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Abstract

Tract-based spatial statistics (TBSS) is a popular method for the analysis of diffusion tensor imaging data. TBSS focuses on
differences in white matter voxels with high fractional anisotropy (FA), representing the major fibre tracts, through
registering all subjects to a common reference and the creation of a FA skeleton. This work considers the effect of choice of
reference in the TBSS pipeline, which can be a standard template, an individual subject from the study, a study-specific
template or a group-wise average. While TBSS attempts to overcome registration error by searching the neighbourhood
perpendicular to the FA skeleton for the voxel with maximum FA, this projection step may not compensate for large
registration errors that might occur in the presence of pathology such as atrophy in neurodegenerative diseases. This makes
registration performance and choice of reference an important issue. Substantial work in the field of computational
anatomy has shown the use of group-wise averages to reduce biases while avoiding the arbitrary selection of a single
individual. Here, we demonstrate the impact of the choice of reference on: (a) specificity (b) sensitivity in a simulation study
and (c) a real-world comparison of Alzheimer’s disease patients to controls. In (a) and (b), simulated deformations and
decreases in FA were applied to control subjects to simulate changes of shape and WM integrity similar to what would be
seen in AD patients, in order to provide a ‘‘ground truth’’ for evaluating the various methods of TBSS reference. Using a
group-wise average atlas as the reference outperformed other references in the TBSS pipeline in all evaluations.
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Introduction

The analysis of diffusion weighted MRI (DWI) data has become

an increasingly important area of neuroimaging research. DWI

contains information for assessing white matter (WM) integrity,

architecture and connectivity patterns. Diffusion tensor imaging

(DTI), in particular, describes the local diffusion process or the 3D

probability profile of water diffusion in tissue. One approach to

quantifying white matter structure using DTI data is to compute

scalar summaries such as fractional anisotropy (FA), mean, axial

and radial diffusivity [1,2]. Mapping these parameters enables

investigation of pathological change in the cerebral white matter.

Tract-Based Spatial Statistics (TBSS) is an automated method

for DTI analysis that employs a voxel-wise comparison-based

approach to assess associations across subjects, e.g. differences

between groups [3]. TBSS alleviates the alignment-related

problems of the low-resolution DTI data by projecting the FA

values of individual subjects onto a common ‘‘FA-skeleton’’ of

major white matter structures. This process is done through linear

and non-linear alignment, thus improving interpretability of

analysis of multi-subject DTI data [3]. However, this mapping

may not cope with high inter-individual brain variability,

especially in the presence of cerebral atrophy and ventricular

expansion observed in aging, and to a much greater extent in

neurodegenerative disorders such as Alzheimer’s disease (AD).

These structural changes can cause difficulties in aligning images

to a predefined atlas, particularly if the atlas has been generated

from the brain scans of young, healthy volunteers. The choice of a

reference image can strongly impact the results and the

interpretation of statistical comparisons between cohorts [4].

Some studies have attempted to overcome the misalignment

problem by modifying the registration step in the TBSS pipeline.

For example, to handle substantial ventricular enlargement in a

study of AD patients, Douaud et al. created a study-specific FA

template by non-linearly registering all native-space FA images to
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an FA template in the MNI space (www.fmrib.ox.ac.uk/fsl/data/

FMRIB58_FA) and then averaging them [5]. Then, the original

FA scans were non-linearly registered to this study-specific FA

template. This registration is still essentially pairwise from each

image to the reference FMRIB58FA, constructed from 58 FA

maps acquired from healthy adults aged 20–50 years. Although

the original FA scans were non-linearly registered to this study-

specific FA template rather than the atlas, it is still dependent on

the registration performance with respect to the atlas. To this end,

we propose incorporating a group-wise atlas into the TBSS

pipeline which, to the best of our knowledge, has not been

previously implemented.

In order to validate the skeleton projection algorithm at the

heart of TBSS, Zalesky presented an evaluative methodology using

synthetic warps of a ground truth image to quantitatively assess

TBSS performance based on three healthy subjects and two sets of

FA images [6]. This study suggested that even though the skeleton

projection only recovers less than 10% of the post-registration

misalignment, it still resulted in far less error of the expected FA

value than using Gaussian smoothing to reduce the effects of

misregistration. However, no work has been done, to our

knowledge, to evaluate the performance of TBSS when there is

a large deformation present due to atrophy. We extended the

performance evaluation to simulate morphometric variation

similar to neurodegeneration in AD.

Materials and Methods

The TBSS pipeline for the studies in this paper, depicted in

Figure 1, consists of the following steps:

1. Registration: every FA image is registered to a FA target image

in standard space.

2. Mean FA: aligned FA images are averaged to create a mean

FA map.

3. Skeletonization: a white matter skeleton is created, representing

major tracts common across all subjects. A threshold of

FA.0.2 is set to include the major white matter pathways, but

to exclude peripheral tracts where there was significant inter-

subject variability and/or partial volume effects with grey

matter.

4. Projection step: TBSS then projects each subject’s FA data

onto the mean WM tract skeleton. The highest FA value near

the skeleton in each subject (which should correspond to the

local tract centre value) is then projected onto the mean WM

tract skeleton for analysis.

5. Voxel-wise statistics: Voxel-wise statistical analyses were

performed by using a permutation-based inference tool for

nonparametric statistical thresholding (‘‘randomise’’ program,

part of FSL [7]) to assess group-related differences. The

number of permutations was set at 5000 [7]. This method

delivers non-parametric, two-sample, unpaired t-tests of

reduced and increased DTI indices in patients compared with

controls. TBSS results for FA was considered significant for

P,5, corrected for multiple comparisons using threshold-free

cluster enhancement (TFCE), a method which avoids using an

arbitrary threshold for the initial cluster-formation [8].

In this study, we wished to examine the specific effects of the

registration step. In particular we aimed to investigate and

compare different approaches in the non-linear registration step

of the TBSS pipeline by designing a simulation study.

Registration procedures
For consistency and repeatabilty purposes, all linear registra-

tions in this study were performed using FMRIB’s linear image

registration tool (FLIRT) [9]. Once aligned using linear registra-

tion, the non-linear registrations were then performed using

FMRIB’s Non-Linear Registration Tool (FNIRT), with the

parameters as defined in FA_2_FMRIB58_1 mm configuration

file [10].

The common TBSS pipeline provides three different routes for

the registration step:

Figure 1. TBSS processing pipeline. The focus of this study is on the non-linear registration step which is investigated using four different
approaches. Registration steps are described in Section.
doi:10.1371/journal.pone.0045996.g001

Group-Wise Registration in TBSS
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N Standard TBSS (ST-TBSS): All subjects are directly aligned,

linearly and then non-linearly, to the standard space FA template

(FMRIB58 FA).

N Most-Representative-Subject TBSS (RS-TBSS): In this meth-

od, the most representative FA image is chosen by first performing

all possible pairwise registrations (both linear and non-linear)

between subjects. From this, the subject that has the minimum

mean deformation required to non-linearly align it to all the

subjects will serve as the reference. This target image is then affine-

aligned into standard space, and every image is transformed into

FMRIB58 FA space by combining the nonlinear transform to the

target FA image with the affine transform from that target to

standard space. Figure 2 provides a diagram of this process.

N Study-Specific-Template TBSS (SS-TBS): As mentioned

above, the subjects are all aligned (linearly and non-linearly) in

standard space to the FMRIB58 FA template; averaged to give a

morphometric average atlas, (Mean FA map template in Figure 2);

then the original FA images are non-linearly registered to this

specific FA template (pre-defined target) [5].

Table 1 summarises studies of AD which have utilised TBSS to

date.

Group-wise TBSS (GW-TBSS). The key idea explored in

this study is to define a group-wise atlas and incorporate it into the

TBSS pipeline. Several studies have used a study-specific brain

template in voxel-based morphometry (VBM) [11,12]. Rose et al.

expanded the use of VBA-type analysis by using study-specific

averages in order to investigate mean diffusivity and FA changes in

both grey and white matter structures in patients with AD [13].

However, to the best of our knowledge, none of the TBSS based

studies have used a group-wise atlas which serves as the fourth and

novel option in this study.

An approach based on [14] was used to create the group-wise

atlas image. It consisted of a two-step method, where the first step

consists of registering all of the input images to the atlas image and

the second step corresponds to the update of the atlas image. This

process is repeated until the atlas image converges. In this study,

we used a coarse-to-fine approach where the deformation model

for registration was first rigid, then affine and finally non-rigid.

The atlas image was initialised as a random image from the

dataset, with all updates at the end of each iteration corresponding

to the average of all registered images. Note that the first

registration step only consists of rigid registration in order that no

bias was introduced from the random selection of the initial image

as the atlas. Five iterations were performed using a global

registration (one rigid and four affine) and then ten iterations of

non-rigid registration. Once the atlas was created, it was

registered, through affine registration, to FMRIB58FA. We then

used the transformation to align each input FA image to

FMRIB58FA.

Experiments
All registration methods were evaluated on a dataset of 41

subjects: 20 AD patients and 21 controls matched for age and

gender. All of the patients had attended the Cognitive Disorders

Clinic at the National Hospital for Neurology and Neurosurgery,

London, where they had been diagnosed clinically with AD of

mild to moderate severity. Informed consent was obtained from all

subjects and the study had local ethics committee approval.

Subject demographics and mini-mental state examination

(MMSE) scores are shown in Table 2.

Ethical approval for the study was received from the Joint Ethics

Committee of The Institute of Neurology and the NHNN

(National Hospital for Neurology and Neurosurgery). All subjects

gave written informed consent according to the Declaration of

Helsinki. Consent was taken by a clinician experienced in the

assessment of patients with cognitive impairment and all subjects

were considered to have capacity to consent according to the

Mental Capacity Act of 2005.

Each subject was scanned on a Siemens Tim Trio 3 Tesla

scanner using a 32-channel head coil. Diffusion weighted images

were acquired, TR = 6500 ms, TE = 83 ms, 2.5 mm isotropic

voxels, 9696 acquisition matrix and 55 slices, with two sets of 64

direction diffusion gradients (diffusion weighting 1000 ) and nine

unweighted volumes. Images were affinely, registered to the first

unweighted volume with FLIRT to correct for motion and eddy

currents and the weighting vectors adjusted for rotation. Diffusion

tensors were fitted with the Camino package [15] using all

acquired volumes.

Figure 2. Most-Representative-Subject TBSS (RS-TBSS) and Study-Specific-Template TBSS (SS-TBS) pipeline.The remainder of this
paper is organised as follows: In Section, different registration approaches for the TBSS pipeline are reviewed and a modification to the pipeline is
introduced to incorporate a group-wise atlas. In Section, a misalignment between two groups (patients and controls) is modelled using a simulation
study. In Section, results are presented on the simulation study and on a dataset of AD (n = 20) and age-matched controls (n = 21).
doi:10.1371/journal.pone.0045996.g002

Group-Wise Registration in TBSS
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Table 1. Anatomical locations reported to show reduced FA in AD patients in the literature using TBSS to date.

Authors, Year Subjects Method Areas of reduced FA

(age: Mean ± SD)

[26] 19 Control (75.066.0)
17 AD (76.067.0)

ST-TBSS Parahippocampus WM (right), uncinate fasciculus
(bilateral), WM tracts in brain stem and
cerebellum, inferior and superior longitudinal
fasciculus, cingulum, corpus callosum (genu and
splenium; no change in body and Rostrum), fornix
and cerebellum (p,0.01, uncorrected).

[29] 22 controls (70.066.0)
16 AD (69.566.7)

ST-TBSS The medial temporal white matter and uncinate
fasciculus (p,0.0001 corrected).

[27] 54 Control (75.865.6)
20 AD (77.864.9)

ST-TBSS Lateral occipital, middle and inferior temporal
WM, inferior parietal/supramarginal, precuneus
and parahippocampal WM

[30] 13 controls (64.1610.5)
9 AD (72.467.5)

ST-TBSS Corpus callosum (splenium), right fornix, right
cingulum, anterior thalamic radiations (bilaterally),
Inferior longitudinal fasciuclus (bilaterally) and
right posterior thalamic radiation (p,0.05
corrected).

[25] 15 controls (75.265.6)
15 AD (72.265.7)

ST-TBSS Posterior areas of the left hemisphere, in anterior
areas, the left uncinate fasciculus, left inferior
fronto-occipital and cingulate bundles, in
temporal, parietal and occipital regions, parts of
the inferior fronto-occipital, inferior longitudinal,
superior longitudinal and cingulate tracts (p,0.05
corrected).

[24] 15 control (74.166.1)
15 AD (75.2763.1)

ST-TBSS Posterior left hemisphere involving the uncinate
fasciculus and inferior fronto-occipital and
cingulate bundles (p,0.05 corrected).

[31] 22 controls (70.766.0)
16 AD (69.566.9)

RS-TBSS Anterior part of the left temporal lobe, probably in
the uncinate fasciculus (p,0.05 corrected).

[22] 13 controls (67.165.5)
25 AD (69.766.3)

RS-TBSS Right temporal lobe, right posterior cingulate
region, right parieto-occipital region, fornix as well
as two small areas in the right cerebellar
hemisphere and ponto-medullary junction
(p,0.01 uncorrected for multiple comparisons).

[23] 15 control (69.866.0)
23 AD (74.668.6)

RS-TBSS Parahippocampal tract, fornix, and small, inferior
parietal regions (p = 0.05 uncorrected).

[28] 14 controls (77.369.0)
16 AD (77.468.1)

RS-TBSS Uncinate fasciculus, inferior longitudinal
fasciculus, superior longitudinal fasciculus, limbic
pathways (fornix/stria terminalus, cingulum), and
commissural pathways.

[5] 61 controls (71.168.3)
53 AD (74.168.6)

SS-TBSS Corpus callosum, anterior commissure, uncinate
fasciculus, cingulum bundle and superior
longitudinal fasciculus (p,0.05 corrected).

In some, a mild cognitive impairment (MCI) group was studied alongside the AD and control groups. For simplicity we summarise the FA findings of the AD versus
control group comparison only. ST-TBSS: Standard; RS-TBSS: Most-Representative-Subject TBSS; SS-TBSS: Study-Specific-Template.
doi:10.1371/journal.pone.0045996.t001

Table 2. Demographic and clinical data for the Alzheimer’s disease (AD) patients and healthy control subjects whose scans were
used in this study.

Age (years) Gender MMSE Disease duration in years

Mean (sd) M/F Mean (sd) Mean (sd)

AD (n = 20) 61.3 (4.8) 7/13 16.0 (5.5) 5.9 (2.3)

Control (n = 21) 61.2 (7.3) 8/13 29.6 (0.5) N/A

Control* (n = 10) 63.1 (5.1) 3/7 30.0 (0.5) N/A

*: Control subjects in simulation study.
doi:10.1371/journal.pone.0045996.t002

Group-Wise Registration in TBSS
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Specificity evaluation
The obstacle faced in devising a performance measure of TBSS

is that the full knowledge of the ground truth is unavailable. To

overcome this obstacle we used a similar approach to [6]. The

misalignment was artificially modelled by warping the FA images

of ten control subjects using a deformation field designed to model

the typical deformation pattern observed in AD. The warped

controls served as the second group for comparison. If the

registration strategy of TBSS is suitably compensating for the

alignment, then no significant differences should be identified

through the voxel wise statistical analysis performed by TBSS. Any

significant clusters observed were considered false positives.

Figure 3 shows the flowchart for creating the misalignment used

in the specificity evaluation. Ten control images (CON) images

were individually warped to 10 AD images to produce ten warped

control images using a registration pipeline independent to the

methods used in the registration step of the TBSS pipeline. All FA

images were first skull stripped using Brain Extraction Tool (BET)

[16]. Then, each control-AD image pair was aligned linearly using

an ITK-based affine registration method [17] with the normalised

cross-correlation as the similarity measure and trilinear interpo-

lation. After affine alignment, a non-linear registration was

performed using an ITK-based method, Demons, applied with

default parameters [18]. This non-parametric algorithm has been

successfully applied to DTI data [19]. The Demons method was

chosen for the artificial warp to avoid bias toward the deformation

model, as it is a non-parametric approach while we use a

parametric registration algorithm (FNIRT) within the TBSS

pipeline. Figure 4 shows an example control image, the AD

subject it is being registered to, and the resulting warped control

image. All resampling of images was performed using trilinear

interpolation. To avoid detecting any differences introduced by

the interpolation scheme, the CON images were smoothed with a

Gaussian kernel in an attempt to match the level of smoothing

caused by the interpolation. Each was mapped back to the

corresponding CON using the inverse transformation and then the

root-mean-square error (RMSE) was computed. The CON images

were smoothed with a Gaussian kernel, when the widths of kernel

Figure 3. Flowchart of the simulation study. Flowchart of creating
the misalignment used in the specificity evaluation. Ten control images
(CON) images were individually warped to 10 AD images to produce ten
warped control images using ITK-based affine registration method and
Demons.
doi:10.1371/journal.pone.0045996.g003

Figure 4. Modelling typical atrophy in AD using Demons registration algorithm. A control image, CON, an AD subject as the target and the
deformed control image, , after applying the registration. Ventricular expansion in AD is well modelled in the control subject using the Demons
algorithm.
doi:10.1371/journal.pone.0045996.g004

Group-Wise Registration in TBSS
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() varying 0.5,1,1.5 and 2 mm. A kernel width of 1.5 mm was

chosen based on the minimum average RMSE obtained between

the smoothed CON and .

False-positive error is measured based on the voxels that show

significant statistical difference between two groups even though

there is no difference between them.

Sensitivity evaluation
In addition to the specificity evaluation, we performed a

sensitivity evaluation to investigate the performance of the various

TBSS strategies when there is a true difference between groups.

For this, the FA values of voxels in the WM tracts listed in Table 3

were changed in the () group. The ICBM-DTI-81 WM labels atlas

within FSL, developed by Johns Hopkins University (JHU), was

used to locate the WM tracts of interest [20]. Each individual FA

image was linearly registered to the atlas space using an affine

registration. After affine registration, the ICBM WM atlas was

non-linearly registered to the FA images in template space using

FNIRT. This transformation was used to warp the labels from the

ICBM WM atlas to the individual FA image through nearest

neighbour interpolation. The anatomical locations of the WM

tracts in Table 3 were produced (Figure 5) and checked by an

experienced neuroradiologist. The FA values within the WM

masks were then reduced by 10%, 20%, 30% and 40% in the

Figure 5. WM tract masks used in the true-positive experiment. CB: Cingulum bundle; ILF: Inferior Longitudinal fasciculus (including the
Inferior fronto-occipital fasciculus); SLF: Superior longitudinal fasciculus; UF: Uncinate fasciculus; PTR: Posterior thalamic radiation.
doi:10.1371/journal.pone.0045996.g005

Table 3. Summary of the results obtained with different TBSS pipelines in the literature and specificity evaluation study on FA.

White matter tracts No. studies specificity evaluation

ST-TBSS RS-TBSS SS-TBSS ST-TBSS RS-TBSS SS-TBSS GW-TBSS

n = 6 n = 4 n = 1

Uncinate fasciculus 4 1 1 ! (6) ! (6) 63 (6) 6 (6)

Inferior longitudinal
fasciuclus

3 1 – ! (6) ! (6) ! (6) 6 (6)

Superior longitudinal
fasciculus

2 – – 6 (6) ! (!) ! (6) 6 (6)

Cingulum bundle 5 1 1 ! (!) ! (!)1 ! (6) 6 (6)

Genu (CC) 1 1 ! (6) ! (!) ! (6) 6 (6)

Splenium (CC) 2 – 1 ! (!) ! (!) ! (6) 6 (6)

Fornix 2 2 1 ! (6) ! (6) 6 (6) 6 (6)

Anterior thalamic radiations 1 – – ! (6) ! (!) 6 (6) 6 (6)

posterior thalamic radiation 1 – – 6 (6) 6 (6) 6 (6) 6 (6)

Inferior fronto-occipital 2 – – ! (6) ! (!)2 ! (6) 6 (6)

WM of the
parahippocampal gyrus

2 1 – ! (!) ! (!) ! (6) 6 (6)

significant reduction in FA (); no significant results; n = number of studies.
CC: Corpus callosum; ST-TBSS: Standard; RS-TBSS: Most-Representative-Subject TBSS; SS-TBSS: Study-Specific-Template; GW-TBSS: Group-wise TBSS; Results of the
specificity evaluation study is reported bilaterally and in the case of asymmetry they are reported for the right hemisphere. 1: Left with only significant difference in ; 2:
Left with no significant difference; 3: Left with significant difference at .
doi:10.1371/journal.pone.0045996.t003

Group-Wise Registration in TBSS
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Figure 6. TBSS contrasts between two control groups (CON and ) using different registration schemes. The contrasts are overlaid on the
mean FA map of each approach and the mean FA skeleton (in green, FA 0.2). The results are thresholded at , corrected for multiple comparisons. The
yellow-red color indicate the areas with significantly decreased FA values in deformed control images compared with the original controls.
doi:10.1371/journal.pone.0045996.g006

Table 4. Results obtained with Group-wise TBSS on sensitivity evaluation study when reducing FA virtually.

White matter tracts sensitivity evaluation study

ST-TBSS RS-TBSS SS-TBSS GW-!TBSS

Uncinate fasciculus !(!) !(!) !(!) !(!)

Inferior longitudinal and Inferior fronto-occipital
fasciuclus

!(!) !(!) !(!) !(!)

Superior longitudinal fasciculus !(!) !(!) !(!) !(!)

Cingulum bundle !(!) !(!) !(!) !(!)

Corpus callosum (Genu) !(!) !(!) !(!) !(!)

Corpus callosum (Splenium) !(!) !(!) !(!) ! (!)

Fornix !(!) !(!) 6(!) ! (!)

posterior thalamic radiation 6(!) 6(!) !(!) ! (!)

Corrected p-value at ; 10% (20–40%) FA reduction; significant reduction in FA at ; no significant results.
ST-TBSS: Standard; RS-TBSS: Most-Representative-Subject TBSS; SS-TBSS: Study-Specific-Template.
doi:10.1371/journal.pone.0045996.t004

Group-Wise Registration in TBSS
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group synthetically. The resulting new and original FA images

(CON) were processed through the TBSS pipeline.

TBSS analysis of pathology
The TBSS pipeline was applied to the full data set of the 21

controls and 20 AD patients with each of these different

approaches: Standard (ST), Most-Representative-Subject (RS),

Study-Special-Template (SS) and Group-wise (GW) TBSS.

Results

Specificity evaluation
Table 3 shows the results from the specificity evaluation study.

ST-TBSS shows significant difference at a corrected level in all

regions, except for the posterior thalamic radiation and superior

longitudinal fascicles. These significant differences should be

interpreted as likely false positives. Only the cingulum bundle

and WM of parahippocampal tract were significant at . These

results were bilateral.

The RS-TBSS method showed higher false positives in more

WM tracts with less symmetrical results. SS-TBSS showed less

significant differences compared with the Standard pipeline,

suggesting that an atlas specifically created from the study can

help to reduce the misalignment problem. GW-TBSS showed no

difference between the two groups in the listed WM tracts

(Table 3).

Figure 6 shows the spatial distribution of significant differences

(representing false positives) in FA between and CON. In ST, RS

and SS-TBSS, regions of false-positive error are evident in the

statistical map of the brain. These changes can occur due to

residual misalignment. Although SS-TBSS helped to reduce the

amount of false positive regions, some areas still remain in multiple

WM tracts with less significant values than in the ST-TBSS

method (Figure 6). The voxel-wise statistical map resulting from

the GW-TBSS method has fewer false-positive regions of

difference.

As a reference, Table 3 also summarises the findings from the

literature regarding the WM tracts that were reported to

demonstrate significant reduction of FA in AD (it should be noted

that some studies only specified large regions instead of specific

WM tracts). The findings of the studies in the literature vary not

only when different TBSS approaches were used, but also when

the same TBSS approach was used. This is often attributed to

differences in the study samples, but factors such as residual

misalignment in the FA images may also contribute to the

discrepancies.

Sensitivity evaluation
Table 4 shows the results from the sensitivity evaluation study.

GW-TBSS was able to detect the significant reduction of FA in all

the examined WM tracts at every reduction level. There was no

asymmetric difference when the FA values of the WM tracts were

changed bilaterally. ST-TBSS and RS-TBSS detected the

significant reduction in FA in all WM tracts at all reductions,

except in the posterior thalamic radation at 10% reduction. SS-

TBSS also detected all of the changes except for the fornix at 10%.

Although these methods were highly sensitive, many of these tracts

were identified as false positive in the specificity evaluation.

Effect of the registration scheme on skeletonisation
To quantify the effect of the alignment on the skeletonisation

and projection step of the TBSS protocol, Figure 7 shows a Bland-

Altman plot of individual FA values extracted from the

intersection of skeletonised datasets of GW-TBSS with other

methods (Group-wise – other methods) in the specificity evaluation

study. Projected FA was significantly higher across the whole

skeleton after registration to the Group-wise atlas in comparison

with the other methods.

Figure 7. Bland-Altman plot showing differences in projected FA between GW-TBSS and the established methods of registration.
GW-TBSS has a higher projected FA across the mean skeleton compared to ST-TBSS, RS-TBSS and SS-TBSS. Median difference in FA are shown with
horizontal lines for each comparison.
doi:10.1371/journal.pone.0045996.g007

Group-Wise Registration in TBSS
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Effect of the registration scheme on variation of FA
across the group

Figure 8 shows the voxel-wise standard deviation of FA across

the group calculated after applying ST, RS, SS and GW-TBSS in

and CON. Higher standard deviation is visible in several regions

when using ST, RS and SS-TBSS such as around the ventricles

and parts of the corpus callosum. Group-wise alignment reduces

the inter-subject FA variance, suggesting that the FA images are

better aligned.

Figure 9 shows that the mean (over voxels) of the variance of

difference between the average image and subjects reduces with

each iteration when using GW-TBSS. The mean of this variance

of difference over subjects when using SS-TBSS (0.004160.0038)

is higher than the first iteration of non-linear registration in GW-

TBSS.

TBSS analysis of AD pathology
Figure 10 shows the location of significant differences (

corrected) in FA between patients with AD and control subjects

when using the TBSS pipeline with different approaches,

including our GW-TBSS. Age and gender were included as

covariates for the analyses as in [21]. The voxel-wise statistical

map is overlaid on the mean FA map of each method.

Different TBSS approaches showed reduced FA in patients with

AD in bilateral uncinate, inferior longitudinal and inferior fronto-

occipital fasciculi and posterior thalamic radiation, right cingulum

bundle, genu, body and splenium of corpus callosum. However,

RS-TBSS showed significant FA reductions in widespread areas

throughout the brain. Only SS-TBSS showed significant FA

reduction in the left cingulum bundle. No significant FA reduction

in the AD group was found using SS-TBSS and GW-TBSS for the

fornix and WM of parahippocampal gyrus, whilst RS-TBSS

showed significant FA reduction in both WM tracts and ST-TBSS

showed FA reduction in WM of parahippocampal gyrus. Studies

Figure 8. Standard deviation in FA across the group after registration to the FA template (FMRIB58_FA) in ST-TBSS, RS-TBSS, SS-
TBSS, GW-TBSS. Standard deviation maps indicate standard deviation was greater when using ST-TBSS and RS-TBSS. Colour bar indicates standard
deviation.
doi:10.1371/journal.pone.0045996.g008
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listed in Table 1 using different TBSS pipelines showed significant

FA reductions of these WM tracts in AD groups.

Discussion

The aim of using TBSS for analysis of diffusion data is to

provide an objective and sensitive method for multi-subject,

whole-brain diffusion data analysis. The registration step that

forms a key part of the TBSS algorithm is designed to align each

individual’s FA image to a common standard space. Minimising

residual misalignment is critical to ensure that the sensitivity and

specificity of any subsequent statistical analysis is not compromised

due to poor alignment [6]. The skeleton projection step is designed

to alleviate residual misalignment following the registration step,

however the projection procedure must search locally (to avoid

finding spurious correspondences) so will not be able to correct

large misalignment. One reason for such misalignment may be the

inclusion of subjects with variable levels of cerebral atrophy and

ventricular size. Given the widespread and growing use of TBSS in

studying populations with atrophy, for example AD patients, the

purpose of this study was to investigate alternative registration

procedures for TBSS and explore the potential for a group-wise

atlas to minimise false findings caused by misalignment.

TBSS method in atrophy
Many studies have now applied TBSS to AD patients, with

variable results (Table 1). Acosta-Cabronero et al. found no

significant FA change when corrected for multiple comparisons

[22]. Agosta and colleagues reported significant FA reduction

limited to the parahippocampal tract and the fornix [23].

Numerous studies have reported significant FA reduction in

widespread areas throughout the brain including all of the regions

that were used in this paper [24,25,26,27,28,29,30,5,31] (see

Table 3).

These studies are not directly comparable to each other due to

differences in subjects (sample size, age range, disease severity),

data acquisition protocols and statistical procedures, which may

underlie some of the inconsistencies in their findings regarding

affected WM tracts. However, it is very possible that methodo-

logical factors such as registration performance may have

contributed in some way to the discrepancies. The performance

of the registration algorithm may be degraded if the deformations

required to transform one image into another are too large.

Therefore, the statistical results obtained from a conventional

TBSS pipeline (including ST and RS-TBSS) may be affected by

the performance of the registration in the study group where

atrophy is present. Use of the FMRIB58_FA standard template

could play a role due to the age discrepancy between the template

subjects and the age of our subjects. Any resulting misalignment

will consequently affect the skeletonisation and voxel-wise

statistical analysis.

Experiments
We demonstrated that it is possible to improve the alignment of

DTI data by modifying the TBSS pipeline to use a group-wise

atlas as the reference. We evaluated the performance and accuracy

of different approaches in the registration step using a simulation

study. The TBSS pipeline is intended to alleviate residual

misalignment observed in methods like VBM, however this aim

is not fully achieved using the ST and RS-TBSS approach

(Figure 6). The three approaches studied all showed false-positive

error in the specificity evaluation, defined as the finding of a

significant difference between two groups when there was no true

difference between them. The false positives were located in WM

tracts that have been reported to be implicated in AD underlining

the importance of controlling misalignment in the study of this

disease. The spurious results in this specificity evaluation study

may relate to misalignment, which occurred in the registration

step and was not fully rectified during skeletonisation.

We showed that the group-wise method performed well at both

detecting true positive results in the sensitivity evaluation study,

Figure 9. Mean variance of difference between average image and subjects in each iteration when using GW-TBSS. The mean and
standard deviation of variance reduces in each iteration, r: rigid registration; a: affine registration; n: non-linear registration. Inlays of the linear (top
right) and non-linear (bottom-right) iterations are shown separately to better illustrate the improvement of the group wise registration with each
iteration.
doi:10.1371/journal.pone.0045996.g009
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and at not generating false positives in the specificity evaluation

study.

The AD cohort in this study had a moderate degree of cognitive

impairment at the time of scanning, with a mean (MMSE) score of

16/30 (standard deviation 5.5). Our results demonstrate that

widespread changes in the microstructural integrity of white

matter tracts are evident at this stage of the disease [32,33,34].

Assessing the relative contributions of grey matter atrophy and

white matter tract degeneration to disease progression will be an

important direction for future longitudinal work.

In this study there was no significant FA reduction found in the

fornix and parahippocampal gyrus when the GW-TBSS method

was used. These WM tracts showed significantly reduced FA in

AD patients in this study when ST-TBSS and RS-TBSS were

used, as well as in studies which employed these approaches

[26,30,22,23,28,27] and in our specificity evaluation study. The

changes detected in these tracts in some studies but not others

could be due to differences in the patients studied, however it is

also possible that thin WM tracts such as the fornix are particularly

vulnerable to misalignment errors.

Although the three conventional methods of registration used in

TBSS produced similar mean FA maps and skeletons, there

appeared to be greater variance in voxel-wise FA after registration

when compared to the group-wise approach. In addition, the

group-wise method resulted in significantly higher FA values from

individual data sets projected onto the group skeleton after

Figure 10. The voxel-wise statistical map between 20 patients with AD and 21 controls using different TBSS approaches. FA results
showing the contrast ADCON; Statistical threshold: p0.05 (corrected); In green the mean FA skeleton is shown and the statistical maps are overlaid on
the mean FA image of each approach.
doi:10.1371/journal.pone.0045996.g010
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registration compared with the other approaches. This suggests

that the group-wise method reduces the level of residual

misalignment after the registration step. We believe that the

present study is the first to demonstrate quantifiable improvements

in DTI analysis through the use of a group-wise atlas in TBSS.

The group-wise registration has the advantage of avoiding the

anatomical bias introduced by choosing a specific template in

typical pairwise registration frameworks. Geng et al. compared

group-wise registration with pair-wise group registration to

reference, FMRIB58FA and most representative subject. They

showed the group-wise registration reduces across-subject varia-

tion of FA images suggesting that the sensitivity in detecting white

matter alterations between populations, as reflected by FA changes

at a group level, should be improved by more accurate registration

methods [35]. Further, Geng et al. applied the unbiased group-

wise registration method on diffusion tensor images and the

registered DTI images showed smaller shape differences in terms

of reduced variance of the FA maps and more consistent tensor

orientations [36]. However, incorporating a group-wise atlas into

the TBSS pipeline has not been previously implemented and

increasing number of studies on neurodegenerative disorders with

cerebral atrophy necessitate the improvement of this whole-brain

DTI analysis method. Future work might also extend the TBSS

approach to use tensor information instead of FA in the

registration step. Zhang et al. proposed an atlas construction

method using the information encoded in tensors, especially the

orientation information, which may enable more accurate

alignment of fiber tracts [37]. This work has been presented as

Tract-Specific Analysis (TSA) which blended the spatial skeleton

and fiber approaches to perform group analysis [38].

Although the computational time required to generate a group-

wise atlas is higher than ST-TBSS technique but lower than RS-

TBSS, we believe that this is an important step to incorporate into

studies where there are significant morphological differences

between groups that could affect the registration process, such as

in AD. In the case of an ongoing study, the process may be

accelerated by registering new subjects to a previously created

group-wise atlas [39] (given that there are enough patients and

controls used to create the group-wise atlas to represent the

variability in the population) and consequently to the standard

space for further voxel-wise statistical analysis.

The group-wise atlas was created using FSL. However, this can

be done using other registration methods such as NiftyReg

(http://sourceforge.net/projects/niftyreg) [40], IRTK [41] or

ANTS [42]. Further enhancement to the group-wise atlas can

be made by employing tensor-based registration methods, such as

DTI-TK [43], which can align white matter tracts better than FA-

based approaches [44]. Other aspects such as interpolation and

alternative cost functions remain important areas for further work.

Interpolation has a smoothing effect on the resultant images and

may introduce some error. In order to achieve better resampling

accuracy, a high-order interpolation method could be used.

Studying the precise effects of interpolation is an active research

area but is beyond the scope of this paper. Therefore, in this paper

trilinear interpolation was used in the TBSS pipeline. This choice

requires no additional parameters to be set and was motivated

largely by previous experience.

In conclusion, we have presented a further improvement to the

TBSS pipeline by incorporating a group-wise atlas as the

registration target. Our study suggests that the GW-TBSS is a

promising method with improved reliability and reduced residual

misalignment for examining the degeneration of white matter fiber

tracts when the subjects in the study have cerebral atrophy and

ventricular expansion as is commonly observed in aging and

neurodegenerative disorders such as Alzheimer’s disease.
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