felsenstein 1988 (see Harmon et al. 2010)), which is unlikely 

for a functional trait unless there are random changes to environmental conditions. Early 

Burst (EB) has been found to be rare in the evolution of body size and shape (Harmon et al. 

2010), although Cooper & Purvis (2010) found it was favoured when explaining the 

evolution of mammalian body mass. EB predicts that younger subclades will show less 

variation than older, more inclusive subclades – indicating adaptive radiation, which was 

not supported by Pagel’s delta scores. 

 

Exploring the mode of evolution further confirmed the finding of OU as the most likely 

mode of evolution for all echolocation call parameters, and once again divided the 

parameters into two groups: those that are more closely linked with body mass, and those 

that are more responsive to changes in ecological conditions. Body mass, characteristic 

frequency and minimum frequency favoured an OU model with a single selective optimum 

(α), mirroring the Pagel’s kappa scores which indicate that these three parameters show the 

most gradual evolutionary change. The remaining parameters favoured an OU model with a 

different selective optimum for each family, except Vespertilionidae, with a different 

selective optimum for each subfamily. This may not indicate that a particular adaptive 

regime is confined to these subclades, but rather that this roughly represents the number 

and spread of selective optima brought about by other traits. 

 

4.6 Conclusions 

Echolocation calls vary in a continuous manner, with parameters ‘trading off’ against one 

another to produce functionally relevant call shapes. These convergent call shapes can often 

be formed in different ways, having followed unique evolutionary pathways. 

Deconstruction of echolocation calls into component parameters reveals which aspects of 

calls are more constrained by evolutionary history, and which are more pliable by 

ecological conditions. 
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One set of call parameters are more constrained by evolutionary history (higher lambda 

scores), less influenced by habitat (lower phi scores), and evolve more gradually (higher 

kappa scores) in a directional manner towards a single selective optimum (OU model with 

single alpha). These parameters are peak frequency, characteristic frequency, call duration 

and bandwidth, and they are strongly associated with body mass. 

 

The other set of call parameters are less constrained by evolutionary history (less high 

lambda scores), more influenced by habitat (higher phi scores), and evolve in a 

punctuational (lower kappa scores) and directional manner towards several selective optima 

(OU model with multiple alphas). These parameters are maximum frequency, minimum 

frequency, total slope and dominant slope. 

 

All the call parameters show a greater than average degree of influence from evolutionary 

history, a lower than average degree of influence from environmental conditions, and a 

tendency towards species-specific, punctuational, and directional evolution. In addition, 

whilst habitat and functionality determine some aspects of the outline structure of an 

echolocation call, evolutionary history has left its mark of constraint in producing so many 

different solutions to the same echolocation tasks. 
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5 Chapter 5: The origin of echolocation in bats: what did the 

first echolocation calls sound like? 

5.1 Abstract 

A major challenge for evolutionary biologists is to understand the origin and development 

of complex traits. Laryngeal echolocation in bats is one such trait and until now no 

quantitative study regarding the ancestral echolocation call has been attempted. Here I use 

echolocation call data from up to 410 species (44% of all currently described taxa), 120 

genera (74%) and all 19 families of echolocating bats, and a complete, species-level 

phylogeny to (1) reconstruct the evolutionary history of echolocation call structure using 

contemporary phylogenetic comparative methods, (2) consider other evidence for ancestral 

echolocation call structure, and (3) infer the ancestral bat’s habitat, wing morphology, 

foraging style, and prey type from the predicted ancestral call type. I used four ancestral 

character estimation techniques (squared-change parsimony, least squares phylogenetic 

independent contrasts, maximum likelihood and generalised least squares) to analyse 

continuous frequency and time variables of echolocation calls and principal component 

scores generated from these. The continuous parameters used were bandwidth, call 

duration, characteristic frequency, dominant slope, maximum frequency, minimum 

frequency, peak frequency, and total slope. I also used maximum likelihood to compare the 

results of discrete estimations using three alternative rate matrices, first using the call type 

categories described in Chapter 4, second using harmonic structure, and third considering 

bandwidth, call duration, characteristic frequency, and total slope in discrete categories. I 

also reviewed the output of the mammalian larynx, the variation in the vocalizations of a 

selection of species from each mammalian order, and the ontogenetic development of 

echolocation calls in bats. All ancestral reconstruction techniques, discrete analyses and 

further evidence suggested an ancestral call type that was fairly short in duration, multi-

harmonic, and narrowband as the ancestral echolocation call of bats. This work 

corroborates and justifies the predictions of several previous workers. This call type 

suggests that the proto-bat was a slow and manoeuvrable flier with an opportunistic and 

omnivorous diet and may have used a perch-hunting foraging strategy. 
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5.2 Introduction 

5.2.1 Background 

One of the great challenges in evolutionary biology is in elucidating the small steps 

involved in the evolution of complex traits (Raff 1996; Riska 1986). Laryngeal 

echolocation in bats is one such trait, as it requires the correlated evolution of the larynx, 

cochleae, pinnae (external ears) and the auditory regions of the brain (Teeling 2009). 

Whilst the skull, ear bones and laryngeal bones can be seen in fossilised bats (Gunnell & 

Simmons 2005; Simmons & Geisler 1998), the sounds used by bats at the time of their 

origin 83 to 58 million years ago (Springer, Teeling, & Madsen 2001) and during their 

subsequent proliferation are unrecoverable. Gaining insight into the structure of the earliest 

echolocation calls, and the manner in which they have evolved into the current pattern of 

diversity requires us to look elsewhere than the fossil record. 

 

There has been great debate of the origin and evolution of echolocation, ranging from the 

relative timing of the evolution of flight and echolocation (Arita & Fenton 1997; 

Denzinger, Kalko, & Jones 2004; Gunnell & Simmons 2005; Schnitzler et al. 2004; 

Simmons & Geisler 1998; Simmons et al. 2008; Speakman 2001; Springer, Teeling, & 

Madsen 2001; Veselka et al. 2010), through the number of origins of echolocation (Eick et 

al. 2005; Jones & Teeling 2006; Springer, Teeling, & Madsen 2001; Teeling 2009; Teeling, 

Madsen, & Van 2002; Teeling et al. 2000), to the structure and function of the first 

echolocation call (Arita & Fenton 1997; Eick et al. 2005; Fenton 1984; Fenton et al. 1995; 

Jones & Teeling 2006; Pye 1980; Schnitzler et al. 2004; Simmons 1979; Simmons, Kick, & 

Lawrence 1984; Simmons & Stein 1980). Changing views on these questions over time 

have mainly been due to changes in our understanding of bat and order-level mammalian 

phylogenies (Simmons & Geisler 1998) as molecular phylogenetics uncovered many of the 

homoplasies mistaken for homologies during the era of morphology-only phylogenetics. As 

Teeling et al. (2002) point out, resolving the disagreements in the relationships among 

families of bats, and between bats and other mammalian families, is a necessary first step in 

understanding the evolution of echolocation. 
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The remarkable diversity, and frequent convergence, seen in the duration, frequencies, 

harmonic composition and bandwidth of the echolocation calls used by the 930 extant 

species of laryngeally echolocating bats hints at the difficulty in reconstructing the 

evolutionary history of echolocation. However, this diversity can also be used to extract 

clues about the morphology, ecology and behaviour of the proto-bat from the ancestral 

reconstruction of its echolocation call. Reconstructions can inform our understanding of the 

precursor to echolocation: for example, did echolocation arise from communication calls or 

independently? Comparisons with extant species might suggest whether the proto-bat was 

arboreal or terrestrial; an insectivore or otherwise; a glider, a flier, or non-volant; and, if 

volant, a perch hunter (waiting on a branch for prey to pass), gleaner (plucking stationary 

prey from leaves, branches, or the forest floor) or aerial hunter (catching flying prey on the 

wing). 

 

Our current knowledge is scant, though there has been a great deal of supposition regarding 

the early evolution of bats. The fossil record is relatively poor for bats, as bat bones do not 

fossilise well (Thewissen & Babcock 1992). Of the bat fossils that have been found, none 

are clear transitional forms, and all have fully formed wings that appear to be capable of 

flapping flight (Simmons et al. 2008; Thewissen & Babcock 1992). The wings of fossil bats 

tend to be short and broad, which is commensurate with evolution from a gliding ancestor, 

and also suggests that proto-bats were slow-flying and manoeuvrable: traits suitable for 

forested habitats (Norberg 1994). 

 

Cochlear and hyoid morphology indicate that all early bats were capable of echolocation, 

but the fossils do not give away many hints as to the kinds of calls early bats may have 

emitted, except for the likelihood, based on moderate cochlear size, that echolocation was 

low-duty (i.e., short calls with relatively long periods of intervening silence) (Springer, 

Teeling, & Madsen 2001).  

 

Our current understanding of bat phylogeny makes the three hypotheses of the origination 

of flight and echolocation (‘flight-first’, ‘echolocation-first’ and ‘tandem evolution’: see 
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Speakman (2001)) equally likely. The recent discovery of an early fossil bat, 

Onychonycteris finneyi (52.5 mya), was followed by the revelation that whilst it could have 

flown, it could not echolocate (Simmons et al. 2008). However, this finding has since been 

disputed, based on a comparative analysis of stylohyal and tympanic bones (Veselka et al. 

2010), suggesting that O. finneyi was a flying echolocator. 

 

Regarding the number of origins of echolocation, our current understanding of the 

phylogeny of bats indicates that laryngeal echolocation either arose once, in the ancestor of 

all bats, and was secondarily lost in the Pteropodidae (with subsequent gain of tongue-

clicking in some species), or that there were at least two independent gains of laryngeal 

echolocation, once in the ancestor of the Vespertilioniformes, and once in the ancestor of 

the Rhinolophoidea (Teeling 2009) (see Figure 5.1). Most early studies assume a single 

origin of laryngeal echolocation because prior to Teeling et al.'s molecular analysis in 2000, 

laryngeal echolocators were thought to form a monophyletic group. Now that the 

monophyly of bats has been broadly accepted, support for a single origin and secondary 

loss (Jones & Teeling 2006; Springer, Teeling, & Madsen 2001; Teeling et al. 2000) seems 

roughly equal in strength to evidence for two independent origins (Eick et al. 2005; Li et al. 

2008; Li, Wang, et al. 2007; Teeling et al. 2000), though further molecular evidence may 

help to resolve the argument. 
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Figure 5.1: Alternative evolutionary scenarios for the origination of echolocation; (a) Two independent 

gains of echolocation; (b) Single gain and subsequent loss of echolocation. Figure adapted from Jones & 

Teeling 2006. 

 

The possible structure and function of the ancestral echolocation call has been less 

contentious than the debate on the relative timing of the evolution of flight and 

echolocation in bats, though it has been the subject of less research. Most researchers agree 

that the proto-bat used a low duty cycle, multi-harmonic, short duration, narrowband call 

(see Figure 5.2) (Fenton 1984; Fenton et al. 1995; Jones & Teeling 2006; Pye 1980; 

Simmons 1979; Simmons et al. 1984; Simmons & Stein 1980; Simmons & Geisler 1998b; 

Springer et al. 2001), except Schnitzler et al. (2004), who propose that it was broadband, 

rather than narrowband. This call structure was initially put forward by Simmons in 1979 

and was explained as the ancestral call since the larynx normally produces harmonically-

structured sounds (Simmons & Stein 1980), but since then little justification for this 

assumption has been presented. 
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Figure 5.2: The hypothesised ancestral echolocation call: a multi-harmonic, short duration, 

narrowband call. 

 

In Simmons' (1979) analysis, he used the diversity of echolocation call structures exhibited 

by 25 species of extant bats in 22 genera and 11 families to create a cladogram based on 

call structures (see Figure 5.3), radiating out from the hypothesised ancestral call to extant 

call types, based on qualitative features of calls. 
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Figure 5.3: Copied from Simmons 1979: A cladogram obtained using the family structure for the sonar 

sounds of twenty-five species of bats by graphing their relative similarities on seven descriptive 

dimensions with respect to a hypothetical primitive orientation sound. 

 

Simmons’ ideas can be empirically and more thoroughly addressed through the use of 

modern comparative methods, using a phylogeny constructed not from the calls themselves, 

but from an independently generated dataset of morphological and molecular characters, 

and assessing the echolocation call structures of bats given this phylogenetic framework. In 

particular, the use of ancestral character estimation methods allows the reconstruction of 

the evolutionary history of bat calls based on the diversity and distribution of current traits 

and an independently derived phylogeny (Frumhoff & Reeve 1994; Schluter et al. 1997). 

 

Due to the poor estimates of phylogeny prior to the use of molecular techniques, there was 

confusion in the interpretation of the pattern of echolocation call structures produced by 
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bats. Bats in the families Phyllostomidae, Megadermatidae, Nycteridae, and 

Rhinopomatidae were all named as having primitive call structures (Simmons & Stein 

1980), and the Emballonuridae was thought to be a stem family, responsible for the great 

diversity of call structures seen across Chiroptera (see Figure 4.1 of Chapter 4, section 

4.1.1) (Pye 1980; Simmons et al. 1984). Mystacinidae was thought to be an ‘advanced’ 

family with a primitive echolocation call structure (Pye 1980). 

 

Molecular analyses place the order Chiroptera in a basal position within the superorder 

Laurasiatheria, along with hedgehogs, shrews, odd-toed ungulates, even-toed ungulates and 

whales, carnivores, and pangolins, and reject its previous placement with primates, colugos 

and treeshrews (see Springer & Stanhope 2004). Additionally, the major relationships 

between families of bats have been resolved, placing the Old World fruit bats 

(Pteropodidae) alongside the superfamily Rhinolophoidea, thereby splitting the microbats 

into two subfamilies – Pteropodiformes and Vespertilioniformes (reviewed in Springer & 

Stanhope 2004). Given this well-supported phylogeny, reconstructed by the supertree 

presented in Chapter 3, and echolocation data from 410 species of extant bats, ancestral 

character estimation techniques can be used to empirically reconstruct the evolutionary 

history of echolocation in bats and the ancestral bat call. 

 

5.2.2 Hypotheses 

Here I use four different statistical methods (squared change parsimony, maximum 

likelihood, least-squares phylogenetic independent contrasts, generalised least squares and 

incorporating different models of evolution (Brownian Motion and Ornstein-Uhlenbeck)) to 

reconstruct the evolutionary history of eight echolocation call parameters and the principal 

components of those parameters. Only the method referred to as generalised least squares 

uses the Ornstein-Uhlenbeck model of evolution found to be most likely in Chpater 4, but I 

include the other methods for comparison. I also use three kinds of discrete call 

descriptions and varying rate matrices to reconstruct calls without the potential for spurious 

reconstructions. I chose to use these seven different techniques as ancestral reconstruction 



  Chapter 5  

  178 

 

techniques can be unreliable and inaccurate, and this can be compensated for by using a 

number of different methods (Cunningham 1999; Losos 1999). 

 

If ancestral character techniques produce a reliable prediction of the ancestral call type, I 

predict a similar call to that hypothesised by previous workers (Pye 1980; Simmons 1979; 

Simmons & Stein 1980): fairly short, multi-harmonic, and narrowband. However, since 

reconstructing continuous traits may lead to combinations of characters that are non-

functional, continuous methods may reconstruct a non-functional ancestral call type. The 

methods I have used to reconstruct discrete characters are restricted to the values found in 

extant taxa, and therefore I predict a reconstruction of a call type that is unlikely to be a 

realistic estimate of the simple, early calls used by proto-bats. I also predict that the most 

well-represented call type amongst the extant taxa will be reconstructed as the ancestral call 

type, due to the algorithms used by ancestral reconstruction techniques (Webster & Purvis 

2002). 

 

As well as using a large taxon set and a wide range of methods, considering the results in 

the context of other evidence should improve the reliability of ancestral reconstructions. 

Key to reconstructing the origin of echolocation is an understanding of the precursor to 

echolocation, and its mode of production. Since laryngeal echolocation calls are likely to be 

derived from communication calls (Schnitzler et al. 2004), laryngeal physiology and the 

fundamental structure of the communication calls of mammals could indicate the likely pre-

cursor to echolocation in bats. In addition the ontogenetic development of bats from birth to 

maturation shows a progression from communication-like sounds to echolocation sounds 

(Moss 1988). An examination of the initial sounds in a series of species producing different 

call types, and the changes over time to adult echolocation calls, can reveal a possible 

evolutionary history. Therefore, further to the analyses, and in support of the hypothesis of 

ancestral call type above, I investigate several additional lines of evidence to support my 

position: this call type is (1) the sound produced when air flows through a typical 

mammalian larynx; (2) the basic sound used by most mammals; (3) produced in the first 

days of a bat’s life and develops into the echolocation calls used by an adult bat in a 

predictable manner. 
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5.2.3 Chapter aims 

The aims of this study are threefold: (1) To estimate the ancestral echolocation call type 

using contemporary phylogenetic comparative methods, (2) To consider the other evidence 

for the ancestral echolocation call structure, (3) To infer the ancestral bat’s habitat, wing 

morphology, foraging style, and prey type from the predicted ancestral call type. 

 

5.3 Methods 

5.3.1 Data 

5.3.1.1 Bat call data 

I collated and measured the echolocation call data as described in Chapter 2: section 2.2. 

The echolocation data used included data from species found in EchoBank that could be 

successfully measured, and data from species reported in the literature. I used the 

parameters chosen in section 2.2.8 in Chapter 2. The full list of species data is shown in 

Appendices A and E. 

 

5.3.1.2 Supertree 

I constructed the supertree as described in Chapter 2: section 2.3. I used the full supertree 

containing all 1116 bat species as in Chapter 4. The supertree was resolved randomly 100 

times in the ancestral character estimation analyses using phylogenetic independent 

contrasts, generalised least squares and maximum likelihood for discrete states as these 

techniques require fully dichotomous phylogenies. In these cases, the results presented are 

the mean values for the 100 trees. 

 

5.3.1.3 Combined data sets 

The data sets used for each analysis in this chapter are subsets of the total data set of 410 

species. There are missing data points in the EchoBank data set, where SonoBat (Szewczak 

2010) was unable to measure a particular parameter, and in the literature, where parameters 
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were not reported. See Chapter 2 for a fuller description of data collection. In each analysis, 

the phylogeny was pruned to include only those species which were represented by data for 

every parameter involved in the analysis. The sample size used for each parameter is shown 

in Appendix F. 

 

5.3.2 Analysis 

Data analysis was performed using R version 2.12.2 (The R Core Development Team 

2010) and the function ace of the R package ‘ape’ (Paradis, Claude, & Strimmer 2004) for 

analyses using phylogenetic independent contrasts, generalised least squares or maximum 

likelihood for discrete traits. Analyses using squared change parsimony and maximum 

likelihood for continuous traits were carried out using Mesquite version 2.74 (Maddison & 

Maddison 2011). 

 

5.3.2.1 Ancestral Character Estimation using Echolocation Call Parameters 

A continuous ancestral character estimation was performed for each of the eight 

echolocation call parameters independently, using four methods: squared change parsimony 

(SCP) (Maddison 1991), maximum likelihood (ML) (Pagel 1999b), least-squares 

phylogenetic independent contrasts (PIC) (Felsenstein 1985), and the method referred to by 

the R package ‘ape’ as generalised least squares (GLS) (Martins & Hansen 1997). The first 

three methods assume a Brownian Motion (BM) model of evolution, but as GLS offers the 

opportunity to specify an Ornstein-Uhlenbeck (OU) model, I did so, using the alpha values 

estimated in Chapter 4 section 4.3.2.3, since this was found to be the preferred model in 

that analysis. I include the other methods (using BM) for comparison. 

 

5.3.2.2 Ancestral Character Estimation using Principal Components 

A “phylogenetically-corrected” principal components analysis was performed on all eight 

echolocation call parameters using the R code of Liam Revell (Revell 2009). Many studies 

use principal components analysis to look at the variation in a group of related traits, but 

most do not take account of the non-independence of related species. Revell (2009) 
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developed a method to account for the non-independence of inter-species data due to 

phylogeny in principal components analysis, which has been used in this chapter. Using 

PCA values rather than raw data ties the echolocation call parameters together and avoids 

the reconstruction of spurious calls. Principal components one through eight were 

determined for each species and a continuous ancestral character estimation was performed 

using these values, again using squared change parsimony (SCP) (Maddison 1991), 

maximum likelihood (ML) (Pagel 1999b), least-squares phylogenetic independent contrasts 

(PIC) (Felsenstein 1985), and generalised least squares (GLS) (Martins & Hansen 1997) in 

which an Ornstein-Uhlenbeck (OU) model with the alpha values estimated in Chapter 3 

section 4.3.2.3 was specified. 

 

5.3.2.3 Ancestral Character Estimation using Discrete Echolocation Call Types 

Finally, I estimated ancestral characters using discrete echolocation call types, using three 

alternative rate matrices: equal rates (ER), symmetrical rates (SYM), and all rates different 

(ARD) and maximum likelihood estimation. In an equal rates matrix, the probability of 

character change from any character to any other character is equal, and reversals are 

possible. In a symmetrical rates matrix, the rates of forward and backward change between 

any two character states are equal to one another, but different for each state, and change is 

reversible. In an all rates different matrix, each character state change can have a different 

rate, and change is reversible. Using these three alternative rate matrices allows for 

exploration of the types of changes that can occur between different character states. Equal 

Rates is a simple, but unlikely, model, since it suggests that the rate at which each call type 

can transition to a different call type is the same for all combinations of call type. Some call 

types are more similar to one another, and therefore transitions between these types should 

be easier than between less similar call types. Symmetrical Rates is a more realistic model, 

though with more parameters, as it differentiates between the rates of transition between 

different call types. All Rates Different suggests that a change from one trait to another may 

be easier than the same transition in the opposite direction. See Figure 5.4 for an illustration 

of the rate matrices. 
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Figure 5.4: Examples of three rate matrices (equal rates (ER), symmetrical rates (SYM), and all rates 

different (ARD)) for a single character with three states: A, B, and C. 

 

I ran three analyses. The first had two parts: in one I used the 13 new call types defined in 

Chapter 4 section 4.4.1, and in the second I used the same call types, but included only one 

representative species per call type per family. I did this to reduce the influence of large 

numbers of species using the same call type, in case this biased the results towards more 

speciose families. The second analysis looked at harmonic use: the first part had two 

alternatives – single or multiple harmonic calls, and the second part considered which of 

the first four harmonics had maximum energy. In the third analysis I used discrete call 

categories for four echolocation call parameters based on the divisions shown in Table 5.1. 

 

Parameter Small Medium Large 

Bandwidth (kHz) <10 10-30 >30 

Call Duration (ms) <10 10-25 >25 

Characteristic Frequency (kHz) <50 50-100 >100 

Total Slope (kHz/ms) <1 1-10 >10 

Table 5.1: Discrete categories used in ancestral character estimation. 

 

These divisions were chosen based on the different functionality that each category 

provides, rather than based on equal species numbers in each category. For example, a call 

duration of less than 10 ms is typically associated with bats that forage in cluttered space, 

whereas a call duration of 10-25 ms allows bats to forage in open space because signals 

only overlap with echoes when targets are 1.7 – 4.3m away. A call duration of over 25 ms 

is typical of a constant frequency call that reveal the fluttering wings of insects against a 

background of clutter. 
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5.3.2.4 Additional Evidence 

To put the phylogenetic comparative analyses above into a physiological and 

developmental context, I reviewed further evidence pertaining to the evolution and 

development of vocalizations in mammals. First, I reviewed the output of the mammalian 

larynx. Second, I considered the variation in the vocalizations of a selection of species from 

each mammalian order, chosen from recordings available on the Macaulay Library (Cornell 

Lab of Ornithology 2011), and created comparable sonograms using BatSound v3.1 

(Pettersson 2008) using a Hanning Fast Fourier Transform (FFT) window and an FFT size 

of 1024. Third, I reviewed the literature concerning the ontogenetic development of 

echolocation calls in bats, and reproduced the sonograms from all available species. 

 

5.4 Results 

5.4.1 Ancestral Character Estimation using Echolocation Call Parameters 

All four continuous trait ancestral reconstruction methods predict an intermediate value at 

the root node for each echolocation call parameter, resulting in a medium bandwidth (12.4 

to 21.2 kHz), medium frequency (49 to 76 kHz), medium slope (4.8 to 8.0 kHz/ms), and 

short duration (6.7 to 8.1 ms) for the ancestral call. These estimates are not entirely 

compatible with one another, as the slope is a measure of change in frequency over time, 

and so it should correspond to bandwidth divided by call duration, which it does not. This 

is a problem with reconstructing related traits independently, and my other analyses attempt 

to deal with this (using principal components analysis and discrete traits). Patterns of 

character change from the tips to the root of the tree are similar, regardless of the method 

used, though longer branches have a greater influence in ML reconstructions, and the 

values at more basal nodes exert a greater influence in PIC reconstructions (see Figure 5.5). 

 

The reconstructed values show that the ancestors of both subfamilies, Pteropodiformes and 

Vespertilioniformes, had already diverged considerably from the values at the root node for 

all echolocation call parameters. This suggests that the call types took different 

evolutionary routes early in the history of bats, with the calls of the Pteropodiformes 
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becoming more narrowband, longer, and higher frequency than those of the 

Vespertilioniformes (see Figure 5.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 (below): Estimated ancestral values across the bat supertree for each echolocation call 

parameter, using four ancestral reconstruction methods: SCP (squared change parsimony), ML 

(maximum likelihood), PIC (phylogenetic independent contrasts), and GLS (generalised least squares). 

The rectangles at the tips of the tree show the rough proportions of traits across each family, and the 

circular nodes show estimated ancestral values, with the exact value above. (a) Bandwidth; (b) Call 

Duration; (c) Characteristic Frequency; (d) Dominant Slope; (e) Maximum Frequency; (f) Minimum 

Frequency; (g) Peak Frequency; (h) Total Slope. 
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Of the four methods used to estimate ancestral characters, maximum likelihood and 

phylogenetic independent contrasts generated extremely similar results across the 

echolocation call parameters: the values at the root node suggest a fairly short duration, low 

bandwidth, mid-frequency call (see Table 5.2). SCP tended to produce the lowest values, 

and GLS the highest. Although the estimated ancestral values were often similar to the 

mean and median, there was no consistent pattern between the values. 

 

Echolocation Call 

Parameters 
Mean Median SCP ML PIC GLS 

Sample 

size (n 

species) 

Bandwidth (kHz) 25.8 22.1 12.4 19.9 19.7 21.2 366 

Call Duration (ms) 8.4 4.6 6.7 7.1 8.1 6.9 393 

Characteristic Frequency 

(kHz) 
54.1 45.0 53.3 55.1 55.8 63.3 407 

Dominant Slope (kHz/ms) 8.7 3.5 4.8 7.0 7.3 6.9 291 

Maximum Frequency 

(kHz) 
75.5 72.2 62.1 69.2 69.5 75.7 354 

Minimum Frequency (kHz) 49.1 43.4 49.9 49.4 49.9 54.6 355 

Peak Frequency (kHz) 57.6 50.7 54.4 55.5 55.7 62.9 408 

Total Slope (kHz/ms) 9.6 6.2 5.1 7.8 7.8 8.0 291 

Table 5.2: Estimated ancestral values at the root node for each of the echolocation call parameters, 

using four ancestral reconstruction methods: SCP (squared change parsimony), ML (maximum 

likelihood), PIC (phylogenetic independent contrasts), and GLS (generalised least squares). The mean 

and median values for the call parameters are shown for comparison. 

 

Approximately reconstructed using the estimated values for maximum, minimum and peak 

frequencies, and either call duration or total slope, the ancestral echolocation call at the root 

node can be seen in Figure 5.6. Due to the conflict between the reconstructed call durations 

and slopes, two alternative reconstructions are presented: (a) and (b). In (a), the 
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reconstructed call durations are assumed to be reliable, and the slopes are ignored. Based on 

the echolocation calls of extant bat species, calls of this duration tend to be curved. In (b), 

the reconstructed total slopes are assumed to be reliable and the call durations are ignored. 

Echolocation calls of the resulting call duration (~3ms) tend to be straight. 

 

 

Figure 5.6: Reconstructions of the ancestral echolocation call at the root node for each of the four 

ancestral character estimation methods using the maximum and minimum frequencies and (a) the 

reconstructed call duration, or (b) the reconstructed total slope. The red dots show the location of the 

reconstructed peak frequency value. The different call durations in (a) and (b) make the curved call 

shape more likely in (a) and the straight call more likely in (b). 

 

The most similar echolocation calls seen in extant bats are of the call types 8 and 9, as 

presented in Chapter 4 section 4.4.1 (see Figure 5.7). 
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Figure 5.7: Call types 8 and 9, as described in Chapter 4 section 4.4.1. 

 

5.4.2 Ancestral Character Estimation using Principal Components 

The eight principal component (PC) scores of all eight echolocation call parameters were 

entered into ancestral character estimation analyses. PC1 accounted for 62% of the 

variation in the calls, PC2 for an additional 24% and PC3 for a further 4%, meaning that 

91% of the variation in call structure was in the first three principal components. The PC 

loadings show that changes across PC1 are mostly due to changes in bandwidth, maximum 

frequency and total slope (see Table 5.3). This represents the change from calls suitable for 

open space to calls suitable for cluttered space – from a narrowband call (low maximum 

frequency, shallow slope) to a broadband call (high maximum frequency, steep slope). 

Across PC2 minimum frequency, characteristic frequency and peak frequency load most 

heavily. This indicates the position of calls on the frequency scale, regardless of call type. 

PC3 was representative of changes in bandwidth, characteristic frequency and minimum 

frequency. See Table 5.3 for full details. 
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 PC1 (62%) PC2 (24%) PC3 (4%) 

Bandwidth 0.920 0.115 0.372 

Call Duration -0.514 -0.574 0.234 

Characteristic Frequency 0.540 -0.729 -0.339 

Dominant Slope 0.746 0.600 -0.213 

Maximum Frequency 0.851 -0.520 -0.057 

Minimum Frequency 0.581 -0.730 -0.310 

Peak Frequency 0.673 -0.673 -0.241 

Total Slope 0.821 0.545 -0.060 

Table 5.3: Loadings of the eight call parameters onto the first three principal components (with 

percentage variance accounted for shown in brackets). High absolute numbers are high loadings. 

 

As above, all four ancestral estimation methods produced extremely similar results for the 

value at the root node (see Figure 5.8 and Table 5.4).  
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Figure 5.8: Plots of PC1, PC2 and PC3 scores for all species. The ancestral character estimations using 

squared-change parsimony are shown in red, those using maximum likelihood are shown in blue, those 

using phylogenetic independent contrasts are shown in green, and those using generalised least squares 

are shown in purple. 

 

 SSP ML PIC GLS 

PC1 0.366 -0.148 -0.046 0.058 

PC2 -0.444 -0.166 -0.199 -0.236 

PC3 -0.544 -0.150 0.161 0.064 

Table 5.4: The reconstructed PCA scores at the root node using four ancestral reconstruction methods: 

SCP (squared change parsimony), ML (maximum likelihood), PIC (phylogenetic independent 

contrasts), and GLS (generalised least squares). 
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Taking the root node estimates for principal components 1, 2, and 3 and comparing them to 

the PC scores at the tips results in four species that best resemble the root node estimate 

(within 0.5 of the estimate at each PC) (see Figure 5.9). Phyllostomus discolor 

(Phyllostomidae) matched the score estimated by SCP, Chiroderma improvisum 

(Phyllostomidae) matched scores estimated by SCP and GLS, Nycticeinops schlieffeni 

(Vespertilionidae) matched scores estimated by PIC and GLS, and Thyroptera tricolor 

(Thyropteridae) matched scores estimated by ML, PIC, and GLS. The first two of these 

species belong to call type 9 and the second two to call type 8, shown in Figure 5.9. 

 

 

Figure 5.9: The four species with corresponding (within 0.5 of the estimated value) principal 

components 1, 2, and 3 to the estimated ancestral PC scores. 

 

5.4.3 Ancestral Character Estimation using Discrete Echolocation Call Types 

Estimating the ancestral echolocation call type at the root node using the call types 

described in Chapter 4 section 4.4.2 gives the same best estimation - call type 9 - using all 

species (total – Equal Rates model) and using a single representative species of each call 

type per family (representative – All Rates Different model) (see Table 5.5). This analysis 

also suggested that the ancestor of the Pteropodiformes used call type 13 (a Hipposideridae 

type call) and the ancestor of the Vespertilioniformes used call type 9 (see Figure 5.10). 
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The ‘All Rates Different’ model performed best in the ancestral character estimations of the 

four discrete parameters: bandwidth, call duration, characteristic frequency and total slope 

(see Table 5.5). The bandwidth at the root node was estimated to be large (>30 kHz), which 

is somewhat higher than the estimates from the continuous echolocation call parameters in 

section 5.4.1 above. The call duration and characteristic frequency were both estimated to 

be medium (10-25 ms and 50-100 kHz respectively), which roughly support the findings in 

section 5.4.1. The total slope value at the root node was estimated to be small (<1 kHz/ms) 

which is considerably lower than the estimates in section 5.4.1 and would suggest a 

constant frequency call typical of the Rhinolophidae (call type 12, see Chapter 4, section 

4.4.2), or a narrowband call (call type 3, see Chapter 4 section 4.4.2). As above, the call 

duration, bandwidth and total slope estimates provided here are incompatible in a single 

call. 

 

Ignoring the estimates for total slope and call duration, and reviewing the raw data for the 

call types of the species with calls matching the remaining categories estimated here results 

in species using call types 8 and 9, shown in Figure 5.9. Including either of the estimates 

for total slope or call duration produces a spurious call, with no examples in extant bats. 

 

The ancestral call was predicted to be multi-harmonic, regardless of the model used (see 

Table 5.5). The peak harmonic of the ancestral call was found to be the third harmonic, 

with ‘All Rates Different’ the most likely model. 
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Analysis 

Equal Rates Symmetrical All Rates Different 

State 
Log-

likelihood 
State 

Log-

likelihood 
State 

Log-

likelihood 

Chapter 4 call 

types - total 
9 -395 5 -414 9 -508 

Chapter 4 call 

types - 

representative 

All 

equal 
-108 8 -103 9 -102 

Harmonics – 

single or 

multiple 

Multiple -71 Multiple -71 Multiple -69 

Peak 

Harmonic 
2 -138 2 -118 3 -98 

Bandwidth Medium -250 Medium -233 Large -227 

Call Duration Small -96 Small -89 Medium -82 

Characteristic 

Frequency 
Large -202 Large -186 Medium -178 

Total Slope Small -193 Medium -177 Small -170 

Table 5.5: Summary of the ancestral character estimates at the root node for the discrete echolocation 

call types. The preferred models (log-likelihood values closest to zero) are highlighted. 
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Figure 5.10: Estimated ancestral values across the bat supertree for the discrete call types described in 

Chapter 4, using an Equal Rates model. The rectangles at the tips of the tree show the rough 

proportions of each call type seen in extant bats across each family, and the circular nodes show 

estimated ancestral values. 
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5.4.4 Additional Evidence 

The laryngeal vocalizations of a selection of other mammals are presented in Figure 5.11 as 

spectrograms. They demonstrate the repeated use of harmonic series as the basic output 

from the larynx. It can also be seen that echolocation is present in three of the six orders of 

the Laurasiatheria, compared to just two of the remaining 12 placental mammal orders. 



  Chapter 5  

  203 

 

 



  Chapter 5  

  204 

 

Figure 5.11: (Previous page) Laryngeal vocalisations produced by example species from each order of 

mammals. Diagram adapted from Springer & Stanhope (2004). Echolocation style key: X – no 

echolocation; TC – tongue-clicking; LE – laryngeal echolocation; PLE – phonic lips echolocation. See 

Appendix G for list of species and references. 

 

Reviewing the ontogenetic development of echolocation in eight species of bats in six 

families reveals a similar early call type and a parallel pattern of changes with age (see 

Figure 5.12). Early calls tend to be low frequency, multi-harmonic and relatively 

narrowband. With age, the young bats produce fewer harmonics and raise the frequency of 

the fundamental harmonic. Some families reduce the duration of the calls (Vespertilionidae, 

Phyllostomidae) and others increase it. Modifications to the call shape are introduced after 

several days, such as down-sweeps and up-sweeps. 
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Figure 5.12: Ontogenetic sequences of echolocation development in several species of bats. Figures 

adapted from the original papers (Funakoshi, Nomura, & Matsukubo 2010; Grinnell 1983; Jin et al. 2011; 

Liu & Feng 2007; Monroy, Carter, & Miller 2011; Moss, Redish, & Gounden 1997; Sterbing 2002; Vater et 

al. 2003). 

 

5.5 Discussion 

5.5.1 The Ancestral Echolocation Call 

All the ancestral character estimation analyses indicated that the ancestral laryngeal 

echolocation call was of type 8 or 9, as described in Chapter 4, section 4.4.2. Call type 8 is 

typical of edge-space aerial insectivores such as those in the Vespertilionidae, consisting of 

a medium-short duration, single harmonic call descending through a medium range of 

frequencies and ending with a more narrowband downwardly curved tail into which most 

of the call’s energy is placed. Call type 9 is typical of the ecologically-varied bats of the 

Phyllostomidae, and consists of a short duration call descending abruptly through a medium 

range of frequencies, and consisting of three to five harmonics. This is consistent with my 

hypothesis, and the predictions of previous workers. 

 

The first analysis estimated medium values for each of the eight raw echolocation call 

parameters. The estimates for the maximum, minimum, characteristic and peak frequencies, 

and bandwidth did not conflict with one another, and indicated an ancestral call already 

well into the ultrasonic range (49.4 – 75.7 kHz – producing a peak wavelength of 6 – 7 

mm). However, as hypothesised, the estimates for call duration and dominant and total 

slopes contradicted one another, highlighting one of the challenges produced by ancestral 
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reconstruction methods. The estimates for call duration were too long to accommodate the 

steepness indicated by the estimates for the slopes. Ignoring the estimates for slope 

suggested the reconstruction of call type 8 at the root node, whereas ignoring the estimates 

for call duration indicated the use of call type 9 at the root node (see Figure 5.7). 

 

Reconstruction using principal component scores was employed to avoid the problem of the 

non-viable call structures produced by estimating the evolutionary history of each call 

parameter independently and without the constraint of functionality. Principal components 

analysis re-aligns the axes of the variation in the eight raw call parameters in such a way 

that produces values that realistically combine elements of the original parameters and 

prevents the estimation of non-viable call structures. Using this technique, and comparing 

the PC scores estimated in the ancestral reconstruction analyses with the PC scores of the 

calls of extant bats indicated the ancestral bat at the root node used a call similar to those of 

Phyllostomus discolor (Phyllostomidae), Chiroderma improvisum (Phyllostomidae), 

Nycticeinops schlieffeni (Vespertilionidae), and Thyroptera tricolor (Thyropteridae). The 

first two of these four bats use call type 9 and the others use call type 8, upholding the 

findings of the analysis of raw call parameters. 

 

The final analysis considered the calls as discrete entities, tying together not only the call 

parameters, but also the call shapes and harmonic patterns. Using the call types 1 to 13 

described in Chapter 4 resulted in a root node estimate of call type 9. This result clarifies 

the findings above, suggesting that the ancestral character estimations for the slopes are 

more reliable than those for call duration. Seeking further clarification through the analysis 

of four echolocation call parameters partitioned into discrete categories results in estimates 

of the bandwidth and characteristic frequency at the root node that are compatible with call 

type 9, but again, slopes are estimated to be flatter and call durations longer than are seen in 

call type 9. Looking independently at the harmonic structure of the ancestral echolocation 

call revealed that it was multi-harmonic, and most likely dominated by the third harmonic. 

This result again suggests that call type 9 is a superior estimate, given its multi-harmonic 

structure and the placement of the majority of energy into the third harmonic. 
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As well as the non-functional characters produced when trying to combine ancestral 

character estimates, ancestral reconstruction methods suffer from an array of other 

problems. In discrete analyses, the states at ancestral nodes are constrained to the range of 

states present at the tips, implying that the ancestor of interest had already evolved a 

present-day character state, even, in this case, 83 – 58 million years previously (Springer, 

Teeling, & Madsen 2001). Additionally, there is a tendency for ancestral estimates to be 

extremely similar to, and even less accurate than averages of the contributing tip data 

(Webster & Purvis 2002). 

 

The most serious problem with ancestral reconstruction methods is their inaccuracy in the 

face of evolutionary trends (Cunningham 1999; Martins 1999; Oakley & Cunningham 

2000; Polly 2001; Schluter et al. 1997; Webster & Purvis 2002). In particular, changes in 

micro-evolutionary rates (Martins 1999; Oakley & Cunningham 2000; Schluter et al. 1997), 

directionality (including stabilizing selection) (Cunningham 1999; Martins 1999; Oakley & 

Cunningham 2000; Polly 2001), fluctuating environments (Martins 1999), and bursts of 

change such as in adaptive radiations (Martins 1999; Schluter et al. 1997) result in 

considerable inaccuracies. When working with characters that are thought to be under 

selection, it is thought to be advisable to increase taxon sampling (Salisbury & Kim 2001) 

and to use a variety of different methods (Cunningham 1999; Losos 1999), as implemented 

here. 

 

The results of the ancestral reconstructions of the continuous datasets do not clearly reflect 

the findings of Chapter 4, although they do not contradict them either. There is no evidence 

for a difference in the mode of evolution of the two different sets of call parameters 

identified in Chapter 4. The parameter set that was found to be more constrained, gradual 

and directional towards a single optimum did not produce noticeably different patterns of 

evolution in the ancestral reconstruction from the parameter set that was found to be less 

constrained, punctional and directional towards several optima in Chapter 4. It is not clear 

why not. 
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As well as using a large taxon set and a wide range of methods, considering the results in 

the context of other evidence should improve the reliability of ancestral reconstructions. 

Key to reconstructing the origin of echolocation is an understanding of the precursor to 

echolocation, and its mode of production. Since laryngeal echolocation calls are likely to be 

derived from communication calls (Schnitzler et al. 2004), laryngeal physiology and the 

fundamental structure of the communication calls of mammals can indicate the likely pre-

cursor to echolocation in bats (see Figure 5.10). In addition the ontogenetic development of 

bats from birth to maturation shows a progression from communication-like sounds to 

echolocation sounds (Moss 1988). An examination of the initial sounds in a series of 

species producing different call types, and the changes over time to adult echolocation 

calls, reveals a possible evolutionary history (see Figure 5.12). Finally, reviewing 

echolocation diversity offers some clues as to transitional forms and processes of change. 

 

All mammals are capable of producing sound using the airflow through the larynx, which 

produces harmonic spectra, where each harmonic in the sound is a multiple of the 

fundamental (or first) harmonic (Berke & Long 2009). The basic mammalian sound 

consists of layers of narrowband harmonics, which can be modulated to produce 

vocalizations that are longer (e.g., Lagomorpha), more tonally complex (e.g., Primates), 

purer (e.g., Dermoptera), or more tightly packed (e.g., Rodentia). In general, increased 

tonal complexity and harmonic layering appears to improve the short-distance 

communication function of the sound, whereas purer sounds, with fewer harmonics are 

used by bats in echolocation. When air is passed across an excised mammalian larynx, a 

multi-harmonic, narrowband sound is emitted (Muller 1848). Bats share the basic 

mammalian larynx, but different species have different modifications to the laryngeal 

structure, which may be related to echolocation call types (Schuller & Moss 2004). The 

presence of echolocation in three of the six orders of the Laurasiatheria raises the 

possibility that some of the molecular, auditory and physiological architecture needed for 

echolocation may have evolved at the base of the superorder, allowing the final 

evolutionary steps to take place later, perhaps after the orders had separated. 
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The ontogenetic changes seen in the vocalizations of various bat species in the first days 

and weeks after birth can illuminate our understanding of the way in which echolocation 

call structures take shape. Figure 5.12 shows the development of echolocation in bat pups 

of eight species in six families, from birth to maturation. The first calls shown for each 

species are from days 0 to 4, and all share a similar form: low frequency, multi-harmonic, 

and narrowband. These vocalizations are similar to that sound produced by an excised 

larynx when air is passed through it, and represent a phase of development prior to the 

maturation of the larynx, its muscles and its innervation (Gould 1975). One recent study 

found that echolocation calls in the big brown bat, Eptesicus fuscus (Vespertilionidae) 

appear to develop from isolation calls: calls a young bat uses to attract its mother (Monroy 

et al. 2011). This would lend weight to the idea that echolocation is a specialization of 

communication calls, though many other ontogenetic studies of bats did not find that 

echolocation calls developed from isolation calls (Grinnell 1983; Jin et al. 2011; Jones, 

Hughes, & Rayner 1991; Knornschild, Von, & Mayer 2007; Liu & Feng 2007; Rubsamen 

1987; Sterbing 2002). 

 

In the first few days of life, the vocalizations rise in frequency and consequently the 

harmonics spread out. As maturation takes place, the call structures produced by each 

family begin to differentiate. The echolocation calls of Vespertilionidae and 

Phyllostomidae decrease in duration and increase in bandwidth, tilting from near-horizontal 

to near-vertical. The calls of the two Vespertilionidae species show a concentration of the 

energy in the fundamental harmonic, thereby reducing the amplitude of the higher 

harmonics (to almost nothing in Myotis lucifugus), whereas the calls of the phyllostomids 

show a shift of the energy from the fundamental harmonic to the second harmonic, but 

maintain some amplitude in the third and fourth harmonics. Calls from Noctilio albiventris 

(Noctilionidae) appear to develop in a similar way but rather than extending the bandwidth 

upwards, it drops downwards. The calls of species of Hipposideridae and Rhinolophidae 

and of Pteronotus parnellii (Mormoopidae) show an alternative pattern of development; 

changing from narrowband to constant frequency and increasing in duration over time. 

Between day 7 and day 14, the calls develop up-sweeps and down-sweeps in tandem with 
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the process of filtering to reduce the amplitude of the fundamental, third and fourth 

harmonics.  

 

These ontogenetic changes indicate that the echolocation call structures of adult bats can be 

developed from the hypothesised primitive call: a short, multi-harmonic, narrowband 

sound, lending further weight to the ancestral call structure hypothesis. They also suggest 

that development can progress either through tilting the call to increase bandwidth and 

reduce duration, or alternatively by lengthening the duration. These two alternatives are 

supported by the results of the discrete ancestral state reconstruction, in which the ancestor 

to the Pteropodiformes used a long duration, narrowband call (call type 13) and the 

ancestor to the Vespertilioniformes used a short duration, multi-harmonic, high bandwidth 

call (call type 9) (see Figure 5.10). 

 

Finally, some changes in call type within families can indicate closely related call 

structures. Pteronotus parnellii is unique in its family (Mormoopidae) and suborder 

(Vespertilioniformes) for having evolved a long duration, constant frequency call (call type 

12). Other members of the family use call type 11 (multi-harmonic decurve into down-

sweep). Similarly, at least two hipposiderid species (Hipposideros semoni and H. stenotis) 

use call type 12, where other members of the family use call type 13; a medium duration, 

constant frequency call with a broad frequency-modulated down-sweep. There is evidence 

that call types 11 and 12 are evolutionary intermediates that have partial functionality as 

high duty cycle, Doppler Shift Compensating echolocation calls (Lazure & Fenton 2011). 

 

In summary, the ancestral reconstruction analyses indicate that the ancestral echolocation 

call is similar to call type 9; a short duration, multi-harmonic call, though likely more 

narrowband and longer in duration. The other evidence supports this finding, and confirms 

the hypothesised ancestral echolocation call as being a fairly short duration, multi-

harmonic, narrowband call. 

 



  Chapter 5  

  212 

 

5.5.2 Biology of the proto-bat 

It is possible to elicit further information about the ‘ancestral’ bat by considering the 

ecology of extant bats using a similar call structure. The functionality of the call is 

relatively basic (see Figure 5.13), allowing the bat a reasonable perceptual image and 

location for an object of interest. Increasing the frequency modulation of the harmonics, as 

in call type 9, improves localization performance (Simmons 1979). 

 

 

Figure 5.13: Copied from Simmons (1979): A diagram of the relationship between bandwidth and 

number of harmonics in a sonar sound and the perceived position of a target in range, or target 

distance. The true position of the target is indicated by a dot, and the distribution of the region in which 

the target is perceived is shaded. 

 

Echolocation call structures are well known to correlate strongly with habitat use, prey 

type, and hunting style (Aldridge & Rautenbach 1987; Jones & Rayner 1988; Kalko 1995; 

Kalko & Schnitzler 1993; Neuweiler 1984; Obrist 1995; Schnitzler & Kalko 2001; 

Schnitzler et al. 2003; Simmons et al. 1979; Surlykke & Moss 2000). Using call type 9 as 
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the nearest modern comparison to the proposed ancestral call type points towards the 

behaviour and ecology of the five families that primarily use this call type as being most 

similar to that of the proto-bat: Phyllostomidae, Natalidae, Megadermatidae, Nycteridae, 

and Mystacinidae.  

 

Bats in four of these five families have extremely diverse diets. Phyllostomid species’ diets 

range from insects through pollen, nectar and fruit, to frogs, birds, and other bats, and the 

blood of mammals and birds (Nowak 1994). Many species are not restricted to any one 

food type, feeding somewhat opportunistically, taking insects as well as pollen, nectar and 

fruit. Species in both the families Megadermatidae and Nycteridae feed on arthropods and 

vertebrates, including other bats, rodents, birds, frogs, reptiles and fish (Nowak 1994). 

Mystacinid species feed on arthropods, fruit, nectar, pollen and even vertebrate carcasses 

(Nowak 1994). Members of the Natalidae, however, are thought to be entirely insectivorous 

(Nowak 1994; Tejedor 2005). These mainly wide-ranging diets suggest that the proto-bat’s 

diet was also very diverse and probably opportunistic, spanning plants and animals, both 

vertebrates and invertebrates, and giving the proto-bat great flexibility of diet. Previous 

workers have invoked an insectivorous proto-bat (Arita & Fenton 1997; Fenton 1984; 

Fenton et al. 1995; Hill & Smith 1984; Simmons & Stein 1980), though Speakman (2001) 

suggested that it was frugivorous. Fossils of extinct early bats have insectivorous dentition 

(Freeman 2000; Gunnell & Simmons 2005; Rydell & Speakman 1995; Simmons & Geisler 

1998), though it is possible that the first bats evolved up to 25-30 million years prior to the 

existence of these fossils (Springer, Teeling, & Madsen 2001) leaving ample time for the 

evolution of insectivory from omnivory. Omnivory is a highly plausible dietary system for 

the proto-bat, since many other small, nocturnal mammalian taxa feed opportunistically and 

omnivorously (mouse and rat-like rodents, shrews, hedgehogs, and tenrecs), including bats’ 

close relatives, the order Eulipotyphla, which contains the shrews, moles and hedgehogs 

(MacDonald 2004). Additionally, high frequencies are necessary to detect small insects 

using echolocation (higher frequencies have smaller wavelengths), so insectivory may be a 

derived condition, evolving with high frequency echolocation calls. 
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The five families using call type 9 also show diversity in their habitat use. Phyllostomids, in 

particular, are found in desert scrub, prairies, pastures, marshes, orchards, and sub-tropical 

and tropical forests (Nowak 1994). The other four families are more restricted to forested 

habitats (Nowak 1994). All five families have wing morphologies that are most suitable for 

slow, manoeuvrable flight in cluttered conditions. Some use a perch-hunting strategy: 

hanging on a branch and then dropping onto a prey item, and others a gleaning strategy: 

snatching prey from surfaces such as leaves and tree trunks whilst in flight (Norberg & 

Rayner 1987). Some bats in the family Phyllostomidae also hover to access fruit, pollen 

and nectar, and Mystacina tuberculata (sole species of Mystacinidae) is particularly 

unusual in that it mainly forages on the ground, rather than in flight (Jones 2003; Nowak 

1994). The proto-bat is thought to have evolved in a forested habitat (Fenton et al. 1995; 

Gunnell & Simmons 2005; Schnitzler et al. 2004; Simmons & Stein 1980), and various 

foraging strategies have been postulated, such as gleaning followed by perch hunting 

(Speakman 2001) and short flights to the ground, capturing prey by forcing it down using 

the wings (Schnitzler et al. 2004). Both these proto-bat hunting strategies are compatible 

with those seen in bats using call type 9. 

 

The echolocation calls of the species in these five families are extraordinarily similar, 

considering the diversity of habitats and prey types they use. Even the three species of 

sanguivorous bats of the subfamily Desmodontinae (Phyllostomidae), and the frog-eating 

species, Trachops cirrhosus (Phyllostomidae), Megaderma lyra (Megadermatidae), 

Nycteris grandis (Nycteridae) use the same multiharmonic, frequency-modulated call. In 

the phyllostomids, the lack of relationship between their morphology, diet or habitat and 

their echolocation calls has been noted, and the role of echolocation in the Phyllostomidae 

questioned (Bogdanowicz, Csada, & Fenton 1997). Functionally, echolocation calls of this 

type allow great flexibility: the multiharmonic structure provides bats with the opportunity 

to alter the harmonic of maximum energy, and hence focus on objects of various different 

sizes. 

 

For the proto-bat, fairly short duration, multi-harmonic, narrowband calls offer the 

opportunity to benefit from a wide range of prey items using simple foraging techniques 



  Chapter 5  

  215 

 

that might have been available using the broad, short wings of the proto-bat living in the 

understory of a forest. Small alterations to the echolocation call structure could then lead to 

improved localization and detection, and more specialised diets and foraging strategies in 

subsequent species. 

 

5.6 Conclusions 

Despite concerns about flaws in ancestral reconstruction methodologies, all eight 

techniques used indicated a similar ancestral echolocation call for bats. Call types 8 and 9 

both appeared to be plausible according to reconstructions of continuous characters and 

principal component scores, though further analyses of discrete characters made call type 9 

(a short, multi-harmonic, broadband call) more likely as the ancestral echolocation call. 

Further evidence regarding the structure of the mammalian larynx, typical mammal sounds, 

and the ontogenetic development of echolocation calls in bats supports the finding of a 

short, multiharmonic, broadband call as the ancestral call, but suggest that early bats would 

have used a narrowband structure, rather than the broadband structure of call type 9, with a 

later progression to a true call type 9 structure. 

 

Using information about extant users of the nearest call type to that of the ancestral bat, call 

type 9, it is likely that the proto-bat was a slow and manoeuvrable flier with an 

opportunistic and omnivorous diet and a perch hunting foraging strategy, living in a forest 

habitat. 
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6 Chapter 6: Are echolocation call structures ‘key 

innovations’ that promote diversification? 

6.1 Abstract 

One of the fundamental questions in evolutionary biology concerns the uneven distribution 

of species among taxa in taxonomic groups, and the causes of differences in diversification 

rates. Novel traits that make new niche space available, known as key innovations, have 

long been hypothesised to be responsible for the rapid evolution and diversification of some 

clades. In this chapter I explore whether the bat phylogeny shows any evidence of such ‘up-

shifted’ clades (i.e., clades that have undergone increased rates of diversification). I ask 

whether these clades are up-shifted as a result of the echolocation call types used by the 

species they contain, and I explore the possible ecological models that might substantiate a 

link between echolocation call types and increased speciation rates. 

 

I use a process of stepwise Akaike Information Criterion (AIC) to compare alternative 

placements of diversification rate shifts in the bat phylogeny, and find that the best model 

indicates two up-shifts in rate, one at the root of a clade of 80 species of Old World fruit bat 

(Pteropodidae), and the other at the root of the New World fruit bat sub-family 

Stenodermatinae (Phyllostomidae). I then use a whole-tree likelihood-based method to 

estimate the rates of speciation, extinction and transition between traits across the bat 

phylogeny based on (1) the whole tree and the 13 call types described in Chapter 4, and (2) 

the tree with the two up-shifted clades as partitions and the same 13 call types. This 

analysis suggests that call types 1 and 9 (no echolocation, and a multiharmonic, short 

duration, high bandwidth call) show increased rates of speciation compared with other call 

types. Analysis of speciation rates for all echolocation call types additionally highlights call 

types 3 (single harmonic, medium duration, narrowband), 7 (single harmonic, very short 

duration, high bandwidth), 8 (single harmonic, short duration, medium bandwidth), and 10 

(multi-harmonic, short duration, high bandwidth) as being associated with increased 

speciation rates. 
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I put forward two mechanisms by which echolocation can influence speciation rate. The 

first, an allopatric model, sees echolocation calls altering niche use and expanded 

geographic range as a consequence, allowing greater opportunity for divergent selection 

and barriers to gene flow. The second, a sympatric model, suggests that through altered 

niche use, changes to echolocation calls also result in changes in communication calls 

which bring about reproductive isolation through sexual selection and assortative mating. I 

therefore suggest that certain echolocation call types (call types 1, 3, 7, 8, 9, and 10) can be 

considered key innovations, as (1) they are associated with increased rates of 

diversification; (2) there is a functional model explaining the link between the traits and 

increased speciation; and (3) an analogous trait (echolocation) in toothed whales shows a 

similar pattern of diversification.  

 

6.2 Introduction 

6.2.1 Background 

The uneven distribution of species among higher taxa in many taxonomic groups has been 

of interest to biologists for nearly a century (Heard & Cox 2007; Willis & Yule 1922). 

Taxonomic groups typically show a ‘hollow curve’ distribution, with many species-poor 

groups and only a few species-rich groups (Dial & Marzluff 1989; Scotland & Sanderson 

2004; Willis & Yule 1922). Whilst it is possible that hollow curve distributions (see Figure 

6.1) are a consequence of random processes (Ricklefs 2003), it may also suggest that 

lineages differ in their probabilities of diversifying (Sanderson & Donoghue 1994), perhaps 

as a result of possessing different phenotypic traits (Freckleton, Phillimore, & Pagel 2008; 

but see Purvis et al. 2011; Venditti, Meade, & Pagel 2010). Several organismal traits have 

been linked to increased rates of diversification in many taxa (e.g., floral nectar spurs in 

orchids (Hodges & Arnold 1995); small adult body size in Carnivores (Isaac et al. 2005); 

sexual dichromatism in passerine birds (Barraclough, Harvey, & Nee 1995)). 
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Figure 6.1: The hollow curve distributions for species in (a) bat families and (b) mammalian orders 

Taxonomy follows (Wilson & Reeder 2005) except with the sub-family Miniopterinae given family 

status (Miller-Butterworth et al. 2007). 
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Bats are a particularly speciose mammalian order, containing more than one fifth of 

recognised mammal species, and coming second only to the rodents in terms of species 

numbers (Wilson & Reeder 2005). The high species richness of bats is often said to be due 

to the twin key innovations of flight and echolocation, giving bats access to a niche 

previously unexploited by mammals: the night sky (Fenton et al. 1995; Schnitzler et al. 

2003; Sears et al. 2006; Speakman 2001). This hypothesis has never been empirically 

tested. Traits pertaining to body size (adult body mass), life history (age at sexual maturity, 

gestation period, interbirth interval, litter size), abundance (population density, group size), 

and sexual dimorphism (mass dimorphism, length dimorphism) have been found not to 

correlate which bat species richness, although after removing one extreme outlier, the wing 

aspect ratio of micro-bats was found to correlate negatively with species richness (Isaac et 

al. 2005). This may indicate a role for small colony size and low rates of individual 

exchange between colonies in determining species richness, due to the bats’ inefficiency at 

flying large distances (Isaac et al. 2005). 

 

There have been two previous studies of diversification rates in bats, both on different 

permutations of the original bat supertree (Jones et al. 2002). The first of the two studies 

(Jones et al. 2005) used both the original supertree which splits the bats into suborders 

Megachiroptera and Microchiroptera (now thought to be erroneous), and a re-arrangement 

of the Jones et al. (2002) supertree based on the familial topology of Teeling et al. (2005), 

which sees the Megachiroptera absorbed into a newly defined suborder, the 

Pteropodiformes. The second study used the original bat supertree published by Jones et al. 

(2002) (Purvis et al. 2011). Both studies used the delta shift statistic (Chan & Moore 2005; 

Moore, Chan, & Donoghue 2004), a whole-tree likelihood-based test, and Jones, Bininda-

Emonds, & Gittleman (2005) also used a sister-clade comparison technique, the Slowinski-

Guyer test (Slowinski & Guyer 1993). Jones et al. (2005) identified a significant up-shift 

near the base of the Phyllostomidae (in the Teeling et al. (2005) topology), as well as a 

further shift near the base of the genus Artibeus (Stenodermatinae: Phyllostomidae) (in both 

topologies). Purvis et al. (2011), too, detect an up-shift in Artibeus (Stenodermatinae: 

Phyllostomidae). Jones et al. (2005) also detect three non-significant shifts within the 

Pteropodidae (in both topologies). Both Jones et al. (2005) and Purvis et al. (2011) detect 
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further significant up-shifts in clades within the Rhinolophoidea, Noctilionoidea, and 

Vespertilionoidea, as well as down-shifts in the Noctilionidae and Desmodontinae.  

 

Bats are no exception to the hollow curve rule, with 10 out of 19 families possessing 10 

species or fewer, and four families containing 100 or more species (see Figure 6.1) (Miller-

Butterworth et al. 2007; Simmons 2005). Echolocation is often cited as being highly 

influential in the evolution of bats (Fenton et al. 1995; Schnitzler et al. 2003; Sears et al. 

2006; Speakman 2001), and the variation in echolocation call types across the bat tree, 

along with the importance of echolocation in shaping the ecology of bats (Denzinger et al. 

2004), suggests that echolocation call differences may be at least in part responsible for the 

unbalanced nature of the bat phylogeny. If echolocation is indeed a key innovation 

promoting increased rates of diversification, one might expect to see variation in the species 

richness of bat clades of the same age using different echolocation call structures. 

Observation suggests that certain echolocation call types, such as the flexible high 

bandwidth, short duration calls of the most speciose family of bats (Vespertilionidae), 

might be correlated with rapid diversification and increased species richness. In this 

chapter, I will test the hypothesis that certain echolocation call types have acted as key 

innovations and thereby enabled increased diversification rates in bats. Diversification rates 

can increase as a result of increased speciation rates, decreased extinction rates, or a 

combination of both. 

 

The concept of a key innovation was first described by Simpson (1953) as a behavioural 

trait that opened new adaptive zones. Key innovations have since been defined in various 

ways (see Hunter (1998) and Cacho et al. (2010)), though all definitions are based on the 

concept that some novel traits can cause an increase in the diversification rate of a taxon 

(Cacho et al. 2010).  

 

Cacho et al. (2010) suggest that the plausibility of a putative key innovation should be 

assessed using three kinds of evidence:  
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(1) The taxon having the trait has a higher rate of diversification than closely related 

taxa lacking the trait. 

(2) There is a reasonable ecological or functional model to justify a causal link between 

the trait and increased diversity. 

(3) Analogous traits are consistently associated with increased diversification rates. 

 

Finding a ‘reasonable ecological or functional model’ that links the trait and increased 

diversity is the most challenging of the three conditions. Increased diversity (driven by an 

increase in speciation rate) can only come about as a result of an increase in the likelihood 

of reproductive isolation, as this is necessary for speciation (Dobzhansky 1937; Grant 1963; 

Mayr 1942; Yoder et al. 2010). It is generally accepted that reproductive isolation usually 

occurs as a by-product of allopatric divergence, leading to allopatric speciation (Coyne & 

Orr 2004; Mayr 1942). But since allopatrically-induced reproductive isolation occurs at a 

relatively slow rate, it is likely to limit the rate of speciation considerably (Coyne & Orr 

2004). Therefore it seems likely that natural selection could be involved in bringing about 

reproductive isolation, through an ecological speciation model. As Yoder et al. (2010) 

report, a number of ecological mechanisms have been implicated in the process of 

ecological speciation including competition (Abrams 2006; Dieckmann & Doebeli 1999), 

mutualism (Kiester, Lande, & Schemske 1984), predation (Day, Abrams, & Chase 2002), 

host-parasite interactions (Nuismer 2006), sexual selection (Gavrilets & Waxman 2002), 

fluctuating environments (Abrams 2006), and environmental gradients (Doebeli & 

Dieckmann 2003; Slatkin 1973). In order for echolocation call type to bring about non-

allopatric speciation, it is likely that one of these mechanisms could be responsible. 

 

6.2.2 Hypotheses 

If echolocation call types have acted as key innovations in the evolution of bats, then 

following Cacho et al.'s (2010) conditions I would expect to find that the bat tree has 

varying diversification rates showing a clear relationship between any clades with an up-

shifted diversification rate and a particular echolocation call type, and that the call types 

associated with up-shifted clades are capable of enabling increased niche size, increased 

geographic range size and assortative mating (which could all lead to reproductive 
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isolation). I would expect call types 1, 3, 7, 8, 12, and 13 to enable these conditions to occur 

(see Figure 6.2 for call types). 

 

 

Figure 6.2: The 13 call types used by extant bats, as described in Chapter 4. 

 

Call type 1, which is the use of vision and olfaction rather than echolocation, allows bats to 

break from the use of echolocation and increase in body size, giving them access to a new 

niche and a new geographic range. It is thought that echolocation constrains maximum 

body size because in order to be energy efficient, bats must breathe, flap their wings, and 

echolocate simultaneously (Speakman & Racey 1991). Larger body sizes result in wing 

beat frequencies that are too slow for echolocation to provide the necessary sensory input 

for orientation and food acquisition (Jones 1994). By losing echolocation and using vision 

as the primary sensory modality, bats are able to attain body sizes that allow food 

acquisition from a greater area, perhaps making frugivory from widely distributed foraging 

patches possible, as well as more diurnal behaviour, as larger body size lowers their 

predation risk. 

 

Call types 3 and 8 allow bats to exploit niches outside of the forest environment (Kalko & 

Schnitzler 1993). Call type 3 (medium duration, narrowband and low frequency) enables 

the use of open spaces for commuting and foraging. Call type 8 (short duration, mid-

bandwidth calls) is very flexible, and opens up edge-space, such as along forest waterways, 

tree fall clearings in forests, and forest margins. Consequently, both call types could open 

up new niche space. 

 

Call types 7, 12 and 13 allow exploitation of extremely dense forest, each via a different 

mechanism (Kalko & Schnitzler 1993; Kingston et al. 1999; Schmieder et al. 2010). Call 
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type 7 is an extremely high bandwidth, short duration call which reveals detail about a 

range of size classes. Call type 12 is constant frequency and reveals the fluttering wings of 

insect prey against a still background. Call type 13 combines these two call features, and 

also allows the production of long duration calls without pulse-echo overlap as the pulse 

and echo are separated by frequency due to Doppler shift. All three could open new niche 

space. 

 

All call types may promote assortative mating, as echolocation calls can be used in 

communication (Fenton 1986; Jones & Siemers 2011), and hence sexual selection based on 

calls may influence phenotypic and genotypic divergence and the initiation of reproductive 

isolation (see Kingston & Rossiter 2004). 

 

A correlation between species richness and a phenotypic trait does not guarantee causation 

(Cracraft 1990). This may be especially true in bats, as aspects of echolocation call 

structure correlate strongly with wing morphology (Aldridge & Rautenbach 1987), which 

might confer varying abilities to disperse. The ability to disperse and colonise new 

geographical areas without an associated niche expansion may be responsible for a much 

greater degree of phylogenetic imbalance than we are currently aware (Heard & Cox 2007; 

Purvis et al. 2011). 

 

In addition, echolocation may show correlations with diet (Aldridge & Rautenbach 1987), 

such that periods of increased diversification in lineages of flowering plants and insects 

may lead to increased diversification in bats with echolocation calls that are suited to such 

diets. 

 

6.2.3 Chapter aims 

The aims of this study are threefold: (1) To determine whether diversification rates are 

constant across the bat phylogeny, (2) to establish whether any shifts in diversification rate 

are correlated with echolocation call types, (3) to consider whether these echolocation call 

types cause increased diversification. 
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6.3 Methods 

6.3.1 Data 

6.3.1.1 Bat call data 

I collated and measured the echolocation call data as described in Chapter 2: section 2.2. 

The echolocation data included data from species found in EchoBank that could be 

successfully measured, and data from species reported in the literature. I used the 

parameters chosen in section 2.2.8 in Chapter 2. The full list of species data is shown in 

Appendices A and E. 

 

6.3.1.2 Supertree 

I constructed the supertree as described in Chapter 2: section 2.3. I used a version of the 

supertree containing 1104 bat species, leaving out the 12 species that were placed 

polyphyletically to their families, as described in Chapter 3. 

 

6.3.1.3 Imputed data sets 

The bat call data contained between 291 and 408 data points for each of the eight 

continuous echolocation call parameters (Bandwidth, Call Duration, Characteristic 

Frequency, Dominant Slope, Maximum Frequency, Minimum Frequency, Peak Frequency, 

Total Slope) (see Appendix F). I used the programme PhyloPars (Bruggeman, Heringa, & 

Brandt 2009) to impute the remaining data points for each call parameter, as estimating 

diversification rates requires a full data set. Unevenly distributed missing date would skew 

the analysis, as species with missing data would be removed from the analysis. PhyloPars 

uses maximum likelihood estimation to estimate phylogenetic covariances and phenotypic 

variances. The model underlying the phylogeny is assumed to be one of Brownian Motion, 

which is often used as a null model in comparative methods. Although, analyses in Chapter 

4 showed that echolocation calls in bats were most likely to have evolved under an 

Ornstein-Uhlenbeck model, unfortunately this imputation method does not incorporate OU. 

The covariances of the parameter distribution depend on the topology and branch lengths of 

the phylogeny, and on the rates and correlations of the observed parameters. The optimal 



  Chapter 6  

225 

phylogenetic phenotypic covariances are initially combined with the phylogeny, and the 

covariances between the observations and the missing values are calculated. The 

covariances are then used to calculate each missing value as the product of all original 

observations and an estimate-specific set of associated weights (Bruggeman et al. 2009). 

 

PhyloPars only imputes continuous data, and so to impute the missing echolocation call 

types, I inferred missing call types from phylogenetic relatives and from the imputed 

continuous call variables. In total, the call types of 333 species were known, and those of 

the remaining 772 species were assumed or imputed. Some families are known to only use 

a single echolocation call type, and, as such, assumed call types are extremely likely. Of the 

772 assumed or imputed species, 308 were assumed, based on the single call type of the 

majority of their respective families (Hipposideridae (call type 13); Miniopteridae (call type 

8); Phyllostomidae (call type 9); Pteropodidae (call type 1); Rhinolophidae (call type 12)). 

The call types of species in families which use more than one call type (the remaining 466 

species) were imputed using the protocol below. Species without a known call type are 

referred to as ‘missing species’, and species with a known call type are referred to as 

‘observed species’. 

(1) Assign all missing species with an observed sister species with that call type. 

(2) For missing species without an observed sister species, assign the call type of the 

younger nearest neighbour, if it is an observed species. 

(3) If not, assign the call type of the older nearest neighbour, if it is an observed 

species. 

(4) Repeat, until all missing species have a call type. 

 

6.3.2 Analysis 

6.3.2.1 Location of diversification shifts 

I used the function ‘TurboMEDUSA’ to locate diversification shifts within the bat 

supertree. This function is currently a self-contained and unreleased R package (Brown, J. 

2011, pers. comm.) which will soon be integrated into the R package Geiger, alongside its 

predecessor, MEDUSA (Harmon et al. 2009). TurboMEDUSA uses stepwise AIC (Akaike 
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Information Criterion) to compare models of lineage diversification and quantify support 

for any shifts in speciation and extinction rates. Stepwise AIC compares 20 subsequent 

models, each with an additional diversification rate shift, and gives each an AICc score 

(small sample size-corrected AIC). The lowest AICc score that is larger than next lowest 

score by the necessary threshold calculated for the tree size (number of tips) is the best 

model. The advantage of TurboMEDUSA over similar methods like SymmeTREE (Chan 

& Moore 2005) is that it can be used with incompletely resolved phylogenies, and also 

allows adjustments to be made for incompletely sampled phylogenies. The adjustments I 

made are detailed below. 

 

The bat supertree contains several polytomous clades which are likely to be artifacts of a 

lack of information about the phylogenetic position of a group of species in the supertree 

building process, rather than true associations between related species (see Alfaro et al. 

2009). To avoid such polytomies influencing the rate shift identification process, I excised 

any polytomies of nine species or more and any monophyletically-placed species of the 

same genus, leaving a single species as a representative. I then compensated for the 

removal of these species by specifying a richness of 1 plus the number of excised species 

for the remaining representative species. Doing this resulted in the collapsing of the species 

within each of 14 clades containing between 10 and 103 species (with polytomies 

numbering between nine and 31 species), and a total of 440 species (103 Myotis spp., 19 

Kerivoula spp., 18 Pipistrellus spp., 17 Eptesicus spp., 17 Murina spp., 16 Hypsugo spp., 

12 Glauconycteris spp., 11 Nyctophilus spp. (Vespertilionidae); 77 Rhinolophus spp. 

Rhinolophidae); 64 Pteropus spp. (Pteropodidae); 64 Hipposideros spp. (Hipposideridae); 

18 Chaerephon spp., 14 Mops spp., 10 Mormopterus spp. (Molossidae)). 

 

In addition, to compensate for the 12 species I excised from the bat supertree due to their 

unlikely polytomous placement, I specified that Tadarida insignis had a richness of 2 (to 

accommodate excised Tadarida teniotis); that Nycteris javanica had a richness of 6 (to 

accommodate half the excised Nycteris species); and that Nycteris arge had a richness of 7 

(to accommodate the other half of the excised Nycteris species). I chose these placements 
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for the excised species to place them with other members of the same genus. For the 16 

Nycteris species, I split the richness between two species to balance the topology. 

 

6.3.2.2 Diversification shifts and echolocation call types 

To assess the relationships between echolocation call types and the clades that have 

experienced diversification shifts found by TurboMEDUSA, I used the function ‘MuSSE’ 

(Multi-State Speciation and Extinction) in the R package diversitree (FitzJohn 2011). 

MuSSE is a likelihood-based method that compares models with varying speciation, 

extinction and transition rates for a series of multi-state characters. It is an alternative to the 

extensively used sister clade comparison method. Sister clade analyses require that each 

clade has a single character state, and assume that states have remained the same 

throughout the evolutionary history of each lineage. MuSSE accepts variation in the 

character states seen across clades, as it uses the whole branching pattern of the phylogeny 

(FitzJohn 2010). Additionally, MuSSE allows speciation and extinction rates to be 

estimated independently, whereas more simple methods such as those developed by Paradis 

(2005) and Freckleton et al. (2008) (FitzJohn 2010) do not. 

 

The combination of the speciation rate and the extinction rate gives the net diversification 

rate, and the transition rate indicates the likelihood of a state change (from one character to 

another). Initially I ran five models to establish the general pattern of speciation, extinction 

and transition rates, and to give a framework for comparison of the more complex models I 

ran later. The initial five models were: 

1) One speciation rate, one extinction rate, one transition rate. 

2) Speciation rates allowed to vary, one extinction rate, one transition rate. 

3) One speciation rate, extinction rates allowed to vary, one transition rate. 

4) One speciation rate, one extinction rate, transition rates allowed to vary. 

5) Speciation and extinction rates allowed to vary, and one transition rate. 

 

I then created a likelihood function based around the supertree with the 3 partitions 

indicated by the results of TurboMEDUSA, using the ‘make.musse.split’ function of 

MuSSE. I created 32 models in total, based on a combination of rate regimes for each of the 
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three model parameters: lambda (speciation), mu (extinction), and q (transitions between 

characters). In each model, I specified groups of allied rates for each character 

(echolocation call types 1 – 13, as outlined in Chapter 4) in each partition (partitions 1 – 3, 

found using TurboMEDUSA). For all three rate parameters, I first established two sets of 

rates, those that were possible, and those that were impossible. For example, speciation or 

extinction of lineages using call types 1-8 and 10-13 was deemed impossible in the 

partition containing species that use only call type 9, whereas speciation or extinction of 

lineages using call type 9 in a partition containing species that use call type 9 was deemed 

possible. In partition 1, which represented the rest of the tree, excluding clades found to 

have undergone up-shifts in diversification rate, all speciation and extinction events were 

considered possible (see Table 6.1 for a complete matrix). Impossible rates were coded as 

having a likelihood of 0. 

 

  Call Type 

  1 2 3 4 5 6 7 8 9 10 11 12 13 

P
a
rt

it
io

n
 

1 p p p p p p p p p p p p p 

2 p p i i i i i i i i i i i 

3 i i i i i i i i p i i i i 

Table 6.1: Speciation and extinction rates (lambda and mu) were designated as either possible (p) or 

impossible (i) for each call type in each partition of the tree. 

 

Similarly for q, (the rate of transitions between characters (echolocation call types)), rates 

were split into two groups as shown in Table 6.2. The transitions marked as ‘likely’ are 

those which I perceive as likely based on the results of ancestral reconstruction analysis in 

Chapter 5. For example, a transition from call type 1 (no echolocation), to call type 12 

(‘sophisticated’ Doppler Shift Compensation constant frequency calls) is unlikely, whereas 

a transition from call type 8 (medium bandwidth, medium duration calls) to call type 3 (low 

bandwidth, long duration calls) is considered likely. In contrast to the speciation and 

extinction rates, ‘unlikely’ transition rates were not coded as having a likelihood of 0, but 

were simply grouped together. 
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  From Call Type 

  1 2 3 4 5 6 7 8 9 10 11 12 13 

T
o

 C
a

ll
 T

y
p

e 
1 x l l l l l l l l l l l l 

2 l x u u u u u u u u u u u 

3 u u x u u u u l u u u u u 

4 u u u x u u u u l u u u u 

5 u u u l x u u u l l u u u 

6 u u u l l x u u u u u u u 

7 u u u u u u x l u l u u l 

8 u u l u u u l x u l l u u 

9 l l u u u u u u x u u u u 

10 u u u u u u u u l x u u u 

11 u u u l l l u u l u x u u 

12 u u u u l l u u u u l x l 

13 u u u l l l u u l u l u x 

Table 6.2: Transition rates (q) were designated as either likely (l) or unlikely (u) for each call type in all 

partitions of the tree. 

 

I then split the possible rate parameters into groups to represent alternative evolutionary 

scenarios: four alternatives for each of lambda and mu and two for q, as shown below. 

Impossible parameters were constrained to zero for lambda and mu, and unlikely 

parameters were constrained to one another (as a single rate) for q. These models represent 

scenarios in which speciation and extinction are related to echolocation call type, as 

explained below. 

 

 lambda/mu 

o fully constrained (fc) – all rates equal: echolocation call types do not 

differentially influence speciation/extinction rate 

o fully relaxed (fr) – all rates different: each echolocation call type influences 

speciation/extinction rate to a different degree 

o half and half (hh) – one rate for partition 1 (rest of the tree), and a second 

rate for all other partitions: the echolocation call types of up-shifted clades 

influence speciation/extinction rates differently than the echolocation call 

types of the rest of the tree 
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o shift-based (sb) – a different rate for each partition: the echolocation call 

type of each of the up-shifted clades, and of the rest of the tree, differently 

affects speciation/extinction rate 

 q 

o constrained (qc) – all rates equal, plus one rate for unlikely transitions 

o relaxed (qr) – all rates different in each partition, plus one rate for unlikely 

transitions 

 

Combining these alternatives produces 32 models with rate parameters numbering between 

four in the most constrained model (one lambda, one mu, and two qs) and 36 in the most 

relaxed (see Table 6.3).  

 

   qc             qr 

 lambda   lambda 

m
u
 

 fc fr hh sb  

m
u
 

 fc fr hh sb 

fc 4 19 5 6  fc 6 21 7 8 

fr 19 34 20 21  fr 21 36 22 23 

hh 5 20 6 7  hh 7 22 8 9 

sb 6 21 7 8  sb 8 23 9 10 
Table 6.3: The 32 combinations of the four model sets for each of lambda and mu, and the two 

alternatives for q. The numbers indicate the number of parameters specified in each model. 

 

The likelihood function based on the supertree and its partitions was then constrained to 

each of these 32 rate matrices, and 32 new likelihood functions were produced. Using 

maximum likelihood starting points for lambda and mu generated from the supertree 

(lambda = 0.0986015, mu = 0), and specifying that q should start at a value 1/5
th

 of lambda 

(q = 0.0197203), the maximum likelihood point of each model was found by nonlinear 

optimisation. Akaikie Information Criterion (AIC) values were extracted for each model 

and compared to choose the best performing models. Any model within 4 AIC points of the 

best performing model was also considered following Burnham & Anderson (2002). The 

speciation, extinction and transition rates from the best performing models were also 

extracted. 
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For comparison, the net speciation and extinction rates for the whole split-free tree were 

estimated using the ‘birthdeath’ function of the Geiger package (Harmon et al. 2009) in R 

(The R Core Development Team 2010). 

 

6.4 Results 

6.4.1 Location of diversification shifts 

Three diversification shifts were identified in the bat supertree by TurboMEDUSA (see 

Figure 6.3, Table 6.4 and Table 6.5). The first (1) is a down-shift concerning the whole tree 

background rate, and is included for comparison only. The remaining two clade-specific 

diversification rate shifts, (2) and (3), are both up-shifts. The first is a clade of 80 species of 

the Pteropodidae family including nine of the 10 species in the genus Rousettus, at least 

three of which are known to use tongue-clicking echolocation in caves, although no other 

pteropodid genera use echolocation at all. This shift occurred ~24 million years ago (mya). 

The second up-shift is the whole Stenodermatinae (Phyllostomidae) sub-family of 67 

species, at around ~13 mya. The clades that have undergone shifts in diversification rate, 

and the echolocation call types used by them, are shown in Figure 6.3. The net 

diversification rate for up-shifts ranges from 0.0399964 to 0.300013, and for down-shifts 

from 0.0018843 to 0.0070386. For comparison, a split-free tree with a single speciation rate 

and a single extinction rate had an estimated net diversification rate of 0.074215. 
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Model log likelihood AICc AICc difference 

1 -2042.28 4088.571 - 

2 -2013.84 4037.729 -50.842 

3 -2005.35 4026.811 -10.918 

4 -1999.53 4021.264 -5.547 

5 -1994.69 4017.711 -3.553 

6 -1990.87 4016.229 -1.482 

7 -1987.36 4015.402 -0.827 

8 -1984.13 4015.156 -0.246 

9 -1981.19 4015.511 0.355 

10 -1977.38 4014.175 -1.336 

11 -1974.53 4014.784 0.609 

12 -1971.92 4015.893 1.109 

13 -1969.36 4017.158 1.265 

14 -1966.87 4018.566 1.408 

15 -1964.77 4020.798 2.232 

16 -1962.7 4023.119 2.321 

17 -1960.61 4025.444 2.325 

18 -1958.59 4027.926 2.482 

19 -1956.53 4030.379 2.453 

20 -1954.45 4032.8 2.421 

Table 6.4: Alternative models for the location of up-shifted clades. The best performing model (shown 

in bold) was chosen based on the lowest AICc value with at least a 8.80625 difference from the next 

lowest – the appropriate AICc threshold for a tree with 664 tips, as calculated by TurboMEDUSA. 
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Partition Clade 
Net 

diversification 

rate (r) 
Log(likelihood) 

Shift 

direction 

1 Rest of tree 0.075726 -1640.00 ↓ 

2 80 spp. of Pteropodidae 0.133499 -210.96 ↑ 

3 Stenodermatinae 0.252833 -154.38 ↑ 

Table 6.5: The phylogenetic location and strength of the diversification rate shifts estimated by 

TurboMEDUSA. For comparison, a split-free tree with a single speciation rate and a single extinction 

rate had an estimated net diversification rate of 0.086482. 
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Figure 6.3: The bat supertree showing clades which have undergone shifts in diversification rates, as 

well as the echolocation call types used by these clades. Arrows indicate the direction of each shift. 
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6.4.2 Diversification shifts and echolocation call types 

In the initial set of model tests on the whole tree without shifts, the model with a single 

extinction rate, a single transition rate and 13 speciation rates out-performed the other four 

models (by 18 - many more than the threshold 4 AIC units) (Burnham & Anderson 2002). 

See Table 6.6 for AIC scores. 

 

Model 

AIC score 
Degrees of 

freedom Speciation 

(lambda) 
Extinction (mu) Transition (q) 

fully relaxed fully constrained fully constrained 8448.675 15 

fully relaxed fully relaxed fully constrained 8466.786 27 

fully constrained fully constrained fully constrained 8476.559 3 

fully constrained fully relaxed fully constrained 8490.586 15 

fully constrained fully constrained fully relaxed 8584.763 158 

Table 6.6: Comparison of diversification models based on the whole tree and echolocation call types 

using AIC scores. The best performing model (shown in bold) was chosen based on the lowest AIC 

value. 

 

The favoured model in the split-free tree has negligible extinction and transition rates, and 

the speciation rates vary from negligible to 0.142 for call type 1 (no echolocation – vision 

and olfaction instead). See Table 6.7 for all rates. Call types 9, 8, 10, 3, 13 and 7 have 

particularly high speciation rates. 
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 Rate parameter 
Rate for whole tree - lambda fully 

relaxed, mu fully constrained, q fully 

constrained 

S
p

ec
ia

ti
o

n
 r

a
te

s 

Call type 1 0.14164 

Call type 2 0.00000 

Call type 3 0.09153 

Call type 4 0.07579 

Call type 5 0.05703 

Call type 6 0.02845 

Call type 7 0.08580 

Call type 8 0.10063 

Call type 9 0.11564 

Call type 10 0.09754 

Call type 11 0.05596 

Call type 12 0.07826 

Call type 13 0.09207 

Extinction rate One rate for whole tree 0.00001 

Transition rate One rate for whole tree 0.00072 

Table 6.7: Rates estimated by the best model for the whole tree, shown to five decimal places. 

 

Of the 32 partition-based models run, four models out-performed the others (by at least 4 

AIC units from the smallest one) but were not significantly different from one another 

(Burnham & Anderson 2002) (see Table 6.8 for AIC scores).  

 

Model 

AIC score 
Degrees of 

freedom Speciation 

(lambda) 
Extinction (mu) Transition (q) 

fully relaxed fully constrained constrained 8362.93 19 

fully relaxed half and half constrained 8364.91 20 

fully relaxed fully constrained relaxed 8365.14 21 

fully relaxed shift-based constrained 8366.91 21 

fully relaxed half and half relaxed 8367.15 22 

fully relaxed shift-based relaxed 8369.14 23 

shift-based fully constrained constrained 8385.21 6 
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shift-based half and half constrained 8387.22 7 

shift-based fully constrained relaxed 8387.61 8 

shift-based shift-based constrained 8389.22 8 

shift-based half and half relaxed 8389.45 9 

fully relaxed fully relaxed constrained 8390.81 34 

shift-based shift-based relaxed 8391.44 10 

half and half fully constrained constrained 8393.48 5 

fully relaxed fully relaxed relaxed 8394.61 36 

half and half half and half constrained 8395.48 6 

half and half fully constrained relaxed 8395.72 7 

half and half shift-based constrained 8396.24 7 

half and half half and half relaxed 8397.73 8 

half and half shift-based relaxed 8398.28 9 

half and half fully relaxed constrained 8408.31 20 

shift-based fully relaxed relaxed 8409.89 23 

shift-based fully relaxed constrained 8410.05 21 

half and half fully relaxed relaxed 8412.88 22 

fully constrained fully constrained constrained 8417.38 4 

fully constrained half and half constrained 8419.39 5 

fully constrained fully constrained relaxed 8419.63 6 

fully constrained shift-based constrained 8421.38 6 

fully constrained half and half relaxed 8421.65 7 

fully constrained shift-based relaxed 8423.61 8 

fully constrained fully relaxed constrained 8440.95 19 

fully constrained fully relaxed relaxed 8442.31 21 

Table 6.8: Comparison of diversification models based on tree partitions and echolocation call types 

using AIC scores. The four best performing models (shown in bold) were chosen based on the lowest 

AIC values, best any within 4 units of the lowest were considered. 

 

The four best models have fully relaxed lambdas: 16 different speciation rates - one for 

each call type in the rest of the tree, one for each of the two call types in the Pteropodidae 

partition, and one for the single call type in the Stenodermatinae partition. The four models 
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estimate extremely similar speciation rates for each call type, except for call type 2 which is 

negligible in three models and 0.07679 in one model. 

 

The best four models have either fully constrained mus (a single extinction rate), half and 

half mus (one extinction rate for the rest of the tree and one extinction rate for the two 

partitions), or shift-based mus (one extinction rate for the rest of the tree and two more 

extinction rates for each of the two partitions). However, all estimated extinction rates are 

less than 0.000008 and can be considered negligible. 

 

The best four models have either relaxed or constrained qs: three models have two 

transition rates (likely and unlikely – as outlined in Table 6.2), and one model has four 

transition rates, in which the additional two parameters correspond to the rate of transition 

between call types in the partitions. Transition rates are largely negligible (below 0.002) 

except for the rate of transition from call type 1 (vision) to call type 2 (tongue-clicking) in 

the Pteropodidae partition, which was extremely high at 13207. See  Table 6.9 for 

speciation, extinction and transition rates in the four models. 
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  Rate for each model 

 Rate parameter 

Speciation 

fully 

relaxed, 

extinction 

fully 

constrained, 

transition 

constrained 

Speciation 

fully 

relaxed, 

extinction 

half and 

half, 

transition 

constrained 

Speciation 

fully 

relaxed, 

extinction 

fully 

constrained, 

transition 

relaxed 

Speciation 

fully 

relaxed, 

extinction 

shift-based, 

transition 

constrained 

S
p

ec
ia

ti
o

n
 r

a
te

s 

Rest of tree, call type 1 0.14626 0.14623 0.14624 0.14625 

Rest of tree, call type 2 0.07679 0.00000 0.00000 0.00000 

Rest of tree, call type 3 0.09153 0.09150 0.09151 0.09151 

Rest of tree, call type 4 0.07679 0.07681 0.07677 0.07678 

Rest of tree, call type 5 0.05619 0.05623 0.05623 0.05626 

Rest of tree, call type 6 0.02110 0.02108 0.02107 0.02109 

Rest of tree, call type 7 0.08589 0.08590 0.08589 0.08589 

Rest of tree, call type 8 0.10044 0.10042 0.10043 0.10043 

Rest of tree, call type 9 0.09558 0.09558 0.09558 0.09558 

Rest of tree, call type 10 0.09798 0.09798 0.09799 0.09798 

Rest of tree, call type 11 0.05610 0.05611 0.05609 0.05609 

Rest of tree, call type 12 0.07835 0.07832 0.07834 0.07834 

Rest of tree, call type 13 0.09200 0.09198 0.09200 0.09199 

Pteropodidae, call type 1 0.11906 0.11917 0.11905 0.11906 

Pteropodidae, call type 2 0.00003 0.00006 0.00000 0.00003 

Stenodermatinae, call type 9 0.25108 0.25103 0.25110 0.25109 

E
x

ti
n

ct
io

n
 r

a
te

s Rest of tree, all call types 0.00001 0.00000 0.00000 0.00000 

Partitions, all call types N/A 0.00000 N/A N/A 

Pteropodidae, call types 1 and 2 N/A N/A N/A 0.00000 

Stenodermatinae, call type 9 N/A N/A N/A 0.00000 

T
ra

n
si

ti
o

n
 r

a
te

s 

Whole tree, all likely 0.00194 0.00194 N/A 0.00194 

Whole tree, all unlikely 0.00194 0.00032 N/A 0.00032 

Rest of tree, all likely N/A N/A 0.00197 N/A 

Rest of tree, all unlikely N/A N/A 0.00032 N/A 

Pteropodidae, all likely N/A N/A 13207.04000 N/A 

Stenodermatinae, all likely N/A N/A 0.00000 N/A 



  Chapter 6  

240 

Table 6.9 (Previous page): The speciation, extinction, and transition rates estimated by the four best 

models, to five decimal places. 

 

Speciation rates vary from negligible to 0.25110 (see Table 6.9 and Figure 6.4). The highest 

rate is found in lineages using call type 9 in the up-shifted clade of Stenodermatinae (67 

species). This Phyllostomidae sub-family (and most other Phyllostomidae species) 

exclusively use call type 9 – a multiharmonic, high bandwidth, short duration call with the 

majority of the energy in the second or third harmonic. The speciation rate in this clade is 

more than twice the speciation rate for lineages using call type 9 in the rest of the tree, 

where an additional 111 species use this call type, or in the split-free tree. 

 

In the other up-shifted clade of 80 species of Pteropodidae, two call types are used. 

Pteropodidae mainly use call type 1 – no echolocation; instead orienting and finding food 

using vision and olfaction, although some Rousettus species also use call type 2 (tongue 

clicking) in caves. The speciation rates show that it is call type 1 (vision) that causes the 

increased speciation rates in the up-shifted Pteropodidae clade, and call type 2 has a 

negligibly increased speciation rate. However, the effect of call type 1 on speciation rate in 

this clade is not as great as in the rest of the tree, where an additional 102 species use this 

call type, or in the split-free tree, as these have higher speciation rates than the up-shifted 

Pteropodidae clade. 

 

The net diversification rate over the whole tree (without partitions) was estimated to be 

0.086482 (with negligible extinction, so equivalent to speciation rate alone), and the 

average speciation rate for all call types over the tree excluding the accelerated clades is 

0.07826. Comparison of the speciation rates for each call type in the split-free tree, the rest 

of the split tree (excluding the up-shifted clades), reveal the impact of call type on 

speciation rate. Behind the very fast speciation rates of call types 1 and 9, five other call 

types show speciation rates faster than the overall speciation rate for the split-free tree, and 

the average speciation rate for the rest of the tree. From fastest to slowest, these call types 

are 8, 10, 13, 3 and 7 (see Figure 6.4). 
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Six call types are slower than the overall speciation rate for the split-free tree, and the 

average speciation rate for the rest of the tree. From fastest to slowest, they are 12, 4, 5, 11, 

6 and 2 (see Figure 6.4). 
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Figure 6.4: Average speciation rates for each call type (over the four best performing models), and speciation rates for all call types over the whole tree. 

Only call types used by each up-shifted clade have a speciation rate, as indicated by model selection. 
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6.5 Discussion 

6.5.1 Location of diversification shifts 

As expected, diversification rates across the bat tree have not been equal, with two clades 

showing a significant increase in diversification rate over the background rate. These up-

shifted clades are the Phyllostomidae sub-family Stenodermatinae (67 species), and a clade 

of 80 species of Pteropodidae. In the two previous studies of diversification rates of bats, 

both Jones et al. (2005) and Purvis et al. (2011) identified a significant up-shift near the 

base of the genus Artibeus (Stenodermatinae: Phyllostomidae), and (Jones et al. 2005) also 

detect a significant up-shift near the base of the Phyllostomidae (in the Teeling et al. (2005) 

topology). These results compare favourably with my finding of an up-shift in the 

Stenodermatinae (Phyllostomidae) sub-family. Jones et al. (2005) also detect three non-

significant shifts within the Pteropodidae (in both topologies) that correspond with the up-

shifted Pteropodidae clade found in my analysis. However, both Jones et al. (2005) and 

Purvis et al. (2011) detect further significant up-shifts in clades within the Rhinolophoidea, 

Noctilionoidea, and Vespertilionoidea, as well as down-shifts in the Noctilionidae and 

Desmodontinae. My analyses did not replicate any of these shifts. 

 

It is likely that the different topology and improved resolution of the new supertree used in 

this analysis compared to that used in the analyses of Jones et al. (2005) and Purvis et al. 

(2011) is responsible for the different findings, as well as the use of a different method, 

although still a whole-tree likelihood-based technique. Using TurboMEDUSA on the bat 

phylogeny tested in Purvis et al. (2011) does not replicate any of their findings either, 

instead detecting a single up-shift near the root of the Hipposideridae. Because of the 

supertree construction process, some unresolved clades are simply gatherings of species for 

which there are no topological data in the sources phylogenies. These unresolved clades 

may have unduly influenced the results all analyses carried out to date, but the improved 

resolution and accuracy of the new bat supertree should increase reliability. 

 

The method used does not take in account extinct taxa not shown on the phylogeny. 

Without the inclusion of these taxa, the results may not accurately reflect the true locations 
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of diversification rate shifts. If extinctions had been included, some clades may not appear 

to have diversified as rapidly as is suggested in the results obtained here. However, Paradis 

(2005) showed no support for simulated random extinction inflating the Type I error rate of 

diversification rate analyses, although extinction has been shown many times to be non-

random (e.g. Purvis et al. 2000). 

 

6.5.2 Diversification shifts and echolocation call types 

Estimating diversification rates for the lineages using each of the 13 call types reveals 

variation in the speciation rate across the bat phylogeny. The split-free tree shows variable 

speciation rates for different echolocation call types (see Table 6.7). Call type 2 (tongue-

clicking) hardly increases the speciation rate at all, whereas call types 1, 3, 7, 8, 9, 10, and 

13 have particularly high speciation rates. These call types each have clear functional roles. 

Call type 1 is the use of vision and olfaction instead of echolocation. Call type 3 is a long 

duration, low frequency, narrowband call that allows bats to search for obstacles and prey 

in open space as the bat can detect larger objects at a distance. Call type 7 is the opposite: a 

short duration, high frequency, broadband call that allows bats to orientate and find food in 

very cluttered forest habitats, as they are able to resolve different sized objects, including 

very small ones, at short distances. Call type 8 lies between call type 3 and 7. It is medium 

duration, bandwidth and frequency, and gives bats great flexibility in exploiting edge space 

habitats, where both long and short distance detection ability is necessary.  Call types 9 and 

10 are both short duration, multiharmonic, broadband calls. Call type 9 places the majority 

of the energy into the second harmonic and call type 10 places the majority of the energy 

into the fundamental harmonic. These calls are extremely flexible and are functionally 

similar to call type 7. Call type 13 is medium duration and contains a narrowband or 

constant frequency portion followed by a broadband down-sweep. Bats using this call type 

have partial Doppler Shift Compensation (DSC; the ability to separate pulse and echo in the 

brain using frequency) which enables them to detect the fluttering wings of their insect prey 

against a still background. The broadband component of their calls also allows these bats to 

operate in extremely cluttered habitats, where they can resolve a large range of size classes. 
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I hypothesised that clades using call types 1, 3, 7, 8, 12 and 13 would be subject to 

increased rates of diversification because of the clear functional role of these call types in 

aiding orientation and prey acquisition in the bats that use them. In the split-free tree, call 

types 1, 8, 13, 3, 7 and 12 had the 1
st
, 3

rd
, 5

th
, 6

th
, 7

th
, and 8

th
 fastest speciation rates 

respectively, whereas in the shift-tree, they were the 1
st
, 2

nd
, 5

th
, 6

th
, 7

th
,and 8

th
 fastest. All 

but call type 12 were faster than the average speciation rate across the tree, validating my 

hypotheses. However, call types 9 and 10 were used by lineages with the 2
nd

 and 4
th

 fastest 

speciation rates in the split-free tree and the 4
th

 and 3
rd

 fastest in the shift tree.  

 

The call types which show much lower speciation rates (2, 4, 5, 6, 11, and 12) are less well 

understood functionally. Call type 2 is the broadband tongue-clicking echolocation used by 

some or all species of the genus Rousettus (Pteropodidae) in their dark cave roost sites. 

Although it had been thought that this call type was somewhat rudimentary (Griffin, 

Novick, & Kornfield 1958), recent experimental evidence suggests that these clicks may 

confer similar functionality to call type 7 (Waters & Vollrath 2003; Yovel, Geva-Sagiv, & 

Ulanovsky 2011). However, it does not appear to have promoted increased diversification 

in the lineages that use it (see Table 6.7), perhaps because its use is limited to orientation in 

caves, and is not employed in food acquisition. Call types 4, 5, 6 and 11 have complex 

structures and little work has been done to understand the functional benefits of these call 

structures. Recently, Lazure & Fenton (2011) found some evidence that Pteronotus 

personatus (which uses call type 11) partially compensated for Doppler shift, which may 

indicate that call type 11 is intermediate between the ancestral call type and call type 12. In 

terms of shape, call types 4, 5, and 6 may all be intermediate forms between the ancestral 

call type (see Chapter 5) and call types 13, 12 and 9, or 10 respectively. Further 

experimental work is essential to understand the functional significance of these call types. 

Call type 12 is a long duration, constant-frequency call that gives bats partial DSC abilities. 

This allows them to precisely distinguish their flying insect prey from an extremely 

cluttered background using the sound modulation caused by the fluttering of the insects’ 

wings. Functionally, this call type is fairly well understood, and of the call types with 

slower rates of speciation than the average, call type 12 is the fastest. It is often said to be a 

particularly ‘sophisticated’ call type (Jones & Teeling 2006; Ma et al. 2008; Neuweiler 
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2003; Russo & Mucedda 2007; Schumm 1991) and either this assumption, or the 

connection between innovative traits and rapid diversification, should be called into 

question as a result of the surprisingly low speciation rate in lineages with call type 12. It is 

possible that the associated costs of using this call type may prevent any increase in 

diversification rate. 

 

Interestingly, call type 1 has the highest speciation rate of all in the whole bat phylogeny. 

Call type 1 is ‘no echolocation call’; instead, the Pteropodidae species in this group use 

excellent night-time vision and olfaction to orientate and forage during dusk and dawn. The 

phylogenetic position of this family has been much debated, and although they were once 

considered to be basal to the rest of the bats (as the sub-family ‘Megachiroptera’ Dobson 

(1875)), molecular phylogenetics now consistently places this family basal to the 

superfamily Rhinolophoidea, splitting the ‘Microchiroptera’ into two (Springer, Teeling, & 

Madsen 2001). This relocation means that either laryngeal echolocation had a single 

evolutionary origin in the ancestor of all bats, and was subsequently lost in the 

Pteropodidae, or that there were two (or more) origins of laryngeal echolocation in the 

lineages leading to the superfamily Rhinolophoidea and to the suborder 

Vespertilioniformes.  

 

Many researchers consider it implausible that, once evolved, echolocation might be lost 

(see Speakman (2001)). However, it has been thought that although the initial single origin 

of echolocation in the proto-bat enabled exploitation of the night sky as a niche, it also 

limited the maximum body size of bats (Jones 1994). For echolocation to be energy 

efficient, calls must be coupled with wing beats and breathing (Speakman & Racey 1991). 

Bats with larger body sizes, and hence larger wings, flap less frequently than their smaller 

counterparts. Limiting the frequency of echolocation calls to time them with wing beats 

would reduce the sensory input to the bat to such an extent that echolocation would become 

functionless (Jones 1994). 

 

I propose that the selective pressure to increase in body size, perhaps in order to travel 

greater distances in search of fruiting and flowering plants, was stronger than the selective 
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pressure to remain small enough to use echolocation. Using olfaction to locate roost sites 

and foraging grounds may have facilitated the transition from echolocation to sophisticated 

night vision. Along with the increase in body size in Pteropodidae, the risk of predation 

from diurnal raptors (thought to be responsible for nocturnality in bats (Rydell & Speakman 

1995)) would have declined, leading to increasingly diurnal behavior in this family, and 

better vision. During the early stages, improved vision would have been useful on moonlit 

nights, and as body size increased and flying in lighter conditions became less dangerous, 

crepuscular, and even diurnal habits would have become possible. This idea is backed up 

by the much more diurnal activity cycle of many members of the Pteropodidae (especially 

those on predator-free islands (see Thomson, Brooke, & Speakman (1998)) when compared 

to other bat families (Speakman 1995), and the evolution of sophisticated vision as the 

primary sensory modality of pteropodids may have been responsible for the increased 

speciation rate seen in the up-shifted Pteropodidae clade. The question remains as to why 

the frugivorous Phyllostomidae have not also succumbed to this selective pressure, though 

their more mixed diets and frequent opportunism may be responsible for restricting them to 

the use of echolocation. The largely frugivorous Stenodermatinae subfamily 

(Phyllostomidae), which has also seen increased speciation rates, is known to use 

echolocation mainly for orientation, and vision and olfaction to locate food sources (Rieger 

& Jakob 1988). This may be indicative that a frugivorous diet means bats are less reliant on 

echolocation, and that vision and olfaction may be becoming increasingly important. 

 

Strikingly, however, the up-shifted Phyllostomidae sub-family Stenodermatinae show the 

highest call type-specific speciation rate. Members of this large taxon use call type 9, which 

gives great flexibility in habitat use and foraging style. They typically consume fruit, 

though many species will also eat insects, pollen, and nectar found on flowers (Giannini & 

Kalko 2004). Of all the Phyllostomidae, the Stenodermatinae are the most heavily reliant 

on fruit. The association of both up-shifted clades with frugivory may be significant, 

though it is worth noting that Mystacina tuberculata, the sole extant species of the 

Mystacinidae family, very occasionally eats fruit within its mainly arthropod-based diet, 

and has not been subjected to rapid diversification. Tellingly, recent work on the 

Phyllostomidae phylogeny by Dumont et al. (2011) also finds a significant up-shift in the 
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Stenodermatinae sub-family. They attribute the increase in diversification rate to these bats’ 

frugivorous diet and the skull morphology that enables this diet. They acknowledge the 

difficulty in labeling the skull morphology a key innovation without also looking at the 

skulls of the other major clade of frugivorous bats, the Pteropodidae. It seems a possibility 

that frugivory is the ‘new niche’ that both phyllostomids in the New World, and 

pteropodids in the Old World, have entered, but it is not clear whether the innovation that 

opened that niche is in common to the two. Of course, it is possible that several innovations 

in different areas combined to open the frugivory niche, such as skull and jaw morphology, 

sensory adaptations, and body size or wing morphology. 

 

It is also interesting to note that call type 9 was found to be the nearest modern call type to 

the ancestral call type reconstructed in the analyses of Chapter 5. If call type 9 enables 

increased diversification, one might expect little modification to the call structure over 

evolutionary time. However, call type 9 may only be selectively advantageous in certain 

environments, leading to the evolution of other call types outside of those environments, 

albeit with a lower diversification rate. Additionally, if an ancestral version of call type 9 

favoured a frugivorous diet, and frugivory was the key innovation promoting increased 

diversification, subsequent dispersal into geographic ranges which cannot support frugivory 

may have selected for alternative call structures, followed by decreases in diversification 

rate. 

 

As there were missing data, I used imputation to predict the discrete call types for some 

species. The imputation method used may not have predicted all missing data accurately, 

particularly as the imputation methods, PhyloPars, used a Brownian Motion structure when 

the phylogeny is known to have evolved according to an Ornstein-Uhlenbeck model. 

However, the most striking results showed that call types 1 and 9 were most clearly 

associated with an increase in diversification rate. The species using these call types belong 

to families in which the vast majority of species use the same call type. This means the 

likelihood of the imputation, and hence the conclusion, being incorrect is very low. With 

regard to the other call types that showed higher diversification rates than average, these 
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also were often found to be used together by members of the same families, so any 

incorrect imputation may not have altered the results considerably. 

 

6.5.3 Echolocation calls as key innovations 

As acknowledged above, although there is a clear link between echolocation call types and 

increased rates of diversification in the bat tree, it is not necessarily the case that the call 

types themselves are key innovations (Cracraft 1990). Instead, the change in diversification 

rate may be due to a related trait, such as, in this case, wing morphology or diet (Aldridge 

& Rautenbach 1987; Norberg & Rayner 1987). The concept of a key innovation was first 

described by Simpson (1953) as a behavioural trait that opened new adaptive zones. Key 

innovations have since been defined in various ways (see Hunter (1998) and Cacho et al. 

(2010)), though all definitions are based on the concept that some traits cause an increase in 

the diversification rate of a taxon (Cacho et al. 2010).  

 

To reiterate, Cacho et al. (2010) suggest that the plausibility of a putative key innovation 

should be assessed using three conditions:  

 

(1) The taxon having the trait has a higher rate of diversification than closely related 

taxa lacking the trait. 

(2) There is a reasonable ecological or functional model to justify a causal link between 

the trait and increased diversity. 

(3) Analogous traits are consistently associated with increased diversification rates. 

 

Taking each of these in turn, I consider the possibility that echolocation call types could 

have been key innovations in the evolutionary history of bats. As described above, 

condition 1 is clearly satisfied by the analyses of the changes in speciation rate associated 

with echolocation call types on the bat phylogeny (see Figure 6.3, Figure 6.4, Table 6.7 and 

Table 6.9). However, unusually, I am considering a series of traits that are not completely 

opposite. Some aspects of traits may be overlapping, such as the high bandwidth formed in 

different ways between call types 7 and 9, and hence lineages not possessing one particular 

call type cannot fully be considered to lack it, as they may have functional aspects of that 
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call type in their own echolocation behaviour. Despite this, a clear difference can be seen in 

the relative diversification rates of different echolocation call types, particularly those that 

have resulted in a significantly up-shifted clade. 

 

Condition 2 is more complex, however, as increased diversity (driven by an increase in 

speciation rate) can only come about as a result of an increase in the likelihood of 

reproductive isolation, as this is necessary for speciation (Dobzhansky 1937; Grant 1963; 

Mayr 1942; Yoder et al. 2010). It is generally accepted that reproductive isolation usually 

occurs as a by-product of allopatric divergence, leading to allopatric speciation (Coyne & 

Orr 2004; Mayr 1942). Similarly to the mechanisms summarised in Purvis et al. (2011) as 

having been proposed to increase a clade’s diversity, I consider there to be three key 

mechanisms leading to increased reproductive isolation in a lineage: the expansion of niche 

space, the expansion of the geographic range, and the promotion of assortative mating. The 

expansion of the geographic range of a lineage is the most likely of these to result in 

allopatric speciation, and in some cases, the expansion of niche space could form a first 

step in expanding the geographic range (Yoder et al. 2010). For example, if wing 

morphology and echolocation call changes allow the exploitation of a new ‘open space’ 

niche, this may give access to a new geographic range. 

 

But since allopatrically-induced reproductive isolation occurs at a relatively slow rate, it is 

likely to considerably limit the rate of speciation (Coyne & Orr 2004). Therefore the role of 

natural selection in bringing about reproductive isolation should be considered, through an 

ecological speciation model. As Yoder et al. (2010) report, a number of ecological means 

have been implicated in the process of ecological speciation including competition (Abrams 

2006; Dieckmann & Doebeli 1999), mutualism (Kiester et al. 1984), predation (Day et al. 

2002), host-parasite interactions (Nuismer 2006), sexual selection (Gavrilets & Waxman 

2002), fluctuating environments (Abrams 2006), and environmental gradients (Doebeli & 

Dieckmann 2003; Slatkin 1973). In order for echolocation call type to bring about non-

allopatric speciation, it is possible that one of these means is responsible. In sympatrically 

occurring populations, assortative mating (sexual selection) as a result of echolocation call 

type or frequency may play a clear role in reinforcing reproductive isolation and bringing 
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about sympatric speciation, such as may have occurred in rhinolophid bats in the Wallacea 

region (Kingston & Rossiter 2004). In this study, it was found that having switched the 

peak echolocation call harmonic (which contains the most energy), three size morphs of the 

same species appear to have restricted communication between the morphs, inducing 

assortative mating and reproductive isolation, despite their sympatric distributions. 

 

Several studies find that speciation in sympatry is unlikely to be responsible for more than a 

minority of speciation events  when compared with allopatric speciation (e.g., Bolnick & 

Fitzpatrick (2007); Phillimore et al. (2008)). It is possible that the harmonic-hopping 

rhinolophids described above represent a special case, due to their specialised auditory 

foveae preventing the detection of morphs calling outside their finely-tuned frequency 

range. Nevertheless, with respect to the mechanisms listed above, I suggest two general 

‘reasonable functional or ecological models’, both allopatric and sympatric, to explain the 

link between echolocation call type and increased rates of speciation.  

 

First, an allopatric model. The evolution of a particular echolocation call type can open up 

new niche space to a lineage that in turn can alter or increase the available geographic range 

it occupies. In doing so, members of that lineage may become disparately distributed with 

much reduced gene flow, and due to forces of genetic drift, or divergent selection, 

reproductive isolation may occur. In addition, changes to echolocation call types are likely 

to be reflected in changes to communication call types (Jones & Siemers 2011; Kingston & 

Rossiter 2004) and reinforcement of population differences through sexual selection and 

assortative mating during any secondary contact will lead to allopatric speciation. This 

model is particularly easy to envisage in relation to call types 1 and 3. Call type 1, as 

discussed earlier, may have enabled the much larger body sizes of lineages using it, and 

consequently a change in niche and geographic range. The evolution of call type 3, 

concurrently with changes in wing morphology, enables the exploitation of open spaces, 

potentially resulting in an increased range as lineages become less dependent on forest 

environments. 
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In the sympatric model, I propose that differences in echolocation call types enable changes 

in niche use that lead to divergent selection. Any increase in niche space provides the 

opportunity for divergent/relaxed selection (Yoder et al. 2010). With the evolution of a new 

call type comes an opening of the frequency range as yet unoccupied by that call type. 

Calling at different frequencies allows the exploitation of different size classes of prey, and 

hence a range of new niches. Again, due to the link between echolocation calls and 

communication calls used to indicate con-specificity, small differences in echolocation call 

type could result in the differentiation of sympatric populations through sexual selection 

and assortative mating, as was observed in the rhinolophid morphs of the Wallacea region 

(Kingston & Rossiter 2004). Call types 7, 8, 9, 10 and 13 seems likely candidates for this 

model, as all have to potential to increase niche space within a forest habitat. 

 

Though echolocation call types can be invoked as a causal factor in speciation, whether 

sympatric or allopatric, there are many other potential causes of increased speciation rates. 

In particular, climate changes and evolutionary events in species that bats depend on, such 

as flowering plants, may be involved. Currently, I am unaware of any significant events in 

the evolution of angiosperms, or in relation to the climate to may be responsible for the 

increases in speciation rates seen in the Stenodermatinae 13 mya or the Pteropodidae 24 

mya. 

 

Cacho et al.'s (2010) third condition is that analogous traits in other taxonomic groups are 

also associated with increased diversification rates. Whilst the analyses contained in this 

thesis chapter do not answer this question empirically, anecdotal consideration of the only 

other animal group known to use echolocation for orientation and to locate prey, the 

Cetacea, suggests that this condition is satisfied. There are 84 species in this order 

altogether, and members of the suborder Odontoceti have evolved the use of echolocation 

(Wilson & Reeder 2005). In species, they outnumber the other suborder, Mysticeti, which 

do not echolocate, 71 to 13. Although these two suborders differ in several morphological 

and behavioural traits, it is possible that echolocation has contributed to the more rapid 

diversification of the Odontoceti. Unfortunately, I do not have the necessary data to assess 

the impacts on diversification rate of different echolocation call types in cetaceans. 
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There are several limitations to the methods used here and to their interpretation. In 

particular, it may be difficult to identify clades that have undergone rapid rates of 

diversification if related clades have also done so. This is especially the case when looking 

at echolocation, as different echolocation call types may be key innovations in their own 

right, and could thereby obscure each other’s evolutionary ‘success’. In addition, the 

current diversity of bats is a snapshot in time, and does not allow us to see the 

consequences of potentially newly evolved call types. There may be some call types that 

have not yet had the opportunity to cause or influence increased rates of diversification in 

the clades that use them. 

 

6.6 Conclusions 

There have been two major up-shifts in the rate of diversification of the taxa in the bat 

phylogeny: one in a large clade of Old World fruit bats (Pteropodidae), and another in the 

New World fruit bat sub-family Stenodermatinae (Phyllostomidae). There is a strong 

association between these up-shifts and the sensory modality/echolocation call type used by 

the two clades (no echolocation, and a multiharmonic, short duration, high bandwidth call, 

respectively). Analysis of speciation rates for all echolocation call types also highlights call 

types 3 (single harmonic, medium duration, narrowband), 7 (single harmonic, very short 

duration, high bandwidth), 8 (single harmonic, short duration, medium bandwidth), 10 

(multi-harmonic, short duration, high bandwidth), and 13 (partial Doppler Shift 

Compensating single harmonic call with a short duration constant frequency portion 

followed by a high bandwidth down-sweep) as causing increased speciation rates. 

 

I suggest that these echolocation call types should be considered key innovations, as they 

satisfy Cacho et al.'s (2010) three conditions. They are associated with increased rates of 

diversification; there is an ecological model explaining the link between the traits and 

increased speciation; and an analogous trait in toothed whales shows a similar pattern of 

diversification. I put forward two mechanisms by which echolocation can influence 

speciation rate. The first, an allopatric model, sees echolocation calls altering niche use and 
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expanded geographic range as a consequence, allowing greater opportunity for divergent 

selection and barriers to gene flow. The second, a sympatric model, suggests that through 

altered niche use, changes to echolocation calls also result in changes in communication 

calls which bring about reproductive isolation through sexual selection and assortative 

mating. 
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7 Chapter 7: General Conclusions 

7.1 The Evolution of Echolocation in Bats 

The overall aim of my thesis was to understand how echolocation originated and evolved in 

bats. It has previously been difficult to understand the evolution of echolocation largely 

because there were not enough species-level data about their echolocation calls, and 

although we are now beginning to understand how echolocation calls work, our 

understanding of how they originated and evolved has been fairly basic. For example, how 

has evolutionary history influenced the variation in echolocation call structures? What kind 

of echolocation call structure did early bats use? And how has echolocation influenced the 

diversification of bats? To address these questions I compiled a large database of 

echolocation call recordings from bats, EchoBank, and constructed a new phylogenetic 

supertree of the bats. These tools enabled me to learn more about the evolutionary history 

of echolocation in bats using phylogenetic comparative methods. 

 

Fundamental to understanding the evolution of echolocation is the question of why pre-bats 

lost vision and developed echolocation at all. Switching from one sensory modality to 

another presents some unique challenges, as evolution is unlikely to take a pathway that 

leaves individuals less fit than their ancestors. This question has already been addressed, 

and some likely selective pressures identified (Rydell & Speakman 1995). Viewing 

morphological and behavioural adaptations as a ‘fitness landscape’ where peaks represent 

trait values that increase fitness, and valleys represent trait values that reduce fitness helps 

us to imagine the difficulty in transitioning from a useful trait, such as vision, to another 

useful trait, such as echolocation, without crossing a valley where neither can be used (see 

Figure 7.1 (a)). Possessing high quality vision at the same time as high quality echolocation 

is unlikely, due to the necessary energy trade-offs and brain-space allocation to process the 

input from these two different sensory modalities (Aiello & Wheeler 1995; Speakman 

2001). 
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To solve the problem of how bats switched from vision to echolocation, we needed to find 

out how the relative heights of the adaptive peaks and valleys might have changed over 

time. If the pre-bat was diurnal (as suggested by Rydell & Speakman (1995)), the use of 

vision would have served it well, and the adaptive peak representing vision would have 

stood proud from the surrounding adaptive landscape of sensory options. However, it is 

thought that bats became nocturnal due to predation by diurnal birds (Rydell & Speakman 

1995). In a nocturnal niche, non-specialist daytime vision would have little selective power 

and the relative height of the ‘vision’ peak would have shrunk, i.e., if the selective pressure 

to become nocturnal (to avoid diurnal predation by birds) was strong enough, the adaptive 

peak for vision would be smaller. Thus, the transition to a new adaptive peak for 

echolocation could involve evolutionary steps that only increased fitness, with no decreases 

(see Figure 7.1 (b)). This way, the route from the adaptive peak for vision to the adaptive 

peak for echolocation is purely uphill in terms of fitness. 

 

 

Figure 7.1: Two hypothetical adaptive landscapes. In (a) although trait B is fitter than trait A, 

populations with trait A cannot evolve to have trait B instead due to the adaptive valley between the 

traits. In (b) the fitness value from possessing trait A has decreased to such a level that evolving to trait 

B instead becomes possible. 

 

Our current understanding is that echolocation evolved because predation by diurnal birds 

pushed bats into a nocturnal niche where vision was not good enough for orientation and 

prey acquisition (Rydell & Speakman 1995). Prior to the work contained in this thesis, our 

ideas of what the echolocation calls of the proto-bat would have been like were purely 

based on supposition (Fenton 1984; Fenton et al. 1995; Jones & Teeling 2006; Pye 1980; 

Schnitzler & Kalko 2001; Schnitzler et al. 2004; Simmons 1979; Simmons et al. 1984; 
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Simmons & Stein 1980; Simmons & Geisler 1998; Simmons et al. 2008; Springer, Teeling, 

& Madsen 2001). Since echolocation is not a morphological trait, it is very unlikely we will 

ever have fossil evidence that can tell us exactly what early bat calls sounded like. There is 

currently debate about whether all early bat fossil species were able to echolocate at all 

(Simmons et al. 2008; Veselka et al. 2010), and the cochleas of early bats reveal very little 

about echolocation call structures (Speakman 2001).  

 

In the absence of further evidence regarding the origin of echolocation in bats, phylogenetic 

comparative methods offer our best means of predicting the structure of the proto-bat’s 

echolocation call. My analyses in Chapter 5 used a number of different techniques to 

estimate the ancestral state of the echolocation call, using both continuous echolocation call 

parameters such as call duration and peak frequency, as well as discrete echolocation call 

types. I also considered evidence from ontogenetic sequences of newborn bats from several 

families, and the typical structure of mammalian communication calls in predicting the 

structure of the echolocation calls of early bats. My analyses and the further evidence 

consistently pointed to a multi-harmonic, short duration, narrowband ancestral call 

structure, which could have developed step-by-step from communication calls. 

 

Over evolutionary time, selective pressures have formed various different echolocation call 

structures, through changes to the duration, bandwidth, and harmonic structure of the call, 

as well as its position on the frequency scale. My analyses showed that these different call 

structures were achieved through relatively simple adjustments to the ancestral call. For 

example, ‘tilting’ the call reduces its duration and increases its bandwidth, which gives the 

bat greater precision in target detection. Alternatively, increasing the duration of the call 

and suppressing the higher harmonics allows the bat to put more energy into a single 

frequency and therefore detect objects at greater distances. Figure 7.2 suggests how, 

through a process of step-by-step change, any of the echolocation calls used by modern bats 

can be produced. The initial call is a simple short duration, narrowband, multiharmonic 

call, which is the basic sound made by a mammalian larynx. In the first step, the call 

develops a ‘peak’ harmonic, which received more energy (and hence volume) than the 
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other harmonics. Next, the call develops curvature, and there are many variations of this, 

some of which are better understood than others.  
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Figure 7.2: A suggested evolutionary pathway from the estimated ancestral echolocation call to each of the call types (numbered 3 – 13 in red) used by 

extant bats. 
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Work is underway to elucidate more about the evolution of the bat cochlea (Davies 2011, 

pers. comm.) and there are now sufficient data available about both echolocation call 

structures and cochlear morphology for an analysis of their relationships to be undertaken. 

In addition, work on the genetics of echolocation holds great potential for revealing the 

evolutionary history of echolocation. Already, two genes involved in echolocation have 

been identified. One, Prestin, codes for a motor protein in the cochlear outer hair cells 

which enables the high-frequency sensitivity and selectivity of the chiropteran auditory 

system (Li et al. 2008). The Prestin gene sequences of echolocating species converge, to 

the exclusion of the non-echolocating Pteropodidae family, indicating some involvement of 

Prestin in the high frequency hearing of echolocators. Another gene implicated in 

echolocation is FoxP2, known already for its involvement in human orofacial control and 

vocalisation. Its extreme diversity in echolocating bats, especially when contrasted with its 

relatively conserved status in non-human mammals, hints at its role in echolocation (Li, 

Wang, et al. 2007). It seems likely the genomics and transcriptomics can reveal further 

insights into the genetics of echolocation, and, potentially, its evolutionary history as well. 

 

Much has been made of the influence of habitat on the structure of echolocation calls 

(Aldridge & Rautenbach 1987; Fenton 1995; Neuweiler 1990; Schnitzler & Kalko 1998, 

2001), and little credit has been given to the constraints of evolution past in dictating 

modern call structures. In Chapter 4 I took a very broad of the variation in echolocation call 

structures across the 19 families of bats. It is clear from the recordings collected from 296 

species in these 19 families that bats have evolved more than one way of tackling the 

different sensory challenges they face in orientating in landscapes, from traversing 

featureless deserts, through crossing mirror-like lakes, to negotiating dense rain-forest, and 

capturing prey, whether that is nectar hidden in a flower, an insect sitting on a leaf, or the 

blood in the ankle of a cow. But habitat or diet type alone is not enough to explain the 

variation in echolocation call types, and it is only in the context of evolutionary pathways 

that the reason for these alternative calls becomes clear. My analyses of phylogenetic and 

spatial signal, and of mode of evolution in Chapter 4 highlight the influence that 

evolutionary history has had on defining echolocation. Regardless of habitat, bats are most 

likely to have the echolocation call type of their phylogenetic neighbours, sharing not only 
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the structure, but also duration and position on the frequency scale. Some features of the 

call are more ecologically pliable and necessarily so for bats to have the required flexibility 

to detect, localise, and identify different objects. For example, the slope of the call shows 

much less phylogenetic signal, as this feature appears to dictate the bat’s distance of focus 

(the point at which ranging errors are minimised) and Doppler tolerance (Jones & 

Holderied 2007). Similarly, the maximum and minimum frequencies of the call respond 

more flexibly to habitat, as they determine the range of size classes the bat can detect. But 

other features, such as harmonic structure, call duration, and bandwidth are determined 

largely by evolutionary history, and most bats are unable to use overall call structures 

radically different from than the ones they inherited. 

 

Figure 7.2 suggests why this may be the case. Again using an adaptive landscape model, 

transitions between many echolocation call types seem unlikely, as any intermediate phase 

would be considerably less fit, or even totally functionless. Once a lineage has travelled 

down one evolutionary route, switching to another becomes impossible without a 

significant change in ecological circumstances. Alongside the evolution of echolocation 

call features comes the evolution of wing morphology and skull morphology, and with that, 

habitat and diet preferences. Echolocation can define niche, and once a new and fruitful 

niche has been entered, diversification follows, using the same echolocation template 

unless selection pressures change. 

 

My final set of analyses, in Chapter 6, look at the impact of echolocation on the 

diversification of bat lineages. Surprisingly, it seems that both the lack of echolocation, and 

a very general echolocation call type, have promoted the highest diversification rates in 

bats. Although it remains extremely likely that the combination of flight and echolocation 

played a key role in allowing bats to become the second most speciose order of mammals 

(Wilson & Reeder 2005) the results of my diversification rates analysis in Chapter 6 

suggest that subsequently, the loss of echolocation may have taken the Pteropodidae to 

another new niche, inaccessible except via an echolocating past. Having accessed the 

nocturnal niche through the use of echolocation, this frugivorous family of bats may have 

been constrained by the body size limitations that echolocation carries. Members of this 
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family are by far the largest of all bats, with the largest individuals measuring up to 1.7m in 

wingspan (Nowak 1999), which prevents them from using echolocation energy-efficiently 

(Jones 1994). My analyses suggest that the Pteropodidae may have lost echolocation in 

favour of larger body sizes, which enables them to re-enter the crepuscular and diurnal 

niches with a much reduced risk of predation by diurnal raptors. 

 

Strikingly, the other clade to have experienced greatly increased diversification rates is the 

mainly frugivorous phyllostomid sub-family, the Stenodermatinae. Although still 

omnivorous to some extent, these 67 species are the most reliant of any phyllostomid group 

on fruit. That the two up-shifted clades of bats are the only two that rely on fruit is 

inescapable, and one recent study attributes the rapid speciation of the Stenodermatinae to 

their skull morphology, and hence their ability to eat predominantly fruit (Dumont et al. 

2011). My analyses showed an extremely high speciation rate for bat lineages using the 

echolocation call type used by these bats (multi-harmonic, short duration and high 

bandwidth), indicating that their echolocation style has allowed them to diversify 

particularly quickly. As this call type is a very general one, giving great flexibility in 

foraging style and habitat use, it’s also possible that the success of the Stenodermatinae is 

down to its echolocation behaviour. However, most other Phyllostomidae species, 

including those that do not eat fruit, use the same call type. Overall, increased 

diversification rates are probably the result of a suite of morphological and behavioural 

adaptations allowing access to new niches and geographic ranges, and promoting 

reproductive isolation between sub-groups. Echolocation is particularly likely to contribute 

to this, due to its connection with communication calls used to confer group membership. 

 

The echolocation call data were split into continuous and discrete forms. The analyses in 

Chapter 4 used continuous data only, whereas Chapter 5 used both discrete and continuous 

data, and Chapter 6 used discrete data only. Each treatment of the data gives different 

information, as the discrete call type cannot be inferred from the continuous data alone, 

since it represents a call ‘shape’. Similarly, not all continuous measures can be inferred 

from the discrete call type data, although it is possible to know something of the range the 

continuous measures might fall into by reviewing the information in Table 4.2. Chapter 4 
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aimed to understand the amount of phylogenetic and spatial signal shown by echolocation 

calls, and to assess the meachanisms of evolution acting on them. Using continuous data 

(measurements of different call parameters) for this allowed separation of different aspects 

of the echolocation calls, thereby giving detailed information about the gradual changes in 

echolocation call structures over evolutionary time. Had discrete call types been explored in 

Chapter 4, they would not have revealed which aspects of call structure are pliable, and 

which are not. Because it was not known how call structures evolve from one call type to 

another, looking in detail at the continuous measures of various call parameters gave a 

more subtle view of call structure change over time. 

 

In Chapter 5, I carried out ancestral reconstruction analyses using both discrete call types 

and continuous measures of call parameters. Using both datasets meant that the different 

reconstructions could be compared. Chapter 6 contained a diversification analysis of 

discrete data only, as call shape is crucial in determining the ecological niche of a bat 

species. When looking for links between diversification rate and echolocation, taking the 

call type as a whole enables any differences in diversification rate to be assessed in the 

context of the bats’ foraging strategy. It is possible to analyse the impact of continuous 

measures of echolocation calls on diversification rate, though it may be more difficult to 

draw biologically meaningful conclusions, as the parameters cannot operate in isolation. 

 

The possibilities for further research into the evolutionary and ecological history of 

echolocation in bats are numerous, especially through combining the bat supertree and 

echolocation database with other data sets, such as those concerning wing morphology, 

cochlear morphology and genetics. In particular, there is potential for uncovering the 

relative timings of the evolution of flight and echolocation, the number of origins of 

echolocation in bats, and the genetic architecture behind high frequency vocalisations, 

hearing, and neural interpretation. New comparative techniques are constantly being 

developed and their reliability and limitations tested. Our understanding of the evolution of 

echolocation has really only just begun. 
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8 Appendices 

8.1 Appendix A: Species list: EchoBank and literature 

Sample sizes for the harmonics, calls, and files measured for each species from EchoBank and the literature. 

Family Species Source 
Main 

harmonic 

Calls of each harmonic (bold shows main 

harmonic for species) Total calls 

measured 

Total files 

measured 
1 2 3 4 5 

All All Both  32356 20626 424 56 2 58940 3565 

Craseonycteridae Craseonycteris thonglongyai EchoBank 2 87 1239 0 0 0 1326 31 

Emballonuridae Balantiopteryx infusca Literature   12    12  

Emballonuridae Balantiopteryx io Literature   46    46  

Emballonuridae Balantiopteryx plicata EchoBank 2 0 37 0 0 0 37 1 

Emballonuridae Centronycteris centralis EchoBank 2 0 66 0 0 0 66 3 

Emballonuridae Centronycteris maximiliani EchoBank 2 0 84 0 0 0 84 10 

Emballonuridae Coleura afra Literature         

Emballonuridae Cormura brevirostris EchoBank 2 0 92 13 0 0 105 9 

Emballonuridae Cyttarops alecto Literature       123  

Emballonuridae Diclidurus albus Literature       36  

Emballonuridae Emballonura dianae EchoBank 2 0 210 1 0 0 211 15 

Emballonuridae Emballonura furax EchoBank 2 8 92 0 0 0 100 6 

Emballonuridae Emballonura monticola EchoBank 2 0 1398 0 0 0 1398 23 

Emballonuridae Peropteryx kappleri Literature       140  

Emballonuridae Peropteryx macrotis EchoBank 2 0 26 0 0 0 26 3 

Emballonuridae Rhynchonycteris naso EchoBank 2 0 299 0 0 0 299 27 
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Family Species Source 
Main 

harmonic 

Calls of each harmonic (bold shows main 

harmonic for species) Total calls 

measured 

Total files 

measured 
1 2 3 4 5 

Emballonuridae Saccolaimus flaviventris Literature         

Emballonuridae Saccolaimus saccolaimus Literature       198  

Emballonuridae Saccopteryx bilineata EchoBank 2 27 244 0 0 0 271 17 

Emballonuridae Saccopteryx leptura EchoBank 2 0 111 0 0 0 111 11 

Emballonuridae Taphozous achates EchoBank 1 5 0 0 0 0 5 1 

Emballonuridae Taphozous georgianus Literature       20  

Emballonuridae Taphozous hilli Literature         

Emballonuridae Taphozous kapalgensis Literature         

Emballonuridae Taphozous mauritianus EchoBank 2 0 156 0 0 0 156 18 

Emballonuridae Taphozous melanopogon EchoBank 2 0 32 14 0 0 46 10 

Emballonuridae Taphozous perforatus EchoBank 2 0 43 0 0 0 43 4 

Emballonuridae Taphozous troughtoni Literature         

Furipteridae Furipterus horrens EchoBank 3 0 0 23 0 0 23 1 

Hipposideridae Asellia tridens EchoBank 2 44 275 0 0 0 319 27 

Hipposideridae Aselliscus stoliczkanus EchoBank 2 2 711 0 0 0 713 11 

Hipposideridae Aselliscus tricuspidatus EchoBank 2 0 177 0 0 0 177 1 

Hipposideridae Cloeotis percivali EchoBank 2 11 35 0 0 0 46 3 

Hipposideridae Coelops frithii Literature         

Hipposideridae Hipposideros armiger EchoBank 2 0 1302 0 0 0 1302 30 

Hipposideridae Hipposideros ater EchoBank 2 0 17 0 0 0 17 1 

Hipposideridae Hipposideros bicolor EchoBank 2 0 318 0 0 0 318 7 

Hipposideridae Hipposideros caffer EchoBank 2 0 570 0 0 0 570 20 

Hipposideridae Hipposideros calcaratus EchoBank 2 0 677 0 0 0 677 12 
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Family Species Source 
Main 

harmonic 

Calls of each harmonic (bold shows main 

harmonic for species) Total calls 

measured 

Total files 

measured 
1 2 3 4 5 

Hipposideridae Hipposideros cervinus EchoBank 2 2 521 0 0 0 523 9 

Hipposideridae Hipposideros cineraceus EchoBank 2 0 896 0 0 0 896 20 

Hipposideridae Hipposideros commersoni EchoBank 2 0 25 0 0 0 25 6 

Hipposideridae Hipposideros diadema EchoBank 2 0 153 0 0 0 153 6 

Hipposideridae Hipposideros fulvus EchoBank 2 0 40 0 0 0 40 7 

Hipposideridae Hipposideros gigas EchoBank 2 0 1 0 0 0 1 1 

Hipposideridae Hipposideros halophyllus EchoBank 2 7 158 0 0 0 165 2 

Hipposideridae Hipposideros inornatus Literature         

Hipposideridae Hipposideros larvatus EchoBank 2 0 1384 0 0 0 1384 30 

Hipposideridae Hipposideros lekaguli EchoBank 2 0 258 0 0 0 258 8 

Hipposideridae Hipposideros lylei EchoBank 2 0 172 0 0 0 172 2 

Hipposideridae Hipposideros maggietaylorae EchoBank 2 154 213 0 0 0 367 2 

Hipposideridae Hipposideros pomona EchoBank 2 0 1259 0 0 0 1259 24 

Hipposideridae Hipposideros pratti EchoBank 2 0 34 0 0 0 34 4 

Hipposideridae Hipposideros ridleyi EchoBank 2 0 50 0 0 0 50 1 

Hipposideridae Hipposideros ruber EchoBank 2 0 61 0 0 0 61 10 

Hipposideridae Hipposideros semoni EchoBank 2 0 15 0 0 0 15 1 

Hipposideridae Hipposideros speoris EchoBank 2 0 243 0 0 0 243 30 

Hipposideridae Hipposideros stenotis Literature         

Hipposideridae Hipposideros turpis EchoBank 2 0 110 0 0 0 110 1 

Hipposideridae Hipposideros vittatus Literature         

Hipposideridae Hipposideros wollastoni EchoBank 2 0 171 0 0 0 171 3 

Hipposideridae Rhinonicteris aurantia Literature         
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Family Species Source 
Main 

harmonic 

Calls of each harmonic (bold shows main 

harmonic for species) Total calls 

measured 

Total files 

measured 
1 2 3 4 5 

Hipposideridae Triaenops furculus EchoBank 2 0 2 0 0 0 2 1 

Hipposideridae Triaenops persicus Literature         

Hipposideridae Triaenops rufus EchoBank 1 14 8 0 0 0 22 4 

Megadermatidae Lavia frons Literature         

Megadermatidae Macroderma gigas EchoBank 3 0 2 4 2 0 8 1 

Megadermatidae Megaderma lyra EchoBank 3 0 29 37 0 0 66 9 

Megadermatidae Megaderma spasma EchoBank 1 36 6 29 0 0 71 11 

Miniopteridae Miniopterus australis EchoBank 1 207 0 0 0 0 207 10 

Miniopteridae Miniopterus fraterculus EchoBank 1 127 0 0 0 0 127 20 

Miniopteridae Miniopterus gleni EchoBank 1 9 0 0 0 0 9 2 

Miniopteridae Miniopterus inflatus Literature         

Miniopteridae Miniopterus manavi EchoBank 1 49 0 0 0 0 49 9 

Miniopteridae Miniopterus natalensis EchoBank 1 513 0 0 0 0 513 28 

Miniopteridae Miniopterus pusillus EchoBank 1 148 0 0 0 0 148 3 

Miniopteridae Miniopterus schreibersii EchoBank 1 601 0 0 0 0 601 31 

Molossidae Chaerephon ansorgei Literature         

Molossidae Chaerephon bivittatus Literature         

Molossidae Chaerephon chapini Literature         

Molossidae Chaerephon jobensis Literature         

Molossidae Chaerephon johorensis EchoBank 1 17 4 0 0 0 21 3 

Molossidae Chaerephon leucogaster EchoBank 1 131 0 0 0 0 131 6 

Molossidae Chaerephon nigeriae Literature         

Molossidae Chaerephon pumilus EchoBank 1 592 0 0 0 0 592 29 
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Family Species Source 
Main 

harmonic 

Calls of each harmonic (bold shows main 

harmonic for species) Total calls 

measured 

Total files 

measured 
1 2 3 4 5 

Molossidae Cheiromeles torquatus EchoBank 1 7 0 0 0 0 7 3 

Molossidae Eumops glaucinus Literature       269  

Molossidae Molossops temminckii Literature         

Molossidae Molossus molossus EchoBank 1 110 0 0 0 0 110 14 

Molossidae Molossus rufus EchoBank 1 5 0 0 0 0 5 1 

Molossidae Mops condylurus EchoBank 1 347 0 0 0 0 347 21 

Molossidae Mops midas Literature         

Molossidae Mops mops EchoBank 1 2 0 0 0 0 2 1 

Molossidae Mops niveiventer EchoBank 1 72 0 0 0 0 72 4 

Molossidae Mormopterus beccarii Literature         

Molossidae Mormopterus jugularis EchoBank 1 10 0 0 0 0 10 2 

Molossidae Mormopterus loriae Literature         

Molossidae Mormopterus norfolkensis Literature         

Molossidae Nyctinomops macrotis Literature       370  

Molossidae Otomops madagascariensis EchoBank 1 23 1 0 0 0 24 6 

Molossidae Otomops martiensseni Literature         

Molossidae Sauromys petrophilus EchoBank 1 130 0 0 0 0 130 21 

Molossidae Tadarida aegyptiaca EchoBank 1 411 0 0 0 0 411 28 

Molossidae Tadarida australis EchoBank 1 166 0 0 0 0 166 3 

Molossidae Tadarida brasiliensis EchoBank 1 9 0 0 0 0 9 5 

Molossidae Tadarida fulminans Literature         

Molossidae Tadarida insignis EchoBank 1 32 0 0 0 0 32 3 

Molossidae Tadarida teniotis EchoBank 1 386 0 0 0 0 386 57 
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Family Species Source 
Main 

harmonic 

Calls of each harmonic (bold shows main 

harmonic for species) Total calls 

measured 

Total files 

measured 
1 2 3 4 5 

Molossidae Tadarida ventralis Literature         

Mormoopidae Mormoops blainvillei Literature  ? ? ?   181 10 

Mormoopidae Pteronotus davyi EchoBank 2 9 141 3 0 0 153 16 

Mormoopidae Pteronotus gymnonotus Literature       11  

Mormoopidae Pteronotus macleayii Literature  ? ? ?   171 4 

Mormoopidae Pteronotus parnellii EchoBank 2 0 194 0 0 0 194 18 

Mormoopidae Pteronotus personatus EchoBank 2 0 16 0 0 0 16 1 

Mormoopidae Pteronotus quadridens Literature  ? ? ?   181 14 

Mystacinidae Mystacina tuberculata EchoBank 2 63 146 6 0 0 215 28 

Myzopodidae Myzopoda aurita EchoBank 1 74 0 0 0 0 74 10 

Natalidae Natalus stramineus EchoBank 2 0 115 0 0 0 115 16 

Natalidae Nyctiellus lepidus Literature         

Noctilioniade Noctilio leporinus EchoBank 1 89 0 0 0 0 89 7 

Noctilionidae Noctilio albiventris Literature         

Nycteridae Nycteris gambiensis EchoBank 3 0 0 56 6 0 62 13 

Nycteridae Nycteris grandis Literature         

Nycteridae Nycteris hispida Literature         

Nycteridae Nycteris macrotis EchoBank 2 0 4 0 0 0 4 2 

Nycteridae Nycteris thebaica EchoBank 3 0 0 15 14 2 31 7 

Nycteridae Nycteris tragata EchoBank 2 0 2 0 0 0 2 1 

Nycteridae Nycteris woodi Literature         

Phyllostomidae Ametrida centurio EchoBank 2 0 1 0 0 0 1 1 

Phyllostomidae Anoura geoffroyi EchoBank 2 2 39 0 0 0 41 8 
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Family Species Source 
Main 

harmonic 

Calls of each harmonic (bold shows main 

harmonic for species) Total calls 

measured 

Total files 

measured 
1 2 3 4 5 

Phyllostomidae Ardops nichollsi EchoBank 1 4 0 0 0 0 4 2 

Phyllostomidae Artibeus cinereus EchoBank 2 0 1 0 0 0 1 1 

Phyllostomidae Artibeus concolor EchoBank 1 3 2 0 0 0 5 1 

Phyllostomidae Artibeus gnomus EchoBank 2 0 3 0 0 0 3 1 

Phyllostomidae Artibeus jamaicensis EchoBank 2 0 67 28 0 0 95 27 

Phyllostomidae Artibeus lituratus EchoBank 2 0 33 2 0 0 35 7 

Phyllostomidae Artibeus obscurus EchoBank 3 0 2 5 0 0 7 3 

Phyllostomidae Artibeus phaeotis EchoBank 2 0 2 0 0 0 2 2 

Phyllostomidae Artibeus toltecus EchoBank 2 0 1 0 0 0 1 1 

Phyllostomidae Artibeus watsoni EchoBank 2 0 2 0 0 0 2 1 

Phyllostomidae Brachyphylla cavernarum EchoBank 1 52 3 0 0 0 55 11 

Phyllostomidae Brachyphylla nana Literature   13    13  

Phyllostomidae Carollia castanea EchoBank 2 0 1 0 0 0 1 1 

Phyllostomidae Carollia perspicillata EchoBank 2 0 21 5 0 0 26 4 

Phyllostomidae Carollia sowelli EchoBank 2 0 2 0 0 0 2 1 

Phyllostomidae Chiroderma improvisum EchoBank 3 0 0 17 0 0 17 2 

Phyllostomidae Chiroderma trinitatum EchoBank 3 0 0 1 0 0 1 1 

Phyllostomidae Chiroderma villosum EchoBank 4 0 0 0 2 0 2 1 

Phyllostomidae Choeronycteris mexicana EchoBank 2 0 4 0 0 0 4 1 

Phyllostomidae Desmodus rotundus EchoBank 2 0 50 18 0 0 68 10 

Phyllostomidae Diaemus youngi EchoBank 2 1 22 2 0 0 25 4 

Phyllostomidae Ectophylla alba EchoBank 3 0 1 23 0 0 24 12 

Phyllostomidae Erophylla bombifrons Literature       5  
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Family Species Source 
Main 

harmonic 

Calls of each harmonic (bold shows main 

harmonic for species) Total calls 

measured 

Total files 

measured 
1 2 3 4 5 

Phyllostomidae Erophylla sezekorni Literature         

Phyllostomidae Glossophaga longirostris Literature    8   8  

Phyllostomidae Glossophaga soricina EchoBank 2 0 14 3 0 0 17 6 

Phyllostomidae Lampronycteris brachyotis EchoBank 3 0 0 1 0 0 1 1 

Phyllostomidae Leptonycteris curasoae EchoBank 1 9 0 0 0 0 9 1 

Phyllostomidae Lionycteris spurrelli EchoBank 2 0 14 0 0 0 14 4 

Phyllostomidae Lonchophylla thomasi EchoBank 3 0 0 6 3 0 9 2 

Phyllostomidae Lophostoma silvicolum EchoBank 2 0 9 1 0 0 10 5 

Phyllostomidae Macrophyllum macrophyllum Literature       >156  

Phyllostomidae Macrotus waterhousii Literature         

Phyllostomidae Micronycteris hirsuta Literature         

Phyllostomidae Micronycteris megalotis Literature         

Phyllostomidae Micronycteris minuta EchoBank 2 1 5 0 0 0 6 2 

Phyllostomidae Mimon crenulatum EchoBank 4 0 0 0 6 0 6 3 

Phyllostomidae Monophyllus plethodon EchoBank 2 12 17 0 0 0 29 9 

Phyllostomidae Phyllonycteris poeyi Literature  88     88  

Phyllostomidae Phyllops falcatus Literature       671  

Phyllostomidae Phyllostomus discolor EchoBank 3 0 6 8 0 0 14 3 

Phyllostomidae Phyllostomus hastatus EchoBank 4 0 0 0 5 0 5 2 

Phyllostomidae Platyrrhinus brachycephalus EchoBank 4 0 0 0 2 0 2 1 

Phyllostomidae Platyrrhinus helleri EchoBank 2 0 3 0 0 0 3 1 

Phyllostomidae Sturnira lilium EchoBank 3 0 13 16 0 0 29 9 

Phyllostomidae Sturnira ludovici EchoBank 2 0 1 0 0 0 1 1 
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Family Species Source 
Main 

harmonic 

Calls of each harmonic (bold shows main 

harmonic for species) Total calls 

measured 

Total files 

measured 
1 2 3 4 5 

Phyllostomidae Sturnira mordax EchoBank 4 0 0 0 5 0 5 3 

Phyllostomidae Sturnira thomasi EchoBank 2 0 6 6 0 0 12 4 

Phyllostomidae Sturnira tildae EchoBank 2 0 1 1 0 0 2 1 

Phyllostomidae Tonatia bidens EchoBank 4 0 0 0 1 0 1 1 

Phyllostomidae Tonatia saurophila Literature         

Phyllostomidae Trachops cirrhosus EchoBank 3 0 36 66 0 0 102 24 

Phyllostomidae Trinycteris nicefori EchoBank 3 0 0 2 0 0 2 1 

Phyllostomidae Uroderma bilobatum EchoBank 4 0 0 0 4 0 4 2 

Phyllostomidae Vampyrodes caraccioli EchoBank 4 0 0 0 6 0 6 2 

Phyllostomidae Vampyrum spectrum Literature         

Pteropodidae Rousettus aegyptiacus Literature       50  

Rhinolophidae Rhinolophus acuminatus EchoBank 2 0 30 0 0 0 30 3 

Rhinolophidae Rhinolophus affinis EchoBank 2 0 175 0 0 0 175 15 

Rhinolophidae Rhinolophus alcyone Literature         

Rhinolophidae Rhinolophus arcuatus Literature         

Rhinolophidae Rhinolophus blasii Literature         

Rhinolophidae Rhinolophus borneensis Literature         

Rhinolophidae Rhinolophus capensis EchoBank 2 0 148 0 0 0 148 24 

Rhinolophidae Rhinolophus clivosus EchoBank 2 0 166 0 0 0 166 28 

Rhinolophidae Rhinolophus coelophyllus EchoBank 2 0 413 0 0 0 413 19 

Rhinolophidae Rhinolophus cornutus EchoBank 2 0 10 0 0 0 10 2 

Rhinolophidae Rhinolophus creaghi Literature         

Rhinolophidae Rhinolophus darlingi EchoBank 2 0 538 0 0 0 538 21 
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Family Species Source 
Main 

harmonic 

Calls of each harmonic (bold shows main 

harmonic for species) Total calls 

measured 

Total files 

measured 
1 2 3 4 5 

Rhinolophidae Rhinolophus deckenii Literature         

Rhinolophidae Rhinolophus denti EchoBank 2 0 100 0 0 0 100 19 

Rhinolophidae Rhinolophus euryale EchoBank 2 0 82 0 0 0 82 12 

Rhinolophidae Rhinolophus euryotis EchoBank 2 0 656 0 0 0 656 12 

Rhinolophidae Rhinolophus ferrumequinum EchoBank 2 0 279 0 0 0 279 26 

Rhinolophidae Rhinolophus fumigatus EchoBank 2 0 11 0 0 0 11 1 

Rhinolophidae Rhinolophus hildebrandtii EchoBank 2 0 163 0 0 0 163 14 

Rhinolophidae Rhinolophus hipposideros EchoBank 2 0 682 0 0 0 682 72 

Rhinolophidae Rhinolophus landeri EchoBank 2 0 2 0 0 0 2 2 

Rhinolophidae Rhinolophus lepidus EchoBank 2 0 19 0 0 0 19 2 

Rhinolophidae Rhinolophus luctus EchoBank 2 0 69 0 0 0 69 2 

Rhinolophidae Rhinolophus macrotis EchoBank 2 0 24 0 0 0 24 3 

Rhinolophidae Rhinolophus malayanus EchoBank 2 0 320 0 0 0 320 13 

Rhinolophidae Rhinolophus marshalli Literature         

Rhinolophidae Rhinolophus megaphyllus EchoBank 2 0 177 0 0 0 177 4 

Rhinolophidae Rhinolophus mehelyi Literature         

Rhinolophidae Rhinolophus monoceros EchoBank 2 0 35 0 0 0 35 18 

Rhinolophidae Rhinolophus paradoxolophus Literature       13  

Rhinolophidae Rhinolophus pearsonii EchoBank 2 0 275 0 0 0 275 8 

Rhinolophidae Rhinolophus philippinensis EchoBank 2 0 15 0 0 0 15 1 

Rhinolophidae Rhinolophus pusillus EchoBank 2 0 58 0 0 0 58 5 

Rhinolophidae Rhinolophus rex EchoBank 2 0 59 0 0 0 59 4 

Rhinolophidae Rhinolophus rouxii Literature       40  
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Family Species Source 
Main 

harmonic 

Calls of each harmonic (bold shows main 

harmonic for species) Total calls 

measured 

Total files 

measured 
1 2 3 4 5 

Rhinolophidae Rhinolophus sedulus EchoBank 2 0 45 0 0 0 45 3 

Rhinolophidae Rhinolophus shameli EchoBank 2 0 209 0 0 0 209 5 

Rhinolophidae Rhinolophus siamensis Literature         

Rhinolophidae Rhinolophus simulator EchoBank 2 0 147 0 0 0 147 7 

Rhinolophidae Rhinolophus sinicus Literature         

Rhinolophidae Rhinolophus stheno EchoBank 2 0 47 0 0 0 47 7 

Rhinolophidae Rhinolophus subrufus Literature         

Rhinolophidae Rhinolophus swinnyi EchoBank 2 0 82 0 0 0 82 30 

Rhinolophidae Rhinolophus thomasi EchoBank 2 0 178 0 0 0 178 9 

Rhinolophidae Rhinolophus trifoliatus EchoBank 2 0 5 0 0 0 5 1 

Rhinolophidae Rhinolophus yunanensis EchoBank 2 0 95 0 0 0 95 4 

Rhinopomatidae Rhinopoma hardwickii EchoBank 2 0 42 0 0 0 42 2 

Rhinopomatidae Rhinopoma microphyllum EchoBank 2 2 23 0 0 0 25 1 

Thyropteridae Thyroptera tricolor EchoBank 1 15 2 4 0 0 21 4 

Vespertilionidae Antrozous pallidus EchoBank 1 26 3 0 0 0 29 3 

Vespertilionidae Arielulus torquatus EchoBank 1 62 0 0 0 0 62 7 

Vespertilionidae Barbastella barbastellus EchoBank 1 355 14 0 0 0 369 25 

Vespertilionidae Barbastella leucomelas EchoBank 1 294 0 0 0 0 294 25 

Vespertilionidae Chalinolobus dwyeri EchoBank 1 4 0 0 0 0 4 1 

Vespertilionidae Chalinolobus gouldii EchoBank 1 13 0 0 0 0 13 11 

Vespertilionidae Chalinolobus morio EchoBank 1 131 0 0 0 0 131 3 

Vespertilionidae Chalinolobus nigrogriseus Literature       30  

Vespertilionidae Chalinolobus picatus Literature         
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Family Species Source 
Main 

harmonic 

Calls of each harmonic (bold shows main 

harmonic for species) Total calls 

measured 

Total files 

measured 
1 2 3 4 5 

Vespertilionidae Chalinolobus tuberculatus EchoBank 1 314 0 0 0 0 314 34 

Vespertilionidae Cistugo lesueuri Literature         

Vespertilionidae Cistugo seabrae EchoBank 1 65 0 0 0 0 65 6 

Vespertilionidae Corynorhinus townsendii EchoBank 1 11 0 0 0 0 11 1 

Vespertilionidae Eptesicus bottae EchoBank 1 130 0 0 0 0 130 21 

Vespertilionidae Eptesicus brasiliensis EchoBank 1 59 0 0 0 0 59 5 

Vespertilionidae Eptesicus furinalis EchoBank 1 169 0 0 0 0 169 13 

Vespertilionidae Eptesicus fuscus EchoBank 1 468 0 0 0 0 468 79 

Vespertilionidae Eptesicus guadeloupensis EchoBank 1 3 0 0 0 0 3 1 

Vespertilionidae Eptesicus hottentotus EchoBank 1 127 0 0 0 0 127 7 

Vespertilionidae Eptesicus nilssonii EchoBank 1 493 0 0 0 0 493 28 

Vespertilionidae Eptesicus serotinus EchoBank 1 1347 0 0 0 0 1347 74 

Vespertilionidae Euderma maculatum Literature       >701  

Vespertilionidae Falsistrellus mackenziei Literature         

Vespertilionidae Falsistrellus tasmaniensis Literature         

Vespertilionidae Glauconycteris variegata EchoBank 1 129 0 0 0 0 129 7 

Vespertilionidae Glischropus tylopus EchoBank 1 30 3 0 0 0 33 4 

Vespertilionidae Hesperoptenus blanfordi Literature  13     13  

Vespertilionidae Hypsugo anchietae EchoBank 1 157 0 0 0 0 157 16 

Vespertilionidae Hypsugo ariel EchoBank 1 3 0 0 0 0 3 1 

Vespertilionidae Hypsugo bodenheimeri EchoBank 1 767 0 0 0 0 767 28 

Vespertilionidae Hypsugo savii EchoBank 1 647 0 0 0 0 647 42 

Vespertilionidae Ia io Literature  4     4  
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Family Species Source 
Main 

harmonic 

Calls of each harmonic (bold shows main 

harmonic for species) Total calls 

measured 

Total files 

measured 
1 2 3 4 5 

Vespertilionidae Idionycteris phyllotis EchoBank 1 9 6 0 0 0 15 2 

Vespertilionidae Kerivoula argentata Literature         

Vespertilionidae Kerivoula hardwickii EchoBank 1 11 0 0 0 0 11 2 

Vespertilionidae Kerivoula intermedia EchoBank 1 23 0 0 0 0 23 4 

Vespertilionidae Kerivoula lanosa EchoBank 1 174 0 0 0 0 174 10 

Vespertilionidae Kerivoula minuta EchoBank 1 1 0 0 0 0 1 1 

Vespertilionidae Kerivoula papillosa EchoBank 1 51 0 0 0 0 51 8 

Vespertilionidae Kerivoula pellucida EchoBank 1 1 0 0 0 0 1 1 

Vespertilionidae Kerivoula picta Literature       74  

Vespertilionidae Laephotis botswanae Literature         

Vespertilionidae Laephotis namibensis Literature         

Vespertilionidae Laephotis wintoni EchoBank 1 4 0 0 0 0 4 1 

Vespertilionidae Lasionycteris noctivagans EchoBank 1 587 0 0 0 0 587 64 

Vespertilionidae Lasiurus borealis EchoBank 1 60 0 0 0 0 60 8 

Vespertilionidae Lasiurus cinereus Literature       296  

Vespertilionidae Lasiurus ega Literature  72     72 5 

Vespertilionidae Lasiurus intermedius EchoBank 1 16 0 0 0 0 16 1 

Vespertilionidae Murina aenea Literature       12  

Vespertilionidae Murina cyclotis Literature       132  

Vespertilionidae Murina florium EchoBank 1 2 0 0 0 0 2 1 

Vespertilionidae Murina hilgendorfi EchoBank 1 57 0 0 0 0 57 15 

Vespertilionidae Murina leucogaster Literature  >220     >220  

Vespertilionidae Murina puta EchoBank 1 41 0 0 0 0 41 7 
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Family Species Source 
Main 

harmonic 

Calls of each harmonic (bold shows main 

harmonic for species) Total calls 

measured 

Total files 

measured 
1 2 3 4 5 

Vespertilionidae Murina suilla EchoBank 1 1 0 0 0 0 1 1 

Vespertilionidae Murina ussuriensis EchoBank 1 153 0 0 0 0 153 21 

Vespertilionidae Myotis adversus Literature       243  

Vespertilionidae Myotis albescens EchoBank 1 2 0 0 0 0 2 1 

Vespertilionidae Myotis alcathoe EchoBank 1 247 0 0 0 0 247 17 

Vespertilionidae Myotis auriculus EchoBank 1 35 0 0 0 0 35 2 

Vespertilionidae Myotis bechsteinii EchoBank 1 254 0 0 0 0 254 22 

Vespertilionidae Myotis blythii EchoBank 1 133 0 0 0 0 133 17 

Vespertilionidae Myotis bocagii EchoBank 1 680 0 0 0 0 680 26 

Vespertilionidae Myotis brandtii EchoBank 1 1009 0 0 0 0 1009 45 

Vespertilionidae Myotis californicus EchoBank 1 17 0 0 0 0 17 2 

Vespertilionidae Myotis capaccinii EchoBank 1 433 0 0 0 0 433 30 

Vespertilionidae Myotis chiloensis Literature         

Vespertilionidae Myotis chinensis EchoBank 1 458 0 0 0 0 458 20 

Vespertilionidae Myotis dasycneme EchoBank 1 124 0 0 0 0 124 23 

Vespertilionidae Myotis daubentonii EchoBank 1 638 0 0 0 0 638 40 

Vespertilionidae Myotis dominicensis EchoBank 1 20 0 0 0 0 20 5 

Vespertilionidae Myotis elegans EchoBank 1 15 0 0 0 0 15 1 

Vespertilionidae Myotis emarginatus EchoBank 1 318 0 0 0 0 318 28 

Vespertilionidae Myotis evotis Literature         

Vespertilionidae Myotis fimbriatus EchoBank 1 19 0 0 0 0 19 2 

Vespertilionidae Myotis formosus EchoBank 1 73 0 0 0 0 73 9 

Vespertilionidae Myotis frater Literature         
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Family Species Source 
Main 

harmonic 

Calls of each harmonic (bold shows main 

harmonic for species) Total calls 

measured 

Total files 

measured 
1 2 3 4 5 

Vespertilionidae Myotis goudoti EchoBank 1 11 0 0 0 0 11 5 

Vespertilionidae Myotis hasseltii EchoBank 1 112 0 0 0 0 112 4 

Vespertilionidae Myotis ikonnikovi EchoBank 1 156 0 0 0 0 156 14 

Vespertilionidae Myotis keaysi EchoBank 1 19 0 0 0 0 19 2 

Vespertilionidae Myotis keenii EchoBank 1 135 0 0 0 0 135 20 

Vespertilionidae Myotis leibii EchoBank 1 44 0 0 0 0 44 12 

Vespertilionidae Myotis longipes EchoBank 1 102 0 0 0 0 102 9 

Vespertilionidae Myotis lucifugus EchoBank 1 257 0 0 0 0 257 30 

Vespertilionidae Myotis macrodactylus EchoBank 1 77 0 0 0 0 77 12 

Vespertilionidae Myotis macropus EchoBank 1 18 0 0 0 0 18 1 

Vespertilionidae Myotis martiniquensis EchoBank 1 79 2 0 0 0 81 7 

Vespertilionidae Myotis moluccarum EchoBank 1 130 0 0 0 0 130 11 

Vespertilionidae Myotis muricola EchoBank 1 130 0 0 0 0 130 2 

Vespertilionidae Myotis myotis EchoBank 1 177 0 0 0 0 177 20 

Vespertilionidae Myotis mystacinus EchoBank 1 806 0 0 0 0 806 46 

Vespertilionidae Myotis nattereri EchoBank 1 1220 0 0 0 0 1220 67 

Vespertilionidae Myotis nigricans EchoBank 1 122 0 0 0 0 122 2 

Vespertilionidae Myotis pequinius Literature       13  

Vespertilionidae Myotis punicus EchoBank 1 41 0 0 0 0 41 6 

Vespertilionidae Myotis ricketti EchoBank 1 104 0 0 0 0 104 11 

Vespertilionidae Myotis riparius EchoBank 1 3 0 0 0 0 3 1 

Vespertilionidae Myotis septentrionalis EchoBank 1 43 0 0 0 0 43 9 

Vespertilionidae Myotis siligorensis EchoBank 1 27 0 0 0 0 27 3 
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Family Species Source 
Main 

harmonic 

Calls of each harmonic (bold shows main 

harmonic for species) Total calls 

measured 

Total files 

measured 
1 2 3 4 5 

Vespertilionidae Myotis thysanodes EchoBank 1 13 0 0 0 0 13 4 

Vespertilionidae Myotis tricolor EchoBank 1 308 0 0 0 0 308 20 

Vespertilionidae Myotis velifer EchoBank 1 27 0 0 0 0 27 3 

Vespertilionidae Myotis volans EchoBank 1 55 0 0 0 0 55 8 

Vespertilionidae Myotis welwitschii EchoBank 1 6 0 0 0 0 6 1 

Vespertilionidae Neoromicia capensis EchoBank 1 391 0 0 0 0 391 25 

Vespertilionidae Neoromicia nanus EchoBank 1 189 0 0 0 0 189 14 

Vespertilionidae Neoromicia somalicus EchoBank 1 173 0 0 0 0 173 10 

Vespertilionidae Neoromicia tenuipinnis Literature         

Vespertilionidae Neoromicia zuluensis EchoBank 1 10 0 0 0 0 10 2 

Vespertilionidae Nyctalus aviator EchoBank 1 5 0 0 0 0 5 1 

Vespertilionidae Nyctalus azoreum Literature         

Vespertilionidae Nyctalus lasiopterus EchoBank 1 337 0 0 0 0 337 24 

Vespertilionidae Nyctalus leisleri EchoBank 1 835 0 0 0 0 835 77 

Vespertilionidae Nyctalus noctula EchoBank 1 460 0 0 0 0 460 47 

Vespertilionidae Nyctalus plancyi EchoBank 1 80 15 0 0 0 95 4 

Vespertilionidae Nycticeinops schlieffeni EchoBank 1 75 0 0 0 0 75 3 

Vespertilionidae Nycticeius cubanus Literature         

Vespertilionidae Nyctophilus arnhemensis Literature       229  

Vespertilionidae Nyctophilus bifax Literature         

Vespertilionidae Nyctophilus geoffroyi EchoBank 1 85 0 0 0 0 85 3 

Vespertilionidae Nyctophilus timoriensis Literature       30  

Vespertilionidae Nyctophilus walkeri Literature         
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Family Species Source 
Main 

harmonic 

Calls of each harmonic (bold shows main 

harmonic for species) Total calls 

measured 

Total files 

measured 
1 2 3 4 5 

Vespertilionidae Otonycteris hemprichii EchoBank 1 8 0 0 0 0 8 1 

Vespertilionidae Phoniscus atrox Literature         

Vespertilionidae Phoniscus jagorii Literature       >42  

Vespertilionidae Phoniscus papuensis Literature       18  

Vespertilionidae Pipistrellus abramus EchoBank 1 72 0 0 0 0 72 7 

Vespertilionidae Pipistrellus adamsi EchoBank 1 16 0 0 0 0 16 1 

Vespertilionidae Pipistrellus hesperidus EchoBank 1 376 0 0 0 0 376 30 

Vespertilionidae Pipistrellus hesperus EchoBank 1 14 0 0 0 0 14 2 

Vespertilionidae Pipistrellus kuhlii EchoBank 1 2364 0 0 0 0 2364 119 

Vespertilionidae Pipistrellus maderensis EchoBank 1 2 0 0 0 0 2 1 

Vespertilionidae Pipistrellus nathusii EchoBank 1 258 0 0 0 0 258 23 

Vespertilionidae Pipistrellus pipistrellus EchoBank 1 1296 0 0 0 0 1296 99 

Vespertilionidae Pipistrellus pygmaeus EchoBank 1 2211 0 0 0 0 2211 104 

Vespertilionidae Pipistrellus rueppellii EchoBank 1 12 0 0 0 0 12 1 

Vespertilionidae Pipistrellus rusticus EchoBank 1 71 0 0 0 0 71 10 

Vespertilionidae Pipistrellus stenopterus EchoBank 1 15 0 0 0 0 15 2 

Vespertilionidae Pipistrellus subflavus EchoBank 1 199 0 0 0 0 199 22 

Vespertilionidae Pipistrellus tenuis Literature         

Vespertilionidae Pipistrellus westralis Literature         

Vespertilionidae Plecotus auritus EchoBank 1 349 45 0 0 0 394 48 

Vespertilionidae Plecotus austriacus EchoBank 1 345 9 0 0 0 354 34 

Vespertilionidae Plecotus kolombatovici EchoBank 1 19 0 0 0 0 19 1 

Vespertilionidae Rhogeessa aeneus EchoBank 1 48 0 0 0 0 48 1 
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Family Species Source 
Main 

harmonic 

Calls of each harmonic (bold shows main 

harmonic for species) Total calls 

measured 

Total files 

measured 
1 2 3 4 5 

Vespertilionidae Rhogeessa io Literature         

Vespertilionidae Rhogeessa tumida EchoBank 1 104 0 0 0 0 104 3 

Vespertilionidae Scoteanax rueppellii Literature         

Vespertilionidae Scotoecus albofuscus EchoBank 1 29 0 0 0 0 29 1 

Vespertilionidae Scotophilus dinganii EchoBank 1 405 0 0 0 0 405 23 

Vespertilionidae Scotophilus leucogaster EchoBank 1 11 0 0 0 0 11 4 

Vespertilionidae Scotophilus nigrita EchoBank 1 77 0 0 0 0 77 6 

Vespertilionidae Scotophilus robustus EchoBank 1 11 0 0 0 0 11 2 

Vespertilionidae Scotophilus viridis EchoBank 1 27 0 0 0 0 27 2 

Vespertilionidae Scotorepens balstoni Literature         

Vespertilionidae Scotorepens greyii EchoBank 1 9 0 0 0 0 9 6 

Vespertilionidae Scotorepens orion Literature         

Vespertilionidae Scotorepens sanborni EchoBank 1 16 0 0 0 0 16 1 

Vespertilionidae Tylonycteris pachypus EchoBank 1 93 0 0 0 0 93 2 

Vespertilionidae Tylonycteris robustula Literature         

Vespertilionidae Vespadelus baverstocki Literature       1920  

Vespertilionidae Vespadelus caurinus Literature         

Vespertilionidae Vespadelus darlingtoni EchoBank 1 22 0 0 0 0 22 1 

Vespertilionidae Vespadelus douglasorum Literature         

Vespertilionidae Vespadelus finlaysoni Literature         

Vespertilionidae Vespadelus pumilus Literature         

Vespertilionidae Vespadelus regulus EchoBank 1 61 0 0 0 0 61 3 

Vespertilionidae Vespadelus troughtoni Literature   50    50  
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Family Species Source 
Main 

harmonic 

Calls of each harmonic (bold shows main 

harmonic for species) Total calls 

measured 

Total files 

measured 
1 2 3 4 5 

Vespertilionidae Vespadelus vulturnus EchoBank 1 215 0 0 0 0 215 9 

Vespertilionidae Vespertilio murinus EchoBank 1 245 0 0 0 0 245 24 

Vespertilionidae Vespertilio sinensis EchoBank 1 10 0 0 0 0 10 2 
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8.2 Appendix B: References for echolocation data from the literature 

Echolocation call data for the following species were collected from the published literature. 

Only call parameters matching those collected from recordings in EchoBank were recorded. 

 

 

Emballonuridae 

Balantiopteryx infusca  Ibanez et al. 2002 

Balantiopteryx io   Ibanez et al. 2002 

Coleura afra    Monadjem et al. 2010 

Cyttarops alecto   Jung, Kalko, & von Helversen 2007 

Diclidurus albus   Jung et al. 2007 

Peropteryx kappleri   Jung et al. 2007 

Saccolaimus flaviventris  Churchill 2010 

Saccolaimus saccolaimus  Pottie et al. 2005 

Taphozous georgianus  Fenton 1982 

Taphozous hilli   Churchill 2010 

Taphozous kapalgensis  Churchill 2010 

Taphozous troughtoni   Churchill 2010 

 

 

Hipposideridae 
Coelops frithii    Zhang et al. 2009 

Hipposideros inornatus  Churchill 2010 

Hipposideros stenotis   Churchill 2010 

Hipposideros vittatus   Monadjem et al. 2010 

Rhinonicteris aurantia  Churchill 2010 

Triaenops persicus   Monadjem et al. 2010 

 

 

Megadermatidae 
Lavia frons     Monadjem et al. 2010 

 

 

Miniopteridae 
Miniopterus inflatus   Monadjem et al. 2010 

 

 

Molossidae 
Chaerephon ansorgei   Monadjem et al. 2010 

Chaerephon bivittatus   Monadjem et al. 2010 

Chaerephon chapini   Monadjem et al. 2010 



Appendices  

284 

 

 

Chaerephon jobensis   Churchill 2010 

Chaerephon nigeriae   Monadjem et al. 2010 

Eumops glaucinus   Mora & Torres 2008 

Molossops temminckii   Guillén-Servent & Ibáñez 2007 

Mops midas    Monadjem et al. 2010 

Mormopterus beccarii   Churchill 2010 

Mormopterus loriae   Churchill 2010 

Mormopterus norfolkensis  Churchill 2010 

Nyctinomops macrotis   Biscardi et al. 2004; Mora & Torres 2008 

Otomops martiensseni   Monadjem et al. 2010 

Tadarida fulminans   Monadjem et al. 2010 

Tadarida ventralis   Monadjem et al. 2010 

 

 

Mormoopidae 
Mormoops blainvillei Jennings & Parsons 2004; MacÍas, Mora, & Garcia 

2006 

Pteronotus gymnonotus  Ibáñez et al. 2000 

Pteronotus macleayii   MacÍas et al. 2006 

Pteronotus quadridens Jennings & Parsons 2004; MacÍas et al. 2006; 

MacÍas, Mora, & Gannon 2003 

 

 

Natalidae 
Nyctiellus lepidus   Murray et al. 2009 

 

 

Noctilionidae 
Noctilio albiventris   Kalko et al. 1998 

 

 

Nycteridae 
Nycteris grandis   Monadjem et al. 2010 

 

 

Phyllostomidae 
Brachyphylla nana   Macias et al. 2006 

Carollia castanea   Thies, Kalko, & Schnitzler 1998 

Erophylla bombifrons   Jennings & Parsons 2004 

Erophylla sezekorni   Murray et al. 2009 

Glossophaga longirostris  Jennings & Parsons 2004 

Lampronycteris brachyotis  Pio et al. 2010 

Macrophyllum macrophyllum  Brinkløv 2009; Weinbeer & Kalko 2007 

Macrotus waterhousii   Murray et al. 2009 

 

 



Appendices  

285 

 

 

Micronycteris hirsute   Pio et al. 2010 

Micronycteris megalotis  Pio et al. 2010 

Phyllonycteris poeyi   Mora & MacÍas 2007 

Phyllops falcatus   MacÍas et al. 2005 

Tonatia saurophila   Pio et al. 2010 

Trinycteris nicefori   Pio et al. 2010 

Vampyrum spectrum   Pio et al. 2010 

 

 

Pteropodidae 
Rousettus aegyptiacus   Holland, Waters, & Rayner 2004 

 

 

Rhinolophidae  
Rhinolophus alcyone   Monadjem et al. 2010 

Rhinolophus arcuatus   Csorba et al. 2003 

Rhinolophus blasii Jacobs, Barclay, & Walker 2007; Papadatou, Butlin, 

& Altringham 2008 

Rhinolophus borneensis  Csorba et al. 2003 

Rhinolophus creaghi   Csorba et al. 2003 

Rhinolophus deckenii   Monadjem et al. 2010 

Rhinolophus marshalli  Zhang et al. 2009 

Rhinolophus mehelyi   Papadatou et al. 2008 

Rhinolophus paradoxolophus Zhao, Zhang, et al. 2003; Zhao, Zuo, et al. 2003 

Rhinolophus rouxii   Feng et al. 2002; Zhao, Zuo, et al. 2003 

Rhinolophus siamensis  Zhang et al. 2009 

Rhinolophus sinicus   Zhang et al. 2009 

Rhinolophus subrufus   Csorba et al. 2003 

 

 

Vespertilionidae  
Chalinolobus nigrogriseus  Fenton 1982 

Chalinolobus picatus   Churchill 2010 

Cistugo lesueuri   Monadjem et al. 2010 

Euderma maculatum   Fullard & Dawson 1997; Obrist 1995 

Falsistrellus mackenziei  Churchill 2010 

Falsistrellus tasmaniensis  Churchill 2010 

Hesperoptenus blanfordi  Kingston et al. 2003 

Ia io     Thabah et al. 2007 

Kerivoula argentata   Monadjem et al. 2010 

Kerivoula picta   Sripathi, Raghuram, & Nathan 2006 

Laephotis botswanae   Monadjem et al. 2010 

Laephotis namibensis   Monadjem et al. 2010 

Lasiurus cinereus   Barclay, Fullard, & Jacobs 1999 
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Lasiurus ega    Rydell et al. 2002 

Murina aenea    Kingston et al. 1999 

Murina cyclotis   Kingston et al. 1999 

Murina leucogaster   Fukui, Agetsuma, & Hill 2004 

Myotis adversus   Pottie et al. 2005 

Myotis chiloensis   Ossa et al. 2010 

Myotis evotis    Faure & Barclay 1994 

Myotis frater    Zhang et al. 2000 

Myotis pequinius   Jones et al. 2006 

Neoromicia tenuipinnis  Monadjem et al. 2010 

Nyctalus azoreum   Dietz, von Helversen, & Nill 2009 

Nycticeius cubanus   Mora & MacÍas 2007 

Nyctophilus arnhemensis  Churchill 2010 

Nyctophilus bifax   Fenton 1982 

Nyctophilus timoriensis  Churchill 2010 

Nyctophilus walker   Churchill 2010 

Phoniscus atrox   Kingston et al. 1999; Thong et al. 2006 

Phoniscus jagorii   Kingston et al. 1999 

Phoniscus papuensis   Churchill 2010 

Pipistrellus tenuis   Churchill 2010 

Pipistrellus westralis   Churchill 2010 

Rhogeessa io    Audet, Engstrom, & Fenton 1993 

Scoteanax rueppellii   Churchill 2010 

Scotorepens balstoni   Churchill 2010 

Scotorepens orion   Churchill 2010 

Tylonycteris robustula  Pottie et al. 2005; Zhang et al. 2007 

Vespadelus baverstocki  Churchill 2010 

Vespadelus caurinus   Churchill 2010 

Vespadelus douglasorum  Churchill 2010 

Vespadelus finlaysoni   Churchill 2010 

Vespadelus pumilus   Fenton 1982 

Vespadelus troughtoni  Churchill 2010 
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8.4 Appendix D: Nodal support for bat supertree 

Reduced Quantitative Support (rQS) index for Chiroptera supertree. Nodes are numbered 

from the base of the tree along the left-hand backbone of the tree until the first tip is 

reached then each clade is coded in the same way always starting at the most basal clade 

and going to the left first. 

 

Node 
Clade 

size 
Status rQS 

Number of 

sources with 

matches 

Number of 

sources with 

mismatches 

Number of 

sources with 

equivocal 

trees 

1 1116 novel 0 0 0 298 

2 365  0.154 57 11 230 

3 186 not contradicted 0.138 41 0 257 

4 169  -0.003 22 23 253 

5 157  -0.017 35 40 223 

6 75  0.037 19 8 271 

7 71  0.013 7 3 288 

8 70  0 1 1 296 

9 69  0.081 26 2 270 

10 5 not contradicted 0.003 1 0 297 

11 2 not contradicted 0.027 8 0 290 

12 3 novel 0 0 0 298 

13 64 not contradicted 0.003 1 0 297 

14 36 not contradicted 0.027 8 0 290 

15 35  0.027 9 1 288 

16 33  0.077 25 2 271 

17 32  0.094 30 2 266 

18 18  0.034 15 5 278 

19 11  0.007 5 3 290 

20 9  0.03 11 2 285 

21 8  -0.013 10 14 274 

22 5  0.023 19 12 267 

23 3  0.027 17 9 272 

24 2  0.003 4 3 291 

25 2  0.003 2 1 295 

26 3  0.013 5 1 292 

27 2  0.01 7 4 287 

28 2  0.02 7 1 290 

29 7  0.007 7 5 286 

30 5 not contradicted 0.034 10 0 288 
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Node 
Clade 

size 
Status rQS 

Number of 

sources with 

matches 

Number of 

sources with 

mismatches 

Number of 

sources with 

equivocal 

trees 

31 4  0.023 9 2 287 

32 3 not contradicted 0.023 7 0 291 

33 2 not contradicted 0.023 7 0 291 

34 2  0 4 4 290 

35 13 not contradicted 0.01 3 0 295 

36 11  0.067 22 2 274 

37 8  0 6 6 286 

38 7  0.037 14 3 281 

39 6 not contradicted 0.01 3 0 295 

40 5 not contradicted 0.03 9 0 289 

41 4 not contradicted 0.01 3 0 295 

42 3 not contradicted 0.01 3 0 295 

43 2 not contradicted 0.01 3 0 295 

44 3  0.027 11 3 284 

45 2 not contradicted 0.007 2 0 296 

46 2 novel 0 0 0 298 

47 2 not contradicted 0.01 3 0 295 

48 28 novel 0 0 0 298 

49 4 not contradicted 0.003 1 0 297 

50 3 novel 0 0 0 298 

51 82  -0.03 7 16 275 

52 80  -0.05 22 37 239 

53 27  0.054 23 7 268 

54 13  0.01 5 2 291 

55 11  0.01 5 2 291 

56 10 not contradicted 0.01 3 0 295 

57 9  0.03 13 4 281 

58 8  0.03 16 7 275 

59 3 not contradicted 0.03 9 0 289 

60 2 not contradicted 0.003 1 0 297 

61 5  0 2 2 294 

62 3 not contradicted 0.013 4 0 294 

63 2 not contradicted 0.013 4 0 294 

64 2  0.007 4 2 292 

65 2 not contradicted 0.003 1 0 297 

66 14  0.06 19 1 278 

67 11  0.05 19 4 275 

68 8 not contradicted 0.003 1 0 297 

69 7 not contradicted 0.06 18 0 280 

70 6  0.003 5 4 289 
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Node 
Clade 

size 
Status rQS 

Number of 

sources with 

matches 

Number of 

sources with 

mismatches 

Number of 

sources with 

equivocal 

trees 

71 5 not contradicted 0.003 1 0 297 

72 2 not contradicted 0.007 2 0 296 

73 3 novel 0 0 0 298 

74 3  0.01 4 1 293 

75 2 not contradicted 0.007 2 0 296 

76 3 not contradicted 0.017 5 0 293 

77 2 not contradicted 0.007 2 0 296 

78 53  -0.084 12 37 249 

79 18  0.081 29 5 264 

80 4  -0.007 1 3 294 

81 3  0 4 4 290 

82 2 not contradicted 0.013 4 0 294 

83 14 not contradicted 0.01 3 0 295 

84 13 not contradicted 0.05 15 0 283 

85 12 not contradicted 0.034 10 0 288 

86 11 not contradicted 0.081 24 0 274 

87 9 not contradicted 0.04 12 0 286 

88 8 not contradicted 0.023 7 0 291 

89 7 not contradicted 0.013 4 0 294 

90 6 not contradicted 0.003 1 0 297 

91 5 novel 0 0 0 298 

92 2  0.03 10 1 287 

93 35  0.07 31 10 257 

94 32  0.044 27 14 257 

95 24  0.097 32 3 263 

96 19  0.003 2 1 295 

97 18 not contradicted 0.01 3 0 295 

98 17 not contradicted 0.087 26 0 272 

99 6  0.003 2 1 295 

100 3 not contradicted 0.01 3 0 295 

101 2 not contradicted 0.003 1 0 297 

102 3  0.013 5 1 292 

103 2 not contradicted 0.003 1 0 297 

104 11  0.003 2 1 295 

105 7 not contradicted 0.003 1 0 297 

106 4 novel 0 0 0 298 

107 4 not contradicted 0.013 4 0 294 

108 3 not contradicted 0.003 1 0 297 

109 2 novel 0 0 0 298 

110 5  0.067 26 6 266 
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Node 
Clade 

size 
Status rQS 

Number of 

sources with 

matches 

Number of 

sources with 

mismatches 

Number of 

sources with 

equivocal 

trees 

111 4  0.01 6 3 289 

112 3  0.007 4 2 292 

113 2  0.02 7 1 290 

114 8  0.013 7 3 288 

115 7 not contradicted 0.06 18 0 280 

116 3 not contradicted 0.027 8 0 290 

117 2 not contradicted 0.02 6 0 292 

118 4 not contradicted 0.003 1 0 297 

119 3 novel 0 0 0 298 

120 3 not contradicted 0.003 1 0 297 

121 2 novel 0 0 0 298 

122 2 not contradicted 0.017 5 0 293 

123 12 not supported -0.01 0 3 295 

124 11  -0.013 10 14 274 

125 9  -0.064 10 29 259 

126 5  0.054 23 7 268 

127 2 not contradicted 0.007 2 0 296 

128 3 not contradicted 0.003 1 0 297 

129 2 novel 0 0 0 298 

130 4  0.003 2 1 295 

131 3  0.05 18 3 277 

132 2 not contradicted 0.007 2 0 296 

133 2 not contradicted 0.003 1 0 297 

134 17 not contradicted 0.007 2 0 296 

135 15 not contradicted 0.087 26 0 272 

136 4 not contradicted 0.007 2 0 296 

137 3  0.067 21 1 276 

138 2  0.013 6 2 290 

139 11  0.013 6 2 290 

140 9 not contradicted 0.003 1 0 297 

141 8 novel 0 0 0 298 

142 2  0.017 8 3 287 

143 2 not contradicted 0.003 1 0 297 

144 179  0.054 23 7 268 

145 174  0.01 4 1 293 

146 163  0.034 20 10 268 

147 158  0.081 28 4 266 

148 81  0.02 10 4 284 

149 73  0.027 9 1 288 

150 67  -0.003 2 3 293 
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Node 
Clade 

size 
Status rQS 

Number of 

sources with 

matches 

Number of 

sources with 

mismatches 

Number of 

sources with 

equivocal 

trees 

151 9  0.003 2 1 295 

152 7  0.003 2 1 295 

153 6  0.003 2 1 295 

154 2 not contradicted 0.01 3 0 295 

155 4 not contradicted 0.003 1 0 297 

156 2 novel 0 0 0 298 

157 2 novel 0 0 0 298 

158 2 novel 0 0 0 298 

159 58  0.01 6 3 289 

160 30  0.003 2 1 295 

161 29  0.01 4 1 293 

162 23  0.013 5 1 292 

163 9 not contradicted 0.01 3 0 295 

164 8 not contradicted 0.01 3 0 295 

165 7 not contradicted 0.013 4 0 294 

166 6 not contradicted 0.013 4 0 294 

167 5 not contradicted 0.01 3 0 295 

168 4 not contradicted 0.01 3 0 295 

169 2 not contradicted 0.013 4 0 294 

170 2 not contradicted 0.01 3 0 295 

171 14 not contradicted 0.013 4 0 294 

172 10  0.007 3 1 294 

173 9 not contradicted 0.01 3 0 295 

174 8  0.007 3 1 294 

175 6 not contradicted 0.01 3 0 295 

176 5 not contradicted 0.01 3 0 295 

177 4  0.007 3 1 294 

178 2 not contradicted 0.01 3 0 295 

179 2 not contradicted 0.007 2 0 296 

180 2 not contradicted 0.01 3 0 295 

181 4 not contradicted 0.01 3 0 295 

182 3 not contradicted 0.01 3 0 295 

183 2 not contradicted 0.01 3 0 295 

184 6 not contradicted 0.01 3 0 295 

185 5 not contradicted 0.007 2 0 296 

186 4 not contradicted 0.01 3 0 295 

187 2 not contradicted 0.01 3 0 295 

188 2 novel 0 0 0 298 

189 28  0.02 8 2 288 

190 27  0.01 5 2 291 
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191 21 not contradicted 0.003 1 0 297 

192 20 novel 0 0 0 298 

193 6 not contradicted 0.01 3 0 295 

194 5 not contradicted 0.01 3 0 295 

195 2 not contradicted 0.01 3 0 295 

196 3 not contradicted 0.01 3 0 295 

197 2 not contradicted 0.01 3 0 295 

198 6  0.003 2 1 295 

199 5 not contradicted 0.01 3 0 295 

200 2 not contradicted 0.01 3 0 295 

201 3 not contradicted 0.01 3 0 295 

202 2 not contradicted 0.01 3 0 295 

203 8  0.01 4 1 293 

204 2 not contradicted 0.013 4 0 294 

205 6  0.003 2 1 295 

206 5 not supported -0.003 0 1 297 

207 4  0.003 2 1 295 

208 3 not contradicted 0.01 3 0 295 

209 2 not contradicted 0.01 3 0 295 

210 77 not contradicted 0.034 10 0 288 

211 73  0.057 18 1 279 

212 29  0.034 11 1 286 

213 17 not contradicted 0.01 3 0 295 

214 2 novel 0 0 0 298 

215 15 not contradicted 0.013 4 0 294 

216 4  0.003 2 1 295 

217 3 not contradicted 0.01 3 0 295 

218 2 novel 0 0 0 298 

219 11  0.013 6 2 290 

220 6 not contradicted 0.01 3 0 295 

221 5 not contradicted 0.01 3 0 295 

222 4 not contradicted 0.01 3 0 295 

223 3 not contradicted 0.027 8 0 290 

224 2  0 2 2 294 

225 5 not contradicted 0.01 3 0 295 

226 4 not contradicted 0.013 4 0 294 

227 2 not contradicted 0.01 3 0 295 

228 2 not contradicted 0.01 3 0 295 

229 12  0.013 7 3 288 

230 11  -0.003 3 4 291 
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231 8 not contradicted 0.013 4 0 294 

232 7 not contradicted 0.01 3 0 295 

233 4 not contradicted 0.013 4 0 294 

234 3 not contradicted 0.01 3 0 295 

235 2 not contradicted 0.01 3 0 295 

236 3 not contradicted 0.01 3 0 295 

237 2 novel 0 0 0 298 

238 3 not contradicted 0.013 4 0 294 

239 2 not contradicted 0.003 1 0 297 

240 26 novel 0 0 0 298 

241 18 not contradicted 0.017 5 0 293 

242 2 not contradicted 0.013 4 0 294 

243 15 not contradicted 0.02 6 0 292 

244 12  -0.007 2 4 292 

245 11  0.007 5 3 290 

246 9 not contradicted 0.007 2 0 296 

247 8  -0.003 2 3 293 

248 3 not contradicted 0.013 4 0 294 

249 2 not contradicted 0.013 4 0 294 

250 5  -0.003 1 2 295 

251 4  0 1 1 296 

252 3  -0.007 2 4 292 

253 2  -0.007 1 3 294 

254 2 not contradicted 0.013 4 0 294 

255 3 not contradicted 0.007 2 0 296 

256 2 not contradicted 0.007 2 0 296 

257 4  0 4 4 290 

258 3 not contradicted 0.013 4 0 294 

259 2 not contradicted 0.01 3 0 295 

260 5 not contradicted 0.02 6 0 292 

261 4  0.007 3 1 294 

262 3 not contradicted 0.007 2 0 296 

263 2  0.003 2 1 295 

264 11 not contradicted 0.003 1 0 297 

265 10 novel 0 0 0 298 

266 5  0 6 6 286 

267 4 not contradicted 0.017 5 0 293 

268 2 not contradicted 0.003 1 0 297 

269 2 not contradicted 0.013 4 0 294 

270 751  0.044 24 11 263 
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271 695  0.01 7 4 287 

272 694  -0.02 16 22 260 

273 179  0.044 18 5 275 

274 177  -0.013 13 17 268 

275 170  0.04 22 10 266 

276 160  0.07 22 1 275 

277 156  -0.013 9 13 276 

278 145  0.013 14 10 274 

279 125  -0.007 4 6 288 

280 120  0.02 15 9 274 

281 81  0.01 9 6 283 

282 70  0.013 7 3 288 

283 67  0.047 18 4 276 

284 53  0.044 17 4 277 

285 27  -0.023 5 12 281 

286 26  0.01 11 8 279 

287 8  0.03 10 1 287 

288 4  0.017 8 3 287 

289 3  0 5 5 288 

290 2  0.003 5 4 289 

291 4  -0.003 2 3 293 

292 3  -0.02 2 8 288 

293 2  0.02 8 2 288 

294 18  0.081 26 2 270 

295 9  0.007 8 6 284 

296 8 not contradicted 0.013 4 0 294 

297 7 not contradicted 0.037 11 0 287 

298 4  0.047 15 1 282 

299 3  0.007 7 5 286 

300 2  0.007 5 3 290 

301 3  0.013 7 3 288 

302 2  0.01 4 1 293 

303 9  0.013 5 1 292 

304 4  0.013 5 1 292 

305 3  0.007 3 1 294 

306 2 not contradicted 0.017 5 0 293 

307 5  0.003 3 2 293 

308 4  0.003 3 2 293 

309 3  0.007 3 1 294 

310 2 not contradicted 0.003 1 0 297 
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311 26  -0.027 6 14 278 

312 13  -0.017 4 9 285 

313 5 not contradicted 0.027 8 0 290 

314 4 not contradicted 0.02 6 0 292 

315 2 not contradicted 0.01 3 0 295 

316 2 not contradicted 0.007 2 0 296 

317 8  -0.017 3 8 287 

318 6  -0.007 2 4 292 

319 5  -0.03 1 10 287 

320 4  0.017 8 3 287 

321 3 not contradicted 0.013 4 0 294 

322 2 not contradicted 0.017 5 0 293 

323 2  0.003 5 4 289 

324 13  -0.003 8 9 281 

325 11  0.037 12 1 285 

326 10 not contradicted 0.013 4 0 294 

327 9 not contradicted 0.023 7 0 291 

328 6 not contradicted 0.007 2 0 296 

329 5 not contradicted 0.01 3 0 295 

330 4 not contradicted 0.017 5 0 293 

331 2 not contradicted 0.01 3 0 295 

332 2 not contradicted 0.007 2 0 296 

333 3 not contradicted 0.007 2 0 296 

334 2  0 3 3 292 

335 2 not contradicted 0.017 5 0 293 

336 14 not contradicted 0.01 3 0 295 

337 12 not contradicted 0.003 1 0 297 

338 11 not contradicted 0.01 3 0 295 

339 10 not contradicted 0.023 7 0 291 

340 5 not contradicted 0.013 4 0 294 

341 2 not contradicted 0.01 3 0 295 

342 3 not contradicted 0.01 3 0 295 

343 2 not contradicted 0.007 2 0 296 

344 5 not contradicted 0.013 4 0 294 

345 3 not contradicted 0.007 2 0 296 

346 2 not contradicted 0.01 3 0 295 

347 2 not contradicted 0.007 2 0 296 

348 3 not contradicted 0.01 3 0 295 

349 2 not contradicted 0.013 4 0 294 

350 11  0.003 4 3 291 
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351 6 not contradicted 0.01 3 0 295 

352 5 not contradicted 0.01 3 0 295 

353 2 not contradicted 0.003 1 0 297 

354 3  0.007 3 1 294 

355 2 not contradicted 0.003 1 0 297 

356 5 not contradicted 0.023 7 0 291 

357 3  0.007 4 2 292 

358 2 not contradicted 0.003 1 0 297 

359 2 not contradicted 0.007 2 0 296 

360 39  0.017 11 6 281 

361 30  0.003 11 10 277 

362 13  0.017 10 5 283 

363 5 not contradicted 0.007 2 0 296 

364 4 not contradicted 0.013 4 0 294 

365 2 not contradicted 0.003 1 0 297 

366 2 not contradicted 0.01 3 0 295 

367 8  0.023 10 3 285 

368 5  0.037 12 1 285 

369 3 not contradicted 0.01 3 0 295 

370 2 not contradicted 0.01 3 0 295 

371 2  0.027 10 2 286 

372 3  0.007 3 1 294 

373 2  0.007 4 2 292 

374 17  -0.01 7 10 281 

375 7  0.017 10 5 283 

376 2 not contradicted 0.01 3 0 295 

377 5 not contradicted 0.034 10 0 288 

378 2 not contradicted 0.007 2 0 296 

379 3 not contradicted 0.007 2 0 296 

380 2 not contradicted 0.003 1 0 297 

381 10  0.02 11 5 282 

382 7  0.01 10 7 281 

383 5 not contradicted 0.017 5 0 293 

384 4  0.003 3 2 293 

385 3  -0.007 1 3 294 

386 2  0.003 3 2 293 

387 2 not contradicted 0.013 4 0 294 

388 3 not contradicted 0.007 2 0 296 

389 2  0.003 2 1 295 

390 9  0.027 9 1 288 
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391 7  0.01 10 7 281 

392 6  0 5 5 288 

393 5  0.003 4 3 291 

394 3 not contradicted 0.01 3 0 295 

395 2 not contradicted 0.01 3 0 295 

396 2 not contradicted 0.02 6 0 292 

397 2  -0.003 1 2 295 

398 5 not contradicted 0.017 5 0 293 

399 3 not contradicted 0.003 1 0 297 

400 2 novel 0 0 0 298 

401 2 not contradicted 0.003 1 0 297 

402 20  0.023 10 3 285 

403 19  -0.027 2 10 286 

404 18  -0.013 4 8 286 

405 2  0.034 11 1 286 

406 16  0.01 9 6 283 

407 5 not contradicted 0.02 6 0 292 

408 3  0.013 5 1 292 

409 2  0.007 3 1 294 

410 2 not contradicted 0.02 6 0 292 

411 11  0.007 6 4 288 

412 9  0.023 9 2 287 

413 4 not contradicted 0.007 2 0 296 

414 2 not contradicted 0.003 1 0 297 

415 2 not contradicted 0.003 1 0 297 

416 5  -0.007 5 7 286 

417 2  0 1 1 296 

418 3 not contradicted 0.013 4 0 294 

419 2 not contradicted 0.01 3 0 295 

420 2 not contradicted 0.02 6 0 292 

421 11  -0.023 3 10 285 

422 10  0.017 8 3 287 

423 9 not contradicted 0.023 7 0 291 

424 6  0.013 5 1 292 

425 4  0 1 1 296 

426 3 not contradicted 0.003 1 0 297 

427 2 novel 0 0 0 298 

428 2 not contradicted 0.007 2 0 296 

429 3  0.01 5 2 291 

430 2 not contradicted 0.01 3 0 295 
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431 4  -0.01 1 4 293 

432 3 not contradicted 0.04 12 0 286 

433 2 not contradicted 0.037 11 0 287 

434 10  0.06 23 5 270 

435 3 not contradicted 0.003 1 0 297 

436 2 not contradicted 0.057 17 0 281 

437 7 not contradicted 0.077 23 0 275 

438 6  0.03 13 4 281 

439 5  0.03 13 4 281 

440 2 not contradicted 0.044 13 0 285 

441 3 not contradicted 0.003 1 0 297 

442 2  0.054 17 1 280 

443 7  -0.003 10 11 277 

444 5  -0.027 3 11 284 

445 2 not contradicted 0.01 3 0 295 

446 3 not contradicted 0.027 8 0 290 

447 2 not contradicted 0.017 5 0 293 

448 2 not contradicted 0.101 30 0 268 

449 2 not contradicted 0.01 3 0 295 

450 515  0.02 11 5 282 

451 507  0.081 35 11 252 

452 408  0 1 1 296 

453 407  0.044 17 4 277 

454 388 not contradicted 0.067 20 0 278 

455 386  0.154 49 3 246 

456 205  0.02 14 8 276 

457 189  -0.084 5 30 263 

458 25  -0.003 2 3 293 

459 12  0.054 17 1 280 

460 2 not contradicted 0.023 7 0 291 

461 10 not contradicted 0.003 1 0 297 

462 8 not contradicted 0.04 12 0 286 

463 6 not contradicted 0.04 12 0 286 

464 4 not contradicted 0.03 9 0 289 

465 3  0.013 7 3 288 

466 2  0.017 8 3 287 

467 2 not contradicted 0.023 7 0 291 

468 2 not contradicted 0.02 6 0 292 

469 2 novel 0 0 0 298 

470 13  0 1 1 296 
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471 12 not contradicted 0.003 1 0 297 

472 7 not contradicted 0.013 4 0 294 

473 6 not contradicted 0.007 2 0 296 

474 5 not contradicted 0.007 2 0 296 

475 4 not contradicted 0.007 2 0 296 

476 2 not contradicted 0.007 2 0 296 

477 2 not contradicted 0.007 2 0 296 

478 5 novel 0 0 0 298 

479 164  0.04 25 13 260 

480 60 not supported -0.007 0 2 296 

481 46  -0.003 2 3 293 

482 42  0.01 4 1 293 

483 40  0 1 1 296 

484 35  0 1 1 296 

485 5 not contradicted 0.003 1 0 297 

486 4 novel 0 0 0 298 

487 30  0.07 22 1 275 

488 27  0.07 22 1 275 

489 17 not contradicted 0.003 1 0 297 

490 16 novel 0 0 0 298 

491 10  0 1 1 296 

492 3 not contradicted 0.007 2 0 296 

493 2 not contradicted 0.007 2 0 296 

494 7 not contradicted 0.003 1 0 297 

495 6 novel 0 0 0 298 

496 3 not contradicted 0.013 4 0 294 

497 2 not contradicted 0.074 22 0 276 

498 5 not contradicted 0.003 1 0 297 

499 2 novel 0 0 0 298 

500 3 novel 0 0 0 298 

501 2  0.007 3 1 294 

502 4 not contradicted 0.003 1 0 297 

503 3 not contradicted 0.003 1 0 297 

504 2 novel 0 0 0 298 

505 14 not contradicted 0.003 1 0 297 

506 2 novel 0 0 0 298 

507 12 not contradicted 0.003 1 0 297 

508 9 novel 0 0 0 298 

509 3 not contradicted 0.007 2 0 296 

510 2 novel 0 0 0 298 
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511 104  0.114 35 1 262 

512 78  0.013 6 2 290 

513 76  0.007 3 1 294 

514 70  0.013 7 3 288 

515 43  0.013 5 1 292 

516 24  0 1 1 296 

517 21  0.003 2 1 295 

518 7 not contradicted 0.007 2 0 296 

519 5 not contradicted 0.003 1 0 297 

520 4 novel 0 0 0 298 

521 2 not contradicted 0.007 2 0 296 

522 14 not supported -0.003 0 1 297 

523 12 not contradicted 0.003 1 0 297 

524 11 not contradicted 0.003 1 0 297 

525 9 novel 0 0 0 298 

526 2 not contradicted 0.007 2 0 296 

527 2 not contradicted 0.007 2 0 296 

528 3 not contradicted 0.007 2 0 296 

529 2 novel 0 0 0 298 

530 19  0.003 2 1 295 

531 16 not contradicted 0.003 1 0 297 

532 13 novel 0 0 0 298 

533 2 novel 0 0 0 298 

534 3 not contradicted 0.007 2 0 296 

535 2 not contradicted 0.007 2 0 296 

536 27  0 1 1 296 

537 21  0.017 6 1 291 

538 20 not supported -0.003 0 1 297 

539 16  0.01 5 2 291 

540 13  0 1 1 296 

541 6 not supported -0.003 0 1 297 

542 5 not contradicted 0.003 1 0 297 

543 4 novel 0 0 0 298 

544 7  0 1 1 296 

545 6  0.007 3 1 294 

546 5  0.007 3 1 294 

547 4 not contradicted 0.003 1 0 297 

548 3 not contradicted 0.003 1 0 297 

549 2 not contradicted 0.007 2 0 296 

550 2 not contradicted 0.007 2 0 296 
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551 4 novel 0 0 0 298 

552 6 not contradicted 0.003 1 0 297 

553 5 novel 0 0 0 298 

554 6  0.003 2 1 295 

555 5 not contradicted 0.003 1 0 297 

556 4 not contradicted 0.003 1 0 297 

557 3 novel 0 0 0 298 

558 2 not contradicted 0.013 4 0 294 

559 26  0 1 1 296 

560 21  0.03 12 3 283 

561 15  0.03 10 1 287 

562 14  -0.01 4 7 287 

563 10 not contradicted 0.007 2 0 296 

564 2 not contradicted 0.003 1 0 297 

565 8 not contradicted 0.02 6 0 292 

566 7 not contradicted 0.003 1 0 297 

567 5 not contradicted 0.02 6 0 292 

568 3 not contradicted 0.01 3 0 295 

569 2 not contradicted 0.007 2 0 296 

570 2 not contradicted 0.007 2 0 296 

571 2 novel 0 0 0 298 

572 4  0.023 9 2 287 

573 2 not contradicted 0.01 3 0 295 

574 2 not contradicted 0.03 9 0 289 

575 6  0 1 1 296 

576 5 not contradicted 0.013 4 0 294 

577 4 not contradicted 0.017 5 0 293 

578 3 not contradicted 0.007 2 0 296 

579 2 not contradicted 0.013 4 0 294 

580 5 not contradicted 0.003 1 0 297 

581 4 novel 0 0 0 298 

582 16  0.02 8 2 288 

583 2 not contradicted 0.023 7 0 291 

584 14  -0.003 2 3 293 

585 13  0.027 13 5 280 

586 3  0.03 10 1 287 

587 2  0.02 8 2 288 

588 10  0.003 6 5 287 

589 2 not contradicted 0.037 11 0 287 

590 8 not contradicted 0.05 15 0 283 
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591 7  0.01 4 1 293 

592 6 not contradicted 0.003 1 0 297 

593 3 novel 0 0 0 298 

594 3  0.003 2 1 295 

595 2 not contradicted 0.01 3 0 295 

596 181  -0.023 3 10 285 

597 145  0.044 17 4 277 

598 42 not contradicted 0.037 11 0 287 

599 19 not contradicted 0.013 4 0 294 

600 2 not contradicted 0.003 1 0 297 

601 17 not contradicted 0.003 1 0 297 

602 16 not contradicted 0.003 1 0 297 

603 10 novel 0 0 0 298 

604 6 not contradicted 0.013 4 0 294 

605 2 not contradicted 0.013 4 0 294 

606 4 not contradicted 0.013 4 0 294 

607 2 not contradicted 0.013 4 0 294 

608 2 not contradicted 0.013 4 0 294 

609 23 not contradicted 0.003 1 0 297 

610 19 not contradicted 0.003 1 0 297 

611 18 not contradicted 0.003 1 0 297 

612 15 novel 0 0 0 298 

613 3 not contradicted 0.013 4 0 294 

614 2 not contradicted 0.017 5 0 293 

615 4 not contradicted 0.003 1 0 297 

616 3 novel 0 0 0 298 

617 103 not contradicted 0.124 37 0 261 

618 31 novel 0 0 0 298 

619 40  -0.02 15 21 262 

620 25  -0.037 10 21 267 

621 19  -0.047 10 24 264 

622 6  -0.057 5 22 271 

623 4  0.02 15 9 274 

624 2  0.06 19 1 278 

625 2 not contradicted 0.003 1 0 297 

626 2 not contradicted 0.007 2 0 296 

627 13  -0.077 6 29 263 

628 4 not contradicted 0.023 7 0 291 

629 3  0.064 28 9 261 

630 2  -0.003 10 11 277 
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631 9  -0.044 3 16 279 

632 8  0.101 31 1 266 

633 3 not contradicted 0.01 3 0 295 

634 2  0.097 30 1 267 

635 5  0.03 15 6 277 

636 4  0.027 21 13 264 

637 3  0.003 2 1 295 

638 2 novel 0 0 0 298 

639 6 not contradicted 0.003 1 0 297 

640 5  0.054 22 6 270 

641 4  0.084 26 1 271 

642 3  0.084 26 1 271 

643 2 not contradicted 0.084 25 0 273 

644 15  -0.034 9 19 270 

645 11  -0.044 8 21 269 

646 9  0.023 17 10 271 

647 8  0.013 6 2 290 

648 7 not contradicted 0.091 27 0 271 

649 3  0.03 10 1 287 

650 2  0.074 23 1 274 

651 4 not contradicted 0.023 7 0 291 

652 3  0.02 8 2 288 

653 2  0.027 9 1 288 

654 2  0.027 17 9 272 

655 4 not contradicted 0.077 23 0 275 

656 3 not contradicted 0.077 23 0 275 

657 2 not contradicted 0.07 21 0 277 

658 32  0.05 24 9 265 

659 20  0.037 20 9 269 

660 19 not contradicted 0.034 10 0 288 

661 18  0.094 35 7 256 

662 13 not contradicted 0.007 2 0 296 

663 12  0.097 30 1 267 

664 5  0.013 5 1 292 

665 4  0.087 28 2 268 

666 3  0.091 28 1 269 

667 2  0.077 26 3 269 

668 7  0.081 27 3 268 

669 5  0.01 5 2 291 

670 3  0.013 5 1 292 
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671 2 not contradicted 0.02 6 0 292 

672 2 not contradicted 0.02 6 0 292 

673 2  0.104 32 1 265 

674 5 not contradicted 0.101 30 0 268 

675 4 not contradicted 0.101 30 0 268 

676 3 not contradicted 0.02 6 0 292 

677 2 not contradicted 0.023 7 0 291 

678 12 not contradicted 0.023 7 0 291 

679 2 not contradicted 0.02 6 0 292 

680 10  0.074 26 4 268 

681 8  0.07 25 4 269 

682 6  -0.007 3 5 290 

683 3 not contradicted 0.02 6 0 292 

684 2 not contradicted 0.02 6 0 292 

685 3  0.013 6 2 290 

686 2 not contradicted 0.02 6 0 292 

687 2  -0.003 3 4 291 

688 2 not contradicted 0.02 6 0 292 

689 36  -0.02 1 7 290 

690 35  -0.003 1 2 295 

691 17 not contradicted 0.013 4 0 294 

692 16  0.007 3 1 294 

693 6 not contradicted 0.007 2 0 296 

694 5 not contradicted 0.007 2 0 296 

695 4 not contradicted 0.013 4 0 294 

696 2  0 2 2 294 

697 2 not contradicted 0.007 2 0 296 

698 10 not contradicted 0.003 1 0 297 

699 6 novel 0 0 0 298 

700 4 not contradicted 0.013 4 0 294 

701 3 not contradicted 0.007 2 0 296 

702 2 not contradicted 0.01 3 0 295 

703 18 not contradicted 0.003 1 0 297 

704 17 novel 0 0 0 298 

705 2 not contradicted 0.067 20 0 278 

706 19 not contradicted 0.003 1 0 297 

707 16 not contradicted 0.05 15 0 283 

708 11  0.02 11 5 282 

709 10 not contradicted 0.034 10 0 288 

710 9 not contradicted 0.017 5 0 293 
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711 8 not contradicted 0.003 1 0 297 

712 7  0.027 11 3 284 

713 3  0.003 3 2 293 

714 2  0.01 6 3 289 

715 4 not contradicted 0.007 2 0 296 

716 3 novel 0 0 0 298 

717 5  0.007 5 3 290 

718 4  -0.003 3 4 291 

719 3  -0.01 2 5 291 

720 2 not contradicted 0.007 2 0 296 

721 3 novel 0 0 0 298 

722 99  0.02 7 1 290 

723 98  0.013 5 1 292 

724 25 not contradicted 0.007 2 0 296 

725 18 not contradicted 0.007 2 0 296 

726 17 not contradicted 0.003 1 0 297 

727 13 novel 0 0 0 298 

728 4 not contradicted 0.007 2 0 296 

729 3 not contradicted 0.007 2 0 296 

730 2 not contradicted 0.007 2 0 296 

731 7 not contradicted 0.007 2 0 296 

732 6 not contradicted 0.003 1 0 297 

733 4 novel 0 0 0 298 

734 2 not contradicted 0.007 2 0 296 

735 73  0.003 2 1 295 

736 16 not supported -0.003 0 1 297 

737 2 novel 0 0 0 298 

738 14 not contradicted 0.013 4 0 294 

739 13 not contradicted 0.003 1 0 297 

740 11 novel 0 0 0 298 

741 2 not contradicted 0.013 4 0 294 

742 57  0.044 15 2 281 

743 48  0.003 6 5 287 

744 20  0.01 8 5 285 

745 9 not contradicted 0.007 2 0 296 

746 5 not contradicted 0.007 2 0 296 

747 4 not contradicted 0.007 2 0 296 

748 2 not contradicted 0.007 2 0 296 

749 2 not contradicted 0.007 2 0 296 

750 4 not contradicted 0.003 1 0 297 
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751 2 not contradicted 0.013 4 0 294 

752 2 not contradicted 0.003 1 0 297 

753 11  0.02 8 2 288 

754 9 not contradicted 0.003 1 0 297 

755 8 not contradicted 0.017 5 0 293 

756 7 not contradicted 0.007 2 0 296 

757 6 not contradicted 0.003 1 0 297 

758 5 novel 0 0 0 298 

759 2 not contradicted 0.003 1 0 297 

760 10  0.007 3 1 294 

761 9 not contradicted 0.003 1 0 297 

762 8 not contradicted 0.003 1 0 297 

763 2 not contradicted 0.003 1 0 297 

764 6 novel 0 0 0 298 

765 4 not contradicted 0.003 1 0 297 

766 2 novel 0 0 0 298 

767 2 novel 0 0 0 298 

768 10 not contradicted 0.003 1 0 297 

769 9 novel 0 0 0 298 

770 2 novel 0 0 0 298 

771 9 not contradicted 0.01 3 0 295 

772 5 novel 0 0 0 298 

773 8 not contradicted 0.023 7 0 291 

774 7 not contradicted 0.044 13 0 285 

775 2 not contradicted 0.023 7 0 291 

776 5 not contradicted 0.023 7 0 291 

777 3 not contradicted 0.003 1 0 297 

778 2 not contradicted 0.02 6 0 292 

779 2  0.017 7 2 289 

780 56  0 9 9 280 

781 51  0.081 25 1 272 

782 33  0.081 25 1 272 

783 21  0.034 15 5 278 

784 13  0.013 9 5 284 

785 8  0 7 7 284 

786 7  0.023 11 4 283 

787 3 not contradicted 0.034 10 0 288 

788 2 not contradicted 0.027 8 0 290 

789 4  0.027 9 1 288 

790 3 not contradicted 0.023 7 0 291 
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Node 
Clade 

size 
Status rQS 

Number of 

sources with 

matches 

Number of 

sources with 

mismatches 

Number of 

sources with 

equivocal 

trees 

791 2  0.027 10 2 286 

792 5 not contradicted 0.03 9 0 289 

793 4 not contradicted 0.027 8 0 290 

794 3 not contradicted 0.03 9 0 289 

795 2 not contradicted 0.027 8 0 290 

796 8  0.02 8 2 288 

797 2 not contradicted 0.02 6 0 292 

798 6  0.01 9 6 283 

799 5 not contradicted 0.03 9 0 289 

800 3 not contradicted 0.003 1 0 297 

801 2 not contradicted 0.027 8 0 290 

802 2  0.034 11 1 286 

803 12  0.007 5 3 290 

804 11  0.027 9 1 288 

805 8  -0.01 2 5 291 

806 7  -0.003 3 4 291 

807 6  -0.007 4 6 288 

808 4 not supported -0.003 0 1 297 

809 3  -0.003 2 3 293 

810 2 not contradicted 0.003 1 0 297 

811 2  0.017 6 1 291 

812 3 not contradicted 0.013 4 0 294 

813 2 not contradicted 0.01 3 0 295 

814 18 not contradicted 0.017 5 0 293 

815 4 not contradicted 0.01 3 0 295 

816 3 not contradicted 0.01 3 0 295 

817 2 novel 0 0 0 298 

818 14 not contradicted 0.017 5 0 293 

819 3 not contradicted 0.003 1 0 297 

820 2 novel 0 0 0 298 

821 11 not contradicted 0.01 3 0 295 

822 10 not contradicted 0.01 3 0 295 

823 9 not contradicted 0.013 4 0 294 

824 4 not contradicted 0.01 3 0 295 

825 2 not contradicted 0.01 3 0 295 

826 2 novel 0 0 0 298 

827 5 not contradicted 0.01 3 0 295 

828 2  0.003 2 1 295 

829 3  0.01 4 1 293 

830 2  0.003 2 1 295 
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Node 
Clade 

size 
Status rQS 

Number of 

sources with 

matches 

Number of 

sources with 

mismatches 

Number of 

sources with 

equivocal 

trees 

831 5 not contradicted 0.007 2 0 296 

832 4 not contradicted 0.02 6 0 292 

833 3 not contradicted 0.007 2 0 296 

834 2 not contradicted 0.01 3 0 295 
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8.5 Appendix E: Fossil calibration dates for supertree 

A compilation of the bat fossil genera used in to date the supertree, as recorded by Eiting (2009) with additional information from 

Eiting (Pers. Comm. 2010). Temporal records of bat genera were tabulated as present (1) or absent (0) in each discrete time interval. 

Sources record the first and last occurrences of each genus (excluding Recent), plus additional intervening occurrences when available 

(non-exhaustive). The midpoints of the oldest stage in which each fossil occurred were used in the supertree dating. Stratigraphic bin 

abbreviations as follows: Eo = Eocene, Oligo = Oligocene, Mio = Miocene, Plio = Pliocene; Ypr = Ypresian, Lut = Lutetian, Bart = 

Bartonian, Pria = Priabonian, Rup = Rupelian, Chat = Chattian, Aqui = Aquitanian, Burd = Burdigalian, Lang = Langhian, Serra = 

Serravallian, Tort = Tortonian, Mes = Messinian, Zan = Zanclean; E = Early, M = Middle, L = Late; Ma = Millions of Years Ago. 

Node is the node to which the fossil belongs, and Calibration node is the node to which the date was applied. 

 

     Eo    Oligo  Mio      Plio 

   Cali-  E M  L E L E  M  L  E 

Family Genus Node bration Date Ypr Lut Bart Pria Rup Chat Aqui Burd Lang Serra Tort Mes Zan 

   node Ma: 55.8 48.6 40.4 37.2 33.9 28.4 23.0 20.4 16.0 13.8 11.6 7.2 5.3 

     Duration (my): 7.2 8.2 3.2 3.3 5.5 5.4 2.6 4.4 2.2 2.2 4.4 1.9 1.7 

Emballonuridae †Tachypteron 783 782 44.5 0 1 0 0 0 0 0 0 0 0 0 0 0 

Emballonuridae †Vespertiliavus 783 782 44.5 0 1 1 1 1 1 0 0 0 0 0 0 0 

Emballonuridae Diclidurus 795 794 12.714 0 0 0 0 0 0 0 0 0 1 1 1 1 

Emballonuridae Saccolaimus 817 816 18.2 0 0 0 0 0 0 0 1 1 1 1 1 1 

Emballonuridae Taphozous 820 816 18.2 0 0 0 0 0 0 0 1 1 1 1 1 1 

Hipposideridae †Palaeophyllophora 150 149 38.8 0 0 1 1 1 1 0 0 0 0 0 0 0 

Hipposideridae Asellia 160 153 18.2 0 0 0 0 0 0 0 1 1 1 1 1 1 

Hipposideridae Hipposideros (151) (150) 38.8 0 0 1 1 1 1 1 1 1 1 1 1 1 
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     Eo    Oligo  Mio      Plio 

   Cali-  E M  L E L E  M  L  E 

Family Genus Node bration Date Ypr Lut Bart Pria Rup Chat Aqui Burd Lang Serra Tort Mes Zan 

   node Ma: 55.8 48.6 40.4 37.2 33.9 28.4 23.0 20.4 16.0 13.8 11.6 7.2 5.3 

     Duration (my): 7.2 8.2 3.2 3.3 5.5 5.4 2.6 4.4 2.2 2.2 4.4 1.9 1.7 

Megadermatidae †Saharaderma 262 148 35.55 0 0 0 1 0 0 0 0 0 0 0 0 0 

Megadermatidae Megaderma 265 264 25.715 0 0 0 0 0 1 1 1 1 1 1 1 1 

Molossidae †Wallia 724 453 38.8 0 0 1 1 0 0 0 0 0 0 0 0 0 

Molossidae Eumops 762 745 12.714 0 0 0 0 0 0 0 0 0 1 1 1 1 

Molossidae Mormopterus 770 745 21.73 0 0 0 0 0 0 1 1 1 1 1 1 1 

Molossidae Tadarida 773 744 35.55 0 0 0 1 1 1 1 1 1 1 1 1 1 

Mystacinidae †Icarops 451 275 18.2 0 0 0 0 0 0 0 1 1 1 0 0 0 

Natalidae †Honrovits 775 452 52.2 1 0 0 0 0 0 0 0 0 0 0 0 0 

Noctilionidae Noctilio 450 445 9.427 0 0 0 0 0 0 0 0 0 0 1 1 1 

Nycteridae †Chibanycteris   31.15 0 0 0 0 1 0 0 0 0 0 0 0 0 

Phyllostomidae †Notonycteris 278 277 12.714 0 0 0 0 0 0 0 0 0 1 0 0 0 

Pteropodidae †Propotto 5 4 18.2 0 0 0 0 0 0 0 1 0 0 0 0 0 

Rhinolophidae Rhinolophus 212 149 35.55 0 0 0 1 1 1 1 1 1 1 1 1 1 

Rhinopomatidae Rhinopoma 269 268 9.427 0 0 0 0 0 0 0 0 0 0 1 1 1 

Thyropteridae Thyroptera 448 446 12.714 0 0 0 0 0 0 0 0 0 1 1 1 1 

Vespertilionidae †Stehlinia 455 454 44.5 0 1 1 1 1 1 0 0 0 0 0 0 0 

Vespertilionidae Antrozous 462 461 12.714 0 0 0 0 0 0 0 0 0 1 1 1 1 

Vespertilionidae Corynorhinus 588 587 6.289 0 0 0 0 0 0 0 0 0 0 0 1 1 

Vespertilionidae Eptesicus (489) (486) 18.2 0 0 0 0 0 0 0 1 1 1 1 1 1 

Vespertilionidae Lasionycteris 691 598 4.466 0 0 0 0 0 0 0 0 0 0 0 0 1 

Vespertilionidae Lasiurus 693 692 9.427 0 0 0 0 0 0 0 0 0 0 1 1 1 

Vespertilionidae Myotis 619 599 25.715 0 0 0 0 0 1 1 1 1 1 1 1 1 

Vespertilionidae Nyctalus 567 565 25.715 0 0 0 0 0 1 1 1 1 1 1 1 1 
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     Eo    Oligo  Mio      Plio 

   Cali-  E M  L E L E  M  L  E 

Family Genus Node bration Date Ypr Lut Bart Pria Rup Chat Aqui Burd Lang Serra Tort Mes Zan 

   node Ma: 55.8 48.6 40.4 37.2 33.9 28.4 23.0 20.4 16.0 13.8 11.6 7.2 5.3 

     Duration (my): 7.2 8.2 3.2 3.3 5.5 5.4 2.6 4.4 2.2 2.2 4.4 1.9 1.7 

Vespertilionidae Plecotus 592 590 12.714 0 0 0 0 0 0 0 0 0 1 1 1 1 

Vespertilionidae Scotophilus 473 472 12.714 0 0 0 0 0 0 0 0 0 1 1 1 1 

Vespertilionidae Vespertilio 560 514 12.714 0 0 0 0 0 0 0 0 0 1 1 1 1 
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8.6 Appendix F: Species list: Analyses 

Sample sizes for each parameter used in the analyses shown in Chapters 4, 5, and 6. 

Family Species 

Species sets for each parameter 
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 Measured 

n = 

333 

n = 

366 

n = 

376 

n = 

393 

n = 

408 

n = 

291 

n = 

354 

n = 

355 

n = 

408 

n = 

291 

 Assumed 

n = 

308 n = 0 n = 0 n = 0 n = 0 n = 0 n = 0 n = 0 n = 0 n = 0 

 Imputed 

n = 

466 

n = 

552 

n = 

542 

n = 

525 

n = 

510 

n = 

627 

n = 

564 

n = 

563 

n = 

510 

n = 

627 

 Total 

n = 

1105 

n = 

918 

n = 

918 

n = 

918 

n = 

918 

n = 

918 

n = 

918 

n = 

918 

n = 

918 

n = 

918 

Craseonycteridae Craseonycteris thonglongyai  6 6.64 1.96 3.48 78.17 0.82 78.32 71.67 78.17 0.92 

Emballonuridae Balantiopteryx infusca  4 6 9.05 6.70 56.00 0.02 57.73 51.16 56.00 0.35 

Emballonuridae Balantiopteryx io  4 4.00 3.97 7.80 49.00 0.72 50.18 46.02 49.00 0.41 

Emballonuridae Balantiopteryx plicata  4 6.66 6.57 4.93 40.57 0.70 41.97 35.42 40.57 0.94 

Emballonuridae Centronycteris centralis  6 6.76 14.20 5.97 43.68 0.29 43.68 36.92 42.71 0.28 

Emballonuridae Centronycteris maximiliani  6 6.10 23 5.29 41.42 0.25 41.42 35.37 40.80 0.26 

Emballonuridae Coleura afra  4 2.40 10.68 7.70 32.90 0.78 31.98 30.30 32.90 0.55 

Emballonuridae Coleura seychellensis  4 3.84 10.64 6.09 34.85 0.31 35.58 31.63 34.47 0.01 

Emballonuridae Cormura brevirostris  6 2.96 9.26 10.80 29.38 0.21 30.09 27.33 29.38 0.15 

Emballonuridae Cyttarops alecto  6 3.45 5.30 9.80 36.00 0.91 37.45 33.38 36.00 0.69 
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Family Species 

Species sets for each parameter 
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Emballonuridae Diclidurus albus  4 1.44 16.56 9.60 24.00 0.89 21.21 22.09 24.00 0.79 

Emballonuridae Diclidurus ingens  4 1.56 12.30 9.78 24.51 0.88 22.01 22.60 24.73 0.77 

Emballonuridae Diclidurus isabellus  4 2.02 12.61 9.40 26.52 0.83 24.95 24.43 26.71 0.68 

Emballonuridae Diclidurus scutatus  4 1.82 13.62 9.59 25.61 0.85 23.62 23.59 25.82 0.72 

Emballonuridae Emballonura alecto  6 5.72 5.25 4.85 50.10 0.37 52.10 45.60 48.52 0.79 

Emballonuridae Emballonura atrata  6 8.86 4.55 4.20 51.57 1.51 58.55 46.81 51.16 2.09 

Emballonuridae Emballonura beccarii  4 12.75 4.31 3.45 54.65 3.36 66.98 49.70 55.76 4.03 

Emballonuridae Emballonura dianae  4 8.38 13.21 3.13 35.78 2.46 35.78 27.50 32.36 2.50 

Emballonuridae Emballonura furax  4 13.09 15.94 3.08 35.36 3.91 48.70 35.36 41.90 4.13 

Emballonuridae Emballonura monticola  6 4.15 5.35 5.68 51.01 0.24 51.01 46.75 50.76 0.25 

Emballonuridae Emballonura raffrayana  4 6.11 5.61 4.91 43.16 0.47 46.91 39.06 42.56 0.92 

Emballonuridae Emballonura semicaudata  6 8.80 6.29 4.41 47.18 1.57 54.80 42.86 47.32 2.09 

Emballonuridae Emballonura serii  4 11.15 7.09 3.82 47.13 2.85 58.25 42.86 48.42 3.38 

Emballonuridae Mosia nigrescens  4 11.69 3.33 3.82 60.58 2.35 70.22 55.15 60.22 3.10 

Emballonuridae Peropteryx kappleri  4 2.53 9.85 9.60 32.00 0.76 31.48 29.61 32.00 0.58 

Emballonuridae Peropteryx leucoptera  4 3.37 12.80 8.00 32.20 0.42 32.74 29.46 32.23 0.22 

Emballonuridae Peropteryx macrotis  4 3.90 5.68 5.63 37.35 0.30 38.34 34.31 37.35 0.48 

Emballonuridae Peropteryx trinitatis  4 4.71 4.19 6.46 42.18 0.04 44.60 38.82 41.55 0.30 

Emballonuridae Rhynchonycteris naso  13 17.60 4.14 4.25 98.88 0.35 98.88 81.25 89.69 1.11 

Emballonuridae Saccolaimus flaviventris  3 6 45.25 19 19 0.87 25 19 19 0.65 
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Family Species 

Species sets for each parameter 
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Emballonuridae Saccolaimus mixtus  3 4.91 38.29 13.09 21.41 0.74 24.43 20.17 22.33 0.52 

Emballonuridae Saccolaimus peli  3 3.57 53.35 12.38 20.01 0.70 20.64 18.82 20.76 0.55 

Emballonuridae Saccolaimus saccolaimus  3 3.59 43.00 12.2 23 0.77 24 22.00 23 0.59 

Emballonuridae Saccopteryx antioquensis  5 6.96 6.27 5.89 56.83 0.29 59.69 51.32 54.98 0.68 

Emballonuridae Saccopteryx bilineata  5 3.71 8.08 8.27 46.35 0.17 46.35 42.62 45.76 0.10 

Emballonuridae Saccopteryx canescens  5 8.66 3.41 5.16 68.72 0.69 71.20 62.05 65.96 1.22 

Emballonuridae Saccopteryx gymnura  5 7.06 6.11 5.84 57.51 0.32 60.39 51.94 55.65 0.71 

Emballonuridae Saccopteryx leptura  5 3.56 7.20 6.93 50.12 0.26 50.12 46.55 49.54 0.17 

Emballonuridae Taphozous achates  3 0.49 28.93 8.98 23.21 0.20 23.37 22.93 23.21 0.05 

Emballonuridae Taphozous australis  3 1.72 33.15 11.62 21.05 0.92 20.45 20.07 21.59 0.86 

Emballonuridae Taphozous georgianus  3 1.28 30.52 12.97 17 0.97 18 16 17 0.95 

Emballonuridae Taphozous hamiltoni  4 2.92 39.15 8.89 22.42 0.08 22.96 21.18 23.01 0.08 

Emballonuridae Taphozous hildegardeae  3 2.90 29.37 9.07 25.15 0.10 26.00 23.86 25.36 0.06 

Emballonuridae Taphozous hilli  3 1.00 21.99 10 27.50 0.87 28 27 27.50 0.80 

Emballonuridae Taphozous kapalgensis  3 1.5 26.45 5.00 24.00 1.17 25 23.5 24.00 0.78 

Emballonuridae Taphozous longimanus  3 5.07 25.11 7.74 27.33 0.40 32.07 25.76 28.19 0.49 

Emballonuridae Taphozous mauritianus  3 2.09 27.97 13.27 25.29 0.15 26.23 24.08 25.29 0.21 

Emballonuridae Taphozous melanopogon  4 8.05 25.99 4.06 29.11 0.84 32.08 24.19 29.11 1.21 

Emballonuridae Taphozous nudiventris  3 2.15 32.49 7.77 23.41 0.30 22.99 22.38 23.67 0.16 

Emballonuridae Taphozous perforatus  3 7.09 24.43 7.10 27.78 0.72 34.96 27.78 31.38 0.93 
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Family Species 

Species sets for each parameter 
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Emballonuridae Taphozous theobaldi  4 3.15 36.83 8.81 22.99 0.06 24.02 21.69 23.62 0.05 

Emballonuridae Taphozous troughtoni  3 2.00 53.52 13.00 22.00 0.89 23 21.00 22.00 0.84 

Furipteridae Amorphochilus schnablii  7 44.19 7.20 2.85 111.39 10.19 138.53 93.41 117.68 12.55 

Furipteridae Furipterus horrens  7 54.39 3.15 2.74 189.32 12.17 189.32 134.58 162.68 15.47 

Hipposideridae Anthops ornatus  13 10.21 17.94 8.51 67.29 0.01 74.06 58.56 66.75 0.20 

Hipposideridae Asellia patrizii  13 18.81 8.72 6.48 111.16 0.65 114.06 94.92 109.84 1.29 

Hipposideridae Asellia tridens  13 21.46 12.94 5.57 117.46 0.39 117.46 96.09 114.22 1.22 

Hipposideridae Aselliscus stoliczkanus  13 13.34 6.09 3.55 127.61 0.19 127.61 114.25 127.19 0.17 

Hipposideridae Aselliscus tricuspidatus  13 12.81 4.08 3.31 112.99 0.08 112.99 100.10 112.82 0.20 

Hipposideridae Cloeotis percivali  13 20.74 4.16 2.67 209.38 0.29 209.38 188.91 209.31 0.18 

Hipposideridae Coelops frithii  13 17.40 7.52 5.51 141.00 0.59 137.12 122.98 141.00 0.23 

Hipposideridae Coelops robinsoni  13 18.22 6.50 5.33 145.04 0.51 141.13 127.61 147.23 0.11 

Hipposideridae Hipposideros abae  13 13.98 31.87 9.26 82.93 0.52 95.32 70.74 84.86 0.35 

Hipposideridae Hipposideros armiger  13 8.24 49.99 8.87 67.16 0.06 67.16 58.89 67.07 0.08 

Hipposideridae Hipposideros ater  13 11.88 5.86 4.72 165.51 0.15 165.51 153.14 165.40 0.11 

Hipposideridae Hipposideros beatus  13 20.65 6.70 6.46 139.07 0.31 136.89 118.99 139.21 0.78 

Hipposideridae Hipposideros bicolor  13 20.06 8.39 5.51 143.48 0.07 143.48 123.31 142.18 0.04 

Hipposideridae Hipposideros breviceps  13 10.85 13.21 7.82 96.45 0.35 94.09 85.29 93.41 0.09 

Hipposideridae Hipposideros caffer  13 18.94 9.46 7.38 139.51 0.09 139.51 120.60 139.32 0.07 

Hipposideridae Hipposideros calcaratus  13 25.26 18.99 4.72 120.35 0.07 120.35 95.00 112.71 0.19 
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Family Species 

Species sets for each parameter 
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Hipposideridae Hipposideros camerunensis  13 5.30 58.98 14.75 57.51 0.66 60.11 50.91 56.77 0.76 

Hipposideridae Hipposideros cervinus  13 19.86 8.51 4.48 131.27 0.51 131.27 111.46 130.37 0.45 

Hipposideridae Hipposideros cineraceus  13 18.83 3.84 4.85 153.82 0.17 153.82 134.92 153.59 0.06 

Hipposideridae Hipposideros commersoni  13 11.57 89.99 9.94 66.94 0.06 66.94 55.32 66.43 0.05 

Hipposideridae Hipposideros coronatus  13 10.46 15.00 8.03 92.85 0.40 91.36 82.11 90.11 0.16 

Hipposideridae Hipposideros corynophyllus  13 13.06 15.07 7.46 102.72 0.19 101.81 90.11 100.79 0.12 

Hipposideridae Hipposideros coxi  13 9.35 21.82 8.68 83.10 0.54 83.56 73.41 80.96 0.36 

Hipposideridae Hipposideros crumeniferus  13 9.35 21.82 8.68 83.10 0.54 83.56 73.41 80.96 0.36 

Hipposideridae Hipposideros curtus  13 11.49 13.21 7.64 77.17 0.26 82.96 67.29 75.94 0.56 

Hipposideridae Hipposideros cyclops  13 5.43 32.92 15.86 78.26 0.94 75.53 70.18 75.19 0.95 

Hipposideridae Hipposideros demissus  13 9.39 21.52 8.65 83.43 0.54 83.83 73.70 81.29 0.35 

Hipposideridae Hipposideros diadema  13 8.89 46.90 11.12 60.19 0.09 60.19 51.27 59.98 0.04 

Hipposideridae Hipposideros dinops  13 6.46 116.08 11.55 48.57 0.39 51.45 41.68 48.28 0.44 

Hipposideridae Hipposideros doriae  13 18.46 4.24 5.91 152.32 0.31 142.80 132.95 151.56 0.63 

Hipposideridae Hipposideros durgadasi  13 9.39 21.52 8.65 83.43 0.54 83.83 73.70 81.29 0.35 

Hipposideridae Hipposideros dyacorum  13 18.87 10.09 7.06 122.36 0.06 125.89 104.58 123.10 0.45 

Hipposideridae Hipposideros edwardshilli  13 9.39 21.52 8.65 83.43 0.54 83.83 73.70 81.29 0.35 

Hipposideridae Hipposideros fuliginosus  13 15.62 31.11 7.88 104.79 0.26 107.74 90.74 104.90 0.09 

Hipposideridae Hipposideros fulvus  13 17.45 8.83 5.98 139.33 0.29 139.33 121.83 138.99 0.59 

Hipposideridae Hipposideros galeritus  13 18.86 10.17 7.07 122.12 0.06 125.66 104.38 122.85 0.44 
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Hipposideridae Hipposideros gigas  13 7.24 115.42 20.90 59.45 0.02 59.45 52.22 59.28 0.00 

Hipposideridae Hipposideros grandis  13 9.39 21.52 8.65 83.43 0.54 83.83 73.70 81.29 0.35 

Hipposideridae Hipposideros halophyllus  13 15.16 4 6.60 187.11 0.13 187.11 171.97 186.92 1.22 

Hipposideridae Hipposideros hypophyllus  13 9.39 21.52 8.65 83.43 0.54 83.83 73.70 81.29 0.35 

Hipposideridae Hipposideros inexpectatus  13 6.32 136.34 11.75 47.56 0.38 50.24 40.81 47.32 0.44 

Hipposideridae Hipposideros inornatus  13 5.00 25.90 12 69.20 1.00 64 69.00 69.20 0.98 

Hipposideridae Hipposideros jonesi  13 13.47 5.49 6.75 92.30 0.63 95.55 80.48 90.11 1.04 

Hipposideridae Hipposideros lamottei  13 8.97 24.90 8.92 79.92 0.58 80.89 70.60 78.02 0.42 

Hipposideridae Hipposideros lankadiva  13 10.60 44.76 9.17 70.53 0.16 74.32 60.16 69.34 0.24 

Hipposideridae Hipposideros larvatus  13 11.40 19.95 5.87 93.79 0.11 93.79 82.43 93.57 0.10 

Hipposideridae Hipposideros lekaguli  13 4.91 31.08 9.60 50.78 0.07 50.78 45.84 50.71 0.05 

Hipposideridae Hipposideros lylei  13 8.85 40 9.65 67.34 0.02 67.34 58.52 67.27 0.03 

Hipposideridae Hipposideros macrobullatus  13 14.91 10.82 7.16 115.82 0.16 119.03 100.89 116.51 0.01 

Hipposideridae Hipposideros madurae  13 9.39 21.52 8.65 83.43 0.54 83.83 73.70 81.29 0.35 

Hipposideridae Hipposideros maggietaylorae  13 38.09 16.1 5.37 122.00 0.16 122.00 84.03 114.26 0.04 

Hipposideridae Hipposideros marisae  13 15.21 10.09 7.04 118.39 0.14 121 103.13 118.99 0.04 

Hipposideridae Hipposideros megalotis  13 17.75 7.20 6.40 139.49 0.13 137.12 121.51 140.75 0.16 

Hipposideridae Hipposideros muscinus  13 13.72 14.09 9.28 100.79 0.15 106.92 87.53 100.89 0.05 

Hipposideridae Hipposideros nequam  13 10.66 14.09 7.92 94.63 0.38 92.70 83.68 91.74 0.13 

Hipposideridae Hipposideros obscurus  13 14.49 9.60 6.69 114.32 0.09 110.46 100.18 111.94 0.46 
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Hipposideridae Hipposideros orbiculus  13 9.39 21.52 8.65 83.43 0.54 83.83 73.70 81.29 0.35 

Hipposideridae Hipposideros papua  13 12.43 18.99 7.24 97.61 0.10 98.05 85.63 96.06 0.16 

Hipposideridae Hipposideros pelingensis  13 9.39 21.52 8.65 83.43 0.54 83.83 73.70 81.29 0.35 

Hipposideridae Hipposideros pomona  13 18.57 6.2 5.27 135.89 0.12 135.89 117.29 134.30 0.03 

Hipposideridae Hipposideros pratti  13 7.35 84.38 8.01 60.83 0.06 60.83 53.45 60.77 0.04 

Hipposideridae Hipposideros pygmaeus  13 20.45 3.53 4.79 169.86 0.23 154.75 149.46 170.55 0.32 

Hipposideridae Hipposideros ridleyi  13 8.26 9.59 7.06 62.51 0.09 62.51 54.27 62.36 0.08 

Hipposideridae Hipposideros rotalis  13 16.56 7.26 6.57 130.58 0.00 129.73 113.86 130.97 0.24 

Hipposideridae Hipposideros ruber  13 20.86 10.61 7.22 133.43 0.11 133.43 112.58 131.51 0.31 

Hipposideridae Hipposideros scutinares  13 9.39 21.52 8.65 83.43 0.54 83.83 73.70 81.29 0.35 

Hipposideridae Hipposideros semoni  12 7.13 14.00 51.43 67.50 0.00 67.50 60.39 67.46 0.00 

Hipposideridae Hipposideros sorenseni  13 9.39 21.52 8.65 83.43 0.54 83.83 73.70 81.29 0.35 

Hipposideridae Hipposideros speoris  13 21.77 10.39 6.29 139.16 0.31 139.16 117.47 135.74 0.32 

Hipposideridae Hipposideros stenotis  12 5.00 12 20.00 103 1.00 104.00 99.00 103 0.99 

Hipposideridae Hipposideros sumbae  13 9.39 21.52 8.65 83.43 0.54 83.83 73.70 81.29 0.35 

Hipposideridae Hipposideros thomensis  13 9.39 21.52 8.65 83.43 0.54 83.83 73.70 81.29 0.35 

Hipposideridae Hipposideros turpis  13 7.80 33.31 6.89 72.18 0.04 72.18 64.33 72.07 0.02 

Hipposideridae Hipposideros vittatus  13 6.14 27.14 12 61.00 0.98 64.53 55.09 61.00 0.92 

Hipposideridae Hipposideros wollastoni  13 3.88 6.93 18.39 92.08 0.01 92.08 88.12 92.03 0.03 

Hipposideridae Paracoelops megalotis  13 14.84 11.20 6.46 111.05 0.72 117.07 97.61 113.18 0.44 
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Hipposideridae Rhinonicteris aurantia  13 15 8.99 12 114 0.94 115.00 100 114 0.98 

Hipposideridae Triaenops auritus  13 8.42 11.52 8.14 54.05 0.30 61.06 47.47 53.84 0.48 

Hipposideridae Triaenops furculus  13 9.54 5.56 8.05 99.28 0.04 99.28 89.74 98.98 0.06 

Hipposideridae Triaenops persicus  13 10.83 13.18 8.50 83.00 0.01 86.23 73.33 83.00 0.25 

Hipposideridae Triaenops rufus  13 7.48 9.10 8.43 43.27 0.03 43.27 35.82 39.82 0.85 

Megadermatidae Cardioderma cor  9 16.83 26.45 3.09 47.51 6.67 61.98 40.08 48.28 6.71 

Megadermatidae Lavia frons  9 24 23.80 3.50 37.5 8.48 57.20 29.93 37.5 8.78 

Megadermatidae Macroderma gigas  9 18.61 124.37 1.13 43.48 11.99 62.10 43.48 51.07 13.45 

Megadermatidae Megaderma lyra  9 23.29 39.27 1.39 80.50 8.40 80.50 57.32 68.25 10.94 

Megadermatidae Megaderma spasma  10 8.88 24.71 1.69 24.74 5.90 24.74 15.76 20.10 5.68 

Miniopteridae Miniopterus africanus  8 38.44 10.31 3.30 48.67 7.70 83.54 47.09 51.73 12.00 

Miniopteridae Miniopterus australis  8 48.01 7.40 3.60 53.38 12.77 101.58 53.38 59.07 17.28 

Miniopteridae Miniopterus fraterculus  8 45.80 7.38 3.16 58.29 9.97 104.19 58.29 61.92 16.92 

Miniopteridae Miniopterus fuscus  8 39.09 10.82 3.22 48.09 8.16 83.41 46.48 51.21 12.51 

Miniopteridae Miniopterus gleni  8 25.94 11.78 2.42 37.71 6.22 64.25 37.71 41.43 11.28 

Miniopteridae Miniopterus inflatus  8 55.00 14.9 2.5 47.40 13.26 89.23 43.21 47.40 18.11 

Miniopteridae Miniopterus macrocneme  8 38.16 7.53 2.99 47.09 8.67 81.27 45.70 49.90 13.06 

Miniopteridae Miniopterus magnater  8 36.87 14.14 3.70 46.62 7.19 80.35 45.02 49.85 11.13 

Miniopteridae Miniopterus majori  8 36.88 13.31 3.13 43.99 8.31 76.74 42.69 46.76 12.54 

Miniopteridae Miniopterus manavi  8 44.49 7.81 2.96 54.97 7.27 96.22 51.36 54.97 15.87 
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Miniopteridae Miniopterus medius  8 37.43 11.40 3.58 48.86 7.30 83.25 47.18 52.04 11.32 

Miniopteridae Miniopterus minor  8 42.23 10.01 2.92 49.11 9.79 87.12 47.37 52.67 14.39 

Miniopteridae Miniopterus natalensis  8 36.29 10.43 3.48 46.32 6.13 82.75 46.32 52.07 11.77 

Miniopteridae Miniopterus paululus  8 35.05 7.20 3.44 52.67 7.20 86.12 50.40 56.04 10.76 

Miniopteridae Miniopterus pusillus  8 34.56 8.95 3.38 56.16 3.54 91.14 56.16 59.79 11.03 

Miniopteridae Miniopterus robustior  8 33.13 10.46 3.71 47.32 6.68 78.85 45.24 50.60 10.03 

Miniopteridae Miniopterus schreibersii  8 27.11 11.46 5.47 50.44 1.90 77.50 50.44 53.41 6.00 

Miniopteridae Miniopterus shortridgei  8 33.82 9.14 3.61 49.16 6.87 81.43 47.04 52.51 10.29 

Miniopteridae Miniopterus tristis  8 35.14 15.17 3.84 44.35 6.65 76.35 42.78 47.37 10.43 

Molossidae Chaerephon aloysiisabaudiae  10 12.85 19.54 7.58 19.39 1.96 30.01 16.88 21.07 2.51 

Molossidae Chaerephon ansorgei  3 12 14.53 15 17.80 0.29 24.68 14.64 17.80 0.33 

Molossidae Chaerephon bemmeleni  10 13.55 12.39 7.27 20.61 2.14 32.57 17.94 22.35 2.74 

Molossidae Chaerephon bivittatus  10 14 15.42 6.80 21.00 2.29 31.56 17.43 21.00 2.86 

Molossidae Chaerephon bregullae  10 13.38 13.87 7.34 20.31 2.10 31.92 17.67 22.02 2.68 

Molossidae Chaerephon chapini  10 8 7.49 10 20.00 0.84 27.04 17.18 20.00 1.37 

Molossidae Chaerephon gallagheri  10 14.22 8.10 6.99 21.82 2.32 35.05 18.99 23.59 2.97 

Molossidae Chaerephon jobensis  10 8 20.71 10 19.80 0.57 28 20.00 19.80 1.08 

Molossidae Chaerephon johorensis  10 9.94 15.69 5.76 14.93 1.68 24.79 14.93 19.59 1.88 

Molossidae Chaerephon leucogaster  10 25.41 12.27 5.59 31.46 4.24 43.52 18.11 31.46 4.53 

Molossidae Chaerephon major  10 13.24 15.17 7.40 20.07 2.06 31.42 17.46 21.78 2.64 
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Molossidae Chaerephon nigeriae  10 10.00 20.14 10 17 2.88 29.86 16.84 17 3.31 

Molossidae Chaerephon plicatus  10 12.69 21.83 7.66 19.11 1.92 29.40 16.63 20.78 2.45 

Molossidae Chaerephon pumilus  10 20.18 10.98 4.19 20.91 4.90 41.14 20.91 27.13 4.87 

Molossidae Chaerephon russatus  10 13.07 16.98 7.49 19.77 2.02 30.78 17.20 21.46 2.58 

Molossidae Chaerephon shortridgei  10 13.38 13.87 7.34 20.31 2.10 31.92 17.67 22.02 2.68 

Molossidae Chaerephon solomonis  10 13.38 13.87 7.34 20.31 2.10 31.92 17.67 22.02 2.68 

Molossidae Chaerephon tomensis  10 14.34 7.48 6.93 22.07 2.35 35.52 19.20 23.83 3.01 

Molossidae Cheiromeles parvidens  3 9.39 70.39 10.65 26.36 0.54 35.00 24.51 27.58 0.86 

Molossidae Cheiromeles torquatus  3 9.00 169.43 14.14 26.10 0.56 34.85 26.10 27.90 0.72 

Molossidae Cynomops abrasus  3 7.05 35.39 10.67 18.84 0.45 23.03 16.68 20.31 0.11 

Molossidae Cynomops greenhalli  3 8.94 15.87 9.23 23.20 0.15 31.11 20.55 24.78 0.34 

Molossidae Cynomops mexicanus  3 9.31 15.96 8.99 24.09 0.09 32.73 21.35 25.71 0.43 

Molossidae Cynomops paranus  3 10.23 12.16 8.42 26.42 0.07 36.81 23.43 28.08 0.66 

Molossidae Cynomops planirostris  3 10.08 12.84 8.51 26.05 0.05 36.17 23.10 27.69 0.63 

Molossidae Eumops auripendulus  3 6.31 28.49 12.97 18.12 0.89 21.90 15.91 19.53 0.68 

Molossidae Eumops bonariensis  3 8.40 12.22 10.72 22.85 0.64 30.74 20.13 24.41 0.26 

Molossidae Eumops dabbenei  3 4.86 67.27 14.43 14.91 0.95 15.55 13.11 16.22 0.82 

Molossidae Eumops glaucinus  3 5.00 36.20 14.20 18 0.95 23 15 18 0.78 

Molossidae Eumops hansae  3 8.39 15.47 10.50 22.69 0.57 30.34 19.99 24.22 0.18 

Molossidae Eumops maurus  3 7.22 20.66 11.75 20.05 0.77 25.51 17.64 21.52 0.47 
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Molossidae Eumops patagonicus  3 6.44 29.81 12.52 18.28 0.84 22.16 16.09 19.71 0.60 

Molossidae Eumops perotis  3 5.41 50.97 13.41 15.94 0.88 17.53 14.03 17.29 0.70 

Molossidae Eumops trumbulli  3 6.44 29.81 12.52 18.28 0.84 22.16 16.09 19.71 0.60 

Molossidae Eumops underwoodi  3 5.11 58.67 14.08 15.43 0.93 16.57 13.56 16.76 0.79 

Molossidae Molossops aequatorianus  3 10.47 7.49 7.42 40.53 0.15 50.89 35.48 40.61 0.56 

Molossidae Molossops mattogrossensis  3 10.47 7.48 7.41 40.53 0.15 50.91 35.52 40.61 0.56 

Molossidae Molossops neglectus  3 10.08 6.91 7.46 43.82 0.32 53.00 38.24 43.25 0.36 

Molossidae Molossops temminckii  3 10.3 5.86 7.80 50.4 0.48 50.4 40.4 50.4 0.18 

Molossidae Molossus aztecus  13 9.23 14.86 6.66 33.62 1.16 41.28 29.11 34.33 1.52 

Molossidae Molossus barnesi  13 8.43 22.83 7.06 30.88 0.95 37.30 26.74 31.66 1.25 

Molossidae Molossus coibensis  13 8.43 22.83 7.06 30.88 0.95 37.30 26.74 31.66 1.25 

Molossidae Molossus currentium  13 8.89 17.79 6.83 32.43 1.07 39.59 28.08 33.18 1.40 

Molossidae Molossus molossus  4 4.62 13.7 9.29 33.41 0.47 38.09 33.41 37.66 0.50 

Molossidae Molossus pretiosus  4 5.95 98.00 8.63 23.17 0.32 25.31 20.05 24.07 0.46 

Molossidae Molossus rufus  13 12.94 21.07 5.59 41.91 1.60 41.91 26.69 38.41 2.84 

Molossidae Molossus sinaloae  13 8.77 21.09 6.92 31.66 1.04 38.60 27.41 32.46 1.36 

Molossidae Mops brachypterus  10 12.99 16.00 7.63 24.58 1.45 39.45 23.10 27.39 2.09 

Molossidae Mops condylurus  10 22.09 26.59 5.57 20.47 3.63 42.71 20.47 27.12 4.13 

Molossidae Mops congicus  10 9.71 42.84 9.46 18.07 0.69 26.28 16.96 20.39 1.09 

Molossidae Mops demonstrator  10 14.80 9.74 6.85 28.73 1.89 47.11 27.00 31.79 2.67 
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Molossidae Mops leucostigma  10 17.60 26.79 7.20 21.48 2.79 39.82 19.95 25.36 3.45 

Molossidae Mops midas  3 4.80 45.5 16.5 15 0.93 14.91 13.44 15 0.74 

Molossidae Mops mops  3 0.73 31.12 8.57 17.80 0.02 18.15 17.42 17.80 0.10 

Molossidae Mops nanulus  10 18.46 3.88 5.60 38.32 2.79 63.09 36.09 41.85 3.87 

Molossidae Mops niangarae  10 12.88 16.49 7.68 24.36 1.43 39.00 22.90 27.14 2.06 

Molossidae Mops niveiventer  11 20.78 21.82 8.82 17.06 1.75 38.15 17.06 22.11 2.31 

Molossidae Mops petersoni  10 16.77 5.86 6.13 33.68 2.37 55.64 31.69 37.00 3.31 

Molossidae Mops sarasinorum  10 14.28 11.20 7.06 27.49 1.76 44.89 25.84 30.48 2.50 

Molossidae Mops spurrelli  10 15.51 8.08 6.57 30.45 2.06 50.17 28.65 33.62 2.90 

Molossidae Mops thersites  10 11.88 21.99 8.17 22.26 1.19 34.90 20.91 24.90 1.75 

Molossidae Mops trevori  10 8.83 21.23 8.98 22.90 0.02 30.26 20.29 24.43 0.50 

Molossidae Mormopterus acetabulosus  10 10.44 9.05 7.04 31.34 0.53 41.98 27.85 32.20 1.24 

Molossidae Mormopterus beccarii  3 5.29 14.3 13.00 23.5 0.97 26.27 20.80 23.5 0.72 

Molossidae Mormopterus doriae  10 10.70 8.41 6.91 32.14 0.58 43.20 28.56 32.98 1.32 

Molossidae Mormopterus jugularis  10 28.42 11.56 3.98 32.04 8.97 51.45 23.19 32.04 7.62 

Molossidae Mormopterus kalinowskii  10 11.19 7.49 6.73 33.45 0.67 45.33 29.76 34.33 1.45 

Molossidae Mormopterus loriae  10 12 7 6.00 36.00 1.18 47.00 35.00 36.00 2.07 

Molossidae Mormopterus minutus  10 13.23 4.27 5.88 40.53 1.12 55.41 36.09 41.22 2.09 

Molossidae Mormopterus norfolkensis  3 1.5 8.00 8.00 31.00 0.99 31.5 30.00 31.00 0.83 

Molossidae Mormopterus phrudus  10 11.86 6.11 6.40 35.84 0.83 48.78 31.88 36.63 1.67 
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Molossidae Mormopterus planiceps  10 10.36 9.24 7.07 31.09 0.51 41.63 27.66 31.98 1.22 

Molossidae Myopterus daubentonii  3 9.67 18.45 8.46 24.98 0.18 33.94 22.13 26.55 0.72 

Molossidae Myopterus whitleyi  3 10.75 11.55 7.85 27.77 0.39 38.76 24.63 29.40 1.01 

Molossidae Nyctinomops aurispinosus  3 8.04 18.43 10.59 21.22 0.59 28.06 18.82 22.83 0.19 

Molossidae Nyctinomops femorosaccus  3 8.13 15.04 10.85 21.50 0.69 28.80 19.09 23.13 0.29 

Molossidae Nyctinomops laticaudatus  3 8.85 13.12 9.97 23.15 0.49 31.62 20.55 24.80 0.02 

Molossidae Nyctinomops macrotis  3 5.00 16.38 15.70 17.5 1.00 24.5 15 17.5 0.92 

Molossidae Otomops formosus  3 7.74 30.39 9.20 13.24 0.78 14.71 11.12 14.22 1.04 

Molossidae Otomops johnstonei  3 7.99 26.87 9.03 13.61 0.85 15.52 11.44 14.61 1.13 

Molossidae Otomops madagascariensis  10 6.93 27.66 2.99 17.59 2.45 17.59 10.90 15.08 2.35 

Molossidae Otomops martiensseni  3 6.40 34.92 24.00 10.8 0.24 8.76 8.78 10.8 0.01 

Molossidae Otomops papuensis  3 8.78 18.45 8.50 14.82 1.05 18.12 12.47 15.85 1.39 

Molossidae Otomops secundus  3 7.94 27.55 9.06 13.53 0.83 15.35 11.38 14.54 1.11 

Molossidae Otomops wroughtoni  3 7.14 39.15 9.67 12.37 0.62 12.82 10.40 13.34 0.84 

Molossidae Platymops setiger  3 14.37 5.37 6.26 38.47 1.13 55.44 34.16 40.13 2.06 

Molossidae Promops centralis  3 10.83 29.80 7.49 23.03 1.27 32.11 20.13 25.18 1.67 

Molossidae Promops nasutus  3 12.48 15.50 6.73 26.84 1.69 38.96 23.48 29.17 2.21 

Molossidae Sauromys petrophilus  10 25.87 14.25 3.74 20.02 6.04 45.72 20.02 27.99 7.25 

Molossidae Tadarida aegyptiaca  8 17.44 17.63 4.93 18.79 3.63 36.23 18.79 23.57 4.18 

Molossidae Tadarida australis  3 7.36 36.40 15.52 11.00 0.38 18.21 11.00 12.77 0.54 
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Molossidae Tadarida brasiliensis  3 3.16 12.61 11.25 25.13 0.32 28.36 25.13 26.72 0.29 

Molossidae Tadarida fulminans  3 13 33.89 15 17 0.11 24.26 14.17 17 0.64 

Molossidae Tadarida insignis  5 14.22 28.53 3.19 10.17 3.52 24.15 10.17 16.32 4.54 

Molossidae Tadarida kuboriensis  3 8.39 26.80 9.15 16.31 0.68 22.79 15.23 18.54 0.95 

Molossidae Tadarida latouchei  3 8.30 27.66 9.22 16.14 0.66 22.43 15.06 18.36 0.92 

Molossidae Tadarida lobata  3 8.02 30.39 9.41 15.66 0.59 21.37 14.61 17.85 0.84 

Molossidae Tadarida teniotis           

Molossidae Tadarida ventralis  3 4.00 37.43 9.00 19.3 0.19 20.60 17.34 19.3 0.02 

Molossidae Tomopeas ravus  3 17.34 5.61 5.44 39.06 2.63 59.89 35.27 41.43 3.70 

Mormoopidae Mormoops blainvillei  11 16 8.69 3.16 57.50 5.71 67 52.00 57.50 6.57 

Mormoopidae Mormoops magna  11 17.43 12.29 3.29 56.20 6.29 68.74 50.00 57.28 7.10 

Mormoopidae Mormoops megalophylla  11 15.76 16.09 3.48 51.83 5.68 62.96 46.20 52.77 6.41 

Mormoopidae Pteronotus davyi  11 13.03 9.52 4.76 71.22 1.23 71.22 58.16 66.22 4.51 

Mormoopidae Pteronotus gymnonotus  11 10.46 13.6 6.65 49.00 1.04 54.64 44.70 49.00 1.87 

Mormoopidae Pteronotus macleayii  11 12 12.39 4.03 69.00 2.80 71 59.00 69.00 3.52 

Mormoopidae Pteronotus parnellii  12 7.74 19.59 25.81 61.11 0.01 61.11 53.45 60.95 0.01 

Mormoopidae Pteronotus personatus  11 17.49 7.99 4.75 60.72 1.40 78.02 60.72 65.45 4.18 

Mormoopidae Pteronotus pristinus  11 14.67 10.00 4.77 67.83 2.80 74.11 59.98 67.15 3.72 

Mormoopidae Pteronotus quadridens  11 15.5 5.64 3.98 81.50 3.36 83.5 69.00 81.50 4.35 

Mystacinidae Mystacina robusta  9 17.79 27.41 2.65 38.71 9.68 54.38 35.20 42.06 9.76 
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Mystacinidae Mystacina tuberculata  9 19.97 13.14 1.94 41.37 10.72 61.35 41.37 48.38 11.24 

Myzopodidae Myzopoda aurita  11 6.72 9.10 5.32 33.40 1.16 37.37 29.83 33.40 1.33 

Natalidae Chilonatalus micropus  9 43.88 5.86 1.92 101.80 23.10 127.24 84.44 99.29 23.56 

Natalidae Chilonatalus tumidifrons  9 47.01 3.62 1.73 118.39 24.40 140.42 98.30 114.78 25.11 

Natalidae Natalus jamaicensis  9 48.52 5.50 1.62 117.68 27.82 139.71 96.16 112.96 27.85 

Natalidae Natalus major  9 48.52 5.50 1.62 117.68 27.82 139.71 96.16 112.96 27.85 

Natalidae Natalus primus  9 48.52 5.50 1.62 117.68 27.82 139.71 96.16 112.96 27.85 

Natalidae Natalus stramineus  9 49.56 5.68 1.58 150.94 29.74 150.94 101.01 116.48 32.05 

Natalidae Natalus tumidirostris  9 50.41 6.30 1.52 123.47 30.18 144 100.18 117.68 29.90 

Natalidae Nyctiellus lepidus  9 42.70 3.88 2.7 83.40 17.26 113.60 70.90 83.40 18.79 

Noctilionidae Noctilio albiventris  13 27.40 31.46 10.5 69.50 4.16 85.08 52.35 69.50 5.57 

Noctilionidae Noctilio leporinus  13 19.47 29.93 6.46 28.95 2.65 49.19 28.95 35.27 3.13 

Nycteridae Nycteris arge  9 21.67 10.79 2.05 47.23 10.10 69.17 43.60 50.05 10.92 

Nycteridae Nycteris gambiensis           

Nycteridae Nycteris grandis 9 24 29.80 3.50 20.00 9.15 33.50 16.98 20.00 9.78 

Nycteridae Nycteris hispida           

Nycteridae Nycteris javanica  9 21.04 17.78 2.50 31.09 9.56 51.25 28.53 34.54 10.27 

Nycteridae Nycteris macrotis 9 21.55 14.49 1.18 56.17 12.78 76.79 56.17 59.97 8.25 

Nycteridae Nycteris thebaica 9 20.43 9.20 1.41 61.75 10.36 82.30 61.75 71.32 14.69 

Nycteridae Nycteris tragata           
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Nycteridae Nycteris woodi           

Phyllostomidae Ametrida centurio  9 38.94 10.61 2.49 74.59 18.98 97.58 58.64 74.59 16.67 

Phyllostomidae Anoura caudifer  9 37.40 10.81 1.79 74.00 18.99 105.27 65.10 81.29 19.33 

Phyllostomidae Anoura cultrata  9 36.82 17.39 1.88 67.02 19.19 98.82 59.15 74.22 19.35 

Phyllostomidae Anoura geoffroyi  9 40.28 15.15 1.86 67.46 18.44 107.14 67.46 81.69 22.76 

Phyllostomidae Anoura latidens  9 35.08 15.06 1.94 66.22 17.95 96.75 58.21 73.04 18.14 

Phyllostomidae Anoura luismanueli  9 36.64 12.81 1.84 71.09 18.68 102.21 62.55 78.18 18.96 

Phyllostomidae Ardops nichollsi  9 59.79 19.23 2.39 36.93 14.65 99.42 36.93 72.59 22.09 

Phyllostomidae Ariteus flavescens  9 51.48 10.09 2.31 50.70 18.05 100.60 42.91 63.43 19.58 

Phyllostomidae Artibeus amplus  9 24.50 61.04 2.26 52.20 12.32 70.61 45.33 54.76 12.62 

Phyllostomidae Artibeus anderseni  9 36.83 6.91 1.05 71.81 30.79 100.40 63.75 76.86 28.89 

Phyllostomidae Artibeus aztecus  9 30.44 20.81 1.25 59.20 25.53 82.99 52.51 62.87 24.02 

Phyllostomidae Artibeus cinereus  9 41.02 12.70 1.11 60.46 56.27 98.95 57.93 60.46 36.57 

Phyllostomidae Artibeus concolor  9 14.73 19.65 2.92 37.21 5.23 49.32 34.74 37.21 3.66 

Phyllostomidae Artibeus fimbriatus  9 22.80 63.89 2.36 45.20 12.40 63.03 39.57 48.09 12.45 

Phyllostomidae Artibeus fraterculus  9 25.84 25.54 2.07 55.26 13.53 75.43 48.38 58.26 13.85 

Phyllostomidae Artibeus glaucus  9 33.39 12.31 1.20 63.75 27.76 90.78 56.77 68.31 26.02 

Phyllostomidae Artibeus gnomus  9 33.01 10.06 1.34 57.82 31.01 90.83 57.82 60.66 21.09 

Phyllostomidae Artibeus hirsutus  9 24.89 40.42 2.16 51.94 13.13 71.45 45.47 54.93 13.36 

Phyllostomidae Artibeus incomitatus  9 27.53 14.88 1.42 59.80 20.46 80.84 53.30 62.74 19.87 
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Phyllostomidae Artibeus inopinatus  9 26.47 18.99 2.01 57.51 13.79 78.02 50.35 60.52 14.16 

Phyllostomidae Artibeus jamaicensis  9 25.98 43.63 2.32 59.25 10.28 71.67 45.75 59.25 12.38 

Phyllostomidae Artibeus lituratus  9 24.89 59.3 1.66 76.89 13.22 76.89 52.22 62.06 15.35 

Phyllostomidae Artibeus obscurus  9 32.27 35.91 1.46 56.74 14.31 89.01 56.74 68.88 12.77 

Phyllostomidae Artibeus phaeotis  9 47.60 11.69 1.10 89.39 49.22 113.41 65.81 89.39 56.18 

Phyllostomidae Artibeus toltecus  9 34.38 15.47 0.81 67.15 39.79 93.96 59.58 67.15 41.42 

Phyllostomidae Artibeus watsoni  9 22.18 11.2 0.89 50.84 8.49 73.03 50.84 62.83 12.18 

Phyllostomidae Brachyphylla cavernarum  5 14.35 45.5 5.65 32.22 1.82 32.22 17.83 23.30 2.41 

Phyllostomidae Brachyphylla nana  9 54 37.25 2.38 59.00 15.92 89 34.00 59.00 17.24 

Phyllostomidae Carollia brevicauda  9 29.70 14.85 1.38 59.44 18.32 84.95 53.09 66.75 18.17 

Phyllostomidae Carollia castanea  9 26.14 13.1 0.81 95.40 20.73 98.02 71.88 95.40 19.92 

Phyllostomidae Carollia colombiana  9 28.64 16.41 1.58 57.11 15.73 82.17 50.96 64.26 15.96 

Phyllostomidae Carollia perspicillata  9 29.30 19.23 2.08 47.92 11.29 76.92 47.92 63.83 14.48 

Phyllostomidae Carollia sowelli  9 29.00 16.02 1.29 51.10 15.93 80.10 51.10 70.82 22.16 

Phyllostomidae Carollia subrufa  9 29.02 15.84 1.46 59.26 17.08 84.14 52.83 66.29 17.08 

Phyllostomidae Centurio senex  9 36.68 23.09 2.42 54.00 14.98 87.46 46.34 61.56 15.86 

Phyllostomidae Chiroderma doriae  9 23.81 19.90 2.67 81.78 6.60 94.21 72.02 81.78 7.95 

Phyllostomidae Chiroderma improvisum  9 24.50 35.39 3.67 76.79 7.69 76.79 52.20 59.65 7.89 

Phyllostomidae Chiroderma salvini  9 23.81 26.30 2.48 72.53 8.38 87.68 63.88 73.55 9.41 

Phyllostomidae Chiroderma trinitatum  9 23.58 13.91 3.68 86.92 5.72 101.10 77.53 86.92 6.39 
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Phyllostomidae Chiroderma villosum  9 23.66 23.81 0.95 78.34 11.36 102.00 78.34 83.29 10.41 

Phyllostomidae Choeroniscus godmani  9 35.63 7.90 1.93 62.87 19.06 97.56 55.76 71.38 18.85 

Phyllostomidae Choeroniscus minor  9 35.22 8.63 1.96 61.50 18.89 95.90 54.49 69.83 18.64 

Phyllostomidae Choeroniscus periosus  9 34.51 10.46 2.02 59.15 18.59 93.06 52.40 67.29 18.30 

Phyllostomidae Choeronycteris mexicana  9 35.44 17.26 2.36 41.82 25.45 76.93 41.82 50.96 14.60 

Phyllostomidae Chrotopterus auritus  9 22.68 78.26 2.12 53.73 13.86 70.31 46.71 56.49 13.14 

Phyllostomidae Desmodus rotundus  9 26.72 33.16 1.92 47.06 17.56 74.07 47.06 61.56 16.67 

Phyllostomidae Diaemus youngi  9 21.60 36.71 2.22 40.81 11.35 62.87 40.81 51.84 10.49 

Phyllostomidae Diphylla ecaudata  9 24.70 28.11 2.27 50.86 13.45 73.07 45.06 56.26 13.15 

Phyllostomidae Ectophylla alba  9 35.47 5.55 1.27 66.67 24.76 101.97 66.67 74.58 25.54 

Phyllostomidae Enchisthenes hartii  9 31.08 16.99 1.77 62.74 17.32 88.57 55.20 67.76 17.40 

Phyllostomidae Erophylla bombifrons  9 21.76 16.28 4.70 38.00 6.65 53.66 30.30 38.00 7.75 

Phyllostomidae Erophylla sezekorni  9 27 15.87 2.3 45.10 9.13 59.6 32.50 45.10 10.17 

Phyllostomidae Glossophaga commissarisi  9 39.55 9.15 1.72 90.65 19.31 116.64 77.40 95.39 19.99 

Phyllostomidae Glossophaga leachii  9 39.11 10.24 1.72 89.21 19.38 115.13 76.10 93.78 19.97 

Phyllostomidae Glossophaga longirostris  9 38.61 13.32 1.6 91.00 19.68 113.64 75.19 91.00 20.14 

Phyllostomidae Glossophaga morenoi  9 39.84 8.54 1.69 92.30 19.55 117.94 78.81 97.03 20.22 

Phyllostomidae Glossophaga soricina  9 40.68 9.97 2.28 86.48 17.66 111.24 70.49 86.48 19.58 

Phyllostomidae Glyphonycteris behnii  9 27.79 14.53 1.09 66.75 22.67 88.57 59.92 71.81 21.28 

Phyllostomidae Glyphonycteris daviesi  9 26.29 18.61 1.16 60.76 21.89 82.07 54.49 65.63 20.39 



Appendices  

355 

Family Species 

Species sets for each parameter 

E
ch

o
lo

ca
ti

o
n

 C
a

ll
 T

y
p

e
 

B
a

n
d

w
id

th
 (

k
H

z)
 

B
o

d
y

 M
a

ss
 (

g
) 

C
a

ll
 D

u
ra

ti
o

n
 (

m
s)

 

C
h

a
ra

ct
er

is
ti

c 
F

re
q

u
en

cy
 

(k
H

z)
 

D
o

m
in

a
n

t 
S

lo
p

e 
(k

H
z/

m
s)

 

M
a

x
im

u
m

 F
re

q
u

en
cy

 

(k
H

z)
 

M
in

im
u

m
 F

re
q

u
en

cy
 

(k
H

z)
 

P
ea

k
 F

re
q

u
en

cy
 (

k
H

z)
 

T
o

ta
l 

S
lo

p
e 

(k
H

z/
m

s)
 

Phyllostomidae Glyphonycteris sylvestris  9 29.61 8.91 1.01 74.51 23.60 96.53 66.95 79.84 22.36 

Phyllostomidae Hylonycteris underwoodi  9 35.83 7.50 1.90 65.69 18.88 99.78 58.09 74.00 18.79 

Phyllostomidae Lampronycteris brachyotis  9 4.49 10.39 0.11 98.89 35.13 98.89 94.40 98.89 27.04 

Phyllostomidae Leptonycteris curasoae  9 58.31 25.27 5.39 41.47 9.99 98.40 41.47 73.50 12.15 

Phyllostomidae Leptonycteris nivalis  9 47.86 24.26 3.89 49.75 10.64 98.43 42.18 63.62 12.45 

Phyllostomidae Leptonycteris yerbabuenae  9 48.06 22.24 3.82 50.86 10.78 99.74 43.08 64.85 12.62 

Phyllostomidae Lichonycteris obscura  9 36.41 6.50 1.86 67.76 19.12 102.21 59.98 76.25 19.08 

Phyllostomidae Lionycteris spurrelli  9 43.12 8.85 2.99 131.72 13.31 131.72 87.93 111.54 15.68 

Phyllostomidae Lonchophylla bokermanni  9 34.51 9.74 2.07 86.57 15.63 110.04 74.07 90.47 16.16 

Phyllostomidae Lonchophylla dekeyseri  9 35.51 7.20 1.96 92.76 16.38 115.35 79.52 96.54 16.90 

Phyllostomidae Lonchophylla handleyi  9 32.91 14.53 2.17 80.32 15.36 104.04 68.79 84.10 15.68 

Phyllostomidae Lonchophylla hesperia  9 35.29 8.72 1.98 91.65 16.30 114.28 78.57 95.49 16.80 

Phyllostomidae Lonchophylla mordax  9 31.96 21.56 2.26 76.02 14.98 99.86 65.10 79.84 15.23 

Phyllostomidae Lonchophylla robusta  9 33.08 13.72 2.16 81.04 15.43 104.65 69.48 84.86 15.76 

Phyllostomidae Lonchophylla thomasi  9 32.36 7.09 1.56 88.77 21.93 120.90 88.77 97.35 18.89 

Phyllostomidae Lonchorhina aurita  9 28.87 15.38 2.16 63.43 13.84 87.59 55.09 68.17 14.15 

Phyllostomidae Lonchorhina fernandezi  9 31.01 11.59 1.97 72.10 14.70 96.79 62.61 77.01 15.17 

Phyllostomidae Lonchorhina inusitata  9 28.72 15.53 2.17 62.93 13.78 86.99 54.60 67.63 14.08 

Phyllostomidae Lonchorhina marinkellei  9 28.31 17.67 2.21 61.37 13.62 85.27 53.25 66.02 13.88 

Phyllostomidae Lonchorhina orinocensis  9 31.83 9.04 1.91 75.64 15.02 100.40 65.69 80.56 15.56 
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Phyllostomidae Lophostoma brasiliense  9 28.07 9.76 1.16 87.71 19.39 102.01 77.63 89.39 18.88 

Phyllostomidae Lophostoma carrikeri  9 25.43 22.35 1.30 74.29 18.12 89.78 65.69 76.25 17.41 

Phyllostomidae Lophostoma evotis  9 25.22 20.58 1.24 70.18 19.57 86.17 61.93 72.24 18.47 

Phyllostomidae Lophostoma schulzi  9 25.68 18.02 1.28 75.49 18.25 90.92 66.75 77.40 17.55 

Phyllostomidae Lophostoma silvicolum  9 23.92 32.29 1.15 66.75 19.15 79.90 56.04 66.75 19.60 

Phyllostomidae Macrophyllum macrophyllum  9 20.5 8.02 2.00 55.00 10.62 61 44 55.00 11.05 

Phyllostomidae Macrotus californicus  9 29.34 11.83 1.86 67.90 15.37 92.74 60.22 74.14 15.41 

Phyllostomidae Macrotus waterhousii  9 28.5 16.27 1.30 69.20 21.18 84.20 55.7 69.20 19.75 

Phyllostomidae Mesophylla macconnelli  9 33.87 6.86 1.42 85.88 19.13 108.78 76.32 89.93 19.48 

Phyllostomidae Micronycteris brosseti  9 34.51 8.48 1.19 81.29 24.63 104.45 66.89 84.35 23.22 

Phyllostomidae Micronycteris hirsuta  9 28.8 12.89 1.40 80.80 20.89 97.9 69.10 80.80 19.53 

Phyllostomidae Micronycteris homezi  9 34.49 8.50 1.19 81.21 24.62 104.45 66.82 84.27 23.21 

Phyllostomidae Micronycteris matses  9 34.51 8.48 1.19 81.29 24.63 104.45 66.89 84.35 23.22 

Phyllostomidae Micronycteris megalotis  9 34.8 6.40 1.5 98.10 21.83 116.00 81.20 98.10 21.01 

Phyllostomidae Micronycteris microtis  9 32.97 7.75 1.21 94.35 21.93 112.78 79.52 96.74 20.98 

Phyllostomidae Micronycteris minuta  9 41.00 6.90 1.80 100.29 25.04 100.29 60.17 82.26 24.34 

Phyllostomidae Micronycteris sanborni  9 34.82 8.48 1.20 80.88 24.67 104.45 66.42 84.02 23.29 

Phyllostomidae Micronycteris schmidtorum  9 34.81 7.73 1.18 82.68 24.78 105.88 68.03 85.71 23.39 

Phyllostomidae Mimon bennettii  9 23.73 12.90 1.30 73.41 17.00 87.67 65.83 75.11 16.46 

Phyllostomidae Mimon cozumelae  9 20.38 39.49 1.52 58.32 15.36 72.25 52.25 60.28 14.57 
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Phyllostomidae Mimon crenulatum  9 20.22 13.91 1.06 62.56 15.14 82.55 62.56 69.66 18.84 

Phyllostomidae Mimon koepckeae  9 21.85 20.15 1.29 66.22 17.05 80.16 59.74 67.97 16.28 

Phyllostomidae Monophyllus plethodon  9 47.43 15.33 2.62 71.70 19.76 119.23 71.70 96.62 20.38 

Phyllostomidae Monophyllus redmani  9 43.26 8.79 1.91 87.71 18.82 122.10 75.94 97.51 19.58 

Phyllostomidae Musonycteris harrisoni  9 32.87 10.82 2.22 48.91 18.70 82.72 43.60 57.05 17.96 

Phyllostomidae Neonycteris pusilla  9 29.34 6.11 0.69 81.29 29.40 101.00 74.00 86.49 26.95 

Phyllostomidae Phylloderma stenops  9 16.68 55.82 2.08 46.43 11.22 57.96 41.22 48.47 10.59 

Phyllostomidae Phyllonycteris aphylla  9 20.92 14.15 3.38 45.20 6.37 61.23 37.49 46.90 7.47 

Phyllostomidae Phyllonycteris major  9 17.12 16.66 3.82 41.89 4.60 53.93 34.99 42.86 5.64 

Phyllostomidae Phyllonycteris poeyi  9 11 15.59 4.69 39.00 2.15 46 34.00 39.00 3.10 

Phyllostomidae Phyllops falcatus  9 31.00 10.82 5.57 50.50 7.92 67 36.00 50.50 9.48 

Phyllostomidae Phyllostomus discolor  9 18.14 36.7 2.25 52.95 7.71 70.94 52.95 63.16 8.11 

Phyllostomidae Phyllostomus elongatus  9 16.67 41.75 1.81 54.16 11.24 64.40 48.13 55.37 10.74 

Phyllostomidae Phyllostomus hastatus  9 13.70 91.44 1.47 48.68 10.10 55.41 41.93 48.68 9.05 

Phyllostomidae Phyllostomus latifolius  9 14.41 134.00 2.37 38.59 10.14 47.89 34.26 40.61 9.34 

Phyllostomidae Platalina genovensium  9 32.71 16.39 2.22 78.26 14.94 102.21 66.95 82.19 15.32 

Phyllostomidae Platyrrhinus aurarius  9 25.00 35.12 2.57 53.73 10.66 74.13 47.18 57.11 11.30 

Phyllostomidae Platyrrhinus brachycephalus  9 40.20 14.26 4.50 91.38 6.13 115.36 75.17 91.38 8.59 

Phyllostomidae Platyrrhinus chocoensis  9 26.57 23.93 2.40 59.38 11.26 80.77 52.20 62.87 12.02 

Phyllostomidae Platyrrhinus dorsalis  9 25.77 26.00 2.49 56.43 10.95 77.37 49.60 59.86 11.66 
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Phyllostomidae Platyrrhinus helleri  9 24.67 13.44 2.83 50.87 6.90 65.41 40.72 50.87 8.82 

Phyllostomidae Platyrrhinus infuscus  9 23.91 50.76 2.70 50.05 10.24 69.61 43.95 53.36 10.80 

Phyllostomidae Platyrrhinus lineatus  9 26.83 24.34 2.30 60.89 11.85 82.21 53.57 64.33 12.55 

Phyllostomidae Platyrrhinus recifinus  9 30.28 10.82 2.60 69.90 9.11 93.92 61.07 74.00 10.76 

Phyllostomidae Platyrrhinus umbratus  9 25.82 25.17 2.48 56.66 10.97 77.58 49.75 60.04 11.68 

Phyllostomidae Platyrrhinus vittatus  9 24.38 37.01 2.65 51.57 10.42 71.55 45.33 54.93 11.02 

Phyllostomidae Pygoderma bilabiatum  9 37.28 18.50 2.39 54.87 15.10 89.02 47.13 62.68 16.04 

Phyllostomidae Rhinophylla alethina  9 34.57 6.91 1.28 87.71 20.35 111.30 77.87 93.22 20.48 

Phyllostomidae Rhinophylla fischerae  9 32.93 9.60 1.36 80.00 19.63 104.24 70.95 85.37 19.63 

Phyllostomidae Rhinophylla pumilio  9 32.94 9.58 1.36 80.08 19.63 104.24 71.02 85.46 19.63 

Phyllostomidae Scleronycteris ega  9 26.72 49.54 2.75 38.63 15.02 63.98 34.09 44.52 14.30 

Phyllostomidae Sphaeronycteris toxophyllum  9 37.80 16.06 2.28 59.26 15.60 93.26 50.86 67.02 16.54 

Phyllostomidae Stenoderma rufum  9 39.87 21.10 2.54 48.38 14.97 86.06 41.39 57.28 16.07 

Phyllostomidae Sturnira aratathomasi  9 27.12 49.67 1.81 53.68 19.35 77.53 49.01 58.67 18.27 

Phyllostomidae Sturnira bidens  9 30.89 18.05 1.61 65.76 19.94 91.64 59.32 71.24 19.38 

Phyllostomidae Sturnira bogotensis  9 30.64 19.94 1.61 62.61 21.37 89.04 57.00 68.24 20.35 

Phyllostomidae Sturnira erythromos  9 31.10 15.53 1.58 64.33 21.59 90.97 58.62 70.04 20.61 

Phyllostomidae Sturnira lilium  9 38.94 20.19 1.93 73.27 20.56 112.45 73.27 88.06 20.02 

Phyllostomidae Sturnira ludovici  9 35.62 21.00 1.01 71.50 53.19 98.83 63.20 71.50 36.27 

Phyllostomidae Sturnira luisi  9 33.98 11.99 1.85 71.09 17.76 100.40 64.39 78.02 17.93 
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Phyllostomidae Sturnira magna  9 29.44 27.55 1.71 59.03 20.23 84.77 53.73 64.46 19.28 

Phyllostomidae Sturnira mistratensis  9 31.43 15.66 1.57 67.83 20.24 93.90 61.19 73.33 19.70 

Phyllostomidae Sturnira mordax  9 29.93 11.79 1.65 64.75 17.13 94.68 64.75 72.07 18.34 

Phyllostomidae Sturnira nana  9 35.24 6.64 1.35 84.18 21.92 110.25 76.02 90.20 21.70 

Phyllostomidae Sturnira oporaphilum  9 30.43 21.99 1.62 61.81 21.27 88.17 56.32 67.42 20.24 

Phyllostomidae Sturnira thomasi  9 31.59 15.46 5.46 42.94 3.85 74.86 42.94 56.48 5.28 

Phyllostomidae Sturnira tildae  9 19.94 24.39 0.96 55.93 21.12 71.78 51.84 55.93 21.44 

Phyllostomidae Tonatia bidens  9 19.79 27.70 1.38 78.18 15.74 89.67 69.88 78.18 13.37 

Phyllostomidae Tonatia saurophila  9 19.5 32.33 1.40 56.50 15.43 71 51.50 56.50 14.45 

Phyllostomidae Trachops cirrhosus  9 24.11 36.9 1.02 59.68 23.11 83.71 59.68 64.87 20.80 

Phyllostomidae Trinycteris nicefori  9 25.09 8.25 0.39 68.50 31.42 93.59 68.50 82.96 28.08 

Phyllostomidae Uroderma bilobatum  9 28.57 16.28 1.20 92.35 28.63 109.51 80.94 92.35 24.23 

Phyllostomidae Uroderma magnirostrum  9 30.48 17.30 1.31 82.68 22.68 101.00 73.26 84.94 21.47 

Phyllostomidae Vampyressa bidens  9 29.81 11.91 1.72 72.89 16.16 94.85 64.52 76.40 16.45 

Phyllostomidae Vampyressa brocki  9 24.70 48.00 2.14 53.04 13.96 73.07 46.90 56.37 13.85 

Phyllostomidae Vampyressa melissa  9 31.11 16.58 1.59 73.33 17.93 96.75 65.10 77.32 18.05 

Phyllostomidae Vampyressa nymphaea  9 23.80 69.00 2.18 47.04 14.55 66.60 41.64 50.50 14.14 

Phyllostomidae Vampyressa pusilla  9 33.64 8.77 1.44 84.77 19.03 107.74 75.34 88.77 19.36 

Phyllostomidae Vampyressa thyone  9 33.74 7.17 1.43 85.29 19.07 108.16 75.72 89.30 19.40 

Phyllostomidae Vampyrodes caraccioli  9 20.86 35.89 1.03 64.50 18.22 85.38 64.50 71.74 20.18 
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Phyllostomidae Vampyrum spectrum  9 33 171.61 2.80 79.40 16.00 97 64.00 79.40 15.51 

Pteropodidae Acerodon_celebensis 1 - - - - - - - - - 

Pteropodidae Acerodon_humilis 1 - - - - - - - - - 

Pteropodidae Acerodon_jubatus 1 - - - - - - - - - 

Pteropodidae Acerodon_leucotis 1 - - - - - - - - - 

Pteropodidae Acerodon_mackloti 1 - - - - - - - - - 

Pteropodidae Aethalops_aequalis 1 - - - - - - - - - 

Pteropodidae Aethalops_alecto 1 - - - - - - - - - 

Pteropodidae Alionycteris_paucidentata 1 - - - - - - - - - 

Pteropodidae Aproteles_bulmerae 1 - - - - - - - - - 

Pteropodidae Balionycteris_maculata 1 - - - - - - - - - 

Pteropodidae Casinycteris_argynnis 1 - - - - - - - - - 

Pteropodidae Chironax_melanocephalus 1 - - - - - - - - - 

Pteropodidae Cynopterus_brachyotis 1 - - - - - - - - - 

Pteropodidae Cynopterus_horsfieldii 1 - - - - - - - - - 

Pteropodidae Cynopterus_luzoniensis 1 - - - - - - - - - 

Pteropodidae Cynopterus_minutus 1 - - - - - - - - - 

Pteropodidae Cynopterus_nusatenggara 1 - - - - - - - - - 

Pteropodidae Cynopterus_sphinx 1 - - - - - - - - - 

Pteropodidae Cynopterus_titthaecheilus 1 - - - - - - - - - 
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Pteropodidae Dobsonia_anderseni 1 - - - - - - - - - 

Pteropodidae Dobsonia_beauforti 1 - - - - - - - - - 

Pteropodidae Dobsonia_chapmani 1 - - - - - - - - - 

Pteropodidae Dobsonia_crenulata 1 - - - - - - - - - 

Pteropodidae Dobsonia_emersa 1 - - - - - - - - - 

Pteropodidae Dobsonia_exoleta 1 - - - - - - - - - 

Pteropodidae Dobsonia_inermis 1 - - - - - - - - - 

Pteropodidae Dobsonia_magna 1 - - - - - - - - - 

Pteropodidae Dobsonia_minor 1 - - - - - - - - - 

Pteropodidae Dobsonia_moluccensis 1 - - - - - - - - - 

Pteropodidae Dobsonia_pannietensis 1 - - - - - - - - - 

Pteropodidae Dobsonia_peronii 1 - - - - - - - - - 

Pteropodidae Dobsonia_praedatrix 1 - - - - - - - - - 

Pteropodidae Dobsonia_viridis 1 - - - - - - - - - 

Pteropodidae Dyacopterus_brooksi 1 - - - - - - - - - 

Pteropodidae Dyacopterus_spadiceus 1 - - - - - - - - - 

Pteropodidae Eidolon_dupreanum 1 - - - - - - - - - 

Pteropodidae Eidolon_helvum 1 - - - - - - - - - 

Pteropodidae Eonycteris_major 1 - - - - - - - - - 

Pteropodidae Eonycteris_robusta 1 - - - - - - - - - 
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Pteropodidae Eonycteris_spelaea 1 - - - - - - - - - 

Pteropodidae Epomophorus_angolensis 1 - - - - - - - - - 

Pteropodidae Epomophorus_crypturus 1 - - - - - - - - - 

Pteropodidae Epomophorus_gambianus 1 - - - - - - - - - 

Pteropodidae Epomophorus_grandis 1 - - - - - - - - - 

Pteropodidae Epomophorus_labiatus 1 - - - - - - - - - 

Pteropodidae Epomophorus_minimus 1 - - - - - - - - - 

Pteropodidae Epomophorus_minor 1 - - - - - - - - - 

Pteropodidae Epomophorus_wahlbergi 1 - - - - - - - - - 

Pteropodidae Epomops_buettikoferi 1 - - - - - - - - - 

Pteropodidae Epomops_dobsonii 1 - - - - - - - - - 

Pteropodidae Epomops_franqueti 1 - - - - - - - - - 

Pteropodidae Haplonycteris_fischeri 1 - - - - - - - - - 

Pteropodidae Harpyionycteris_celebensis 1 - - - - - - - - - 

Pteropodidae Harpyionycteris_whiteheadi 1 - - - - - - - - - 

Pteropodidae Hypsignathus_monstrosus 1 - - - - - - - - - 

Pteropodidae Latidens_salimalii 1 - - - - - - - - - 

Pteropodidae Lissonycteris_angolensis 1 - - - - - - - - - 

Pteropodidae Macroglossus_minimus 1 - - - - - - - - - 

Pteropodidae Macroglossus_sobrinus 1 - - - - - - - - - 
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Pteropodidae Megaerops_ecaudatus 1 - - - - - - - - - 

Pteropodidae Megaerops_kusnotoi 1 - - - - - - - - - 

Pteropodidae Megaerops_niphanae 1 - - - - - - - - - 

Pteropodidae Megaerops_wetmorei 1 - - - - - - - - - 

Pteropodidae Megaloglossus_woermanni 1 - - - - - - - - - 

Pteropodidae Melonycteris_fardoulisi 1 - - - - - - - - - 

Pteropodidae Melonycteris_melanops 1 - - - - - - - - - 

Pteropodidae Melonycteris_woodfordi 1 - - - - - - - - - 

Pteropodidae Micropteropus_intermedius 1 - - - - - - - - - 

Pteropodidae Micropteropus_pusillus 1 - - - - - - - - - 

Pteropodidae Myonycteris_brachycephala 1 - - - - - - - - - 

Pteropodidae Myonycteris_relicta 1 - - - - - - - - - 

Pteropodidae Myonycteris_torquata 1 - - - - - - - - - 

Pteropodidae Nanonycteris_veldkampii 1 - - - - - - - - - 

Pteropodidae Neopteryx_frosti 1 - - - - - - - - - 

Pteropodidae Notopteris_macdonaldi 1 - - - - - - - - - 

Pteropodidae Notopteris_neocaledonica 1 - - - - - - - - - 

Pteropodidae Nyctimene_aello 1 - - - - - - - - - 

Pteropodidae Nyctimene_albiventer 1 - - - - - - - - - 

Pteropodidae Nyctimene_cephalotes 1 - - - - - - - - - 
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Pteropodidae Nyctimene_certans 1 - - - - - - - - - 

Pteropodidae Nyctimene_cyclotis 1 - - - - - - - - - 

Pteropodidae Nyctimene_draconilla 1 - - - - - - - - - 

Pteropodidae Nyctimene_keasti 1 - - - - - - - - - 

Pteropodidae Nyctimene_major 1 - - - - - - - - - 

Pteropodidae Nyctimene_malaitensis 1 - - - - - - - - - 

Pteropodidae Nyctimene_masalai 1 - - - - - - - - - 

Pteropodidae Nyctimene_minutus 1 - - - - - - - - - 

Pteropodidae Nyctimene_rabori 1 - - - - - - - - - 

Pteropodidae Nyctimene_robinsoni 1 - - - - - - - - - 

Pteropodidae Nyctimene_sanctacrucis 1 - - - - - - - - - 

Pteropodidae Nyctimene_vizcaccia 1 - - - - - - - - - 

Pteropodidae Otopteropus_cartilagonodus 1 - - - - - - - - - 

Pteropodidae Paranyctimene_raptor 1 - - - - - - - - - 

Pteropodidae Paranyctimene_tenax 1 - - - - - - - - - 

Pteropodidae Penthetor_lucasi 1 - - - - - - - - - 

Pteropodidae Plerotes_anchietae 1 - - - - - - - - - 

Pteropodidae Ptenochirus_jagori 1 - - - - - - - - - 

Pteropodidae Ptenochirus_minor 1 - - - - - - - - - 

Pteropodidae Pteralopex_acrodonta 1 - - - - - - - - - 
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Pteropodidae Pteralopex_anceps 1 - - - - - - - - - 

Pteropodidae Pteralopex_atrata 1 - - - - - - - - - 

Pteropodidae Pteralopex_pulchra 1 - - - - - - - - - 

Pteropodidae Pteralopex_taki 1 - - - - - - - - - 

Pteropodidae Pteropus_admiralitatum 1 - - - - - - - - - 

Pteropodidae Pteropus_aldabrensis 1 - - - - - - - - - 

Pteropodidae Pteropus_alecto 1 - - - - - - - - - 

Pteropodidae Pteropus_anetianus 1 - - - - - - - - - 

Pteropodidae Pteropus_aruensis 1 - - - - - - - - - 

Pteropodidae Pteropus_banakrisi 1 - - - - - - - - - 

Pteropodidae Pteropus_brunneus 1 - - - - - - - - - 

Pteropodidae Pteropus_caniceps 1 - - - - - - - - - 

Pteropodidae Pteropus_capistratus 1 - - - - - - - - - 

Pteropodidae Pteropus_chrysoproctus 1 - - - - - - - - - 

Pteropodidae Pteropus_cognatus 1 - - - - - - - - - 

Pteropodidae Pteropus_conspicillatus 1 - - - - - - - - - 

Pteropodidae Pteropus_dasymallus 1 - - - - - - - - - 

Pteropodidae Pteropus_faunulus 1 - - - - - - - - - 

Pteropodidae Pteropus_fundatus 1 - - - - - - - - - 

Pteropodidae Pteropus_giganteus 1 - - - - - - - - - 



Appendices  

366 

Family Species 

Species sets for each parameter 

E
ch

o
lo

ca
ti

o
n

 C
a

ll
 T

y
p

e
 

B
a

n
d

w
id

th
 (

k
H

z)
 

B
o

d
y

 M
a

ss
 (

g
) 

C
a

ll
 D

u
ra

ti
o

n
 (

m
s)

 

C
h

a
ra

ct
er

is
ti

c 
F

re
q

u
en

cy
 

(k
H

z)
 

D
o

m
in

a
n

t 
S

lo
p

e 
(k

H
z/

m
s)

 

M
a

x
im

u
m

 F
re

q
u

en
cy

 

(k
H

z)
 

M
in

im
u

m
 F

re
q

u
en

cy
 

(k
H

z)
 

P
ea

k
 F

re
q

u
en

cy
 (

k
H

z)
 

T
o

ta
l 

S
lo

p
e 

(k
H

z/
m

s)
 

Pteropodidae Pteropus_gilliardorum 1 - - - - - - - - - 

Pteropodidae Pteropus_griseus 1 - - - - - - - - - 

Pteropodidae Pteropus_howensis 1 - - - - - - - - - 

Pteropodidae Pteropus_hypomelanus 1 - - - - - - - - - 

Pteropodidae Pteropus_insularis 1 - - - - - - - - - 

Pteropodidae Pteropus_intermedius 1 - - - - - - - - - 

Pteropodidae Pteropus_keyensis 1 - - - - - - - - - 

Pteropodidae Pteropus_leucopterus 1 - - - - - - - - - 

Pteropodidae Pteropus_livingstonii 1 - - - - - - - - - 

Pteropodidae Pteropus_lombocensis 1 - - - - - - - - - 

Pteropodidae Pteropus_loochoensis 1 - - - - - - - - - 

Pteropodidae Pteropus_lylei 1 - - - - - - - - - 

Pteropodidae Pteropus_macrotis 1 - - - - - - - - - 

Pteropodidae Pteropus_mahaganus 1 - - - - - - - - - 

Pteropodidae Pteropus_mariannus 1 - - - - - - - - - 

Pteropodidae Pteropus_melanopogon 1 - - - - - - - - - 

Pteropodidae Pteropus_melanotus 1 - - - - - - - - - 

Pteropodidae Pteropus_molossinus 1 - - - - - - - - - 

Pteropodidae Pteropus_neohibernicus 1 - - - - - - - - - 

Pteropodidae Pteropus_niger 1 - - - - - - - - - 
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Pteropodidae Pteropus_nitendiensis 1 - - - - - - - - - 

Pteropodidae Pteropus_ocularis 1 - - - - - - - - - 

Pteropodidae Pteropus_ornatus 1 - - - - - - - - - 

Pteropodidae Pteropus_pelewensis 1 - - - - - - - - - 

Pteropodidae Pteropus_personatus 1 - - - - - - - - - 

Pteropodidae Pteropus_pilosus 1 - - - - - - - - - 

Pteropodidae Pteropus_pohlei 1 - - - - - - - - - 

Pteropodidae Pteropus_poliocephalus 1 - - - - - - - - - 

Pteropodidae Pteropus_pselaphon 1 - - - - - - - - - 

Pteropodidae Pteropus_pumilus 1 - - - - - - - - - 

Pteropodidae Pteropus_rayneri 1 - - - - - - - - - 

Pteropodidae Pteropus_rennelli 1 - - - - - - - - - 

Pteropodidae Pteropus_rodricensis 1 - - - - - - - - - 

Pteropodidae Pteropus_rufus 1 - - - - - - - - - 

Pteropodidae Pteropus_samoensis 1 - - - - - - - - - 

Pteropodidae Pteropus_scapulatus 1 - - - - - - - - - 

Pteropodidae Pteropus_seychellensis 1 - - - - - - - - - 

Pteropodidae Pteropus_speciosus 1 - - - - - - - - - 

Pteropodidae Pteropus_subniger 1 - - - - - - - - - 

Pteropodidae Pteropus_temminckii 1 - - - - - - - - - 
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Pteropodidae Pteropus_tokudae 1 - - - - - - - - - 

Pteropodidae Pteropus_tonganus 1 - - - - - - - - - 

Pteropodidae Pteropus_tuberculatus 1 - - - - - - - - - 

Pteropodidae Pteropus_ualanus 1 - - - - - - - - - 

Pteropodidae Pteropus_vampyrus 1 - - - - - - - - - 

Pteropodidae Pteropus_vetulus 1 - - - - - - - - - 

Pteropodidae Pteropus_voeltzkowi 1 - - - - - - - - - 

Pteropodidae Pteropus_woodfordi 1 - - - - - - - - - 

Pteropodidae Pteropus_yapensis 1 - - - - - - - - - 

Pteropodidae Rousettus_aegyptiacus 2 - - - - - - - - - 

Pteropodidae Rousettus_amplexicaudatus 2 - - - - - - - - - 

Pteropodidae Rousettus_bidens 2 - - - - - - - - - 

Pteropodidae Rousettus_celebensis 2 - - - - - - - - - 

Pteropodidae Rousettus_lanosus 2 - - - - - - - - - 

Pteropodidae Rousettus_leschenaultii 2 - - - - - - - - - 

Pteropodidae Rousettus_linduensis 2 - - - - - - - - - 

Pteropodidae Rousettus_madagascariensis 2 - - - - - - - - - 

Pteropodidae Rousettus_obliviosus 2 - - - - - - - - - 

Pteropodidae Rousettus_spinalatus 2 - - - - - - - - - 

Pteropodidae Scotonycteris_ophiodon 1 - - - - - - - - - 
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Pteropodidae Scotonycteris_zenkeri 1 - - - - - - - - - 

Pteropodidae Sphaerias_blanfordi 1 - - - - - - - - - 

Pteropodidae Styloctenium_wallacei 1 - - - - - - - - - 

Pteropodidae Syconycteris_australis 1 - - - - - - - - - 

Pteropodidae Syconycteris_carolinae 1 - - - - - - - - - 

Pteropodidae Syconycteris_hobbit 1 - - - - - - - - - 

Pteropodidae Thoopterus_nigrescens 1 - - - - - - - - - 

Rhinolophidae Rhinolophus acuminatus  12 8.63 12.1 48.86 89.61 0.00 89.61 80.97 89.56 0.00 

Rhinolophidae Rhinolophus adami  12 9.99 17.41 31.22 63.88 0.16 68.43 54.76 63.82 0.18 

Rhinolophidae Rhinolophus affinis  12 15.78 13.7 27.88 80.65 0.01 80.65 64.87 80.55 0.01 

Rhinolophidae Rhinolophus alcyone  12 15.39 18.62 35.41 87.00 0.21 91.45 72.53 87.00 0.07 

Rhinolophidae Rhinolophus arcuatus  12 10.00 8.98 35.34 66.50 0.20 69.76 57.28 66.50 0.10 

Rhinolophidae Rhinolophus beddomei  12 8.16 29.78 35.66 52.72 0.43 57.08 45.15 53.14 0.49 

Rhinolophidae Rhinolophus blasii  12 4.00 10.29 44.10 60.5 0.94 58.31 54.33 60.5 0.98 

Rhinolophidae Rhinolophus bocharicus  12 10.52 15.05 30.08 67.29 0.07 71.69 57.69 67.09 0.08 

Rhinolophidae Rhinolophus borneensis  12 12.81 12.80 31.94 81.80 1.30 83.80 69.97 81.80 1.02 

Rhinolophidae Rhinolophus canuti  12 9.88 17.94 31.44 63.18 0.17 67.77 54.16 63.18 0.20 

Rhinolophidae Rhinolophus capensis  12 12.50 12.87 42.67 84.42 0.00 84.42 71.91 84.36 0.00 

Rhinolophidae Rhinolophus celebensis  12 11.76 10.82 27.74 75.64 0.13 79.35 64.91 75.04 0.17 

Rhinolophidae Rhinolophus clivosus  12 19.32 15.21 36.71 90.11 0.00 90.11 70.80 89.52 0.01 
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Rhinolophidae Rhinolophus coelophyllus  12 12.50 7.07 35.01 78.77 0.00 78.77 66.29 78.46 0.00 

Rhinolophidae Rhinolophus cognatus  12 12.31 9.40 26.79 79.60 0.23 82.74 68.24 78.73 0.28 

Rhinolophidae Rhinolophus convexus  12 10.47 8.78 38.63 72.39 0.02 75.74 62.68 72.02 0.07 

Rhinolophidae Rhinolophus cornutus  12 13.35 7.27 43.58 105.97 0.00 106.05 92.67 105.97 0.00 

Rhinolophidae Rhinolophus creaghi  12 10.53 16.92 34.64 68.00 0.47 70.95 57.97 68.00 0.30 

Rhinolophidae Rhinolophus darlingi  12 13.04 8.94 36.05 86.29 0.01 86.29 73.24 86.01 0.00 

Rhinolophidae Rhinolophus deckenii  12 11.87 20.09 28.28 72 0.38 76.42 61.25 72 0.30 

Rhinolophidae Rhinolophus denti  12 19.98 6.30 22.28 110.71 0.01 110.71 90.72 110.60 0.02 

Rhinolophidae Rhinolophus eloquens  12 6.71 19.15 38.28 42.61 0.05 45.79 36.60 43.29 0.18 

Rhinolophidae Rhinolophus euryale  12 15.58 9.25 21.82 106.91 0.01 106.91 91.24 105.67 0.01 

Rhinolophidae Rhinolophus euryotis  12 7.10 14.3 50.82 52.03 0.00 52.03 44.92 51.99 0.00 

Rhinolophidae Rhinolophus ferrumequinum  12 12.55 22.59 48.09 82.34 0.00 82.34 69.81 82.18 0.00 

Rhinolophidae Rhinolophus formosae  12 10.98 13.29 29.20 70.32 0 74.53 60.28 69.97 0.01 

Rhinolophidae Rhinolophus fumigatus  12 6.64 13.09 41.27 53.28 0.01 53.28 46.57 53.24 0.00 

Rhinolophidae Rhinolophus guineensis  12 10.53 15.00 30.08 67.36 0.07 71.77 57.74 67.15 0.07 

Rhinolophidae Rhinolophus hildebrandtii  12 5.79 25.99 46.62 34.31 0.00 34.31 28.50 34.27 0.00 

Rhinolophidae Rhinolophus hilli  12 10.90 13.60 29.34 69.76 0.01 73.99 59.80 69.41 0.01 

Rhinolophidae Rhinolophus hillorum  12 10.98 13.29 29.20 70.32 0 74.53 60.28 69.97 0.01 

Rhinolophidae Rhinolophus hipposideros  12 14.83 4.57 40.83 109.47 0.01 109.47 94.59 109.32 0.01 

Rhinolophidae Rhinolophus imaizumii  12 11.76 10.82 27.74 75.64 0.13 79.35 64.91 75.04 0.17 
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Rhinolophidae Rhinolophus inops  12 10.88 13.65 29.37 69.69 0.02 73.93 59.74 69.34 0.01 

Rhinolophidae Rhinolophus keyensis  12 13.95 6.26 24.22 92.02 0.52 92.91 78.96 90.47 0.63 

Rhinolophidae Rhinolophus landeri  12 19.20 9.39 41.85 105.46 0.01 105.46 86.25 105.41 0.00 

Rhinolophidae Rhinolophus lepidus  12 18.37 5.46 35.34 103.30 0.01 103.30 84.75 103.20 0.01 

Rhinolophidae Rhinolophus luctus  12 1.49 34.07 64.97 31.07 0.00 31.11 29.65 31.07 0.00 

Rhinolophidae Rhinolophus maclaudi  12 6.34 35.84 42.52 44.43 0.53 46.85 37.98 44.93 0.64 

Rhinolophidae Rhinolophus macrotis  12 6.44 6.18 28.47 47.00 0.01 47.00 40.58 46.95 0.00 

Rhinolophidae Rhinolophus madurensis  12 10.98 13.29 29.20 70.32 0 74.53 60.28 69.97 0.01 

Rhinolophidae Rhinolophus maendeleo  12 10.98 13.29 29.20 70.32 0 74.53 60.28 69.97 0.01 

Rhinolophidae Rhinolophus malayanus  12 13.95 6.73 32.04 85.62 0.00 85.62 71.68 85.55 0.00 

Rhinolophidae Rhinolophus marshalli  12 4.82 5.02 49.45 43.00 0.89 45.55 38.36 43.00 0.88 

Rhinolophidae Rhinolophus megaphyllus  12 7.56 10.17 56.06 68.80 0.00 68.85 61.29 68.80 0.00 

Rhinolophidae Rhinolophus mehelyi  12 5.00 14.03 35.90 110 1.00 89.93 97.42 110 0.98 

Rhinolophidae Rhinolophus mitratus  12 8.98 27.55 37.49 57.11 0.51 61.64 48.62 57.45 0.53 

Rhinolophidae Rhinolophus monoceros  12 16.27 7.49 40.39 106.45 0.01 107.29 90.99 106.45 0.01 

Rhinolophidae Rhinolophus montanus  12 10.98 13.29 29.20 70.32 0 74.53 60.28 69.97 0.01 

Rhinolophidae Rhinolophus nereis  12 10.88 13.65 29.37 69.69 0.02 73.93 59.74 69.34 0.01 

Rhinolophidae Rhinolophus osgoodi  2 11.24 12.39 28.67 72.10 0.04 76.16 61.87 71.66 0.06 

Rhinolophidae Rhinolophus paradoxolophus  12 5.07 8.17 48.76 44 0.83 46.23 38.71 44 0.84 

Rhinolophidae Rhinolophus pearsonii  12 5.33 11.55 42.30 56.72 0.00 56.72 51.42 56.68 0.00 
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Rhinolophidae Rhinolophus philippinensis  12 4.71 10.91 81.84 39.78 0.00 39.85 35.10 39.78 0.00 

Rhinolophidae Rhinolophus pusillus  12 12.18 5.15 36.08 109.93 0.00 109.93 97.72 109.85 0.00 

Rhinolophidae Rhinolophus rex  12 3.99 32.62 43.52 26.01 0.00 26.04 22.06 26.01 0.00 

Rhinolophidae Rhinolophus robinsoni  12 12.69 8.54 26.15 82.35 0.29 85.08 70.67 81.37 0.36 

Rhinolophidae Rhinolophus rouxii  12 12.85 12.25 33.52 80.00 0.27 83.39 68.31 80.00 0.27 

Rhinolophidae Rhinolophus rufus  12 10.98 13.29 29.20 70.32 0 74.53 60.28 69.97 0.01 

Rhinolophidae Rhinolophus ruwenzorii  12 6.76 25.54 39.73 46.20 0.29 48.92 39.57 46.57 0.44 

Rhinolophidae Rhinolophus sakejiensis  12 10.98 13.29 29.20 70.32 0 74.53 60.28 69.97 0.01 

Rhinolophidae Rhinolophus sedulus  12 8.07 8.74 30.50 67.92 0.00 67.92 59.91 67.87 0.00 

Rhinolophidae Rhinolophus shameli  12 7.66 9.61 34.87 69.65 0.00 69.65 61.98 69.59 0.00 

Rhinolophidae Rhinolophus shortridgei  12 10.98 13.29 29.20 70.32 0 74.53 60.28 69.97 0.01 

Rhinolophidae Rhinolophus siamensis  12 10.09 14.11 30.85 65.00 0.20 69.69 55.92 65.00 0.19 

Rhinolophidae Rhinolophus silvestris  12 9.29 21.23 32.79 59.50 0.27 64.11 51.01 59.68 0.30 

Rhinolophidae Rhinolophus simulator  12 14.59 8.13 29.37 80.76 0.00 80.76 66.20 80.71 0.01 

Rhinolophidae Rhinolophus sinicus  12 13.46 10.12 32.33 84.00 0.39 86.84 71.74 84.00 0.40 

Rhinolophidae Rhinolophus stheno  12 14.52 7.92 26.53 93.99 0.01 93.99 79.48 93.89 0.02 

Rhinolophidae Rhinolophus subbadius  12 9.98 5.86 35.45 67.49 0.19 71.64 58.67 67.29 0.12 

Rhinolophidae Rhinolophus subrufus  12 7.27 24.25 42.73 51.00 0.36 54.08 44.08 51.00 0.47 

Rhinolophidae Rhinolophus swinnyi  12 18.78 7.07 22.30 107.32 0.01 107.32 88.57 104.36 0.01 

Rhinolophidae Rhinolophus thomasi  12 14.80 8.26 33.89 89.61 0.00 89.61 74.82 89.53 0.00 
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Rhinolophidae Rhinolophus trifoliatus  12 8.21 15.16 19.51 52.56 0.01 52.56 44.24 52.41 0.01 

Rhinolophidae Rhinolophus virgo  12 9.34 6.06 38.44 68.65 0.43 70.49 59.86 67.49 0.26 

Rhinolophidae Rhinolophus yunanensis  12 4.74 19.33 49.34 49.77 0.00 49.77 45.03 49.70 0.00 

Rhinolophidae Rhinolophus ziama  12 10.98 13.29 29.20 70.32 0 74.53 60.28 69.97 0.01 

Rhinopomatidae Rhinopoma hardwickii  5 4.33 13.1 9.42 32.33 0.44 34.89 30.19 32.33 0.62 

Rhinopomatidae Rhinopoma macinnesi  5 4.73 13.11 8.03 36.71 0.66 39.75 33.62 36.60 0.65 

Rhinopomatidae Rhinopoma microphyllum  5 1.88 28.02 9.88 31.92 0.23 31.92 29.90 30.72 0.21 

Rhinopomatidae Rhinopoma muscatellum  5 5.00 9.13 7.20 43.95 0.96 46.51 40.33 42.86 0.93 

Thyropteridae Thyroptera discifera  8 28.67 3.13 2.66 67.97 7.11 93.86 60.64 73.33 9.27 

Thyropteridae Thyroptera lavali  8 24.56 5.23 3.02 52.93 5.69 76.76 47.51 57.86 7.63 

Thyropteridae Thyroptera tricolor  8 24.13 4.52 2.48 43.91 4.07 67.38 43.91 54.39 7.37 

Vespertilionidae Antrozous pallidus  10 34.36 22.24 2.59 27.22 11.34 61.55 27.22 44.76 13.22 

Vespertilionidae Arielulus aureocollaris  10 36.09 9.49 3.55 32.36 10.36 68.06 31.25 38.36 13.04 

Vespertilionidae Arielulus circumdatus  10 34.51 10.40 3.75 31.69 9.52 65.64 30.60 37.37 12.16 

Vespertilionidae Arielulus cuprosus  10 37.79 6.91 3.33 35.48 10.89 73.82 34.26 41.85 13.75 

Vespertilionidae Arielulus societatis  10 36.54 8.72 3.49 33.18 10.50 69.57 32.01 39.25 13.23 

Vespertilionidae Arielulus torquatus  10 41.64 10.05 2.71 28.55 14.09 70.26 28.55 35.82 16.85 

Vespertilionidae Barbastella barbastellus  5 17.77 8.31 3.52 28.82 3.52 46.49 28.82 35.33 4.47 

Vespertilionidae Barbastella leucomelas  10 11.33 15.05 2.52 28.55 3.48 39.82 28.55 34.49 3.55 

Vespertilionidae Bauerus dubiaquercus  10 34.61 22.22 3.23 29.11 9.61 61.59 27.39 36.34 11.83 
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Vespertilionidae Chalinolobus dwyeri  8 15.35 8.74 6.50 21.25 0.50 36.60 21.25 24.44 2.34 

Vespertilionidae Chalinolobus gouldii  8 18.27 14.24 9.19 29.39 0.65 44.89 26.62 29.39 2.05 

Vespertilionidae Chalinolobus morio  8 23.69 8.91 5.35 49.81 1.45 73.41 49.81 52.92 4.10 

Vespertilionidae Chalinolobus neocaledonicus  8 17.66 8.14 6.30 35.45 0.77 51.84 34.57 37.26 2.82 

Vespertilionidae Chalinolobus nigrogriseus  8 13.51 8.79 6.90 35.00 0.10 44 35.00 38.00 1.53 

Vespertilionidae Chalinolobus picatus  8 12 5.86 6.00 40 0.12 50 38.00 40 1.53 

Vespertilionidae Chalinolobus tuberculatus  8 22.90 10.46 6.54 36.41 1.22 59.35 36.41 40.47 3.35 

Vespertilionidae Cistugo lesueuri  7 45.80 6.38 2.9 46.50 31.87 85.99 40.17 46.50 30.57 

Vespertilionidae Cistugo seabrae  8 45.15 5.37 1.99 40.68 41.15 85.84 40.68 45.92 28.72 

Vespertilionidae Corynorhinus mexicanus  10 21.35 10.28 3.40 24.98 4.78 44.64 21.85 30.88 6.04 

Vespertilionidae Corynorhinus rafinesquii  10 21.61 9.15 3.36 25.41 4.86 45.52 22.24 31.41 6.14 

Vespertilionidae Corynorhinus townsendii  10 20.33 10.3 3.28 34.73 4.73 39.80 19.14 34.73 5.90 

Vespertilionidae Eptesicus andinus  8 22.60 10.95 6.28 32.92 2.28 56.18 32.17 36.31 4.47 

Vespertilionidae Eptesicus bobrinskoi  8 24.44 7.54 5.77 37.23 2.67 63.30 36.42 40.81 5.07 

Vespertilionidae Eptesicus bottae  3 14.99 15.66 7.76 30.47 0.92 45.56 30.47 33.56 2.00 

Vespertilionidae Eptesicus brasiliensis  8 20.06 9.20 9.45 32.64 0.80 52.48 32.64 34.86 2.32 

Vespertilionidae Eptesicus chiriquinus  8 22.60 10.95 6.28 32.92 2.28 56.18 32.17 36.31 4.47 

Vespertilionidae Eptesicus diminutus  8 23.77 5.99 6.38 37.52 2.06 62.82 36.93 40.85 4.46 

Vespertilionidae Eptesicus dimissus  8 21.76 13.03 6.54 31.06 2.10 52.98 30.36 34.36 4.20 

Vespertilionidae Eptesicus floweri  8 24.68 7.20 5.71 37.79 2.72 64.21 36.97 41.43 5.15 
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Vespertilionidae Eptesicus furinalis  3 26.97 7.70 5.35 38.15 3.36 65.32 38.15 42.84 6.18 

Vespertilionidae Eptesicus fuscus  8 31.56 17.49 7.93 27.28 2.11 58.81 27.28 32.55 4.10 

Vespertilionidae Eptesicus gobiensis  8 22.60 10.95 6.28 32.92 2.28 56.18 32.17 36.31 4.47 

Vespertilionidae Eptesicus guadeloupensis  8 13.82 18.99 6.73 26.98 1.02 38.26 25.52 26.98 1.92 

Vespertilionidae Eptesicus hottentotus  8 32.65 30.33 5.06 25.47 5.46 58.18 25.47 30.88 8.06 

Vespertilionidae Eptesicus innoxius  8 24.48 7.49 5.76 37.30 2.68 63.43 36.49 40.89 5.08 

Vespertilionidae Eptesicus japonensis  8 22.60 10.95 6.28 32.92 2.28 56.18 32.17 36.31 4.47 

Vespertilionidae Eptesicus kobayashii  8 21.25 14.53 6.71 29.96 1.99 51.04 29.28 33.18 4.04 

Vespertilionidae Eptesicus matroka  8 25.14 6.57 5.59 38.94 2.83 66.03 38.09 42.65 5.30 

Vespertilionidae Eptesicus nasutus  8 24.21 7.91 5.84 36.63 2.62 62.35 35.84 40.21 4.99 

Vespertilionidae Eptesicus nilssonii  8 9.53 10.72 11.72 26.50 0.60 35.95 26.50 28.55 1.07 

Vespertilionidae Eptesicus pachyotis  8 24.09 8.10 5.86 36.34 2.59 61.89 35.55 39.92 4.95 

Vespertilionidae Eptesicus platyops  8 22.60 10.95 6.28 32.92 2.28 56.18 32.17 36.31 4.47 

Vespertilionidae Eptesicus serotinus  7 25.60 23.09 6.39 26.42 3.20 52.15 26.42 31.17 5.24 

Vespertilionidae Eptesicus tatei  8 21.54 13.65 6.61 30.60 2.06 52.14 29.90 33.85 4.13 

Vespertilionidae Euderma maculatum  7 21.92 16.17 4.55 7.50 5.67 19 7.50 10.5 6.70 

Vespertilionidae Eudiscopus denticulus  8 32.33 7.20 3.45 39.85 7.98 72.64 38.51 44.79 10.92 

Vespertilionidae Falsistrellus affinis  7 34.87 10.77 3.54 40.57 12.91 71.93 38.17 44.12 15.42 

Vespertilionidae Falsistrellus mackenziei  7 35 23 5.00 40 11.64 68 33.00 40 14.08 

Vespertilionidae Falsistrellus mordax  7 35 10.46 3.52 40.85 12.96 72.39 38.44 44.43 15.48 
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Vespertilionidae Falsistrellus petersi  7 35.66 9.05 3.43 42.35 13.19 74.68 39.85 45.97 15.78 

Vespertilionidae Falsistrellus tasmaniensis  7 35 22.54 6.00 36.00 10.72 70.00 35.00 36.00 13.33 

Vespertilionidae Glauconycteris alboguttata  8 31.18 9.05 3.61 37.19 7.67 68.31 35.91 41.93 10.48 

Vespertilionidae Glauconycteris argentata  8 33.28 9.30 3.09 36.45 9.29 69.09 35.23 41.60 12.24 

Vespertilionidae Glauconycteris beatrix  8 34.89 7.50 2.84 38.32 10.10 72.83 37.08 43.77 13.18 

Vespertilionidae Glauconycteris curryae  8 31.19 9.03 3.60 37.19 7.67 68.34 35.95 41.97 10.48 

Vespertilionidae Glauconycteris egeria  8 31.62 8.41 3.54 38.13 7.79 69.87 36.86 42.95 10.65 

Vespertilionidae Glauconycteris gleni  8 30.15 10.81 3.76 34.99 7.36 64.59 33.78 39.57 10.06 

Vespertilionidae Glauconycteris humeralis  8 34.19 5.49 3.20 44.12 8.55 79.33 42.65 49.40 11.68 

Vespertilionidae Glauconycteris kenyacola  8 32.56 7.17 3.41 40.29 8.07 73.34 38.90 45.24 11.03 

Vespertilionidae Glauconycteris machadoi  8 31.19 9.03 3.60 37.19 7.67 68.34 35.95 41.97 10.48 

Vespertilionidae Glauconycteris poensis  8 32.79 6.91 3.38 40.77 8.14 74.17 39.41 45.79 11.12 

Vespertilionidae Glauconycteris superba  8 28.28 15.00 4.07 31.28 6.81 58.02 30.20 35.55 9.32 

Vespertilionidae Glauconycteris variegata  8 34.16 11.25 2.26 33.64 8.49 68.12 33.64 40.63 14.94 

Vespertilionidae Glischropus javanus  8 27.09 5.37 3.78 43.51 6.74 70.74 42.56 47.42 9.46 

Vespertilionidae Glischropus tylopus  8 28.31 4.59 3.43 44.59 6.58 72.99 44.59 48.16 11.16 

Vespertilionidae Harpiocephalus harpia  7 52.03 13.65 2.55 36.60 27.38 90.12 34.57 48.42 26.67 

Vespertilionidae Harpiocephalus mordax  7 51.79 20.09 2.57 36.23 27.28 89.38 34.23 47.94 26.55 

Vespertilionidae Hesperoptenus blanfordi  8 18.60 6.91 8.30 36.00 0.49 53.39 34.09 36.00 2.44 

Vespertilionidae Hesperoptenus doriae  8 19.40 9.74 7.09 33.25 1.01 52.30 32.39 35.41 3.05 
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Vespertilionidae Hesperoptenus gaskelli  8 21.23 9.40 6.37 32.59 2.00 53.38 31.69 35.27 4.19 

Vespertilionidae Hesperoptenus tickelli  8 19.21 16.30 7.05 28.19 1.58 45.72 27.39 30.69 3.54 

Vespertilionidae Hesperoptenus tomesi  8 18.36 20.66 7.36 26.47 1.41 42.60 25.71 28.90 3.27 

Vespertilionidae Histiotus alienus  8 22.44 11.63 6.50 31.82 2.20 54.58 31.09 35.20 4.37 

Vespertilionidae Histiotus humboldti  8 22.44 11.63 6.50 31.82 2.20 54.58 31.09 35.20 4.37 

Vespertilionidae Histiotus laephotis  8 22.44 11.63 6.50 31.82 2.20 54.58 31.09 35.20 4.37 

Vespertilionidae Histiotus macrotus  8 22.72 11.00 6.41 32.43 2.25 55.65 31.72 35.84 4.46 

Vespertilionidae Histiotus magellanicus  8 22.44 11.63 6.50 31.82 2.20 54.58 31.09 35.20 4.37 

Vespertilionidae Histiotus montanus  8 21.10 15.94 6.93 28.99 1.92 49.59 28.36 32.20 3.94 

Vespertilionidae Histiotus velatus  8 22.55 11.32 6.46 32.07 2.22 55.03 31.34 35.45 4.41 

Vespertilionidae Hypsugo alaschanicus  7 21.66 5.60 4.41 40.33 4.00 61.56 39.41 42.52 6.48 

Vespertilionidae Hypsugo anchietae  7 46.28 8.74 1.87 46.64 32.56 92.71 46.64 54.90 27.16 

Vespertilionidae Hypsugo anthonyi  7 20.00 8.41 4.79 35.87 3.55 54.88 35.02 38.02 5.84 

Vespertilionidae Hypsugo arabicus  7 24.07 3.17 3.94 47.47 4.64 71.54 46.43 49.70 7.42 

Vespertilionidae Hypsugo ariel  7 16.14 4.07 1.96 45.47 17.30 60.74 44.49 45.47 8.53 

Vespertilionidae Hypsugo bodenheimeri  8 18.09 2.73 3.97 44.26 1.13 62.43 44.26 46.91 4.57 

Vespertilionidae Hypsugo cadornae  7 20.92 6.69 4.57 38.28 3.80 58.58 37.41 40.49 6.20 

Vespertilionidae Hypsugo crassulus  7 21.31 6.09 4.49 39.33 3.90 60.14 38.47 41.55 6.34 

Vespertilionidae Hypsugo eisentrauti  7 24.83 6.11 5.05 41.51 3.41 65.19 39.92 43.77 6.20 

Vespertilionidae Hypsugo imbricatus  7 21.17 6.29 4.52 38.98 3.87 59.60 38.09 41.18 6.30 
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Vespertilionidae Hypsugo joffrei  7 19.71 9.05 4.86 35.13 3.48 53.71 34.30 37.26 5.73 

Vespertilionidae Hypsugo kitcheneri  7 20.62 7.20 4.64 37.49 3.72 57.38 36.63 39.69 6.09 

Vespertilionidae Hypsugo lophurus  7 20.96 6.64 4.57 38.40 3.80 58.71 37.52 40.57 6.21 

Vespertilionidae Hypsugo macrotis  7 22.01 5.14 4.34 41.31 4.09 63.01 40.37 43.51 6.62 

Vespertilionidae Hypsugo musciculus  7 26.13 1.99 3.59 54.27 5.20 80.26 53.09 56.49 8.22 

Vespertilionidae Hypsugo pulveratus  7 21.71 5.53 4.40 40.45 4.00 61.76 39.53 42.65 6.50 

Vespertilionidae Hypsugo savii  8 16.70 6.30 7.08 33.59 1.96 50.32 33.59 36.15 3.74 

Vespertilionidae Hypsugo vordermanni  7 21.66 5.60 4.41 40.33 4.00 61.56 39.41 42.52 6.48 

Vespertilionidae Ia io  8 18.86 49.3 3.80 25 6.90 37.20 22.87 25 8.33 

Vespertilionidae Idionycteris phyllotis  10 15.83 12.13 2.92 13.69 4.82 29.67 13.69 20.37 5.25 

Vespertilionidae Kerivoula africana  7 56.27 3.50 1.72 81.53 31.96 135.96 78.02 93.97 32.24 

Vespertilionidae Kerivoula agnella  7 50.74 7.20 2.04 63.62 29.56 115.13 60.89 74.22 29.39 

Vespertilionidae Kerivoula argentata  7 36 10.11 2.3 92 21.69 117.94 85.29 92 21.91 

Vespertilionidae Kerivoula cuprosa  7 52.63 5.61 1.92 69.34 30.37 122.32 66.35 80.56 30.36 

Vespertilionidae Kerivoula eriophora  7 56.27 3.50 1.72 81.53 31.96 135.96 78.02 93.97 32.24 

Vespertilionidae Kerivoula flora  7 52.10 6.01 1.95 67.69 30.15 120.34 64.78 78.73 30.09 

Vespertilionidae Kerivoula hardwickii  7 95.09 4.55 1.99 92.97 39.78 188.17 92.97 148.17 39.87 

Vespertilionidae Kerivoula intermedia  7 69.35 3.68 2.74 77.55 39.52 147.15 77.55 83.82 38.91 

Vespertilionidae Kerivoula lanosa  7 43.33 6.66 2.13 36.88 27.63 79.77 36.88 45.57 24.06 

Vespertilionidae Kerivoula lenis  7 53.45 5.03 1.87 71.95 30.73 125.22 68.85 83.43 30.79 
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Vespertilionidae Kerivoula minuta  7 47.83 2.03 1.16 105.05 47.57 152.88 105.05 105.05 43.40 

Vespertilionidae Kerivoula muscina  7 53.07 5.29 1.89 70.74 30.57 123.88 67.69 82.11 30.60 

Vespertilionidae Kerivoula myrella  7 50.74 7.20 2.04 63.62 29.56 115.13 60.89 74.22 29.39 

Vespertilionidae Kerivoula papillosa  7 64.80 10.21 1.62 108.10 33.39 150.37 85.53 108.10 35.42 

Vespertilionidae Kerivoula pellucida  7 59.03 4.14 1.86 94.18 32.63 153.21 94.18 147.27 24.61 

Vespertilionidae Kerivoula phalaena  7 57.42 3.03 1.66 85.71 32.44 140.42 82.02 98.59 32.81 

Vespertilionidae Kerivoula picta  7 66.93 4.50 0.58 116 51.04 160.28 101.09 116 48.86 

Vespertilionidae Kerivoula smithii  7 52.29 5.86 1.94 68.31 30.24 121 65.37 79.36 30.19 

Vespertilionidae Kerivoula whiteheadi  7 56.76 3.29 1.69 83.26 32.17 137.83 79.76 95.97 32.48 

Vespertilionidae Laephotis angolensis  3 22.03 6.11 4.54 31.19 4.79 50.94 29.93 33.52 7.28 

Vespertilionidae Laephotis botswanae  3 22 7.28 5.00 33.00 3.53 46.64 29.17 33.00 5.81 

Vespertilionidae Laephotis namibensis  3 13.5 8.72 2.6 22.00 2.06 31.47 21.78 22.00 3.90 

Vespertilionidae Laephotis wintoni  3 5.85 6.10 10.95 21.05 0.53 26.90 21.05 23.08 0.58 

Vespertilionidae Lasionycteris noctivagans  8 24.76 11.02 9.21 26.33 0.83 51.04 26.33 30.19 2.51 

Vespertilionidae Lasiurus atratus  3 17.49 12.09 7.11 34.47 0.95 52.39 34.23 37.90 2.69 

Vespertilionidae Lasiurus blossevillii  3 16.30 11.58 7.24 36.45 0.63 53.13 36.31 39.45 2.27 

Vespertilionidae Lasiurus borealis  3 13.84 12.33 8.50 38.56 0.62 52.48 38.56 40.95 1.60 

Vespertilionidae Lasiurus castaneus  3 22.86 12.51 6.30 30.72 2.60 53.54 30.20 35.41 4.72 

Vespertilionidae Lasiurus cinereus  3 16.96 27.06 9.30 17 0.78 29 17 23.9 2.21 

Vespertilionidae Lasiurus degelidus  3 17.35 12.01 7.12 34.71 0.92 52.49 34.47 38.09 2.64 
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Vespertilionidae Lasiurus ebenus  3 22.47 14.00 6.42 29.93 2.52 52.11 29.43 34.54 4.60 

Vespertilionidae Lasiurus ega  7 23.41 12.2 9.10 28.8 2.50 51.47 28.8 32.20 4.69 

Vespertilionidae Lasiurus egregius  3 21.74 17.41 6.65 28.45 2.35 49.41 27.97 32.92 4.35 

Vespertilionidae Lasiurus insularis  3 24.95 15.15 5.96 30.02 3.40 54.35 29.46 34.99 5.67 

Vespertilionidae Lasiurus intermedius  7 30.41 22.96 3.18 31.04 4.22 60.89 31.04 36.18 8.32 

Vespertilionidae Lasiurus minor  3 22.38 14.40 6.44 29.73 2.49 51.75 29.22 34.33 4.56 

Vespertilionidae Lasiurus pfeifferi  3 16.73 11.37 7.15 36.42 0.73 53.63 36.23 39.57 2.41 

Vespertilionidae Lasiurus salinae  3 22.38 14.40 6.44 29.73 2.49 51.75 29.22 34.33 4.56 

Vespertilionidae Lasiurus seminolus  3 16.92 9.88 7.08 36.97 0.76 54.43 36.78 40.13 2.46 

Vespertilionidae Lasiurus varius  3 22.38 14.40 6.44 29.73 2.49 51.75 29.22 34.33 4.56 

Vespertilionidae Lasiurus xanthinus  3 24.80 15.10 5.99 30.02 3.34 54.18 29.43 34.95 5.59 

Vespertilionidae Mimetillus moloneyi  8 31.51 8.89 3.56 38.05 7.74 69.69 36.74 42.86 10.59 

Vespertilionidae Murina aenea  7 56.61 7.50 2.40 83.00 28.75 131.10 69.34 83.00 28.99 

Vespertilionidae Murina aurata  7 66.67 4.27 1.60 67.83 36.91 137.59 63.75 85.88 36.37 

Vespertilionidae Murina cyclotis  7 56.34 9.35 2.00 77.00 31.22 125.66 64.14 77.00 30.85 

Vespertilionidae Murina florium  7 44.82 4.41 1.01 60.51 23.81 99.58 54.76 60.51 21.75 

Vespertilionidae Murina fusca  7 64.00 6.14 1.72 60.89 35.77 128.37 57.17 77.40 35.04 

Vespertilionidae Murina grisea  7 64.66 5.61 1.69 62.55 36.05 130.64 58.73 79.44 35.36 

Vespertilionidae Murina hilgendorfi  7 75.22 8.08 1.37 40.96 48.02 116.47 40.96 58.22 46.26 

Vespertilionidae Murina huttoni  7 62.31 7.56 1.92 49.35 33.49 116.64 46.62 65.83 32.65 
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Vespertilionidae Murina leucogaster  7 70 7.54 3.00 25 44.05 195.00 25 70 39.95 

Vespertilionidae Murina puta  7 70.19 6.91 1.49 54.90 40.87 125.03 54.90 65.99 43.39 

Vespertilionidae Murina rozendaali  7 64.66 5.61 1.69 62.55 36.05 130.64 58.73 79.44 35.36 

Vespertilionidae Murina ryukyuana  7 67.54 5.89 1.73 48.42 38.21 120.78 45.83 66.35 36.88 

Vespertilionidae Murina silvatica  7 66.32 4.48 1.62 66.89 36.76 136.42 62.87 84.69 36.20 

Vespertilionidae Murina suilla  7 92.50 4 1.25 60.56 50.56 153.06 60.56 124.14 60.07 

Vespertilionidae Murina tenebrosa  7 63.72 6.38 1.74 60.16 35.65 127.46 56.54 76.55 34.90 

Vespertilionidae Murina tubinaris  7 64.87 5.45 1.68 63.05 36.15 131.33 59.26 80.08 35.47 

Vespertilionidae Murina ussuriensis  7 71.59 4.69 1.84 43.35 40.56 115.90 43.35 67.14 40.94 

Vespertilionidae Myotis abei  7 49.42 6.11 3.37 37.60 13.36 90.59 36.53 49.85 16.27 

Vespertilionidae Myotis adversus  7 47.68 10.41 4.68 30.00 10.12 82 30.00 46.00 13.04 

Vespertilionidae Myotis aelleni  7 46.27 9.40 3.74 32.39 12.40 80.26 31.44 43.21 15.03 

Vespertilionidae Myotis albescens  7 44.23 5.69 1.49 73.02 32.33 102.98 58.75 73.02 30.09 

Vespertilionidae Myotis alcathoe  7 51.15 8.17 2.24 44.87 28.62 96.18 44.87 59.74 25.17 

Vespertilionidae Myotis altarium  7 39.77 11.00 4.56 33.55 7.53 75.41 32.95 43.68 10.42 

Vespertilionidae Myotis anjouanensis  7 47.75 7.66 3.56 34.78 12.85 85.08 33.75 46.25 15.61 

Vespertilionidae Myotis annamiticus  7 47.75 7.66 3.56 34.78 12.85 85.08 33.75 46.25 15.61 

Vespertilionidae Myotis annectans  7 45.34 9.75 3.28 36.05 14.12 83.76 35.20 47.51 16.46 

Vespertilionidae Myotis atacamensis  7 37.46 7.37 2.73 39.57 13.37 77.21 38.63 47.32 15.97 

Vespertilionidae Myotis ater  7 47.75 7.66 3.56 34.78 12.85 85.08 33.75 46.25 15.61 
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Vespertilionidae Myotis auriculus  7 59.76 38.04 3.46 35.97 19.93 96.08 35.97 49.60 19.42 

Vespertilionidae Myotis australis  7 47.64 7.79 3.57 34.57 12.81 84.68 33.55 46.02 15.56 

Vespertilionidae Myotis austroriparius  7 37.80 7.35 2.71 40.53 13.85 78.48 39.49 48.23 16.40 

Vespertilionidae Myotis bechsteinii  7 48.09 9.47 3.51 32.47 17.05 81.20 32.47 46.11 16.98 

Vespertilionidae Myotis blythii  8 53.72 23.82 3.54 29.94 18.49 83.39 29.94 44.00 18.30 

Vespertilionidae Myotis bocagii  7 36.58 7.93 2.20 28.17 16.70 64.74 28.17 41.26 16.34 

Vespertilionidae Myotis bombinus  7 66.90 9.74 4.12 24.00 16.06 87.12 22.94 38.71 18.78 

Vespertilionidae Myotis brandtii  7 52.67 5.30 2.89 35.95 20.29 88.99 35.95 49.27 19.53 

Vespertilionidae Myotis bucharensis  7 47.75 7.66 3.56 34.78 12.85 85.08 33.75 46.25 15.61 

Vespertilionidae Myotis californicus  7 48.61 4.39 3.29 37.55 14.52 86.01 37.55 51.44 14.83 

Vespertilionidae Myotis capaccinii  7 41.38 8.15 3.55 36.97 9.53 78.39 36.97 52.27 11.40 

Vespertilionidae Myotis chiloensis  7 33.60 8.41 2.10 43.4 14.11 72.73 39.25 43.4 16.39 

Vespertilionidae Myotis chinensis  7 33.68 41.99 4.56 25.30 7.02 59.10 25.30 34.47 8.55 

Vespertilionidae Myotis ciliolabrum  7 49.52 4.89 3.23 39.37 12.34 92.43 37.86 52.35 15.55 

Vespertilionidae Myotis cobanensis  7 45.25 10.82 3.87 30.85 12.09 77.02 29.93 41.26 14.64 

Vespertilionidae Myotis csorbai  7 47.75 7.66 3.56 34.78 12.85 85.08 33.75 46.25 15.61 

Vespertilionidae Myotis dasycneme  7 32.90 15.16 4.45 28.15 5.38 60.86 28.15 39.43 6.46 

Vespertilionidae Myotis daubentonii  7 42.78 7.63 3.26 33.09 11.57 75.79 33.09 46.98 12.72 

Vespertilionidae Myotis davidii  7 47.08 13.24 4.05 30.30 11.63 78.87 29.55 42.31 14.05 

Vespertilionidae Myotis dominicensis  7 33.08 6.11 2.90 44.46 6.80 77.71 44.46 50.78 12.05 



Appendices  

383 

Family Species 

Species sets for each parameter 

E
ch

o
lo

ca
ti

o
n

 C
a

ll
 T

y
p

e
 

B
a

n
d

w
id

th
 (

k
H

z)
 

B
o

d
y

 M
a

ss
 (

g
) 

C
a

ll
 D

u
ra

ti
o

n
 (

m
s)

 

C
h

a
ra

ct
er

is
ti

c 
F

re
q

u
en

cy
 

(k
H

z)
 

D
o

m
in

a
n

t 
S

lo
p

e 
(k

H
z/

m
s)

 

M
a

x
im

u
m

 F
re

q
u

en
cy

 

(k
H

z)
 

M
in

im
u

m
 F

re
q

u
en

cy
 

(k
H

z)
 

P
ea

k
 F

re
q

u
en

cy
 (

k
H

z)
 

T
o

ta
l 

S
lo

p
e 

(k
H

z/
m

s)
 

Vespertilionidae Myotis elegans  7 45.92 4.21 2.61 66.28 9.25 101.16 55.92 66.28 17.90 

Vespertilionidae Myotis emarginatus  7 54.29 7.56 2.15 42.95 27.27 97.23 42.95 60.75 25.96 

Vespertilionidae Myotis evotis  7 40.00 6.91 2.72 52.00 12.76 80 40 52.00 15.30 

Vespertilionidae Myotis fimbriatus  7 58.95 12.34 2.80 15.45 20.77 74.56 15.45 26.34 23.03 

Vespertilionidae Myotis findleyi  7 51.07 4.91 3.20 40.57 13.85 96.06 39.41 53.57 16.91 

Vespertilionidae Myotis formosus  7 54.36 7.07 2.35 38.92 28.42 93.39 38.92 54.26 25.92 

Vespertilionidae Myotis fortidens  7 42.56 4.37 2.47 51.99 14.91 95.49 50.55 60.89 17.91 

Vespertilionidae Myotis frater  7 60.6 7.54 3.50 51.01 15.56 110.80 50.20 68.17 18.76 

Vespertilionidae Myotis gomantongensis  7 47.75 7.66 3.56 34.78 12.85 85.08 33.75 46.25 15.61 

Vespertilionidae Myotis goudoti  7 58.34 5.56 3.01 45.62 15.50 103.93 45.62 64.37 19.65 

Vespertilionidae Myotis grisescens  7 36.23 10.84 2.87 37.26 13.30 73.00 36.31 44.52 15.70 

Vespertilionidae Myotis hajastanicus  7 47.75 7.66 3.56 34.78 12.85 85.08 33.75 46.25 15.61 

Vespertilionidae Myotis hasseltii  7 42.67 8.70 5.63 37.26 6.53 79.95 37.26 47.72 7.88 

Vespertilionidae Myotis hermani  7 47.75 7.66 3.56 34.78 12.85 85.08 33.75 46.25 15.61 

Vespertilionidae Myotis horsfieldii  7 41.71 6.05 4.12 39.92 7.91 85.56 39.33 51.21 11.09 

Vespertilionidae Myotis hosonoi  7 48.80 6.64 3.44 36.53 13.17 88.55 35.48 48.47 16.02 

Vespertilionidae Myotis ikonnikovi  7 59.03 5.86 2.18 40.02 32.42 98.73 40.02 48.34 28.24 

Vespertilionidae Myotis insularum  7 49.42 6.11 3.37 37.60 13.36 90.59 36.53 49.85 16.27 

Vespertilionidae Myotis keaysi  8 45.62 5.45 2.92 59.33 19.29 105.43 59.33 62.93 18.00 

Vespertilionidae Myotis keenii  7 67.77 6.51 1.14 39.84 40.05 107.53 39.84 59.67 38.87 
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Vespertilionidae Myotis laniger  7 47.75 7.66 3.56 34.78 12.85 85.08 33.75 46.25 15.61 

Vespertilionidae Myotis leibii  8 52.90 5.22 3.77 38.88 9.21 91.73 38.88 55.78 13.31 

Vespertilionidae Myotis levis  8 34.65 5.49 4.11 51.01 5.32 86.97 49.80 57.74 8.72 

Vespertilionidae Myotis longipes  7 39.29 7.2 5.33 37.10 9.53 76.21 37.10 44.64 9.85 

Vespertilionidae Myotis lucifugus  8 41.15 7.80 2.52 36.55 12.39 77.15 36.55 47.39 14.87 

Vespertilionidae Myotis macrodactylus  7 41.09 7.48 4.68 43.84 2.93 85.54 43.84 51.29 8.64 

Vespertilionidae Myotis macropus  7 32.48 8.32 3.15 39.38 8.82 72.09 39.38 48.62 11.81 

Vespertilionidae Myotis macrotarsus  7 37.28 12.64 4.69 33.28 6.88 72.45 32.79 42.82 9.67 

Vespertilionidae Myotis martiniquensis  8 40.14 7.49 2.14 31.12 16.26 71.03 31.12 47.03 21.14 

Vespertilionidae Myotis melanorhinus  7 47.75 7.66 3.56 34.78 12.85 85.08 33.75 46.25 15.61 

Vespertilionidae Myotis moluccarum  10 46.60 7.66 4.84 32.10 5.11 78.70 32.10 41.94 8.08 

Vespertilionidae Myotis montivagus  7 46.64 8.30 3.14 38.40 14.54 88.13 37.49 50.45 16.99 

Vespertilionidae Myotis morrisi  7 43.40 14.09 4.12 28.16 11.53 71.12 27.30 37.79 13.92 

Vespertilionidae Myotis muricola  7 48.10 4.8 5.07 34.95 5.31 83.25 34.95 48.69 9.06 

Vespertilionidae Myotis myotis  8 38.52 25.59 5.24 26.24 7.91 64.95 26.24 35.45 8.50 

Vespertilionidae Myotis mystacinus  7 53.62 7.61 2.40 37.55 24.28 91.04 37.55 52.66 23.17 

Vespertilionidae Myotis nattereri  7 67.57 7.25 3.47 25.55 18.28 93.30 25.55 46.95 19.66 

Vespertilionidae Myotis nesopolus  7 53.52 3.56 2.96 45.33 14.60 104.45 44.08 59.62 17.88 

Vespertilionidae Myotis nigricans  8 34.18 5.53 5.18 51.68 1.78 86.13 51.68 56.20 6.33 

Vespertilionidae Myotis nipalensis  7 47.75 7.66 3.56 34.78 12.85 85.08 33.75 46.25 15.61 
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Vespertilionidae Myotis occultus  8 45.31 8.79 2.98 34.92 14.13 81.65 33.68 46.02 16.64 

Vespertilionidae Myotis oreias  7 47.08 8.41 3.64 33.65 12.65 82.86 32.69 44.84 15.35 

Vespertilionidae Myotis oxygnathus  7 40.58 21.23 4.55 24.43 10.68 62.43 23.69 33.02 12.82 

Vespertilionidae Myotis oxyotus  7 35.88 5.65 3.72 50.25 6.98 87.31 48.96 57.34 10.36 

Vespertilionidae Myotis ozensis  7 49.74 5.86 3.34 38.13 13.45 91.62 37.04 50.55 16.39 

Vespertilionidae Myotis peninsularis  7 46.54 9.05 3.71 32.82 12.48 81.14 31.85 43.77 15.14 

Vespertilionidae Myotis pequinius  7 71.39 17.41 5.72 17 16.55 84 17 33.00 19.13 

Vespertilionidae Myotis planiceps  7 54.89 2.99 2.84 48.13 15.02 109.20 46.81 63.18 18.42 

Vespertilionidae Myotis pruinosus  7 50.14 4.91 2.80 45.29 15.68 100.20 44.26 59.09 18.43 

Vespertilionidae Myotis punicus  7 32.61 18.92 3.91 27.16 7.43 60.30 27.16 35.43 8.51 

Vespertilionidae Myotis ricketti  7 39.36 26.19 3.65 30.62 10.01 70.10 30.62 40.52 10.83 

Vespertilionidae Myotis ridleyi  7 45.32 4.06 3.90 48.86 7.18 99.04 48.18 61.50 10.96 

Vespertilionidae Myotis riparius  10 34.33 4.57 3.19 55.35 6.94 90.28 55.35 57.68 11.87 

Vespertilionidae Myotis rosseti  7 54.13 3.29 2.90 46.57 14.78 106.50 45.29 61.19 18.12 

Vespertilionidae Myotis ruber  8 41.04 4.99 2.84 55.09 11.75 95.75 53.41 62.49 15.28 

Vespertilionidae Myotis schaubi  7 62.15 11.99 4.10 24.98 15.10 84.81 24.00 39.17 17.70 

Vespertilionidae Myotis scotti  7 48.29 8.72 2.52 37.19 19.52 88.13 36.42 50.20 21.06 

Vespertilionidae Myotis septentrionalis  7 68.39 18.28 2.95 38.37 20.18 106.94 38.37 49.93 27.28 

Vespertilionidae Myotis sicarius  7 43.29 20.09 4.24 28.28 11.27 71.50 27.63 38.94 13.46 

Vespertilionidae Myotis siligorensis  8 49.13 2.93 4.45 79.76 1.36 125.03 76.43 79.76 13.26 
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Vespertilionidae Myotis simus  8 38.61 8.10 3.10 51.11 10.38 89.08 49.55 57.74 13.85 

Vespertilionidae Myotis sodalis  7 46.50 7.15 3.16 40.57 14.16 89.06 39.33 51.42 16.98 

Vespertilionidae Myotis stalkeri  7 42.34 16.43 4.28 26.68 11.21 67.80 25.89 35.91 13.50 

Vespertilionidae Myotis thysanodes  7 66.97 8.49 4.01 17.87 17.07 84.71 17.87 36.52 18.38 

Vespertilionidae Myotis tricolor  7 56.91 13.67 2.16 34.64 28.59 90.97 34.64 49.12 27.29 

Vespertilionidae Myotis velifer  7 37.54 9.82 2.48 38.70 20.99 76.21 38.70 43.44 17.31 

Vespertilionidae Myotis vivesi  7 34.31 25.63 3.71 29.81 11.58 61.45 28.88 36.34 13.67 

Vespertilionidae Myotis volans  7 44.71 8.71 3.71 37.95 14.14 82.82 37.95 46.39 14.80 

Vespertilionidae Myotis welwitschii  7 28.30 15.88 2.47 23.06 10.19 51.54 23.06 32.66 11.96 

Vespertilionidae Myotis yanbarensis  7 47.25 7.59 3.07 39.53 14.74 90.17 38.59 51.88 17.24 

Vespertilionidae Myotis yesoensis  7 49.42 6.11 3.37 37.60 13.36 90.59 36.53 49.85 16.27 

Vespertilionidae Myotis yumanensis  7 39.13 5.15 2.39 43.51 16.53 83.10 42.56 51.47 18.81 

Vespertilionidae Neoromicia brunneus  8 27.44 6.91 3.48 44.08 8.95 68.43 42.35 45.88 11.71 

Vespertilionidae Neoromicia capensis  8 33.78 5.96 3.81 36.36 6.64 70.32 36.36 40.91 10.35 

Vespertilionidae Neoromicia flavescens  8 25.98 10.50 3.75 41.06 8.14 63.89 39.45 42.86 10.77 

Vespertilionidae Neoromicia guineensis  8 30.30 3.50 3.12 53.52 9.57 80.73 51.47 55.20 12.69 

Vespertilionidae Neoromicia helios  8 30.23 3.56 3.13 53.30 9.54 80.46 51.21 54.98 12.66 

Vespertilionidae Neoromicia melckorum  8 27.43 7.20 3.52 44.97 8.62 69.46 43.21 46.71 11.42 

Vespertilionidae Neoromicia nanus  8 22.58 3.88 4.63 68.34 5.23 90.87 68.34 69.41 6.90 

Vespertilionidae Neoromicia rendalli  8 27.76 6.42 3.43 44.97 9.06 69.67 43.21 46.76 11.86 
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Vespertilionidae Neoromicia somalicus  8 43.30 3.53 2.15 36.99 28.92 80.00 36.99 44.98 25.51 

Vespertilionidae Neoromicia tenuipinnis  8 25 5.35 1.5 56.66 12.41 37 62 49.25 15.05 

Vespertilionidae Neoromicia zuluensis  7 41.14 4.14 3.06 44.89 12.40 75.71 33.82 44.89 14.56 

Vespertilionidae Nyctalus aviator  7 27.72 31.87 1.89 22.76 13.56 50.81 22.76 40.29 16.42 

Vespertilionidae Nyctalus azoreum  8 20.34 8.80 16 30.00 1.50 47.35 26.44 30.00 3.21 

Vespertilionidae Nyctalus furvus  10 20.73 14.86 5.81 26.18 4.96 46.34 25.46 30.81 6.33 

Vespertilionidae Nyctalus lasiopterus  8 5.03 45.98 22.03 14.20 0.15 19.29 14.20 15.23 0.23 

Vespertilionidae Nyctalus leisleri  8 21.30 12.47 7.97 26.52 1.33 48.02 26.52 30.67 3.61 

Vespertilionidae Nyctalus montanus  10 20.73 14.86 5.81 26.18 4.96 46.34 25.46 30.81 6.33 

Vespertilionidae Nyctalus noctula  3 10.01 28.48 13.13 21.33 0.44 31.44 21.33 22.86 1.00 

Vespertilionidae Nyctalus plancyi  10 29.27 15.15 1.85 23.37 16.26 52.75 23.37 34.96 17.63 

Vespertilionidae Nycticeinops schlieffeni  8 25.59 5.05 2.82 38.87 2.54 64.29 38.87 43.73 8.88 

Vespertilionidae Nycticeius aenobarbus  8 24.15 14.11 5.39 34.71 4.07 56.88 33.65 37.11 6.58 

Vespertilionidae Nycticeius cubanus  8 19.56 14.66 4.53 33.00 3.30 47.00 33.00 36.00 5.55 

Vespertilionidae Nycticeius humeralis  8 28.83 9.12 4.98 39.69 5.01 67.55 38.24 42.82 7.88 

Vespertilionidae Nyctophilus arnhemensis  8 35 6.83 3.00 51.00 8.10 80 45.00 51.00 11.40 

Vespertilionidae Nyctophilus bifax  8 19.73 9.89 5.27 46.00 1.85 59 46.00 55.00 4.18 

Vespertilionidae Nyctophilus geoffroyi  8 45.96 8.20 4.44 37.49 12.40 84.68 37.49 49.77 14.77 

Vespertilionidae Nyctophilus gouldi  8 34.38 11.32 4.63 37.19 6.95 70.22 35.30 42.52 10.00 

Vespertilionidae Nyctophilus heran  8 26.00 7.61 4.79 45.29 3.65 69.69 43.38 47.80 6.50 
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Vespertilionidae Nyctophilus howensis  8 26.00 7.61 4.79 45.29 3.65 69.69 43.38 47.80 6.50 

Vespertilionidae Nyctophilus microdon  8 25.21 9.05 4.96 43.03 3.46 66.57 41.22 45.56 6.22 

Vespertilionidae Nyctophilus microtis  8 26.20 7.29 4.75 45.83 3.70 70.48 43.95 48.38 6.57 

Vespertilionidae Nyctophilus nebulosus  8 26.00 7.61 4.79 45.29 3.65 69.69 43.38 47.80 6.50 

Vespertilionidae Nyctophilus timoriensis  8 23.85 11.02 5.08 44.40 3.17 64.77 41.31 44.40 5.82 

Vespertilionidae Nyctophilus walkeri  8 26 4.44 5.00 56.00 3.01 78.00 52.00 56.00 5.97 

Vespertilionidae Otonycteris hemprichii  10 28.94 21.98 4.28 20.43 3.76 49.63 20.43 37.46 6.91 

Vespertilionidae Pharotis imogene  8 26.15 8.10 5.13 41.18 3.39 66.23 39.53 44.17 6.21 

Vespertilionidae Philetor brachypterus  8 39.09 12.00 4.57 37.34 6.08 74.32 35.52 42.86 9.93 

Vespertilionidae Phoniscus aerosa  7 70.45 7.79 2.52 69.90 29.22 135.96 63.24 82.19 31.58 

Vespertilionidae Phoniscus atrox  7 62.47 4.81 2.89 82.00 24.26 133.86 69.69 82.00 27.06 

Vespertilionidae Phoniscus jagorii  7 71.10 4.70 2.20 94.00 29.67 149.57 78.49 94.00 32.37 

Vespertilionidae Phoniscus papuensis  7 95 6.32 3.00 80.00 35.49 160 65.00 80.00 38.51 

Vespertilionidae Pipistrellus abramus  8 8.83 5.87 8.33 43.33 0.56 52.19 43.33 44.60 1.36 

Vespertilionidae Pipistrellus adamsi  8 18.30 4.93 5.12 44.64 1.11 62.78 44.64 48.02 4.27 

Vespertilionidae Pipistrellus aero  8 17.58 5.14 5.41 43.77 1.43 61.65 43.73 46.15 3.52 

Vespertilionidae Pipistrellus angulatus  8 18.34 3.35 5.20 46.34 1.59 65.08 46.34 48.76 3.78 

Vespertilionidae Pipistrellus ceylonicus  8 16.82 8.05 5.64 41.22 1.28 58.17 41.18 43.60 3.27 

Vespertilionidae Pipistrellus collinus  8 17.11 6.75 5.55 42.18 1.34 59.52 42.18 44.61 3.37 

Vespertilionidae Pipistrellus coromandra  8 20.37 4.59 6.64 46.39 1.50 67.11 44.97 48.33 3.61 
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Vespertilionidae Pipistrellus deserti  8 17.75 4.69 5.37 44.30 1.47 62.38 44.30 46.71 3.58 

Vespertilionidae Pipistrellus endoi  8 17.58 5.14 5.41 43.77 1.43 61.65 43.73 46.15 3.52 

Vespertilionidae Pipistrellus hesperidus  10 41.64 5.38 2.67 45.19 9.74 86.90 45.19 52.32 17.48 

Vespertilionidae Pipistrellus hesperus  8 33.51 3.56 3.83 37.69 1.63 71.12 37.69 43.04 7.01 

Vespertilionidae Pipistrellus inexspectatus  8 17.67 4.91 5.39 44.04 1.45 62.02 44.04 46.43 3.55 

Vespertilionidae Pipistrellus javanicus  8 18.95 4.92 6.65 45.97 1.36 65.00 44.70 47.51 3.38 

Vespertilionidae Pipistrellus kuhlii  8 22.15 6.07 5.18 37.93 1.59 60.05 37.93 41.16 4.92 

Vespertilionidae Pipistrellus maderensis  8 15.35 4.91 4.53 42.66 2.06 58.01 42.66 46.44 3.33 

Vespertilionidae Pipistrellus minahassae  8 17.00 7.20 5.58 41.85 1.32 59.03 41.80 44.21 3.33 

Vespertilionidae Pipistrellus nanulus  8 18.86 2.51 5.06 48.18 1.70 67.44 48.18 50.60 3.95 

Vespertilionidae Pipistrellus nathusii  8 12.71 7.44 6.66 39.46 0.90 52.18 39.46 41.40 2.47 

Vespertilionidae Pipistrellus papuanus  8 17.63 5.02 5.40 43.90 1.44 61.84 43.90 46.34 3.54 

Vespertilionidae Pipistrellus paterculus  8 17.67 4.91 5.39 44.04 1.45 62.02 44.04 46.43 3.55 

Vespertilionidae Pipistrellus permixtus  8 17.36 5.86 5.48 42.99 1.39 60.62 42.99 45.42 3.45 

Vespertilionidae Pipistrellus pipistrellus  8 23.69 5.30 5.22 45.44 1.22 69.14 45.44 47.61 5.17 

Vespertilionidae Pipistrellus pygmaeus  8 28.55 4.72 5.08 53.04 1.25 81.71 53.04 54.55 6.29 

Vespertilionidae Pipistrellus rueppellii  8 43.09 7.07 6.71 50.49 1.60 94.33 50.49 56.01 7.90 

Vespertilionidae Pipistrellus rusticus  8 31.34 4.57 4.86 50.86 3.17 82.43 50.86 55.19 7.45 

Vespertilionidae Pipistrellus stenopterus  8 25.86 15.67 7.91 38.83 1.64 61.60 35.81 38.83 3.22 

Vespertilionidae Pipistrellus sturdeei  8 17.91 4.27 5.32 44.88 1.50 63.12 44.84 47.28 3.64 
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Vespertilionidae Pipistrellus subflavus  8 28.51 5.74 6.81 42.97 0.96 71.47 42.97 45.95 4.07 

Vespertilionidae Pipistrellus tenuis  8 23 3.48 7 48 1.58 68 45.00 48 3.84 

Vespertilionidae Pipistrellus wattsi  8 17.63 5.02 5.40 43.90 1.44 61.84 43.90 46.34 3.54 

Vespertilionidae Pipistrellus westralis  8 16 3.90 6.00 46.60 1.00 61 45.00 46.60 3.00 

Vespertilionidae Plecotus alpinus  8 20.33 8.15 3.19 24.22 4.80 44.14 23.13 30.20 6.42 

Vespertilionidae Plecotus auritus  10 25.51 8.19 2.51 25.57 7.38 51.18 25.57 36.39 10.77 

Vespertilionidae Plecotus austriacus  8 18.98 6.75 2.94 22.74 4.87 41.75 22.74 29.66 7.18 

Vespertilionidae Plecotus balensis  8 20.01 7.93 3.25 24.88 4.39 44.74 23.81 30.81 6.06 

Vespertilionidae Plecotus kolombatovici  10 19.76 7.42 3.57 26.22 2.66 46.02 26.22 31.25 5.56 

Vespertilionidae Plecotus sardus  8 20.33 8.15 3.19 24.22 4.80 44.14 23.13 30.20 6.42 

Vespertilionidae Plecotus taivanus  8 20.33 8.15 3.19 24.22 4.80 44.14 23.13 30.20 6.42 

Vespertilionidae Plecotus teneriffae  10 19.58 7.64 3.34 25.89 3.83 45.62 24.80 31.72 5.57 

Vespertilionidae Rhogeessa aeneus  8 39.16 4.45 3.25 46.80 4.27 85.11 46.80 52.82 10.13 

Vespertilionidae Rhogeessa alleni  10 40.98 5.37 3.10 46.39 7.73 88.10 43.73 54.11 11.56 

Vespertilionidae Rhogeessa genowaysi  10 43.78 3.88 3.30 48.28 6.54 92.10 45.20 55.98 10.92 

Vespertilionidae Rhogeessa gracilis  10 41.16 5.14 3.08 46.81 7.77 88.76 44.12 54.60 11.62 

Vespertilionidae Rhogeessa hussoni  10 41.81 4.91 2.94 49.16 8.25 92.03 46.39 57.23 12.12 

Vespertilionidae Rhogeessa io  10 60 4.85 2.80 52.40 10.82 99.6 39.60 52.40 15.84 

Vespertilionidae Rhogeessa minutilla  10 42.93 3.75 2.83 51.99 8.54 96.12 49.06 60.34 12.54 

Vespertilionidae Rhogeessa mira  10 45.70 2.68 2.86 55.70 7.92 102.01 52.35 64.26 12.40 
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Vespertilionidae Rhogeessa parvula  10 43.34 4.37 3.10 49.60 7.33 93.49 46.62 57.57 11.56 

Vespertilionidae Rhogeessa tumida  8 34.90 4.58 5.12 40.54 2.47 75.20 40.54 48.65 5.71 

Vespertilionidae Scoteanax rueppellii  8 40.00 26.41 9.00 35.00 5.49 72 32.00 35.00 8.70 

Vespertilionidae Scotoecus albigula  8 24.44 10.08 3.90 30.23 5.56 53.45 29.14 34.43 7.90 

Vespertilionidae Scotoecus albofuscus  10 26.16 4.50 2.68 33.63 4.23 60.58 33.63 39.08 9.72 

Vespertilionidae Scotoecus hindei  8 24.27 10.41 3.93 29.90 5.51 52.84 28.82 34.09 7.84 

Vespertilionidae Scotoecus hirundo  8 25.51 8.45 3.75 32.43 5.89 57.37 31.25 36.86 8.33 

Vespertilionidae Scotoecus pallidus  8 26.27 7.20 3.59 34.02 6.09 60.11 32.82 38.55 8.63 

Vespertilionidae Scotomanes ornatus  8 22.17 22.24 4.69 27.49 5.80 46.50 26.52 30.30 7.73 

Vespertilionidae Scotophilus borbonicus  3 30.39 19.02 4.21 34.47 5.55 63.23 32.98 39.06 8.31 

Vespertilionidae Scotophilus celebensis  8 29.01 23.24 3.95 33.18 6.14 60.26 31.85 37.60 8.72 

Vespertilionidae Scotophilus collinus  8 29.01 23.24 3.95 33.18 6.14 60.26 31.85 37.60 8.72 

Vespertilionidae Scotophilus dinganii  3 28.70 25.12 5.90 31.26 1.70 59.96 31.26 36.38 5.24 

Vespertilionidae Scotophilus heathii  8 29.24 36.13 3.96 30.42 7.04 56.60 29.11 34.81 9.45 

Vespertilionidae Scotophilus kuhlii  8 29.92 20.31 3.82 34.36 6.51 62.60 32.98 38.94 9.16 

Vespertilionidae Scotophilus leucogaster  7 47.83 20.24 1.73 46.27 38.45 87.86 39.09 46.27 31.89 

Vespertilionidae Scotophilus nigrita  8 31.21 27.34 3.92 27.59 8.96 58.59 27.59 32.85 9.28 

Vespertilionidae Scotophilus nucella  8 29.01 23.24 3.95 33.18 6.14 60.26 31.85 37.60 8.72 

Vespertilionidae Scotophilus nux  8 29.72 30.00 3.88 31.60 7.09 58.64 30.27 36.09 9.58 

Vespertilionidae Scotophilus robustus  8 19.38 60.10 4.24 34.13 2.04 52.98 34.13 36.54 4.41 
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Vespertilionidae Scotophilus viridis  8 28.94 19.81 3.67 33.94 3.58 62.58 33.94 40.10 8.08 

Vespertilionidae Scotorepens balstoni  8 31.00 11.92 8.00 34.00 3.17 61 30.00 34.00 5.97 

Vespertilionidae Scotorepens greyii  3 10.12 10 8.57 35.07 0.30 45.19 35.07 36.08 1.20 

Vespertilionidae Scotorepens orion  8 26 11.83 10 36.00 1.42 58 32.00 36.00 3.91 

Vespertilionidae Scotorepens sanborni  8 17.00 8.13 6.30 37.59 0.76 54.58 37.59 39.30 3.13 

Vespertilionidae Scotozous dormeri  8 20.75 6.79 5.77 40.77 2.64 61.98 39.65 43.55 4.77 

Vespertilionidae Tylonycteris pachypus  8 43.73 4.10 3.76 43.86 2.95 88.35 43.86 48.95 11.21 

Vespertilionidae Tylonycteris robustula  8 61 7.98 3.78 45.00 10.98 103.00 45.00 55.00 16.03 

Vespertilionidae Vespadelus baverstocki  8 18 4.30 4 47.00 2.53 62 44 47.00 5.01 

Vespertilionidae Vespadelus caurinus  8 23 3.10 5.00 59.6 2.75 82 59.00 59.6 5.64 

Vespertilionidae Vespadelus darlingtoni  8 18.60 6.06 5.02 45.71 0.95 61.74 43.41 45.71 3.44 

Vespertilionidae Vespadelus douglasorum  8 21 4.99 6.00 52.80 1.99 73.00 52.00 52.80 4.61 

Vespertilionidae Vespadelus finlaysoni  8 34 4.30 5.00 35.00 5.59 68 34.00 35.00 8.87 

Vespertilionidae Vespadelus pumilus  8 16.89 5.40 5.37 48 1.44 59 48 51.00 3.70 

Vespertilionidae Vespadelus regulus  3 19.45 5.05 6.40 44.62 1.00 64.11 44.62 48.62 3.03 

Vespertilionidae Vespadelus troughtoni  8 18 5.40 6.00 49.00 1.46 67 49.00 49.00 3.84 

Vespertilionidae Vespadelus vulturnus  3 31.28 3.77 4.61 48.89 2.02 80.33 48.89 51.38 7.60 

Vespertilionidae Vespertilio murinus  3 8.53 15.42 14.07 22.46 0.46 31.11 22.46 24.35 0.90 

Vespertilionidae Vespertilio sinensis  3 27.17 24.30 1.95 25.71 12.58 47.21 19.70 25.71 13.61 
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8.7 Appendix G: Species list and references for vocalisations in Chapter 

5 Section 5.4.4 Figure 9 

Order Species Reference 

Monotremata 
Ornithorhynchus anatinus 

(Platypus) 
(OstrichesRuleMovies 2011) 

Marsupialia 
Didelphis marsupialis 

(Common Opossum) 
ML Audio 29675 (Cornell Lab of Ornithology 2011) 

 

Afrosoricida Tenrecs and Golden Moles (Eisenberg & Gould 1970) 

Tubulidentata 
Orycteropus afer 

(Aardvark) 
(Ecotravel 2011) 

Proboscidea 
Loxodonta africana 

(African Elephant) 
ML Audio 135445 (Cornell Lab of Ornithology 2011) 

Hyracoidea 
Dendrohyrax arboreus 

(Southern Tree Hyrax) 
ML Audio 46536 (Cornell Lab of Ornithology 2011) 

Sirenia 
Trichechus manatus 

(Caribbean Manatee) 
ML Audio 118184 (Cornell Lab of Ornithology 2011) 

Xenarthra 
Tamandua mexicana 

(Northern Tamandua) 
ML Audio 165013 (Cornell Lab of Ornithology 2011) 

Dermoptera 
Glaucomys volans 

(Southern Flying Squirrel) 
File 7 (Soundboard 2011) 

Scandentia 
Urogale everetti   

(Mindanao Tree Shrew) 
ML Audio 38624 (Cornell Lab of Ornithology 2011) 

Primates 
Pan troglodytes 

(Chimpanzee) 
ML Audio 53994 (Cornell Lab of Ornithology 2011) 

Lagomorpha 
Sylvilagus floridanus 

(Eastern Cottontail) 
ML Audio 87152 (Cornell Lab of Ornithology 2011) 

Rodentia 

Dicrostonyx groenlandicus 

(Greenland Collared 

Lemming) 

ML Audio 126500 (Cornell Lab of Ornithology 2011) 

Eulipotyphla 

Blarina brevicauda 

(Northern Short-tailed 

Shrew) 

ML Audio 56707 (Cornell Lab of Ornithology 2011) 

Carnivora 
Panthera leo               

(Lion) 
ML Audio 88116 (Cornell Lab of Ornithology 2011) 

Pholidota Pangolins (The Hindu Newspaper 2011) 

Perissodactyla 
Equus asinus                

(Feral Ass) 
ML Audio 63353 (Cornell Lab of Ornithology 2011) 

Cetartiodactyla 
Tursiops truncatus 

(Bottlenose Dolphin) 
ML Audio 120779 (Cornell Lab of Ornithology 2011) 

Cetartiodactyla 
Antilocapra americana 

(Pronghorn) 
ML Audio 102044 (Cornell Lab of Ornithology 2011) 
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