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ABSTRACT

A 2:2 complex of proflavine and deoxycytidylyl-3',5'-guanosine has been
crystallized and its structure determined by x-ray crystallography.

The two dinucleoside phosphate strands form self complementary duplexes
with Watson Crick hydrogen bonds. One proflavin is asymmetrically inter-
calated between the base pairs and the other is stacked above them. The con-
formations of the nucleotides are unusual in that one strand has C3',C2'endo
mixed sugar puckering and the other has C3',C3'endo deoxyribose sugars. These
results show that the conformation of the 3'sugar 18 of secondary importance
to the intercalated geometry.

INTRODUCTION

It 18 now well established that a wide range of drugs, carcinogens, and
mutagens can interact with double-stranded nucleic acids by intercalative
mechanisms (1,2). The detailed stereochemistries of these processes are not
yet known; suggestions have been made on the basis of both theoretical model-
building (3,4), and with the crystal structures of dinucleoside phosphate
duplex complexes as starting points (5,6). A number of ribodinucleoside
phosphate complex structures have now been reported -~ ethidium (Et) with
15CpG (5-1iodocytidylyl-(3'-5')guanosine) (7) and iSUpA (5~1odouridylyl-(3'-
5')adenosine) (8), acridine orange (AO) with iSCpG (9) and with CpG itself
(10), and proflavine (PF) with CpG (11,12); only one complex deoxyribo-
structure has been determined - 2-hydroxyethanethiolato~2,2',2"-terpyridine-
platinum (II) (TPH) with deoxyCpG (13). The conformational characteristics
of intercalated ribodinucleoside phosphates have been analyzed (14), where
it has been shown that the major changes required to produce intercalation
are in the torsional angles of the C5'-05' (6§) and glycosidic (X) bonds at
the 3' end. It was also demonstrated by computer model-building, that the
structural differences observed between the proflavine~CpG structure on the

one hand, and the ethidium complexes on the other, are not significant. 1In
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particular, patterns of sugar pucker, be they all C3'-endo (in the profla-
vine complex), or altermating C3'—endo-(3'-5')-C2'-endo (in all others),
are relatively unimportant and are not a prerequisite for, or a fundamental
property of, intercalation and not responsible for site exclusion.

Doubt has been cast on these assertions (13,15); it has been stated that
the all C3'-endo pucker assoclated with proflavine Iintercalation is an excep-
tion to the general alternating-pucker rule, arising from the peculiar
nature of the proflavine cation and its interaction with CpG in that there
are Intermolecular hydrogen bonds between the drug and phosphate oxygen
atoms. However, the behavior of proflavine with both DNA and RNA (1,2),
reveals no abnormal features compared to other drugs, and shows similar site
exclusion properties.

In this study we report conformational details from the crystal struc-
ture of a 2:2 deoxyCpG-proflavine (dCpG*PF) complex. This reveals patterns
of intercalative behavior analogous with, but distinct from, the ribo ana-
logue. Moreover, the sugar pucker observed here clearly show that proflav-
ine is not a "speclal case," at least for the reasons cited above. Most
significantly, these results demonstrate conclusively that sugar pucker 1is a
soft parameter in the context of intercalation into RNA or DNA dimeric

subunits.

METHODS

Orange platelike crystals were grown from solutions of deoxyCpG (dCpG)
(Collaborative Research, Inc.) and proflavine hemisulphate (Sigma). One of
dimensions 0.3 x 0.3 x 0.05 mm was mounted in mother liquor and used for
data collection. Cell dimensions were: a = 32.991 K, b = 21.995 A and c=
13.509 A in space group P27212 with two dCpG anions, two proflavine cations,
and numerous solvent molecules in the asymmetric unit. These cell param-
eters are almost identical with those of the crystal structure of the 2:2
dCpG*TPH complex. However, these two structures are not isostructural since
dCpG°TPH has space group P2;2;2; which is different from that of the present
structure. Data were collected on a Syntex P1 automated diffractometer
using CuKo radiation. 8571 independent reflections were measured (corre-
sponding to a maximum resolution of 0.83 &); 2654 had intensities greater
than 2 (I), and were used in structure solution and refinement. The struc—
ture wag solved by the difference resolution Patterson technique, which

located the phosphorus atoms. Superposition methods revealed the bonded 03’
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atoms; the rest of the structure was solved by successive E, F and differ-
ence Fourler syntheses. Considerable difficulty arose in the early stages
of the analysis due to the extreme weakness of odd c-axis reflections, which
initially suggested the space group to be P2;272). Patterson syntheses were
however only fully interpretable on the basis of P272;2. Examination of the
solved structure showed that many atoms were approximately related in pairs
X1, ¥1» %1 and X5, Y9, 1/2 + 2z3- 1In contrast, the dCpG*TPH complex crystal
has space group P2;272; with a pseudo 2-fold axis parallel to a which corre-
sponds to b in the present system.

The structure was refined by full-matrix least-gquares techniques to a
crystallographic residual of 0.15. The average estimated standard devi-
ations of the bond lengths are 0.04 3, and of the angles 2°. Table 1 gives
the atomic coordinates and the thermal parameters for the dCpG, proflavine

and water molecules.

RESULTS AND DISCUSSION
Figure 1 shows a view of the complex of dCpG and proflavine (PF) which

18 a highly hydrated structure. The two dinucleoside phosphate strands form
self complementary duplexes with Watson Crick hydrogen bonds with one pro-
flavine molecule asymmetrically intercalated between the base pairs and the
other stacked above them. Because of the almost identical cell parameters,
it 1s not surprising that this structure has some features, such as its
hydrogen bonding patterns and base orientations in the cell, that are simi-
lar to the structure of dCpG*TPH. However, because of the different inter-
calator molecules and space groups, these two structures are distinctly
different. Indeed, the present structure has an unusual and quite unex-
pected characteristic that has not been reported before for intercalated
dinucleoside phosphate in that the two strands are not symmetric with re-
spect to onme another. In one both deoxy ribose sugars are in the C3'-endo
conformation (strand 1); in the other the 5' deoxyribose has C3'-endo pucker
and the 3' deoxyribose has C2'-endo (strand 2). In the first etrand, the
phase angles of pseudorotation (16) for the deoxyriboses are 27° and 35°, in
the second they are 25° and 172°. As in other related structures, the
glycosidic torsion angles for the cytosine rings are anti and for the
guanine are high anti although the guanosine with the C2'endo pucker has a
value for x considerably higher than for the one with the C3'endo pucker.
Comparison of this structure with other intercalated complexes reveals a

distinct conformational pattern (Table 2): 1) the torsion angles in the
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backbone a,B,Y,5,e (for definitions see Table 2 and reference 17) are

similar in all the structures as illustrated in Figure 2; 2) the X values at

the 3' end of each strand are at least 60° higher than those at the 5' end

and 3) the sugar at the 5' end 18 always C3'endo whereas the one at the 3'



http://nar.oxfordjournals.org/

Nucleic Acids Research

PF(2)

5'-end 3'-end

C3'-endo C3'-endo
PF(1)
OROB=CES- 080 R0—0
C3'-endo
C2'-endo
3'-end §'-and
Strand 2 Strand 1
a

Strand 2 Strand 1

2102 '/ Jequissa uo uopuo afs|jod A1seAlun e /B10's[euInopiojxo e/ :dny woj papeoumod

Figure 1. Two views of the 2:2 complex of dCpG and proflavine (dCpG*PF)
a) a view parallel to the base pairs.
b) a view perpendicular to the base pairs (non-intercalated proflavine
is not shown here).

end 18 either C3'endo or C2'endo. The x(3') values correlate with the sugar
pucker at the 3' end in that values of 80-90° and 100-110° match C3'endo
and C2'endo pucker, respectively. These results show that the greatest
flexibility occurs at the 3' end of the dinucleoside phosphate molecules and
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Table 2 Conformational Angles for Dinucleoside Phosphate and Dfug Complexes

dCpG*PFy
2
dCpG*TPH;
2
CpG*PF
CpG* A0y
2
15CpG Et;
2
15UpA*Ety

2
Average

Average for
dinucleoside
duplexes
A-RNA
A'-DNA
A-DNA
B-DNA

a

210
203
201
194
204
211
225
226
225
207
218
211(11)

217(5)

213
205
175
159

B8

290
300
287
292
292
301
298
281
291
286
302
293(7)

289(4)

281
290
315
261

Y

290

287

282

308 ,h
287
288
297
286
291
291
276
290(8)

290(6)

300
299
270
321

9

8

219
218
226
217
234
237
226
210
224
236
230
225(9)

174(7)

175
176
211
209

€

46
73
57
84
53
50
40
72
55
52
70
59(14)

57(7)

49
51
47
31

x(5")

16
10
32
34
18

9

24
26
14

18(10) 104FL2)

14
13
27
85

x(3'%

J0'seuln

80
1135
124S
1175

o\,
87<
@
1052
11§§
©
1018
g
1095
S

995
100

§)

WeJ0

210e ‘L

14
13
27
85

Sugar
5'-end
C3'-endo
C3'-endo
C3'-endo
C3'-endo
C3'-endo
C3'-endo
C3'-endo
C3'~endo
C3'-endo
C3'-endo
C3'-endo

83
83
83
157

Pucker
3'-end
C3'-endo
C2'-endo
C2'-endo
C2'-endo
C3'-endo
C2'-endo
C2'-endo
C2'-endo
C2'-endo
C2'-endo

C2'-endo

83
83
83
157

Ref.

this study]

13

11,14
10

i8

19
20
19
19

The conformational angles are defined by Seeman et al. (17):
a = C4'-C3'-03'-P, B = C3'-03'-pP-05', ¥ = 03'-P-05'-C5', § = P-05'-C5'-C4', € = 05'=C5'~C4'-C3",

{ = C5'-C4'-C3'-03', and X is the torsional angle about glycosidic bond.

yd1e8SaY SPIOY 218NN


http://nar.oxfordjournals.org/

Nucleic Acids Research

Figure 2. The structures of some of the dinucleoside phosphates involved in
complexes. The backbones from C3' at the 5' end to C4' at the 3' end are
shown in the same view for each of the structures.

a) strand 1 of dCpG*PF

b) strand 2 of dCpG*PF

¢) CpG (in the CEG‘PF complex)

d) strand 1 of 1°CpG°Et

e) strand 2 of 15CpG-Et.
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there appears to be no simple relationships among the conformations of the
3' nucleosides and the nature of the intercalating drug. Comparison of
these structures with DNA and RNA is difficult because they are dimers and
not polymers. It is not even possible to describe easily the conformational
transition which would allow a dimer structure with a B-DNA conformation and
base pairs 3.4 A apart to assume the intercalation geometry described here
with the base pairs 6.8 £ apart. However, to transform a deoxydinucleoside
phosphate with a A'-DNA conformation or a ribodinucleoside phosphate with an

91
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A-RNA conformation, to an intercalated structure it is only necessary to
increase § by 50° and x(3') by at least 60°. These observations parallel
those obtained utilizing computer modelling which also showed that the
alteration in the x and § angles were the only essential differences between
the intercalated ribodinucleoside structures and A-RNA (14). The variations
in the other backbone angles between different intercalated dinucleoside
phosphates including the puckering of the 3' ribose would appear to be due
to subtle differences in stacking patterns and hydrogen bonding.

Since all the dinucleoside phosphate—drug complexes have the same phos-—
phate backbone conformations and the flexibility of the 3' nucleoside has
been proven difficult to correlate with the drug structures, other geometric
parameters such as the base turn and tilt angles between two base pairs and
the bend and twist angles between two bases may be useful in discussing the
structural differences effected by drug molecules and counterions . In the
structure of dCpG*PF complex, the base turn angle is 17°, and both the twist
angles of the base pairs and the tilt between them are essentially 0°.

Table 3 presents the definitions of these geometric parameters and summar-
1zes their values for the structure dCpG°'PF along with those found in
related complex structures.

It has already been shown that in a dinucleoside phosphate the base turn
angle 1s more a function of the local base palring geometry than of the back-
bone conformation (14) and can be correlated with the shape of the interca-
lated drug molecule. The bulky phenyl group of ethidium, for example,
forces the base turn angle to be small while complexes with planar molecules
such as 9-amino acridine, acridine orange and proflavine have angles ranging
from 8° (CpG*A0) to 32° (CpG*PF). Although in a polymer the base turn angle
i8 a measure of unwinding, this is not necessarily true in dinucleoside
phosphate drug complexes. Since the glycosidic angles X(3') and Xx(5') in
the dimer are asymmetric, if these structures were to be found in a poly-
nucleotide, the sites adjacent to the intercalated one would have conforma-
tional changes as well. It 18 thus necessary to ascertain the conformations
of all the areas in the strands affected by the intercalated drug and calcu-
late a base turn angle over all affected residues which will then be related
to unwinding of the polymer.

The twist and bend angles of the bases in each base pair may be func-
tions of the counterion rather than of the drug structures so that dCpG°PF
has a zero value for the twist whereas CpG*PF which has disordered SOZ

groups coordinated to both cytosine groups in the major groove has very
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Table 3
Sone Geometric Features of Drug Dinucleoside

Phosphate Complexes

Base Turnl Bend2 Twist? Twist2 Ti1¢3 Distance between
base pairs stacked bases phosphorus atoms
on the two strands
licpe-pr 17° -1.7° 0.3° -3,1° -0.7° 16.7 &
8.3 -0.8 0.3
CpG*PF 32 ~5.5 -13.4 ~8.3 -6.2 15.9
5.5 ~13.4 ~8.3
FlSCpG'Et 4 -6.8 0.8 13.9 10.4 17.1
-0.3 2.6 8.1
15UpA°Et 5 -6.8 1.5 5.9 7.5 16.6
3.3 1.4 4.9

1 1f we project two C1'~Cl' vectors of the two adjacent base pairs to their
average least squares plane, the base turn angle is the angle between these
two projected vectors.

2 Bend and twist angles of a base pair are the two components of the dihe-
dral angle between two base planes. We choose N3°°*Nl hydrogen bond as our
reference axis. The twist angle is the component along this axis and the
bend angle is the one along the axis perpendicular to the reference axis.
Both axes are parallel to the base plane. In the stacked bases, the
reference axis 1s defined by C4°+*Nl in purine base or C6°-*N3 in pyrimidine
base for reference axis.

3 ri1e angle i @ meaure of the inclination of one base pair to another.

It is obtainmed by defining a reference axis and calculating the component of
the dihedral angle between two base pairs along this axis. The reference is
80 chosen that if we view through the minor groove side of the duplex, the
N3++-Nl1 hydrogen bond on upper base pairs is used as the reference axis.

The resulting + sign of the angle means opening-up in the minor groove side

and ~ gign means in the major groove side.

large twist values. An analogous situation occurs in the structure of ApU
(17) in which a sodium ton coordinates to the uraclil groups in the minor
groove causing the twist angles of those base pairs to have opposite values

to those found in other oligonucleotide structures (18).
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On the other hand, the twist value of the stacked bases which is a
meagure of the inclination of one base to another im each single strand, and
the tilt angle which 1s a measure of the inclination of the two stacked base
pairs in a duplex may be related to the shape and location of the drug mole-
cules as seen in Figure 2. In the ethidium complexes the twist and tilt of
the stacked bases are positive, indicating a twist of the bases toward the
major groove in which there are no bulky substituents. In the dCpG*PF
complex these values are zero which is a reflection of the planarity of the
intercalating drug. The highly negative value of these parameters for
CpG°PF appears to be influenced by the presence of the SOZ group.

The stacking patterns of the proflavines and base pairs in this struc-
ture are quite unlike that found in the CpG'PF structure (11,12) as shown in
Figure 3. 1In that duplex the intercalated proflavine is symmetrically
placed between the base pairs and hydrogen bonded to the phosphate oxygen
atoms in both strands, whereas in this deoxy structure the proflavine is
asymmetrically positioned with respect to both the base pairs and the phoe-
phate oxygens to which it forms no hydrogen bonds. In dCpG*PF the proflav-
ine overlaps both bases of strand 2 and only the guanine of strand 1 in a
pattern which bears striking resemblance to that exhibited by the overlap of
acridine orange in the CpG*AO0 complex (10). If the proflavine were trans-
lated by .5 % toward the backbone of strand 1 one exocyclic amino group
would form a hydrogen bond with one phosphate oxygen. However, the stacking
pattern would then change to one that is possibly less favorable. To hydro-
gen bond the proflavine to strand 2 requires it to be rotated and translated
and results in much less overlap between the dye and the base pairs. In any
circumstance it is not possible to hydrogen bond both amino groups of the
proflavine simultaneously to the phosphate groups of both strands. This is
partially due to the fact that the phosphorus—-phosphorus distance is 16.7 I
compared with 15.9 & in CpG*PF and 17.5 £ in uncomplexed ribodinucleosides.

The non-intercalated proflavine stacked above the base pair of one
duplex is also stacked below the base pair of a translationally related
duplex so that there i8 a continuous alternation of base pairs and pro-
flavines 1in the crystal. The stacked proflavine is orientated in roughly
the same direction as the intercalated one and in this respect the structure
more resembles that of ApA*PF (21) than that of CpG'PF.

The main conclusions about intercalated ribo- and deoxy-dinucleoside
phosphate duplexes that can be drawn from this crystal structure analysis

are 1) the X values of the 3' ends are higher than those at the 5' ends 2)

26
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Figure 3. A comparison of the stacking patterns of proflavine with dCpG and
CpG

a) Intercalated PF with two base pairs in CpG+PF

b) Non-intercalated PF with one base pair in CpG-PF

c) Intercalated PF with two base pairs in dCpG+PF (strand 2 bases are on

left)
d) Non~intercalated PF with one base palr in dCpG-*PF
e) Non-intercalated PF with the other base pair in dCpG-PF

the conformations of the backbone angles a,8,Y,§ and € assume very similar
values in all the structures and 3) the puckering of the ribose (or deoxy)
sugar at the 3' end is of secondary importance and is certainly not a neces-
sary feature of intercalated structures. It must be emphasized here that
the puckering of the sugar at the 5' end 18 important because as has been
shown by Jack et al. (22), the spacing between this ribose and its next
neighbor 1s affected by a change from C3'endo to C2'endo puckering. Hence

95
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the puckering of the 3' end of these dimers is of importance in modelling of
larger oligonucleotides although it 1s still not necessary to have mixed
sugar puckering for site exclusion as shown by computer model building (6)
of intercalated tetranucleotides. This analysis also shows an interesting
difference between the potential for dye binding in RNA and DNA structures.
In the CpG structure (11,12) proflavine molecules were found bound to the
outside of the duplexes via the 02' hydroxyl of the ribose sugar. This type
of outside binding could not and does not exist in the dCpG structure.
However outside binding of proflavine molecules to the phosphate oxygens (as
was also observed in the CpG*PF complex) is not precluded in deoxynucleo-
tides although it is not exhibited in this structure. We also see here that
the presence of a symmetrical intercalating molecule does not ensure gsymmet-

rical conformations of the duplex itself.
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