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ABSTRACT 
 

Introduction 

Tuberculosis is the leading cause of death from curable infectious diseases. New 

approaches for prevention, diagnosis, and treatment are urgently needed. Understanding 

the underlying immunopathogenesis is vital to achieve this. Transcriptional profiling of 

peripheral blood has been successfully applied to inflammatory and infectious diseases 

to improve understanding of disease mechanisms. Berry et al. 2010, recently revealed 

distinct transcriptional signatures of pulmonary tuberculosis, leading to new knowledge 

on tuberculosis pathogenesis. Transcriptional profiling also differentiated active TB 

from other infections and inflammatory diseases. This present study compared whole 

blood transcriptional profiles of pulmonary tuberculosis to the similar respiratory 

diseases sarcoidosis, community acquired pneumonia and primary lung cancer.  

 

Methods 

Microarray technology and data mining strategies were used to examine whole blood 

genome-wide transcriptional profiles from patients and controls, before and after 

treatment.  

 

 Results 

Transcriptional profiles of tuberculosis and sarcoidosis were comparable to each other 

but disparate from pneumonia and lung cancer profiles. The dominant genes in the 

tuberculosis and sarcoidosis profiles were the over-abundance of interferon-inducible 

genes, the genes showed a higher expression in the tuberculosis patients. The dominant 
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genes in the pneumonia and cancer profiles were the over-abundance of inflammation 

genes, and under-abundance of protein translation genes in the pneumonia profiles. 144-

transcripts were able to distinguish the tuberculosis patients from all other samples with 

good sensitivity and specificity. The transcriptional profiles from the tuberculosis, 

pneumonia and sarcoidosis patients significantly changed after receiving successful 

treatment. The tuberculosis profiles significantly changed by two weeks after treatment 

initiation, earlier than any validated biomarker of treatment response. 

 

Conclusions 

This study has provided new insight into the parallels and differences of the molecular 

signatures of these similar respiratory diseases. The findings may have also revealed 

prospective pragmatic biomarkers for disease diagnosis and treatment monitoring which 

are being further investigated. 
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INTRODUCTION 
 

Over nine million new cases of active tuberculosis (TB), and 1.4 million deaths from 

TB, are estimated to occur around the world every year (WHO 2010). The 2010 World 

Health Organisation TB report states that TB is a disease of poverty, however it is also 

recognised that TB is on the rise in some developed countries. Estimates based 

predominantly on a dermal delayed type hypersensitivity response, the tuberculin skin 

test, indicate that global prevalence of Mycobacterium tuberculosis (M. tuberculosis) 

infection is about 32% (Dye, Scheele et al. 1999). Paradoxically the majority of those 

thought to be infected are asymptomatic and have no clinical evidence of disease; these 

individuals are described as having latent TB. Epidemiological studies carried out in 

both developing and developed countries describe around 5-10% of latent individuals 

developing active TB during their lifetime, with the highest risk following infection in 

early adulthood and the lifetime risk declining each year of infection (Vynnycky and 

Fine 2000) (Comstock, Livesay et al. 1974). The risk is substantially higher in 

individuals who are immunosuppressed particularly those with HIV co-infection 

(Corbett, Watt et al. 2003). In the year 2000 these problems were addressed by the 

World Health Organisation in the plan entitled Stop TB Partnership: The Global Plan to 

Stop TB 2006-2015 (Young, Perkins et al. 2008). Progression in the fight against TB is 

severely restricted by a lack of knowledge of both how the host employs mechanisms to 

kill the bacilli and how the bacterium evades them.  

Even in developed countries where there is access to an array of medical 

facilities correctly diagnosing active TB can also be challenging, time consuming and 

distressing for the patient. Misdiagnosis and delays in the diagnosis lead to a worse 

outcome for the patient and potential spread of this infectious disease (Greenaway, 
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Menzies et al. 2002). The difficulty in diagnosing pulmonary TB is the ability to 

differentiate it from other similar respiratory diseases such as pulmonary sarcoidosis, 

pneumonia and lung cancer (Wyngarden 1988). Sarcoidosis is also a multisystem 

granulomatous disorder, but has unknown aetiology, that affects individuals worldwide 

and is characterized pathologically by the presence of granulomas in involved organs 

(Iannuzzi, Rybicki et al. 2007). Both  sarcoidosis and TB can affect adults within the 

same age group, who then present with respiratory symptoms and radiological thoracic 

abnormalities (Iannuzzi, Rybicki et al. 2007) (Anderson, Maguire et al. 2007). 

Community acquired pneumonia, like TB, is a respiratory infection, and lung cancer is 

another lung inflammatory disorder (O'Callaghan, O'Donnell et al. 2010). Due to the 

complexity of these diseases a systems biology approach offers the ability to help 

unravel the principal host immune responses by simultaneous comparison of the host’s 

transcriptional response to each of these similar diseases. Furthermore the need to apply 

a genomics approach to improve clinical management of respiratory diseases and 

elucidate mechanisms of lung pathophysiology is evident by the recent National Heart, 

Lung, and Blood Institute workshop ‘Genomic Medicine and Lung Diseases’ (Center, 

Schwartz et al. 2012). Their overall goal was for ‘omics’ research to be leading 

translational lung disease research within the next 5 years. 

Gene expression profiling of the peripheral blood has recently been successfully 

applied to certain inflammatory and infectious diseases, providing new understanding of 

disease pathogenesis and improved diagnostic and prognostic biomarkers (Pascual, 

Chaussabel et al. 2010). An earlier study carried out by O’Garra and collaborators of 

patients with active TB, latent TB and healthy controls used an unbiased comprehensive 

whole human genome survey of peripheral blood to demonstrate a distinct 

transcriptional signature in patients with active TB (Berry, Graham et al. 2010). The 
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transcriptional signature was associated with disease severity by demonstrating a 

correlation with the extent of the radiographic severity. In addition it was observed that 

after successful antituberculous therapy the transcriptional signature had diminished. 

This active TB signature therefore has great potential to be developed for diagnostic and 

treatment monitoring biomarkers. Furthermore 10-20% of the latent TB individuals also 

revealed the same transcriptional signature as active TB patients. Longitudinal studies 

are in progress to determine whether this transcriptional signature can predict which 

latent individuals will progress towards the development of active TB. 

The main objective of this current study was to improve our understanding of 

the immunopathogenesis underlying TB by comparing common and unique 

transcriptional patterns of active TB to the similar granulomatous disease sarcoidosis, 

and to the other similar pulmonary diseases pneumonia and lung cancer. This approach 

may also provide much needed biomarkers to help in the diagnosis and management of 

both TB and sarcoidosis.  

 

Incidence of TB, sarcoidosis, community acquired pneumonia and lung 
cancer 

The gradual rise in TB over the last 20 years in the UK is thought to be primarily due to 

migration patterns to the UK (HPA 2010). This has led to over 9,000 new cases of 

active TB in 2009 (HPA 2010), and an annual incidence rate of around 41.3/100,000 in 

London in 2003, where nearly three-quarters of cases were born abroad (Anderson, 

Maguire et al. 2007). Sarcoidosis varies in incidence among geographical regions and 

can also aggregate in families and specific races, being three to four times more 

common in blacks (Thomas and Hunninghake 2003). In the United States the annual 

incidence among whites is 10.9/100,000 and among blacks is 35.5/100,000 (Rybicki, 

Major et al. 1997). In the UK the annual incidence of sarcoidosis is under half that of 
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TB, with approximately 3000 new cases of sarcoidosis annually with the highest 

reported incidence of sarcoidosis occurs in London (Gribbin, Hubbard et al. 2006). 

However it has been recognised over the last decade that it is not just in the developed 

countries that both sarcoidosis and TB are present. Sarcoidosis is seen in India, and in 

some other developing countries, with almost similar frequency as in the West (Jindal, 

Gupta et al. 2000). As sarcoidosis is a difficult disease to diagnose and often presents 

little or no symptoms it is likely its prevalence is much higher than reported, particularly 

in countries with a more limited health care service. Community acquired pneumonia is 

far more common than TB or sarcoidosis, with an incidence in developed countries of 

5-1100/100,000 adults annually (Lim, Baudouin et al. 2009). In the UK the majority of 

patients are treated in the community, however approximately one third will require 

hospital admission (Guest and Morris 1997). Lung cancer is both the most common 

cancer in the world and has the highest mortality (Bray, Ren et al. 2012). In the UK the 

incidence of lung cancer has steadily fallen since the 1970s, reflecting the fall in the 

prevalence of male smokers after World War II (82% of men smoked in 1948 compared 

to 22% today) (CancerStats 2012). However the rates of lung cancer in females have 

continued to rise. In 2009 the annual incidence rate of lung cancer in the UK was 

48/100,000, with a prevalence of just over 41,000 cases of which 44% were women.  

Therefore in the UK, TB in comparison to these similar respiratory diseases has a 

compatible incidence to sarcoidosis and lung cancer, while community acquire 

pneumonia is the most prevalent. 

 

Challenges in Tuberculosis Diagnosis 
Several clinical tests are used to help diagnose TB; each has its own problems. 
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The tuberculin skin test 

It has been shown in experimental mouse models that two weeks after infection with M. 

tuberculosis, memory T cells that specifically recognise M. tuberculosis antigens start to 

appear (Cooper 2009). This immune recall response is detectable and measurable after 

an intradermal injection of tuberculin, called the tuberculin skin test. The most 

commonly used tuberculin is the purified protein derivative (PPD). PPD is a precipitate 

of heat-inactivated concentrate of the culture filtrate of non-species specific M. 

tuberculosis grown in glycerol broth. It contains a mixture of degraded proteins derived 

from secreted cytosol, cell wall and membrane proteins but there are also 

polysaccharides and some lipids
 

present (Lee and Holzman 2002). Most of the 

constituents
 

of PPD are small proteins with molecular masses of approximately
 

10,000 Daltons, and it is thought due to their small size PPD does not sensitize 

individuals who
 
have not been exposed to mycobacteria (ATS 2000). The appearance of 

skin induration at the injection site therefore indicates the presence of a delayed type 

hypersensitivity response specific for mycobacterial antigens. Cellular infiltration by T 

cells in combination with other recruited inflammatory cells, such as monocytes and 

subsequently activated macrophages, results in a maximal cutaneous induration at 48 to 

72 hours after inoculation (Vukmanovic-Stejic 2006). This localised immune response 

shows a predominance of CD4+ T cells with an effector memory cell phenotype 

(Sarrazin, Wilkinson et al. 2009). The ability to mount such a dermal response to the 

TST is usually maintained for many years. The TST is one of the oldest diagnostic tests 

employed in modern medicine and is still widely used throughout the world due to its 

low cost, however it has many flaws as a diagnostic tool. Even when applying the 

proper technique and interpretation of findings, cross-reaction due to other 

mycobacterial antigens commonly gives false-positive results. The dermal immune 

response cannot be used to discriminate between individuals with latent TB, active TB, 
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those who have been vaccinated with Mycobacterium bovis bacillus Calmette-Guerin 

(BCG) or those exposed to some environmental nontuberculous mycobacteria. This is 

because PPD contains over 200 antigens also present in the BCG vaccine (an attenuated 

form of Mycobacterium bovis) and many nontuberculous mycobacteria (Richeldi 2006). 

This is confounded by false negatives where up to 25% of culture confirmed active TB 

patients have a negative skin test response (Nash and Douglass 1980).  

 

Interferon gamma release assays & M. tuberculosis specific antigens 

The problems of using the TST as a diagnostic tool has led to the development and use 

of Interferon Gamma Release Assays (IGRAs) that can measure interferon gamma 

(IFN-γ) production from sensitised T cells in response to stimulation by relatively 

specific M. tuberculosis antigens. The main antigens used are present in the RD1 region 

of M. tuberculosis, a region shown to contribute to the virulence of the bacteria, and 

considered to be the primary attenuating deletion in BCG (Mahairas, Sabo et al. 1996). 

The RD-1 locus contains 9 genes including two secreted proteins, early secreted 

antigen-6 (ESAT-6) and culture filtrate protein-10 (CFP-10), that are shown to be 

prominent T cell antigens. There are two types of IGRAs that differ from each other 

mainly with respect to the two techniques used for IFN-γ detection, either an enzyme 

linked immunospot assay (TSPOT.TB
TM

, Oxford Immunotec, Oxford, UK) or an 

enzyme linked immunosorbent assay (QuantiFERON-Gold In Tube, Cellestis, Carnegia, 

Australia). This study uses the QuantiFERON-TB Gold In-tube ELISA, which involves 

mixing whole blood with the mycobacterial antigens ESAT-6, CFP-10, and TB 7.7, 

which are not found in any BCG strains nor in the majority of non-tuberculous 

mycobacteria. Although the two tests have comparable sensitivity and specificity the 

ELISA has some advantages over the TSPOT.TB
TM

 as samples can be stored and run in 
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batches, it requires less investment in equipment, it is more cost effective, and the assay 

is technically easier to perform. The Quantiferon-TB Gold In-tube has a specificity of 

99% in non-BCG vaccinated patients and 96% in BCG vaccinated patients (Pai, 

Zwerling et al. 2008).   

 

Measuring IFN-γ 

The amount of IFN-γ secreted in response to M. tuberculosis antigens has not been 

robustly quantified. Some studies demonstrate a lower response in patients with active 

TB compared to those with latent TB (Hirsch, Toossi et al. 1999; Pathan, Wilkinson et 

al. 2001; Vekemans, Lienhardt et al. 2001), which reverts after successful TB treatment 

(Vekemans, Lienhardt et al. 2001). This could be due to a reduced number of T cells 

present in the blood of patients with active TB (Berry, Graham et al. 2010). The 

reduction in peripheral T cells may be due to migration of effector T cells to the site of 

disease or an increased susceptibility to apoptosis (O'Garra 2008). However, some 

studies show the opposite findings, with latent individuals having a lower IFN-γ 

response than active TB patients (Cardoso, Antas et al. 2002; Janssens, Roux-Lombard 

et al. 2007). As the ELISPOT assay measures the number of activated cells not the total 

amount secreted quantifying this reduces the quantitative capacity of the assay to 

measure the IFN-γ response. Therefore due to the lack of consistency and difficulty in 

quantification, measuring IFN-γ alone is not a satisfactory method to distinguish 

patients with active TB from those with latent TB. 

 

The multiplicity of TB   

Neither the IGRAs nor the TST can distinguish between those individuals with active 

TB and those with latent TB.  These available diagnostic tests can only tell us which 
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individuals have been exposed such that they have subsequently developed an acquired 

immune response. Post mortem studies in humans with latent TB have shown a wide 

range of recovery of viable bacilli (Barry, Boshoff et al. 2009). Indeed at the time of 

immunological testing the bacilli may no longer be viable. Hence the current definition 

of ‘latent TB’ really includes a spectrum of individuals from those who have possibly 

completely expelled the infection to those who may contain active replicating bacteria 

but remain asymptomatic (Barry, Boshoff et al. 2009). One animal model that has been 

found to have a similar pathology to human TB, and a similar spectrum of lesion types, 

are the cynomolgus macaques. The observed histopathologic features of the granulomas 

in M. tuberculosis infected macaques also reflected a dynamic and heterogeneous 

process during both active and latent infection (Lin, Rodgers et al. 2009).  

It is recommended that the majority of latently infected individuals be treated 

with antibiotics for 3-9 months (NICE 2011). This incurs a significant cost to the health 

care system and subsequent risk of side effects. However this strategy has been proven 

to be necessary because preventive
 
treatment of individuals with latent TB diminishes 

the risk of
 
subsequent development of active TB by about 90% (Richeldi 2006). 

Although currently we are unable to identify which latent TB individuals will benefit 

from prophylactic treatment, research is currently in progress to determine a suitable 

stratification.  

As discussed above there is evidence of heterogeneity in the clinical and 

histological presentation of TB (Barry, Boshoff et al. 2009). This concept was recently 

strengthened by the demonstration of molecular heterogeneity corresponding to the 

clinical heterogeneity (Berry, Graham et al. 2010). This study, from O’Garra and 

collaborators, demonstrated for the first time through whole genome peripheral blood 

gene expression profiling the heterogeneity of the transcriptional host response in 
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patients with TB (Berry, Graham et al. 2010). In fact the heterogeneity of the active TB 

signature was unambiguously explained by the severity of their disease, as defined by 

the extent of their radiographic changes. The heterogeneity of the latent signature 

maybe explained by the spectrum of latent disease and as such those with a signature 

similar to active TB may have had subclinical disease with a high short-term possibility 

of reactivation, however this hypothesis requires verification.  

Unfortunately current diagnostic tests are a long way from distinguishing 

between these diverse ranges of latent individuals, limiting the ability of new and 

available technologies to evolve our clinical management. For example, a recent study 

using polychromatic flow cytometry was able to show discriminating differences in 

cytokine profiles of M. tuberculosis-specific CD4+ T cells from patients with active TB 

versus latent TB (Harari, Rozot et al. 2011). Regrettably the cohort of latent patients 

recruited for this study were a specific subset of the spectrum, identified by screening 

rather than probable exposure to M. tuberculosis therefore it is likely the cohort only 

had limited exposure and thus little or no infection. Classifying patients along this 

spectrum would have a huge impact on clinical management by proposing only to treat 

those who have a high risk of developing disease. In addition a more accurate 

classification will aid research studies to appropriately interpret findings when 

comparing between the various subtypes of TB.  

 

Diagnosing active TB   

Making a diagnosis of active TB requires a completely different approach from that of 

latent TB. The diagnosis is usually suspected in those with classical symptoms 

including a productive cough, drenching night sweats and weight loss, along with the 

typical radiological abnormalities such as cavities, densities and thoracic 
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lymphadenopathy (Wyngarden 1988). The gold standard for the diagnosis of active TB 

is M. tuberculosis cultured from specimens such as sputum, lung washings, lymph node 

biopsy, cerebrospinal fluid – although notably culture can take up to 6 weeks due to the 

slow growing nature of the bacteria (Pfyffer, Cieslak et al. 1997).  

Rapid detection of mycobacterial bacilli can be achieved by the 125 year old 

sputum microscopy smear test, but this is not very specific as it cannot distinguish M. 

tuberculosis from other mycobacteria, nor very sensitive as it is only able to detect 60% 

of culture positive pulmonary M. tuberculosis (Young, Perkins et al. 2008). A major 

clinical problem when trying to diagnose active pulmonary TB is the lack of an 

adequate sputum sample, resulting in many patients undergoing an invasive procedure 

to obtain lung washings where possible (Tamura, Shimada et al. 2010). In the USA 

public health surveillance identified that only 70% of pulmonary TB is diagnosed by 

bacterial culture, therefore a significant number of patients receive empirical 

antituberculous treatment (CCDC 2007). In developing countries such as South Africa, 

the number of patients with a diagnosis of pulmonary TB confirmed by culture is far 

lower, at approximately 50% (WHO 2010). A relatively new development in TB 

diagnosis is the use of PCR to detect M. tuberculosis and common drug resistance 

strains (Taegtmeyer, Beeching et al. 2008). In December 2010, WHO endorsed the 

Xpert MTB/RIF automated molecular test for M. tuberculosis and rifampicin resistance 

(Boehme, Nabeta et al. 2010). However to diagnose pulmonary TB this molecular 

diagnostic is used to detect the presence of M. tuberculosis in sputum, thus limiting its 

application to those in whom a sputum or bronchial washings sample is available. 

 One of the diseases pulmonary TB is particularly difficult to distinguish from is 

sarcoidosis; requiring invasive procedures to determine between the differential 

diagnoses and thus leading to delay in treatment (Storla, Yimer et al. 2008). 
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Misdiagnosis of TB as sarcoidosis could lead to worsening disease outcome for the 

patient if treated incorrectly with the immunosuppressive therapy that is required for 

sarcoidosis and misdiagnosis of sarcoidosis as TB could lead to unpleasant side effects 

secondary to 6 months or more of multiple anti-tuberculous antibiotics.  

 

Challenges in Sarcoidosis Diagnosis 
The diagnosis of sarcoidosis is made by exclusion. 

Diagnosis and clinical presentation   

The diagnosis of sarcoidosis is complex as it can only be made by exclusion of other 

causes of granulomatous inflammation. The predominant disease sarcoidosis must be 

differentiated from is TB (Box 1). Currently only an invasive biopsy and other semi-

invasive tests can help distinguish between these clinically analogous diseases.  

Until quite recently a standard diagnostic test was the reaction to an intradermal 

injection of homogenates of human sarcoid tissue (spleen or lymph node), called the 

Kveim-Siltzbach reagent (Wyngarden 1988). Approximately 80% developed a 

granulomatous dermal inflammatory reaction several weeks after the injection (Munro 

and Mitchell 1987). However due to safety concerns of transmission of infections the 

reagent was discontinued in the UK in 1996.  

On average, sarcoidosis patients have symptoms for more than three months and 

require three or more encounters with health care providers prior to diagnosis (Judson, 

Thompson et al. 2003). Sarcoidosis patients presenting with pulmonary symptoms often 

have a further relative delay in the diagnosis of sarcoidosis as their symptoms are 

nonspecific therefore alternative diagnoses are often considered first. When assessing 

patients with suspected sarcoidosis no single test is specific enough or sensitive enough 

for diagnosis. Diagnosis should only be made by those with a specialist interest in 
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sarcoidosis using compatible histological, radiological and clinical findings (Costabel 

and Hunninghake 1999). Patients present with a heterogeneous clinical picture, with 

pulmonary involvement occurring in over 90% and about 35% having extra-pulmonary 

disease (Baughman, Teirstein et al. 2001; Rizzato, Palmieri et al. 2004). Each affected 

organ, commonly lung, skin, lymph node or eye, is involved to a varying extent and 

degree. Approximately half of all cases are detected incidentally by pulmonary 

radiological abnormalities discovered in asymptomatic individuals having a routine 

chest radiograph (eg pre-operative work up or unrelated chest pains). Whilst the thorax 

is the most common site of disease, the skin is involved in at least 30% of patients and 

the eye in about 25% (Baughman, Teirstein et al. 2001). 

 

Pulmonary TB  Pulmonary Sarcoidosis  

Thoracic radiology  

Cavities, opacities, lymphadenopathy  

Respiratory symptoms 

Cough, haemoptysis (blood) 

Systemic symptoms 

Drenching night sweats, weight loss 

Biopsy of lung or lymph node 

Necrotising granuloma's 

Microbiology on sputum/BAL 

Smear +ve (detects 60% of culture +ve) 

Culture +ve (only able to culture in 70%) 

Diagnosis is made by culture of M. 

tuberculosis 

Thoracic radiology 

Opacities, lymphadenopathy  

Respiratory symptoms 

Cough, dyspnoea 

Systemic symptoms 

Fatigue (less common sweats, weight loss) 

Biopsy of lung or lymph node 

Non-necrotising granuloma's 

 

 

Diagnosis is made by compatible histological, 

radiological and clinical presentation & by 

elimination of other causes. 

Box 1 
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Pulmonary sarcoidosis is often assessed by three methods: thoracic radiological 

parameters, lung function tests and respiratory symptoms (Baughman, Teirstein et al. 

2001). Pulmonary sarcoidosis affects either the thoracic lymph nodes, typically the hilar 

lymph nodes, the pulmonary parenchyma (lung tissue) or both the lymph nodes and the 

lung parenchyma. The disease elicits a range of presentations from those with no 

symptoms, the majority of patients, to those with severe and debilitating symptoms 

(Baughman, Teirstein et al. 2001). Pulmonary fibrosis is the commonest chronic 

phenomenon of sarcoidosis and occurs in 20 to 25% of patients (Iannuzzi, Rybicki et al. 

2007).  

 

Sarcoidosis activity and prognosis   

The natural history and prognosis of sarcoidosis is protean. To add to the complexity 

there remains no consensus on how to reliably and pragmatically assess disease activity, 

disease severity or prognosis (Box 2). Furthermore disease activity may not correlate 

with disease severity or prognosis as active inflammation does not always indicate poor 

prognosis (WASOG 1999). For example, a patient with highly active disease at their 

first presentation may have an excellent prognosis and full recovery after only several 

months of treatment. Similarly a patient with irreversible pulmonary fibrosis and a poor 

prognosis may in fact have little or no on-going disease activity. 

 

 

 

 

                      

 

Each Patient Should Be Assessed For 

 

Disease Activity 

Disease Severity 

Prognosis 

Box 2 
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Although spontaneous resolution occurs in two-thirds of patients within 5 years 

it is not possible to predict this on an individual basis (WASOG 1999). The only widely 

acknowledged classification system is Scadding’s criteria (Scadding 1961). Scadding’s 

criteria solely use chest radiographs (Table 1) to classify the patients, therefore only 

accounts for the patient’s pulmonary involvement. This classification system is 

unfortunately insufficient for reliable clinical decision making as it cannot guide 

physicians in making treatment decisions or reliably inform on prognosis. 

 

 

 

Standardising sarcoidosis phenotyping (Box 3) is imperative and may be helped 

by advances in genomic research and increased application of genetic profiling. The 

most common published classification schemes require clinical information that has 

been gathered over a period of time, often defining patients as either ‘acute or chronic’ 

or ‘self-limited or progressive’, but not considering disease activity on each presentation 

(Prasse, Katic et al. 2008; Lockstone, Sanderson et al. 2010). The most well described 

phenotype is Lofgren’s syndrome, usually an acute presentation, typically associated 

with a good prognosis and spontaneous remission; but even Lofgren’s syndrome has no 

uniform definition.  As this study is taking a snap shot view of the host response a 

Chest radiograph stage Radiological findings Spontaneous resolution 

Stage 1 BHL* 75% 

Stage 2 BHL and lung opacities 60% 

Stage 3 Shrinking BHL and opacities <30% 

Stage 4 Lung fibrosis None 

Table 1. Scadding’s criteria. 

BHL = bilateral hilar lymphadenopathy 
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similar ‘snap shot’ approach was applied to clinically phenotyping the patients. Patients 

were phenotyped solely using their clinical features around the time of their blood 

sampling, irrespective of their disease severity, predicted prognosis or previous disease 

activity status.  Therefore patients were classified purely as either those with active 

disease or non-active disease as defined at the time of the blood test. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Disease activity assessment should reflect on-going persistent inflammation with 

evolving granuloma formation (WASOG 1994). Clinical findings thought to correlate 

with disease activity include: symptoms (WASOG 1999), elevated serum soluble IL-2 

receptor (Keicho, Kitamura et al. 1990), serum angiotensin converting enzyme (Ainslie 

and Benatar 1985), serum neopterin (Homolka, Lorenz et al. 1992), serum 

hypergammaglobulinaemia (Mana, Salazar et al. 1996), blood lymphopenia (Morell, 

Possible Sarcoidosis Classifications 

 

Active or Inactive* 

Acute or Chronic 

Progressive or Self-limited 

Mild to Severe 

Steroid responsive or non-responsive 

Thoracic or extra-thoracic 

Chest radiograph stages I-IV 

Lofgren’s or not 

 

* = used in this study                                             

Box 3 
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Levy et al. 2002; Sweiss, Salloum et al. 2010), bronchoalveolar lavage lymphocyte 

count (Leung, Brauner et al. 1998), change in chest radiographic disease (Keir and 

Wells 2010), presence of pulmonary nodules (Abehsera, Valeyre et al. 2000); (Wells 

1998), gallium scan activity (Klech, Kohn et al. 1982), activity on positron emission 

tomography scans (Keijsers, Verzijlbergen et al. 2009), and changes in lung function  

test (Keir and Wells 2010) (Box 4).  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Possible Sarcoidosis Activity Markers 

 

Serum ACE* 

Chest radiograph stage* 

Lung function changes 

Soluble IL2 receptor 

Neopterin 

BAL lymphocyte count 

Acute Phase Response Proteins 

Respiratory symptoms* 

Systemic symptoms 

Gallium scan 

CT findings 

Serum IgG* 

Serum lymphocyte count* 

PET scan findings 

Physician commenced treatment 

* = used in this study                                                            

Box 4 
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As all of these markers of disease activity are not specific for sarcoidosis each one can 

be altered in the presence of many other diseases. Thus there is no validated or 

established disease activity score, a reflection of the lack of a ‘gold standard’ test for 

assessing activity and progression of granulomatous inflammation specific to 

sarcoidosis. Classifications used frequently require the collation of knowledge on 

changes in clinical data, therefore preventing patient phenotyping without prolonged 

clinical assessment. Consequently studies apply a variety of different classification 

systems, including those based solely on the management plan of the practising 

physicians (Miyara, Amoura et al. 2006). However patient management maybe 

subjective and can vary between physicians and medical centres, for example whether 

to commence glucocorticoids or other immunosuppressive medications, the starting 

dose and the incremental dosing regimen.  

For this study the patients were phenotyped into those with active or non-active 

disease, using our clinical classification system, to determine whether the patient’s 

transcriptional profiles correlated with disease activity. The classification system 

applied was based entirely on clinical evidence available from published literature and 

clinical variables that were available for the patients recruited at the various hospitals. 

The classification system used did not rely on progressive clinical information gathering 

and simply classed patients as either those with active disease or those with non-active 

disease, at the time of the blood test. The classification system also did not use detailed 

radiographic scores as due to the complexity of sarcoidosis thoracic radiological 

findings this would of required superior levels of inter-observer reliability across the 

many recruitment centres (Wasfi, Rose et al. 2006). 
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Histology of granulomatous inflammation 
The role of granulomas is not always clear, are they purely protective for the host or do 

they contribute towards tissue pathology? 

Granulomatous inflammation occurs in many diseases   

Granuloma formation is fundamental to the immunopathogenesis of both sarcoidosis 

and tuberculosis, but is a relatively non-specific histological finding. A granuloma is a 

focal area of inflammation defined as a compact collection of cells of the monocyte 

lineage (macrophages, epithelioid cells, and multinucleated giant cells or fused 

epithelioid cells) with or without the presence of other inflammatory cells including 

lymphocytes (Adams 1976). It is commonly suggested that granulomas are part of the 

host’s defence against exogenous and endogenous particles; the causative agent is 

walled off and sequestered by cells of macrophage lineage allowing it to be contained, if 

not destroyed altogether (Williams and Williams 1983). However many multisystem 

granulomatous disorders of unknown aetiology exist, such as sarcoidosis and Wegener’s 

granulomatosis, in which it appears that granulomas have no protective function but 

instead are part of the disease pathology (Agostini, Adami et al. 2000). Most lung 

granulomas are associated with infection, particularly mycobacteria and fungal disease. 

The granulomatous lung diseases thought to be non-infectious are sarcoidosis, 

Wegener’s granulomatosis, hypersensitivity pneumonitis, aspiration pneumonia, and 

talc granulomatosis (Mukhopadhyay and Gal 2010). The granulomas formed by 

infection tend to be necrotising and well formed, often in a random distribution.  

 

TB granulomas    

TB granulomas have been studied for over a century in particular in the guinea pig, 

which alongside the rabbit are thought to be the small animals that most closely 
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resemble the immunopathological response found in humans infected with M. 

tuberculosis (McMurray 2001; Saunders and Orme 2008) . The first phase of the 

primary pulmonary lesion in guinea pigs is the influx of granulocytes, eosinophils and 

heterophils (neutrophil-equivalent cells), after which numerous macrophages and 

lymphocytes, with fewer granulocytes, coalesce to form the classical TB granuloma, 

before further expansion into the lung parenchyma and the formation of a central 

necrotic focus (Saunders and Orme 2008). Rabbits infected with highly virulent strains 

of M. tuberculosis can develop granulomas containing layers of macrophages, 

lymphocytes and fibroblasts surrounding a caseous necrotic centre, and can further 

mimic humans by developing cavities when granulomas are located near an airway 

(McMurray 2001; Saunders and Orme 2008). In recent years studies have shown 

increasing value for the non-human primate as an experimental model that can closely 

mimic the spectrum of human TB, although practical issues have ultimately limited 

their use in TB research. Lung histology from M. tuberculosis infected cynomolgus 

macaques, presenting with active TB, has revealed a variety of granuloma types not 

only across the macaques but also within each organ (Lin, Rodgers et al. 2009). Three 

main types have been described: the classical caseous granuloma, with central 

eosinophilic debris surrounded by macrophages and a layer of lymphocytes; the non-

necrotising granuloma, with an internal compact core of macrophages and some 

neutrophils surrounded by a lymphocyte layer; the suppurative granuloma, with a 

central core of degenerative neutrophils surrounded by macrophages and multinucleated 

giant cells and an outer envelope of lymphocytes (Lin, Rodgers et al. 2009). In fact this 

variety of granuloma types was discovered in human post-mortem studies over 50 years 

ago, even in lesions of only 1mm
3
, in patients considered to have ‘minimal pulmonary 

TB’ and who did not die from their disease (Medlar 1948). 
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Human TB granulomas are composed centrally of a mass of infected 

macrophages, stimulated macrophages that have differentiated into multinucleated giant 

cells, epithelioid cells and foamy macrophages loaded with lipid droplets, and 

neutrophils  (Russell, Cardona et al. 2009). This inner accumulation of cells becomes 

surrounded by lymphocytes, largely CD4+ T cells but also CD8+ T cells and B-cells; as 

well as fibroblasts creating a peripheral fibrotic capsule (Peters and Ernst 2003). A 

variety of proinflammatory and inhibitory cytokines and chemokines, in addition to 

adhesion proteins, play key roles in the formation of granulomas. A study of lung tissue 

specimens from patients with multiple drug resistant TB found that the formation of 

granulomas required a minimal size of 0.1mm
3 

(Ulrichs, Kosmiadi et al. 2004). They 

also reported the presence of lymphoid follicle-like structures in the peripheral margins 

of the granulomas, composed predominantly of B cells and some CD4+ and CD8+ T 

cells, surrounding infected macrophages. They concluded from their findings that 

mycobacteria can survive both within the granulomas, in the periphery of the 

granulomas and even further afield in apparently normal healthy parenchymal tissue 

(Ulrichs, Kosmiadi et al. 2004). 

One of the classical features of human TB granulomas is the presence of a 

necrotic caseous core thought to be secondary to cell lysis and resulting in a central 

hypoxic, hostile environment (Tsai, Chakravarty et al. 2006). The caseous necrotic 

granulomas can then rupture releasing extracellular tubercle bacilli into the alveoli and 

airways, encouraging dissemination and infectivity. One theory is that in latent TB the 

bacilli reside in the central hypoxic zone in a dormant metabolically inactive state, but 

in active TB they are able to replicate in peripheral oxygenated areas (Barry, Boshoff et 

al. 2009). This raises the question whether the granulomas are in fact protecting the M. 

tuberculosis. Indeed the pathogen may be able to engineer a supportive environment for 
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example through the manipulation of macrophage lipid metabolism (Russell, Cardona et 

al. 2009). In the zebrafish model it can be observed that intracellular mycobacteria 

induce recruitment of macrophages to early granulomas, suggesting the mycobacteria 

are using the host to facilitate the spread of infection (Davis and Ramakrishnan 2009). 

Although it should be remembered the zebrafish model uses Mycobacterium marinum 

and does not have an adaptive immune system, but this model could perhaps portray the 

response seen in TB patients who do not have an adequate adaptive immune response 

such as HIV co-infected individuals.  

Sarcoidosis granulomas 

In contrast to TB, sarcoidosis granulomas are non-necrotising, well-formed and track 

along the lymphatics, interlobular septa, bronchovascular bundles and pleura (Gerke and 

Hunninghake 2008). As the sarcoidosis granulomas mature, fibroblasts and collagen 

encase the ball of cells (Mitchell, Scadding et al. 1977). An integral part of sarcoidosis 

granulomas are epithelioid cells, differentiated macrophages with secretory and 

bactericidal capability. These epithelioid cells produce serum angiotensin converting 

enzyme (ACE), a commonly used surrogate marker of sarcoidosis disease activity as it 

is thought to reflect granuloma burden (Silverstein, Pertschuk et al. 1979). However this 

biomarker has poor specificity as it can be elevated in other diseases, particularly 

disorders with granulomatous inflammation such as TB (Ainslie and Benatar 1985), or 

reduced to within a normal range due to genetic variations (Biller, Zissel et al. 2006). 

Sarcoidosis granulomas are typically indistinguishable from the lesions in chronic 

beryllium disease, a granulomatous lung disorder caused by beryllium exposure and 

characterized by accumulation of beryllium-specific CD4+ T cells (Amicosante and 

Fontenot 2006). However unlike chronic beryllium disease, the main causative 

antigen(s) in sarcoidosis remain anonymous.  
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Immunology of tuberculosis 
The protective and pathologic responses to M. tuberculosis are complex and 

multifaceted, involving many components of the immune system. 

 

M. tuberculosis has adopted many unique features that have allowed it to successfully 

adapt to its often harsh, nutrient deficient host environment. The cell envelope is 

composed of two layers: an atypical cell wall, which is composed of mycolic acids, 

glycolipids and structural polymers, and the plasma membrane; both layers protect the 

bacterium from the host’s immune response and  ensure the bacterium’s survival by 

importing nutrients and exporting products that interact with the host (Kaufmann and 

Rubin 2008). One of the cell wall’s features, its resistance to dehydration, acids and 

alkalis, aids our ability to identify the bacilli during isolation under microscopy in 

samples such as sputum. This resistance to acids during staining of the bacilli can result 

in rapid identification of infected patients that are then subsequently labelled as ‘smear 

positive’. 

M. tuberculosis gains entry into the lung through aerosol inhalation where it is 

thought the first line of defence is the resident alveolar macrophages and recruited 

neutrophils (Eum, Kong et al. 2010).  Pattern  recognition  receptors (PRRs) expressed 

on innate cells can mediate the uptake of bacteria including the tubercle bacilli, into the 

host's cells (Korbel, Schneider et al. 2008). It is recognised from the murine model that 

the Toll-like receptors (TLR)-2, TLR-4 and TLR-9, other PRRs such as C-type lectins 

(Mincle, mannose receptor and DC-SIGN), and their adaptor proteins, are all likely to 

play a critical but complex role in the antimycobacterial activity of macrophages and 

dendritic cells during M. tuberculosis infection (Edwards, Manickasingham et al. 2002; 

Ishikawa, Ishikawa et al. 2009; Dorhoi, Desel et al. 2010). In humans a link between 

TLR2 activation, vitamin D and mycobacterial killing has been clearly demonstrated in 
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macrophages and monocytes (Liu, Stenger et al. 2006). It has been shown that once the 

pathogen is phagocytosed by the macrophage it has evolved several strategies to avoid 

the macrophage’s intracellular killing mechanisms. These include inhibition of 

phagolysosome fusion, resistance to reactive nitrogen intermediates and inhibition of 

phagosome acidification (Armstrong and Hart 1971; Sturgill-Koszycki, Schlesinger et 

al. 1994; MacMicking, Xie et al. 1997; Cosma, Sherman et al. 2003). Initially the innate 

immune response continues to predominate as the activated macrophages produce a 

plethora of cytokines and chemokines to stimulate the migration of neutrophils, 

lymphocytes and mononuclear phagocytes (Ulrichs and Kaufmann 2006). In addition if 

the infected macrophage does not survive it may either die by necrosis, a traumatic cell 

death that potentially allows for further spread of the bacilli, or by apoptosis, where the 

plasma membrane remains intact and often confers a more protective outcome for the 

host (Behar, Martin et al. 2011). Therefore if apoptosis is prevented this can encourage 

the survival and growth of the bacilli as shown by the actions of a common virulent 

strain of M.tuberculosis in mice (H37Rv) that has the ability to inhibit the lipid mediator 

prostaglandin E2, a promoter of apoptosis (Divangahi, Desjardins et al. 2010). 

Detection of bacilli by the myeloid cells via PRRs and complement receptors, often 

results in the processing of mycobacterial antigens to enable the antigen presentating 

cells to activate T lymphocytes as key mediators of an acquired immune host response. 

Studies in mice have shown that T cell activation is likely to be initiated in the draining 

lymph nodes as a result of infected dendritic cells migrating from the lung  (Wolf, Linas 

et al. 2007; Wolf, Desvignes et al. 2008). However activation of effector T cells appears 

to be slow, and what is more cannot be accelerated by adoptive transfer of antigen-

specific T helper 1 (Th1) CD4+ cells, suggesting perhaps that initially post-infection the 

bacilli are able to hide or resist T cell antimycobacterial responses (Gallegos, Pamer et 
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al. 2008). As the bacterium perseveres, a CD4+ T cell mediated response prevails while 

progressive remodelling of the site of infection with lymphocyte recruitment and further 

macrophage activation ultimately brings about the formation of granulomas (Cooper 

2009). The naïve CD4+ T helper cells recognise peptides+ from the phagocytosed 

tubercle bacilli in association with MHC-class II molecules on the surface of the antigen 

presenting cells such as dendritic cells. This encounter drives the differentiation of naïve 

CD4+ T helper cells to Th1 cells by cytokines, including IL-12 and IL-18 derived from 

the antigen presenting cells, and IFN-γ produced from CD4+ T cells, CD8+ T cells and 

natural killer cells (Flynn and Chan 2001). Some of the key cytokines produced by the 

effector Th1 cells are IFN-γ, IL-2 and tumour necrosis factor- α (TNF-α). M. 

tuberculosis lipid antigens can also be processed and presented to unconventional T 

cells such as γδT cells and NKT cells (Tanaka, Morita et al. 1995; De Libero and Mori 

2008).  

 

Protective and pathogenic factors associated with human TB  

It is often suggested that of those individuals that have been chronically exposed to 

M.tuberculosis only about 10-30% become infected, as evidenced by an acquired 

delayed sensitivity to M. tuberculosis proteins (Kassim, Zuber et al. 2000; North and 

Jung 2004). However studies in humans are obviously limited in their ability to prove 

exposure to a sufficient bacterial load (Fennelly, Jones-Lopez et al. 2012), determine if 

infection even occurred, or determine if the innate or the adaptive or both immune 

responses played a role in any protective responses. Even so it is speculated that both 

the innate and adaptive immune systems play a significant defensive part against 

prolonged infection with M. tuberculosis. An example of a potential innate response is a 

T-cell independent natural resistance that was suggested from a study by Cobat et al, 
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where they were able to show asymptomatic individuals who had a negative delayed 

type hypersensitivity response from the TST were linked with a major chromosomal 

locus 11p14, in a highly endemic area in South Africa (Cobat, Gallant et al. 2009). The 

role of the adaptive immune response is far more evident due to the prolific prevalence 

of M. tuberculosis and HIV co-infection, where the reduced numbers of CD4+ T cells 

secondary to HIV infection facilitates mycobacterial activity and causes florid clinical 

disease (Corbett, Watt et al. 2003).  

The cytokines IL-12 and IFN-γ have both been shown to be crucial in controlling M. 

tuberculosis infection. Although neither on their own are able to halt the pathogen, their 

presence is essential for protection (Cooper 2009). The importance of IL-12 and IFN-γ 

was initially demonstrated in experimental mouse models (Flynn, Chan et al. 1993; 

Cooper, Roberts et al. 1995). Subsequent studies of patients with autosomal inheritance 

of susceptibility to mycobacterial infection, including M.tuberculosis, have supported 

the animal findings and demonstrated that susceptibility can be caused by mutations in 

the genes for IL-12, STAT1 or the receptors for IFN-γ or IL-12 (Jouanguy, Altare et al. 

1996; Altare, Durandy et al. 1998; Ottenhoff, Kumararatne et al. 1998; Boisson-Dupuis, 

El Baghdadi et al. 2011). A further demonstration of the complexity of the role of IFN-γ 

has been shown by the lack of success to treat adult TB, particularly MDR-TB, with 

IFN-γ in patients with no known genetic mutations (IFN-γ has been successfully used in 

patients with IL-12/IL-12R mutations). Studies in HIV-negative patients did initially 

show some promise with a transient decrease in the bacillary load however the overall 

efficacy of the therapy is questionable, even when therapy is received directly in to the 

lungs (Reljic 2007). Only one HIV-negative patient has been reported to have been 

successfully treated with adjuvant IL12 therapy (Greinert, Ernst et al. 2001). Other 

primary immunodeficiencies have also led to the discovery of single genes that are 
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critical for antimycobacterial immunity. These include a mutation in the IRF8 gene, 

which is required for dendritic cell and monocyte survival, and a mutation in the CYBB 

gene, which encodes one of the phox subunits of NADPH oxidase required for 

respiratory burst in phagocytes (Bustamante, Arias et al. 2011; Hambleton, Salem et al. 

2011).  

Another cytokine demonstrated to have a crucial function is TNF-α, produced 

both by many immune cells including macrophages and stimulated T cells, it has been 

connected not only with immune protection but also with the formation of granulomas 

(Flynn and Chan 2001). Its job in controlling latent infection has been implicated by 

evidence of a five-fold increase in the rate of reactivation of M. tuberculosis infection 

occurring in individuals with Crohn’s disease or rheumatoid arthritis that were treated 

with anti-TNF-α or TNF-α receptor antibodies (Keane, Gershon et al. 2001; Gardam, 

Keystone et al. 2003; Long and Gardam 2003). When comparing a M. tuberculosis-

specific CD4+ T cell response in the peripheral blood of active and latent TB patients, a 

significant TNF-α response was seen in active disease, although possibly reflecting an 

elevated degree of inflammation rather than protection (Harari, Rozot et al. 2011). From 

animal models its role in protection is clearly delineated in non-human primates (Lin, 

Myers et al. 2010) and in the past in the mouse model it has been suggested that TNF-α 

may help in the maintenance of the granulomas (Mohan, Scanga et al. 2001). This now 

appears unlikely as in the non-human primate model it has more recently been shown 

that the monkeys are still able to develop typical granulomas after anti-TNF-α 

treatment, although they remain unable to control the infection (Lin, Myers et al. 2010). 

In addition histology from three patients who reactivated TB after anti-TNF-α therapy 

were found to have normal granulomas present (Iliopoulos, Psathakis et al. 2006). 

Multifunctional CD4+ T cells secreting IFN-γ, TNF-α, and IL-2 in the lungs of mice 
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have been proposed as correlates of protection after BCG immunisation (Forbes, Sander 

et al. 2008). Interestingly Harari et al showed an elevated number of multifunctional M. 

tuberculosis-specific CD4+ T cells in in the blood of latent individual’s compared to 

active TB patients (Harari, Rozot et al. 2011). However Kagina et al examined the 

blood of BCG vaccinated infants and were unable to find any specific cytokine profile 

of BCG-specific T cells, including multifunctional cells, which correlated with 

protection (lack of development of active TB within two years of vaccination) (Kagina, 

Abel et al. 2010).  

Although the role of IFN-γ is well recognised, the role of type 1 IFN in TB is 

not as clearly documented. The recent human TB microarray study from O'Garra and 

collaborators revealed a correlation between disease severity and neutrophil driven type 

I IFN-inducible genes in the blood of patients with active TB (Berry, Graham et al. 

2010). However exactly what role IFN-γ and type I IFNs play in human TB remains 

unclear. In the murine model the loss of the common type I IFN receptor (ifnar1-/-) or 

an over-abundance of type I IFNs (by a hyper-virulent M.tuberculosis strain) have 

shown that type I IFNs promotes M.tuberculosis infection (Manca, Tsenova et al. 2005). 

A recent study in M.tuberculosis infected human macrophages observed a suppression 

of the protective cytokine IL-1 by type I IFN, not seen in RD1-deficient strains 

(Novikov, Cardone et al. 2011). The role of the neutrophil in TB is also not well 

acknowledged although studies in patients with advanced and multiple drug resistant 

TB have shown the neutrophil to be the principal cell in untreated aspirates from 

cavities (Ulrichs, Kosmiadi et al. 2004), moreover the neutrophil was unexpectedly 

found to be the dominant M.tuberculosis infected cell type in both sputum and cavities 

(Eum, Kong et al. 2010). A vaccination study in mice has also demonstrated the 

potential for neutrophils to become infected by mycobacteria, and furthermore then act 
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as carrier for the bacilli to the draining lymph nodes (Abadie, Badell et al. 2005). In 

addition there is evidence from patients with active TB of a correlation between worse 

outcome and peripheral neutrophilia, although whether this association is cause or effect  

remains unknown (Barnes, Leedom et al. 1988; Bandara, Bremner et al. 2008).  

A cytokine suggested to modulate the host response in TB mouse models is IL-

10. A deficiency in IL-10 results in a lower mycobacterial load, earlier Th1 response 

and an enhanced Th1 response in the mouse (Beamer, Flaherty et al. 2008; Cooper 

2009; Redford, Boonstra et al. 2010; Redford, Murray et al. 2011). In patients with 

active TB, IL-10 has been associated with peripheral anergy (Boussiotis, Tsai et al. 

2000), there is evidence of an increased production of IL-10 in pleural samples (Barnes, 

Lu et al. 1993) and neutralising antibodies to IL-10 resulted in increased IFN-γ in 

peripheral blood cells (Gong, Zhang et al. 1996).  However, IL-10 polymorphism 

studies have added little knowledge as they show conflicting results, although perhaps 

just reflecting ethnic-specific genetic variations (Lopez-Maderuelo, Arnalich et al. 

2003). A meta-analysis of IL-10 polymorphism studies revealed no statistical evidence 

of an association with active TB but did indicate a trend towards protection in 

association with certain IL-10 polymorphisms and pulmonary TB alone (Pacheco, 

Cardoso et al. 2008).  

Another mechanism appearing to down modulate the immune response in 

patients with active TB is the cell surface signalling molecule programmed death-1 

(PD-1) and its ligands (PDL-1, PDL-2). PD-1 is expressed by T cells in TB patients and 

stimulation of peripheral blood with sonicated M. tuberculosis up-regulated T cell 

expression of PDL-1, while blocking the PD-1/ligand system increased M. tuberculosis-

specific IFNγ response (Jurado, Alvarez et al. 2008). Its involvement is further 

suggested by microarray analysis of active TB patient’s whole blood, which revealed a 
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relative increased abundance compared to latent patients, but unexpectedly an 

association predominantly with neutrophils (McNab, Berry et al. 2011). 

For over 60 years vitamin D supplementation has been suggested to aid 

mycobacterial killing (Charpy, Dowling et al. 1947). More recently it has been reported 

the odds of developing active TB are at least five-fold higher in vitamin D deficient 

individuals, either HIV-negative or HIV-positive (Martineau, Nhamoyebonde et al. 

2011). Furthermore it has now been shown that vitamin D has the propensity to act as a 

key immune cofactor in both innate and adaptive antimycobacterial activities. In 

M.tuberculosis infected human macrophages mycobacterial growth was inhibited 

secondary to TLR2/1 stimulation in the presence of calcitriol (the active form of vitamin 

D, 1,25-dihyrdoxyvitamin) as this triggered the induction of the antimicrobial peptide 

cathelicidin (Liu, Stenger et al. 2006). Moreover cathelicidin production was 

significantly diminished in the serum of black patients with deficient calcidiol (which 

converts to calcitriol) levels, compared to white patients with sufficient calcidiol levels; 

production was then reversed in the black subjects with the addition of calcidiol (Liu, 

Stenger et al. 2006). A study by the same research group using a similar protocol also 

demonstrated the necessity of vitamin D for the adaptive response. M.tuberculosis 

infected human monocytes stimulated with IFN-γ in the presence of calcidiol-sufficient 

serum from white patients resulted in a reduction of viable bacilli, which was not seen 

in the presence of calcidiol-deficient serum from black patients. Although this in vitro 

data is promising for a therapeutic role for Vitamin D supplementation, a large 

randomised controlled trial of active TB patients showed that only patients with a 

vitamin D receptor polymorphism responded significantly and favourably to vitamin D 

supplementation in addition to standard antituberculous therapy (Martineau, Timms et 

al. 2011). Investigation of the effects of supplementation at an earlier stage of infection, 
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in order to prevent those with latent infection from developing active TB, could be 

important.  

Other human risk factors that have been linked with development of active 

disease include diabetes mellitus, alcohol excess and a smoking history, each with 

suggested biological plausibility relating to direct impairment of the host immune 

response (Bates, Khalakdina et al. 2007; Jeon and Murray 2008; Lonnroth, Williams et 

al. 2008).  

 

Treatment and treatment monitoring of tuberculosis 
Inadequate treatment and poor treatment monitoring leads to worsening disease, an 

increase in disease transmission, and spread of drug resistance. 

 TB treatment   

In 1948 the British MRC conducted a landmark randomised controlled trial of 

streptomycin, the first drug to be successfully commenced for the partial treatment of 

pulmonary TB (Crofton 2006). A few years later in the early 1950s it was reported that 

isoniazid had activity against M. tuberculosis and by the mid-1960s rifampicin was 

added to the triple therapy of streptomycin, isoniazid, and pyrazinamide (Murray 2004).  

Because M. tuberculosis develops spontaneous, random, resistance mutations to 

streptomycin, ethambutol, isoniazid and rifampicin, each drug cannot be used alone 

(David 1970). These resistance mutations occur independently (where the highest risk 

of resistance is secondary to isoniazid) therefore the chances of any bacilli having 

spontaneous resistance to 3 or 4 drugs is extremely low (David 1970). In addition each 

drug works by a different mechanism and may complement each other. Isoniazid and 

ethambutol are used at bactericidal doses, rifampicin has additional sterilising activity, 

and pyrazinamide is bactericidal in acidic environments e.g. inside macrophages or 
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areas of acute inflammation (Mitchison 1985). The optimal duration of treatment and 

combination of drugs was determined by numerous clinical trials conducted in the 

1970s and 1980s by the British MRC, British Thoracic Association and Hong Kong 

Chest Service (ATS and CDC 2003). The standard course of antituberculous treatment 

still remains the ‘short course’ regimen which consists of six months of antibiotics. At 

the end of the course the patient is considered cured, although the global relapse rate in 

2010 was approximately 4% (WHO 2010). If the bacterium are thought to be fully 

sensitive to first line drugs then treatment is started with isoniazid, rifampicin, 

ethambutol and pyrazinamide for two months (the intensive phase) followed by 

isoniazid and rifampicin for four months (the continuation phase) (WHO 2009). In the 

UK, the National Institute for Health and Clinical Excellence guidelines suggest 

ethambutol is only added if there is a possibility of drug resistance (NICE 2011). From 

numerous in vitro and in vivo studies it is observed that the intensive phase serves to 

rapidly kill those bacilli that are actively-multiplying, including both intracellular and 

extracellular organisms (Grosset 1980; Jain, Lamichhane et al. 2008). On the other 

hand, the continuation phase has a lower rate of killing due to the sterilizing activity 

against the persisting bacilli which are limited in number but undergo intermittent 

multiplication, and due to the reduced effectiveness of all the drugs on these bacilli 

therefore require a longer course of treatment to prevent relapses (Grosset 1980; Jain, 

Lamichhane et al. 2008). 

 

TB treatment monitoring 

After initiation of antituberculous treatment it is important that the patient’s response is 

closely monitored. Monitoring allows observation for potential treatment side effects 

and most importantly for treatment interruptions and/or identifying if the patient is 
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responding sufficiently (WHO 2009). Inadequate treatment commonly occurs due to 

poor patient compliance, lack of appropriate antibiotics, concurrent pathology or 

infection with drug resistant M. tuberculosis (WHO 2009). Inadequate treatment and 

poor treatment monitoring, causes worsening of an individual’s disease, increased 

potential for disease spread, and an increased risk of the development and spread of 

drug resistant M. tuberculosis.  

Currently the only validated and accepted biomarker of treatment success or 

failure is the 2-month sputum conversion test (Mitchison 1993). This requires a culture 

positive sputum sample prior to treatment and repeat sputum sample 2 months after 

treatment. If the repeat sample does not culture M. tuberculosis this suggests the patient 

has responded successfully to treatment. However there are many limitations to this test. 

Firstly many patients are not able to produce sputum samples, even prior to treatment 

health workers are unable to obtain samples from approximately 30% of patients in the 

USA and 50% of South African patients (CCDC 2007; WHO 2010). These difficulties 

in obtaining sputum are likely to be further exacerbated after successful treatment. 

Moreover patients who are unable to expectorate sputum at 2 months may be potentially 

incorrectly labelled as having a negative culture (Perrin, Lipman et al. 2007). In addition 

sputum culture is time consuming taking several weeks to grow the bacilli (Pfyffer, 

Cieslak et al. 1997), and results can be compromised by contamination (Small, 

McClenny et al. 1993). Furthermore, although sputum conversion is commonly used as 

a surrogate end point for treatment response in clinical trials evaluating new drugs, a 

systematic review and meta-analysis to assess its accuracy in predicting an individual’s 

treatment failure revealed low sensitivity and only modest specificity (Horne, Royce et 

al. 2010; Wallis, Pai et al. 2010). While other biomarkers have also been trialled, 

including serum C-reactive protein, IFN-γ and neopterin, all have similarly shown poor 
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sensitivity and specificity (Walzl, Ronacher et al. 2008). Chest radiographs are 

commonly used in the clinical setting as a marker of treatment response however they 

too have many limitations. Firstly chest radiographs generally improve slower than the 

clinical response and lack specificity as interpretation can be confounded by previous 

lung damage (Perrin, Lipman et al. 2007). Furthermore interpretation of radiographic 

changes in response to treatment has not yet been standardised, and the facilities are 

often not available in developing countries (Walzl, Ronacher et al. 2011).  

 There remains to date no available early biomarkers, before 2 months of 

treatment, correlating with treatment success or failure. TB treatment monitoring is a 

major challenge for global attempts to eradicate M. tuberculosis infection. So much so 

that in April 2010 the Center for Disease Control and National Institutes of Health 

brought together experts in the field and research scientists with the sole purpose of 

addressing this problem (Nahid, Saukkonen et al. 2011). Early biomarkers of treatment 

response are not only useful in clinical TB management but also play a significant role 

in clinical trials as surrogate markers of a pharmacological response. The preferred 

surrogate endpoints for TB treatment trials are early bactericidal activity, sputum culture 

and smear conversion rates (Jain, Lamichhane et al. 2008) (Nahid, Saukkonen et al. 

2011). Early bactericidal activity (EBA) is the measure of the fall in viable colony 

forming units of M. tuberculosis in the sputum, and is a reliable measure of the loss of 

metabolically active M. tuberculosis during a 1-2 week course of therapy (Donald and 

Diacon 2008). However EBA has many problems as a surrogate marker including 

unknown correlation with the endpoint of treatment ‘cure’, high variability between 

patients, the lack of measurement of sterilising activity of bacilli persisters and the 

requirement for sputum samples (Jain, Lamichhane et al. 2008; Nahid, Saukkonen et al. 

2011). In addition EBA is typically used to assess single agents, although a recent study 
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has demonstrated feasibility with its use with multiple-agent combinations, interestingly 

response is often seen in two phases with the first two days showing the greatest rate of 

change in metabolic activity (Diacon, Dawson et al. 2012). Without surrogate endpoints 

the success of antituberculous treatment is commonly determined by treatment failure 

and the treatment relapse rate after 2 years, resulting in expensive, time-consuming and 

lengthy drug trials (Jain, Lamichhane et al. 2008). Treatment failure is defined as 

continuous positive sputum cultures while receiving an appropriate antibiotic treatment 

regimen; treatment relapse is defined as a patient who becomes culture-negative while 

on treatment but deteriorates later and becomes culture-positive after stopping treatment 

(ATS and CDC 2003). Most patients relapse within 6-12 months of completing 

treatment  (Nunn, Phillips et al. 2010). These patients should be distinguished from 

patients who become re-infected with a different strain (van Rie, Warren et al. 1999). 

 Novel treatment monitoring biomarkers are greatly needed for both clinical 

management and drug development. Some areas that have been suggested include better 

radiological tools such as positron emission tomography, which may have better 

sensitivity and specificity than chest radiographs and computer tomography (Hofmeyr, 

Lau et al. 2007); better methods to measure the mycobacterial load such as the use of M. 

tuberculosis mRNA levels in sputum (Desjardin, Perkins et al. 1999); and ultimately the 

development of host genomic, proteomic and metabolomic tools (Walzl, Ronacher et al. 

2008). 
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Aetiology and immunology of sarcoidosis 
Little is known about either the cause or underlying immune mechanisms of sarcoidosis. 

Aetiology 

Because sarcoidosis usually affects the lungs, skin and eyes many airborne aetiological 

agents have been proposed. Although associations with exposures have been reported 

including mycobacterial antigens, insecticides and airborne substances post the World 

Trade Centre disaster, there has been no identification of a single predominate agent 

(Newman, Rose et al. 2004), (Izbicki, Chavko et al. 2007). One of the most widely 

proposed aetiological agents is M.tuberculosis. Although it has not been possible to 

culture M. tuberculosis in large studies, some small studies have shown evidence of 

mycobacterial DNA by PCR with prevalence varying between 0-50% and a meta-

analysis suggesting a prevalence of 30% (Brown, Brett et al. 2003; Gupta, Agarwal et 

al. 2007). Furthermore multiple studies have been carried out to investigate the immune 

response, peripherally and at the site of disease, to a range of M. tuberculosis antigens: 

ESAT-6, M. tuberculosis catalase-peroxidase (MKatG), PPD and mycobacterial 

superoxide dismutase A, where responses were assessed by IFN-γ assays and flow 

cytometry (Song, Marzilli et al. 2005; Carlisle, Evans et al. 2007; Drake, Dhason et al. 

2007; Allen, Evans et al. 2008; Chen, Wahlstrom et al. 2008; Oswald-Richter, Culver et 

al. 2009; Oswald-Richter, Sato et al. 2010; Oswald-Richter, Beachboard et al. 2010; 

Oswald-Richter, Beachboard et al. 2012). The patients in these studies had a range of 

sarcoidosis phenotypes, and controls were patients with other granulomatous diseases 

and/or healthy BCG unvaccinated participants. Taking into account the variations in 

participant phenotypes, type of samples and antigens used between studies, there was a 

significant immune response to M. tuberculosis antigens in at least a subset of 

sarcoidosis patients. Gupta et al carried out a systematic review of all MEDLINE 
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studies since 1965 focussing on T and B cell responses to tubercular antigens in patients 

with sarcoidosis. They found a non-significant trend towards a mycobacterial T cell 

immune response in sarcoidosis patients and a significant trend towards a B cell 

response, compared to PPD-ve controls (Gupta, Agarwal et al. 2011). More promising 

though was a proteomics approach used to detect tissue antigens which identified 

antigenic bands with the same physicochemical properties as the Kveim-Siltzbach 

reagent. The enzyme M. tuberculosis catalase-peroxidase (mKatG) was identified as one 

of the tissue antigens that were present in significantly more patients with sarcoidosis 

than in the controls (Song, Marzilli et al. 2005). Given that this approach was not 

predicated on any specific hypothesis regarding aetiology, only the assumption that the 

antigen would be a poorly soluble protein within the granuloma, the recovery of a 

specific mycobacterial antigen provides support for a mycobacterial link to sarcoidosis 

granulomas. Nevertheless whatever the relationship is between M. tuberculosis and 

sarcoidosis it appears to be complicated. For example case reports of patients diagnosed 

with both TB and sarcoidosis are not common and nor is a prior diagnosis of TB a 

recognised risk factor for developing sarcoidosis (Rybicki, Iannuzzi et al. 2001).  

Furthermore the incidence of sarcoidosis is higher in the United States than in TB 

endemic countries (Jindal, Gupta et al. 2000), although this may just reflect increased 

awareness of sarcoidosis in the United States. Multiple studies of the components of the 

Kveim-Siltzbach reagent have failed to identify a responsible antigen but studies have 

demonstrated the Kveim reaction is characterised by CD4+ T cells with an oligoclonal 

TCR expansion consistent with an antigen specific host response (Moller 2007). 

In summary, the aetiology of sarcoidosis is unknown, yet despite the lack of 

conclusive evidence in favour or against, one of the most commonly proposed 

hypotheses remains mycobacteria. 
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Immunological response of sarcoidosis  

It is generally accepted that sarcoidosis is mediated by a MHC-restricted antigen driven 

process, based on observations such as an oligoclonal expansion of αβ T cells at the 

sites of disease and a restrictive repertoire of T cell receptors (Silver, Crystal et al. 1996; 

Grunewald, Wahlstrom et al. 2002). It has been proposed that the granuloma occurs as a 

consequence of a continuous exaggerated immune response against unknown antigen(s) 

capable of persisting at the site of disease, perhaps due to poor solubility and 

degradability (Agostini, Adami et al. 2000). It is thought there is both macrophage and 

T cell activation with CD4+ T cell differentiation into Th1 phenotype (Hunninghake 

and Crystal 1981; Agostini, Adami et al. 2000). The role of CD4+ T cells is intimated 

by the reactivation of sarcoidosis that can occur during treatment for HIV (Foulon, 

Wislez et al. 2004). At least early in the disease course it has been found that the 

dominant cytokine expression in the serum and lung are Th1 cytokines including IFN-γ, 

IL-12 and IL-2, and TNFα from stimulated macrophages (Agostini, Basso et al. 1998; 

Gerke and Hunninghake 2008). A recent study also reports elevated levels of T helper 

17 cells in the peripheral blood and BAL of patients with active sarcoidosis (Facco, 

Cabrelle et al. 2011). Interestingly IFNα therapy is a well-documented risk factor for 

developing sarcoidosis, occurring in around 5% of hepatitis C patients treated with 

IFNα (Hoffmann, Jung et al. 1998), while IFNß has also been reported to induce 

sarcoidosis in several cases reports (Chakravarty, Harris et al. 2012). Consistent with 

the concept that sarcoidosis is caused by local stimuli most studies demonstrate a 

compartmentalised immune response more pronounced at the site of disease than in the 

blood (Wahlstrom, Katchar et al. 2001; Thillai, Eberhardt et al. 2012). However an 

elevated immune response can also be detected in the blood and an increase in soluble 

IL-2 receptor has been shown to be associated with increased disease activity (Grutters, 

Fellrath et al. 2003).  The interaction of CD4+ T cells with antigen presenting cells 
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initiates the formation and maintenance of the granulomas. The role of PRRs in 

sarcoidosis is unknown and studies looking for TLR polymorphisms as candidate 

susceptibility genes have been inconclusive (Schurmann, Kwiatkowski et al. 2008).  

It is commonly observed that sarcoidosis patients develop peripheral anergy, in 

particular the lack of a dermal response to the TST (Demirkok, Basaranoglu et al. 

2007). This phenomenon may be related to the reported accumulation of regulatory 

FOXP3+ T cells in patients with active sarcoidosis, in their BAL and peripheral blood, 

which could result in the suppression of IL-2 secretion and strongly inhibit T cell 

expansion and migration (Miyara, Amoura et al. 2006). Alternatively it may be related 

to an apparent reduced function of dendritic cells in peripheral blood of sarcoidosis 

patients, a finding also shown to be associated with increased disease activity (Mathew, 

Bauer et al. 2008). Cobat et al identified a non-MHC locus (in 5p15 region) linked to 

reduced tuberculin skin test reactivity in a TB endemic area (Cobat, Gallant et al. 2009). 

As this locus is also linked with sarcoidosis susceptibility, this association could relate 

to the peripheral anergy seen in sarcoidosis patients (Thompson, Rybicki et al. 2006). 

 About a quarter of sarcoidosis patients develop pulmonary fibrosis. The 

pathogenesis of this is not fully understood but it has been postulated that central to the 

pathogenesis is both the presence of matrix metalloproteinases (particularly MMP 8 and 

MMP 9), and possibly a shift from a predominant Th1 cytokine production to a more 

Th2 like environment (IL-4, IL-10, IL-13) (Henry, McMahon et al. 2002; Iannuzzi, 

Rybicki et al. 2007). However there is little published data on the underlying 

immunopathogenesis of pulmonary fibrosis related to sarcoidosis, therefore these 

hypotheses are not well supported by evidence.    

In summary, the immune mechanisms that cause sarcoidosis are not well 

understood but it is proposed to begin with an antigenic stimulus, followed by 
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macrophage and T-cell activation via a MHC Class II mediated pathway, which results 

in a milieu of Th1 and other cytokines. 

 

Genetic susceptibility towards sarcoidosis   

There is a strong link between sarcoidosis and genetic susceptibility based on both a 

tendency for familial clustering of the disease and an increased risk of sarcoidosis in 

family members (Rybicki, Iannuzzi et al. 2001). A number of candidate gene 

association studies and genomewide association studies have identified important 

genetic associations with sarcoidosis. These have predominantly examined HLA Class I 

and Class II genes linking both to disease susceptibility and prognosis (Grunewald 

2010). Studies of non-HLA candidate genes including vitamin D have reported 

conflicting results (Iannuzzi and Rybicki 2007). The link between sarcoidosis and 

vitamin D is based on both the immunomodulatory effects of vitamin D, and suggestive 

epidemiological evidence that sarcoidosis is associated with vitamin D deficiency such 

as an increased incidence in spring, increased incidence in African Americans, 

increased prevalence in northern latitudes and lower prevalence nearer the equator 

(Gerke and Hunninghake 2008).  

Interestingly in a cohort of over 100 Japanese patients, from a panel of 10 

candidate genes including IFNγ and its receptors, an IFNα haplotype was found to be 

associated with susceptibility to sarcoidosis but not tuberculosis (Akahoshi, Ishihara et 

al. 2004). The authors also show the IFNα allele is associated with a higher IFNα 

production after in vitro stimulation by Sendai virus, therefore suggesting an increased 

endogenous production of IFNα may have predisposed these patients towards 

sarcoidosis. 
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Animal models of sarcoidosis   

One of the major barriers to studying sarcoidosis is the lack of an accepted animal 

model. Early studies in the 1970s injected mice with sarcoidosis tissue homogenates, 

however results were inconsistent (Belcher and Reid 1975; Mitchell, Rees et al. 1976). 

More recently two mouse models have been proposed but due to the unknown aetiology 

and limited resemblance of human pathology these experimental models have not been 

widely accepted (Samokhin, Buhling et al. 2010; Swaisgood, Oswald-Richter et al. 

2011).  

 

Treatment of sarcoidosis 
There are many challenges in the clinical decisions surrounding treatment. These 

difficulties are exacerbated by the lack of well-conducted trials and therefore reliance 

on only expert-driven evidence based guidelines. 

 

While the treatment of TB is the commencement of antibacterial therapy for at least 6 

months, the mainstay of sarcoidosis treatment is aimed at suppressing the inflammatory 

response, with the aim of reducing the burden of granulomas and preventing the 

development of fibrosis. Spontaneous remissions occur in 55- 90% of patients with 

Stage I disease, 40-70% of those with Stage II disease, 10-20% with Stage III disease, 

and 0% with Stage IV disease (WASOG 1999). Although spontaneous resolution is 

common, progressive lung disease occurs in approximately 25% of all cases and 

disabling organ failure in up to 10% of patients (Baughman 2004). Oral glucocorticoids 

are the first line of therapy and predominantly instituted due to their anti-inflammatory 

properties. They are thought to be capable of attenuating the granulomatous 

inflammation and slowing the development of fibrosis. However the challenge remains 
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for many cases in deciding whether systemic treatment is appropriate in view of the 

known serious side effects. This difficulty is perhaps reflected by the wide range of 

patients, 20 - 70% across different studies, that physicians decide to start on systemic 

treatment (Baughman and Nunes 2012). 

A Cochrane review (a systematic review of the highest standard in evidence 

based medicine) of oral glucocorticoids suggested they improve chest radiograph and 

respiratory symptoms (Paramothayan, Lasserson et al. 2005). However  there was little 

evidence of an improvement in lung function, and limited data beyond two years to 

indicate whether they have any modifying effect on long-term pulmonary disease 

progression (Paramothayan, Lasserson et al. 2005). Unfortunately there is a lack of 

adequate trials in the treatment of sarcoidosis. There have been only 5 randomised 

controlled trials that satisfied the Cochrane systematic review criteria and moreover the 

trials were not adequate to distinguish between patients with differing radiological 

stages – the most commonly used clinical classification criteria. Immunological 

indications for the effect of glucocorticoids include a reversal of the elevated CD4:CD8 

ratio (typically greater than 4:1) seen in the bronchoalveolar lavage (Winterbauer, 

Lammert et al. 1993). In addition after commencement of glucocorticoid treatment TNF 

levels also changed prognostically (Moodley, Dorasamy et al. 2000).   

Both International and British guidelines advocate starting treatment for 

symptomatic patients, regardless of other clinical findings (WASOG 1999; Bradley, 

Branley et al. 2008). In asymptomatic patients with stage 0 or I radiological disease 

there is strong evidence that no treatment is required (Gibson, Prescott et al. 1996). 

Indeed 95% of patients with stage I disease will have a normal chest radiograph within 

10 years (Nagai, Shigematsu et al. 1999). For asymptomatic patients with stable stage 

II-IV disease the current British guidelines recommend observation for development of 



 Introduction  

64 

 

symptoms, deteriorating radiological changes and deteriorating lung function (Bradley, 

Branley et al. 2008). Glucocorticoid dosing typically involves several or all of the 

following phases: (1) initial high doses to control inflammation; (2) tapering to a 

maintenance dose to lessen the risk of side effects (during this time steroid-sparing 

drugs maybe started); (3) continuing the maintenance dose for 6 - 24 months; (4) 

tapering the dose for complete steroid withdrawal. Data on long-term benefits, 

continuing oral glucocorticoids for longer than 2 years, still remains unclear. However 

many sarcoidosis specialists suggest that in some patients treatment should be continued 

to prevent relapses (Coker 2007). This view is apparent as over half of those started on 

systemic treatment continue treatment for more than 2 years (Baughman and Nunes 

2012).  

Some patients with pulmonary sarcoidosis cannot tolerate or do not respond to 

glucocorticoids (Paramothayan, Lasserson et al. 2006). Several alternative approaches 

have been introduced, such as the use of cytotoxic drugs e.g. methotrexate and 

azathioprine; however the efficacy of these therapies is restricted and each are 

associated with different toxicities (Paramothayan, Lasserson et al. 2006). Therapy to 

block TNF can be useful in refractory chronic sarcoidosis (Baughman, Drent et al. 

2006; Rossman, Newman et al. 2006). Paradoxically, there are several reports in the 

medical literature describing the development of sarcoidosis in patients treated with 

TNF-alpha inhibitors for other diseases (Daien, Monnier et al. 2009; Clementine, 

Lyman et al. 2010). The antimalarial and anti-inflammatory drug hydroxychloroquine is 

often used as a second-line agent particularly in cutaneous sarcoidosis in part due to its 

relatively low side-effect profile.  

In summary there clearly remains a significant need for improvements in the 

treatment of sarcoidosis. However without a better understanding of the disease process 
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itself, better tools for stratifying patients who would benefit from treatment and an 

improved ability to monitor a patient’s response, it is inevitable that improving 

sarcoidosis treatment is a complex and hard to achieve goal. 

 

Brief summary on pneumonia and lung cancer 
Pneumonia is typically an acute bacterial infection of the lungs therefore treatment is 

antibiotics and supportive management. The treatment for primary lung cancer, 

typically secondary to cigarette smoking, depends on the extent of the disease. 

Community acquired pneumonia 

Community acquired pneumonia is distinguished from hospital acquired pneumonia, 

which is an important distinction due to the likelihood of differing causal pathogens.  

Community acquired pneumonia is a common and potentially severe illness, that can be 

associated with substantial morbidity and mortality in adults, with up to 14% mortality 

in the UK which particularly effects the elderly (Lim, Baudouin et al. 2009). The most 

common cause of community acquired pneumonia worldwide is Streptococcus 

pneumonia. In the UK the top five bacterial causes of adult community acquire 

pneumonia are Streptococcus pneumonia, Haemophilus influenza, Mycoplasma 

pneumonia, Chlamydophila psittaci and gram-negative enteric bacilli; in addition 

viruses such as influenza A and B are also frequent aetiological agents (Lim, Baudouin 

et al. 2009). Although often the predisposing risk factor is not apparent, there are 

several variables that have been correlated with an increased risk, these include 

smoking, previous pneumonia, chronic lung disease and treated diabetes (Almirall, 

Bolibar et al. 1999). 

The clinical definition of community acquired pneumonia can vary between 

studies and can depend on the setting in which the patient’s diagnosis is made e.g. in a 
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community setting with no radiology and microbiology facilities compared to a hospital 

setting with the latest available clinical tools. For this study the definition of pneumonia 

as defined in the British Thoracic Society (BTS) guidelines was applied for patients 

admitted to the hospital when a chest radiograph is available (Lim, Baudouin et al. 

2009). In this scenario community acquired pneumonia is defined as the presence of 

symptoms and signs consistent with an acute lower respiratory tract infection e.g. 

cough, fever and new radiographic shadowing consistent with infection, and for which 

there is no other likely cause. In addition the pneumonia must be the prevailing reason 

for the hospital admission. 

All patients on admission to hospital should be assessed to both confirm the 

diagnosis and to assess the severity of illness. Alongside clinical judgement the  

guidelines recommend using a severity score as pneumonia can cause a wide spectrum 

of disease from mild pneumonia that can be treated in the community to life-threatening 

and sometimes fatal disease (Lim, Baudouin et al. 2009). Severity scores help decide 

the patient’s management and often can predict the likely prognosis. The Pneumonia 

Severity Index tool is a validated severity scoring tool but its practical use is limited due 

to the requirement of up to 20 measurable variables (Fine, Auble et al. 1997). CURB65 

is a simpler tool that is widely accepted and only requires 5 easy to measure variables 

(Lim, van der Eerden et al. 2003). Treatment should then be guided by both clinical 

judgement and the severity score (Lim, Baudouin et al. 2009). Patients with low 

severity scores can potentially be treated in the community with oral antibiotics, but 

hospital admission and intravenous antibiotics should be considered for those with a 

moderate severity score and emergency hospital care with intravenous antibiotics should 

always be arranged for those with a high severity score (Lim, van der Eerden et al. 

2003).  
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Lung cancer 

The World Health Organisation classifies primary lung cancer broadly into four major 

histological types; three non-small cell carcinomas (NSCLC): adenocarcinoma, 

squamous cell carcinoma and large cell carcinoma; and small cell carcinoma (Travis, 

Brambilla et al. 2004). NSCLCs make up the vast majority of primary lung cancers. 

Cigarette smoking was shown to be a risk factor for developing lung cancer by Sir 

Richard Doll in 1950 and now is thought to account for about 90% of all lung cancers 

(Doll and Hill 1950; Dubey and Powell 2009). Cancer is associated with an 

inflammatory response but it is unclear whether the inflammation is the provocation or 

the consequence, for example there is increasing evidence that smoking encourages 

inflammation which leads to the development of lung cancer (O'Callaghan, O'Donnell et 

al. 2010). The treatment for NSCLCs is directed by the stage of the tumour and the 

patient’s ability to perform activities of daily living and their lung function status. 

Patients with early-stage NSCLC may be offered surgery with curative intent, later 

stage NSCLC cannot be cured by surgery therefore patients are only offered 

chemotherapy and/or radiotherapy (Lim, Baldwin et al. 2010; NICE 2011). In addition 

targeted agents such as epidermal growth factor receptor (EGFR) inhibitors or inhibitors 

of a kinase fusion oncogene can be suitable for patients with particular molecular and 

histological cancer features (Dienstmann, Martinez et al. 2011). Small cell carcinoma is 

treated with chemotherapy and/or radiotherapy (Lim, Baldwin et al. 2010; NICE 2011).  
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Gene expression profiling 
Genomic signatures can serve as surrogates of clinical phenotypes. Integration of this 

information can provide new biological knowledge. 

Background 

For over a decade now gene expression profiling has been applied to human disease to 

improve both our comprehension and classification of the underlying molecular 

processes. Classification of samples (class discovery) is one of the most common uses 

of microarray (Stekel 2003). Microarray analysis can identify genes or groups of genes 

associated with a disease phenotype. The development of these genes into biomarkers 

can subsequently be used to facilitate diagnosis or prognosis relating to the natural 

history of the disease or after administration of therapy. This is most successfully 

established in the study of cancers. A landmark study was the use of microarray in 1999 

to distinguish between the diseases acute myeloid leukaemia and acute lymphoblastic 

leukaemia (Golub, Slonim et al. 1999). This study shaped the way forward for a 

methodology that enables the discovery and prediction of disease classes independent of 

previous biological knowledge. More recently in breast cancer large completed and on-

going phase III clinical trials show very promising results in using microarray to 

accurately predict prognosis and effectively direct treatment (van 't Veer, Dai et al. 

2002; Bonnefoi, Underhill et al. 2009). Furthermore comparing gene expression (class 

comparison) of samples with different disease phenotypes can help elucidate potential 

biological functions for related or different gene expression patterns i.e. genes with 

similar expression patterns might be functionally related or working in the same 

pathway as co-expressed genes (Chaussabel, Quinn et al. 2008). 

 Microarray technology was introduced in the mid-1990s and has enabled 

expression analysis of thousands of genes at one time, enabling visualisation of complex 
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gene expression patterns and perturbations of those patterns (Schena, Shalon et al. 

1995). With the introduction of high-density platforms capable of incorporating tens of 

thousands of sequences and the sequencing work of the Human Genome Project, 

microarray technology can carry out measurements on every identified gene in the 

human genome. Microarray platforms are mainly produced by five 

manufacturers: Affymetrix, Applied Biosystems, Agilent, GE Healthcare, and Illumina. 

Most published microarray publications use either Affymetrix GeneChips or Illumina 

Sentrix BeadArrays, but comparisons between the platforms in fact indicate reasonably 

high agreement (Barnes, Freudenberg et al. 2005; Cheadle, Becker et al. 2007).  

Illumina technology, used in this study, has built arrays using the random self-assembly 

of microspheres (beads) on which 50-mer oligonucleotide probes are immobilized, onto 

a planar silica substrate (Illumina 2005). The beads spontaneously assemble, held by 

Van der Waals forces and hydrostatic interactions, within the walls of ordered 

microwells sketched into the silica substrate. This creates one of the highest density 

array platforms commercially available and was based on technological advances from 

the semiconductor manufacturing industry to build the millions of wells in highly 

ordered patterns (Illumina 2005). Affymetrix microarrays are also built on the same 

type of manufacturing technology use to build semiconductors. However unlike the 

spotted design of Illumina arrays Affymetrix synthesise their 25-mer oligonucleotides in 

situ using photolithographic synthesis to build the sequences across the silica substrate 

of the array (Barnes, Freudenberg et al. 2005).  

 The Illumina Sentrix BeadChip array used in this study targets more than 48,000 

probes, which are derived primarily from the National Center for Biotechnology 

Information Reference Sequence (Illumina 2005). Because each probe contains 

hundreds of thousands of copies of the covalently attached oligonucleotide sequences, 
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this generates an average 30-fold redundancy for each randomly generated sequence 

represented on the array. This random generation for the Illumina BeadChip therefore 

permits checks on quality control of technical replication that is not possible with the 

Affymetrix GeneChip (Barnes, Freudenberg et al. 2005). In the Affymetrix GeneChip 

multiple probes are assembled for each gene together with a control probe which has a 

one-base mismatch designed to allow detection of the background non-specific 

hybridisation (Barnes, Freudenberg et al. 2005). The Illumina probes were designed 

using a multi-step algorithm scoring of multiple parameters including: similarity to 

other genes, expressed sequence tag coverage, absence of highly repeated sequence in 

the genome, distance from 3’ end of the transcript (Illumina 2005). In addition Illumina 

position negative control beads for each set of analytical probes to warrant measurement 

and thus subtraction of background non-specific hybridisation intensity.  

 

The reliability of microarray technology to detect transcriptional differences 

representative of the original samples is also affected by the quality of the extracted 

RNA (Kim, Dix et al. 2007). Therefore the RNA integrity number (RIN) must satisfy a 

specific high standard to ensure accurate interpretation of transcriptional expression. 
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Figure 1.  Microarray processing steps from blood collection to data output.  

Adapted from the Illumina protocol. 
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Microarray data analysis   

Initially a significant problem with microarray data was technical reproducibility but 

with advances in technology this has been overcome. A major concern now lies in 

reproducibility of data interpretation, particularly in terms of the validity of the 

statistical analysis. The first step of analysis is to apply quality control checks on the 

raw data, to ensure the labelling, hybridisation and scanning occurred as planned 

(Figure 1). For example in Illumina Sentrix BeadChips control oligonucleotides are 

spiked into the hybridization solution such that performance of the controls can be 

checked, and specific housekeeping genes are compared to the background intensity 

values (Illumina 2005).  

 Microarray is not a quantitative tool, rather it measures changes in mRNA 

intensity values relative to a reference group therefore control samples must be included 

in the experiment (Chaussabel, Pascual et al. 2010).  Results are often described as fold 

change in intensity levels because different genes are expressed at different levels and 

genes with the highest expression, often the ‘housekeeping’ genes, may not be the most 

relevant genes for that experiment (Ness 2006). Another advantage of fold change 

measurements is their ability to accentuate the changes in gene expression unlike total 

abundance of individual transcripts. The measurement of total abundance of transcripts 

are better measured using RNA sequencing rather than microarray (Pascual, Chaussabel 

et al. 2010). Fold change measurements are also comparable across different 

experiments and platforms because they are not influenced by the differences in raw 

values secondary to technical variations. 

 

Microarray analysis of human samples   

As mentioned above a common application of microarray in human studies is its use for 

class discovery (Stekel 2003). This involves grouping of samples with 
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homogenous/similar expression profiles that may represent a particular disease, 

subgroup of disease, response to treatment or other clinical groupings the experiment is 

set out to discover (Peters 2008).  This approach therefore requires the comparison of 

samples from different cohorts, for example patients with different diseases and a cohort 

of healthy controls. The study should be set up to compensate for the differences in 

inter-individual gene expression patterns across the cohorts, due to demographics such 

as age, ethnicity and gender (Whitney, Diehn et al. 2003; Eady, Wortley et al. 2005). 

This is because although determining biological variation in gene expression is the goal 

of microarray analysis, unwanted biological variation can mask the question being 

asked. 

 To determine if a transcriptional signature/profile, can differentiate between 

different groups of samples using an unbiased method requires an 'unsupervised' 

analytical approach (Berry, Graham et al. 2010; Pascual, Chaussabel et al. 2010). For an 

unsupervised analysis the gene expression profiles of all the samples are analysed 

blindly i.e. without a priori knowledge of clinical or demographic information. The first 

steps of the unsupervised analysis are the same as for any analysis protocol.  Initially 

any transcripts that are not detected significantly above the background, as defined by 

negative control probes in an Illumina Sentrix BeadChip, must be removed (Illumina 

2005). Typically more than half of the probes present on a microarray do not detect a 

signal for any of the samples in a given analysis (Pascual, Chaussabel et al. 2010). For 

Illumina probes a threshold level is set such that transcripts with low values e.g. less 

than 1 are given a value of 1, this is to compensate for the poor specificity of these low 

intensity values, otherwise in a fold change analysis these low level transcripts could 

appear far too significant. The next step is to transform the data using a logarithm to 

base 2
 

transformation (GeneSpring 2010). All microarray data is logarithmically 
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transformed to reduce the effect of skewed data and allow a more equal influence of 

either very high or very low expression values (Peters 2008).The next step in the 

analysis is to normalise the intensity value of each gene to a specific value to minimize 

systematic non-biological differences and reveal true biological differences; sources of 

technical variation include quantities of RNA, quality of RNA, differences in 

hybridization between chips and differences between manufactured chips (Agilent 

2010). This also creates an emphasis on the relative change in gene expression between 

samples rather than absolute values. For unsupervised analysis each gene is normalised 

to the median of that individual gene across all the samples (Berry, Graham et al. 2010). 

The median is selected, instead of the mean of a particular group such as the controls, to 

ensure the analysis is performed blindly i.e. unsupervised. The median value can be 

chosen rather than the mean to remove any assumptions that the gene expression values 

are normally distributed. This assumption is unlikely in human samples but for example 

in cell lines could be true.  

 Most microarray experiments are performed with the objective that only genes 

that change significantly between the cohorts will be relevant therefore genes that don't 

change in expression by a set amount (for example 2 fold up or down) from the median 

are discarded from the analysis (Pascual, Chaussabel et al. 2010). For an unsupervised 

analysis approach the median is chosen so that the identity of the samples remains 

blinded (i.e. the samples are not yet defined by any phenotype). In addition a level of 

acceptable number of samples to satisfy the fold change filter must be set. For example 

you could choose just one sample or 10% of the sample’s transcripts to fulfil the two-

fold change around the median. Increasing the number can remove noise but equally 

may mistakenly remove genes of interest. If a 30% cut-off was set in a group of 10 

samples of which 2 were of a different disease this filter could potentially exclude some 
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relevant transcripts within that whole disease group. A caveat of this unsupervised 

approach is that it relies on the gene expression of each transcript to be fairly equally 

distributed across all the samples. For example if the study contains 30 samples and it is 

likely 20 of them will have many highly expressed genes and the other 10 will have 

much lower expression, then the median for most transcripts will lie within the 20 

highly expressed samples. Therefore the type of samples chosen for the experiment 

requires thought regarding the study design prior to analysis.  

 The next step of the unsupervised analysis is to cluster the genes by similarity in 

their intensity values. To perform this there is a choice of clustering methods and 

various distance metrics. Distance metrics are methods of calculating the distance 

between the genes or samples. For example two commonly used metrics are Pearson’s 

correlation distance metric where the distance measured is influenced by the gene 

expression trend and Euclidean correlation distance metric where the distance measured 

is more influenced by gene expression magnitude (Quackenbush 2001; Agilent 2010). 

In GeneSpring 11, used in this study, there are three choices of Pearson’s correlation: 

absolute, uncentered and centered. For this study the uncentered method was chosen as 

this method separately recognises negative and positive correlations (positively 

correlated transcripts give values close to +1, negatively correlated close to -1 and 

unrelated close to 0). In addition a linkage criterion must be set; this specifies how the 

distance between the growing clusters of genes/samples are measured (Quackenbush 

2001). In this study the average linkage was chosen as this calculates the average 

distance between members of two clusters (GeneSpring 2010). Other linkage options 

include complete (greatest distance between members), single (minimum distance 

between members), wards (distance based on the sum of squared errors around the 

mean). The average linkage is the most commonly used. Clustering of genes is typically 
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performed by either hierarchical clustering or k-means clustering. Hierarchical 

clustering can be agglomerative, a bottom up approach that builds on the first two 

similar observations, or divisive, a top down approach that starts with all observations 

together and splits them iteratively (Peters 2008). This approach continues until a 

dendrogram (tree structure) of similar genes and dendrogram of similar samples can be 

mapped. Over-abundant genes are typically coloured as red and under-abundant blue, 

with no change in expression as yellow. A colour scale indicates the relative degree of 

normalised expression. The dendrogram allows visualisation of the most similar 

samples as sitting next to each other and the least similar as furthest away from each 

other. The height of the dendrogram branches is a specific distance measurement, 

calculated from the distance metric and linkage criteria, that correlates with the 

similarity of the genes/samples by their gene expression (Peters 2008).  

 Another common form of clustering is k-means clustering where observations 

are allocated into a fixed number of (k) clusters (Quackenbush 2001). Each cluster 

contains genes that are similar by application of a distance metric. To achieve this an 

average expression vector is set for each cluster, then using an iterative method genes 

are moved between clusters increasing the inter-cluster distances and decreasing the 

intra-cluster distances (Quackenbush 2001). A challenge with this form of clustering is 

deciding how many clusters are appropriate for the dataset and the number of iterations 

required.  

 An additional stage of statistical filtering is often added after the unsupervised 

analysis to improve the specificity of the generated transcript list. This part of the 

analysis is therefore now supervised as the statistical test can only be carried out 

knowing which samples it is comparing. In human samples as they are unlikely to 
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follow a normal distribution it is difficult to make this assumption therefore non-

parametric statistical tests may be more appropriate.  

 For supervised analysis used for class comparison some of the analysis steps are 

different. Firstly during the per-gene normalisation, the transcripts can be normalised to 

either the mean or the median of the controls. Secondly the fold change filter can be 

applied to compare one group to another e.g. two-fold change of the disease group to 

the mean of the control group for each transcript. The steps prior and after this do not 

depend on whether the analysis is unsupervised or supervised. Clustering can also be 

supervised; k-means is a form of supervised clustering as the samples are all assigned a 

phenotype for the algorithm; hierarchical clustering can be partly supervised by only 

performing unsupervised hierarchical clustering of the transcripts but not of the 

samples. The choice of the method applied depends on the question the analysis is 

trying to answer e.g. unsupervised analysis is suitable for class discovery while 

supervised analysis is more suitable for class comparison. For this study both 

approaches have been used: unsupervised analysis for the unbiased discovery of disease 

or treatment associations and supervised analysis for the identification of specific sets of 

genes differentially expressed between known groups. 

 The ideal data for statistical analysis has relatively few variables and many 

replicates, however in microarray experiments there are thousands of variables 

(transcripts) and often few replicates (samples) each with their own variables. 

Consequently usual statistical methods alone may have trouble dealing with the data 

(Ness 2006). Hence the application of multiple testing correction is vital as this controls 

for the huge number of statistical tests carried out for each experiment (Olson 2006; 

Dupuy and Simon 2007). For example if the standard p-value of p <0.05 is used this 

will allow 5% of genes to pass through by chance, which when analysing 40,000 
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transcripts could contribute to false identification of up to 1200 transcripts. Therefore 

the p-value is adjusted based on the number of tests performed, thus reducing the Type I 

error rate. Two commonly applied corrections are false discovery rate (FDR) e.g. 

Benjamini Hochberg, which controls for the expected frequency of false positives, and 

family wise error rate e.g. Bonferroni, which corrects for the chance of at least one false 

positive (therefore more stringent). A different statistical approach commonly used for 

expression analysis is called significance analysis of microarrays (SAM). This test was 

purely developed as traditional methods of multiple testing corrections were often too 

stringent for microarray data (Draghici 2012). The basic statistic used in SAM is based 

on the t-test but the analysis actually uses non-parametric statistics. Each gene is given a 

score based on the ‘relative difference’; this score includes the change in gene 

expression between conditions and the standard deviation of the change (Draghici 

2012). A ‘fudge factor’ ensures the coefficient of variation is minimised such that genes 

with low expression levels are still considered. A permutation test is then used to assess 

the significance of each score and to estimate the false discovery rate. This is produced 

by calculating the ‘expected relative difference’ derived from controls generated by 

permutations of data (Draghici 2012). SAM is therefore more robust for the analysis of 

genes with low expression. 

 Another way of dealing with the large number of variables is to validate initial 

results. Validation should ideally occur in an independent cohort processed as an 

independent microarray experiment used exclusively for evaluating the original 

outcome (Olson 2006; Dupuy and Simon 2007). The most extensively applied and 

acknowledged method for validating results from a classification experiment is to use 

‘training and test sets’; cross-validation is also an alternative and accepted method  

(Stekel 2003). ‘Training sets’ are used to train the algorithm, where the algorithm is 
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optimised to classify the training set data as best it can. The algorithm is then trialled on 

the ‘test set’ for independent confirmation of the success of the algorithm. As the test 

set is validating the training set findings it should satisfy the same experimental 

conditions as used in the training set.  

 In many circumstances it may be desired to test a set of genes for their ability to 

accurately predict the class membership (e.g. disease type) of a collection of samples. 

This involves methods of ‘class prediction’, where for example the disease-type of each 

sample is already known but we want to build a classifier (Stekel 2003). The machine 

learned algorithm support vector machines (SVM) is a frequently applied technique. 

The prediction model is built using the transcriptional signature from samples with 

known disease-types to predict the classification of a new collection of samples. The 

SVM algorithm maps samples in a theoretical n-dimensional space and tries to 

determine a best fit hyperplane that can separate the samples into the different disease-

types (Draghici 2012). To prevent the model overfitting the predictive signature, the 

prediction model is then applied to the new collection of samples, such that the new 

samples are classified according to which side of the hyperplane they fall into. An 

advantage of SVM is that it can deal with samples that are intertwined as it transforms 

samples before setting the planes, however a disadvantage is that it requires the setting 

of numerous parameters to build the predictor (GeneSpring 2010). 

 

Limitations of microarray analysis 

A theoretical limitation of gene expression profiling is its assumption that changes in 

gene expression predict biological significance. Microarray analysis is typically carried 

out to only select genes with at least a 1.5 fold change between groups, but results have 

been published using a variety of different fold change filters including fold change of 
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1.25 (Nakaya, Wrammert et al. 2011). The filter intentionally excludes genes with low 

level expression differences that could play critical roles in the host response. Therefore 

it may be more appropriate to apply different fold change cut-offs to different genes. On 

the other hand some of the genes with large expression differences might not be 

associated with such a key role in the host response as we suppose. For example post-

transcriptional or post-translational regulation could negate any correlation between 

mRNA levels and protein activity. In addition although the double filter, fold change 

and statistics, are intuitive and widely used there are inconsistencies between the two 

procedures; fold change assumes all genes share a common variance but the t-test 

assumes gene-specific variance which are opposing assumptions (Zhang and Cao 2009). 

Therefore it could perhaps be advocated that only a microarray-apposite statistical filter 

should be applied rather than the double filter (Zhang and Cao 2009). However the 

enormous wealth of microarray publications that have used relative changes in mRNA 

expression values to identify new disease mechanisms, therapeutic targets and 

biomarkers clearly demonstrates the advantage and robustness of the double filtering 

strategy. In addition the dependence of the t-test on variance has been shown to be the 

likely cause for disagreements of cross-platform assessments which run comparisons 

using p-values in contrast to the higher agreement found when comparisons performed 

using fold change analysis (Wilder, Kaisaki et al. 2009). In reality it is likely that 

different analysis approaches are suitable for different datasets and for answering 

different questions.  

Limitations in microarray techniques have been well documented and although 

may occur only during the processing can consequently affect the analysis. Due to their 

nature microarrays are noisy, so that even if the identical experiment is carried out 

twice, after just the scanning and image processing many probes will be reported as 
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different intensity values (Draghici 2012). Potential sources of errors include mRNA 

preparation, RNA processing, hybridisation, scanning and quantification of the pixels 

from the image (Draghici 2012). Many of these sources of error, particularly technical 

errors, have been greatly reduced over the last 10 years. However a major challenge in 

the use of microarray technology remains in the ability to determine whether differences 

in the data are technical or biological. Replication of findings is a critical part of the 

armament to defend findings obtained from microarray experiments (Stekel 2003; 

Olson 2006; Dupuy and Simon 2007; Draghici 2012). Genomics is not the only area 

that has problems with technical errors as many fields that work with massive amounts 

of data also suffer from the same difficulties, this can be partly dealt with by ensuring 

properly designed experiments and implication of standards (Nature, editorial 2012). 

Our analysis process was to apply a logical and systematic approach to a sound 

experimental design, using appropriate analysis steps at each stage, thus hopefully 

considerably alleviating many potential sources of error. In addition we corroborated 

our findings in at least two independent cohorts of patients at each stage. 

 

Application to clinical immunology   

There are estimated to be around 23,000 genes in the human genomes, and entry of an 

antigen or pathogen into the body alters the expression of a substantial fraction of them 

as identified in multiple transcriptomic studies of inflammatory and infectious diseases 

(Bennett, Palucka et al. 2003; Griffiths, Shafi et al. 2005; Ramilo, Allman et al. 2007; 

Emamian, Leon et al. 2009; Nascimento, Braga-Neto et al. 2009). Well defined 

genomic signatures give us new insights into the complexity of the immune response, 

along with potential improvements in biomarkers to diagnose clinical disease 

phenotypes or as predictors of outcome (Haining and Wherry 2010). For example in the 
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autoimmune diseases SLE and systemic onset juvenile idiopathic arthritis, microarray 

technology has led not only to the identification of pathogenic pathways, potential 

diagnostic and prognostic biomarkers, but also to new therapeutic strategies (Bennett, 

Palucka et al. 2003) (Allantaz, Chaussabel et al. 2007; Pascual, Chaussabel et al.). In 

infectious diseases gene profiling has been able to discriminate between clinical forms 

of disease from the same pathogen, without a priori clinical information, and led to 

powerful insights into the regulation of the host response (Bleharski, Li et al. 2003; 

Berry, Graham et al. 2010; Tattermusch, Skinner et al. 2012).  

Furthermore a genomic approach was able to identify immune correlates of protection 

for the highly effective yellow fever vaccine (Querec, Akondy et al. 2009). Prior to this 

study there was little global knowledge of the immune mechanisms inducing such an 

effective response; the distinct transcriptional signature that was found not only 

revealed a global picture of the immune response but this approach could also give an 

insight into understanding vaccine non-responders (Querec, Akondy et al. 2009). 

 

Transcriptional profiling of peripheral blood   

Peripheral blood has the capacity to reflect pathological and immunological changes in 

the body, and identification of disease associated alterations can be determined by a 

blood transcriptional signature (Mohr and Liew 2007). Because blood interacts with 

every organ and tissue in the body it is an effective means for approaching the 

complexity of systems biology. In the past most studies used peripheral blood 

mononuclear cells (PMBCs) however it is now recognised that microarray can be 

effectively performed using whole blood, thus including neutrophils an important 

cellular source when looking at inflammatory and infectious diseases. Demonstrating 

this concept a neutrophil driven interferon (IFN)-inducible signature was revealed by 



 Introduction  

83 

 

the whole blood microarray approach designed to fully characterise the immune 

response to M. tuberculosis carried out recently by O'Garra and collaborators (Berry, 

Graham et al. 2010).  

 

Transcriptional profiling in the study of pulmonary TB  

The aforementioned comprehensive unbiased study of TB patients, established through 

unsupervised data mining, a robust transcriptional signature for active TB, in 

individuals from both intermediate and high burden countries (Berry, Graham et al. 

2010). 42 samples (13 active, 17 latent, 12 controls) were included in the initial cohort 

(training set) from which a distinct 393 transcript signature was revealed to be 

associated with active TB patients. This signature was validated in both a UK test set 

(21 active, 21 latent, 12 controls) and a South Africa validation set (20 active, 31 latent). 

Using the ‘weighted molecular distance to health’, a distance metric algorithm that links 

gene expression changes to a chosen clinical classification of disease severity (Pankla, 

Buddhisa et al. 2009), it was shown that the signature correlated with lung radiographic 

extent of disease and was diminished with antituberculous treatment. They then 

compared the microarray data from their cohorts to microarray data from other disease 

cohorts, these cohorts were not recruited for their study but the expression data was 

acquired by the same microarray processing (arrays and facilities). To compare all the 

data from the different cohorts they used a statistical approach called ‘analysis of 

significance’ (Chaussabel, Allman et al. 2005). This approach compares the study 

disease to its own controls to obtain p-values for relatively over/under expressed genes, 

and then repeats this for the other diseases, a list of genes for the study disease is 

obtained by selecting only those genes significant for the study disease and not the other 

diseases (Chaussabel, Allman et al. 2005; Allantaz, Chaussabel et al. 2007). Applying 
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this analytical approach Berry et al. 2010, additionally obtained an 86 transcript 

signature that discriminated active TB from patients with SLE, Still’s disease, group A 

Streptococcus infection and Staphylococcus infection. This 86 transcript signature also 

diminished after successful antituberculous treatment. Discrimination from other 

diseases was also demonstrated by the use of a modular data-mining strategy 

(Chaussabel, Quinn et al. 2008). The modules are genes determined from gene 

expression profiles from cohorts of 8 different diseases. The modules of similarly 

expressed genes were extracted from all 8 cohorts by a complex algorithm involving k-

means clustering to identify the sets of genes, after which the genes were functionally 

annotated by unbiased literature data mining (Chaussabel, Quinn et al. 2008). The 

modular approach works under the premise that co-expressed genes are likely to be co-

regulated and contribute to a common biological function. Importantly the modules are 

data-driven sets of genes rather than sets of genes thought to be functionally related 

from mining published literature. Using the modular analysis and computer software 

Ingenuity Pathway Analysis (IPA), Berry et al. 2010, were able to show the type I and 

IFN-γ signalling molecules were dominant in the transcriptional signature of active TB. 

The active TB 393-transcript signature also may have exposed those latent individuals 

who will develop active TB as 10-20% of the latent TB samples displayed a similar 

signature to the active TB samples. This percentage is comparable to the expected 

frequency of progression from latent TB to active TB (Berry, Graham et al. 2010). A 

longitudinal transcriptional profiling study of latent TB patients is currently being 

planned to identify prognostic biomarkers and investigate the underlying heterogeneity 

of latent TB. The Berry et al. 2010, study was the first whole genome unbiased 

comprehensive expression profiling study in human TB and evidently demonstrated the 

possible gains from microarray studies, such as new knowledge of immunopathogenesis 
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and new potential credible diagnostic and prognostic biomarkers. Earlier blood 

expression profiling studies in TB patients did not show such comprehensive findings or 

feasible transcriptional signatures for active TB (Jacobsen, Repsilber et al. 2007; 

Mistry, Cliff et al. 2007; Maertzdorf, Repsilber et al. 2011). This was most likely due to 

a reductionist approach to the microarray analysis e.g. selecting only 5 genes as a 

diagnostic biomarker between active TB and latent TB (Maertzdorf, Repsilber et al. 

2011), in addition to other limitations such as inadequate patient selection e.g. patients 

already on antituberculous treatment, small study numbers and the use of custom 

microarrays not containing the full human genome (Jacobsen, Repsilber et al. 2007; 

Mistry, Cliff et al. 2007).   

 

Transcriptional profiling in the study of sarcoidosis  

Initial studies in sarcoidosis only examined individual or small sets of genes. In 1996 a 

restricted mRNA differential display study looked at bronchoalveolar lavage (BAL) 

cells from 18 sarcoidosis patients and 8 patients with other disparate lung diseases 

(Wiwien, Hiyama et al. 1996). Three PCR products were consistently detected for 

sarcoidosis, including CD44 and TNF-α, however these genes are known not to be 

specific for sarcoidosis. Years later a broader study was performed using mRNA 

differential display to differentiate between granuloma-associated alteration of gene 

expression, by examining BAL of sarcoidosis, TB and healthy controls (Gaede, Mamat 

et al. 2004). Applying this unbiased approach Gaede et al were able to amplify 2,498 

PCR products from the three cohorts. Analysis revealed a differential regulation of 

6.5% of genes from both diseases compared to the controls and a concordance of 1.8% 

of genes between the diseases. Although a limited study the findings were encouraging 

for future unbiased gene expression studies in TB and sarcoidosis.  
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Table 2.  Microarray studies of sarcoidosis patients 

DEG = differentially expressed genes. 

 

Rutherford et al were the first to use the newer microarray techniques; however this 

study was carried out 10 years before the full annotation of the human genome, and 

used a custom microarray containing only 12,626 genes (Rutherford, Kehren et al. 

2001) (Table 2). They compared PBMCs from 12 controls and 12 sarcoidosis patients 

before treatment, in 2 subgroups of progressive and self-limited disease. The results 

published were intentionally biased only examining 112 genes, to focus on the role of 

apoptosis. However they were unable to prove or disprove apoptosis related patterns, 

likely to be influenced by the small numbers of patients in each subgroup. A few years 

later they published further results from the same study, this time focussing on the 

antigen processing/presentation and T cell activation in respect to the outcome of 
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sarcoidosis (Rutherford, Staedtler et al. 2004) (Table 2). They identified 729 

differentially expressed genes between controls and patients. Known genes were 

grouped according to the functions they were interested in. This left them with 

examination of only 35 genes, of which solely 6 were associated with the disease 

subtypes progressive or self-limited. Unfortunately there was no validation of their 

findings although this study did illustrate the prospect of developing a discriminatory 

gene set from peripheral blood to help differentiate the different sarcoidosis phenotypes.  

In this respect  recent published findings, from our collaborators Ling-pei Ho's 

lab at the Weatherall Institute of Molecular Medicine, Oxford, compared lung biopsies 

from progressive-fibrotic pulmonary sarcoidosis to patients with self-limiting 

sarcoidosis, with the aim of defining discriminating genes to our improve understanding 

of the underlying pathogenesis (Lockstone, Sanderson et al. 2010) (Table 2). Samples of 

granulomatous tissue were taken during disease activation and before starting treatment. 

Patients were then clinically phenotyped 2 years later into either progressive-fibrotic (4 

patients) or self-limiting (4 patients). 334 genes were differentially expressed using a 

whole human genome array; most of the genes were up-regulated in the progressive-

fibrotic group. To help categorise the vast amount of information they used the 

literature-driven Gene Set Enrichment Analysis (GSEA). GSEA are pre-specified sets 

of genes grouped together by published data on their biological processes, chromosomal 

location or regulation (Subramanian, Tamayo et al. 2005). This analysis revealed 

enrichment in the progressive-fibrotic group for genes related to host immune activation 

including leukocyte differentiation/activation and cytokine production, and cell life 

including cell proliferation/cycle/apoptosis. The GSEA results were validated in a 

separate analysis of 7 patients. Limitations to this study were the lack of controls 

(disease-free lung biopsies) and the small number of patients.  
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Crouser et al also examined lung biopsies of untreated sarcoidosis patients by 

whole human genome microarray, this time comparing gene expression to healthy 

controls with the goal of providing insights into the pathogenesis (Crouser, Culver et al. 

2009) (Table 2). However they took a reductionist approach and after identifying a few 

genes of interest (MMP-12 and ADAMDEC1) from an initial cohort of 6 participants 

per group they validated their findings by RT-PCR in a larger cohort. Their microarray 

analysis discovered 319 genes differentially expressed from the controls, the 

significantly over-represented genes were associated with a Th1 immune response. The 

study had several limitations including the small study size, varying clinical 

presentations, reductionist analysis approach and the lack of validation.  

Judson et al examined the transcriptional profiles of cutaneous sarcoidosis  using 

skin biopsies from well characterised sarcoidosis patients compared to unaffected skin 

biopsies from the same patient and skin biopsies from healthy controls (Judson, 

Marchell et al. 2012) (Table 2). Their study was focussed on examining Th1 and Th17 

genes. They also compared their findings to whole blood profiles from the same 

patients. Unsupervised hierarchical clustering was able to clearly distinguish samples 

from the sarcoidosis-affected skin biopsies from the unaffected biopsies which were 

again distinguished from the healthy biopsies. Using IPA they found a significant 

association with the IFN-signalling pathway and differentially expressed genes in both 

the skin biopsies and whole blood. They also found over-abundance of activated 

macrophage proteins and inflammatory related proteins associated with the skin 

biopsies. The main focus of their paper was the discovery of an over-abundance of IL-

23 and IL-21, validated in the same cohort by RT-PCR but not seen in the patient’s 

serum. This led to their conclusion of novel findings of potential activation of the Th17 

pathway in cutaneous sarcoidosis.  Unfortunately the study did not have a comparison 
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group of patients with another cutaneous disease – in particular psoriasis, a skin disease 

with proven Th17 involvement (Papp, Leonardi et al. 2012), would have been of 

interest. Furthermore the significance of the Th17 pathway in relation to the other 

differentially expressed genes was not reported.   

Rosenbaum et al used whole human genome microarray to address the 

hypothesis that sarcoidosis patients will have characteristic transcriptional profiles in 

whole blood and tissue (Rosenbaum, Pasadhika et al. 2009) (Table 2). However they 

then focussed their analysis solely on genes associated with STAT1. Their reasoning for 

this biased analytical approach was both due to the very high and consistent expression 

of the STAT1 related genes, with no comment on the statistical expression of other 

genes, and due to the critical role STAT1 plays in the inflammatory response 

(Rosenbaum, Pasadhika et al. 2009). Peripheral whole blood was taken from 12 

untreated sarcoidosis patients, half of whom had uveitis secondary to sarcoidosis; and 

12 healthy controls. They found 1039 over-abundant transcripts and 872 under-

abundant transcripts differentiating sarcoidosis patients from the controls. This study 

was not set up to find discriminating genes between sarcoidosis phenotypes, and did not 

comment on this. However a heatmap of the over-abundant and under-abundant 

transcripts suggests most of the patients with uveitis could be visually distinguished 

from the controls. The hypothesis of the experiment was proven as several associated 

interferon and STAT-1 transcripts were significantly over-abundant in the peripheral 

blood and then validated in lung and lymph node samples by microarray. Microarray 

data from the same research group was published earlier in the same year from 

peripheral whole blood samples of patients with sarcoidosis compared to patients with 

ankylosing spondylitis (Table 2). It would appear to be the same sarcoidosis patients 
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used in both studies. This study was carried out predominantly to assess a new 

bioinformatics method of clustering (Choi, Sharma et al. 2009). 

 

Transcriptional profiling in the study of active TB and sarcoidosis 

 

 

 

Table 3. Microarray studies comparing patients with active TB and sarcoidosis 

DEG = differentially expressed genes. 

 

The first sarcoidosis gene expression study was designed specifically to test the 

hypothesis that mycobacterial antigens trigger an autoimmune response in genetically 

predisposed populations (Thonhofer, Maercker et al. 2002) (Table 3). Bronchoalveolar 

lavage cells from 6 untreated sarcoidosis patients were stimulated with dead 

Mycobacterium avium (Thonhofer, Maercker et al. 2002). They used other 

granulomatous diseases, 2 TB and 3 hypersensitivity pneumonitis, as the control groups. 

1,500 probes from a whole human genome array had altered differential expression after 

stimulation but only 2 known genes (and 2 expressed sequence tags of unknown 

function) were exclusively differentiated in sarcoidosis samples. The methodology 
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shown in the article is ambiguous, the sample numbers small and only the 2 genes of 

interest were validated (by reverse hybridization). Overall it appears doubtful that there 

would be only 4 differing genes between these diseases in response to the stimulation.  

Two publications in the last year have compared human whole genome blood 

transcriptional profiles of patients with sarcoidosis to patients with TB (Table 3). Koth 

et al. 2011, recruited 38 sarcoidosis patients and 20 healthy controls and analysed their 

raw data alongside deposited raw data from different microarray platforms from two 

other sarcoidosis cohorts (blood and lymph node), one cohort of hypersensitivity 

pneumonitis patients (blood) and data from all the patients included in the Berry et al. 

2010, study (the three TB cohorts, paediatric SLE, adult SLE, staphylococcal and 

streptococcal infections) (Koth, Solberg et al. 2011). Their principal finding was the 

similarity of blood gene expression of the sarcoidosis and TB patients, of which the 

dominant pathway in both diseases was the IFN-inducible genes. At the time of 

publication we had also found the same results from the training set in this study. 

Although Koth et al. 2011, identified a set of genes that could discriminate between 

their collection of sarcoidosis and tuberculosis patients they did not test the ability of 

these genes to discriminate between such patients in an independent cohort. In addition 

although the paper was focussed on sarcoidosis there was an insufficient amount of 

clinical information available about the sarcoidosis patients. For example they state 

there was no difference in expression profiles between those patients taking systemic 

glucocorticoids and those who were on no treatment, but they do not report the 

glucocorticoid dosages and as such they could be equivalent to normal endogenous 

levels. Furthermore they described a significant association between sarcoidosis 

expression profiles and a clinical phenotype they describe as severe sarcoidosis. This 

phenotyping was extremely limited (two lung function parameters FEV1 and FVC) and 
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what is more these are not evidenced based and not commonly recognised or reported in 

clinical practice as markers of sarcoidosis severity. Lastly they compare the sarcoidosis 

profiles to tuberculosis and hypersensitivity pneumonitis as three diseases with 

granulomatous inflammation. Although hypersensitivity pneumonitis can be a 

granulomatous disease this depends on the stage of the disease and therefore this is not a 

true comparison of granulomatous disease unless biopsies were taken, again this was 

not reported. 

The second publication comparing blood expression profiles of patients with 

sarcoidosis (18 subjects) and active tuberculosis (9 subjects) as well as controls (17 

subjects) also ascertained that the overlap between the two diseases was dominated by 

IFN-inducible genes (Maertzdorf, Weiner et al. 2012) (Table 3). Although their 

preliminary expression findings are compatible to the Koth et al. 2011 study, regrettably 

they neglected to confirm any findings in an independent cohort. Therefore the 

discriminative power of the 100 probes they describe as distinguishing TB from 

sarcoidosis has a potentially high error rate.  It is also notable that their selection of 100 

probes had no overlapping genes in common with the transcript list generated from the 

Koth et al. 2011 study. Maertzdorf’s et al study reveals even less clinical information 

about the sarcoidosis patients than the Koth et al 2011 study, including no mention of 

any therapy the patients may have commenced or not; therefore it is difficult to gain an 

understanding of the spread of sarcoidosis patients that participated. Interestingly they 

examined microRNA expression in parallel with the gene expression profiling and 

multiplex cytokine analysis. The microRNA expression also presented a highly 

comparable pattern in both sarcoidosis and TB with only 4 microRNAs significantly 

differentiated between the diseases. Again there was no validation of these findings. 

Their cytokine analysis revealed an increase in pro-inflammatory proteins in the TB 
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patients relative to the sarcoidosis patients but did not reveal any correlation between 

protein and gene expression patterns.  

 

In summary there have been several sarcoidosis gene expression studies and two 

comparing sarcoidosis to TB. Although many of the studies have limitations they 

demonstrate the potential of gene expression studies as a methodology to improve our 

understanding of the biology underpinning sarcoidosis and as a prospective clinical tool 

to improve diagnosis. Furthermore the latest two studies suggest sarcoidosis and TB 

have similar whole blood transcriptional profiles. 

 

Transcriptional profiling in other respiratory diseases   

Peripheral blood transcriptional profiles have been identified in adults and children with 

viral respiratory infections, in both a laboratory setting and in the community (Thach, 

Agan et al. 2005; Ramilo, Allman et al. 2007; Zaas, Chen et al. 2009). Ramilo et al 

were able to define a specific 35 gene signature to differentiate between children with 

influenza A and those with either Escherichia coli or Streptococcus pneumoniae, where 

those with Streptococcus pneumoniae had a predominant respiratory illness (Ramilo, 

Allman et al. 2007). Their signature had 95% accuracy in discriminating power in an 

independent cohort. Notably children with viral infections revealed a prominent type 1 

IFN profile while a third of the children with bacterial infection also displayed elevated 

levels of IFN-related genes. The authors speculate this may have been due to an 

undiagnosed or preceding viral infection. However we have been unable to find any 

published studies that have surveyed adults with community acquired bacterial 

pneumonia, which may represent a more complex group than children with a higher 

likelihood of potential co-existing illnesses. 
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Idiopathic interstitial pneumonias is the term used for a diverse group of  diffuse 

parenchymal lung diseases that predominantly result in lung fibrosis but the aetiology 

often remains unknown (ATS 2002). Sarcoidosis, idiopathic pulmonary fibrosis (IPF) 

and hypersensitivity pneumonitis, all fall under the umbrella of idiopathic interstitial 

pneumonias. Hypersensitivity pneumonitis is caused by exposure to an inhaled antigen 

and when chronic can result in granulomatous inflammation. Gene expression profiling 

of lung biopsies has been used to try and classify the idiopathic interstitial pneumonias 

and understand the underlying mechanisms (Selman, Pardo et al. 2006) (Yang, Burch et 

al. 2007). Selman et al compared lung biopsies from 15 patients with hypersensitivity 

pneumonitis and 12 patients with IPF; the gene expression profile of hypersensitivity 

pneumonitis lung samples were enriched for genes that are functionally associated with 

inflammation, T-cell activation and immune responses, whereas the IPF profile was 

characterised by tissue remodeling, epithelial, and myofibroblast genes (Selman, Pardo 

et al. 2006).  Intriguingly Lockstone et al compared their sarcoidosis lung biopsy 

transcriptional profiles for the progressive-fibrotic patients to data from the Selman et al 

study and unexpectedly found a similarity with hypersensitivity pneumonitis but not IPF 

profiles (Lockstone, Sanderson et al. 2010).  

Lung cancer heterogeneity is well documented and reflected in its broad variety 

of histological subtypes, of which different histological types require different treatment 

modalities. Microarray hierarchical clustering analysis has been applied in numerous 

lung cancer studies of tissue biopsies to help improve disease classification with 

encouraging results (Garber, Troyanskaya et al. 2001; Gordon, Jensen et al. 2002; 

Yamagata, Shyr et al. 2003). Although a large number of studies have also claimed to 

have found potential prognostic signatures it appears that the majority of them had 

serious flaws in their design and analysis (Subramanian and Simon 2010). Therefore it 
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seems unlike the validated and now clinically available 70-gene breast cancer-

prognostic signature (van 't Veer, Dai et al. 2002), we are still a long way from 

identifying a clinically applicable prognostic signature for lung cancer. All these studies 

have used tissue biopsies for their sampling. Few solid tumour studies have used 

peripheral whole blood as the source for gene expression profiles. 

 

Summary of the caveats of previous microarray studies   

To our knowledge this study is the first study comparing whole genome transcriptional 

profiles of untreated active pulmonary TB patients to pulmonary sarcoidosis and other 

respiratory diseases. Although there is a reasonable collection of literature on gene 

expression studies in sarcoidosis patients only a few used the whole human genome, 

most did not validate their findings and there was no overall conformity in the study 

aims. In addition little acknowledgement has been made of the clinical heterogeneity of 

sarcoidosis and the impact this may have on individual transcriptional profiles.  

 

Study Objectives 
 

The main goal of our study was to use a broad unbiased microarray approach to develop 

a better understanding of the host responses that are underlying tuberculosis. The aim 

was to compare untreated tuberculosis to the untreated respiratory diseases sarcoidosis, 

pneumonia and lung cancer; and in addition examine tuberculosis before, during and 

after successful treatment, as well as compared sarcoidosis and pneumonia patients 

before and after receiving treatment. Alongside any discoveries relating to 

immunopathology this approach has the potential to elicit clinically applicable 

diagnostic and treatment monitoring biomarkers. 
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Although the application of microarray is often thought not to be hypothesis driven, 

rather a descriptive data driven approach, it can be very fruitful when predetermined 

focussed questions are outlined prior to data analysis.  

 

The questions addressed in this analysis were: 

 Are the peripheral blood transcriptional profiles in patients with TB the same or 

different to those in patients with sarcoidosis, pneumonia or lung cancer? 

 Are the transcriptional responses of patients with sarcoidosis heterogeneous?  

 What are the biological functions of the sets of genes associated with each disease or 

with more than one disease? 

 Is there are specific TB-related transcriptional signature distinguishing TB from other 

diseases. If so do these genes have known biological significance and could they be 

used to discriminate TB from the other respiratory diseases and controls? 

 Do the transcriptional profiles change in response to antituberculous treatment? 

 Do the transcriptional profiles change in response to immunosuppressive treatment for 

sarcoidosis or antibacterial treatment for pneumonia – are they changes similar to each 

disease? 
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METHODS 

Patients and Healthy Controls 
 

Ethics 

Ethical approval was gained from the National Research Ethics Service. All subsequent 

changes to protocols were approved on an individual basis. Ethical approval was also 

gained for each NHS Trust that participants were from: Royal Free Hospital NHS Trust, 

Oxford Radcliffe Hospital NHS Trust, Barnet and Chase Farm NHS Trust, Imperial 

College Healthcare NHS Trust. Ethical approval was gained separately by the research 

groups/physicians in South Africa and France for the treated South African TB patients 

and for the patients recruited by the Lyon Collaborative Clinical Network (lung cancer 

and TB patients) or recruited in the Avicenne Hospital in Paris (sarcoidosis patients). 

 

Subject recruitment and eligibility of the patients 

This was an observational prospective case-control study. Subjects were recruited if 

considered to have pulmonary TB, pulmonary sarcoidosis, community acquired 

bacterial pneumonia, primary lung cancer or a healthy individual with no significant 

disease or exposure to mycobacteria. All patients were recruited consecutively over 

time. On initial recruitment all subjects gave informed written consent, answered 

relevant clinical questions, donated a blood sample and gave permission to access their 

hospital records. Some patients were also bled at further time points after commencing 

treatment. 

Samples were only included for microarray analysis if the participants satisfied 

specific inclusion and exclusion criteria. For Pulmonary TB patients inclusion criteria 

was M. tuberculosis culture confirmed in either sputum or bronchoalveolar lavage. 

Samples were collected before patients’ commenced antituberculous therapy. TB 
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patients and controls were excluded if they had any significant medical past history. 

Pulmonary sarcoidosis patients had to have granulomatous inflammation on biopsy, as 

well as compatible clinical and radiological findings diagnosed by the specialist whose 

clinic they were attending. Sarcoidosis patients were only included if they had radiology 

imaging (chest radiograph or computed tomography scan) showing evidence of 

pulmonary involvement within 6 months of the blood test. Nearly all patients were 

included prior to commencing any immunosuppressive treatment for their sarcoidosis, 

or at least 6 weeks after stopping any immunosuppressive treatment. Two were 

recruited who were already on low dose treatment for their sarcoidosis (one patient was 

on 5mg prednisolone daily and one was on 200mg hydroxychoroquine daily). 

Sarcoidosis patients and controls were excluded if they had any significant medical past 

history. Community acquired pneumonia patients were only included if they had 

symptoms and signs consistent with an acute lower respiratory tract infection e.g. cough 

or fever,  new radiographic shadowing consistent with infection and for which there was 

no other likely cause, the presenting illness was the primary reason for hospital 

admission and the hospital admission was managed as a community acquire pneumonia. 

Lung cancer patients were included if their histological and radiological features 

indicated their cancer was a primary lung cancer. Cancer patients were excluded if they 

had received any treatment for their cancer, had another cancer or any significant 

respiratory illness. All patients and controls were excluded if they were 

immunosuppressed other than by the study diseases. 

Pulmonary TB patients were recruited mostly from the Royal Free Hospital but 

some were recruited from the Lyon Collaborative Network and from St Mary’s 

Hospital. Pulmonary and latent TB patients recruited for the TB treatment section 

(chapter 8) were recruited from the Ubuntu HIV/TB clinic in South Africa by the local 
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TB research team under the global supervision of Dr Rob Wilkinson, or from the Royal 

Free Hospital. Sarcoidosis patients were recruited from Royal Free Hospital, John 

Radcliffe Hospital, Barnet Hospital, St Mary’s Hospital and L’hospital Avicenne. The 

sarcoidosis patients from John Radcliffe Hospital were recruited by the specialist 

respiratory registrars Dr Yvonne West and Dr Anjali Cranshaw; from Lyon 

Collaborative Network some TB and all but one of the lung cancer patients were 

recruited by Mitra Saadatian; a few of the TB patients were recruited from St Mary’s 

Hospital by Dr Matthew Berry (the patients were of white ethnicity and necessary to try 

and balance ethnicities between all the disease groups); some of the validation set 

sarcoidosis patients were recruited at L’Hôpital Avicenne by Dr Dianne Bouvry. In 

January 2011 the research nurse Fotini Rozakeas joined Anne O’Garra’s research team 

to help with recruitment, I trained and supervised her throughout the study. Fotini 

Rozakeas recruited all the community acquired pneumonia patients, some of the 

sarcoidosis, TB and one lung cancer patients. I recruited all other TB and sarcoidosis 

patients (78 patients that were included in this study).  

 

Subject recruitment and eligibility of the healthy controls 

Healthy controls had no major medical illnesses and had no known exposure to 

mycobacteria as evidenced by their history, IGRA +/- TST results. Healthy controls 

were recruited from NIMR, Hammersmith Hospital and Royal Free Hospital by Fotini 

Rozakeas and me. 

A crucial aspect in the recruitment of healthy controls was to ensure their age, 

gender and ethnicity matched the recruited patients, and also that they were not 

displaying any current symptoms of illness including coryzal symptoms. Therefore they 

were recruited alongside the patients to ensure matching as much as possible. The 
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importance of this was demonstrated by a small study we carried out in 2009. This 

study was designed to determine any blood transcriptional affects due to the tuberculin 

skin test (TST). Twenty voluntary participants were bled before and at several time 

points after the TST (1 day, 3 days, 7 days and 29 days). Unsupervised analysis and 

unsupervised hierarchical clustering revealed that inter-individual transcriptional 

differences outweighed any transcriptional changes that may have occurred due to the 

tuberculin skin test, as each of the twenty patients clustered together including their 

time course profiles within their sub-cluster (Figure 2). Therefore this experiment 

demonstrated the TST does not significantly affect the blood transcriptional response, 

even though the TST does affect the transcriptional response when measured in the skin 

at the site of the injection (Tomlinson, Cashmore et al. 2011). In addition this 

experiment demonstrated important factors relating to the main study. Firstly the 

unsupervised clustering of the blood transcriptional profiles showed that inter-individual 

differences influenced the clustering over any intra-individual differences that may have 

occurred over the 29 days. This is helpful information for any longitudinal studies 

including the study of patients before, during and after treatment. Secondly over-

abundance of genes was seen for the male sex genes and for two participants who had 

during their time course noted mild coryzal symptoms. As these variables could 

influence the clustering and influence the apparent differentially expressed genes they 

should therefore be minimised as much as possible to remove any bias from the 

analysis. 

 

Sample and data collection 

Venesection for whole blood samples was performed on every participant and collected 

in tubes containing the reagent Tempus that lyses cells and stabilises RNA. Clinical and 
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demographic information was collected on each participant. All samples were 

pseudoanonymised. Results of the blood tests, chest radiographs, CT scans and lung 

function tests were obtained, once formally reported at the hospital, as part of the 

patient’s routine medical care. 

 

Clinical classification of sarcoidosis patients into active and non-active 

Sarcoidosis patients were classified according to the clinical classification criteria 

(Figure 3). This criteria is based on evidence published in the literature that are thought 

to link particular clinical parameters with disease activity and on the commonly 

available test results from the hospitals patients were recruited from. 

 

Experimental processing 
 

Interferon Gamma Release Assays 

Most patients had blood taken for the QuantiFERON-Gold In Tube ELISA (Cellestis, 

Carnegia, Australia). The assay was performed according to the manufacturer's 

instructions. 

 

Serum Collection 

1-2ml of blood was collected into serum clot activator tubes (2ml vacutainer tubes 

Becton Dickinson). Tubes were centrifuged at 2000g for 5 minutes at room temperature 

and the serum portion extracted and frozen at –80ºC pending protein analysis. 

RNA extraction, amplification and hybridisation 

An experienced laboratory technician Dr Chris Graham processed the samples by the 

following methods and throughout the processing I assisted with every step for the 
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training set samples. RNA was isolated and purified from 1.5ml of whole blood using 

protocols developed in collaboration with the Baylor Institute of Immunological 

Research (BIIR). 2.5μg of isolated total RNA was globin reduced using the 

GLOBINclear 96-well format kit (Ambion). This is required to ensure that the large 

quantities of globin mRNA transcripts present from the red blood cells do not affect the 

sensitivity of the microarray.  200 - 250ng of globin-reduced RNA was used to prepare 

biotinylated, amplified RNA targets (cRNA) using the Illumina CustomPrep RNA 

amplification kit (Ambion). Total RNA, globin-reduced RNA and cRNA integrity was 

assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies) and RNA yield was 

assessed using a Nanodrop 1000 spectrophotometer (Thermo Fisher Scientific Inc). A 

technician at BIIR labelled then hybridized the cRNA to Illumina HT-12 version 4 

BeadChip arrays (Illumina Inc). The BeadChip arrays were scanned on an Illumina 

iScan (Illumina Inc) which generated the signal intensity values. Background is defined 

as the average signal intensity estimated from the negative control bead types and is 

subtracted prior to array normalisation.  

 

Microarray and statistical analysis 
 

Detection from background, threshold value, logarithmic transformation 
and normalisation 

Raw data, expression filtering and statistical filtering were processed using GeneSpring 

GX version 11.5 (Agilent Technologies). The following was applied to all analyses. 

After background subtraction each probe was attributed a flag to denote its signal 

intensity detection p-value. Flags were used to filter out probe sets that did not result in 

a ‘present’ call in at least 10% of the samples, where the ‘present’ lower cut off = 0.99. 

Signal values were then set to a threshold level. For all analysis this threshold was set to 
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10 (to reduce the noise from low level intensity values) but for the analysis of the TB 

treated patients (Chapter 7) the value was set to 1 (the technical variation in this 

microarray was much lower therefore a lower threshold value could be afforded). All 

data was then log2 transformed (to reduce effects from skewed data that is common 

place in microarray) and per-chip normalised using 75
th

 percentile shift algorithm. 

Illumina probes often generate many low expression values which have a lower 

specificity than the higher values therefore this normalisation algorithm was chosen to 

reduce reliance on these values. Next per-gene normalisation was applied by dividing 

each transcript either by the median intensity of all transcripts (part of the unsupervised 

analysis protocol) or by the median intensity of the latent TB transcripts (part of the 

supervised analysis protocol).  

 

Quality control 

To ensure there is no technical variation causing unexpected skewing of the raw data 

quality control was performed. Two different checks were performed; firstly principal 

component analysis (PCA) on the unfiltered data and secondly unsupervised 

hierarchical clustering on data only filtered by unsupervised analysis. These two checks 

were applied to allow identification of samples that were likely to be outliers. For 

example PCA can be used to screen all samples at once for obvious outliers in variation 

of the main component of variation derived in the PCA. In addition PCA can also be 

used to screen, for example, all TB samples simultaneously. This ensures genuine 

outlying samples are identified, not just samples that appear different due to their 

disease. For all outliers that were identified both their RNA quality and clinical data 

were checked to ensure the reason for apparent outliers was due to technical variation or 

human error, not due to biological variation.  
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Quantifying changes in expression 

After per-gene normalisation a fold change filter was applied. In most analysis the filter 

was set to include only transcripts that had at least two-fold changes from the median 

and were present in at least 10% of the samples. In the South African TB treatment 

analysis transcripts had to satisfy a three-fold expression filter in 12 of the 15 training 

set matched untreated and 6-month treated samples. This supervised analysis was 

introduced to derive a more specific list of genes that change in response to treatment.  

 

Statistical analysis of microarray data 

To improve the specificity of the analysis a statistical filter was applied after the 

expression filter. All data was analysed using non-parametric tests as the genes tested 

did not have a Gaussian distribution. For two groups either Mann-Whitney or the less 

stringent Significance Analysis of Microarray was applied. For more than two groups 

Kruskal-Wallis (non-parametric equivalent of analysis of variance) was used. Either the 

False Discovery Rate (FDR) Benjamini-Hochberg (BH) or the more stringent 

Bonferroni multiple testing corrections was also applied to all analysis.  

 

Choosing how to perform the initial steps of data analysis 

The beginning steps of the data analysis were based on the recommendations from 

GeneSpring (Agilent Technologies) for Illumina gene expression analysis. Prior 

microarray analysis carried out by Dr O’Garra’s research group used a slightly different 

approach, based on the analysis strategies used at Baylor Institute of Immunological 

Research (Berry, Graham et al. 2010). The vast literature of studies applying different 

analysis approaches demonstrates that to analyse large complex data sets there is no 

‘correct analysis approach’ however standardisation of strategies would be of great 
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benefit for pragmatic interpretation between experiments (Quackenbush 2001; Nature, 

editorial. 2012). To determine the effects of these two different strategies some 

comparative analysis using the datasets from the Berry et al. 2010 study was carried out 

(Figure 4). The first step is to normalise the samples, the different normalisation 

approaches particularly affected the unsupervised analysis as this uses a cut-off filter 

around the median of all transcripts – the median of each transcript however can change 

according to the normalisation applied. The next steps are to set a threshold level and 

then filter out transcripts that are not significantly different from the background 

intensity values, the two filtering processes had little effect on the outcome and the 

difference was most likely related to a cut-off of <0.99 compared to ≤0.99 (Figure 5b). 

The threshold step had a much more significant effect on the outcome as a lower 

threshold allows many more genes through the unsupervised analysis filter around the 

median (Figure 5c). The lower threshold may include more noisy genes but the higher 

threshold may disregard genes of interest. For data with less technical variation it may 

be better to set a lower threshold to ensure fewer falsely negative transcripts. After the 

additional statistical filter many of the changes, in terms of number of transcripts, have 

less of a proportional difference. The main changes are secondary to the threshold value 

and the normalisation of samples (Figure 5d & Table 4). However the crucial question 

is not really how many genes are different but are the functional pathways changed by 

the analysis. The Microarray Quality Control Project by the United States Food and 

Drug Administration set out to specifically address this issue of the reliability of 

microarray data and in response to this published a paper comparing multiple different 

analysis approaches for the same experiments (Shi, Campbell et al. 2010).  Their 

findings were that regardless of the analysis strategies applied the transcriptional 

profiles, although somewhat differing at the gene level, revealed remarkably similar 
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biological properties suggesting that microarray does appear to be reliable at the 

biological level. Furthermore a robust dataset should not have widely varying biological 

outcomes from the data when applying different analyses. Therefore with this in mind 

the different transcript lists generated using slightly different initial analysis steps by 

IPA were compared (Ingenuity Systems). To simplify this comparison the IFN-

signalling pathway, a pathway known to be significantly represented in each dataset, 

was used to assess the results. The IFN-signalling pathway remained highly significant 

by all forms of analysis in the three main cohorts but not in the SA Validation and SA 

Baseline cohorts (Table 5). This was most likely due to the very stringent multiple 

testing corrections (Bonferroni) applied to these two cohorts to reduce the transcript 

lists to a size parallel to the others. The stringency of the correction results in many 

more false negative genes and the number of genes in the IFN-signalling pathway is 

only 36 therefore the loss of 2 or 3 genes can make a huge impact on the statistical 

significance. 

In summary the analysis strategy is a choice that should be based on the quality 

of the raw data, the type of samples and the questions to be addressed. Importantly 

though there is no single correct strategy but it should be used consistently throughout 

the experiment and any comparative experiments. The use of different approaches to 

determine functional associations that subsequently show agreement will add to the 

confidence of any findings. For this reason a number of different tools (modular 

analysis, IPA, gene ranking, Venn diagrams and comparing disease to disease) were 

applied to try and find biological links with the transcript lists (Figure 6). 
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Clustering 

Hierarchical clustering was unsupervised for both the transcripts and samples, clustered 

only by gene expression and sample similarity without knowledge of sample identity, or 

partially supervised, intentional clustering of the samples by particular parameters e.g. 

time course. For all clustering the distance metric Pearson’s uncentered correlation with 

average linkage was applied, so that clustering was driven by the trend in expression of 

the transcripts. The hierarchical transcriptional clustering was visualised using a 

heatmap with a vertical dendrogram indicating the most similar transcripts and 

horizontal dendrogram indicating the most similar samples. A colour bar indicates the 

normalised intensity values where yellow is zero (no different from the median if 

samples are normalised to the median), red is high (over-abundant relative to the 

median) and blue is low (under-abundant relative to the median). For k-means clustering 

the distance metric Pearson’s uncentered was applied with k=20 with 200 iterations. 

 

Class prediction 

The machine learning algorithm support vector machine was performed in GeneSpring 

11.5. The training set was used to build the prediction model and the test, validation and 

other datasets were used to run the model. When raw data was obtained from different 

platforms the model was built again for that platform. The model was built using sample 

classifiers ‘TB’ or ‘not TB’. The kernel type used was linear, maximum iterations 

100,000, cost 100, ratio 1 and validation type N-fold where N=3 with 10 repeats.  

 

Ingenuity Pathway Analysis 

IPA (Ingenuity Systems) software package was used to help elucidate gene pathways 

using a top-down approach. The repository underlying IPA is called 
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Ingenuity
®

 Knowledge Base (IngenuitySystems 2012). This database is created from 

millions of individually modelled relationships from diseases to tissues to genes. It is 

built by manually abstracting and curating much of the biomedical literature, an expert 

review process, with findings added weekly. IPA includes a gene expression specific 

database which consists of genes associated with particular biological and functional 

pathways. In our study only gene expression canonical pathway analysis was carried 

out. Two forms of IPA pathway analysis was performed; discovery of significant 

pathways for each disease at one time and discovery of significant pathways for each 

disease in comparison to the other diseases. The significance of each pathway was 

calculated by IPA using Fisher’s exact test with a Benjamini Hochberg multiple testing 

correction.   

 

               

 

The number of genes present in that pathway from your dataset was also provided. 

 

Weighted molecular distance to health and temporal molecular response 

Weighted molecular distance to health (MDTH) is an algorithm used to determine the 

degree of perturbation of expression of a group of samples compared to a set of controls 

(Pankla, Buddhisa et al. 2009). Berry et al. 2010, demonstrated a significant correlation 

between MDTH and the severity of active TB as measured by the radiographic extent of 

disease (Berry, Graham et al. 2010). MDTH is calculated by the number of transcripts 

per sample that differ by more than two standard deviations from the mean of the 
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controls. The MDTH score for each sample is then a function of both the number of 

deviating transcripts and the amount of standard deviations they deviate by.  

Temporal molecular response is an algorithm devised to calculate the change in 

a transcriptional profile over time. Unlike MDTH it does not require a control cohort as 

it uses the first time point (baseline) as the comparator profile. Another advantage over 

MDTH is that it is more sensitive and specific to changes in longitudinal analysis; this is 

in part because it does not rely on a control cohort that can have variable profile 

heterogeneity. The temporal molecular response was calculated for a particular 

transcript list for each individual patient. The raw intensity transcript values in the 

transcript list were consecutively compared at each time point to the baseline (pre-

treatment). The numbers of transcripts that were at least two-fold up or two-fold down 

from the baseline were added together for each time point. This sum was then divided 

by the total number of transcripts in the transcript list to calculate a percentage score for 

each time point.  This generated a percentage score of change at each time point 

compared to the baseline, where the baseline always remains zero (no change from 

itself). To allow for two-fold changes from zero any baseline raw transcript intensity 

values of zero were converted to 10
-20

.
 
The MDTH and temporal molecular response 

scores were calculated using Microsoft Excel 2010. GraphPad Prism version 5 for 

Windows was used to generate the graphs. Fixed effects longitudinal data regression 

models were used to determine p-values using Stata Statistical Software: Release 9. 

(College Station, TX: StataCorp LP). This statistical method allows regression analysis 

even when there are missing data points but does not create dummy variables. 
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Modular analysis 

The modules are sets of functionally related genes derived from true biological 

conditions. These co-expressed genes were determined, using an algorithm based 

around k-means clustering, from gene expression profiles from patients in cohorts of 

different diseases (Chaussabel, Quinn et al. 2008). Subsequent to the clustering the 

genes and hence modules functional meaning were annotated using unbiased literature 

profiling (IPA, Pubmed and iHOP databases). The modules used in this study are 

modified modules, different from those used by Berry et al. 2010, (Berry, Graham et al. 

2010). These modules were generated using the Illumina platform, from whole blood 

gene expression profiles and from patients with 9 different diseases. The older modules 

were generated using the Affymetrix platform, from PBMC gene expression profiles 

and from patients with 8 different diseases. In addition the output of these modified 

modules is per patient, as opposed to an average for the disease in the older modules 

(Guiducci, Gong et al. 2010). Module colour intensity represents the relative amount of 

over-abundance (red) or under-abundance (blue) compared to the controls (p<0.05), no 

colour indicates insignificant change in expression compared to the controls (p>0.05). 

 

Four-set Venn diagram 

As it is only possible to create 3-set Venn diagrams in GeneSpring 11.5, the 4-set Venn 

diagram was created using Venny (Oliveros 2007). 

 

Patient randomisation 

Patients were randomised using a computer algorithm for randomisation (Haahr 1988). 

As the expected accuracy of the signature was high the cohort was divided so 
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approximately half the samples were included the training set and half were included in 

the test set (Dobbin and Simon 2011).  

 

Translating probes across different microarray platforms 

Probe/transcript lists were translated using the NIH Database for Annotation, 

Visualization and Integrated Discovery (DAVID). When possible for probes or genes 

that translation was not recognised by DAVID, annotation and conversion to Illumina 

probes in GeneSpring was carried out manually. 

 

Clinical data statistical analysis  

Univariate and multivariate regression analysis, and the chi-squared analysis were 

calculated using STATA9 Data Analysis and Statistical Software. To prevent listwise 

deletion due to missing data points in the multivariate regression analysis, dummy 

variable adjustment was used.  
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Figures for methods 
 

 

Figure 2. Unsupervised hierarchical clustering demonstrating that inter-individual 

transcriptional differences outweigh the intra-individual differences  

RNA was extracted from whole blood from 20 healthy volunteers before and at the time 

points shown after the TST. The RNA was hybridised to Illumina HT 12 V3 microarray 

chips. The 1,064 transcripts shown in the heatmap were generated by unsupervised 

analysis; filtered firstly by their detection compared to background intensity (p<0.01) 

and then by a two-fold filter from the median in ≥ 10% of the samples. Unsupervised 

hierarchical clustering was then applied to these transcripts. Each row represents a 

transcript and each column represents a sample. The transcripts and samples were 

clustered by Pearson uncentered distance metric with average linkage. The vertical 

dendrogram shows the clustering of the transcripts and the horizontal dendrogram 

shows the samples clustering. The relative abundance of the normalised transcripts is 

indicated by the colour scale. The coloured bar at the bottom of the heatmap indicates 

the group the sample belongs to, as shown in the legend. The horizontal dendrogram 

divides into 20 main clusters representing the 20 different subjects in the experiment. 

Subjects clustered according to over-abundance of ribosomal variants (top left hand red 

genes), the male sex genes and other unclear factors. Subjects only clustered by intra-

individual differences, i.e. the longitudinal time course of 29 days, within their own 

individual clusters. Transcriptional profiles are therefore influenced more by inter-

individual differences than by either the affects from the tuberculin skin test or from the 

time course.  
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Figure 3. Flow diagram of the clinical classification for sarcoidosis patients. 
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Figure 4. Comparing analysis strategies: classical Baylor Institute of 

Immunological Research approach versus GeneSpring advised approach. 

 

The GeneSpring approach is recommended for Illumina data as there are many probes 

with low intensity values which are not as reliable as the higher values therefore they 

recommend to use a normalisation based around a higher percentile, such as 75
th

. 

However they also recommend using a threshold value of 1 to ensure no loss of data 

interpretation at the low lying intensity values. After threshold application the data is 

filtered to remove transcripts that are not significantly different from the background 

hybridisation intensity. Background subtraction is the average bead type intensity of 

each analytical probe minus the average intensity from the negative control beads for 

that probe. The filtering analysis can be performed in two ways in GeneSpring by 

‘datafiles’ or by ‘flags’. Each probe is given a detection 1-(p-value) in Genome Studio. 

In addition a ‘flag’ or ‘call’ can also be set in GeneSpring for each Illumina probe to 

correlate with the detection value. A filter is then applied either by datafiles of ≥0.99, 

which translates to 1-(≥0.99) = p<0.01. Or a filter is set according to the ‘present flags’ 

where present =0.99, also equivalent to p<0.01.  



 Methods 

116 

 

 

 

Figure 5. Using the training set from the Berry et al paper to compare the different 

strategies (a)Filtering from background (b) Fold change around the median (c) 

Statistical filtering (see next page) 

5 Normalisation does not affect the number of genes after detection from background 

probes as would be expected. It does affect the fold change filter based around the 

median as the median for each transcript could be different depending on how the 

samples are normalised. (a) Both filter using p≤0.99 however when filtering by datafiles 

there is a fault in GeneSpring where it does not recognised ‘at least’ 10% of samples as 

≥10% but sees it as 10% of samples. (b) Filtering around the median after threshold of 1 

includes many more genes than after threshold of 10. The extra genes are at the low 

intensity value as the filter cut-off is based on a 2 fold change. This may therefore 

include false positive genes but equally could include relevant genes.  

BS = Beadstudio, GX = GeneSpring, FC = fold change. 
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Figure 5c. Comparing strategies – effects after statistical filtering 

After statistical filtering the differences in transcripts are minimised but the main 

differences remain secondary to the threshold value. Although the higher threshold 

value reduces the genes that filter through the 2 fold change around the median, after 

statistical filtering there are fewer genes when tested in this cohort. This could be 

explained by the multiple testing correction that is applied – the more genes the more 

stringent the correction as it is calculated in relation to the number of genes.  
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Table 4. The observed findings are also seen when comparing strategies in the 

three other datasets. 

BS = Beadstudio, GX = GeneSpring, FC = fold change, Bonf = Bonferroni multiple test 

correction, FDR = false discovery rate. 
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Table 5. Comparing the effect of the two extremes of the different analysis 

strategies using Ingenuity Pathway Analysis. 

 

 

Although the number of genes may not differ greatly between the analysis strategies for 

the same cohort this can affect the IPA pathways that are shown as the most significant. 

For example it would be expected that IFN signalling pathway would be highly 

significant in all these datasets but clearly by using a more stringent multiple testing 

correction this has altered the significance of the IFN signalling pathway. This will be 

due to the small number (36 genes) present in that pathway therefore changes of a few 

changes can greatly affect the significance.  

In summary from this comparison of analyses it would seem the choice of the strategy 

can affect the results and could be considered based on the quality of the raw data, type 

of samples used and questions to be addressed from the experiment. However there is 

no single ‘correct’ analysis strategy. When searching for biological patterns that are 

associated with the resulting transcript lists it could be of benefit to use several different 

data mining approaches to ensure the findings are consistent. 

 

BS = Beadstudio, GX = GeneSpring, FC = fold change, SA = South Africa, PTB = 

pulmonary TB, LTB = latent TB, IPA = Ingenuity Pathway Analysis, IFN = interferon. 
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Figure 6. Flow diagram of the results chapter to explain the analysis strategy of the 

whole study. 
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Chapter 3: Comparing pulmonary tuberculosis blood gene 
expression profiles to similar respiratory diseases 

 

Introduction 
TB is a complex infectious disease and in the face of numerous years of investigation 

there are still many host-pathogen immunological aspects we have little knowledge 

about or do not fully understand. A systems biology approach can evaluate a far broader 

framework than traditional reductionist methods by use of large complex datasets to 

identify key networks of interactions and new functional associations (Young, Stark et 

al. 2008). In addition a side product, or the main objective, can be the discovery of 

potential surrogate markers of diagnosis, prognosis and/or disease monitoring. Earlier 

blood transcriptional studies in TB have uncovered previously underappreciated roles of 

Type I IFN and demonstrated the power of transcriptional signatures to discriminate 

between grades of TB severity and discriminate between active TB and other infectious 

and inflammatory diseases (Berry, Graham et al. 2010), including between active TB 

and sarcoidosis (Koth, Solberg et al. 2011; Maertzdorf, Weiner et al. 2012). 

Furthermore the Berry et al. 2010, study showed potential for transcriptional signatures 

to help guide our understanding of the suspected clinical and immunological 

heterogeneity of latent TB. 

 This study is using the clinical similarity of other respiratory diseases to try to 

formulate distinct biological patterns associated with TB compared to the other 

diseases. For this reason particular similar diseases were chosen: pulmonary sarcoidosis 

– another respiratory granulomatous disease, community acquired pneumonia – another 

respiratory infectious disease, and primary lung cancer – another pulmonary 

inflammatory disease. All three diseases are also differential diagnoses for pulmonary 

TB (Campbell and Bah-Sow 2006). For example of three patients recruited initially as 
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active TB in this study, one had sarcoidosis, one had pneumonia and one had lung 

cancer, all only determined after further invasive diagnostic tests. Therefore the 

possibility of identifying a transcriptional signature that can differentiate TB from these 

other respiratory diseases could be of great clinical value to prevent delays in the 

diagnosis of TB (Rodger, Jaffar et al. 2003), in addition to providing new information 

regarding the host factors underlying pathogenesis. 

 

Results 
 

Study Recruitment for the Training Set 

TB patients were recruited from August 2009 to October 2010 (Royal Free Hospital) 

(Figure 7). Twenty three TB patients were recruited, three were excluded as the 

diagnosis of TB was not confirmed (lung cancer, emphysema and culture negative), and 

three were excluded due to the subsequent diagnosis of additional diseases (B-cell 

lymphoma and hepatitis B) (Figure 7). A further four samples were not included but 

instead four samples from white TB patients which had been previously recruited were 

used (Berry, Graham et al. 2010). This was to reduce the ethnicity bias of the TB 

patients compared to the sarcoidosis patients.  

Sarcoidosis patients were recruited from October 2009 until October 2010 

(Royal Free Hospital and Oxford). Forty one sarcoidosis patients were recruited, seven 

were excluded as their radiology imaging performed after the blood test was normal, 

three had a confounding respiratory disease (moderate asthma) and three had no biopsy 

or a normal tissue histology (Figure 7). One patient was included although he was on 

glucocorticoids, a very low dose (prednisolone 5mg daily), as he had severe active 

sarcoidosis but had previously refused therapeutic doses.  
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Pneumonia patients were recruited from May to October 2011 (Royal Free Hospital). 

Twelve were recruited of whom four were excluded (normal chest radiograph, wrong 

diagnosis or pneumonia resolved) (Figure 7). Lung cancer patients were recruited from 

June 2010 to May 2011 (Lyon, France). Eight primary lung cancer patients were 

recruited (Figure 7).                  

Healthy controls were recruited from April 2009 to November 2011 (NIMR and 

Royal Free Hospital) (Figure 8). Forty five were recruited of whom seven were 

excluded due to positive Quantiferon ELISA results.  

 

Study Recruitment for the Test Set 

Thirty two sarcoidosis patients were recruited (St Mary’s Hospital, Barnet Hospital and 

Royal Free Hospital) (Figure 9). Six were excluded, one had a co-existing respiratory 

disease, three had a normal or no biopsy and two were in remission. Thirteen TB 

patients were recruited (Royal Free Hospital and Lyon, France). One was excluded due 

to a negative M.tuberculosis culture. Ten pneumonia patients were recruited (Royal 

Free Hospital). Three were excluded, two had no radiological evidence of pneumonia 

and one was given the wrong diagnosis. Eight lung cancer patients were recruited 

(Lyon, France). Sixty one healthy controls were recruited (NIMR and Royal Free 

Hospital) (Figure 10). Eight were excluded due to positive Quantiferon ELISA results.  

 

Study Recruitment for the Validation Set 

Twenty six sarcoidosis patients were recruited (St Mary’s Hospital, Barnet Hospital, 

Royal Free Hospital and Paris, France) (Figure 11). Two were excluded, one had a co-

existing respiratory disease and one did not have up-to-date abnormal thoracic 

radiology. Ten TB patients were recruited (Royal Free Hospital and Lyon, France). One 



 Chapter 3: Comparing pulmonary TB blood expression profiles to similar respiratory diseases  

126 

 

was excluded due to the subsequent diagnosis of an additional disease. Twenty seven 

healthy controls were recruited (NIMR and Royal Free Hospital). Two were excluded 

due to positive Quantiferon ELISA results.  

 

RNA integrity and quality control 

Inadequate RNA integrity is a common cause of technical difficulties that result in 

inaccurate interpretation of microarray data. This is usually measured using a 

combination of different features of the electrophorectic trace of the RNA such that an 

algorithm generates a numerical classification of the RNA from 1-10 where 10 

correlates with the highest integrity. In this study the total RNA had an average RNA 

integrity number (RIN) of 7.9 and globin-reduced RNA had an average RIN of 7.9. 

RNA quality was therefore sufficient for microarray processing using Illumina 

technology at the core facility at Baylor Institute of Immunological Research. Typically 

RIN above 7 is adequate for microarray, less than 7 may need further validation. In total 

there were 13 samples (5% of total 243 samples) that were technical outliers by both 

PCA and unsupervised hierarchical clustering and which were therefore excluded from 

the analysis. As studies do not have to publish any data on samples that were excluded 

prior to data analysis it is difficult to gauge how many outliers you may expect from a 

certain sample size. 

 

Demographics of the training set 

Sixteen TB patients, twenty five sarcoidosis, eight pneumonia, eight cancer and thirty 

eight controls were included in the final training set data analysis (Table 6). Gender, age 

and ethnicity were well matched between the sarcoidosis, TB and controls (mean age 

was within 10 years different, percentage of males was within 15% different and 
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percentage of ethnicities was within 20% different across the three cohorts). The 

pneumonia and cancer patients were slightly older, more male and predominantly white 

as would be expected in the UK and France. Hence healthy controls were matched to 

the patient’s demographics to the best of our ability. Many more controls were recruited 

than needed so that each disease group could have its own control group with near-

perfect matching for the individual disease-control analysis (see Chapter 5 functional 

analysis). 

 

Demographics of the test and validation set were similar to the test set 

The gender and ethnicity matching of the TB patients in the test set was not quite as 

good as in the training set due to the lower number of white TB patients (Table 7). 

However the matching for the other diseases and controls was reasonably good 

(percentage of males was within 27% different and  percentage of ethnicities was within 

37% different across the three cohorts). Again the pneumonia and cancer patients were 

predominantly white patients. The validation set only contains TB, sarcoidosis and 

controls, therefore it was possible to obtain a good match for gender, ethnicity and age 

(Table 8).  

 

Clinical characteristics of the training set  

Eleven of the sixteen TB patients were smear positive (Table 9). The patients all 

presented with typical symptoms: TB patients had cough, sweats and weight loss, 

sarcoidosis patients had cough, dyspnoea and fatigue, the pneumonia patients had 

cough, dyspnoea and fevers, and the cancer patients had cough, dyspnoea and weight 

loss (Tables 9-11). The TB, pneumonia and cancer patients had a significantly higher 

number of symptoms than the sarcoidosis patients (2.5 compared to 1, t-test p<0.05) 
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(Tables 9-11). The sarcoidosis patients commonly presented with no symptoms (57%) 

but symptoms were more likely to be chronic with a far longer average presentation 

compared to the other respiratory diseases (4.5 years). The serum inflammatory marker 

C-reactive protein and the peripheral neutrophil counts were on average much higher in 

TB, pneumonia and cancer than in the sarcoidosis patients, with the highest values in 

the pneumonia patients (CRP & neutrophil count respectively: TB 77mg/L & 6x10
9
/L; 

sarcoidosis 6mg/L & 3.7x10
9
/L; pneumonia 270mg/L & 12.3x10

9
/L; cancer 63mg/L & 

3.7x10
9
/L) (Tables 9-11). Sarcoidosis had the largest proportion of patients with a 

lymphocyte count below 1x10
9
/L. Healthy controls had an average lymphocyte count of 

1.9 x 10
9
/L and neutrophil count of 2.9 x 10

9
/L.  

The majority of TB patients presented with a density on their chest radiograph with 8 

patients presenting with cavities (Tables 9-11, Figure 12). Most sarcoidosis patients had 

thoracic lymph node enlargement; 58% had stage I, 23% had stage II, 12% had stage 3 

and 8% had stage IV. Pneumonia patients all presented with consolidation, of which one 

third had definite multilobar consolidation (Table 10). The radiological feature of 

consolidation is due to filling of the alveolar spaces and can occupy varying 

distributions; multilobar refers to the consolidation affecting more than one lung lobe. 

Cancer patients had a mean staging value between Stage 3a and 3b disease, therefore 

their radiological results suggest on average their disease had a relatively poor 

prognosis and currently involved the lung parenchyma and local lymph nodes, but had 

not yet resulted in distant metastases. 

 

Clinical characteristics of the test and validation sets were similar to the 
training set 

The clinical characteristics of the test and validation sets were not significantly different 

from the training set, except for the number of smear positive TB patients in the training 
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set, which was significantly more than in the test and validation sets (p <0.05) (Tables 

12-15). In addition the lung cancer patients had more severe disease in the test set than 

in the training set, with more patients having a higher stage of disease which is 

consistent with the presence of distant metastases (Stage 4) on their radiology imaging 

(Fishers exact p<0.05) (Table 15). 

 

Unsupervised analysis of the training set revealed differences between 
the controls and disease cohorts 

To determine if the transcriptional profiles from patients with different respiratory 

diseases are similar or distinct we applied an unsupervised analysis approach followed 

by unsupervised hierarchical clustering of the transcriptional profiles. RNA was first 

extracted from whole blood and then processed for microarray. After quality control, an 

unsupervised analysis approach was applied using GeneSpring 11 to sixteen TB, 

twenty-five sarcoidosis, eight pneumonia and eight cancer patients’ gene expression 

profiles. 3,422 transcripts satisfied the detection filter (non-parametric Illumina specific 

method p<0.01 compared to background) and the expression filter (two-fold change 

from the median) (Figure 13). Unsupervised hierarchical clustering of the 3,422 

transcripts and samples revealed two main clusters in the horizontal dendrogram, as 

demonstrated by the addition of the dotted line on the heatmap (Figure 13). One of the 

clusters contained nearly all the control samples. The other cluster contained nearly all 

the patient samples. In the main cluster containing most of the patients’ transcriptional 

profiles, the transcriptional profiles from the pneumonia and cancer patients clustered 

together and the transcriptional profiles from the TB and sarcoidosis patients cluster 

together. Notably the sarcoidosis profiles were far more heterogeneous than any of the 

other diseases. Therefore the controls’ transcriptional profiles were very similar to each 

other, the TB and sarcoidosis patients’ transcriptional profiles were very similar to each 
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other and the pneumonia and cancer patients’ transcriptional profiles were also very 

similar to each other. 

 

Unsupervised analysis & statistical filtering of the training set 
accentuated the differences between disease profiles 

Next an additional statistical filter was applied to the analysis to reduce the transcript 

list to a more specific set of genes. The statistical filter Kruskal Wallis with Benjamini 

Hochberg correction (p<0.01) was applied. This analysis generated 1,446 differentially 

expressed transcripts (Figure 14). Unsupervised hierarchical clustering of the 1,466 

transcripts and samples again revealed two main clusters; one contained most of the 

control profiles and the other contained most of the patients’ profiles. The patients 

cluster could be further split into two sub-clusters, one contained several sarcoidosis 

patients and the other contained a branch with the pneumonia and cancer profiles and a 

branch with the TB and sarcoidosis profiles. Therefore the unsupervised analysis with 

an additional statistical filter demonstrated a comparable clustering pattern of the 

patients and controls as seen by the unsupervised analysis alone. 

 

Validating the clustering in the test set 

To validate the findings observed with the training set an independent cohort of patients 

were recruited and processed for microarray, the test set. The 1,446 transcripts derived 

from the training set (see figure 14) were then applied to the test set and again 

unsupervised hierarchical clustering of the test set transcripts and samples was 

performed (Figure 15). The same clustering pattern was seen as observed in the training 

set. The transcriptional profiles of the controls clustered away from the transcriptional 

profiles of the patients. Within the main cluster of patients’ transcriptional profiles the 

pneumonia and cancer profiles tightly clustered away from the TB and sarcoidosis 
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profiles (Figure 15). Again the transcriptional profiles from the sarcoidosis patients 

displayed the largest spread. 

 To further validate the observations from the 1,446 transcripts applied to both 

the training and the test set, the same analysis approach that was applied to the training 

set (identical unsupervised analysis and statistical analysis), was then applied to the test 

set. This analysis resulted in 1,070 differentially expressed transcripts (Figure 16). 

Unsupervised hierarchical clustering was then performed using the 1,070 transcripts in 

the test set (Figure 16). The clustering again demonstrated a similar pattern as was 

observed with the 1,466 transcripts in the training set and in the test set. The TB and 

sarcoidosis samples clustered together but separately from the cluster of cancer and 

pneumonia samples.  

A Venn diagram was then used to compare the two sets of transcripts, 1,466 

from the training set and 1,070 from the test set. The Venn diagram demonstrated that a 

large proportion of the transcripts were similar between the two transcript lists (Figure 

17). The variance in the actual number of transcripts obtained by the same analysis 

(1,466 versus 1,077) was most likely related to the unsupervised analysis as this is 

based on a fold change cut-off around the median, where any change in the median 

could affect the outcome. Because the training and test set contained different numbers 

of samples, with non-identical numbers of control samples and disease samples in each 

group, it would be anticipated that the median for each transcript would not be the same 

in the training set and test set. 

 

Neither gender nor ethnicity appear to influence the clustering 

To rule out any impact of ethnicity or gender in the clustering, the 1,446 transcripts 

were applied again to the training set and subjected to unsupervised hierarchical 
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clustering, with only white patients (Figure 18a) or male patients (Figure 18b) included 

in the clustering.  The clustering again demonstrated very similar clustering to that seen 

when all samples were included, demonstrating neither ethnicity nor gender had a 

significant affect. This was particularly important to determine as both the pneumonia 

and cancer patients were dominated by white males. 

 

Weighted molecular distance to health used to reflect disease activity 

Weighted molecular distance to health (MDTH) is an algorithm used to determine the 

degree of perturbation of expression of a group of samples compared to a set of controls 

(Pankla, Buddhisa et al. 2009). Berry et al 2010 demonstrated a significant correlation 

between MDTH and the severity of active TB (Berry, Graham et al. 2010), therefore we 

applied the algorithm in this study as a surrogate marker of disease activity. MDTH of 

each disease group in both the training and test set revealed the highest average score in 

the pneumonia patients, followed by the TB patients (Figure 19). The sarcoidosis and 

cancer patients displayed scores more towards the level of the controls (Figure 19). The 

MDTH scores could be thought of as matching the clinical presentation of these 

diseases, where the cancer and sarcoidosis patients had a more chronic illness with 

lower inflammatory blood markers than pneumonia or TB (Tables 9-13).  

 

Ingenuity pathway analysis of the 1,446 transcripts in the training set 

IPA (Ingenuity Systems) is a database of genes that are associated with particular 

biological and functional pathways, created by manually abstracting and curating the 

biomedical literature. In our study only gene expression canonical pathway analysis was 

carried out. IPA of the three main gene clusters in the 1,446 transcripts revealed distinct 

functional pathways associated with the different disease groups (Figure 20). The cancer 
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and pneumonia patients had a relative over-abundance of genes (at the top of the 

heatmap) associated with multiple signalling pathways associated with inflammation 

e.g. IL-8, TLR and IL-10 signalling pathways; whereas most of the TB and sarcoidosis 

patients had an under-abundance of these pathways. TB and most sarcoidosis profiles 

instead were associated with over-abundance of the IFN-signalling and other immune 

pathways (Figure 21), of which many of the genes within the immune pathways were 

also IFN-inducible. All the diseases, particularly the pneumonia and TB patients, had a 

relative under-abundance of many T and B cell related pathways (Figure 20).  

To determine if the over-abundant transcripts within the IFN-signalling pathway 

were related to Type I or Type II IFN’s the transcripts were overlaid on the IPA IFN-

signalling pathway (Figure 21). This demonstrated that both Type I and Type II IFN-

inducible genes were over-abundant. Furthermore when examining the annotation of 

each transcript on the heatmap in the middle section of the 1,446 transcripts, which were 

over-abundant in the TB and most sarcoidosis patients, the IFN-inducible genes were 

clearly the highest number of transcripts present e.g. STAT1, STAT2, IRF7, OAS1, 

GBP5, IFIT3, MX1, CXCL10 (Figures 22a-c). In contrast when inspecting the band of 

genes that were highly over-abundant in most of the pneumonia patients, these were 

clearly dominated by neutrophil anti-microbial genes e.g. CAMP, DEFA4, DEFA1, 

ELANE, BPI, MPO (Figure 23). These genes were also over-abundant in some of the 

TB patients but not to the same extent. 

 Therefore by applying the IPA analysis and by close inspection of the transcripts 

in each gene cluster, it could be observed that TB and sarcoidosis were associated with 

an over-abundance of the IFN-signalling and other immune pathways (Figure 20-22), 

the pneumonia and cancer patients were associated with an over-abundance of many 
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signalling pathways related to inflammation (Figure 20), and all the diseases were 

associated with under-abundance of T and B cell pathways (Figure 20). 

 

k-means clustering of the 1,446 transcripts in the training set 

To support the findings from the hierarchical clustering another common form of 

clustering, k-means clustering, was also applied. k-means clustering allows the user 

more control over the clusters but is therefore a more biased form of clustering. The 

training set 1,446 transcripts were divided into 10 clusters based on an iterative process 

related to the number of transcript clusters on the vertical dendrogram of the 

hierarchical heatmap (as seen in Figure 14). The expression profiles within each of the 

10 clusters were shown to be associated with particular disease(s) relative to the control 

group (Figure 24).  Clusters 1 and 6 were over-abundant in TB and less so in 

sarcoidosis, both were associated with IPA pathways related to the IFN genes such as 

interferon signalling, the antigen presentation pathway and the role of PRRs in bacteria 

and viruses (Figure 24). Clusters 2 and 3 were under-abundant in most diseases and 

associated with T and B cell IPA pathways, such as TCR signalling and CTLA4 

signalling in cytotoxic T lymphocytes. Clusters 5 and 7 were over-abundant in 

pneumonia and associated with IPA signalling pathways such as p38 MAPK signalling 

and HIF1α signalling. Clusters 8-11 did not reveal any significant association with IPA 

pathways. The k-means clustering therefore showed robust correlation with the 

hierarchical clustering. 
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Discussion 
 

The main objective of this prospective observational case-control study was to discover 

the differences and similarities of the underlying immunopathogenesis of the 

granulomatous diseases pulmonary TB (caused by M. tuberculosis infection) and 

pulmonary sarcoidosis (cause unknown), the respiratory infectious disease community 

acquired pneumonia (typically caused by bacteria) and the inflammatory respiratory 

disease primary lung cancer (predominantly caused by smoking). Furthermore 

molecular characterisation of these diseases could potentially be used to aid in the 

common difficulties associated with their clinical management. For example, due to the 

similarity of the initial clinical presentation of pulmonary TB and pulmonary 

sarcoidosis these two diseases are often difficult to differentiate diagnostically. In 

addition sarcoidosis is a clinically heterogeneous disease with a lack of robust clinical 

phenotyping, which results in less effective clinical decision making. To achieve a 

comprehensive molecular knowledge and comparison of these diseases a 'bottom-up' 

approach was taken by applying microarray technology, a broad unbiased gene 

expression survey, to peripheral whole blood of patients with these four diseases as 

compared to matched healthy individuals. Unsupervised analysis and clustering of the 

transcriptional profiles demonstrated that TB and sarcoidosis revealed very similar 

transcriptional profiles, which differed from the similar transcriptional profiles from the 

pneumonia and cancer patients. The TB and sarcoidosis profiles were found to be 

significantly associated with IFN-inducible genes, while the pneumonia and cancer 

profiles were significantly associated with signalling pathways associated with 

inflammation. These transcriptional signatures could assist in our understanding of the 

underlying disease mechanisms and have potential as diagnostic biomarkers. This 
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holistic genomic approach is in keeping with the objectives from the recent NHLBI 

workshop ‘Genomic Medicine and Lung Disease’ (Center, Schwartz et al. 2012). 

  

Similarities and differences of the clinical features of the four 
respiratory diseases 

All four disease groups presented with very similar respiratory symptoms of cough and 

dyspnoea (breathlessness), and frequently the same systemic features such as weight 

loss and fevers (Tables 9-11). In addition their radiological features were often 

indistinguishable (Tables 9-11, Figure 12). However some variables were different 

between the diseases, including the length of time their symptoms were present for and 

their blood inflammation markers, C-reactive protein (CRP) and differential cell blood 

counts. Theses clinical tests were chosen as comparators across all four diseases as they 

are routinely measured in most British (and French) hospitals. CRP, an acute phase 

protein, is consistently used as a measurement of inflammation in many acute and 

chronic conditions including infection, cancer, sarcoidosis, cardiovascular disease and 

rheumatic disorders (Windgassen, Funtowicz et al. 2011) (Drent, Wirnsberger et al. 

1999). However, CRP is both nonspecific and insensitive, therefore greatly limiting its 

use as a biomarker particularly in TB, sarcoidosis and cancer (Oremek, Sauer-Eppel et 

al. 2007; Walzl, Ronacher et al. 2008). For this study a combination of the known 

diagnosis, serum CRP level, neutrophil count, lymphocyte count and length of illness 

possibly provides an indication to some differences between these diseases but certainly 

does not negate the need for a comprehensive characterisation of the disease specific 

host immune responses.  

Comparing the two infectious diseases pulmonary TB and pneumonia, TB 

patients typically had a more prolonged illness than the pneumonia patients, but a 

significantly lower CRP and neutrophil count (p<0.05, data not shown) (Tables 9, 10, 
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11 & 14). This is in agreement with a previous study addressing CRP and procalcitonin 

levels in TB and pneumonia patients from a low TB burden area (Kang, Kwon et al. 

2009). When comparing the granulomatous diseases, the sarcoidosis patients often had 

far more prolonged but mild symptoms compared to the TB patients, with CRP and 

neutrophil counts within the normal limits (Tables 9, 11 & 12). In addition their 

radiological appearance tended to involve the thoracic lymph nodes rather than the lung 

parenchyma, whereas the lung parenchyma was typically involved in the TB patients. 

Notably the sarcoidosis patients were clinically heterogeneous in comparison with TB 

and the other diseases, with some sarcoidosis patients presenting with an analogous 

clinical phenotype to the TB patients, while others were asymptomatic and diagnosis 

only discovered due to investigation for another reason. In fact the two granulomatous 

diseases are so well recognised to be alike that it is often suggested that they are the 

same disease irrespective of their possible aetiological link (Gupta, Agarwal et al. 

2012). The cancer patients also had elevated CRP and neutrophil counts, which could 

represent an added infection due to the relative immunosuppression from the cancer, or 

could be secondary to the disease itself (Oremek, Sauer-Eppel et al. 2007). 

 

Distinct clustering pattern of the diseases are observed in the training 
set and validated in the test set 

By applying an unbiased approach, with unsupervised analysis and unsupervised 

hierarchical clustering, it could be seen there was a distinction in the clustering of the 

different disease groups (Figure 13). The control profiles clustered separately from the 

patient profiles, and within the patients the TB and sarcoidosis profiles clustered 

together but separately from the pneumonia and cancer profiles. The transcript list 

(3,422 transcripts) derived completely from unsupervised analysis was further refined 

by adding a statistical filter to the analysis (1,446 transcripts, Figure 14). After 



 Chapter 3: Comparing pulmonary TB blood expression profiles to similar respiratory diseases  

138 

 

unsupervised hierarchical clustering the same pattern was seen as before but with a 

sharper contrast in the sub-clusters visualised with the aid of the horizontal dendrogram 

(Figure 14). Furthermore it was validated in the test set by two different strategies, 

firstly to use the same 1,446 transcripts for the clustering (Figure 15), and secondly to 

use the same analytical approach to derive a different transcript list (1,070 transcripts) 

from the test set prior to the same clustering algorithm (Figure 16). Both these strategies 

resulted in similar clustering of the disease groups and healthy controls. The large 

crossover in overlapping genes (704 transcripts) between the training and test set further 

strengthens the robustness of these results (Figure 17).  

The similarity of TB and sarcoidosis patients’ whole blood gene expression 

profiles has been demonstrated in previous studies (Koth, Solberg et al. 2011; 

Maertzdorf, Weiner et al. 2012). However this is the first study to compare TB, 

sarcoidosis and other similar respiratory diseases. In addition the two earlier studies did 

not comment on the diversity of their sarcoidosis profiles, which is evident in all three 

cohorts (training, test and validation) in this study. The distinct clustering of the 

pneumonia and cancer profiles together is in part related to their dissimilarity from the 

granulomatous diseases and controls, not just purely their apparent similarity towards 

each other. Because the ethnicity and gender of the training set pneumonia and cancer 

patients were different from the other patients this could have prejudiced the clustering 

pattern, as it is well established that gender and ethnicity can both affect gene 

expression profiles (Whitney, Diehn et al. 2003; Eady, Wortley et al. 2005).  Therefore 

to determine that gender and ethnicity were not biasing the results the clustering of the 

1,446 transcripts was repeated with only white patients/controls and only males. Both 

heatmaps clearly demonstrated the same clustering pattern as before, suggesting any 
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influence ethnicity or gender may have on the gene expression is outweighed by the 

influence of the diseases processes (Figure 18).  

Weighted molecular distance to health can be used to reflect disease 
activity 

The weighted molecular distance to health (MDTH) is a quantification of the 

transcriptional perturbation between one set of samples and a set of controls (Pankla, 

Buddhisa et al. 2009). Berry et al. 2010, demonstrated a strong correlation between the 

MDTH and the degree of pulmonary TB activity as evidenced by their extent of 

radiological disease (Berry, Graham et al. 2010). MDTH could therefore have a 

potential role as a surrogate marker of disease activity in TB. Following on from this 

concept, MDTH was also shown to be strongly correlated with the clinical phenotype of 

another infectious disease, HTLV-1. Infected patients who exhibited no clinical 

indication of infection had a significantly lower MDTH than infected patients who had 

consequently developed a neurodegenerative disorder (Tattermusch, Skinner et al. 

2012). To this end the MDTH algorithm was applied to the four disease groups and 

demonstrated that pneumonia and TB had the highest scores, while cancer and 

sarcoidosis had the lowest scores. This is perhaps in keeping with the likely clinical 

presentation as the pneumonia and TB patients had higher serum inflammatory markers 

and larger number of symptoms than the sarcoidosis patients. However the cancer 

patients also had high serum inflammatory markers and number of symptoms but did 

not have such a high MDTH score. Therefore already this potential surrogate marker for 

disease activity is informing us more than we are able to delineate from standard clinical 

data and tests. On the other hand this may reflect a lack of appropriate clinical data 

obtained from the patients, as pneumonia and TB patients can often appear generally 

more unwell than lung cancer patients on initial presentation. 
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Distinct functional pathways derived from the 1,446 transcripts were 
associated with different diseases  

The 1,446 transcripts were clustered into three main clusters of genes (Figure 20). The 

middle cluster contained genes that were relatively over-abundant in the TB patients and 

most of the sarcoidosis patients. The pathway most significantly associated with these 

genes was the IFN-signalling pathway; the next most significant ones were immune 

pathways containing a high number of IFN-inducible genes (Figures 20 & 21). The full 

list of transcripts within the middle cluster is revealed (Figures 22a-c), and as would be 

expected the list of genes is dominated by IFN-inducible genes, particularly the most 

over-abundant genes. These findings are in keeping with two earlier publications that 

identified the similarity of TB and sarcoidosis profiles, as they too found both diseases 

induce a large number of over-abundant IFN-inducible genes (Koth, Solberg et al. 2011; 

Maertzdorf, Weiner et al. 2012). The Koth et al. 2011, study compared sarcoidosis 

patients they had recruited to the data publicly available from other studies including the 

Berry et al, Lockstone et al and Rosenbaum et al studies (Rosenbaum, Pasadhika et al. 

2009; Berry, Graham et al. 2010; Lockstone, Sanderson et al. 2010). Kaufmann et al 

recruited a new small cohort of TB and sarcoidosis patients but did not validate their 

finding in an independent cohort. Therefore this current study validates and confirms 

the finding that TB and sarcoidosis have similar transcriptional profiles. Furthermore 

this study demonstrates this finding with larger patient numbers, additional similar 

respiratory diseases and additional data mining strategies (see chapter 5).  

The top cluster of the 1,446 transcripts contained genes that were relatively 

over-abundant in most of the pneumonia and cancer patients, and that were associated 

with IPA pathways related to inflammation. There is a general consensus that 

inflammation plays a role in cancer, whether it is cause or effect, including primary lung 

cancer where there is increasing evidence for example that smoking promotes lung 
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inflammation (O'Callaghan, O'Donnell et al. 2010). It has long been recognised that 

pneumonia resulting from infection causes an acute lung inflammation such that even 

glucocorticoids, thought to reduce the inflammatory response, may in some cases 

expedite resolution (Chen, Li et al. 2011). Furthermore the inflammatory response 

associated with pneumonia is not just compartmentalised to the lungs but has also been 

described in the blood (Fernandez-Serrano, Dorca et al. 2003).  

The bottom cluster of the 1,446 transcripts contained mostly relatively under-

abundant genes associated with all the diseases as opposed to their relative over-

abundance in the healthy controls. These genes showed significant correlation with 

many B and T cell IPA pathways. Again this finding is perhaps predictable as reduced 

numbers of T and B cells in the blood of active TB patients, sarcoidosis patients and 

bacterial infection have previously been demonstrated by flow cytometry analysis 

(Ardura, Banchereau et al. 2009; Berry, Graham et al. 2010; Sweiss, Salloum et al. 

2010). The cause remains unresolved but could be due to preferential migration of the 

immune cells to the site of disease or cell death as a consequence of the pathogenesis. 

The percentage of lymphocytes found in the bronchoalveolar lavage has been shown to 

be higher in sarcoidosis and active TB patients than in healthy controls, possibly 

suggesting preferential migration (Hoheisel, Tabak et al. 1994). 

 A band of highly over-abundant transcripts was observed in the top cluster of the 

1,446 transcripts (Figure 23) and was found to be driven by neutrophil-antimicrobial 

genes e.g. CAMP, LCN2 and DEFA1. The genes were over-abundant in the majority of 

the pneumonia patients and to some extent in several of the TB patients. A correlation 

of neutrophil genes and infectious bacterial diseases is not surprising but helps to 

demonstrate that blood gene expression profiling of these diseases nicely parallels 

previous understanding of the immune host response.  



 Chapter 3: Comparing pulmonary TB blood expression profiles to similar respiratory diseases  

142 

 

 To confirm the sets of correlated genes derived by unsupervised hierarchical 

clustering a different form of clustering was applied, k-means clustering. 10 clusters 

were selected and found similar IPA pathways as was determined by the hierarchical 

clustering. k-means clustering found an association with the relative over-abundance of 

genes in TB and sarcoidosis e.g. the IFN-signalling pathway; over-abundance of 

signalling pathways in pneumonia and cancer e.g. IL-10 signalling; and an under-

abundance of the T and B cell pathways in all the diseases e.g. TCR signalling. 

 

Chapter Summary 
 

An unbiased survey of the human transcriptome revealed distinct clustering of 

pulmonary TB and pulmonary sarcoidosis expression profiles compared to a distinct 

clustering of pneumonia and lung cancer expression profiles. TB and sarcoidosis 

showed a robust similarity of their molecular and functional phenotypes that was 

dominated by the IFN-inducible genes (further detailed in chapter 5). However TB had 

a more active transcriptional response than sarcoidosis, reflecting the clinical 

phenotypes. Pneumonia and lung cancer also showed a robust similarity of their 

molecular and functional phenotypes, which appeared dominated by inflammation 

genes (further detailed in chapter 5). The transcriptional profiles from the pneumonia 

patients and some TB patients were also dominated by neutrophil genes. All the disease 

groups were associated with an under-abundance of T and B cell pathways. These 

biological processes are likely explained by a combination of changes in cellular 

numbers of discrete immune cell populations as well as changes in gene expression in 

individual cell populations as described in Berry et al. 2010. This constitutes the scope 

of on-going work. 
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To further determine the different biological pathways underlying each disease it 

was first necessary to clarify the clinical and transcriptional phenotypes resulting in the 

heterogeneity of the transcriptional profiles from the sarcoidosis samples. The majority 

of the transcriptional profiles from the sarcoidosis samples clustered with the TB 

patients but some of the sarcoidosis profiles clustered with the controls. Understanding 

this heterogeneity is the focus of chapter 4. Once the disease phenotypes were 

established the transcriptional profiles could then be used for data mining as described 

in chapter 5.  
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Figures for chapter 3 
 

 

 

 
 

 

 

 

Figure 7. Recruitment of respiratory patients for the TRAINING set. 
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Figure 8. Recruitment of healthy controls for the TRAINING set. 
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Figure 9. Recruitment of respiratory patients for the TEST set. 
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Figure 10. Recruitment of healthy controls for the TEST set. 
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Figure 11. Recruitment of the TB, sarcoidosis and healthy controls for the 

VALIDATION set. 
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Table 6. Demographics of TRAINING set. 

 

 

 

 
 

Table 7. Demographics of the TEST set. 

 

 

 

 

 

 

Table 8. Demographics of VALIDATION set. 



Chapter 3: Comparing pulmonary TB blood expression profiles to similar respiratory diseases 

150 

 

 

 

Table 9. Comparable clinical variables of the TB and sarcoidosis patients in the 

training set. 

BAL = bronchoalveolar lavage, IGRA = IFN gama-release assay, Lymph = lymphocyte count, BHL = bilateral hilar 

lymphadenopathy, Neut = neutrophil count, CXR = chest x-ray, ISC = Indian subcontinent, CRP = C-reactive 

protein, Ind = indeterminate, ND = not done, N/A = not available, pred = prednisolone, Dyspnoea = breathlessness. 
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Table 10. Clinical variables of the community acquired pneumonia patients in the 

training set. 

 

 

 
 

Table 11. Clinical variables of the lung cancer patients in the training set. 

 

 
Dyspnoea = breathlessness. Haemoptysis = coughing up blood. CURB65 score = pneumonia severity score where 5 

is the most severe. HT = hypertension. DM = hypertension. Adeno = adenocarcinoma.CXR = chest x-ray. CRP = C-

reactive protein. ME = middle eastern. 
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Table 12. Comparing clinical characteristics of all three datasets – TB patients 

 

 

 

 
Table 13. Comparing clinical characteristics of all three datasets – sarcoidosis 

patients 

 

 

 

 
Table 14. Comparing clinical characteristics of all there datasets – pneumonia 

patients 

 

 

 

 
Table 15. Comparing clinical characteristics of all three datasets – lung cancer 

patients 

 

 

 

Each table shows an average value and if there is a statistical difference between the 

training and the test/validation sets. No = no difference (p<0.05). The two variables that 

were significantly different between the training set and test/validation set were the 

percentage of sputum smear positive TB patients and the stage of lung cancer. There 

were more smear positive patients in the training set and the test set contained patients 

with a higher average lung cancer stage. 
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Figure 12. Example chest radiographs from the training set. 
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Figure 13. Unsupervised analysis of the training set. 

RNA was extracted from whole blood from 16 TB, 25 sarcoidosis, 8 pneumonia, 8 

cancer patients and 38 healthy controls. The RNA was hybridised to Illumina HT 12 V4 

microarray chips. The 3,422 transcripts shown in the heatmap were generated by 

unsupervised analysis; filtered firstly by their detection compared to background 

intensity (p<0.01) and then by a two-fold filter from the median in ≥ 10% of the 

samples, as shown in the flow diagram. Unsupervised hierarchical clustering was then 

applied to these transcripts. Each row represents a transcript and each column represents 

a sample. The transcripts and samples were clustered by Pearson uncentered distance 

metric with average linkage. The vertical dendrogram shows the clustering of the 

transcripts and the horizontal dendrogram shows the samples clustering. The relative 

abundance of the normalised transcripts is indicated by the colour scale. The coloured 

bar at the bottom of the heatmap indicates the group the sample belongs to, as shown in 

the legend to the right of the heatmap. The dotted line on the heatmap was added 

manually to aid visualisation of the two main clusters.  
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Figure 14. Unsupervised analysis and statistical filtering of the training set. 

The transcripts were derived as shown in the top of this figure. The layout of the 

heatmap is as described in figure 13.  
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Figure 15. Testing the 1,446 transcripts derived from the training set in the TEST 

set. 

 

The transcripts were derived as shown in the top of this figure. The layout of the 

heatmap is as described in figure 13.  

 

 

 

 

Applying the 1,446 transcripts to both the training and test set demonstrated 

 The controls clustered separately from the majority of the patients 

 Within the cluster containing the majority of the patients, TB and most of the 

sarcoidosis profiles clustered together 

 Some sarcoidosis patients cluster with the controls 

 Within the cluster containing the majority of the patients, pneumonia and cancer 

profiles clustered together 
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Figure 16. Same analysis approach (unsupervised analysis and statistical filtering) 

was applied to the test set as had been used in the training set. 

The transcripts were derived as shown in the left of this figure. The layout of the 

heatmap is as described in figure 13. 

 

 

 

 

 

 

                   
 

Figure 17. Venn diagram demonstrates there a large proportion of overlapping 

genes in the training and test set derived from the same analysis. 

The unsupervised analysis uses a fold change cut-off around the median of all 

transcripts. Therefore any changes in the median will affect the number of transcripts 

derived, as has occurred here.  
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Figure 18. Clustering of samples is not influenced by differences in ethnicity or 

gender. 

 

To ensure the clustering was not led by ethnicity of gender, unsupervised hierarchical 

clustering of the 1,446 transcripts was performed again on the training set but only 

including the patients and controls of the same ethnicity (white) or same gender (male). 

The transcripts were derived as shown in figure 14. The layout of the heatmap is as 

described in figure 13. 
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p<0.05 
p<0.001 

p<0.001 
p<0.05 

Weighted molecular distance to health measures the magnitude of 
transcriptional perturbation compared to the controls. 

Figure 19. Molecular distance to health used to reflect disease activity. 

 

The graph displays the mean, SEM and p values by ANOVA with Tukey‘s multiple 

comparison test. 
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Figure 20. Ingenuity Pathway Analysis of the 1,446 transcripts derived from the 

training set. 

IPA analysis was used to classify significantly associated pathways for each of the 

three main gene clusters identified by the vertical dendrogram. Only significant 

pathways are shown (Fishers exact Benjamini Hochberg p<0.05). 
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Figure 21. Ingenuity Pathway Analysis of the middle gene cluster of the 1,446 

heatmap. 

The graph of IPA pathways displays the percentage of genes present in that pathway 

along the top axis (red if upregulated as per the legend) and the log (Benjamini 

Hochberg p value) by the orange line and x-axis. The numbers at the end of each 

pathway along the right hand side indicate the total number of possible genes in each 

pathway. The genes from the cluster that were significantly associated with the IFN-

signalling pathway are shown in the cartoon below the graph. They are coloured 

according to the fold change relative to the controls, red represents a positive fold 

change. 
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         1,446 transcripts training set                                                                       

 
  

Figure 22a. Close up of the annotation of each transcript in the middle gene cluster 

of the 1,446 heatmap – top third 
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       1,446 transcripts training set                                                                              

   

Figure 22b. Close up of the annotation of each transcript in the middle gene cluster 

of the 1,446 heatmap – middle third 
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          1,446 transcripts training set                                                                        

 

  

Figure 22c. Close up of the annotation of each transcript in the middle gene cluster 

of the 1,446 heatmap – bottom third 
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Figure 23. Identification & annotation of a cluster of genes that are highly over-

abundant in most pneumonia patients. 

  



Chapter 3: Comparing pulmonary TB blood expression profiles to similar respiratory diseases 

166 

 

 

 

Figure 24. k-means clustering of the 1,446 transcripts in the training set. 

 

The training set 1,446 transcripts were divided into 10 clusters by k-means clustering. 

The expression profiles within each of the 10 clusters are associated with particular 

disease(s) as indicated along the x-axis of each cluster. The y-axis indicates the 

normalised expression value.   
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Chapter 4 

Clinical phenotyping of sarcoidosis patients 

correlates with the heterogeneity of the profiles 
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Chapter 4: Clinical phenotyping of sarcoidosis patients 
correlates with the heterogeneity of the profiles 

 

Introduction 
To gain a better appreciation of the underlying biological pathways associated with each 

respiratory disease group it was essential to first understand the heterogeneity of the 

sarcoidosis patients’ transcriptional profiles as some patients clustered with the controls 

while the majority clustered with the other patients. This was achieved by correlating 

the clinical phenotyping of the sarcoidosis patients with their transcriptional profiles. 

Although many attempts have been reported in the literature to clinically 

phenotype sarcoidosis into different categories unfortunately there remains only one 

accepted and globally acknowledged classification. The Scadding’s chest radiograph 

criteria, originally formulated in the 1960’s, is still widely applied in both the clinical 

setting and in publications (Scadding 1961). However it is insufficient for clinical 

decision making and furthermore is often not reproducible between different physicians 

and radiologists (Thillai, Eberhardt et al. 2012). 

The majority of published classification schemes use clinical information that 

has been collated over time, to allow patients to be defined as having either ‘acute or 

chronic disease’, or ‘self-limited or progressive’, but these classifications do not 

consider disease activity at a single time point (Prasse, Katic et al. 2008; Lockstone, 

Sanderson et al. 2010). This type of assessment therefore prevents any clinical 

phenotyping without a prolonged clinical assessment over the course of time. As this 

study is taking a snap shot view of the host response a similar approach was applied to 

clinically phenotyping the patients. Patients were characterised solely using the clinical 

features assessed around the time of their blood sampling, irrespective of their disease 

severity, predicted prognosis or previous disease activity status. Therefore patients were 
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classified purely as either those with active disease or non-active disease, as defined at 

the time of the blood test, where disease activity is thought to reflect granulomatous 

inflammation (WASOG 1994). Many clinical findings have been shown to correlate 

with disease activity, some of which were available from routine tests at the hospitals 

the patients were recruited from e.g. symptoms (WASOG 1999), serum angiotensin 

converting enzyme (ACE) (Ainslie and Benatar 1985), blood lymphopenia (Morell, 

Levy et al. 2002; Sweiss, Salloum et al. 2010), presence of pulmonary nodules 

(Abehsera, Valeyre et al. 2000) and change in lung function test (Keir and Wells 2010). 

None of these are specific markers of sarcoidosis disease activity but used in 

conjunction may offer some discriminatory value. In addition patients should be 

classified not just by their disease activity but also on the basis of their expected 

prognosis and by their current severity of illness. However these assessments are 

beyond the scope of the clinical data collected for this study. 

For this study a clinical classification criteria was specifically designed (Figure 

3) due to the lack of availability of any validated classification system specifically for 

disease activity and the lack of a classification system that did not require prolonged 

follow-up of the patient. The classification system used in our study was devised from 

(a) evidence-based clinical variables shown to correlate with disease activity and (b) 

clinical variables which were also available for most of the recruited patients. This 

classification system should therefore be applicable in routine clinical care. However a 

major caveat of the classification system is its dependence on recent thoracic radiology 

tests, where the detailed results available from a high-resolution computed tomography 

scan (HRCT) permitted the most accurate classification. Although most physicians 

regularly requested a chest radiograph for the patients they did not often request a 

HRCT due to its appreciable level of radiation. In addition the classification system was 
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formulated for pulmonary sarcoidosis as a classification system for sarcoidosis 

involving other organs would be considerably more complex. Therefore to take into 

account those patients with active disease in other organs the practising physicians own 

acumen was used to define the patient’s classification (Figure 3). It is common practice 

in sarcoidosis studies to use the management plan of the practising physician to define 

the patient’s clinical outcome (Miyara, Amoura et al. 2006; Baughman, Nagai et al. 

2011).   

 

Results 
 

Sarcoidosis patient’s clinical variables and classification 

After applying our classification system 17 of the 25 training set sarcoidosis patients 

were classified as active pulmonary sarcoidosis (Table 16a). In the test set 13 of the 25 

sarcoidosis patients were classified as active pulmonary sarcoidosis and 2 were 

classified as active extra-thoracic sarcoidosis (Table 16b). In the validation set 5 of the 

11 patients were classified as active pulmonary sarcoidosis and one as active extra-

thoracic sarcoidosis (Table 17). Most of the patients (57%) had a chest radiograph stage 

I, 18% had stage II, 11% had stage III and 11% had stage IV, with just one patient who 

had stage 0. Just under a third of patients had not had a recent (within 6 months of the 

blood profile) HRCT performed. Of those that did three-quarters had features of active 

disease in their lung parenchyma and only one-quarter did not. By far the most common 

feature of active sarcoidosis were pulmonary nodules; the other feature sometimes seen 

was ground glass opacification, a non-specific finding due to a hazy opacity within the 

parenchyma that unlike consolidation does not obscure vessels and bronchi. A quarter 

of patients had lymphopenia (defined as <1x10
9
/L). In approximately one third of all 

patients sarcoidosis was thought to be affecting more than one organ, particularly the 
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skin, joints and eyes. Over half of the patients had abnormal lung function parameters, 

albeit many of them were only mildly abnormal, this was most commonly due to low 

gas diffusion (TLCO % predicted <80) rather than low lung volumes (FVC % predicted 

<80) or raised FEV1/FVC ratio which is indicative of a restrictive lung pathology. The 

majority of the patients had biopsies taken from either their mediastinal lymph nodes or 

from their lung parenchyma. Patients were offered treatment in 39% of cases; three 

patients declined treatment while all others accepted. The number of patients offered 

treatment by the practising physician was 23% less than the number of patients 

classified as having active disease. Only two patients classified as having non-active 

sarcoidosis were offered treatment. 

 There were equal numbers of males and females between those classified as 

active and non-active (Table 18). There was more disparity across the ethnicities, as the 

majority of non-active patients but just under half of the active patients were of white 

ethnicity. 

 

Clustering of the sarcoidosis patients in the training set compares well to 
their clinical classifications of active or non-active sarcoidosis 

To determine if our clinical classification system of the sarcoidosis patients correlated 

with the clustering of the patient’s expression profiles the same analysis approach was 

applied as had been used earlier (Figure 14, 1446 transcripts).  However the difference 

in the analysis was instead of treating the sarcoidosis patients as one group they were 

divided into either an active sarcoidosis sub-group or non-active sarcoidosis sub-group 

using our clinical classification system. Therefore the analysis was performed with six 

different groups of patients/controls: TB, active sarcoidosis, non-active sarcoidosis, 

cancer, pneumonia and controls. The analysis approach used was exactly the same as 

before, unsupervised analysis (two-fold change from the median) followed by statistical 
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filtering (Kruskal Wallis Benjamini Hochberg p<0.01). This generated 1,396 transcripts 

(Figure 25), instead of the 1,446 transcripts generated when sarcoidosis was treated as 

just one group. Applying the same unsupervised hierarchical clustering algorithm it 

could be seen that all but one of the active sarcoidosis profiles clustered with the 

majority of the other patients, of which the TB and active sarcoidosis profiles formed 

the closest cluster. In addition all but two of the non-active sarcoidosis profiles clustered 

with the controls. As would be expected clustering of the Tb, pneumonia and cancer 

profiles were not affected by the newly derived transcript list (Figure 25).  

These results therefore demonstrated that of the two main clusters in the 

heatmap the active sarcoidosis profiles clustered with the TB profiles while the non-

active sarcoidosis profiles clustered with the controls profiles. 

 

Findings in the training set were validated in the test and validation sets 

Next the same transcript list as above, the 1396 transcripts derived from the training set, 

were used to verify the robustness of the clustering of the two different sub-groups of 

sarcoidosis patients, by performing unsupervised hierarchical clustering of the test set 

and validation set samples (Figure 26). In the test set only one active sarcoidosis patient 

did not cluster with the majority of the other patients (Figure 26). In addition in the 

validation set all of the active sarcoidosis patients clustered with the TB patients (Figure 

26). However in the test set 44%, and in the validation set 40%, of the non-active 

sarcoidosis patients clustered within the main patients cluster, away from the controls. 

All the non-active patients that did cluster with the other patients could be found 

towards the edge of the cluster. Therefore their transcriptional profiles were the least 

similar compared to the other patients’ profiles. 
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 These results verify the observation seen in the training set that in the test set 

and validation set the active sarcoidosis profiles again clustered with the TB profiles. In 

addition most of the non-active sarcoidosis profiles again clustered with the controls’ 

profiles. 

 

Individual clinical variables were not as effective as predicting 
clustering as the clinical classification system 

To determine any potential predictive clinical features for the clustering of the 

sarcoidosis patients’ statistical tests were used to help define relationships between the 

clusters and each clinical variable. First it was established for the training and test set 

patients whether they fell into the cluster with the patients or the cluster with the 

controls according to the unsupervised hierarchical clustering of the 1,446 list (Figure 

14). The 1,446 transcript list rather than the 1,396 transcript list was used. This is 

because although both lists were derived by the same analysis the generation of the 

1,466 transcript list was not biased by the clinical classifications of the sarcoidosis 

patients. To generate the largest power to test the association of the clinical variables 

with the clustering, both the training and test set were used (total of 50 sarcoidosis 

patients where 11 clustered with the controls and 39 clustered with the patients). For 

categorical and ordinal variables Pearson chi-squared test for significance was used 

(Table 19), and for continuous variables logistic regression was used (Table 20). Some 

variables were converted to both categorical and continuous e.g. serum ACE of 30 IU/L 

was either ‘normal’ (categorical: normal or high where >55 IU/L = high) or left as the 

unit of 30 (continuous). This was important as the cut-off for variables such as ACE 

level was arbitrarily developed and subsequently accepted clinically, the cut-off > 55 

IU/L was chosen as it is applied in most of the hospitals the patients were recruited 

from.  
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Variables that were significantly associated with the clustering of sarcoidosis 

patients were blood lymphocyte count, commencing treatment, active changes on 

HRCT, and the clinical classification system (p<0.05, Table 19). The clinical 

classification system had the most statistically significant correlation with the clustering 

(p<0.0001). The odds of a sarcoidosis patient clustering with the TB patients were only 

slightly increased for two variables, a rise in a unit of serum ACE or a fall of 1x10
7
/L of 

the blood lymphocyte count (p<0.05, Table 20). Whereas the odds of a sarcoidosis 

patients clustering with the other patients were 17.4 times higher for patients classified 

as active sarcoidosis than those classified as non-active sarcoidosis (p<0.002, Table 20). 

No other variables were significantly associated with sarcoidosis patients’ cluster 

predictions. 

 This analysis suggested that single clinical variables were less effective at 

predicting the sarcoidosis clustering than the clinical classification system. Therefore to 

determine if a prediction model containing more than one clinical variable could be 

effective multivariate regression analysis was performed, using the most significant 

variables from the univariate analysis. However all three multivariate models had lower 

significances in relation to the clinical classification system (Table 21).  

To determine if the clinical classification could have improved predictive 

abilities, additional clinical variables were tested by multivariable regression. Only 

variables with high significance by univariate analysis and variables not already 

included in the classification system were tested. However, the only possible additional 

variable, the blood lymphocyte count, reduced the predictive value of the classification 

system (Table 22).   

 In summary from the regression analysis of the clinical variables it could be 

clearly seen that our clinical classification system had the highest predictive potential 



Chapter 4: Clinical phenotyping of sarcoidosis patients correlates with the heterogeneity of the profiles 

  

175 

 

for identifying which sarcoidosis patients clustered with the controls and which 

clustered with the patients. 
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Discussion 
 

Sarcoidosis is a disease with a protean presentation (Baughman, Teirstein et al. 2001) 

(WASOG 1999). However there is a paucity of validated assessment tools to aid patient 

management in respect to its variable clinical phenotypes. Standardising sarcoidosis 

phenotyping is imperative and may be helped by advances in genomic research and 

increased application of genetic profiling. This study has provided an example of how 

this could be achieved. By applying a plausible clinical classification to a cohort of 

patients it was possible to correlate their clinical phenotype to their blood gene 

expression profiles attained by unbiased analysis. Lockstone et al also demonstrated the 

feasibility of this approach in expression profiles of lung biopsies from sarcoidosis 

patients, classifying patients either into progressive-fibrotic or self-limited (Lockstone, 

Sanderson et al. 2010). However the advantage of a blood transcriptome over the 

transcriptome from lung biopsies is that it is non-invasive and may diagnose disease 

involved in other organs that was missed on initial presentation.  

 

Classification and clinical features of the sarcoidosis patients 

The majority of the sarcoidosis patients were categorised by the clinical classification as 

having active pulmonary disease but most of these patients had a chest radiograph of 

only stage I. Scadding’s stage I is the presence of bilateral hilar lymphadenopathy and 

no lung parenchymal involvement. It may therefore seem surprising that these patients 

were classified as having active disease as according to treatment guidelines stage I 

disease does not require treatment unless symptomatic and only after further 

investigation (Bradley, Branley et al. 2008; Baughman and Nunes 2012). The treatment 

guidelines may explain the discordance (23% difference) between the numbers of 

patients classified as active sarcoidosis compared to the number of patients offered 
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treatment. However it is interesting that this part of the guidelines is predominantly 

based on the results of just one study, a 1996 British Thoracic Society study that 

followed a particular protocol and cohort, a process that may not be applicable to all 

sarcoidosis patients (Gibson, Prescott et al. 1996). However the benefits of treatment in 

symptomatic stage I disease may actually be due to the high chance of spontaneous 

resolution without treatment in patients with stage I radiology (WASOG 1999). This is 

reflected in a systematic review, with subgroup analysis of the different Scadding 

stages, which found treatment was only beneficial in those patients with stage II-III 

(Paramothayan and Jones 2002). Therefore although these patients may have active 

disease the current treatments available are not of much advantage over the host 

response. Another reason for this apparent disparity between those you might have 

expected to have ‘active’ pulmonary disease and the number that classified as active 

pulmonary sarcoidosis is related to the substantial dependency on HRCT findings in the 

classification system. While it is recognised that grading of chest radiographs by the 

Scadding system is not that reliable (Thillai, Eberhardt et al. 2012), interpretations of 

HRCT scans should be more sensitive. The evidence of active disease on HRCT in our 

cohort included the features, nodules and ground glass opacities, which often cannot be 

seen on a chest radiograph. Pulmonary nodules have been shown to correlate with 

disease activity and furthermore are invariably reversible (Wells 1998; Abehsera, 

Valeyre et al. 2000). The inclusion criteria for ‘disease activity on CT’ was purposely 

broad and non-specific. More tightly controlled definitions for HRCT evidence of active 

disease could have been specified, such as only including peribronchovascular or 

subpleural nodules, a common finding in sarcoidosis, rather than the presence of 

nodules in any distribution (WASOG 1999). However this broad criterion was chosen 

for two main reasons; firstly it negated the need for detailed interpretation which can be 
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highly variable (Erdal, Crouser et al. 2012), secondly although there are some pattern 

distributions of nodules that are typical for sarcoidosis numerous atypical patterns have 

also been described (Marchiori, Zanetti et al. 2011). However as the classification 

system relies fairly heavily on radiology findings, some of the patients categorised as 

non-active who did not have a recent HRCT, may have been incorrectly classified.  

 In the sarcoidosis and TB blood gene expression study by Koth et al. 2011, they 

identified a significant association with the blood profiles and a phenotype they 

described as sarcoidosis severity (Koth, Solberg et al. 2011). However the lung function 

parameters they used for this were FEV1 (volume of forcibly expired air in 1 second) 

and/or FVC (total volume of forcibly expired air), which are two parameters commonly 

used to assess for obstructive or restrictive lung disease. These two parameters alone or 

used together are not a common or evidenced based measure of sarcoidosis severity 

(Keir and Wells 2010). From their data it appeared that only FEV1 was statistically 

significantly different between their low and high severity groups therefore only FEV1, 

a measure of airways obstruction, was really driving their phenotyping. However airway 

obstruction is found in over half of sarcoidosis patients (Iannuzzi, Rybicki et al. 2007), 

and a static FEV1 result has not been shown to be linked with severity (Wasfi, Rose et 

al. 2006). Therefore this leaves the question whether the two sarcoidosis subgroups they 

described purely as a consequence of statistical analysis of their clinical data (FEV1 & 

FVC), carries any real clinical interpretation. It is true many studies have used lung 

function parameters to reflect sarcoidosis pulmonary involvement but they apply a 

combination of variables relating to both gas diffusion and lung volumes (e.g. TLCO, 

total lung capacity and FVC) and do not include FEV1 (Erdal, Crouser et al. 2012) 

(Zappala, Desai et al. 2011). Even these standard measures of sarcoidosis lung function 

are confounded by the heterogeneity of sarcoidosis pulmonary function (Keir and Wells 
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2010). In this study there was no significant association with gas diffusion variables 

(TLCO and KCO) or FVC, however many of the patients did not have recent lung 

function tests performed (Table 16 & 17). Moreover the trend in lung function is 

reported to be far more relevant than static results (Zappala, Desai et al. 2011).   

 Although our study contained small patient numbers for epidemiological 

conclusions, it is worth noting that there was a disparity between ethnicity, where there 

was a larger percentage of active patients who were black than non-active patients, and 

vice versa for white patients (Table 19). This is perhaps predictable as studies of 

different ethnic groups in London have previously shown that black patients are more 

likely to have a more severe and extensive disease than white patients (Edmondstone 

and Wilson 1985). However the diversity in ethnicity did not influence the 

transcriptional signature. 

  

Clustering of the classified sarcoidosis patients 

From the unsupervised hierarchical clustering of the 1,446 transcripts, including all 

sarcoidosis patients as one group, it could be clearly seen that the sarcoidosis patients 

were more heterogeneous than the other groups of diseases in both the training set and 

the test set (Figures 14 & 15). Interestingly this was not a characteristic of the 

sarcoidosis patients that either of three earlier blood transcriptional sarcoidosis studies 

commented on (Rosenbaum, Pasadhika et al. 2009; Koth, Solberg et al. 2011; 

Maertzdorf, Weiner et al. 2012). This could be because unsupervised hierarchical 

clustering was not performed (only supervised hierarchical clustering of supervised 

analysis (Rosenbaum, Pasadhika et al. 2009)) or due to biased study populations, as 

neither study published relevant clinical details such as length of illness or current 
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symptoms. The findings from our study are in keeping with the known clinical 

heterogeneity of sarcoidosis patients (Baughman, Teirstein et al. 2001) (WASOG 1999).  

After applying the clinical classification system to phenotype the sarcoidosis 

patients the same unsupervised analysis and statistical filtering approach was applied as 

used earlier in this study. By unsupervised hierarchical clustering it could be visualised 

in the training set that the patients designated as having active sarcoidosis clustered with 

the other patients, in particular the TB patients (Figure 25). This clustering was 

subsequently verified in both the test set and the validation set (Figure 26). However a 

few of the patients designated as non-active sarcoidosis clustered more towards the 

active sarcoidosis (2/8 in the training set, 4/9 in the test set, 2/5 validation set), although 

these profiles were on the edge of the clusters indicating a weaker affinity towards the 

group. There are three possible reasons why some of the non-active sarcoidosis patients 

appeared to have transcriptional profiles more similar to the active sarcoidosis patients 

and other patients. Firstly, even if all variables were available the clinical classification 

system may not be sensitive enough to detect all signs of active disease. Secondly, 

nearly a third of the cohort had not had a recent HRCT scan; therefore one of the major 

criteria could not be included. Thirdly, although a third of patients had disease 

knowingly affecting more than one organ, which is classical of sarcoidosis presentations 

(Baughman, Teirstein et al. 2001), some of the patients may have had disease in other 

organs that was undiagnosed and active. Typically physicians do not pursue a diagnosis 

that requires invasive tests unless the patient’s symptoms are suggestive but even active 

pulmonary sarcoidosis is often asymptomatic (Table 9). Therefore it is possible this 

blood transcriptional profile may provide a means of detecting disease activity without 

invasive techniques. 
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 Multiple clinical variables were tested for their correlation with the clustering of 

sarcoidosis patients (Tables 19-21). The significant variables were disease activity on 

HRCT, blood lymphocyte count, serum ACE and commencing treatment. All these 

variables have previously also been shown to correlate with disease activity (Ainslie 

and Benatar 1985; Abehsera, Valeyre et al. 2000; Morell, Levy et al. 2002; Baughman, 

Nagai et al. 2011). However univariate and multivariate analysis of the numerous 

available clinical variables was not able to improve upon the predictive value of the 

clinical classification system for the clustering of the sarcoidosis patients. Although this 

clinical classification system was devised according to the available clinical variables 

that had literature based evidence of their correlation to disease activity, it has not been 

validated in a prior clinical cohort nor reviewed by multiple clinical experts in the field. 

Nevertheless it provides a reasonable explanation for the heterogeneous transcriptional 

profiles seen in the sarcoidosis patients. Interestingly Minshall et al in 1997 also 

showed a distinct mRNA cytokine profile that differed between patients with active 

sarcoidosis and patients with non-active sarcoidosis (Minshall, Tsicopoulos et al. 1997). 

Although the study was only able to measure 9 different cytokines, they found an 

elevated level of IL2, IL12 and IFNγ in the active patients compared to the non-active 

patients.  

Therefore our study shows that existing disease activity (a possible surrogate 

marker for granulomatous inflammation) is reflected in the whole blood transcriptional 

profile, and that pulmonary sarcoidosis patients with active disease have both a very 

similar clinical and molecular phenotype to pulmonary TB patients. 
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Chapter Summary 
 

Although pulmonary sarcoidosis is a very complex disease the whole blood 

transcriptional profiles from the sarcoidosis patients appeared to correlate well with the 

heterogeneity of their clinical features. This suggests transcriptional profiling could play 

a role in the classification of sarcoidosis patients thus enabling a targeted clinical 

management plan that is currently hard to achieve. 
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Figures for chapter 4 
 

 
Table 16. Clinical variables and sarcoidosis classification of every patient in the 

training and test sets 

 
CXR = chest radiograph, CT = computer tomography, ACE = angiotensin converting enzyme, Lymph = lymphocyte 

count, Neut = neutrophil count, TLCO = transfer factor for carbon monoxide, KCO = transfer coefficient, FVC = 

forced vital capacity, FEV1 = forced expiratory volume in 1 second, Abdo = abdomen, LN = lymph node, Med = 

mediastinal, NA = non-active sarcoidosis, AET = active extra-thoracic sarcoidosis, Neuro = neurological disease. 
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Table 17. Clinical variables and sarcoidosis classification of every patient in the 

validation set. 

 
CXR = chest radiograph, CT = computer tomography, ACE = angiotensin converting enzyme, Lymph = lymphocyte 

count, Neut = neutrophil count, TLCO = transfer factor for carbon monoxide, KCO = transfer coefficient, FVC = 

forced vital capacity, FEV1 = forced expiratory volume in 1 second, Abdo = abdomen, LN = lymph node, Med = 

mediastinal, NA = non-active sarcoidosis, AET = active extra-thoracic sarcoidosis, Neuro = neurological disease. 

 

 

 

 

 

 

 

 

 

 
 

Table 18. Ethnicity and gender of the sarcoidosis patients divided into their clinical 

classifications of active or non-active. 

ISC =  Indian subcontinent.  
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Figure 25. Clustering of the training set sarcoidosis patients correlates well with 

the clinical classification system. 

 

The same unsupervised analysis and statistical filtering was applied as used earlier, but 

this time the sarcoidosis patients were divided by the clinical classifications system into 

either active or non-active sarcoidosis, see flow diagram at top of figure. The layout of 

the heatmap is as described in figure 13. 
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Figure 26. The 1,396 transcripts derived from the training set also show revealed 

the active sarcoidosis cluster with the TB profiles in the test and validation set. 

The same 1,396 transcripts as derived in figure 25 were applied to two independent 

cohorts, the test and validation set. Unsupervised hierarchical clustering was then 

performed in each dataset to determine the clustering of the two sub-groups of 

sarcoidosis patients. The layout of the heatmap is as described in figure 13. 
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Table 19. Individual clinical variables are not as effective at predicting sarcoidosis 

clustering as the clinical classification system – categorical variables. 

 

 
Table 20. Individual clinical variables are not as effective at predicting sarcoidosis 

clustering as the clinical classification system – continuous variables. 

To determine any predictive clinical variables the patients were categorised as either 

clustering with controls or patients using the 1,446 transcript list in both the training and 

test set above. The statistical significance of each variable was determined using either 

Pearson chi-squared for the categorical variables or logistic regression for the 

continuous variables. All the samples in the training and test set were used to determine 

any statistical association between the clinical variables and the clustering pattern (11 

sarcoidosis samples clustered with the controls and 39 clustered with the patients). 
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Table 21. Multiple clinical variables were also not as effective at predicting 

sarcoidosis transcriptional clustering as the clinical classification system. 

 

Multivariate regression analysis was performed with variables that appeared the most 

significant from the single variable analysis. 

 

 

 

 

 

Table 22. Adding single clinical variables to the clinical classification system 

reduced the predictive value of the model. 

 

To determine if the clinical classification system as a prediction model could be 

improved multivariate regression analysis was performed with the most significant 

variables from the single variable analysis that had not already been used in the 

classification system 
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Chapter 5: Biological patterns of genes are associated 
with each disease group 

 

Introduction 
Having classified the sarcoidosis patients into two groups: active and non-active, the 

analysis was continued to examine the differences in the biological pathways between 

the five different disease groups: TB, active sarcoidosis, non-active sarcoidosis, lung 

cancer and pneumonia. Using blood gene expression to gain a better understanding or 

new knowledge about the underlying disease mechanisms has led to many important 

and novel discoveries (Bleharski, Li et al. 2003; Berry, Graham et al. 2010; 

Tattermusch, Skinner et al. 2012). Previous publications have shown particular 

pathways are associated with both TB and sarcoidosis, especially IFN-inducible driven 

pathways (Berry, Graham et al. 2010; Koth, Solberg et al. 2011; Maertzdorf, Weiner et 

al. 2012). This study therefore aimed to discover if the same pathways are significant 

for many respiratory diseases or if there are distinct patterns of genes linked with each 

of the diseases. Five different data mining strategies were applied to elucidate the 

functional gene patterns (Figure 6) to ensure there was a strong consistency between 

results. This is because from previous experience slightly different transcript lists may 

result in slightly different pathways, for example by IPA (Table 5), therefore 

consistency between analyses provides much better guidance as to the likely ‘true’ 

biological findings. In addition different data mining strategies employ diverse 

techniques for linking functional annotations to sets of genes. Applying different 

processes should have the advantage of broadening the search for biological links. 

Previous publications have specifically addressed the issue of the reliability of 

microarray analysis and demonstrated when comparing multiple different strategies for 

the same experiments that the results were the same at a biological level although not 
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necessarily at the gene level (Shi, Campbell et al. 2010).  This implies analysis of a 

dataset should not have widely varying outcomes when applying different analysis 

approaches. All five data mining strategies (modular analysis, gene ranking, IPA, Venn-

diagram, comparing disease to disease rather than to controls) are accepted and 

commonly applied approaches, that have been applied in preceding aforementioned 

publications. The modular analysis was designed by Chaussabel et al, at Baylor Institute 

for Immunological Research (Chaussabel, Quinn et al. 2008). Each module contains a 

set of co-expressed genes determined from gene expression profiles from cohorts of 

different diseases. The modules of similarly expressed genes were extracted by a 

complex algorithm involving k-means clustering. Each module was assigned a 

biological functional by unbiased literature data mining. Therefore the advantage of the 

modular analysis is that it is data-driven rather than literature-driven, which is the case 

for IPA. This study uses a modified version of the modules that were devised from 

whole blood expression profiles from patients with nine different diseases on an 

Illumina platform, in addition the output is per patient instead of an average for each 

disease (Guiducci, Gong et al. 2010). Apart from for the modular analysis where all 

detectable genes were used, for the other functional analyses each disease group was 

compared to a matched control group – containing controls with the same ethnicity and 

gender mix as the disease group. This was particularly important for the cancer and 

pneumonia groups which had a smaller sample size therefore this reduced any 

confounding variables. 
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Results 

Modular analysis 

The modules are a data-driven analysis tool that can be used for the biological 

interpretation of gene expression data obtained from different diseases compared to data 

obtained from a group of controls. The modules are data-driven sets of biologically 

Even at first glance it could be seen from this analysis that the TB and active sarcoidosis 

patients appeared alike, while the pneumonia and cancer patients appeared alike to each 

other but distinct from TB and sarcoidosis (Figure 28). In addition the non-active 

sarcoidosis patients, apart from a low over-abundance in the interferon modules, did not 

appear very different from the controls. The key module associated with over-

abundance in the TB and active sarcoidosis patients were the three IFN modules (Figure 

28). In a few of the TB and active sarcoidosis patients a small percentage of genes were 

also found to be over-abundant in some of the other modules: the myeloid related 

modules, inflammation modules and DC/apoptosis module. This is in contrast to the 

cancer and pneumonia patients where a much higher percentage of genes in all the 

inflammation modules were over-abundant in all the patients except one cancer patient 

(Figure 28). In the pneumonia patients a large number of genes in the neutrophil module 

were also over-abundant and a lower number of genes were over-abundant in the cell 

death and DC/apoptosis module. A few pneumonia patients also showed a significant 

over-abundance of genes in the IFN modules, but to a lesser degree than the TB and 

active sarcoidosis patients (Figure 28). In all the diseases there was under-abundance in 

the T cell module and in many of the patients in of the B cells modules. The 

cytotoxic/NK module was under-abundant in many of the TB and pneumonia patients. 

 By plotting graphs of the average module score per disease of the three disease 

defining modules it can be seen that TB had the highest percentage of genes in the IFN 

modules, followed by active sarcoidosis. Whereas pneumonia followed by cancer had 
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the highest percentage of genes in the inflammation modules and pneumonia had the 

highest percentage of genes in the neutrophil module (Figure 29). Calculating the 

neutrophil module score for each patient in both the training and test set, there was a 

strong correlation between the score and the blood neutrophil count (p<0.05, data not 

shown) (Tables 9-11). 

 

Gene ranking 

To determine the differentially expressed genes with the highest expression abundance 

for each disease in its own right and relative to the other diseases, gene ranking was 

applied. Each disease was first matched to a set of controls containing the same 

percentage of gender and ethnic groups. Differentially expressed genes were then 

generated by comparing each disease group in turn to its own matched controls. Genes 

were called differentially expressed if they satisfied a 1.5 fold change cut-off from the 

controls and were statistically significant (Mann Whitney unpaired, Benjamini 

Hochberg p<0.01). The numbers of differentially expressed transcripts were 2,524 for 

TB, 1,391 for active sarcoidosis, 2,801 for pneumonia and 1,626 for lung cancer. Non-

active sarcoidosis had no differentially expressed genes using this analysis. The 

differentially expressed genes were then ranked according to their fold change 

compared to their matched controls; the top 50 over-abundant genes for each disease are 

shown (Figure 30). Many IFN-inducible genes were found to be the most over-abundant 

genes in TB and active sarcoidosis including FCGR1, SERPING1, IFITM3, IFI44L, all 

the GBPs, IFIT3, AIM2, ISG15, IFI27, WARS, IFI44, CXCL10, OAS1, STAT1 and 

IFI6 (DeYoung, Ray et al. 1997; Bennett, Palucka et al. 2003; Martens and Howard 

2006; Moran, Duke et al. 2007; Berry, Graham et al. 2010). However the degree of fold 

change for each gene was considerably greater in TB than sarcoidosis. Many neutrophil 



Chapter 5: Biological patterns of genes are associated with each disease group 

  

194 

 

anti-microbial genes were found to be the most over-abundant genes in pneumonia 

(Figure 30). All the top ranking genes in cancer were expressed at lower levels than the 

top genes in the other diseases. The most significantly expressed gene in cancer was 

ARG1 (arginase 1) which is known to be related to alternatively activated macrophages 

that are associated with cancer (M2) (Mantovani, Sozzani et al. 2002). All four diseases 

had over-abundance of FCGR1A, B and C within the top 50 ranking genes. 

 

Ingenuity Analysis Pathways 

Next we applied an additional data mining strategy, IPA analysis, to further identify and 

verify biological pathways associated with each disease. Applying the same 

differentially expressed genes as was used for the gene ranking, it was found that each 

disease had a different set of highly significant IPA pathways (Benjamini Hochberg, 

p<0.05, Figure 31). IFN-signalling was in the top 5 significant pathways for TB and 

active sarcoidosis. The other significant pathways for these granulomatous diseases 

were also mostly immune related pathways, and contained a number of IFN-inducible 

genes. The significant pathways in lung cancer were mixed expression of T cell and NK 

cell signalling. The dominant pathway in pneumonia was under-abundance of the EIF2 

signalling pathway, associated with mRNA translation and protein secretion. 

 ‘Comparison IPA’ analysis involves looking at all four diseases simultaneously 

allowing identification of the pathways that are most significant in one disease 

compared to the others. The top four significant pathways by this analysis were EIF2 

signalling – driven by pneumonia; IFN signalling – driven by TB and active sarcoidosis; 

the role of PRRs in recognition of bacteria and viruses – driven by TB; and the antigen 

presentation pathway – driven by both TB and active sarcoidosis (Figures 32 & 33). 

Both the significance of the pathway relative to each disease (Figure 32) and the 
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percentage of genes in each pathway relative to each disease are shown (Figure 33). The 

significance of each pathway approximately parallels the percentage of genes in that 

pathway such that the disease with the highest significance tends to also be the disease 

with the highest number of perturbed genes relative to the controls in that pathway. 

 Apart from the top four significant pathways by ‘comparison IPA’ analysis, 

many other significant pathways were more associated with one disease than another 

(Tables 24-26). TB correlated the most with over-abundance of other immune pathways 

including DC maturation, crosstalk between DCs and NK cells, and communication 

between innate and adaptive cells, notably many molecules within these pathways were 

also present in the IFN-signalling pathway (Table 24). Active sarcoidosis was not 

associated more significantly than any of the other diseases with any of the pathways. 

The foremost significant pathways associated with pneumonia were under-abundance of 

the EIF2 signalling and three T-cell pathways, and over-abundance of the apoptosis 

signalling pathway (Table 25). The main significant pathways associated with cancer, 

relative to the other diseases, were mixed expression of the NK signalling pathway, 

CTLA4 signalling and hepatocyte growth factor (HGF) signalling (Table 26). 

The differentially expressed genes for each disease were overlaid on the IFN-

signalling pathway such that a comparison of the abundance of the IFN-signalling genes 

between the diseases could be easily visualised (Figure 34). This comparison 

demonstrated that most of the genes were over-abundant in TB and active sarcoidosis, 

compared to very few in cancer and pneumonia (Figure 34). In TB and active 

sarcoidosis both IFN Type I and Type II pathways were involved whereas only the IFN-

γ receptors were involved in pneumonia and lung cancer.   

The EIF2 signalling pathway is shown for the pneumonia patients to 

demonstrate that most of the genes involved in mRNA translation/protein secretion are 



Chapter 5: Biological patterns of genes are associated with each disease group 

  

196 

 

under-abundant (Figure 35). Some of the signalling genes (MAPK, PIK3, RAF) that are 

over-abundant are involved in signalling in many other pathways. To further elucidate 

the expression of the genes involved in protein translation all the eukaryotic translation 

initiation factors (EIFs) and ribosomal proteins that were at least 1.3 fold change from 

the controls were selected (Figure 36). Although pneumonia had the lowest relative 

expression values, the other diseases also had low expression levels relative to the 

controls. The key players in the unfolded protein response (UPR), an endoplasmic stress 

pathway intrinsically involved with regulating protein synthesis, were also selected 

(Table 27). These genes were predominantly either not expressed relative to the 

controls, or under-abundant, in all the diseases. Only ATF6 was over-abundant. Again 

expression was more marked in pneumonia than the other diseases.  

 

4-set Venn diagram 

To determine unique disease-related transcripts a 4-set Venn diagram was used to assess 

the differentially expressed genes from each disease compared to their matched 

controls. The same differentially expressed genes as used for the IPA and gene ranking 

were inserted into a 4-set Venn diagram. This allowed easy visualisation of the number 

of overlapping and unique transcripts (Figure 37). The ratio of unique-disease related 

transcripts across the diseases matched the same trend as was seen by the MDTH 

scores, where pneumonia had the largest number, followed by TB, and cancer and 

active sarcoidosis had the smallest number of unique-disease related transcripts (Figure 

19, 37 & 38).  IPA was applied for each set of unique transcripts and the overlapping 

transcripts (Figure 39). Due to the low number of genes in most of the unique disease-

related transcripts there were no significant pathways for active sarcoidosis, TB or 

cancer but there were significant pathways for pneumonia after, applying a multiple 
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testing correction (Benjamini Hochberg p>0.05). However the pathways that were 

significant without multiple testing correction were found to be in accordance with the 

pathways attained by the earlier IPA analysis. The overlapping 375 transcripts at the 

centre of the Venn diagram (grey segment) were associated with under-abundance of T 

cell pathways, also in accordance with pathways attained earlier using different data 

mining strategies. 

 

Comparing similar diseases to each other not the controls 

From all the previous functional analysis the diseases TB and active sarcoidosis profiles 

had revealed very similar pathways; therefore the diseases were directly compared to 

each other to help uncover the dissimilarities between them. The differentially 

expressed genes (144 transcripts) were obtained by the less stringent statistical test, 

significance of microarray (SAM), followed by a 1.5 fold change between the two 

diseases (Figure 40). Unsupervised hierarchical clustering of the 144 transcripts 

demonstrated this transcript list was able to distinguish the TB patients from the 

sarcoidosis patients, and also from all the patients and controls. Many of the 144 

transcripts are known to be IFN-inducible (Figure 41) but due to the small number of 

genes no IPA pathways were found to be significantly associated with the transcripts, 

although IFN-signalling was the top pathway identified without multiple testing 

correction. 

From all the previous functional analyses, the diseases pneumonia and lung 

cancer have also revealed very similar pathways, therefore again they were directly 

compared to each other. Both groups had similar ethnicities, gender and age 

distribution. The differentially expressed genes (1,165 transcripts) were obtained using 

a 1.5 fold change cut-off and SAM (False discover rate, q<0.05). Of the top 50 
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overexpressed genes in the pneumonia patients, 46% were related to innate cells, in 

particular neutrophils, while 10% were related to apoptosis (Figure 42). In the top 50 

overexpressed genes in the cancer patients, 40% were related to cellular processes such 

as cell differentiation, signalling and protein ubiquitination and 10% of genes were 

related to transcriptional regulation (Figure 42).  

 

Validation of the functional gene patterns in the test set 

The same functional analysis methods used for the training set were also applied to the 

test set (Figure 43). The modular analysis was consistent with the training set and 

showed over-abundance of the IFN modules in the TB and active sarcoidosis patients, 

while there was again a dominant over-abundance of the inflammation modules in the 

cancer and pneumonia patients. T and B cells were also under-abundant in all diseases. 

The neutrophil and DC/apoptosis modules were, as found in the training set, the most 

over-abundant in the pneumonia patients. When just looking at the top ranking genes, 

again similar patterns were observed; many IFN-inducible genes were associated with 

TB and active sarcoidosis, and neutrophil genes were associated with pneumonia 

patients (data not shown). The top genes in the cancer patients’ differentially expressed 

transcript list were once more the lowest relatively expressed genes, and included 

ARG1 in the top three (data not shown). IPA analysis also generated comparable 

pathways as were seen in the training set. IFN-signalling was highly significant for TB 

and active sarcoidosis, along with the other immune pathways seen in the training set. 

As before EIF2 signalling was most significantly associated with pneumonia. The same 

signalling pathways, NK cells, CTLA4, and HGF signalling were all significantly 

associated with cancer.  
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Discussion 
 

By performing pathway analysis of the differentially expressed genes for each disease 

group separately distinct biological patterns of genes were uncovered and shown to be 

associated with TB, active sarcoidosis, community acquired pneumonia and primary 

lung cancer. This was consistently achieved through several different processes 

therefore adding strength to the findings. 

 

Active tuberculosis 

By all the functional analyses applied, the IFN-inducible genes were shown to be over-

abundant in the TB patients as compared to the controls. Furthermore their relative 

expression was greater in the TB patients than in the other three similar respiratory 

diseases. The modular analysis revealed TB was significantly related to many of the 

genes present in the IFN modules (Figure 28 & 29), the gene ranking showed many of 

the top 50 over-abundant genes were IFN-inducible (Figure 30), IPA analysis 

demonstrated IFN-signalling was the most significant pathway for TB (Figure 31) and 

by ‘comparison IPA’ analysis IFN-signalling was more significantly associated with TB 

than the other diseases (Figures 32-33). Lastly the Venn diagram proved that even the 

unique TB genes were dominated by IFN-inducible genes (Figure 39). Berry et al. 

2010, had previously also shown in a different cohort of TB patients, the IFN-signalling 

IPA pathway was the most significant, and using a slightly older version of the modules 

that a large percentage of the genes in the IFN module were significantly associated 

with TB (Berry, Graham et al. 2010). In addition other more recent whole blood gene 

expression studies have also confirmed the dominant presence of interferon signalling in 

active TB (Lesho, Forestiero et al. 2011; Maertzdorf, Ota et al. 2011; Maertzdorf, 

Repsilber et al. 2011). Berry et al. 2010, also found over-abundance in a large 
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percentage of the genes within the myeloid modules that were present in the older 

version of the modules used in their study. The older myeloid modules are no longer 

identically defined the same as in the newer modules; however many of the myeloid 

related modules in the newer modules were also significantly related and over-abundant 

in the TB patients. Other functional relationships found to be more significant for TB 

than the other diseases included over-abundance of host immune response pathways 

such as pattern recognition receptors, dendritic cell related pathways, antigen 

presentation, communication between innate and adaptive cells (Figure 32 & Table 24). 

The association of TB with the activation of these particular biological pathways is 

reflective of our current understanding of the underlying host response towards M. 

tuberculosis.  

 

Active sarcoidosis 

Like TB, by all the data mining strategies the IFN-inducible genes were found to be 

over-abundant in the active sarcoidosis patients compared to the controls, although the 

absolute numbers and level of expression of the IFN-inducible genes were significantly 

lower than in TB (Figure 29). Analysis revealed active sarcoidosis was significantly 

related to many of the genes present in the IFN modules (Figure 28 & 29), the gene 

ranking showed many of the top 50 over-abundant genes were IFN-inducible (Figure 

30), IPA analysis demonstrated IFN-signalling was one of the most significant pathway 

(Figure 31) and by ‘comparison IPA’ analysis IFN-signalling was found to be highly 

significant compared to pneumonia and cancer (Figures 32-33). However the Venn 

diagram did not find many of the unique active sarcoidosis genes were IFN-inducible 

(Figure 39). Two former studies have correspondingly found comparable results, as they 

both described IFN-signalling IPA pathway to be significantly associated with TB and 
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sarcoidosis (Koth, Solberg et al. 2011; Maertzdorf, Repsilber et al. 2011). However 

neither study commented on the absolute numbers or fold change values for the 

sarcoidosis patients relative to the TB patients. Our current study identified lower 

numbers of IFN-inducible genes and lower expression values in the active sarcoidosis 

patients compared to the TB patients (Figure 29 & 30).  Moreover on direct comparison 

between the two diseases, several IFN-inducible genes were found to be significantly 

over-abundant by at least 1.5 fold in the TB patients relative to the active sarcoidosis 

patients (Figure 41). Active sarcoidosis, like TB, showed many other host immune 

response pathways such as pattern recognition receptors and antigen presentation to be 

significantly over-abundant. The closeness of the biological pathways that are found to 

be involved in both active pulmonary TB and active pulmonary sarcoidosis by blood 

gene expression analysis strengthens the implication that the underlying immunological 

processes have much in common (Gerke and Hunninghake 2008). Active sarcoidosis 

was not significantly associated with particular pathways more than the other diseases 

by ‘comparison IPA’ analysis. This may have been related to the lower number of 

differentially expressed genes for the sarcoidosis patients (1391) compared to TB 

patients (2524) or pneumonia patients (2801) (Figure 19).   

 

Non-active sarcoidosis 

Non-active sarcoidosis patients revealed no differentially expressed genes when 

compared to the controls. This was undoubtedly related to its quiet transcriptional 

profile relative to the controls and in part the small sample size. Although interestingly 

for such a quiescent disease the modular analysis demonstrated a significant over-

abundance of a small number of genes in the IFN modules (Figure 28).  
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Community acquired pneumonia 

Pneumonia is an infection of the respiratory tract that results in an acute inflammation 

of the lungs, although the inflammation is not just localised to the site of disease but can 

also occur systemically (Fernandez-Serrano, Dorca et al. 2003; Windgassen, Funtowicz 

et al. 2011). Implication of a systemic inflammatory response was supported by both the 

modular and IPA pathway analysis (Figures 20 & 28). Inflammation can occur in 

response to numerous stimuli, including infectious agents, and is a very broad category 

encompassing huge numbers of molecules of which some are pro-inflammatory, anti-

inflammatory or can be both depending on the situation.  In keeping with an over-

abundant inflammatory response secondary to an infectious bacterial disease, 

pneumonia contained the highest percentage of genes in the neutrophil module (Figure 

29) and many neutrophil genes related to their antimicrobial activity appeared in the top 

ranking differentially expressed genes (Figure 30). Moreover when comparing 

pneumonia to lung cancer, nearly half of the top over-abundant genes were associated 

with the innate immune response including neutrophil-related genes (Figure 42). Four 

of the pneumonia patients also had a small percentage of significantly over-abundant 

genes in the IFN module (Figure 28). This may have been part of the primary immune 

response to a bacterial pneumonia or may be reflecting a viral component to their 

infection. This finding has also been observed previously in a paediatric cohort of 

patients with streptococcal pneumonia infection (Ramilo, Allman et al. 2007). Although 

none of the pneumonia patients in this study reported symptoms classical for viral 

infections, it is known that symptoms are a poor indicator of the causal agent (Farr, 

Kaiser et al. 1989).  

‘Comparison IPA’ analysis and the unique-disease genes generated by the Venn 

diagram led to the discovery of the EIF2 signalling, mTOR signalling and regulation of 

EIF4 and P70S6K signalling pathways as being far more significant and under-abundant 
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in pneumonia than in the other diseases (Figures 32, 33, 39 & Table 25). All these 

pathways enclose multiple genes relating to mRNA translation and protein secretion, 

predominantly the eukaryotic initiation factors (EIFs) and ribosomal proteins – 

including genes encoding for components of both the 40S and 60S subunits. Nearly all 

the relevant genes were under-abundant and many more were significantly associated 

with pneumonia than in the other diseases (Figure 35 & 36). A reasonable explanation 

for this could be the preferential migration of protein making cells to the site of 

infection/inflammation and a simultaneous preservation of energy at sites away from the 

source of infection/inflammation. In agreement with this theory the unfolded protein 

response (UPR) also appeared to be dampened or non-existent in the blood profiles of 

pneumonia patients (Table 27), while apoptosis signalling was significantly over-

abundant compared to the other diseases (Table 25 & Figure 28).  

Messenger RNA translation is a highly regulated process that is coordinated by 

signalling from the endoplasmic reticulum (ER) to regulate the assembly, speed and 

accuracy of the folding of proteins, such that only properly folded proteins leave the ER 

to reach the cell surface (Kaufman 2004). The UPR is an ER stress pathway that 

safeguards cells from the accumulation of misfolded proteins that can occur at times of 

cellular stress; it is activated in numerous disease processes including diabetes, cancer 

and neurodegenerative disorders (Walter and Ron 2011). The UPR has two outcomes, 

involving at least three mechanisms, either it will restore the cell’s homeostasis by 

stopping translation or if the stress remains unmitigated within a certain time limit it 

causes the cell to apoptose (Figure 27) (Walter and Ron 2011). The balance between the 

body’s profit and loss secondary to the UPR may depend on the underlying pathology. 

For example it induces detrimental effects in diabetes where excessive demand for 

insulin on pancreatic cells results in apoptosis, also in viral infections it appears the 
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virus can manipulate the UPR to assists in its own replication by the ER (Walter and 

Ron 2011). Translation regulation pathways are critical for certain immunological 

functions including dendritic cell activation by pathogens, antigen processing, cytokine 

production and differentiation of T cells (Pierre 2009). Although the role of the UPR 

has been inferred in many viral infections, it has not been widely associated with 

bacterial infections but a recent study confirmed activation of the UPR in a mouse cell 

line infected with Listeria monocytogenes, which led to improved antimicrobial killing 

by ER-stress induced apoptosis (Pillich, Loose et al. 2012). Furthermore in 

macrophages isolated from granulomas from active TB patients and M.tuberculosis 

infected mice, ER stress markers were found to be up-regulated in conjunction with an 

abundance of apoptotic cells (Seimon, Kim et al. 2010). While these studies examined 

the cells at the site of infection, this current study is looking at the peripheral blood 

away from the site of infection, which may explain the under-abundance observed.  The 

cells in the blood maybe conserving energy by reducing protein translation while rapid 

and excessive protein translation is taking place in response to the acute 

infection/inflammation occurring in the lung. 
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Figure 27. The unfolded protein response.  

Adapted from Walter et al Science, 2011. 

 

Primary lung cancer 

Cancer, like pneumonia, showed an association with the inflammation pathways 

(Figures 20, 28 & 29). Inflammation has been shown to play a part in cancer whether it 

is the stimulus or pathological outcome, for example in primary lung cancer there is 

increasing evidence that smoking encourages lung inflammation (O'Callaghan, 

O'Donnell et al. 2010). Interestingly one of the top over-abundant genes in cancer was 

ARG1 (arginase 1) which is known to be associated with the alternatively activated 

macrophages (M2) (Mantovani, Sozzani et al. 2002). It has been suggested that M2 

macrophages are involved in the prevention of the adaptive immune response and 

enhancement of pro-tumour inflammation pathways, resulting in the promotion of 

cancer progression and metastasis (Mantovani, Sozzani et al. 2002). From the 

‘comparison IPA’ analysis three pathways were identified as more significantly 
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associated with cancer than the other diseases: NK cell signalling, CTLA4 signalling in 

cytotoxic T lymphocytes and HGF signalling (Table 26). Since the 1980s clinical trials 

have used NK cell-based immunotherapies against cancer, although their efficacy has 

on the whole been poor they still remain a promising tool due to their ability to migrate 

towards inflammation sites and kill target cells without previous activation (Zamai, 

Ponti et al. 2007). In contrast CTLA4 (cytotoxic T lymphocyte-associated antigen 4) is 

a T cell receptor that down-regulates the T cell response and CTLA4-blockade is 

already an established treatment against malignant melanoma and in clinical trials for 

prostate cancer (Kwek, Cha et al. 2012). Hepatocyte growth factor receptor (HGF) and 

its receptor (tyrosine kinase MET) are integrally involved in cell survival and migration, 

with cancer cells using these functions to their advantage for invasion and metastasis 

(Gherardi, Birchmeier et al. 2012). In non-small cell lung cancer aberrant activity is 

correlated with poor prognosis and in addition resistance to the EGFR inhibitors can 

occur through MET signalling. HGF-MET inhibitors have displayed good efficacy in 

Phase III trials for lung cancer, as well as showing benefits for patients with resistance 

to EGFR treatment (Gherardi, Birchmeier et al. 2012). 

 

All diseases 

All the diseases showed under-abundance of the modules and IPA pathways relating to 

the T and B cells (Figures 20, 28 and 39). Reduced numbers of T and B cells in the 

blood of active TB patients, sarcoidosis patients and bacterial infection have previously 

been demonstrated by flow cytometry analysis (Ardura, Banchereau et al. 2009; Berry, 

Graham et al. 2010; Sweiss, Salloum et al. 2010). This could be due to preferential 

migration of the immune cells to the site of disease or cell death as a consequence of the 

pathogenesis. The percentage of lymphocytes found in the bronchoalveolar lavage from 
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sarcoidosis and active TB patients is higher than in healthy controls, possibly suggesting 

a preferential migration (Hoheisel, Tabak et al. 1994). 

 

Chapter Summary 

Through several data mining strategies distinct biological pathways were allocated from 

the differentially expressed genes for each of the four similar respiratory diseases (Table 

23). TB and active sarcoidosis were significantly associated with IFN-inducible genes, 

as shown previously. However a novel finding identified was the increased number and 

higher expression level of the IFN-inducible genes in TB compared to sarcoidosis. 

Pneumonia was significantly associated with an over-abundance of inflammatory, 

neutrophil antimicrobial and apoptosis genes, and an under-abundance of protein 

translation genes. Lung cancer was associated with an over-abundance of inflammatory 

genes and an alteration in the abundance of three signalling pathways (NK, CTLA4 and 

HGF) known to be therapeutic targets. These findings add to the accumulating evidence 

of the value of blood expression profiling in understanding pathogenesis of diseases. 

 

 
Table 23. Summary of significant findings from the data mining strategies.  
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Figures for chapter 5 
 

 

  

Modules were derived from clusters of transcriptionally co-regulated genes that 
were identified from a large dataset of patient’s blood expression profiles from nine 
different diseases. Each module has a functional theme. 

Figure 28. Modular analysis reveals functional similarities and differences 

between the diseases in the training set. 

The 15,212 transcripts that were significantly detected compared to the background 

intensity (see figure 14) were applied to the modular analysis (p<0.01). Each module is 

coloured according to the number of expressed genes relative to the controls, such that 

red is over-abundant and blue under-abundant while no colour represents the genes are 

not significantly different from the controls (p<0.05). The deeper red or blue colour 

correlates with a higher percentage of genes in that module found to be significantly 

different from the controls. 
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Figure 29. Percentage of over-abundant genes for each of the key modules; 

interferon modules, inflammation modules and the neutrophil module. 

 

The graphs display the mean, SEM and p values from ANOVA with Tukey’s multiple 

comparison test. 
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Figure 30. The top 50 differentially expressed genes for each disease demonstrates 

the dominance of the interferon inducible genes in both TB and sarcoidosis. 

Differentially expressed genes between each disease group and their matched-controls, 

by ethnicity and gender, were derived by applying a detection filtering (P<0.01 

compared to the background), expression filter (1.5-fold change compared to the mean 

of the matched controls) and then a statistical filter (Mann Whitney unpaired Benjamini 

Hochberg p<0.01). The differentially expressed transcripts obtained are shown in 

brackets next to the disease name at the top of the figure.
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Figure 31. Ingenuity Pathway Analysis for each disease showing the top 5 

significant pathways. 

IPA analysis was used to determine pathways that were significantly associated with the 

differentially expressed genes each disease group compared to their matched-controls 

(Fishers exact Benjamini Hochberg p<0.05). Red indicates upregulated and green 

indicates downregulated. The differentially expressed genes were derived as described 

in figure 30. 
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Figure 32. Comparison Ingenuity Pathway Analysis of all the diseases showing the 

top 4 significant pathways – displaying the p value for each pathway. 

 

‘Comparative IPA’ analysis was used to determine pathways that were significantly 

associated with the differentially expressed genes for each disease group compared to 

the other disease groups (Fishers exact Benjamini Hochberg p<0.05).The graphs display 

the log p value for each pathway for each disease group. The dotted line is a threshold 

level of significance set at p<0.05. The differentially expressed genes were derived as 

described in figure 30. 
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Figure 33. Comparison Ingenuity Pathway Analysis of all the diseases showing the 

top 4 significant pathways – displaying the percentage of genes for each disease. 

‘Comparative IPA’ analysis was used to determine pathways that were significantly 

associated with the differentially expressed genes for each disease group compared to 

the other disease groups (Fishers exact Benjamini Hochberg p<0.05).The graphs display 

the percentage of genes present in the pathway for each disease group. The differentially 

expressed genes were derived as described in figure 30. 
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Table 24. Comparison Ingenuity Pathway Analysis can identify dominant 

pathways for each disease relative to the other three diseases (1) TB 

 

‘Comparative IPA’ was applied to determine which pathways were more significantly 

associated with TB than the other diseases, relative to the controls. The log(p-value) and 

percentage of genes present in that pathway are shown. The differentially expressed 

genes were derived as described in figure 30. 
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Table 25. Comparison Ingenuity Pathway Analysis can identify dominant 

pathways for each disease relative to the other three diseases (2) Pneumonia 

 

 

 

Table 26. Comparison Ingenuity Pathway Analysis can identify dominant 

pathways for each disease relative to the other three diseases (3) Cancer 

 ‘Comparative IPA’ was applied to determine which pathways were more significantly 

associated with pneumonia (table 25) or cancer (table 26) than the other diseases, 

relative to the controls. The log(p-value) and percentage of genes present in that 

pathway are shown. The differentially expressed genes were derived as described in 

figure 30. 
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Figure 34. Interferon signalling IPA pathway for each disease compared to their 

controls. 

The differentially expressed genes from each disease, derived as described in figure 30, 

were overlaid onto the IPA IFN-signalling pathway. The pink genes are over-abundant 

and blue genes are under-abundant relative to the controls. 
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Figure 35. EIF2 signalling pathway in pneumonia demonstrating that the genes 

involved with protein translation are mostly under-abundant 

 

The differentially expressed genes from pneumonia, derived as described in figure 30, 

were overlaid onto the IPA IFN-signalling pathway. The pink genes are over-abundant 

and blue genes are under-abundant relative to the controls.  
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Figure 36. Under-abundance of protein translation genes are found in all diseases 

but the largest number occurs in the pneumonia patients 

Genes were selected as related to protein translation, either eukaryotic translation 

initiation factors or ribosomal proteins (582 transcripts), and >1.3 fold change from the 

controls (251 transcripts). The graph displays box plots of the normalised intensity 

values of each disease group. Box plots show the median, 25
th

 and 75
th

 interquartile and 

outliers in red. 

 

 

Table 27. Predominant under-abundance, or no change, in unfolded protein 

response genes was found by a targeted analysis of related genes in pneumonia and 

the other diseases. 

 

Genes were selected as related to the unfolded protein response. LFC = fold change less 

than 1.3. 
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Figure 37. Venn diagram displays the overlapping of the differentially expressed 

genes and reveals unique-disease related genes. 

The differentially expressed genes were derived as described in figure 30. 

 

 

                            

Figure 38. Comparing the number of unique disease-related genes generated by 

the 4-set Venn diagram 

The graph displays the total number of unique disease-related transcripts as derived 

from the Venn diagram above. 
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Figure 39. Unique disease-related genes each show unique functional differences 

by Ingenuity Pathway Analysis. 

 

 

The unique-disease related transcripts from the venn diagram were applied to IPA 

analysis. Only the 972 pneumonia and 375 common transcripts were found to have 

significant pathways (Fishers Exact Benjamini Hochberg p<0.01), these pathways are 

shown in bold. However without multiple testing correction each disease showed 

unique functional associations with their unique-disease related genes.   
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Figure 40. Supervised analysis was able to identify the differentially expressed 

genes between TB and active sarcoidosis. 

 

 

As TB and active sarcoidosis are so similar a supervised analysis was carried out to 

expose those transcripts that are differentially expressed between the two granulomatous 

diseases. A less stringent and supervised analysis was necessary to derive these genes 

due to the high similarity between them, as shown in the flow diagram in this figure. 

The layout of the heatmap is as described in figure 13. 
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Due to the small numbers of genes no pathways were found to be 

statistically significant by IPA when applying multiple testing correction 
however interferon-signalling was the top IPA pathway identified 

without any multiple testing corrections. 

 

 

 

 

 

 

 

Figure 41. The 144 transcripts were differentially expressed between TB and 

active sarcoidosis. 

 

 

The 144 transcripts translated to 132 genes as several genes were represented by more 

than one probe on the chip. Several of the 132 genes shown are known to be interferon-

inducible (pink) and were all over-expressed in TB compared to active sarcoidosis. 
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Figure 42. The top 50 over-abundant differentially expressed genes between 

pneumonia and cancer. 

From analysis of all diseases simultaneously or each disease compared to matched 

controls, pneumonia and cancer have many similarities. To elucidate the differences the 

diseases were directly compared to each other. Transcripts were derived by a 1.5 fold 

change filter between each other and then by a statistical filter using significance 

analysis of microarray, FDR q<0.05. Total of 1165 transcripts were derived, only the 

top 50 are shown. 
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Figure 43. Functional gene patterns associated with each disease are validated in 

the test set. 
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144 tuberculosis-specific transcripts can 

distinguish tuberculosis from all other diseases 
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Chapter 6: 144 tuberculosis-specific transcripts can 
distinguish tuberculosis from all other diseases 

 

Introduction 
 

In individuals with classical symptoms of pulmonary TB for whom the diagnosis is 

suspected, confirmation can only occur by culture of M. tuberculosis from sputum or 

bronchoalveolar washings. There are many challenges attached to making this 

diagnosis. Firstly culture confirmation can take up to 6 weeks (Pfyffer, Cieslak et al. 

1997); although sputum microscopy smear is more commonly and easily attained it only 

detects 60% of culture positive pulmonary M. tuberculosis (Young, Perkins et al. 2008). 

Secondly it is often not possible for the patient to expectorate therefore an invasive 

procedure is required to obtain bronchoalveolar washings (Tamura, Shimada et al.). For 

example in the USA only 70% of pulmonary TB is diagnosed by bacterial culture, the 

rest by an observed response to antituberculous treatment (CCDC 2007). While in  

South Africa only 50% of pulmonary TB is culture-confirmed (WHO 2010), 

presumably due to the reduced impetus to obtain samples, the lack of microbiology 

facilities and the lack of facilities to perform invasive procedures. Promisingly a 

relatively new development in TB diagnosis is the use of the WHO endorsed Xpert 

MTB/RIF automated PCR test to detect M. tuberculosis and common drug resistance 

strains (Taegtmeyer, Beeching et al. 2008; Boehme, Nabeta et al. 2010). Unfortunately 

Xpert MTB/RIF also requires sputum or bronchoalveolar washing samples. The 

difficulty in diagnosing pulmonary TB is the ability to distinguish it from the other 

common differential diagnoses including sarcoidosis, pneumonia and lung cancer. This 

difficulty may lead to the use of invasive procedure and delays in treatment (Storla, 

Yimer et al. 2008). Besides if there is a misdiagnosis, for example sarcoidosis instead of 

pulmonary TB, this could result in worsening pathology due to the commencement of 
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immunosuppressive therapy, and vice versa could result in unwarranted side effects 

from six months of the antibiotics. Therefore a biomarker capable of distinguishing 

active TB from other similar diseases that is achievable from a simple blood test could 

offer substantial clinical value. In the previous chapter 144 transcripts were 

demonstrated to be differentially expressed between TB and active sarcoidosis (Figure 

40). Although this study did not set out to define a biomarker for TB diagnosis because 

these two diseases are the most comparable by clinical and molecular profiles it seemed 

a reasonable hypothesis that this 144-transcript list could be applied to distinguish 

active TB profiles from other similar diseases. 

 

Results 
 

A set of 144 TB-specific transcripts had good sensitivity and specificity in 
independent cohorts 

Class prediction is a supervised learning method where the algorithm learns from 

samples with a known phenotype (e.g. the training set) to establish a prediction rule to 

classify new samples (e.g. the test and validation sets).  The machine learning algorithm 

support vector machines (SVM) is a frequently applied technique in class prediction. 

The prediction model was built using the training set and then run in the test and 

validation sets. The classification of each sample can be used to calculate the sensitivity 

and specificity for each dataset of samples. Samples were classifies as either a TB 

sample or a ‘non-TB’ sample (i.e. controls, sarcoidosis, pneumonia or lung cancer).  

The model was also built again, using identical settings, in the Maertzdorf et al. 

2012 dataset and the Berry et al. 2010 dataset as it was not possible in GeneSpring 11.5 

to run the model in these datasets due to the conversion of 144 Illumina HT12 V4 

transcripts to Agilent probes for the Maertzdorf et al. 2012 dataset, and conversion to 
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Illumina HT Version 3 for the Berry et al. 2010 dataset. Only 131 transcripts out of the 

144 were present in the older Illumina V3 chip therefore the model was built with a 

reduced number of transcripts from the Berry et al. 2010 dataset. 

 The 144 transcripts showed a high sensitivity (≥ 82%) in the training set, test 

set, validation set and the Maertzdorf dataset (Figure 44). The sensitivity was slightly 

lower (74%) when built using the Berry dataset. This could be related to the loss of 13 

transcripts when converting between the different Illumina chips. The specificity was 

above 90% for all datasets (Figure 44).  

 

The 144 transcripts had superior accuracy to the two published 
transcript lists  

Two publications have previously reported genes lists able to distinguish active TB 

patients from sarcoidosis patients. Koth et al found 50 discriminating genes and 

Maertzdorf et al found 100 discriminating transcripts (Koth, Solberg et al. 2011; 

Maertzdorf, Weiner et al. 2012). Both these transcript lists were applied to the three 

datasets (training, test and validation). The Maertzdorf 100 Agilent probes only 

translated to 76 genes after conversion to genes recognised by the DAVID converter 

and manual annotation. The Maertzdorf 100 transcript (76 gene list) had a poor 

sensitivity in the training (56%) and test set (45%) and but was reasonable in the 

validation set (75%), all were below their reported sensitivity and specificity in their 

own dataset (88%, 97% respectively, (Maertzdorf, Weiner et al. 2012)) (Figure 44). The 

Koth 50 genes, developed using an Affymetrix platform, had reasonable sensitivity in 

the training set (75%) but poor in both the test set (45%) and the validation set (50%). 

Koth et al did not test their own transcript list for its ability to discriminate between 

their sarcoidosis and TB patients nor to distinguish between the sarcoidosis and TB 

samples accumulated from the Berry et al. 2010 study (Koth, Solberg et al. 2011).  
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 Therefore these results show that the 144 transcript list derived from our study, 

compared to the two recently published discriminating transcript lists, had the highest 

and most consistent sensitivity and specificity for discriminating between the TB 

samples and all the other samples (including samples from different diseases and 

healthy controls), from different cohorts, different research studies, and across different 

microarray platforms. 

 

Few transcripts overlapped between the discriminating transcripts lists 

Only one gene was overlapping between the Maertzdorf et al transcript list and the 144 

list (Figure 45). None were overlapping between the Maertzdorf et al and Koth et al 

transcript list. Six genes were overlapping between the smaller Koth et al transcript list 

and the 144 transcript list.  

 

Discussion 

 

The 144 TB-specific transcript list had good sensitivity and specificity 
and had superiority over previously published discriminating transcript 
lists 

The 144 list had good sensitivity and specificity in the training set. However the 144 list 

was built using this dataset therefore to ensure there was no overfitting of the prediction 

model it was then run on two independent cohorts, the test set and the validation set. 

The model continued to show good sensitivity (82% test, 88% validation) and 

specificity (91% test, 92% validation) for both the test and validation sets (Figure 44). 

For a more rigorous assessment the 144 list was also tested by external validation using 

a dataset (Maertzdorf et al. 2012) collected by a different research team (Stefan 

Kaufmann et al), from a different research institution (Max Planck), recruited in a 
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different country (Germany) and run on a different platform (Agilent) (Maertzdorf, 

Weiner et al. 2012). External validation by means of a dataset from an entirely different 

study is said to afford the ultimate conclusive evidence that a model is valid (Taylor, 

Ankerst et al. 2008). The 144 transcript list was originally derived from comparing only 

pulmonary TB and active pulmonary sarcoidosis. It is not surprising that it has such 

good accuracy for distinguishing TB also from the pneumonia, lung cancer and control 

samples due to the divergence of their profiles as visualised by unsupervised 

hierarchical clustering from both the granulomatous diseases. It is pertinent to bear this 

in mind when comparing the 144 transcript list with the two other transcript lists 

because the authors only claimed their lists to be able to distinguish TB from 

sarcoidosis (Koth, Solberg et al. 2011; Maertzdorf, Weiner et al. 2012). Neither of the 

published transcript lists offered such good consistent sensitivity and specificity across 

all tested datasets as the 144 list (Figure 44). The inability to use all 100 probes from the 

Maertzdorf et al. 2012 study may have affected the accuracy of the transcript list, 

however, because many of the probes in the Maertzdorf et al. 2012 study are not 

recognised genes their value as a possible surrogate marker is unclear. The Maertzdorf 

et al. 2012 publication did not include validation of their transcript list in any 

independent dataset. Furthermore the Koth et al. 2011 study did not attempt to test their 

transcript list in either their own dataset or in an independent dataset. This lack of 

validation may explain why so few genes overlapped between the three transcript lists, 

although there were six overlapping genes with the Koth et al. 2011 transcript list and 

the 144 transcript list – which may be due to the much larger sample size and power of 

the Koth et al. 2011 study compared to the Maertzdorf et al. 2012 study. Interestingly 

six of the over-expressed genes in the Maertzdorf et al. transcript list were neutrophil 

genes, which could suggest that the TB patients had more severe TB in their study.  
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Validation was also attempted in the very large dataset from the Berry et al. 

2010 paper, which included expression profiles from patients with active TB, latent TB, 

adult SLE, paediatric SLE, staphylococcal infections, streptococcal infections and 

healthy controls (Berry, Graham et al. 2010). The model showed reasonable sensitivity 

of 74% considering it was not designed to discriminate between all these diseases and 

13 of the transcripts were missing from the 144 list due to the lack of annotation in the 

older Illumina HT V3 chip. 

The high specificity achieved from all datasets and transcript lists was 

undoubtedly due to the very low Type I error rate attributable to the small prevalence of 

true TB samples within each dataset. For this reason the positive predictive values 

(PPV) for the transcript lists were fairly low, although they were higher in the cohorts 

with an increased TB prevalence, while the negative predictive values (NPV) were high 

(data not shown). PPV and NPV, unlike sensitivity and specificity, are influenced by the 

prevalence of a disease (Lalkhen and McCluskey 2008). In our study there are far fewer 

true TB (e.g. 16 TB samples in the training set) than true non-TB samples (e.g. 25 

sarcoidosis, 8 pneumonia, 8 cancer and 38 control samples in the training set), but in a 

clinical setting this would not be the case. A potential diagnostic biomarker would not 

be tested on every respiratory patient, only those with a high suspicion for active TB. 

However in this case a diagnostic biomarker with a high NPV is worthwhile as the 

misdiagnosis of active TB and thus subsequent 6 months treatment with antibiotics 

could have a detrimental impact. Overall these findings suggest transcriptional 

signatures – similar to the 144 transcript list - have promise as additional diagnostic 

biomarkers for pulmonary TB if satisfying rigorous testing and validation in large 

populations.  
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Chapter Summary 
  

A TB-specific transcript list containing 144 transcripts showed good sensitivity and 

specificity for distinguishing pulmonary TB patients from patients with pulmonary 

sarcoidosis, pneumonia, primary lung cancer, latent TB, SLE, Stills, streptococcal 

infections, staphylococcal infections and healthy controls. This 144 transcript list (132 

genes) also appeared to demonstrate superior predictive sensitivity over two previously 

published transcript lists. These findings potentially implicate the application of blood 

transcriptional signatures as biomarkers to aid in the diagnosis of pulmonary TB.  
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Figures for chapter 6 
 

 

Figure 44. Testing the 144 TB-specific transcript list in independent cohorts. 

 

The 144 transcripts that were derived from the training set were verified in the test and 

validation sets as well as the Maertzdorf et al dataset and Berry et al dataset. The 100 

transcripts from the Maertzdorf et al dataset and 50 genes from the Koth et al dataset 

were tested in all our cohorts (training, test and validation).The sensitivity (number of 

true positives/ true positives + false negatives) and specificity (number of true 

negatives/ true negatives + false positives) was calculated for each dataset as shown in 

the table. 13 of the 144 transcripts were not recognised by the older Illumina HT V3 

chip used for the Berry et al datasets in 2009. Only 76 of the Agilent probes used in the 

Maertzdorf et al dataset were recognised as genes in the NIH Database for Annotation, 

Visualization and Integrated Discovery (DAVID). ASLE = adult SLE, PSLE = 

paediatric SLE. Values above 80% are in red and below 80% in blue. Grey values 

represent datasets where the transcript list tested was also derived from that dataset. 
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Figure 45. Comparing transcript lists derived to distinguish TB from sarcoidosis 

profiles. 

 

 

The venn diagram was used to compare the 144 Illumina transcripts with the Koth et al 

50 genes (translates to 77 Illumina probes) and the Maertzdorf et al 100 Agilent probes 

(translates to 76 known genes and 107 Illumina probes).  
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Chapter 7: Comparing blood transcriptional responses 
before, during and after tuberculosis treatment 

 

Introduction 
After the diagnosis of TB there are no available early biomarkers correlating with 

treatment success, resulting in significant delay in assessing treatment response. 

Currently conversion to negative culture after two months of treatment is the only 

accepted biomarker (Mitchison 1993). However a systematic review and meta-analysis 

of sputum conversion revealed low sensitivity and modest specificity for the prediction 

of treatment failure (Horne, Royce et al. 2010). Chest radiographs are commonly used 

to assess response but are not universally available and assessment is difficult to 

standardise (Walzl, Ronacher et al. 2011). This lack of effective treatment monitoring 

can lead to the development and spread of drug-resistant TB, which is mainly, caused 

by non-adherence or inappropriate drug regimens, with a detrimental impact on global 

TB control. Earlier blood biomarkers correlating with treatment response would 

improve monitoring of individual patient treatment responses without the need for 

sputum production, and may also permit stratification of patients requiring differing 

treatment regimens. Furthermore early biomarkers may aid in drug development. Berry 

et al. 2010, demonstrated that their UK active TB transcriptional signature diminished 

after two months of successful treatment in eight patients and reverted to that of healthy 

individuals after completing treatment (Berry, Graham et al. 2010). Our current study 

looked at an earlier time point of two weeks as this could offer a clinical advantage if 

able to act as a surrogate marker of treatment success. In addition our study examined 

the gene expression data mostly from TB patients from South Africa, one of the top 

high-burden TB countries.  
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Results 

Participants demographics and characteristics 

Twenty-nine active TB patients were included from South Africa and 8 active TB 

patients from the UK (Figure 46). None of the TB patients relapsed within 1 year and all 

were discharged from the program as cured. The 29 South African patients were 

sampled at: pre-treatment (29/29 patients), 2 weeks (25/29 patients), 2 months (24/29 

patients), 6 months (25/29 patients) and 12 months (29/29 patients) after initiation of 

treatment. Only one of the South African TB patients was smear negative but 50% of 

the UK TB patients were smear negative (Tables 28 & 29). All South African patients 

were of the same ethnicity and race, but the UK patients were a more diverse ethnicity 

mix (Tables 28 & 29). In South Africa it is not routine to perform chest radiographs due 

to the lack of facilities therefore only one had a chest radiograph, but all UK patients 

had a chest radiograph of which seven were abnormal, the eighth patient had an 

abnormal HRCT scan. Thirty-eight South African latent individuals were also sampled 

as asymptomatic controls as in the area of South Africa the patients were recruited from 

there is such a high exposure to M. tuberculosis that a control is someone with evidence 

of exposure to TB. All latent TB patients were IGRA positive.  

 

A change in transcriptional response is detectable after 2 weeks of 
antituberculous treatment  

To determine whether an active TB blood transcriptional signature was perturbed upon 

treatment, gene expression profiles of significantly detectable genes without further 

filtering, were examined in the 29 active TB patients before, during (2 weeks and 2 

months), at the end of (6 months), and after treatment (12 months) (Figure 47). By 

plotting the expression profiles of the 15,837 detectable transcripts along a time scaled 

x-axis, a marked change was readily observed after 2 weeks of treatment (Figure 47). 
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This suggested a change in transcriptional response as early as two weeks after 

treatment initiation. 

To refine the transcript list capable of demonstrating a transcriptional change in 

response to treatment we initially derived a South African active TB transcriptional 

signature. The South Africa active TB 664-transcript signature was derived from 

applying a two-fold change filter to the mean of the transcripts in the latent TB profiles 

and a further statistical filter (Mann Whitney unpaired, Bonferroni p<0.01) (Figure 48). 

When this South Africa active TB 664-transcript signature was applied to the treated 

South Africa cohort, a marked and rapid change in the transcriptional response was 

again observed as early as two weeks, which then continued through two and six 

months, after treatment initiation (Figure 49).  

 

The Transcriptional Response Changes Significantly at 2 Weeks  

To appreciate if the changes visualised on the heatmap were significant changes the 

MDTH algorithm was applied to the 664-transcripts as this generates a quantitative 

score for the degree of transcriptional perturbation in a disease cohort relative to the 

controls (Pankla, Buddhisa et al. 2009). The median MDTH of the active TB 664-

transcript signature decreased significantly at two weeks onwards, compared to the 

median pre-treatment MDTH (Figure 50A).  

In addition we devised a novel algorithm called temporal molecular response. 

This algorithm calculates the change in a transcriptional profile over time. Unlike 

MDTH it does not require a control cohort as it uses the pre-treatment time point as the 

comparator profile. It is also more sensitive to changes in longitudinal analysis; in part 

because it does not rely on a control cohort that can have variable profile heterogeneity. 
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For a given signature the temporal molecular response was determined by measuring 

the transcriptional perturbation between two time points, and expressing this value as a 

percentage of the total number of transcripts constituting the signature (see methods for 

details). The mean temporal molecular response calculated for the active TB 664-

transcript signature revealed a statistically significant change in the transcriptional 

response at 2 weeks after treatment initiation (Figure 50B). This continued to change 

between 2 weeks and 2 months, and between 2 weeks and 6 months, after treatment 

initiation. The magnitude of the patient’s temporal molecular response during treatment 

did not correlate with the magnitude of their untreated transcriptional signature, as 

measured by MDTH (p<0.01) (Figure 50C).  

 

Deriving a treatment specific transcriptional signature 

Although the active TB 664-transcript signature was shown to change significantly in 

response to successful treatment we wished to derive a more specific treatment-related 

signature. To determine this the South Africa cohort was randomised into two groups of 

patients, 15 patients into a training set and 14 patients into a test set. The signature was 

then derived from the training set and validated in the test set. A three-fold filter 

between the untreated samples and the mean of their paired 6-month samples was 

applied, where transcripts had to satisfy the filter in 12 of the 15 patients, followed by a 

statistical filter (Mann Whitney paired, Benjamini Hochberg p<0.01). This generated 

320 transcripts as significantly differentially expressed between the untreated active TB 

training set samples and their paired 6-month treated samples (Figure 51). The treatment 

specific 320-transcript signature was shown to rapidly and significantly change at two 

weeks onwards after treatment initiation, in the active TB training set (Figure 51A & 
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B). This was validated in the active TB Test Set (Figure 51C & D). In both cohorts the 

change in the temporal molecular response was significant at 2 weeks post-treatment.  

However analysis by both algorithms, MDTH and temporal molecular response, 

were not able to show significant changes between two months and six months. 

Therefore to establish whether any significant changes occurred from two months 

onwards, each of the profiles from each time point were compared to the latent TB 

profiles. 96 transcripts were significantly differentially expressed between two months 

and latent TB (Mann Whitney paired Benjamini Hochberg p<0.01, data not shown). As 

expected no genes were significantly differentially expressed between 6 months & 12 

months, or 6 months & latent TB, or 12 months & latent TB (Mann Whitney paired 

Benjamini Hochberg p>0.01). 

 These results show the 320-transcript treatment specific signature and the 664-

active TB signature changed significantly over time in response to treatment, as early as 

two weeks after treatment initiation and onwards at two months. The transcriptional 

profiles however appeared not to change significantly at the end of treatment onwards 

(at the 6 and 12 month time points) compared to the latent controls. 

 

Comparing the genes lists from the active TB and treatment specific 
signatures 

A Venn diagram was then used to compare the similarity of the two signatures: the 664-

transcript active TB and 320-transcript treatment specific signatures. The treatment 

specific signature contained 74% of genes present in the active TB signature (Figure 

52). IPA of the active TB 664-transcript signature demonstrated a highly significant 

over-representation of IFN-signalling genes including Type I and Type II IFN (Figure 

52). IPA of the 320 transcripts indicated the most significantly represented pathways 
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were related to the innate immune pathways, encompassing genes related to 

complement and Toll-like receptors.  

 

Measuring an individual patient’s transcriptional response to 
antituberculous treatment 

To determine if the treatment response could be measured on an individual patient basis 

the temporal molecular response was applied to each patient individually. Each patient’s 

discrete 320-transcript treatment specific response was visualised first in the heatmap 

and then quantified by the temporal molecular response in the training set (Figure 53) 

and in the test set (Figure 54). All 29 patients in the active TB treated cohort had a rapid 

and early positive temporal response after two weeks of treatment. Interestingly, not all 

the individual transcriptional responses were identical as demonstrated by the 

quantitative scoring provided by the temporal molecular responses. Some of the patients 

also had a slight increase in their temporal molecular response and in the heatmap at 12 

months. 

 

Further validation of the 2 week treatment transcriptional response  

To determine whether the significant change in the treatment specific 320-transcript 

signature that we had demonstrated in a South African cohort was also applicable to 

patients in an intermediate burden setting, we tested the signature in a UK cohort. As 

observed in the South African cohort the signature was rapidly and significantly 

diminished from two weeks post-treatment initiation (Figure 55). The changes in the 

blood transcriptional response could also be clearly quantified in individual patients by 

the temporal molecular response. The significant transcriptional blood change correlated 

with successful treatment of patients as assessed after 6 months by radiographic and 

clinical parameters (data not shown).  
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For additional validation that the active-TB transcriptional signatures showed 

significant changes as early as two weeks after treatment initiation, the active TB 

signatures (393 and 86 transcript signatures) from the Berry et al. 2010, study were also 

used in the treated South African cohort (Berry, Graham et al. 2010). Both signatures 

again significantly diminished after two weeks treatment (Figure 56). In addition the 

TB-specific 144 transcript signature, derived from comparing pulmonary TB to active 

pulmonary sarcoidosis as described in chapter 5, also showed significant changes as 

early as 2 weeks (Figure 57).   

 

Discussion 
 

TB treatment monitoring is a major challenge in attempts to eradicate M.tuberculosis 

infection. In April 2010 the Centers for Disease Control and National Institutes of 

Health brought together experts in the field and research scientists with the sole purpose 

of addressing this problem (Nahid, Saukkonen et al. 2011). Poor treatment monitoring, 

and hence inadequate treatment, leads to worsening of a patient’s disease, increasing the 

potential for disease spread and the risk of developing drug resistant mycobacteria. 

Currently the two-month sputum culture conversion is the only biomarker of successful 

TB treatment (Mitchison 1993). However it is time consuming, taking several weeks to 

grow the bacilli and results can be compromised by contamination. Moreover patients 

who have clinically improved may be unable to expectorate sputum at two months and 

potentially incorrectly labelled as having a negative culture (Perrin, Lipman et al. 2007). 

Furthermore, although sputum conversion is commonly used as a surrogate end point 

for treatment response in clinical trials evaluating new drugs, a systematic review and 

meta-analysis to assess its accuracy in predicting an individual’s treatment failure 
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revealed low sensitivity and only modest specificity (Horne, Royce et al. 2010; Wallis, 

Pai et al. 2010). While other biomarkers have also been trialled, including C-reactive 

protein, IFNγ and neopterin, all have similarly shown poor sensitivity and specificity 

(Walzl, Ronacher et al. 2008). Chest radiographs are commonly used in the clinical 

setting as a marker of treatment response but they generally improve slower than the 

clinical response and lack specificity as interpretation can be confounded by previous 

lung damage (Perrin, Lipman et al. 2007). Moreover interpretation of radiographic 

changes in response to treatment has not yet been standardised, and the facilities are not 

always available in developing countries (Walzl, Ronacher et al. 2011). Therefore there 

is clearly a need for early and easily detectable biomarkers for treatment monitoring, 

capable of potentially identifying poor responses due to drug resistance or lack of 

treatment adherence, and available for patients unable to produce sputum. In this 

chapter we have shown and validated that two signatures, an active TB signature and a 

treatment specific signature, both significantly diminish after just two weeks of 

treatment. In addition the transcriptional response to antituberculous treatment could 

also be individually quantified for each patient. Together, these findings suggest that 

blood transcriptional signatures could be used as early surrogate biomarkers of a 

successful treatment response, in both the clinical setting and in drug development. 

 

Study participants 

The South African patients involved in this part of the study were active and latent TB 

patients recruited from a high burden area in South Africa. Khayelitsha, is a large peri-

urban African township in Cape Town which has over 1000 TB notifications annually. 

From the clinical data available it can be observed the South African pulmonary TB 

patients had more severe disease than the UK patients, with higher bacilli loads and 
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higher number of presenting symptoms (Tables 28-29). The is likely to explain the 

greater transcript normalised intensity values that can be seen when comparing the 

heatmaps from the South African patients (range +4.5 to -4.5) and the UK patients (+3.8 

to -3.8) (Figures 51 & 55). 

 

The transcriptional response changes significantly at 2 weeks  

Berry et al. 2010, previously demonstrated in a small number of patients that blood 

transcriptional signatures in UK active TB patients diminished after two months of 

antituberculous treatment (Berry, Graham et al. 2010). Two other studies have also 

described relevant treatment related transcriptional differences. Mistry et al found that 

patients who had completed a course of antituberculous treatment displayed similar 

expression profiles to a latent TB group, but they did not examine any patients during 

their antituberculous treatment course (Mistry, Cliff et al. 2007). Joosten et al showed in 

a small number of samples that their active TB gene set diminished after two months of 

antituberculous treatment, however they did not examine any patients at earlier time 

points (Joosten, Goeman et al. 2012).  

From this current study it can be seen a significant blood transcriptional response to 

antituberculous treatment occurs as early as two weeks (Figures 47-57). This early 

transcriptional response could be as a consequence of the observed rapid and high 

killing capacity of antimycobacterial antibiotics leading to a substantial reduction in 

mycobacterial load (Jindani, Aber et al. 1980; Gumbo, Louie et al. 2007; de 

Steenwinkel, de Knegt et al. 2010). Although the signatures derived may not be 

completely specific for active TB, since clinically similar diseases such as sarcoidosis 

show common transcripts (Koth, Solberg et al. 2011), demonstration of a response to 

antimycobacterial therapy, could help resolve this overlap. Furthermore the TB-specific 
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signature (144 transcripts) derived from comparing pulmonary TB to active pulmonary 

sarcoidosis also significantly diminished with treatment (Figure 57). 

The treatment specific 320-transcript signature also had many genes in common 

with the active TB 664-transcript signature (Figure 52). This overlap of genes is highly 

suggestive that this study will help guide future development of a subset of genes that 

most accurately correlates with a patient’s response to antituberculous treatment, acting 

as a surrogate marker of treatment failure or success. Both derived signatures, the South 

African 664-transcript active TB signature and the treatment specific 320-transcript 

signature, were dominated by IFN signalling and innate immune response genes (Figure 

52). These findings are in agreement with earlier gene expression studies in TB (Berry, 

Graham et al. 2010; Maertzdorf, Repsilber et al. 2011) and findings from the earlier 

cohorts described in this study (chapters 3 & 5). 

 

Two algorithms can demonstrate significance of the change in 
transcriptional profiles 

It has previously been shown that MDTH positively correlates with the severity of 

active pulmonary TB, as defined by the radiological extent of disease (Berry, Graham et 

al. 2010). However the ‘temporal molecular response’ offers a potential advantage in 

the clinical setting, as it allows an individual assessment of each patient’s expression 

change and does not require a reference control group. Both algorithms clearly 

demonstrated the significant change that occurs at least two weeks after commencing 

treatment (Figure 50A & B). In addition there was no correlation between the pre-

treatment MDTH and the two-week or two-month temporal molecular response (Figure 

50C). This suggested a patient’s untreated transcriptional signature is not predictive of 

the patient’s treatment response. 
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The transcriptional response continues to change after 2 weeks 

A further problem in the management of TB is the extended length of treatment, 

requiring a minimum duration of six months. However the treatment duration required 

for maximum efficacy and preventing resistance, has not been fully established. The 

ability therefore to stratify patients into groups requiring shorter or longer treatment 

durations, particularly in resource limited settings, could be of value in improving 

patient compliance and reducing treatment related side effects. It can be seen from the 

individual temporal molecular responses that some patient’s transcriptional response 

appeared to plateau before six months (Figures 53-55) suggesting blood transcriptional 

signatures may could aid in patient stratification for treatment with differing regimen 

lengths. It can also be observed some of the South African’s transcriptional responses 

appear to have increased at twelve months relative to their six month score, although 

their profiles at twelve months resembled the latent profiles (Figures 53 & 54). One 

could postulate this is a consequence of stopping the broad spectrum antibiotics. For 

example, either the patient has since acquired or re-reactivated a bacterial infection 

between the six month and the twelve month time point (no patients were thought to be 

positive for M. tuberculosis infection) or this signature is secondary to antibiotic-

induced changes to the gut microbiome. 

 

This robust correlation of a significant change in transcriptional response to successfully 

antituberculous treatment occurring between different host populations, likely different 

M. tuberculosis strains, diverse environments and microarray analysis strategies 

indicates that blood transcriptomics have great potential to be developed into treatment 

monitoring biomarkers.  
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Chapter Summary 
 

A whole blood active TB 664-transcript signature and a treatment specific 320-

transcript signature significantly changed in active TB patients after just 2 weeks of 

initiation of clinically successful antituberculous treatment. The significant change in 

the treatment-specific signature was observed in patients from the high TB-burden 

setting of South Africa and from the intermediate TB-burden setting of London. Both 

the active-TB and treatment-specific transcriptional signatures were dominated by IFN-

signalling and innate immune response genes. The transcriptional response to 

antituberculous treatment could be individually quantified for each patient. Together, 

these findings suggest that blood transcriptional signatures could be used as early 

surrogate biomarkers of a successful treatment response, in both the clinical setting and 

in drug development. 
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Figures for chapter 7 
 

 

 
 

Figure 46. Recruitment of South Africa and UK TB patients before, during and 

after treatment. 
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Table 28. South African treated active TB patients and untreated latent TB 

patients. 

 

 

 

 

 

 

 
 

 

Table 29. UK treated active TB patients. 
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Figure 47. Individual patient’s transcriptional response occurs at variable rates 

south africa training set. 

The transcripts were derived as shown at the top of this figure. The profile plot displays 

the expression normalised intensity values over time where the red profiles indicate a 

high normalised value at baseline and blue a low normalised value (as indicated by the 

colour bar). 
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Figure 48. To refine the transcript list capable of demonstrating a transcriptional 

change in response to treatment 2 analysis strategies were used (1) the South 

Africa active TB signature changes in response to treatment.  

The transcripts were derived as shown in the left of this figure. The layout of the 

heatmap is as described in figure 13. 

 

 

 

 

 
 

Figure 49. The 664 signature is applied to all patients before, during and after 

treatment and demonstrates a change in the signature at 2 weeks onwards. 

The layout of the heatmap is as described in figure 13. 
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Figure 50. The change in the signature of the 664 active-TB signature is 

statistically significant at 2 weeks as shown by both MDTH and the temporal 

molecular response. 

The graphs A and B display the mean, SEM, p value from longitudinal regression 

analysis with fixed effects. Graph C displays linear regression best fit slopes. 
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Figure 51. To refine the transcript list demonstrating a transcriptional response to 

treatment two strategies were used (2) Treatment specific signature also 

significantly changes at 2 weeks. 

 

The transcripts were derived as shown at the top of this figure. The layout of the 

heatmap is as described in figure 13. The graphs B and D display the mean, SEM, and p 

value from longitudinal regression analysis with fixed effects. 
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Figure 52. Many genes overlap in the active TB signature and the treatment 

specific signature. 

The layout of the IPA pathways are as described in figure 21. 
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Figure 53. Individual patient’s transcriptional response occurred at variable rates 

in the South Africa training set. 

Both the heatmap and graphs show each patient’s 320 treatment response profile over 

time. The transcripts were derived as shown in figure 51. The layout of the heatmap is 

as described in figure 13. 
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Figure 54. Individual patient’s transcriptional response occurred at variable rates 

in the South Africa test set. 

Both the heatmap and graphs show each patient’s 320 treatment response profile over 

time. The transcripts were derived as shown in figure 51. The layout of the heatmap is 

as described in figure 13. 
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Figure 55. The changes in the treatment specific signature were validated in an 

independent UK cohort. 

Both the heatmap and graphs show each patient’s 320 treatment response profile over 

time. The transcripts were derived as shown in figure 51. The layout of the heatmap is 

as described in figure 13. The cumulative data graph display the mean, SEM, and p 

value from the longitudinal regression analysis with fixed effects. 
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Figure 56. The Berry et al active TB signatures also change significantly in 

response to successful treatment. 

The graphs display the mean, SEM, and p value from the longitudinal regression 

analysis with fixed effects. The layout of the heatmap is as described in figure 13. 

 

 

 
 

Figure 57. The 144 TB-specific signature identified by comparing TB to active 

sarcoidosis also significantly changed at 2 weeks of treatment.  

The transcripts were derived as shown in figure 40. The layout of the heatmap is as 

described in figure 13. 



Chapter 8: Transcriptional profiles change during and after treatment in sarcoidosis and pneumonia 

  

259 

 

Chapter 8 

Transcriptional profiles change during and after 

treatment of sarcoidosis and pneumonia 
  



Chapter 8: Transcriptional profiles change during and after treatment in sarcoidosis and pneumonia 

  

260 

 

Chapter 8: Transcriptional profiles change during and 
after treatment in sarcoidosis and pneumonia 

 

Introduction 
There are many decisions concerning the treatment of pulmonary sarcoidosis patients 

including who should receive it, when to start, which medications to use – which ones 

work and which ones have unacceptable side-effects, which tests can assess a treatment 

response, how to know if there is a response, how can relapses be prevented and how 

long to continue treatment? The lack of corroborated answers is due to a number of 

factors including a paucity of acceptable randomised controlled trials, the complexity of 

the underlying pathology, the clinical heterogeneity and the uncertain effectiveness of 

immunosuppression which is the current mainstay of sarcoidosis treatment 

(Paramothayan and Jones 2002; Baughman 2003; Judson 2003; Paramothayan, 

Lasserson et al. 2005; Coker 2007; Baughman and Nunes 2012). It is still not clear how 

effective immunosuppression is because many patients have self-limited disease or 

spontaneous resolution, and defined criteria for the monitoring of a treatment response 

is not standardised (WASOG 1999; Bradley, Branley et al. 2008). A better 

understanding therefore of what the treatment is doing at a molecular level, in parallel 

with clinical parameters, could help us understand how the treatment is exerting its 

effects and may help in our understanding of the underlying immunopathogenesis of 

sarcoidosis.  

All but one of the sarcoidosis patients in this study were treated with 

glucocorticoids after initial recruitment. Glucocorticoids are frequently used in 

inflammatory and autoimmune conditions due to their potent anti-inflammatory actions 

and immune modulatory effects. Glucocorticoids can effect target cell transcriptional 

regulation and protein synthesis by several different mechanisms. Firstly they bind to 
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the ubiquitous cytoplasmic glucocorticoid receptors (GCR), DNA-binding transcription 

factors, which once activated thereby release chaperone molecules such that the GCR 

can translocate to the nucleus (McColl, Michlewska et al. 2007). GCRs can then 

transactivate (increase transcription of anti-inflammatory genes) or transrepress (inhibit 

pro-inflammatory genes) through specific binding to positive or negative 

glucocorticoid-responsive elements in the promoter region of glucocorticoid-responsive 

genes (McColl, Michlewska et al. 2007). In addition the GCR-complex can cause 

transrepression in a hormone dependent manner through modulation of the activity of 

transcription factors such as NK-κB or AP-1 (De Bosscher, Vanden Berghe et al. 2003). 

Transcriptional regulation is then achieved through modification of core histones, 

structural remodelling and DNA methylation (Biddie, Conway-Campbell et al. 2012).  

 

This part of our study is focussing only on the sarcoidosis patients before they 

commenced treatment and again while they were receiving it. To add a valuable 

dimension to the analysis the transcriptional profiles of community acquired pneumonia 

patients before and after their curative antibiotics were also examined, as well as 

compared to the transcriptional changes that were seen in the successfully treated TB 

patients. 

 

Results 
 

Sarcoidosis profiles changed only if they had shown a good clinical 
response to treatment 

To investigate the effect of treatment on the transcriptional profiles of the sarcoidosis 

patients an unsupervised analysis approach followed by unsupervised hierarchical 

clustering was performed on the seven sarcoidosis patients who were followed up after 
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commencement of treatment. Unsupervised analysis generated 5,223 transcripts (Figure 

58). Unsupervised hierarchical clustering of the transcripts and samples only revealed a 

difference in transcript abundance in the seven treated sarcoidosis patients if they had a 

good clinical response to treatment (Figure 58). The decision to commence treatment 

was made at the ‘first clinic visit’ and subsequent clinic visits were then labelled 

sequentially.  Four of the patients only had blood samples taken at the second clinic 

visit, three patients had samples also taken at the third clinic visit (Figure 59). A clinical 

response to treatment was defined retrospectively by the practising physician’s 

management at the second and third clinic appointments. If the physician increased the 

treatment this was interpreted as a lack of adequate response to treatment, but if the 

treatment was reduced or maintained this was interpreted as an adequate response. The 

sarcoidosis treated patients were seen by three independent sarcoidosis specialists and at 

the time each physician was not aware that their decision was to be included as part of 

the data collection for this study. Five patients were thought not to be responding 

adequately by their practising physician (Figure 59a). Two of these patients 

subsequently did respond well after altering their treatment (patient no. 3 and 5). For the 

other three patients samples were not available on their third visit (patients no. 2, 4 & 

7), one of the three inadequately responding patients was receiving hydroxychloroquine 

alone. During the second visit patient no. 5 was labelled as an inadequate responder 

because she was thought to be still symptomatic from her sarcoidosis. Interestingly the 

physician documented in her clinical notes that the symptoms were either due to the 

sarcoidosis or to the prednisolone. But, due to the lack of clarity, the physician decided 

to increment her prednisolone by a small dose. By the third visit after reviewing her 

blood tests and radiology, which had been requested on her second visit, it was 

established her symptoms were actually due to the glucocorticoids not her sarcoidosis. 
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She subsequently was weaned on to a much lower dose of prednisolone and improved 

thereafter. Her profile clustered with the treated patients who showed a good clinical 

response not with those who had an inadequate response (Figures 58 & 59). Using 

unsupervised hierarchical clustering adequate responders were shown to cluster away 

from inadequate responders and the pre-treatment samples (Figure 58) and by 

supervised hierarchical clustering grouped into; pre-treatment, good responders and 

inadequate responders (Figure 59a) or grouped per person over time (Figure 59b). 

Undoubtedly a change in the transcript abundance correlated with a clinical response to 

treatment of sarcoidosis. 

 

Good-responders to sarcoidosis treatment clustered separately from the 
pre-treatment sarcoidosis samples, untreated TB samples and the 
controls 

Next we wished to determine if the profiles of the treated sarcoidosis patients with a 

good clinical response were similar to the profiles of controls or similar to profiles of 

the patients. Therefore we carried out unsupervised analysis and unsupervised 

hierarchical clustering of all the pre-treatment sarcoidosis patients, treated sarcoidosis 

patients, untreated TB patients and controls. Unsupervised analysis of the test set 

untreated TB, pre-treatment sarcoidosis, treated sarcoidosis and controls samples 

generated 2,077 transcripts (Figure 60). Unsupervised hierarchical clustering revealed a 

distinct cluster of the treated sarcoidosis patients who showed a good clinical response 

(Figure 60). This distinct cluster of good-response sarcoidosis patients fell within the 

main cluster with all the patients, not with the controls, however it was separate from 

the pre-treatment sarcoidosis patients and from the inadequately-treated sarcoidosis 

patients. The untreated TB and pre-treatment sarcoidosis patients clustered together as 

previously demonstrated in chapters 3 and 5. Within this cluster of untreated TB and 
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sarcoidosis samples also lay the samples from the inadequately treated sarcoidosis 

patients. The patient who was originally misdiagnosed as steroid-unresponsive clustered 

with the adequately responding profiles (bright pink mark on the profile label bar, 

Figure 60). All but one of the controls clustered in a separate main cluster away from all 

the patients, regardless of treatment status. The test set was used as all the sarcoidosis 

pre- and post-treatment samples were processed and run for microarray with the test set 

samples. 

 Therefore these results demonstrated that the sarcoidosis patients with a good 

response to treatment showed a distinct transcriptional signature from the inadequately 

treated sarcoidosis patients and from the pre-treated sarcoidosis patients. 

  

A good treatment response in sarcoidosis appears to induce an active 
transcriptional change with an over-abundance of many genes 

From the heatmaps it can be seen numerous genes were highly over-abundant in the 

good-response sarcoidosis treatment group while some genes were highly under-

abundant, compared to all the other patients and controls (Figure 60). A few of the 

good-responders also showed under-abundance of a subgroup of genes with normalised 

intensity values akin to the healthy controls. These genes include the IFN-inducible 

genes GBP1, GBP5, GBP6, STAT1, STAT2, IFI35, IRF1, TAP1, FCGR1A, FCGR1B 

and FCGR1C. Modular analysis was applied to determine and compare the biological 

functions of the different sarcoidosis treatment outcomes. By this analysis it could be 

seen there was an over-abundance of inflammation, cell death and DC/apoptosis genes 

in the good-responders compared to the inadequate-responders and pre-treatment 

samples, relative to the controls (Figure 61). The highly over-abundant inflammatory 

genes included IL1R2, IL1RAP, IL18RAP and DUSP1 genes. However there was little 

change in the IFN modules in response to clinically effective treatment. There was 
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under-abundance of lymphocyte activation, B cells, monocytes and mitochondrial 

functions. Both the heatmap and modular analysis demonstrated an active 

transcriptional response in certain genes in the patients with a good treatment response. 

 

Cured pneumonia patients clustered separately from the untreated 
pneumonia and have profiles parallel to the healthy controls 

Five pneumonia patients were followed up 6 weeks after hospital discharge. All five 

completed their prescribed antibiotics and were diagnosed as cured by their practising 

physician. All had complete or near-complete resolution of radiological changes, 

symptoms and CRP <5 mg/L. Unsupervised analysis (7,806) and unsupervised 

hierarchical clustering of just the pre-treatment and post-treatment pneumonia samples 

clearly illustrated the samples sub-dividing into two clusters, containing pre-treatment 

and post-treatment profiles (Figure 62). The 1,446 transcript list derived from the initial 

unsupervised analysis and statistical filtering of all the untreated training set profiles 

(Figure 14), were used to demonstrate by unsupervised hierarchical clustering that the 

same pneumonia profiles after treatment now appeared within the main cluster with the 

controls (Figure 63).  The post-treatment pneumonia samples are pink on the sample 

label bar and the pre-treatment profiles obtained from the same patients are as before 

brown on the sample label bar (Figure 63). The training set was used as all the 

pneumonia pre- and post-treatment samples were processed and run for microarray with 

the training set samples. 

 These results show there was no transcriptional difference between the post-

treatment pneumonia samples and the controls.  
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MDTH of TB, sarcoidosis and pneumonia changed significantly after 
treatment 

MDTH has previously been shown to be associated with disease activity therefore the 

algorithm was applied to determine the effect of treatment on the patients’ 

transcriptional profiles. After treatment both the TB and pneumonia MDTH scores 

significantly decreased such that their scores became synonymous with the healthy 

controls (Figure 65b & c). However the treatment responsive sarcoidosis significantly 

increased their MDTH, in keeping with an active transcriptional response after 

treatment as described earlier and indicating a likely glucocorticoid response (Figure 

65a). The sarcoidosis patients who were commenced on treatment but did not respond 

clinically (inadequate responders) showed no significant change from the untreated 

sarcoidosis (Figure 65a). 

 

Discussion 
 

Sarcoidosis transcriptional profiles correlated strongly with the 
patient’s clinical response to systemic glucocorticoids 

To prevent any bias in the analysis of the effects of treatment on sarcoidosis patients a 

completely unsupervised analysis approach (therefore only with the fold change from 

the median and without any statistical filtering) was applied. This was followed by 

unsupervised hierarchical clustering using the interpretation of ‘treated with 

immunosuppression’ or ‘pre-treatment’. The analysis therefore provides a totally 

unbiased answer as to the clustering of the patients. However it was perhaps not an 

anticipated finding that some patients who were started on immunosuppression should 

look like the patients who were not commenced on any treatment.  But on closer 

inspection of the clinical data of the samples it can be seen the patients instead distinctly 
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cluster into (1) those that had a good treatment response and (2) those who did not 

respond satisfactorily or all the pre-treatment samples (Figure 50 - 51). Therefore it 

seems the transcriptional profiles correlated with a good response to glucocorticoid 

treatment rather than just whether the patient was receiving glucocorticoids. As 

expected adding a further level of analysis with a statistical filter to compare the two 

groups, ‘pre-treatment/inadequately treated’ compared to ‘good response’, replicated the 

clustering performed with pure unsupervised analysis (data not shown).  

Of particular interest was the patient who was thought initially not to be 

responding to treatment on their second clinic visit but on their third clinic visit was 

determined to be fully responsive - as her transcriptional profile post-treatment was 

always typical of a patient who was clinically responding well even at the second clinic 

visit. This suggests transcriptional profiling may be useful as a clinical tool in aiding 

decision making regarding treatment response in clinically challenging situations.  

There were three patients who did not appear to respond well either clinically or 

by extrapolating interpretation of their transcriptional profiles. One of the three patients 

was only receiving high dose hydroxychloroquine. However the evidence for 

measurable efficacy of single therapy hydroxychloroquine in pulmonary sarcoidosis is 

poor (Bradley, Branley et al. 2008), which may explain the lack of a response. The other 

two patients were receiving prednisolone 20mg daily. There could be several reasons 

for their lack of response including an insufficient prednisolone dose (as demonstrated 

by patients 3 & 5 who responded well after increasing their treatment), poor patient 

compliance or possibly glucocorticoid resistant disease. Steroid-resistance in treating 

sarcoidosis is a common reason for instituting alternative immunosuppressive therapy 

such as methotrexate or azathioprine (Paramothayan, Lasserson et al. 2006), steroid-

resistance is also an established phenomenon recognised in other respiratory diseases 
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e.g. asthma (Schwartz, Lowell et al. 1968). Although this study was not designed to 

determine a biomarker of treatment response, one could speculate there is a pragmatic 

potential for transcriptional profiles to act as surrogate markers of treatment response in 

sarcoidosis. This would be of great clinical value as there is currently little consensus on 

how to comprehensively assess treatment response in pulmonary sarcoidosis. 

 

The transcriptional response to successful treatment of sarcoidosis was 
associated with over-abundance of the inflammatory response 

An additional finding was that the sarcoidosis treatment-responsive patients, all of 

whom were treated with glucocorticoids, showed an over-abundance of many of the 

genes, particularly the inflammatory genes (Figure 58 & 59). The sarcoidosis patients 

with a good treatment response remained in the main cluster containing all the patients 

rather than the main cluster containing the controls (Figure 60), although they clustered 

distinctly from untreated patients within the main patient cluster. It might be expected 

that a reduction in the inflammatory response would occur in patients receiving 

glucocorticoids; however our study appeared to show the opposite. There are a number 

of reasons this may have occurred. Firstly most sarcoidosis patients are treated with 

curative intent for many months with immunosuppressive therapy where over 50% of 

patients are treated for longer than 2 years (Baughman and Nunes 2012). The average 

length of time the patients in this cohort were sampled at was 14 weeks after treatment 

was commenced (Figure 59). Therefore the patients were only sampled in the middle of 

their treatment regimen, which may explain their on-going active transcriptional 

response trying to reverse the underlying disease processes. In addition this may explain 

the lack of significant down-regulation of the IFN modules in all the patients (Figure 

61), although from the heatmap it can be seen some of the treatment-responsive patients 

did show an under-abundance of many IFN-inducible genes, e.g. STAT1, STAT2, many 
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GBPs and IRF1 (data not shown), compared to the pre-treatment patients (Figure 60). 

Perhaps if these patients were sampled again in 1-2 years’ time their transcriptional 

profiles would appear much more quiescent, resembling the non-active sarcoidosis 

profiles. Interestingly it has been shown that glucocorticoids while able to suppress the 

NF-κB pathway in many cells in SLE exert no effect on the NF-κB pathway in pDCs, 

thus allowing the continued secretion of IFNα and intimating the reason for the reduced 

glucocorticoid sensitivity seen in SLE (Guiducci, Gong et al. 2010). Indeed 

glucocorticoid resistance has been reported in several other diseases including asthma, 

rheumatoid arthritis, acute lymphocytic leukaemia and ulcerative colitis (Biddie, 

Conway-Campbell et al. 2012). The underlying mechanisms resulting in resistance in 

these diseases may therefore also explain the seemingly partial or negligible response 

seen in many sarcoidosis patients (Paramothayan, Lasserson et al. 2006). Although in 

this study there was over-abundance of the inflammation modules in the treatment-

responsive patients compared to the untreated/inadequate responders, some of the over-

abundant genes were anti-inflammatory genes including IL1R2, IL1RAP, IL18RAP, 

DUSP1, FOS, IκBα and MAPK1 (fold change >2, Figure 61 or data not shown) 

(McColl, Michlewska et al. 2007; Shipp, Lee et al. 2010; Veenbergen, Smeets et al. 

2010). Therefore although there is an over-abundance of inflammation genes as defined 

by the inflammation modules, many of these inflammatory genes may be involved in 

anti-inflammatory processes. In addition some of the inflammation genes over-abundant 

in the module are members of the TNF super family (TNFRSF10B, TNFRSF10C, 

TNFRSF1A and TNFSF13B) with known roles in apoptosis. Furthermore the 

glucocorticoids may be applying their anti-inflammatory effects at the post-

transcriptional level, as has been described in previous studies (De Bosscher, Vanden 

Berghe et al. 2003). 
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Modular analysis of the sarcoidosis transcriptional response to 
glucocorticoids was similar to that seen in glucocorticoid-treated SLE 
patients 

Many of the other glucocorticoid effects seen by modular analysis in this study were 

also seen by the same modular analysis in the Guiducci et al study of glucocorticoids in 

SLE patients (Guiducci, Gong et al. 2010). Although they did not publish all the 

modules, including the inflammation modules and apoptosis module, they found similar 

differences between their treated and untreated patients as in this study for many of the 

other modules. These similarities included no change in the IFN module (suggested to 

be related to the glucocorticoid-unresponsive pDCs in SLE), under-abundance of the B 

cells, monocytes and mitochondrial related modules (Figure 61). Another module not 

shown in their paper but shown to be over-abundant in this study was the DC/apoptosis 

module (Figure 53). This is in keeping with the knowledge that glucocorticoids induce 

apoptosis in many cells including neutrophils, eosinophils, thymocytes and pDCs (Boor, 

Metselaar et al. 2006; McColl, Michlewska et al. 2007).  

 

Unlike this study an earlier sarcoidosis study surprisingly found no 
difference in the transcriptome of patients either receiving or not 
receiving systemic glucocorticoids 

Although there was an unexpected significant inflammatory response and 

transcriptional activity in the treatment-responsive patients, the other glucocorticoid-

induced responses were in keeping with previous studies, possibly suggesting a unique 

glucocorticoid-related inflammatory process occurs within the peripheral blood of 

sarcoidosis patients that has not been seen in other inflammatory diseases. Only one 

other sarcoidosis blood transcriptome study compared patients receiving systemic 

glucocorticoids to those not receiving treatment (Koth, Solberg et al. 2011). This study 

reported no difference in the treated or untreated patient’s transcriptional response. In 
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view of our knowledge of the action of glucocorticoids and their effects this would not 

have been anticipated and could be explained by at least three factors. Firstly they do 

not document in their publication the dose of prednisolone the patients were taking and 

as sarcoidosis patients are often maintained on very low doses e.g. 5mg prednisolone, 

without this information it is difficult to interpret the data. Secondly the patients were 

two separate groups – not the same patients assessed before and after treatment, 

therefore the treated group may have originally had more active disease requiring 

treatment which on receiving treatment had become more similar to those untreated 

patients. Thirdly it is possible all 12 of the treated patients in their cohort were 

inadequately responding to the glucocorticoids, especially as treatment response can be 

difficult to assess, therefore these patients showing no difference in their profiles would 

match the inadequate responders in our study. 

 

The transcriptional response of successfully treated pneumonia and 
pulmonary TB patients resemble healthy controls 

The transcriptional profiles of the five cured pneumonia patients all returned to a 

transcriptional pattern identical to that of the controls. This could be seen on the 

heatmap (Figure 63), by the functional modular analysis (Figure 64) and by their 

MDTH score (Figure 65). As described in chapter 7 the cured TB patients also 

resembled the controls (Figures 49, 50 & 57). The increase in transcriptional activity of 

the treatment-responsive sarcoidosis patients was further illuminated by comparing the 

MDTH of all three diseases, before and during/after treatment (Figure 65). The 

treatment-responsive sarcoidosis patients showed a significant rise in transcriptional 

activity contrasting the significant fall in transcriptional activity seen in the cured TB 

and pneumonia patients. Interestingly the MDTH scores of the sarcoidosis inadequate-

responders paralleled the clustering visualised in the heatmaps, in that there was no 
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difference between them and the untreated sarcoidosis profiles. Two of the sarcoidosis 

patients only displayed a change in their transcriptional response after increasing their 

prednisolone dose (Figure 59). Thus you could postulate the change in transcriptional 

activity is either due to a glucocorticoid dose response or due to glucocorticoid-induced 

effects on the sarcoidosis immunopathology rather than a direct effect of 

glucocorticoids. 

 

Chapter Summary 
 

Sarcoidosis patients receiving immunosuppressive treatment showed a distinct change 

in their transcriptional signature only if they achieved a good clinical response to 

treatment. This change appeared to be an active transcriptional response with a 

prevailing over-abundance of inflammatory genes which included many anti-

inflammatory genes, over-abundance of apoptosis genes and under-abundance of certain 

leukocyte cell types. This response contrasted with the transcriptional changes seen after 

curative antibiotic treatment of pulmonary TB patients and community acquired 

pneumonia patients, as these patient’s profiles were comparable with the controls after 

successful completion of treatment. 
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Figures for chapter 8 
 

 
 

Figure 58. Unsupervised analysis and clustering revealed that treated sarcoidosis 

patients show a change in transcriptional signature only if they had a good clinical 

response to treatment. 

Transcripts were derived as shown at the top of the figure. The same unsupervised 

clustered heatmap of the 5,233 transcripts is displayed twice. The top heatmap reveals 

whether the samples were from patients before or after treatment. The bottom heatmap 

reveals whether the samples were from patients who had clinically responded to 

treatment or not. The layout of the heatmaps is as described in figure 13. 
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Figure 59. Showing same 5,233 transcripts but patients now clustered (a) by their 

treatment response and (b) per patient. 

The 5,233 transcripts used in the heatmaps were derived as shown in figure 58. The 

heatmaps were grouped by (a) the patient response or (b) each individual patient. Each 

patient is denoted a number in the table and top heatmap. A superscript number 

indicates the clinical visit number if there was more than one visit e.g. 3
2
 indicates the 

sample was taken on their second clinic visit and 3
3
 indicates the sample was taken on 

the third clinic visit. 
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Figure 60. Sarcoidosis patients responding adequately to treatment clustered 

separately from the untreated sarcoidosis & TB patients. 

Transcripts were derived as shown at the top of the figure. The layout of the heatmap is 

as described in figure 13.  
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Figure 61. A good response to sarcoidosis treatment appears to be associated with 

inflammatory genes. 

Only transcripts that were significantly detected compared to the background intensity 

(>15,000) were applied to the modular analysis (p<0.01). Modules with a red dot 

contain genes that were significantly over-expressed in that patient compared to the 

controls, a blue dot represents genes that were significantly under-expressed, no dot 

indicates no significant change in expression compared to the controls (p<0.05). The 

shade of the colour indicates the percentage of genes in that module that are 

significantly expressed as shown by the colour legend at the bottom of the figure. 
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Figure 62. Unsupervised analysis and clustering demonstrated that successfully 

treated pneumonia profiles cluster separately from untreated pneumonia profiles. 

 

Transcripts were derived by unsupervised analysis as shown at the top of the figure 

from the six patients’ before and after treatment. Unsupervised hierarchical clustering of 

the 7,806 transcripts was then performed. The layout of the heatmap is as described in 

figure 13.  
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Figure 63. After successful treatment pneumonia profiles cluster with the controls. 

 

 

The 1,466 transcripts that were derived originally from all the untreated trainings set 

samples by unsupervised analysis and statistical analysis (see figure 14) were applied 

again to the same cohort but with the addition of the six post-treatment pneumonia 

samples. Unsupervised analysis was then performed using the 1,446 transcripts and all 

the untreated samples as well as the six treated pneumonia samples. The layout of the 

heatmap is as described in figure 13. 
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Figure 64. Cured pneumonia patients showed a significant change in the modular 

analysis towards the controls. 

Only transcripts that were significantly detected compared to the background intensity 

(>15,000) were applied to the modular analysis (p<0.01). Modules with a red dot 

contain genes that were significantly over-expressed in that patient compared to the 

controls, a blue dot represents genes that were significantly under-expressed, no dot 

indicates no significant change in expression compared to the controls (p<0.05). The 

shade of the colour indicates the percentage of genes in that module that are 

significantly expressed as shown by the colour legend at the bottom of the figure. 
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Figure 65. Comparing MDTH in each disease before and after treatment using the 

same 1446 transcripts. 

 

MDTH algorithm was applied to each disease group to assess disease activity in the 

untreated samples compared to the post-treatment samples. The same transcript list was 

applied to all the disease groups for a fair comparison. The 1,446 transcript list 

originally derived from all the untreated samples was used (see figure 14). The graphs 

displays mean, SEM and p values from ANOVA with Tukey’s multiple comparison 

test. 
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Figure 66. Flow diagram of the results chapters summarising the main findings. 
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Chapter 9: Summary and future perspectives 
 

Summary of the results 
To our knowledge this is the first study to compare the blood transcriptional profiles of 

patients with pulmonary TB and the other similar respiratory diseases pulmonary 

sarcoidosis, community acquired pneumonia and primary lung cancer (Figure 66). The 

two clinically and pathologically analogous granulomatous diseases TB and sarcoidosis 

had very similar but non-identical molecular and biological characteristics that were 

distinct from the molecular and functional characteristics of the clinically similar 

respiratory diseases pneumonia and cancer. However it was possible to identify a 

unique set of TB-related genes that could differentiate TB from all the other profiles. 

The TB, pneumonia and sarcoidosis patients showed a significant transcriptional 

response after receiving potentially curative treatment. Their response varied depending 

on the disease. 

 

Clinically similar diseases TB and sarcoidosis had comparable blood 
transcriptional signatures, distinct from pneumonia and lung cancer 

Unsupervised analysis and statistical filtering generated 1,446 differentially expressed 

transcripts across all the training set samples (Figure 14). Samples clustered into 

controls and patients, with TB and sarcoidosis profiles clustering distinctly from the 

cancer and pneumonia profiles. These clustering configurations were validated in a test 

set and were independent of ethnicity and gender (Figure 15, 16 & 18). The diseases TB 

and pneumonia showed the highest transcriptional activity, as evidenced by their 

MDTH scores in both the training and test set, while sarcoidosis and cancer appeared to 

be more transcriptionally quiescent diseases with scores approaching the controls 

(Figure 19). Functional analysis by IPA of the 1,446 transcripts found an association 
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between the IFN-signalling pathway and other immune response pathways with both 

TB and sarcoidosis; whereas pneumonia and cancer had significant associations with 

the inflammation and signalling pathways (Figure 20). All the diseases correlated with 

an under-abundance of T and B cell pathways. Two prior studies have also found TB 

and sarcoidosis transcriptional profiles to be very similar and to correlate with over-

abundance of IFN-inducible genes (Koth, Solberg et al. 2011; Maertzdorf, Weiner et al. 

2012). 

Sarcoidosis transcriptional profiles were heterogeneous in the training, test and 

validation set and appeared to form at least two subgroups, those clustering with 

controls and those clustering with the other patients, particularly the TB patients’ 

profiles (Figures 25 & 26).  A complex clinical classification system was applied to 

divide sarcoidosis patients into either having active disease or non-active disease. This 

classification showed significant clustering-prediction abilities, more so than any single 

clinical variable, or combinations of the twenty-five different variables (Table 19–20). 

There were three previous sarcoidosis blood transcriptional profiling papers, however 

none of these papers commented on the known clinical heterogeneity of sarcoidosis or 

on the relationship of acknowledged sarcoidosis clinical variables with their expression 

profiles. This may be because two of the three papers did not apply unsupervised 

analysis or unsupervised hierarchical clustering to visualise their transcriptional profiles 

instead narrowing down their analysis to genes of interest for the investigators, thus 

their approach was more biased and led more by their pre-considered hypotheses 

(Rosenbaum, Pasadhika et al. 2009; Koth, Solberg et al. 2011; Maertzdorf, Weiner et al. 

2012). However Rosenbaum et al did apply supervised hierarchical clustering to their 

564 transcripts differentially expressed of the sarcoidosis patients compared to the 

controls (fold difference ≥ two and q ≤0.05), from which it can be clearly visualised 
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some of the sarcoidosis patients do have profiles corresponding to the controls. This 

observation suggests that their cohort also had heterogeneous transcriptional profiles, 

although this was not acknowledged in their publication. 

 

Functional & biological characteristics were associated with each of the 
four active diseases 

Modular analysis displayed a distinct pattern of significant over-abundance of the IFN 

modules for the TB and active sarcoidosis patients and a minor over-abundance in the 

IFN modules in the non-active sarcoidosis (Figure 28). However the percentage of IFN 

genes over-abundant in the TB patients was significantly more than in the active 

sarcoidosis patients and therefore all sarcoidosis patients (Figure 29). By IPA 

comparison analysis the significance and the number of genes present in the IFN-

signalling pathway were both higher in the TB than the active sarcoidosis patients 

(Figures 32 & 33). However, the two previous papers that demonstrated an association 

with both TB and sarcoidosis and the IFN-inducible genes, did not appear to have 

assessed the differences between the number of genes in the two diseases (Koth, 

Solberg et al. 2011; Maertzdorf, Weiner et al. 2012). In addition it can be seen from the 

top 50 ranked genes that the IFN-inducible genes over-abundant in the TB patients have 

a much higher fold difference from the controls than when over-abundant in the active 

sarcoidosis patients (Figure 30), and in the unique disease related genes determined 

from the Venn diagram it is only in the TB-related genes that the IFN-signalling 

pathway was significant (Figure 39). Other pathways associated with both 

granulomatous diseases were immune response pathways such as the role of PRRs in 

recognition of bacteria and viruses and the antigen presentation pathway (Figure 32). 

The pneumonia and cancer patients were associated with very different 

biological sets of genes, in particular inflammation genes, as seen in the modular 
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analysis (Figures 28 & 29). These global biological findings are in keeping with the 

known underlying disease mechanisms acknowledged to occur in both pneumonia and 

primary lung cancer (Fernandez-Serrano, Dorca et al. 2003; O'Callaghan, O'Donnell et 

al. 2010). However inflammation is a very broad category encompassing a large number 

of genes, therefore the degree of similarity of the inflammatory response between these 

two diseases needs to be further defined. Pneumonia was also significantly correlated 

with over-abundance of the neutrophil module, while many of the top 50 ranked 

differentially expressed genes compared to the controls were also neutrophil anti-

microbial genes (Figures 28-30), matching the high peripheral neutrophil blood count 

(Table 10).  

‘Comparison IPA’ analysis revealed a very significant association of pneumonia 

with the under-abundance of protein translation pathways EIF2, and mTOR signalling 

(Figures 32, 33 & Table 25).  This finding was also seen by investigating the unique 

disease-related genes acquired from the Venn diagram (Figure 39). Furthermore 

targeted analysis of protein translation and unfolded protein response genes also 

identified an under-abundance, relative to the controls and relative to the other diseases 

(Figures 35, 36 & Table 27), along with a dominant association of over-abundance of 

the IPA apoptosis pathway (Table 25). Past reports have noted an up-regulation of UPR 

related genes in two different bacterial infections, in cells infected with Listeria 

monocytogenes and in macrophages from human TB granulomas (Seimon, Kim et al. 

2010; Pillich, Loose et al. 2012), which is in contrast to the under-abundance of UPR 

genes found in our study. However our study has focussed only on the peripheral blood 

away from the site of the disease. Therefore a potential reason for this disparity in 

regulation could be due to preservation of cellular energy at sites away from the source 

of infection/inflammation (i.e. peripheral blood) while there is a preferential 
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sequestration of protein making cells at the site of infection/inflammation (i.e. the 

lungs).  

‘Comparison IPA’ also revealed three pathways as more significantly associated 

with cancer than the other diseases: NK cell signalling, CTLA4 signalling in cytotoxic 

T lymphocytes and HGF signalling (Table 26). Interestingly all three pathways have 

been involved in the therapeutic management against cancer. NK cell-based 

immunotherapies have had little success in humans but remain promising due to the 

suggested ability of NK cellls to migrate towards inflammation and kill target cells 

without previous activation (Zamai, Ponti et al. 2007). Anti-CTLA4 antibodies have 

already been approved for use in patients with metastatic or unresectable melanoma and 

is in clinical trials for prostate cancer (Kwek, Cha et al. 2012). In lung cancer HGF-

MET inhibitors have shown good efficacy in Phase III trials and in patients with 

resistance to EGFR-therapy (Gherardi, Birchmeier et al. 2012). 

 

The set of 144 transcripts could differentiate TB patients from the other 
diseases 

Although this study was not designed to obtain a biomarker, the 144 transcripts (132 

genes) that were differentially expressed between TB and active sarcoidosis, were also 

able to distinguish TB from all other respiratory diseases with good accuracy (Figure 

44). This was achieved in the training set, test set, validation set and external datasets, 

demonstrating the robustness of the transcript list. The 144-transcript list also revealed 

better sensitivity than two previously published transcript lists that could differentiate 

TB from sarcoidosis (Koth, Solberg et al. 2011; Maertzdorf, Weiner et al. 2012).  
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Transcriptional profiles changed significantly during and after 
treatment 

Active TB patients showed a significant change during and after antituberculous 

treatment in a derived active TB transcriptional signature, a derived treatment specific 

signature and the 144 TB-specific transcriptional signature (Figures 50, 51 & 57). The 

transcriptional change occurred as early as 2 weeks after treatment was initiated. The 

transcriptional response could be quantified in each patient using the novel algorithm 

‘temporal molecular response’ (Figures 53-55). Post treatment signatures showed 

insignificant changes compared to the latent TB controls and revealed comparable 

MDTH scores to the latent TB controls (Figure 65c). A similar significant reduction in 

the transcriptional response towards the healthy controls could also be observed in 

pneumonia patients after administration of a curative course of antibiotics (Figures 62, 

63 & 65b). However while both the TB and pneumonia patients’ transcriptional 

response returned to a state equivalent to the controls, sarcoidosis patients treated with 

glucocorticoids displayed a very different transcriptional response to the healthy 

controls. Interestingly transcriptional changes could only be visualised in sarcoidosis 

patients who had a good clinical response to treatment, not just all patients who were 

receiving glucocorticoids (Figures 58-60). Interestingly the expression profiles of 

patients who did respond clinically to glucocorticoids showed an increase in 

transcriptional activity. This increase was dominated by inflammation genes, of which 

at least some are recognised to have anti-inflammatory roles. Other changes in the gene 

expression profiles secondary to the glucocorticoids were in keeping with previously 

published findings, such as under-abundance of T cells and monocytes but over-

abundance of apoptosis genes, and little change in the IFN modules (Figure 61) 

(Guiducci, Gong et al. 2010).  
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Future perspectives 
 

Compare the expression profiles found in the whole blood to those 
distinct for each of the different cell types 

A change in the blood transcriptional response could reflect changes in all cells or 

changes in gene expression only in discrete cell populations. The cell populations of the 

whole blood were different for each disease (Tables 9-11) and different cell types 

played a significant role in the transcriptional signatures as evidenced particularly by the 

modular analysis (Figure 28). To establish the influence each cell type and their total 

number were having on the signature would be best determined by comparing across the 

expression profiles of each cell population. For example the percentage of genes in the 

neutrophil module for all patients significantly correlated with their peripheral 

neutrophil count, yet from Berry et al. 2010 study and other studies, we known the 

neutrophil plays an important role in patients with TB and should not be dismissed 

(Barnes, Leedom et al. 1988; Berry, Graham et al. 2010; Eum, Kong et al. 2010). It 

would be particularly exciting to explore the differences and similarities between the 

different cell populations in the TB and sarcoidosis patients, in view of their similar 

whole blood transcriptional profiles. Are the IFN-inducible genes as prominent in the 

neutrophils in sarcoidosis as they are in TB or are they more dominant in the 

lymphocytes? There are several methodologies available for trying to identify the 

contributions of different cell types to the total expression, such as statistical-based 

deconvolution methods or the use of a meta-analysis of expression profiles from 

different cell types (Shen-Orr, Tibshirani et al. 2010; Nakaya, Wrammert et al. 2011). 

However none of these methods can truly replicate the robustness of the data from 

processing each of the individual cell types separately. Whole blood of six TB patients, 

ten sarcoidosis patients and seven healthy controls was separated into the different cell 
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compositions: PBMCs, neutrophils, CD4+, CD8+, CD14+ and B cells. Unfortunately 

due to a technical delay the gene expression data was not available at the time of writing 

this thesis but should be available for analysis very soon. 

 

Compare the blood gene expression data to protein 

In parallel to the gene expression profiles, serum was collected from the patients and 

will be analysed using a multiplex panel of cytokines. These results will be available 

soon and interesting to compare to the gene expression data for each disease, to 

compared across the diseases, and compare before and after treatment. For example the 

mRNA data may not reflect the protein data due to post-transcriptional and post-

translational regulations or due to other biological factors such as the rate of 

degradability of the measured proteins. However this additional knowledge should 

further help build a picture of the underlying disease mechanisms that are the same or 

differ between the diseases. 

 

Blood transcriptional profiles as potential biomarkers  

This study has demonstrated the proof-of-principle that blood transcriptional profiles 

can act as surrogate markers for disease diagnosis and treatment monitoring. This study 

has alluded to the possibility of using blood transcriptional signatures as biomarkers for 

differentiating active TB patients from patients with other clinically similar respiratory 

diseases, differentiating different clinical phenotypes of sarcoidosis to help guide 

clinical management, identifying a successful treatment response to antituberculosis 

treatment earlier than any currently available tool and differentiating a successful 

sarcoidosis treatment response from an inadequate response. The use of a commercially 

available whole genome microarray platform together with broadly available 

bioinformatics analyses programmes should allow rapid validation in subsequent larger 
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studies. Subsequent studies could also include additional cohorts such as extending the 

number of respiratory diseases or including other non-respiratory diseases such as extra-

pulmonary TB and extra-thoracic sarcoidosis. For the TB treatment monitoring it would 

be vital to include a cohort of patients with MDR-TB and also HIV/TB co-infected 

cohorts. This study focussed on TB patients who are not co-infected with HIV, as they 

represent the majority of patients infected with M. tuberculosis. WHO 2010 reports that 

of the 1.4 million deaths, three-quarters were not known to be co-infected with HIV 

(WHO 2010). Blood transcriptional signatures for use in the management of TB have 

great potential for development as blood biomarkers for clinical use and could be 

measured in the field using a polymerase chain reaction assay, similar to the WHO 

endorsed GeneXpert MTB/RIF test already in use for TB diagnostics in both developing 

and developed countries. However a blood host biomarker, based on our transcriptional 

signature, would have advantages over the GeneXpert test since it would not require 

sputum. In sarcoidosis treatment studies besides a much larger number of patients, it 

would also be of benefit to have subgroups of patients receiving different 

immunosuppressive treatments and crucial to follow-up their response at the end of 

treatment and many years subsequent due to the relapse rates.  

Development of biomarkers would not only require validation of the findings in 

larger and more diverse cohorts but would also require biostatistics analysis tools to 

optimize the minimum number of genes required. The optimal gene signature would 

likewise need to be tested using different technology platforms. 

 

Understanding the protective human host immune response to M. 
tuberculosis 

Another very important aspect in improving our understanding of TB, which requires 

future study, is a better understanding of why some individuals develop symptomatic 
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clinical disease, active TB, after infection with M.tuberculosis while others appear not 

to develop clinical disease, including those with latent infection. Blood transcriptional 

profiles could help identify the molecular characterisation of a protected individual from 

an individual who develops active TB. Preliminary work towards this goal was achieved 

in Anne O’Garra’s laboratory by stimulating whole blood, from patients with active TB, 

latent TB and BCG vaccinated healthy controls, with the mycobacterial antigens ESAT-

6 and PPD. The RNA was prepared and processed for microarray. Analysis of the 

microarray data identifed a specific signature of mycobacterial exposure, demonstrating 

the feasibility of the approach. However no strong transcriptional responses were found 

to be associated with the latent TB patients alone. This is most likely related to one of 

more of the following: the length of stimulation (20 hours), the use of whole blood 

rather than PBMCs, the limitations of the stimulations added and the obscuring of more 

subtle immune responses by the strong transcriptional response detectable in untreated 

active TB patients. An expansion of this work, including conditions able to address the 

potential issues above, is currently on-going to try and answer these important host 

immune response questions. 

 

Comparing and contrasting TB animal models to humans using the 
blood transcriptome 

Experimentation in patients with TB has limited capacity. Hence, it is necessary to 

develop experimental animal models closely resembling human disease, in order to 

investigate pathways of pathogenesis and to test novel therapeutic strategies for disease 

intervention. While the murine model is an excellent model there are factors that may 

hypothetically unduly affect the proficiency of the murine model to mimic infected 

humans for example there are many different mice strains and M. tuberculosis strains. 

One method to help clarify the global differences and similarities between 
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M.tuberculosis infected animal models and humans, is to compare whole blood 

transcriptional signatures in humans and mice. Members of O’Garra’s research team 

have run multiple mouse experiments for whole blood microarray analysis and then 

compared these to whole blood microarray data from patients with active TB. 

Preliminary comparative mouse and human data has already shown interesting results, 

with many further experiments on-going and planned to elucidate important questions 

such as comparing the role of IFN-inducible genes between the two species. 
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Conclusion 
 

This broad human whole-genome study has provided new insight into the parallels and 

differences of the molecular signatures of four similar respiratory diseases, pulmonary 

tuberculosis, pulmonary sarcoidosis, community acquired pneumonia and primary lung 

cancer. The findings have unveiled new biological knowledge about their disease 

mechanisms and revealed prospective pragmatic biomarkers for disease diagnosis and 

treatment monitoring. 
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