
A Bioinformatics Framework for the

Management and Analysis of High

Throughput CGH Microarray Projects

James Anthony Morris BSc(Hons), MRes

UCL EGA Institute for Women’s Health

Thesis submitted for the degree of PhD in Bioinformatics

Declaration

I, James Anthony Morris confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been

indicated in the thesis.

Dedication

This thesis is dedicated to those in my life whose love and support made it possible

for me to pursue and complete this work.

To my Father, my Mother and my Wife

ii

Acknowlegements

• My first acknowledgement needs to go to my primary supervisor Chris Jones,

I would like to say a really big thank to him for all his help, support and

guidance all the way through this project.

• I would like to thank Tanya Lebi for all her hard work in performing all

the aCGH experiments for the MALOVA study and for also being our main

customer during the development of the majority of the software in this project.

• As my secondary supervisor Simon Gayther provided very useful support and

guidance at key points in this project, I would like to thank him for his help

and for allowing me to work in his laboratory.

• I would like to thank the Eve Appeal and Mermaid charities for their support

of my project.

• I would finally like to thank Jeff Barrett, as my current boss, he has encouraged

and enabled me to be able to complete this thesis.

iii

Abstract

High throughput experimental techniques have revolutionised biological research;

these techniques enable researchers, in an unbiased fashion to survey entire biological

systems such as all the somatic mutations in a tumour in a single experiment. Due to

the often complex informatics demands of these techniques, robust computational

solutions are required to ensure high quality reproducible results are generated.

The challenge of this thesis was to develop such a computational solution for the

management and analysis of high throughput microarray Comparative Genomic

Hybridisation (aCGH) projects. This task also provided an opportunity to test

the hypothesis that agile software development approaches are well suited for

bioinformatics projects and that formalised development practices produce better

quality software. This is an important question as formalised software development

practices have been underused so far in the field of bioinformatics.

This thesis describes the development and application of a bioinformatics

framework for the management and analysis of microarray CGH projects. The

framework includes: a Laboratory Information Management System (LIMS) that

manages and records all aspects of microarray CGH experimentation; a set of easy

to use visualisation tools for aCGH experimental data; and a suite of object oriented

Perl modules providing a flexible way to construct data pipelines quickly using the

statistical programming language R for quality control, normalisation and analysis.

In order to test the framework, it was successfully applied in the aCGH profiling

of 94 ovarian tumour samples. Subsequent analysis of these data identified 4 well

supported genomic regions which appear to influence patient survival.

The evaluation of agile practices implemented in this thesis has demonstrated

that they are well suited to the development of bioinformatics solutions as they

iv

enable developers to react to the changes of this rapidly evolving field, to create

successful software solutions such as the bioinformatics framework presented here.

v

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Genetic alterations and cancer . 1

1.1.1 Ovarian cancer . 2

1.2 High throughput technologies . 3

1.2.1 Background . 3

1.2.2 High throughput technology challenges 4

1.3 Microarrays . 6

1.3.1 Array comparative genomic hybridisation 6

1.3.2 Background . 7

1.3.3 aCGH informatics . 10

1.3.4 Downstream analysis . 14

1.3.5 Laboratory information management systems 21

vi

CONTENTS CONTENTS

1.4 Software development for high throughput science 24

1.4.1 Software development processes 26

1.4.2 Software development best practices 34

1.4.3 Programming languages . 41

1.4.4 Bioinformatics software development 41

1.4.5 Bioinformatics software development review 43

1.5 Aims . 50

2 LIMS 52

2.1 Background . 52

2.1.1 The existing in house LIMS 53

2.1.2 Initial ArrayPipeLine LIMS code base 54

2.1.3 Extending the LIMS database for biological samples 55

2.1.4 Extending the LIMS database for aCGH experiments 58

2.1.5 Extending the LIMS database for recording analysis steps . . 61

2.1.6 Extending the ArrayPipeLine LIMS GUI 62

2.2 Methods and implementation . 63

2.2.1 Database . 64

2.2.2 Creating an object oriented Perl API 68

2.2.3 User interface layer . 68

2.2.4 Agile software development 69

2.3 Results . 69

2.3.1 Requirements gathering . 69

2.3.2 Object orientation of the ArrayPipeLine LIMS source code . . 71

2.3.3 Extending the ArrayPipeLine LIMS database for sample data 77

vii

CONTENTS CONTENTS

2.3.4 Extending the ArrayPipeLine LIMS database for aCGH

experiment data . 78

2.3.5 Extending the ArrayPipeLine LIMS database for analysis

pipeline data . 82

2.3.6 Extending the ArrayPipeLine GUI 85

2.3.7 Continuous integration . 86

2.4 Conclusions . 90

3 An analysis pipeline for aCGH 95

3.1 Background . 95

3.2 Implementation . 98

3.2.1 Technical requirements of an analysis pipeline 98

3.2.2 Integrating Perl and R . 100

3.2.3 User requirements of an analysis pipeline 105

3.2.4 Pipeline construction . 106

3.2.5 Development techniques . 107

3.3 Results . 108

3.3.1 Analysis pipeline . 108

3.3.2 Visualisation of results . 117

3.3.3 Testing . 127

3.3.4 Customer feedback . 128

3.4 Conclusions . 132

4 MALOVA 138

4.1 Background . 138

4.2 Materials and methods . 139

4.2.1 Patient data . 139

viii

CONTENTS CONTENTS

4.2.2 Sample preparation . 140

4.2.3 The Mermaid CGH microarray 140

4.2.4 Microarray hybridisation . 141

4.2.5 Data analysis . 142

4.2.6 Expert supervised filtering . 142

4.2.7 Statistical analysis . 143

4.3 Results . 151

4.3.1 Quality control . 151

4.3.2 Recurrent region identification 152

4.3.3 Significant recurrent copy number aberrations in stage III/IV

serious ovarian tumours . 153

4.3.4 Significant recurrent copy number aberrations in good

prognosis tumours . 154

4.3.5 Significant recurrent copy number aberrations in poor

prognosis tumours . 154

4.3.6 Unique Breakpoint Identification 155

4.3.7 Recurrent region feature selection 155

4.3.8 SVM Classifier Validation . 161

4.3.9 Most informative regions . 161

4.3.10 Gene Analysis . 164

4.3.11 Random forests . 165

4.4 Conclusions . 167

5 Discussion 168

5.1 Extension of the ArrayPipeLine LIMS 172

5.2 Analysis pipeline . 173

ix

CONTENTS CONTENTS

5.3 MALOVA . 176

5.4 Bioinformatics software development practices 178

5.5 Future prospects . 181

5.6 Concluding remarks . 183

Bibliography 185

Appendices 204

.1 Source code appendix . 204

.1.1 Chapter 2 . 205

.1.2 Chapter 3 . 206

.1.3 Chapter 4 . 207

x

List of Figures

1.1 Microarray CGH experiment workflow 9

1.2 Microarray CGH informatics data transformation steps 12

1.3 Support vector machine . 20

2.1 Entity Relationship Diagram (ERD) of the sample information

portion of the ArrayPipeLine LIMS 79

2.2 Entity Relationship Diagram (ERD) of the aCGH experiment

recording portion of the ArrayPipeLine LIMS 83

2.3 Entity Relationship Diagram (ERD) of the data analysis portion of

the ArrayPipeLine LIMS . 84

2.4 Screenshot of the ArrayPipeLine LIMS new tumour interface 86

2.5 Screenshot of the ArrayPipeLine LIMS interface for recording

labelling experiments . 87

2.6 Screenshots of the ArrayPipeLine samples interface. 88

2.7 Screenshots of the ArrayPipeLine external sample interface. 89

2.8 Screenshots of the ArrayPipeLine administration interface. 91

xi

LIST OF FIGURES LIST OF FIGURES

2.9 Continuous integration of source code. 93

3.1 Quality control and data processing of experiment data 119

3.2 MA plots . 121

3.3 Intensity scatter plots . 122

3.4 Log2 intensity ratio heatmaps . 124

3.5 Single channel intensity heatmaps . 126

3.6 CGH plots . 129

4.1 Expert supervised filtering examples 144

4.2 KCSmart profile from all samples . 156

4.3 KCSmart profile from all samples . 157

4.4 KCSmart profile from all samples . 158

xii

List of Tables

4.1 KC-Smart Regions Identified . 152

4.2 KC-Smart features selected for classification 160

4.3 Best performing combination of KC-Smart features 161

4.4 Recurrent regions ranked by contribution (unique segments and

CGHcall calls) . 162

4.5 Recurrent regions ranked by contribution (BAC log2 ratios) 163

4.6 Recurrent regions ranked by contribution (unique segments and

CGHcall calls) . 164

4.7 Genes contained in the most influential classification regions 166

5.1 Regions of overlap with Etemadmoghadam et al 177

xiii

List of abbreviations

aCGH Microarray Comparative Genomic Hybridisation.

API Application Programming Interface.

BAC Bacterial Artificial Chromosome.

BLOB Binary Long OBject.

BPRC BACPAC Resource Centre.

CGH Comparative Genomic Hybridisation.

CGI Common Gateway Interface.

CHORI Children’s Hospital Oakland Research Institute.

CPAN Comprehensive Perl Archive Network.

CRAN Comprehensive R Archive Network.

CVS Concurrent Version Control.

xiv

LIST OF TABLES LIST OF TABLES

DBI DataBase Interface.

DSDM Dynamic Systems Development Method.

EC2 Elastic Compute Cloud.

ER Entity Relationship.

ERD Entity Relationship Diagram.

FIGO International Federation of Gynecology and Obstetrics.

FPPE Formalin Fixed Paraffin Embedded.

GAL Genepix Array Layout.

GUI Graphical User Interface.

HG17/18 Human Genome Build 17/18.

HMM Hidden Markov Model.

HTML Hyper Text Markup Language.

IO Input/Output.

KSE Kernel Smoothed Estimate.

LIMS Laboratory Information Management System.

MALOVA MALignant OVArian cancer.

Mb Mega Base.

OO Object Oriented.

ORM Object Relational Mapping.

xv

LIST OF TABLES LIST OF TABLES

PBL Peripheral Blood Lymphocyte.

QC Quality Control.

RDBMS Relational DataBase Management Software.

SQL Structured Query Language.

TIFF Tagged Image File Format.

TRL Translational Research Laboratory.

UCSC University California Santa Cruz.

UI User Interface.

URL Universal Resource Locator.

VCS Version Control Software.

XP eXtreme Programming.

xvi

CHAPTER 1

Introduction

1.1 Genetic alterations and cancer

Cancer is a disease characterised as the growth of malignant neoplasms or tumours,

which are caused by the uncontrolled growth of a group of cells. All tumours

are the result of accumulation of DNA alterations (Stratton et al., 2009). With

tumour development being driven by the combined processes of genetic instability

and selection, resulting in clonal expansion of cells that have accumulated the most

advantageous set of genetic aberrations (Pinkel and Albertson, 2005). These genetic

changes drive a stepwise process which enables normal somatic cells to escape their

normal function in the tissue and become self-sufficient in survival. The processes

that must be deregulated to enter such a neoplastic state are: cell signalling,

programmed cell death, anchorage dependant cell death, motility, adhesion and

invasion, and attracting stromal components, including mesenchymal stem cells to

bring about the formation of new blood vessels (Bast et al., 2009).

The genetic aberrations found in cancer genomes have come about through a

1

Introduction 1.1.1 Ovarian cancer

number of different mechanisms including substitutions of one base by another;

insertions or deletions of small or large segments of DNA; rearrangements, in which

DNA has been broken and then rejoined to a DNA segment from elsewhere in the

genome; copy number increases from the two copies present in the normal diploid

genome, sometimes to several hundred copies (known as gene amplification); and

copy number reductions that may result in complete absence of a DNA sequence

from the cancer genome.

The identification and mapping of the genetic alterations found in tumours help

researchers in a number of ways, they can point towards the genes involved in

cancer progression as the chromosomal aberrations reflect oncogene activation and

loss of tumour suppressor genes. Thus offering a basis for better understanding

of cancer development and more importantly providing improved tools for clinical

management of cancer, such as new diagnostics and therapeutic targets (Kallioniemi,

2008).

1.1.1 Ovarian cancer

Ovarian cancer has a very poor survival rate, with about 65% of diagnosed women

dying within five years (Levi, 1999). The majority of ovarian cancers are thought

to arise from the cells that cover the ovarian surface, but the cellular origins of the

disease are still not widely agreed upon. There are currently no effective biomarkers

proven able to identify early-stage disease and no reliable prognostic markers for

predicting clinical response and guiding treatment (Lawrenson and Gayther, 2009).

Improvements in the survival rate of ovarian cancer are very difficult because the

disease poses a number of problems for researchers and clinicians. These problems

include the heterogeneity of the cancers; the disease is in fact a group of tumours

(serous, endometrioid, mucinous and clear cell) each of which have different clinical

2

Introduction 1.2. HIGH THROUGHPUT TECHNOLOGIES

features and are likely to have different genetic backgrounds (Bast et al., 2009).

Recognised symptoms of the disease are vague, and as a result the majority of cases

are diagnosed at a late stage of disease. However, it is hoped that the use of new

genetic analysis tools, such as aCGH, might help to identify new therapeutic targets

that lead to improvements in the long term survival of ovarian cancer patients.

1.2 High throughput technologies

1.2.1 Background

High throughput biological technologies are experimental processes that allow

the simultaneous measurement of many thousands of analytes during a single

experiment, coupled with the capability to process very large numbers of specimens.

Ever since their first emergence in the late 90s, these techniques have become

extremely popular in biological research and the use of high throughput technologies

is now widespread. The main advantage of high throughput approaches is that, by

applying these technologies, researchers are able to capture a more complete picture

of the system under study, such as all the somatic mutations across a genome, or the

transcription levels of all the genes in the transcriptome of a cell. This is instead of

just being able to capture a snapshot of information regarding a single part of the

system, as is the case using low throughput approaches. The ability to assay the

system under study completely enables research to be carried out in a hypothesis

agnostic fashion. This is a major reason behind their widespread adoption, instead

of being driven by previous findings and assumptions using a hypothesis driven

approach. This gives researchers the opportunity to make truly novel discoveries

that would be otherwise impossible to detect. This has been, and will continue to

3

Introduction 1.2.2 High throughput technology challenges

be, very important in advancing our knowledge of biology.

1.2.2 High throughput technology challenges

The greatest challenge in the application of high throughput technologies to answer

biological questions comes in the form of the informatics requirements which are

created by the large scale nature of these experiments. Over the past few decades, the

field of bioinformatics has emerged as the solution to this challenge. Bioinformatics

is a discipline centred on the development and application of computational,

mathematical and statistical methods for the management and analysis of the vast

amounts of biological data now regularly produced by modern high throughput

techniques. The field can be broadly divided into two main branches of research: first

is the creation of tools that can efficiently process, store and manage data as well as

provide intuitive ways to access this information; second is the application of existing

knowledge from fields of computer science and informatics, such as machine learning

and pattern recognition methods as well as the development of brand new statistical

methods with which to analyse and draw meaningful conclusions from the large

volumes of data being generated. The informatics challenges of high throughput

approaches can be roughly divided into four broad themes:

Biological sample management High throughput approaches can suffer from what

is known as the as a large p (dimension) small n (sample size) problem, resulting

in large amounts of uncertainty in results generated when using small numbers of

biological samples. To combat this problem, high throughput approaches require

very large sample sets. For example, very large sample sets, and sample collections

are now very common in many research areas, such as genome wide association

studies (Zeggini et al., 2008). Therefore the management of biological sample

4

Introduction 1.2.2 High throughput technology challenges

collections is a very important task, requiring consistent tracking of all manipulations

carried out and the accurate recording of sample details including phenotype data.

On a large scale, this can only be effectively carried out using a computerised system

such as Laboratory Information Management System (LIMS).

Experimental platform management In parallel to the management of biological

samples, are the requirements of managing the measured features of the high

throughput platform, such as the spotted sequences on a DNA array. It is essential

to record detailed annotation on the thousands of features that comprise the

platforms of many high throughput approaches, as experimental results are rendered

meaningless if these data can not be accurately recalled.

The data deluge The number of data points generated by high throughput

experiments is massive when compared with the number of data points generated by

low throughput experiments. This increase in the rate of data generation means that

researchers often have to deal with result sets that contain millions of observations.

The implementation of systems capable of dealing with such large datasets is

essential to successfully harness the power of high throughput technologies. For

example, relational databases for efficient storage and retrieval of the data and

automated pipelines for data processing and quality control.

Analysis of high throughput approaches Along with the need for effective data

management strategies is the requirement for new statistical methods capable of

analysing data sets which are formed of very large numbers of samples and variables.

An example of a successful response to the requirement of methods for the analysis of

new high throughput data is the Bioconductor project (Gentleman et al., 2004), an

open source and open development software project providing tools for the analysis

5

Introduction 1.3. MICROARRAYS

and comprehension of genomic data. Hand in hand with the requirement for new

statistical analysis methods, the computational hardware requirements which high

throughput approaches demand are constantly increasing. These demands include

increased processing power and memory for analysis and greater amounts of physical

disk space to store all the data constantly being generated.

The field of bioinformatics has done a great deal to manage the challenges created

by high throughput approaches; however it is still common for the informatics

requirements of high throughput projects to be overlooked.

1.3 Microarrays

An example of a very successful high throughput technology is microarrays.

Microarrays have become a ubiquitous technique in scientific research following their

first description over fifteen years ago. Microarrays are comprised of a solid support

such as glass, on to which specific DNA or protein fragments are immobilised at

precise locations. The high accuracy of reporter deposition combined with the tiny

volumes applied, both of which are achieved through the use of robotics, have made

it possible to manufacture microarrays possessing hundreds of thousands of spotted

reporters on a single slide. When combined with differentially labelled samples

and the highly specific complimentary binding of DNA, microarrays can be used

to survey the transcriptional profile of a cell or detect the levels or DNA copy

number in a tumour sample. Microarrays can also be coupled with immunological

precipitation techniques to characterise protein binding sites or used to detect

nucleotide modifications in order determine the methylation state of a DNA sample.

6

Introduction 1.3.1 Array comparative genomic hybridisation

1.3.1 Array comparative genomic hybridisation

Array comparative genomic hybridisation (array CGH or aCGH) (Solinas-Toldo

et al., 1997) is a good example of a very powerful and widely adopted application

of microarray technology. The high throughput technique of aCGH is based on a

much lower throughput approach called comparative genomic hybridisation (CGH),

both these techniques allow researchers to detect and locate genetic alterations as

copy number alterations present in the DNA of a sample.

1.3.2 Background

A CGH experiment involves the competitive hybridisation of a mixture of reference

and test samples that have been differentially labelled using fluorescent dyes to

immobilised whole metaphase chromosomes which serve as the genomic template

for hybridisation (Kallioniemi et al., 1992). The fluorescence of the samples across

the chromosomes is then measured with the resulting intensity ratio of the reference

and test samples being used to determine the copy number of the DNA in the test

sample. The copy number of a region of DNA can be determined on the assumption

that the reference sample contains a normal diploid genome, such that an increase

in the ratio of test sample fluorescence corresponds to an increase in amount of DNA

in the test sample which we interpret as copy number gain and a decreased ratio

of test sample fluorescence corresponds to a decrease in the amount of test sample

DNA which we interpret as a copy number loss. As a technique, CGH has been

very successful when applied to the detection of copy number aberrations for many

different applications. However, its main limitation is its relatively low resolution

of about 5-10Mb (Carter, 2007), meaning that it is not possible to detect smaller

aberrations. Also, the use of whole metaphase chromosomes as the genomic template

7

Introduction 1.3.2 Background

means that aberrations can not be accurately localised.

Microarray based CGH (aCGH) (Pinkel et al., 1998) overcomes the limitations

of traditional CGH by combining CGH with microarray technology, creating a high

resolution method for the identification of copy number changes throughout the

genome. There are three array based platforms that can be used for CGH; Single

Nucleotide Polymorphism (SNP) arrays (Rauch et al., 2004), oligonucleotide arrays

(Carvalho et al., 2004) and large construct arrays (Pinkel et al., 1998). The resolution

of the imbalances capable of being detected depends on the specific platform used,

but which ever platform is chosen, aCGH can detect far smaller copy number

imbalances than the traditional CGH method. The procedure for aCGH is the

same as traditional CGH in essence, however instead of using whole metaphase

chromosomes as the template, aCGH uses a DNA microarray (figure 1.1).

Bacterial Artificial Chromosomes (BACs) offer the best characteristics in terms of

genome coverage and background noise levels of all sequences used to produce DNA

microarrays (Carter, 2007), originally generated for the human genome sequencing

project (Bentley et al., 2001; Consortium et al., 2001). Depending on the genomic

depth of coverage of the BAC clone set used BAC arrays are capable of providing

resolution an order of magnitude higher than traditional CGH (Theisen, 2008). For

example a BAC clone set providing 1.5-fold coverage of the human genome, would

give an approximate resolution of 80 kb as this approximately two-thirds of an

average BAC clone. The overlapping tiling path design also provides redundancy of

markers and ensures there are no gaps between markers meaning fewer alterations

will be missed.

In aCGH, and to a lesser extent CGH, researchers have powerful techniques

capable of accurately detecting and mapping genetic alterations. The ability of

these techniques to detect copy number imbalances between two samples has seen

8

Introduction 1.3.2 Background

Figure 1.1: This figure shows a schematic representation of the microarray CGH
experiment workflow. A) Patient and normal reference samples are differentially labelled
using fluorescent dyes. B) The labelled samples are then cohybridized onto a glass
microscope slide on which DNA fragments have been immobilized. C) The resulting ratio
of fluorescence intensity between hybridised patient and normal DNA for each array spot
is measured using a laser scanner and extracted using image analysis software. In this
case spots where the amount of patient and reference DNA is the same will appear yellow,
where there is a loss of DNA in the patient spots will appear Green as there is more
reference DNA bound and spots showing a gain of DNA in the patient sample will appear
Green.

9

Introduction 1.3.3 aCGH informatics

them become very popular and widely used in the areas of disease research where

genetic abnormalities are involved in the aetiology of the disease, such as congenital

disorders and cancers (Lockwood et al., 2006). There has also been work carried

out using aCGH to survey the copy number variation that can be found in normal

genomes (Redon et al., 2006),(Conrad et al., 2009).

1.3.3 aCGH informatics

Due to their complexity and scale, microarray experiments require a number of

computational preprocessing steps in order to transform the data into a form that can

be used for further study, namely the copy number of genomic segments. Required

preprocessing steps include quality assessment, normalisation of the raw values to

remove systemic biases and feature annotation. Other important requirements are

the extraction of the raw data and storage of the data.

Image analysis and quality control There are various commercial and non-commercial

algorithms available to perform the first informatics step of microarray experiment

analysis which is known as image analysis. The goal of image analysis is to extract,

for each spotted feature, a measure of abundance in the two labelled samples as well

as to obtain quality measures (Yang et al., 2001). The image analysis process is

a crucial step in the microarray experiment workflow because all the downstream

data interpretation is based upon the values created at this stage. Therefore

errors introduced at this stage may bias the final data. For a typical two-channel

experiment, image analysis involves the processing of the 16-bit tagged image file

format (TIFF) files created by the laser scanning of the hybridised microarray slides.

Typically the scanned images are produced in pairs corresponding to each of the

fluorescent dyes used to label the DNA samples. The processing procedure converts

10

Introduction 1.3.3 aCGH informatics

the raw images into relative intensity values for each spot present on the array.

Image analysis is made up of 4 steps which are gridding, segmentation, extraction

and quality control.

The first step, ‘gridding’, involves the correct mapping of the spotted features

to the spots in the scanned image using details of the array design layout typically

in ‘GenePix Array List’ (GAL) file format, this step can be performed in a manual,

semi automated or fully automated manner depending on the software selected.

The next step of ‘segmentation’ is separation of each spot into the background

and foreground of the feature signal as the scanning process can produce noise

surrounding the spotted features. There are a number of different methodological

approaches available for the segmentation of the microarray image, but all aim to

separate the biologically relevant signal of the spot from the unimportant background

signal or noise. The intensity ‘extraction’ step uses the segmented spots to calculate

intensity values for the foreground signal of each fluorescence channel for every

spotted feature on the array; this is also the stage at which spot quality scores such

as signal to noise ratio, or spot morphology, measures are commonly calculated.

The final step of image analysis is quality control, filtering out poor quality spots

based on a spot quality score is a very important step for removing poor quality

data which could lead to bias in the downstream data analysis. If replicate spots are

present on the array, an additional quality control (QC) step of replicate variation

can be performed before their signals are combined. Further to spot level quality

control, it is possible to identify entire experiments which are producing sub optimal

intensity values by visualising the two microarray images overlaid to create false

colour microarray images. These images enable the rapid identification of patterns

of nonuniform hybridisation and thus the identification of poor quality experiments

which should to be repeated.

11

Introduction 1.3.3 aCGH informatics

Normalisation Normalisation is the removal of systemic bias in the data so as to

leave only biologically relevant signals. This is an essential pre-processing step for

microarray data as noise can be introduced into microarray data at any one of the

many complex steps which go together to make up a microarray experiment. The

noise introduced can be caused by a number of reasons including unequal quantities

of starting DNA, differences in labelling, or detection efficiencies of fluorescent dyes

(Quackenbush, 2002). Normalisation is also an essential step as it allows the direct

comparison of experiments, as without normalisation this would not be possible due

to experimental variation. The vast majority of normalisation methods which have

been described have been developed for use with expression array data addressing

the factors which affect them. Neuvial et al (Neuvial et al., 2006) reported that

spatial effects had a greater effect on aCGH data compared with expression array

normalisation methods. They went on to describe two types of spatial effect which

commonly affect CGH arrays and methods to remove them. The first is a local

spatial bias, which is a cluster of spots that have a discrete signal shift unrelated

to spotting effects. The second is a continuous spatial gradient which is a smooth

gradient in signal from one side of the slide to the other. Methods to correct for

these effects have been implemented as an R package called MANOR (Neuvial et al.,

2006) as part of the Bioconductor project. Staaf et al (Staaf et al., 2007) have

also implemented an aCGH normalisation package in R in which they take copy

number imbalances into account during normalisation as they that copy number

imbalances correlate with intensity in array-CGH data thereby causing problems for

conventional normalisation methods.

Segmentation The penultimate step of pre-processing an experiment is the

identification of locations with copy number transitions or breakpoints, so that

12

Introduction 1.3.3 aCGH informatics

(a) Raw log2 intensity data

(b) Normalised and filtered data

(c) Segmented data

(d) Copy number called

Figure 1.2: Microarray CGH informatics pipeline steps illustrated using aCGH plots of
experimental data following each step of the pipeline. The aCGH plots show each feature
on the microarray plotted according to its log2 intensity ratio on the y axis and its genomic
location of the x axis. a) The raw unnormalised, unfiltered log2 intensity ratios show the
high level of noise in the data which needs to be removed to leave only the biological
variation under study. b) After normalisation and quality based filtering procedures the
noise in the data is reduced. c) Following segmentation the identified regions of similar
copy number are show using the horizontal bars plotted at the average log2 intensity for
the segment. d) Finally following copy number calling and window based smoothing the
segmented regions are called as either normal (yellow), gain (green) or loss (red) and
appear as much tighter clusters of points.

13

Introduction 1.3.3 aCGH informatics

the genome is divided into regions of equal DNA copy number. The segmentation

step enables us to simplify the data and calculate the average log ratio for each

defined segment of continuous copy number. Segmentation is one of the most

extensively studied aspects of the aCGH analysis process and thus there have

been a large number of methods suggested to meet this challenge using a number

of different statistical techniques, including intensity thresholds (Hodgson et al.,

2001; Vermeesch et al., 2005), wavelets (Hsu et al., 2005; Wang and Wang, 2007;

Huang et al., 2008), circular binary segmentation (Venkatraman and Olshen, 2007),

gaussian model-based approaches (Hupé et al., 2004), quantile Smoothing (Eilers and

de Menezes, 2005), hierarchical clustering-style trees (Wang et al., 2005), penalized

likelihood criterions (Picard et al., 2005), expectation-maximization-based methods

(Myers et al., 2004), genetic local search algorithms (Jong et al., 2004) and hidden

Markov models (Fridlyand, 2004; Marioni et al., 2006; Shah et al., 2006).

Calling The final step of processing an aCGH experiment is ‘copy number status

calling’, which involves normalised log-ratios being converted back to an absolute

measure of one of four underlying discrete states representing loss (<2 copies),

normal (2 copies), gain (3–4 copies), and amplification (>4 copies) (van de Wiel

et al., 2007). Using the process of calling, the results of an aCGH experiment can

be expressed in a far more biologically relevant way using copy number states,

as opposed to continuous log-ratio values. The process also has the advantage of

typically reducing the number of copy number segments when compared with the

number of segments produced through segmentation, making reporting of results,

and any downstream analysis, simpler.

The results of the aCGH informatics steps can clearly be visualised in figures

14

Introduction 1.3.4 Downstream analysis

1.2(a) to 1.2(d) where the effect each processing step has on the data can be seen.

The transition from noisy raw data in figure 1.2(a) to the far more discrete processed

data in figure 1.2(d) demonstrated the value and importance of these informatics

steps in the aCGH experimental procedure.

1.3.4 Downstream analysis

The steps described in the aCGH informatics section 1.3.3 comprise the procedures

required to analyse a single sample. Once this process is complete, a map of the

regions of genomic gain and loss for the sample will have been generated. With

such a map of genetic aberration, much can be learnt about the genetic status of a

sample, but in order fully to realise the capability of aCGH this process needs to be

repeated across multiple samples in a high throughput fashion. Downstream analysis

is the term applied to any analytical steps performed on the processed aCGH results,

typically involving multiple samples. There are a number of types of downstream

analysis that can be applied to aCGH data:

• Clustering of samples for subtype discovery, is a form of downstream aCGH

analysis performed using unsupervised machine learning algorithms. Machine

learning is the development of computer algorithms for performing desired

tasks using using example data or past experience (Larrañaga et al., 2006).

Unsupervised learning techniques do not require any initial data to learn

properties of the data, they instead attempt to find structure and patterns

within a given data set.

Cluster analysis is an unsupervised machine learning approach that aims to

identify groups within the data that are similar to each other, this type of

analysis is performed on the assumption that the groups share some interesting

15

Introduction 1.3.4 Downstream analysis

functional similarity. This form of analysis has already been used successfully

in the detection of distinct type of renal cell carcinomas for diagnostic

purposes (Wilhelm et al., 2002) and to show that chromosomal aberrations of

tumours from hematopoietic and mesenchymal origin are distinct to tumours

of epithelial origin (Jong et al., 2007). The detection of molecular subtypes of

cancer, that clustering analysis allows could be very important for improving

diagnosis and treatment of disease.

As aCGH data presents a unique challenge for clustering in the discrete nature

of called data there are only a few published methods for performing clustering

analysis with aCGH data (van de Wiel et al., 2011). WECCA (weighted

clustering of called aCGH data) (Van Wieringen et al., 2007) is a hierarchical

clustering method. WECCA produces clusters using a stepwise process: first

weights are assigned to each clone or region and then the similarity between all

cluster pairs is calculated and the two clusters with the highest similarity are

merged. This process is repeated until one cluster remains. The hierarchical

tree formed by this process can then be partitioned in separate groups by

sectioning the tree at a chosen cut-off level, with the cut-off level chosen such to

produce compact and well-separated clusters. Another distance based method

that works in a similar way to the WECCA method has also been published, it

however uses k-means clustering rather than hierarchical clustering (Liu et al.,

2006). The final clustering method available for aCGH data is a HMM model

based approach (Shah et al., 2009)

• Identification of common regions of copy number loss and gain across multiple

samples provides researchers with an effective way of identifying the most

frequent, and thus more important, copy number alterations. Recurrent

16

Introduction 1.3.4 Downstream analysis

alterations are most likely to be driving the given phenotype under study. The

simplest way to achieve this is using frequency thresholds, but this approach

is slow, prone to investigator bias and is unable to identify aberrations within

subsets of samples. Computer algorithms which are able to perform this type

of analysis automatically include, STAC/MSA (Diskin et al., 2006; Guttman

et al., 2007) and KCSmart (Klijn et al., 2008) which all use a permutation

based approach, Hierarchical HMM (H-HMM) (Shah et al., 2007) which uses

a hidden Markov model and MAR/CMAR (Rouveirol et al., 2006) which does

not use a statistical model.

STAC and its subsequently improved upon method MSA both use permutation

of regions within chromosomes to assess significance. STAC and MSA are both

available as Java applications, however they differ in the input they require

and in the output they generate. STAC requires input data to be segmented,

MSA only requires normalised log ratio values. STAC generates confidence

values for the identified recurrent regions as output where as, MSA returns a

p-value for each region. The KCSmart algorithm calculates an average ratio

intensity across samples for each array probe to identify recurrent regions,

combining positive and negative ratios separately. A Gaussian locally weighted

regression is then applied to the summed totals. The results of this process

is then corrected for the non-uniform distribution of probes along the genome

that occurs on aCGH platforms. The identified peaks are then tested using a

permutation approach against a randomly permuted background. Significant

recurrent regions of copy number gains and losses are finally determined

using the resulting, multiple testing corrected, significance threshold. The

KCSmart algorithm has been implemented in R and is available as part of the

Bioconductor project. The R implementation requires normalised positive and

17

Introduction 1.3.4 Downstream analysis

negative intensity ratio values separately as input.

The MAR and CMAR algorithms find minimal common regions using

segmented data. These two algorithms are not suitable for the development

of downstream analysis pipeline as neither produce a test statistic that can be

used to assess the confidence for a minimal common region. The source code

for the both algorithms is also not publicly available, where the source code

for published methods is only available upon request of the authors as is the

case for MAR and CMAR is a very bad situation. “If the source code is good

enough to do the job, then it is good enough to release and releasing it will

help your research and your field” (Barnes, 2010).

The H-HMM model extends a previously developed single sample aCGH

HMMs (Shah et al., 2006) to deal with multiple samples to detect shared

copy number aberrations. The algorithm uses raw data for input to avoid

filtering out important signals in the raw data. The algorithm has some clear

limitations, the probability shared copy number aberrations is produced for

each array marker not for regions, the algorithm can not identify subgroups

within the data and unfortunately the code for running the H-HMM is only

available for MATLAB (MATLAB, 2012), making this method inaccessible to

researchers that do not have a MATLAB license.

There has been no comprehensive comparison of the different approaches, and

very few of the published papers present any comparison with other methods

The field is therefore ready for a comprehensive, careful, comparison of the

relative strengths of available methods using a variety of simulated data sets

to better understand which methods will perform better on different real data

sets (Rueda and Diaz-Uriarte, 2010).

18

Introduction 1.3.4 Downstream analysis

• Classification by genomic profile for prognosis and diagnosis is a form of

downstream aCGH analysis most commonly performed using supervised

machine learning algorithms. Supervised machine learning algorithms use

an initial set of data know as a ‘training set’ to infer information about

the properties of the data. The inferred information can then used to make

predictions about other data. Although there are number of different types of

machine learning algorithms such as nearest neighbour (Dasarathy, 1990) or

bayesian classifiers (Duda and Hart, 1973) the best performing algorithms for

aCGH data are Support Vector Machines (SVMs) (Wang et al., 2006).

Support vector machines (SVMs) (Vapnik, 1995), are a computational

technique for classifying high dimensional data such as that produced by

microarrays (Li et al., 2004). SVMs are supervised machine learning algorithms

for binary classification. Supervised machine learning algorithms use an initial

set of data know as a ‘training set’ to infer information about the properties of

the data. The inferred information can then used to make predictions about

other data.

SVM classifiers are constructed by first identifying the optimal hyperplane that

maximises the margin between all the support vectors (shown in figure 1.3),

this hyperplane is then used to classify subsequent new data. The larger the

margin, the better the generalisation of the classifier thus avoiding overfitting.

Overfitting is a phenomenon caused by machine learning algorithms too closely

generating a classifier that is too well fitted to the training data and thus poorly

generalisable causing it to perform badly on new data.

The random forest (Breiman, 2001) is becoming popular technique for

classification of aCGH data, it has developed an excellent reputation amongst

19

Introduction 1.3.4 Downstream analysis

Figure 1.3: This figure shows a schematic representation of a simple support vector
machine classifier for two classes of data. The two blue and two red points that constrain
the width of the margin are the support vectors. The support vector machine constructs
a classifier by finding the hyperplane that maximises the margin between all the support
vectors.

20

Introduction 1.3.4 Downstream analysis

the statistics and machine learning communities as a versatile method that

produces accurate classifiers for many types of data (Amaratunga et al., 2008).

In a random forest, a tree, is trained on a sample of cases drawn at random

from all cases and each tree uses a random subset of all the features to build its

classifier. The forest is an ensemble of some number of such trees, where each

tree is called a base classifier. Classes are assigned to samples by majority vote:

when given a test case, each tree assigns it a class according to its classifier;

this information is collated and overall the forest assigns it the most frequent

class. The out-of-bag cases in any tree can be regarded as test cases for that

tree as they were not used to build it and thus they can be used to assess

the performance of the forest as a whole; this is done via the out-of-bag error

rate, which is the proportion of times an out-of-bag case is misclassified. A

major advantage of random forests is that they are able to keep the likelihood

of overfitting low by using different subsets of the training data and different

subsets of features for training the different base classifiers. This means that

only patterns truly present in the data would be detected consistently by a

majority of the base classifiers and the majority votes turn out to be good

indicators of class (Amaratunga et al., 2008).

• Combining aCGH data with the results of other high throughput genetic

techniques is a common downstream approach attempted by a number of

groups, researchers have most frequently attempt to correlate copy number

loss and gain with gene expression levels (Chin et al., 2006; Lapointe et al.,

2007; The Cancer Genome Atlas Research Network, 2008; Haverty et al., 2009;

Savola et al., 2009).

• Identifcation of likely causal genes in identified regions of copy number

21

Introduction 1.3.5 Laboratory information management systems

aberration is another very useful downstream analysis approach. There are

a number of ways in which these genes can be investigated, for example by

looking for gene ontology terms that are over or under represented, researchers

can also look at the pathways in which any identified genes lie to give clues to

the biological implications of the copy number alteration. As is very often the

case in high throughput research, a very large list of genes may be generated

using this approach and, in this case, it may be useful to apply an unbiased

prioritisation procedure to reduce the number of potentially interesting genes

(Furney et al., 2008).

1.3.5 Laboratory information management systems

As is illustrated in section 1.3, high throughput techniques such as microarrays

involve numerous experimental and informatics steps in a single experiment, with

each step capable of generating vast amounts of heterogeneous data. The accurate

management of all of these data is essential in ensuring that high quality reproducible

results are consistently generated.

By far the best solution to the massive data management challenge posed by

high throughput technologies is the implementation of a Laboratory Information

Management System (LIMS). A LIMS is an integrated informatics solution

designed computationally to capture the workflow of an experiment accurately and

consistently by recording details of every step including all the associated data; this

task is completed automatically where possible. LIMS also need to provide intuitive

interfaces for users for data retrieval and visualisation. A suitable LIMS solution

capable of managing projects which employ the technique of microarray CGH would

require all the following features:

22

Introduction 1.3.5 Laboratory information management systems

• Sample management The accurate recording of all the details of every

sample used in a project is a very important function performed by LIMS. The

recording and retrieval of detailed sample annotation information including

phenotype data is key to extracting maximum information from an experiment.

• Recording experimental procedures Details of every laboratory procedure

performed on a sample need to be recorded to ensure the design of fair

experiments where all samples have undergone the same pre-processes so that

only the biological phenomenon of interest is under study.

• Interaction with laboratory instruments All high throughput techniques

rely upon sophisticated laboratory equipment including robotics for sample

processing and laser scanners for data capture. Therefore it is necessary to be

able to communicate efficiently with these essential pieces of equipment either

to provide input data to direct the equipment or to extract resulting data from

the equipment.

• Pre-processing and analysis The ability to perform basic data pre-

processing quality control and analysis steps, such as data inter- and intra-

experiment normalisation.

• Data visualisation Visualisation of data is an essential feature of a LIMS as it

allows users very quickly and easily to assess an experiment. Microarray LIMS

typically include the ability to view both the raw and processed versions of

the experimental data, together with different quality control plots that allow

users to assess their experiments quickly.

• Tracking of batches The ability to track batches of experimental reagents,

or microarray slides, is an important feature that also highlights one of the

23

Introduction 1.3.5 Laboratory information management systems

big advantages of using a LIMS. Because all experimental data are collected,

recorded and integrated, it is far easier and quicker to track down and diagnose

problems with batches as they arise rather than after a project has been

completed, especially when batch information is incorporated into aspects of

data visualisation.

• User management Owing to their scale, high throughput projects can

typically involve a large number of researchers, each of whom might have

different roles within the project; thus the ability to control what data each

researcher has access to is a very useful tool which can be controlled using user

accounts.

LIMS solutions

A LIMS can be deployed in a laboratory using one of a few different approaches:

firstly a closed source commercial package can be purchased; secondly a free open

source application can be obtained; or finally a bespoke solution can be developed

in-house. There are clear advantages and disadvantages to each of these approaches.

Commercial applications are ideal in highly time sensitive scenarios as these solutions

should be quick and easy to set up as they are designed to ‘work out of the box’.

However disadvantages of commercial LIMS include the cost to purchase the required

number of licenses and the correct level of support. The closed source nature of

commercial LIMS also limits the ability to extend and enhance the software to

meet specific needs. While new features in commercial LIMS can be requested by

users, final decisions and the time scale of their deployment are at the behest of

the developer. Open source solutions such as the highly successful BASE (BioArray

Software Environment) platform (Saal et al., 2002; Christersson et al., 2009) are free

24

Introduction1.4. SOFTWARE DEVELOPMENT FOR HIGH THROUGHPUT SCIENCE

to obtain; however they do typically demand more time and knowledge to setup.

Extending and improving open source solutions is also far easier than commercial

applications; however if significant areas of functionality are missing, a bespoke

LIMS could prove to be the best solution.

The level of activity surrounding an open source software project is another

important consideration as bioinformatics projects can often stagnate due to the

high rate of personnel turnover in academia, ultimately resulting in an unsupported

application. The development of a bespoke LIMS can lead to the deployment of a

solution that meets all the requirements of a laboratory and also ensures the quality

of the software which impacts on the reliability and reproducibility of data in the

system. While the choice to develop a bespoke LIMS application is the most time

consuming option of the three possible LIMS solutions, development time can be

dramatically improved with the application of available programming libraries and

frameworks (Morris et al., 2008a).

1.4 Software development for high throughput science

Scientific research using high throughput techniques is an approach that has thus far

proved to be highly successful in the discovery of novel scientific findings and because

of this they will remain the primary tool for making new discoveries for some time.

In order to fulfil this very high promise, high throughput technologies still require

further improvement of their informatics support which is so vitally important to

manage the unique demands of these approaches.

In summary, high throughput techniques such as microarrays have some

very challenging informatics requirements that can only be solved through the

development of high quality solutions. The first and most obvious challenge of high

25

Introduction 1.4.1 Software development processes

throughput approaches is the volume of data generated. Software solutions for high

throughput techniques should incorporate the ability to communicate with relational

databases, especially when data from different approaches needs to be interrogated

together. The next challenge posed by high throughput techniques is the rapidly

changing data format and analysis demands. One possible solution to the difficulties

that changing demands in data processing and analysis present is the development

of more modular flexible pipelines which are capable of very easy customisation and

the ability to plug in new data processing elements and analysis methods. The final

challenge that is clear from the previous two sections is the requirement of software

which generates results that are both accurate and highly reproducible, a challenge

that can only be met through the development of successful software projects of high

quality.

Bioinformatics projects, much like software projects in many other areas fail and

they fail all too often. This is an unfortunate fact that developers have been aware

of for a long time. To understand why so many projects fail we must first begin

with a definition of how we measure a successful software project. A successful

project should deliver a piece of software that is ready to use on time; the cost

of the project to produce the software should be what was expected; the software

serves the purpose for which it was designed; the software must also not be crippled

by bugs; and the final measurement for a successful project is that the software

produced should be used to make a positive impact on the area for which it was

created (Bain, 2008).

1.4.1 Software development processes

In order to bring about a change in the proportion of failing software projects,

software developers began to think about ways to improve the way software was

26

Introduction 1.4.1 Software development processes

developed. The idea agreed upon by most was somehow to formalise the process

that was required to create high quality software. The thinking at the time was

that to prevent failure of a project, software development needed to be managed

using a process that formalises the steps that are required to deliver a successful

piece of software in a timely fashion. Owing to the fact that the field of software

development was a fledgling one when these issues were first being discussed, people

decided to adopt methods from other more established fields such as engineering.

One of the first software development process put forward that is still in limited use

today is called the ‘waterfall process’.

The waterfall process used engineering principles for the development of software;

the process is comprised of a number of required phases of work which are completed

in sequence, so as one phase finishes the next phase down begins, such that work

in the project flows down through each phase like a waterfall. The phases or steps

typically involved are the analysis phase where detailed analysis of the problems

which needs to be addressed is carried out; the design phase where the design of a

suitable solution for the given problem is formulated taking into account any given

constraints; the construction phase is where the design is implemented and is the

first place where any source code gets written; and the final phase is testing to ensure

the software meets the requirements identified in the initial analysis phase.

However, the use of the waterfall process for software development very often

produced software that did not meet the expectations of the customer and projects

using this process tend to take more time and cost more money than was originally

planned. One of the major faults of the waterfall process is that it places far too

large an emphasis on the analysis and design phases which are very time consuming

as they involve the production of large amounts of documentation. Another failing

of this process is that after the design phase is complete, there is no built in way of

27

Introduction 1.4.1 Software development processes

changing the design, thus any changes would have to wait until after construction

and testing is complete, this is why so often software was created which no longer

met the requirements of the customer.

The rigidity and thoroughness of the waterfall process for project management

is what originally made this approach very successful for large engineering projects

(Bain, 2008) but at the same time is the reason why using this approach for software

development so often ends in failure. The most common cause of the failure of

software development projects is change; either change in the functionality required,

a change in the problem being solved, or a change in the demands of the customer.

The waterfall process contains no way to allow for inevitable changes that will occur

during a software development project which is why this process (although still used

for a small number of projects today) is regarded as unsuitable for the development

of successful software.

Variations of the waterfall process have been suggested that have since tried to

address the flaws of the original process by increasing the use of feedback, such

that feedback from the testing phase leads to further design to correct elements

of the design that do not work. Feedback from design should lead to revision of

the requirements analysis where requirements are identified as impossible to design.

Some processes have taken this idea a step further by involving feedback at every

stage, these modified processes have improved the original waterfall process, but they

do not solve all the problems. Because software development is a unique problem

that requires its own approach and not simply a variation of an engineering solution.

Agile

An alternative approach to these so called ‘heavyweight’ processes are ‘lightweight’

flexible and dynamic processes that are better suited the nature of software

28

Introduction 1.4.1 Software development processes

development. There are a set of methodologies which fit this criteria and that have

also been gathering a large amount of interest in the field of software development.

These methodologies are part of an exciting shift in software development called the

‘agile movement’; the agile movement manifesto was created in 2001 (Cunningham,

2001), and has four core values:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

The manifesto states that while there is value in the items on the right, the items on

the left should be valued more. Agile development processes provide more flexible

alternatives to the traditional ‘heavyweight’ methodologies, and because change is

one of the most common reasons for the failure of a software development project,

this in turn means that agile processes should be far more successful in delivering

successful software. There are a number of different agile methodologies that each

interpret the agile manifesto slightly differently; these include dynamic systems

development method (DSDM) (Consortium, 2012); crystal methods (Cockburn,

2004); feature-driven development (Palmer and Felsing, 2002); lean development

(Poppendieck and Poppendieck, 2003); adaptive software development (Highsmith,

2000); scrum (Schwaber and Beedle, 2001); and extreme programming (XP) (Beck,

1999). The two most popular and widely used of these methodologies are scrum and

XP which are described below.

29

Introduction 1.4.1 Software development processes

Extreme programming

Extreme programming turns conventional software development processes sideways

by planning, analysing and designing a little at a time throughout the project rather

than performing these tasks in discrete phases. The methodology is based on twelve

practices or guidelines which are intended to be used together (Beck, 1999).

Planning game The first practice termed the ‘planning game’ concerns the initial

analysis of the problem and the estimation of the time it will take to create a release.

In XP ‘stories’ are used to define what the software should be able to do; a ‘story’

is simply a description of a use case for the software that fits onto a small piece

of paper, and which is testable and estimable. Once analysis has finished and all

the stories have been created, a release estimate can be generated. This can be

approached in different ways; the customer can either choose the stories they want

included in the first release, with the developers then providing an estimate of the

time those stories will take to complete, or the customer can provide the developers

a time for the first release allowing the developers then to specify which stories can

be completed in the given time period.

Small releases Software releases in an XP process are quick and often. The first

release will typically be before all of the stories have been completed and, after that,

releases should follow regularly. With each release, the customer should define the

next most important story to implement. This practice is opposite to ‘heavyweight’

processes which only release code when all the software specifications are fully met

and so allows for a great deal of flexibility and rapid change and provides a sense of

accomplishment that is often missing in long projects.

30

Introduction 1.4.1 Software development processes

Metaphor The shape of the system is defined by a metaphor, or set of metaphors,

shared between the customer and developers. The metaphor provides a broad aim

for an XP project.

Simple design XP puts emphasis on the creation of simple solutions that achieve

the given task. In this way new code can be released quickly and, if the solution

is too slow, this can be addressed later. It is very often the case that the simplest

solution is the best and time spent optimising code may be wasted.

Tests Tests are one of the most important practices in XP, used differently from in

‘heavyweight’ methods where testing is performed after the software is constructed

as part of quality control, by someone other than the person who wrote the code.

Tests in XP are performed by the developer before the software is written using

what is described as the ‘test first’ technique. The test first technique means that

no production code should be written before a test exists for the feature being

developed.When the test is first created, it should fail. Development then takes

place until the test passes, at which point the feature can be considered to be

implemented and working correctly. (If it were to pass, that would indicate that

the feature already exists, and therefore no coding would be required to implement

the feature.) Testing has a number of features which make it suitable as a very

useful development tool and not just for quality control. Testing creates confidence

in software, and once written, tests can be run multiple times with no additional

effort. The use of tests in development means bugs can be identified much more

quickly and it can also highlight potential design problems. For instance, if a solution

is very difficult to design a test for then it may not be the simplest solution.

31

Introduction 1.4.1 Software development processes

Refactoring Refactoring is a practice that involves improvement of the internal

quality of source code without changing the external behaviour of the software.

This is almost impossible to carry out without a fully developed test suite, as the

test suite forms a safety net which ensures that any refactoring has not broken the

working code. Refactoring may at first seem a pointless practice as it does not result

in additional features. However, it makes code easier and quicker to maintain and

simpler to extend in the future, since with each round of refactoring, the code quality

should improve.

Pair programming The practice of pair programming is definitely a case where the

extreme in ‘extreme programming’ comes into play. Using the pair programming

practice, all code is written by two developers working at a single computer with a

single keyboard and mouse. The developers should switch between who is ‘driving’

the coding, either regularly or when one programmer reaches a block in progress.

The switching of partners is also recommended to prevent the practice becoming

stale. As with the practice of refactoring code, pair programming might at first

seem a waste of resources with one developer in the pair not producing any code.

However, like refactoring, the benefits of pair programming come from improvements

in the quality of the code produced. Far fewer bugs are introduced as a result of

the constant peer review of the code and what is created is normally far more

interpretable code as it must make sense to both programmers at the time of

production. The improved communication within the development team that pair

programming creates is another good reason why this practice is beneficial.

Continuous integration Any new code should be immediately integrated with the

current system as soon as it is completed and has passed the necessary tests instead

32

Introduction 1.4.1 Software development processes

of waiting for release dates.

Collective ownership Any programmer should endeavour to improve any code

anywhere in the system if the opportunity arrises.

On-site customer For every project a customer, that is someone who is going to

use the software being developed, should work in the same office as the developers.

This allows very rapid feedback for queries relating to the project, which produces

software much closer to the customer’s specification.

40 hour weeks Developers working significant amounts of overtime is often a cue

that there is something wrong with how the project is progressing, so the practice

of 40 hour weeks states that no one can work a second consecutive week of overtime,

rather the difficulties with the project should be addressed instead.

Open workspace Having an open space office is another practice relating to the

working environment much like the on-site customer practice. This practice states

that the development team should all work in the same office space, as this makes

practices such as pair programming much easier and enables better communication

within the development team for things such as the exchange of ideas which benefits

the progress of the project.

Just rules Once a development team has chosen to follow the rules of XP it does

not mean they can not go back on them, however they should ensure that they agree

on a new set of rules for the project.

33

Introduction 1.4.1 Software development processes

Scrum

The scrum process developed by Ken Schwaber has at its core the belief that software

development is not a defined process but an empirical process that requires constant

monitoring and adaptation. Schwaber believes you cannot predict or defiantly

plan what a software project will produce, but you can control the process with

monitoring and constant feedback (Highsmith, 2002). Unlike XP, Scrum instead

concentrates on the project management aspects of software development. The

scrum process takes place in three stages: pre-sprint planning; the 30 day sprint

(which is the emphasis of the process); and the post-sprint meeting.

Pre-sprint planning The first stage of the scrum process involves two backlogs, where

a backlog is a record of features that are similar to ‘stories’ in XP. The product

backlog is all of the features the software requires to complete the project, but to

begin a sprint requires the creation of a ‘sprint backlog’ which is the agreed features

which are to be completed during the next 30 day sprint. Along with setting the

sprint backlog the pre-sprint meeting also needs to decide on a sprint goal; the goal

should give a business reason why the chosen features are to be added. These provide

a target for the 30 day sprint, it is not a failure if a few features are not completed

during a sprint, as long as the business goal is reached the sprint is a success. The

sprint goal also helps the team by preventing developers from over-focusing on a

particular feature for too long.

30 day sprint Once the sprint backlog has been agreed upon, team members sign

up for tasks, this process being guided by the expertise and experience of each team

member. One very important feature of the sprint is that feature priorities do not

get changed during the sprint. This is because when everything else can change

34

Introduction 1.4.2 Software development best practices

something has to remain constant. The other important practice during the sprint

aims to combat time consuming meetings which so very often accomplish nothing.

Daily scrum meetings are the answer to this and they also help to manage the

uncertainty and change of software development projects. Scrum meetings are very

important to the scrum process and therefore have a tight set of guidelines:

• The meeting should be held at the same time and place every day

• They should last no more than 30 minutes, the ideal being 15 minutes

• The scrum meeting should be attended by all members of the team, managers

should attend although they should not participate and only listen

• They should be used to raise problems but not to work on solutions, this is

instead carried out by the relevant team members after the meeting

• At each meeting each team member should address three questions

– What have you done since the last meeting?

– What are you going to do before the next meeting?

– Is there anything getting in the way of your work?

Post-sprint meeting After the 30 day sprint has finished a post-sprint meeting is

should be held to demonstrate the new features developed during the sprint to the

customers, and at the end of the post-sprint meeting the scrum process starts again

with the planning for the next sprint.

1.4.2 Software development best practices

Along with following an appropriate development process such as XP or scrum, there

are additional practices that can be adopted by bioinformatics software developers

35

Introduction 1.4.2 Software development best practices

that can greatly increase the quality, productivity, usefulness and maintainability of

the software projects under their development.

Source code reuse

Source code reuse is a practice by which software developers utilise and extend

existing programming solutions rather than developing a solution from scratch. This

practice can very easily improve the quality and productivity of a development

project. Software quality can be improved by the incorporation of high quality code

from internal or external sources and productivity can be improved as developers are

required to spend less time working on common elements of functionality, therefore

able to concentrate on solutions to more novel challenges.

However if no effort is made to reuse source code within a project, then

redundancy in the code base will increase over time. This is because bioinformatics

tasks will often involve common development challenges, such as handling the input

and output of files in standard formats. High levels of redundancy in the source code

of a project is far from optimal as this has the effect of increasing the number of lines

of code unnecessarily. The more code that is written, the greater the opportunity

for introduction of errors, a larger code base is also more difficult to maintain and

document.

Source code reuse can be achieved in different ways: using libraries of common

functions, Application Programming Interfaces (API) to useful resources, modifying

code from other open source projects or on a more local scale, the use of a modular

development approach such as Object Oriented (OO) programming.

Programming libraries There are a number of repositories of programming libraries

available, these containing solutions to a vast amount of common development

36

Introduction 1.4.2 Software development best practices

problems, such as the comprehensive R (cran.r project.org, 2012) and Perl (Perl.org,

2011) archive networks (CRAN and CPAN) as well as more specific bioinformatics

projects for Perl, Java and Python (BioPerl (bioperl.org, 2011), BioJava (biojava.org,

2012) and BioPython (biopython.org, 2012)).

APIs APIs are a set of programming tools which allow developers to communicate

with other software using specified functions, data structures and variables. The

Ensembl API (ensembl.org, 2012) is a an example of a very popular and successful

API for the bioinformatics community. This is because it allows the user, in only

a few lines of code, to connect to the Ensembl databases, and generate objects

that represent entities in the underlying database, which provide multiple retrieval

methods (Rios et al., 2010)

Open source programming projects Web-based repositories of open source code such

as SourceForge (Geeknet, Inc., 2012) and GitHub (GitHub Inc, 2012) allow users to

download useful tools and applications. They also provide the developers of such

tools and applications with the ability to collaborate on and share the programming

solutions underlying their software. Having the source code of a relevant program

available can be very useful for a development project as it can quickly provide

tested solutions to what might be difficult tasks.

Object oriented programming Briefly in object oriented programming, software

‘objects provide controlled access to collections of data and a class defines a type of

object and describes what data are accessible and how to access it. OO programming

has many benefits including: simpler analysis methods, a domain-oriented approach

to design cleaner and more compact code, more robust implementations, greater

code modularity, easier debugging, more comprehensible interfaces to modules,

37

Introduction 1.4.2 Software development best practices

better abstraction of software components, less namespace pollution, greater code

reusability, scalability of software and better marketability of the final product

(Conway, 2000). There are number programming languages that can be used to

develop software in an object oriented manner such as Java (ORACLE, 2012), C++

(cplusplus.com, 2012), Perl (Perl.org, 2012), Python (Python Software Foundation,

2012) and R (r-project.org, 2012). All of the languages implement OO programming

in slightly different ways, but all result in providing the same advantages to the

developer.

The most important and useful OO programming concept in terms of source code

reuse is inheritance. Inheritance is a technique that allows the developer to import

common functionality quickly into a new class. Typically a ‘base’ class is created

containing general variables and functions, then more specialised child classes are

able to inherit the general variable and functions from the ‘base’ class, which they can

add to with more specialised variables and functions. Inheritance allows developers

to quickly reuse the variables and functions they have already created thus reducing

development time and reducing errors.

Version control systems

Even modestly sized programming projects can easily generate a very large

amount of computer programming source code and associated files. Through the

implementation and regular use of a version control system (VCS) such as CVS

(Price and Ximbiot, 2006), subversion (The Apache Software Foundation, 2011) or

git (Chacon, 2012), a development team or single developer can avoid a number of

problems which can arise during the course of a project.

A version control system is software which manages the recording and retrieving

of changes within in a project. Although version control systems all differ slightly

38

Introduction 1.4.2 Software development best practices

in their functionality there is core of functionality that all of these systems posses.

One example is the ability to merge files without loss of work where two or more

developers are working simultaneously on different parts of the same file, a task which

if attempted by developers themselves would certainly be prone to error. Other core

features include the ability to retrieve any stored revision of a file for viewing or

editing, and the ability to store or retrieve notes concerning a revision. Together,

these functions make the process of identifying and fixing bugs in the source code a

far simpler task. Additional features typically supported by version control systems

include the ability to retrieve difference between versions of files (which makes it

easier to create patches or locate bugs) and the branching of projects (allowing

the project to progress along multiple development tracks simultaneously). These

branches can be merged back into the main line of development when complete.

The workflow of a developer using a version control system differs slightly, but

not significantly, from the basic ‘open a file, edit the file and save the file’. To

begin development using a version control system first requires making a copy of the

repository which is the saved collection of all the files, as work is done on a copy of

the repository and not directly on the repository its self. The copy of the repository

can be on the same machine as the repository, on a machine on the same local

network, or on a machine connected through the Internet. The final connection

method means that it is possible for developers in different locations around the

world to contribute to the same project; this is very common in the development

of a number of large open source development projects. Once the developer has

their copy of the repository, they can resume the simple process of opening a file,

editing the file to add a feature or fix a bug, and saving the file on any file in

the repository. To save the new version of the file in the repository, the developer

must first ensure they have the most up to date version of the repository to make

39

Introduction 1.4.2 Software development best practices

sure another developer has not modified the same file. If the changes made do not

conflict with any changes made by another developer, the file may be committed to

the repository along with a note; but if a conflict in the file is detected this must

be resolved before the changes can be saved. As can been see in this example, the

use of a version control system for a project involves additional work, however the

benefits of a well operated versioning system can clearly mitigate the small amounts

of developer time and effort required.

Testing

Testing is an essential process in the quality control of software development and

is used to ensure software works in the way it was intended. With bioinformatics

applications, it is very important to have a level of reassurance about the quality

of software, in order that the user can be confident that results generated by the

software are correct.

Many developers use a very simple system to accomplish this aim, by compiling

the code and then trying features to check they work, or they may create a simple

script to test the functions they have implemented. This simple functional testing

approach to what is a very important process in software development is far from

sufficient to produce successful high quality software. However, it is better than a

total lack of testing, an occurrence which I have observed on numerous occasions

in the work of others in the bioinformatics field and also through downloading the

source code of software published in leading bioinformatics journals.

Testing has other benefits beyond simply testing that a certain function produces

the result that is expected. For instance, testing helps during the processes of

refactoring and development of new features as they make it very easy to ensure

that any changes that have been made do not break the existing working code. Also

40

Introduction 1.4.2 Software development best practices

tests help to document the code, as they serve as an example of what the code is

supposed to do.

There are different types of testing for software development projects such as

customer acceptance testing, integration tests and load tests. But by far the most

useful form of testing for software development is unit testing. Unit testing is a

testing approach where by a test is created for every functional unit in the system.

This approach ensures complete coverage of all the code in a project that may not

be achieved by simply testing individual features. Unit tests can be written after

the production code has been written, or before as proposed by agile methodology.

The process of testing and unit testing is well supported by all modern programming

languages, for example the JUnit framework in Java that provides classes to extend

and an automated test runner that organises the execution of all the tests. There

are also numerous modules freely available to assist in writing test in Perl such as

Test::Harness, which also automates the running of tests.

Documentation

The production of clear and thorough documentation is essential for the usability

of any produced software, but is also very important for the maintainability of the

code base and reusability.

It is not only software documentation of bioinformatics software which is

important, but also a much overlooked practice is the recording of the steps involved

in a bioinformatics experiment using the developed software. It is a well enforced

practice in wet laboratory experiments that all the details of an experiment are

systematically recorded; this is however by no means normal in bioinformatics. The

recording of the analytical steps taken as part of a bioinformatics experiment are just

as important as a wet laboratory experiment and, for the same reasons are crucial

41

Introduction 1.4.3 Programming languages

for the replication of work. There are a number of simple solutions to manage an

electronic laboratory book, wiki-based systems provide a very flexible way to record

research and they are also very suitable for collaboration which is very important in

science.

1.4.3 Programming languages

The most important software tools that were used in the process of carrying out

this project were the programming language Perl, the statistical programming

environment R and the relational database management system MySQL. The

principles and practices that will be discussed throughout this work are by no means

limited to these specific tools. In fact all of the work I will describe could be repeated

using a different set of software development tools to achieve a similar goal. There

are however very strong reasons why the specific toolset of Perl, R and MySQL

was chosen: all of these tools are very widely used solutions both in academia and

industry for the tasks they are designed for, while in the field of bioinformatics, each

tool is ideally suited for efficient development of software systems capable of dealing

with high throughput data.

1.4.4 Bioinformatics software development

The field of bioinformatics can be considered a unique area of software development

due to a number of factors. First, the majority of bioinformaticians do not have a

computer sciences degree, but instead have a training background from within the

biological sciences. This phenomenon has had generally a negative effect because

without formalised training in programming and software development the majority

of those involved in bioinformatics have acquired their programming skills from

42

Introduction 1.4.4 Bioinformatics software development

short courses or in a self taught manner. While this mode of learning is a perfectly

adequate way to gain the ability to start developing software, it rarely equips the new

developer with an appreciation of how to create very high quality software solutions.

It would be foolish however to believe all the challenges in bioinformatics could

simply be overcome if all the work was done by computer scientists and professional

software developers.

The second unique feature of software development in the field of bioinformatics

is the speed at which the field is evolving, new techniques and analysis methods are

constantly being developed and the amounts of data being generated by experiments

continue to increase. This means bioinformatics has high demands of software, it

has to be developed quickly, be tolerant of changes in things like file formats and be

able to cope with very large volumes of data. The setting in which the majority of

bioinformatics is conducted provides even more challenges, since most bioinformatics

research is conducted in an academic setting where a ‘pressure to publish’ mentality

exists. Academic research is highly competitive, which means that most software is

developed only as far as is necessary to publish results and not instead developed

a little further in order to become fully finished software that would then become

useful to other people. Due to limited resources in academia, much of bioinformatics

software is developed by small teams (often a single developer) rather than by large

teams as is common in a commercial setting. This situation means any software

development processes applied to the field of bioinformatics would need to be equally

applicable for very small development teams as well as larger teams.

There is a great need in bioinformatics software development for a process to

follow that will ensure the production of high quality code that will produce reliable

results in a timely fashion. However the application of ‘heavyweight’ development

processes such as the waterfall process to bioinformatics projects is inappropriate,

43

Introduction 1.4.5 Bioinformatics software development review

not just because the analysis and documentation phases require a great deal of effort,

which would take a large amount of time due to small team sizes but also because

of the fast paced nature at which the field is changing and as discussed above, the

waterfall process does not allow for change once a design is agreed upon.

The ability of agile processes to respond to change makes them far more suitable

for bioinformatics software development. In addition, agile processes should scale

well to the smaller development teams typical in bioinformatics. Agile approaches

are also geared to speed, flexibility and quality, which are all very important for

bioinformatics development.

1.4.5 Bioinformatics software development review

The subject of software quality and development processes in the field of

bioinformatics is gradually attracting more and more attention as the importance of

bioinformatics increases due to the heavy reliance modern biological research places

on it. There have been a handful of publications concerning the subject of software

development and best practices in the field of bioinformatics, although more needs

to be done to raise awareness of what is a very important issue for modern scientific

research.

Baxter et al in 2006 (Baxter et al., 2006) were the first to publish a set of

best practices for scientific software development. The authors begin by defining a

successful software project as a code base that produces consistent, reproducible

results, is usable and useful, can be easily maintained and updated and has a

reasonable shelf life. The authors suggest five practices for successful scientific

software development. The first is to implement a design process that addresses two

questions; “what will the program do?” and “how will the results produced by the

program be verified?”. Through answering the question of “what will the program

44

Introduction 1.4.5 Bioinformatics software development review

do?” developers should be able to select the appropriate technology or programming

language to tackle the problem, rather than making this decision simply based on

the experience of the development team. This is an important step in a scientific

software project and the authors point out, with good examples, how different

programming languages have clear advantages for specific tasks. More importantly,

they describe how selection of the wrong technology or language will most likely

result in additional work for the development team. Assessment of the available

technologies or programming languages at this early stage in the development process

can also save time by identifying preexisting solutions or components that can be

‘plugged in’.

The second question of “how will the results produced by the program be

verified?” is very important for the creation of software which produces consistent

and reproducible results as the development of a test plan will ensure the production

of high quality software. The authors also highlight the importance of planning the

usability of the software as they state this should be a higher priority in scientific

software development. The second practice presented in the paper is the use

of quality control processes, such as testing, version control and recognising and

tracking program bugs. They point out that testing identifies bugs and enables

these to be solved early before problems arise. Version control is put forward as

critical for the tracking and tying together of software and results. Finally, the

authors believe that the process of tracking program bugs should be encouraged, and

managed by appropriate tools. The third suggested best practice is the use of data

standards, such as accepted data formats, ontologies and the use of standardised data

repositories such as ArrayExpress (Brazma et al., 2003). Through adhering to these

data standards whenever possible, the authors suggest this will enable accurate and

efficient code development and reduce user and peer reviewer frustration. The final

45

Introduction 1.4.5 Bioinformatics software development review

best practice put forward in this paper is the incorporation of project management.

In the author’s opinion, the best project management method is the agile approach

of Scrum, and they also suggest the implementation of project web sites or wikis

as being highly beneficial for communication and management. The authors’ of the

paper conclude by citing two examples of successful scientific software development

projects; the cancer Biomedical Informatics Grid (caBIG) (von Eschenbach and

Buetow, 2007) and the Bioconductor project (Gentleman et al., 2004).

Another paper on the topic of bioinformatics best practices was published in 2009

by W. S. Noble (Noble, 2009). This paper attempted to describe a clear strategy

for performing high quality bioinformatics experiments. Although the issues raised

in the paper, such as file and directory organisation, may seem extremely tedious

to many bioinformaticians, having a well formed plan for performing bioinformatics

experiments is essential for generating reliable and reproducible results. The core

motivating principle for performing research in this way is that “someone” should

be able to look at the files that have been generated during an experiment and

simply and easily work out what was done and why. The author describes that the

“someone” could be any number of different people such as collaborators, researchers

wanting to repeat your work, or more commonly than not, the person who actually

performed the experiments, having to revisit the work after a period of time. Nobel

puts forward an additional principle which he believes applies to computational

biology experiments, that some part (or all) of an experiment is highly likely to

need repeating at some point. The need to repeat work may be due to the discovery

of mistakes in the original analysis, or new data becoming available, but what ever

the reason, it is far easier to go about repeating an experiment having used a good

strategy for carrying out the work in the first place.

The paper goes on to describe an ideal strategy for performing a bioinformatics

46

Introduction 1.4.5 Bioinformatics software development review

experiment, beginning with the organisation of the directories and files. The

principle put forward is a simple one; start with a single top level directory, within

that directory should be placed directories for data, results, source code that needs

to be compiled (src), scripts and compiled (bin) and documents. Data and results

should be placed in dated directories corresponding to when the files were created.

The contents of the src directory should be source code for compiled programs and

the bin directory should contain simple scripts, finally the documents folder should

contain a draft manuscript for the work being carried out. The second practice

recommended by Nobel is the use of a bioinformatics laboratory notebook. Dated

entries in the lab book should give a detailed account of each step carried out, as well

as results and interpretations of the work. Online solutions such as blogs or wikis

provide the ideal solution for a bioinformatics lab book as they can easily be updated

and viewed by external collaborators. The practice of handling and preventing errors

is also discussed in the paper, with the author recommending protocols to ensure

errors are dealt with correctly: numerous checks should be included in even simple

programs; scripts should be used to ensure the integrity of data; and on the discovery

of an error, the correct action should always be to terminate the program. The final

practice discussed for use in the workflow of a good bioinformatics experiment is

version control, because as the author states, version control serves a form of backup

for work and results. Version control also provides a historical record of the work

carried out, making is easier to understand the changes that have gone on during

an experiment. Finally, version control simplifies collaboration, allowing numerous

people to work on the same set of files without fear of overwriting each other’s work.

This paper puts forward the idea that the logistics of efficiently performing accurate,

reproducible computational experiments is a subject worthy of consideration and

discussion.

47

Introduction 1.4.5 Bioinformatics software development review

Dudley et al (Dudley and Butte, 2009) in their paper of 2009 present another

set of guidelines for effective bioinformatics programming. In contrast to the papers

described above, the authors here concentrated on the specific tools for a variety

of bioinformatics tasks. The first bioinformatics task they discuss in the paper is

the day to day programming which is necessary in all forms of bioinformatics. The

authors point out that modern interpreted scripted languages such as Perl, Python

and Ruby are among the best choices for general bioinformatics programming work

due to the speed at which solutions can be created and the availability of libraries

of code available for each. Beyond programming languages, the authors recommend

that bioinformaticians should also become familiar with a web server system such

as Apache, based on the clear importance of web tools to the bioinformatics

community. The authors go on to discuss the importance of using freely available

source code that solves common bioinformatics problems. The authors recommend a

number of frameworks of source code, such as bioPerl, bioJava, bioPython, bioRuby

and bioconductor, as their use prevents developers from wasting valuable time

‘reinventing the wheel’. In common with the previous two papers, Dudley et al

also discuss the importance of good documentation and version control of project

related files. The form of documentation focused on in this paper is the annotation

of source code because, as they state, good documentation is key to making good

sense of code. Again with the focus on recommending the correct tools for a

task, the authors suggest the use of automated documentation software including

Doxygen (www.doxygen.org), JavaDoc (www.oracle.com/technetwork/java/) and

PyDoc (www.python.org/). On the subject of version control systems (VCS), the

authors concentrate again on the specific tools available to bioinformatics software

developers mentioning CVS, Subversion and Git as VCS, and a number of related

tools such as TortiseSVN and SCPlugin which integrate VCS functions into operating

48

Introduction 1.4.5 Bioinformatics software development review

systems. The use of free online services like SourceForge (sourceforge.net) or GitHub

(github.com) for hosting a VCS is also a very sensible addition to their discussion.

The authors then go on to raise some very good points about data management,

an important issue not thoroughly touched upon in the previous papers. They put

forward the idea that the use of flat files for bioinformatics is outdated and that

relational databases are far better suited to the problems that bioinformatics poses.

The integration of data from a variety of sources is far easier using a relational

database than using flat files, and computationally they offer far more elegant

and efficient solutions for interacting with data, such as object relational mapping

frameworks.

Object relation mapping (ORM) is a technique for intelligently mapping the

tables and rows of a relational database to programming objects, in order to

provide consistent access to a data model. ORM frameworks are available

for many popular programming language and database combinations, such as:

Perl’s DBIx::Class (Trout, 2012), Java’s HIBERNATE (hibernate.org, 2012),

Python’s Storm (Canonical, 2012) or Ruby’s Active Record (rubyonrails.org, 2008).

These example ORMs all provide developers with routines for common database

interactions, including: creating, reading, updating and deleting database entries.

They differ slightly however in how they generate an object layer to a database, with

for example Perl’s DBIx::Class ORM using the structured query language definition

of an existing database to create objects, whereas, Python’s Storm ORM creates

a database schema from user defined object classes. In both of these cases the

developer only needs to define a data model in a single location which is one of the

main advantages ORM frameworks provide. Having a single consistent location for

the underlying data model in an application avoids having to make changes in at

least two locations at the database level and the programatic level wherever the data

49

Introduction 1.4.5 Bioinformatics software development review

model is accessed thus making it much harder to introduce mistakes.

An interesting paper by Kane et al (Kane et al., 2006) presented a different aspect

of the use of best practices in bioinformatics software development, specifically the

use of agile development practices. The authors identified a number of academic and

commercial organisations already using agile development approaches for scientific

software development. They surveyed those involved in each of the agile projects

to gain information on two main levels. First, basic information including the agile

practices that were being used in the project; the development process used previous

to agile; and the number of people working on the project. The more interesting

second stage of the study collected information on the feelings and experiences of

the agile users.

The authors were able to collect information on six organisations (five academic

and one commercial) using agile practices for scientific software development. The

first finding they made was that the size of the teams undertaking the work were all

relatively small, which will be unsurprising for anyone with experience in the field of

bioinformatics. On the use of software development practices before implementing

agile practices, two organisations had used no formal process, four had been using

more heavy weight process and one had used agile for the beginning of the project.

The survey of the agile practices used in the different projects revealed a very useful

set of common agile practices that were used across all projects:

• Automated unit tests

• Continuous integration

• Feature backlog

• Refactoring

50

Introduction 1.5. AIMS

• Open workspace

From the more in depth interviews concerning the feelings and experiences of

using an agile approach in a scientific software development setting, the developers

reported better interaction with the scientists involved with the project. The authors

suggest that a common attitude amongst scientists is that software development is

an ancillary task that should not have too much time devoted to it. However, they

found that using agile created a greater level of shared responsibility, improving the

way the software development process is perceived. The authors also report that the

projects found they had improved quality, flexibility and maintainability for using

agile processes, concluding that agile methods are well suited to scientific software

development.

All of these papers highlight a great need for a more uniform use of software

development best practices in the fields of scientific software development such as

bioinformatics, and they also all suggest very valid approaches for achieving this

aim.

1.5 Aims

The first aim of this thesis was to develop a framework of bioinformatics software

to meet the informatics requirements of our laboratory’s aCGH profiling projects,

including the management and analysis of the very large volumes of data generated.

An important requirement was for the system to be highly scalable, in order to

respond to the demands of ever increasing project sizes. Beyond the development

of the framework, the thesis would aim to test the system by applying it to a large

aCGH ovarian tumour profiling project, testing the hypothesis that the profile of

somatic genetic alterations is a determinant of patient survival.

51

Introduction 1.5. AIMS

Throughout this thesis the primary hypothesis being tested was that by

approaching bioinformatics software development in a more formalised manor by

using agile software development practices as well as other development best

practices this would result in software which is of a much higher standard

(reproducible, reliable and maintainable) compared to software developed using a

traditional bioinformatics ad hoc approach.

In chapter 2 of this thesis, I will describe a Laboratory Information Management

System (LIMS) that manages and records all aspects of microarray manufacture

and experimentation. In chapter 3, I will describe the implementation of object

orientation programming techniques on new and existing source code in the

laboratory, including a description of the suite of Perl analysis objects developed

to provide a flexible way quickly to construct data pipelines for quality control

normalisation and analysis using packages from the Bioconductor project. Chapter

4 describes the application of these software to the analysis of aCGH data from 94

ovarian tumour samples, in order to detect copy number changes that are associated

with patient survival. The final chapter of the thesis, chapter 5, contains a discussion

of the various issues raised by this work.

52

CHAPTER 2

Extending a microarray manufacture

laboratory information management system

to support aCGH experiments

2.1 Background

As discussed in section 1.3.5, a high quality Laboratory Information Management

System (LIMS) is an essential component in the informatics infrastructure of any

laboratory wishing to cary out research using high throughput techniques. The

Translational Research Laboratory (TRL) had already taken the decision to create

a bespoke LIMS solution before the beginning of this thesis, to support their

microarray manufacturing work. At the time this project started, there was user

demand for greater functionality in the LIMS, in order to support the aCGH

experiment workflow and subsequent data analysis. This chapter describes the

53

LIMS 2.1.1 The existing in house LIMS

extensive work carried out to create a LIMS capable of supporting the demands

of high throughput aCGH projects.

2.1.1 The existing in house LIMS

The LIMS solution that was already under development in the laboratory was

named ArrayPipeLine; at the beginning of this thesis the ArrayPipeline LIMS

was supporting the manufacture of the in house BAC aCGH microarray platform.

The ArrayPipeLine LIMS contained features to assist in all aspects of microarray

manufacture, such as methods for dealing with the microtitre plates used routinely

for samples and array features, management of interactions with laboratory

equipment such as robotic arrayers and tracking of microarray designs and details

on the spotted features.

The microtiter plate functionality of the LIMS was a key feature because of their

importance in many aspects of high-throughput experiments, being used for storage

and manipulation of all biological material used. The LIMS included methods for

creating and manipulating microtitre plates of different formats including 96, 384

and 1536 well plates, as well as individual tubes. The standard features available for

all plates included methods for adding samples to multiple and individual wells, and

the ability to identity plate contents. Some of the most useful features concerned

whole plate manipulations like the ability to perform plate to plate transfers, join

plates of a similar format into a larger format, or combine plates. The LIMS also had

support for storing information on the processing steps required for the manufacture

of microarray slides. Most importantly for the manufacture of microarrays is the

ability accurately to identify each spotted feature on the microarray slide; for this the

ArrayPipeLine LIMS was able to record the design of every microarray manufactured

by the laboratory. The ArrayPipeline LIMS also included specific functionality to

54

LIMS 2.1.2 Initial ArrayPipeLine LIMS code base

support the manufacture of aCGH microarrays such as the ability to store and

retrieve the precise genomic location of the BAC clones used as features to create

the array.

The laboratory based users requested new features in the ArrayPipeLine LIMS

to support the laboratory’s aCGH experiment workflow and support the demands

of high throughput tumour profiling projects. In order to respond to these requests

required a large amount of work in three areas of the existing LIMS. First, the

structure of the source code in the existing LIMS required significant improvements

in order to make the code base more modular, to reduce redundancy and to increase

code re-use for greater efficiency. Second, the backend storage solution (a MySQL

relational database) would need to be expanded to incorporate the extra data

generated by the aCGH experiment workflow and subsequent analysis. Finally,

expansion of the user interface would be required, in order to provide functionality

for users to interact with their experimental data. The rest of this chapter will

describe the challenges involved in extending the ArrayPipeline LIMS to be able to

cope with the broadening requirements posed and the solutions that were developed

to satisfy those requirements.

2.1.2 Initial ArrayPipeLine LIMS code base

The initial implementation of the ArrayPipeLine LIMS was not optimal for

easy expansion in functionality, in addition to many other issues concerning its

development. The LIMS was developed using a simple system of a web-based user

interfaces, driven by very long Perl Common Gateway Interface (CGI) scripts, that

directly interacted with the underlying MySQL relational database. This system

created high levels of redundancy between scripts in performing common tasks, and

redundancy in the code created very long scripts which were difficult to maintain and

55

LIMS 2.1.3 Extending the LIMS database for biological samples

easy to introduce bugs into. The direct access of individual scripts to the underlying

database gave no insulation to changes in the underlying data structure, which meant

that any changes to the ArrayPipeLine LIMS database could potentially break any

scripts which accessed those data. Also the code was not contained in a version

control system, which made it difficult for the two developers in the bioinformatics

team to work on the same pieces of code without destroying each others changes. In

addition, a lack of version tracking meant that it was impossible to trace the origin

of bugs in the code.

2.1.3 Extending the LIMS database for biological samples

The initial priority for expansion of the existing manufacturing LIMS was for the

tracking and management of the information from the various biological samples

that a high throughput laboratory performing aCGH analysis might encounter. It

was also essential that the detailed information recorded was accurate in order to

avoid mistakes in interpreting the resulting data.

Tumour samples

Owing to the fact that the primary focus of the laboratory was the further

understanding of ovarian cancer, one of the most important biological sample types

are patient derived tumour samples. There is a lot of information associated with

tumour samples and capturing as much information as possible is important for

downstream analysis. This information includes clinical features of the tumour such

as stage and grade. The stage of a tumour is a measure of how advanced the

disease is and is based on a number of factors, including; the size of the tumour;

whether lymph nodes contain cancer; and whether the cancer has spread from the

original site to other parts of the body. The system for staging in ovarian cancer

56

LIMS 2.1.3 Extending the LIMS database for biological samples

comes from the International Federation of Obstetricians and Gynaecologists (FIGO)

(Benedet et al., 2000). Staging ranges from one to four, in which stage one defines

a tumour confined to the ovary or ovaries, while stage four indicates evidence of

distant metastasis beyond the peritoneal cavity (Benedet et al., 2000). The grade

of a tumour is a measure of how abnormal the cancer cells look microscopically.

Although the system of tumour grading can differ between types of cancer, typically

the grade of a tumour is scored on a scale between one and four with one being

a well-differentiated tumour and four being a undifferentiated tumour (Benedet

et al., 2000). Tumour stage and grade details are very important to record as

this information can be used to great effect in extracting more information from

downstream analysis, therefore having a system where this information can be

recorded accurately and retrieved easily is very important.

When recording the tumour sample information it is also important to consider

that multiple tumour samples may originate from the same patient, for instance;

multiple samples can be taken from a single tumour; from a recurrence of the tumour;

from sites of metastasis; and finally ovarian cancer patients can have bilateral disease,

meaning that there are tumours on both ovaries. For this reason it is necessary to

include the patient when modelling the data, allowing the system to record basic

information about age and survival time only once at the level of the patient rather

than multiple times at the level of the tumour and thus avoid de-normalising the

database by introducing redundancy. Additionally the sample collections used in a

aCGH profiling project can include other data, such as; the treatment provided; the

subsequent response to the treatment; and detailed epidemiological data.

57

LIMS 2.1.3 Extending the LIMS database for biological samples

Normal samples

Along with the test sample, the aCGH experiment requires a normal sample that

serves as a reference. Obviously it is equally important to record detailed information

on the samples used for reference in all experiments. Reference samples typically

come from one of two sources; either a pool of normal DNA, or a matched normal

DNA sample from the patient.

External samples

The ArrayPipeLine LIMS also required the ability to deal with samples with

minimal additional information and import experimental data from such samples

that may come from external collaborators where additional information was

limited. The solution was to add to the data model what is referred to in the

ArrayPipeLine LIMS as an ‘external sample’. External samples can be incorporated

into the ArrayPipeLine LIMS with minimal information about the sample itself

and the experimental procedures used to generate the sample. This allows users

of ArrayPipeLine to apply the features of the LIMS, such as visualisation tools or

analysis pipelines, to externally sourced data.

Sample collections

To enable the laboratory to deal efficiently with groups of samples and allow

researchers quickly to retrieve results from the experiments they are interested

in, it was necessary also to consider sample collections in the data model. A

sample collection is a very simple concept, comprising a group of biological samples

associated in some respect for the convenience of experimentation or analysis. A

sample collection in the ArrayPipeLine can simply represent an existing internal or

external sample collection, or they can be used in more useful applications such as for

58

LIMS 2.1.4 Extending the LIMS database for aCGH experiments

creating cleaned sample collections where a quality control process has been applied

to remove poor quality samples. Through the inclusion of tools for the recording and

retrieval of sample collections in the ArrayPipeLine LIMS, the system and therefore

the laboratory, is also capable of performing experiments on many different forms

of cancer or any other samples where aCGH analysis may provide insight.

Importantly the sample information system in a high throughput aCGH profiling

LIMS needs to be flexible enough to record any potentially valuable additional data.

2.1.4 Extending the LIMS database for aCGH experiments

At the start of this thesis the ArrayPipeLine LIMS was well featured to support

the recording of all the experimental details required for the manufacture of custom

BAC microarrays. The features included recording procedure details from processes

such as DNA amplification, DNA purification and microarray printing as well as

recording basic information on the microarray features and the microarray design.

However, in order for the LIMS fully to support the management and analysis of

high throughput aCGH projects, additional support was required that would allow

details to be recorded for the entire aCGH experimental process.

Fluorescent labelling of DNA samples

Central to the technique of competitive hybridisation is the differential labelling of

the samples to be co-hybridised, most commonly achieved by attaching different

fluorescent dyes, such as cyanine or Alexa Fluor, to each of the samples. The

process of attaching these fluorescent dyes to the biological samples is termed

labelling and was the first microarray experimental process which was added to the

ArrayPipeLine LIMS in order to support recording of aCGH experiments. Essential

information to be recorded by the LIMS includes the identity of the sample being

59

LIMS 2.1.4 Extending the LIMS database for aCGH experiments

labelled, information about the type of dye used and details of the labelling protocol.

Additionally, measures of the efficiency of the labelling procedure can be generated

and recorded which can subsequently be used for quality control purposes.

Hybridisation reaction

Once all the samples, which are to be combined for the experiment, have been

successfully labelled, information then needs to be recorded on the hybridisation

procedure in which the differentially labelled samples are co-hybridised onto the

surface of the microarray slide. At this stage of the experiment, it is necessary to

record the identity of the two or three labelled samples which are to be hybridised,

together with details of the microarray slide and the hybridisation protocol. Details

of the design of the microarray were already recorded in the manufacturing LIMS,

along with information regarding the batch in which the microarray slide was

created. This is extremely useful for ensuring quality control of the microarray

slide batches used for a project.

Image acquisition

Following hybridisation, the microarray slide is scanned by multiple lasers, and

light emitted from the excited fluorescent dyes is collected by a photo-multiplier

tube. This process is called scanning, and generates a series of TIFF images of the

microarray slide, one for each fluorescent dye used in the experiment. The complex

scanning process involves numerous settings that need to be recorded for quality

control purposes, to ensure consistent data capture across projects and to enable

the successful replication of experiments.

60

LIMS 2.1.4 Extending the LIMS database for aCGH experiments

Image analysis

The image analysis step extracts fluorescent signal intensities at each feature of the

microarray and involves numerous parameters, all of which need to be recorded for

quality control purposes. The output of image analysis software is a single results

file containing the signal intensity values for each feature and associated data such

as quality control metrics. The large amount of data contained within these files,

typically 30,000 rows x 20 fields, means they are very large (80Mb) and as a result

file Input/Output (IO) operations on a large number of files can be time consuming.

Recording the results of the image analysis within the LIMS would allow more

rapid retrieval of results, and would enable detailed interrogation of individual

experimental data than would be possible with a flat-file based system. An

additional consideration comes about because each image analysis software solution

provides its own data output format, which means that bespoke database tables are

required for each software package in order to capture any unique information it

provides.

Microarray results files

A single aCGH experiment gives rise to a minimum of two TIFF image files each time

the microarray slide is scanned and a data file of intensity values each time an image

analysis is performed. This means that an aCGH project aiming to profile a thousand

samples will, depending on the experiment design used, generate a minimum of three

thousand experimental results files. Once the important data have been extracted

from these files and recorded in the LIMS, there is a strong case for not storing these

files. However this approach has a number of drawbacks which include the inability

to reanalyse older scan images using new or updated image analysis software to

61

LIMS 2.1.5 Extending the LIMS database for recording analysis steps

extract better quality results. If an error was detected in the experiment pipeline

it would not be possible to go back to track the source of a potential problem,

thus resulting in truncation of the audit trail. Finally archiving all the generated

experimental files creates an additional layer of backup which is a positive impact

on the system, as multiple backup sources provide greater security against data loss.

The financial cost of computer storage is relatively inexpensive when compared to

the cost of samples, reagents and time required to re-run an aCGH experiment. For

all of these reasons the decision was made to include in the ArrayPipeLine LIMS a

system that would allow the archival of all the experimental results files created.

2.1.5 Extending the LIMS database for recording analysis steps

The details of each of the numerous pre-processing steps that are required to be

carried out on aCGH data need to be accurately recorded, both to ensure consistency

between the experiments and the reproducibility of results.

Analysis steps and parameters

Microarray data analysis packages, such as those available from the Bioconductor

project, typically have a number of parameters that allow users to tune the

performance of their analysis. It is therefore very important that when using a

published analysis package or a bespoke solution that all the possible parameter

settings are recorded. In order to reduce redundancy in repeatedly recording

common settings, parameters should be recorded as parameter sets, thus allowing

commonly used parameter sets to be quickly and easily accessed and used again.

62

LIMS 2.1.5 Extending the LIMS database for recording analysis steps

Analysis pipeline

The term ‘analysis pipeline’ refers to a series of analysis steps performed in sequence,

with the output of one analysis serving as the input for the next. An analysis pipeline

is a very useful way of generating higher level results from raw data using a series of

different analyses. Because the user does not have to run each analysis individually

or handle the intermediate data, it makes analysis pipelines very powerful tools. An

analysis pipeline is in essence a simpler interface to a collection of more complex

analysis processes that still provides the ability to easily re-configure and re-run the

analysis.

It is very important to be able accurately to record the analysis pipeline applied

to experimental data in the database to ensure the reproducibility of results.

Through recording commonly applied analysis pipelines users are able quickly to

apply a standard analysis to some new data for comparison of results with previous

experiments. Recording an analysis pipeline is a relatively simple task, but it is vital

to be able to track exactly which analyses have been applied to experimental data

and in which order, as this can greatly affect the resulting data.

Processed data

In theory, the processed data generated as a result of applying an analysis pipeline to

some data does not need to be stored in the LIMS database, as this would increase

the amount of redundant data in the database. Instead, all the processed data

values can simply be created from the raw intensity data already in the database

by applying the analysis pipeline again. This approach would be possible if the

required analysis process was fast enough to be performed on the fly, however the

statistical analysis methods used to analyse a single aCGH experiment can take

63

LIMS 2.1.6 Extending the ArrayPipeLine LIMS GUI

several minutes. This is too time consuming for a web-based visualisation of the

experimental data and clearly unsuitable for larger scale, project-wide analyses. It

is therefore necessary to record the processed data generated by analysis pipelines

in the LIMS database.

2.1.6 Extending the ArrayPipeLine LIMS GUI

In order to support the additional functionality discussed required expansion of the

LIMS user interface that allows users to be able easily to take advantage of the new

features. The LIMS therefore needed interfaces that enabled users to record the

details of projects and samples as well as interfaces which allowed users to record

the details of processes involved in carrying out an aCGH experiment. Along side

interfaces to record data was an obvious requirement for easy to use interfaces which

allowed the extraction of data from the LIMS for the purpose of quality control and

further analysis.

2.2 Methods and implementation

The extended Array Pipeline LIMS was built upon software standards in the field

of bioinformatics using a three tier architecture, consisting of; the data layer; the

application layer or application programming interface (API) and finally the user

interface layer (UI). The data layer typically takes the form of a database, which

offers the best solution for fast and accurate storage and retrieval of information.

The application logic layer acts between the data layer and user interface, providing

the functionality of the system by interpreting all requests from the user interface

and interacting with the data layer. The user interface provides the software user

with an easy to use method for interacting with the application, by providing

64

LIMS 2.2.1 Database

simple to use functionality for requesting and receiving data. Given this modularity

in the application, the methods and technologies that were used to extend the

ArrayPipeLine LIMS can be split into three sections.

The use of freely available standards in all three tiers means the ArrayPipeline

LIMS is platform independent and highly extendable.

2.2.1 Database

The Array Pipeline LIMS uses the relational database management system MySQL

for its data layer. MySQL is a free open source Relational DataBase Management

System (RDBMS). The MySQL RDBMS is very widely used in bioinformatics and

was chosen for this project because of a number of features; MySQL is very easy to

use but with support for very advanced features such as programming interfaces

for many languages, such as C, Perl and Java; the RDBMS is highly portable

being capable of running on many operating system; MySQL is fully networked,

meaning databases can be accessed from anywhere on the Internet, so data can

easily be shared; MySQL has easy to configure security features which enable users

to protect the data in a database; and finally the MySQL community is very active

and responsive in providing support (DuBois, 2008).

Extending the data layer

In order for the ArrayPipeLine LIMS to support the new required functionality

that was described in sections 2.1.3, 2.1.4 and 2.1.5 required significant modification

of both the data layer and the application layer. The MySQL data layer of the

ArrayPipeLine application required the design and addition of a number of new

database tables that would be able to capture all the necessary information and

data relationships. The design process used to extend the ArrayPipeLine database

65

LIMS 2.2.1 Database

involved the following steps;

• Requirement analysis: The first step in extending the database was to

perform a requirement analysis to identify exactly what the extended database

should support and all the different forms of data that this would involve.

The requirement gathering step involved identifying the numerous sources

of possible data from high throughput aCGH projects that would require

storage, such as the file formats exported from image analysis software. The

requirement analysis process also involved talking to the laboratory based

customers of the ArrayPipeLine LIMS to discuss what information they

required recording, such as experimental procedures. A thorough approach

to this task enabled us to identify all the most useful data fields to record

which would be essential for tasks such as quality control and downstream

analysis, and at the same time identify those data fields that were redundant

or could be easily calculated from existing data.

• Entity Relationship (ER) diagrams: Entity Relationship (ER) diagrams allow

database developers to visualise the relationship between tables in a database

design. ER diagrams where used in the next step of the design process for

extending the ArrayPipeLine database, in order to identify many to many

relationships in the preliminary design. Many to many relationships are not

supported by most database systems and thus have to be resolved through the

addition of a table which further explains the relationship of the data involved.

• Normalisation: Database normalization is the practice of optimising a database

to avoid redundancy and prevent inconsistencies, the idea of database

normalisation was first proposed by E. F. Codd (Codd, 1970). The removal of

redundant data from a database is important as redundant data wastes disk

66

LIMS 2.2.1 Database

space. Redundant data can also lead to the introduction of inconsistencies in

the database. If the same data exists in multiple locations in a database, than

every update or delete operation would need to be successfully completed in

all locations in the database, a situation which is liable to the introduction of

errors in the data.

The advantage of having a highly normalised data schema is that information

is stored in one place, reducing the possibility of inconsistent data following

update or delete operations. Furthermore, highly-normalised data schemas in

general are closer conceptually to object-oriented schemas because the object-

oriented goals of promoting high cohesion and loose coupling between classes

results in similar solutions. This generally makes it easier to map programming

objects to a normalised data schema (Ambler, 2010).

Database normalisation is performed in terms of normal forms, each form

addresses a situation in the database that will cause problems. The normal

forms build on each other, so a database can not be normalised to third normal

form without also being normalised to first and second normal form. Further

explanation of the three most common normal forms follows:

– First normal form (Codd, 1970) states that a table should not use fields

which contain multiple similar values, instead a new table with the

multivalued information and the primary key of the original table should

be created.

– Second normal form (Codd, 1971b) states that a table should be in first

normal form and records should not depend on anything other than a

table’s primary key (a compound key, if necessary). Where a table is not

in second normal form the fields that are not dependant on the primary

67

LIMS 2.2.1 Database

key should be moved into a new table with a primary key they depend

on.

– Third normal form (Codd, 1971a) states that a table should be in second

normal form and values in a record that are not part of that record’s key

do not belong in the table. In general, any time the contents of a group

of fields may apply to more than a single record in the table, consider

placing those fields in a separate table. A table is in third normal form

if it is in second normal form and no non-key fields depend on a field(s)

that is not the primary key.

Fourth (Fagin, 1977) and fifth (Fagin, 1979) normal forms take the

normalisation process further by going beyond the functional dependancies

that the first three normal forms deal with. However normalising a database

up to third normal form is the highest level necessary for most applications,

in some cases normalisation steps beyond third normal form can even penalise

retrieval, since data which may have been retrievable from one record in an

unnormalised design may have to be retrieved from several records in the fully

normalised form (Kent, 1983).

Database normalisation was applied to the design process, with the initial

designs for extending the ArrayPipeLine database normalised were possible to

third normal form.

• Optimisation of the design: The design up to this point is database

independent and could be implemented using any relational database software,

however in order to make the resulting database fast and efficient the design

required additional database software specific information. The additional

information included details of the data types used for each field of data;

68

LIMS 2.2.2 Creating an object oriented Perl API

using the most appropriate data type can save a large amount of memory over

millions of entries, and hence impact upon the memory requirements of the

database. The addition of database indexes was also very important in creating

responsive database tables, greatly improving the speed of data retrieval at the

cost of slower writes and increased storage space.

2.2.2 Creating an object oriented Perl API

The redesign of the original ArrayPipeLine LIMS source code to apply object

oriented techniques was undertaken using the programming language Perl which

was chosen based on a number of features which make it well suited for developing

bioinformatics applications, such as: built in support for text processing; advanced,

yet simple to use database support; and a very active and helpful developer

community which includes the Comprehensive Perl Archive Network (CPAN) a

large repository of third party modules containing reusable code solutions for many

common development tasks. The original code base had been developed in Perl,

therefore using Perl also made recoding sections of existing code much easier without

the need to change any programming syntax.

To assist in the object oriented source code redesign and future development, a

source code versioning repository for the bioinformatics team of developers was setup

using the highly popular open source Concurrent Versioning System (CVS) project.

A repository was created on the laboratory’s local server and all subsequently

developed source code was added to, and maintained by, this repository.

69

LIMS 2.2.3 User interface layer

2.2.3 User interface layer

The UI layer of the The Array Pipeline LIMS was implemented using a system of

dynamic content web pages that are created using common gateway interface (CGI)

programming scripts, written in Perl. The user interface was tailored towards the

requirements of laboratory based users, ensuring it was easy to use for the entry

and viewing of experimental data. The web based user interface also reinforces

the portability of the ArrayPipeline LIMS as it will work with any browser on any

operating system without the requirement of installing additional software.

2.2.4 Agile software development

The extension of the ArrayPipeLine LIMS was undertaken using a number of agile

development practices, including user stories, an onsite customer and constant

integration.

2.3 Results

2.3.1 Requirements gathering

The requirements gathering process involved meeting with and speaking to three

groups of people within the laboratory, the current users of the ArrayPipeline

LIMS, the project managers that were currently or planning to use the TRL aCGH

facility and the other software developers working on the ArrayPipeLine LIMS.

Through meeting with these three different groups of people a number of times,

the requirements that are detailed in the background section of this chapter were

identified. The requirement gathering process used an unformalised system, similar

to the agile approach of customer stories. Users would simply describe what they

70

LIMS 2.3.1 Requirements gathering

needed from the system using language and terminology they were comfortable

with. By using an unformalised system it was easier to respond to changes in their

requirements.

In summary the main requirements gathered were:

• Improvement of the existing LIMS code base. The improvement of the existing

ArrayPipeLine LIMS source code base was a requirement identified by the

developers of the LIMS. The LIMS source code was required to be more

modular, better documented and more robust in order to make expansion

of the LIMS easier.

• Provide support for recording the details of new and existing sample

collections. The requirement for recording the details of new and existing

sample collections came from the current LIMS users and the project managers.

As all aCGH experiments involve samples, it was identified as very important

for the LIMS to be able to accurately and reliably record and recall the identity

of samples used in the laboratory.

• Record details of the individual steps of the aCGH experimental process. The

LIMS users required the ability to record and store the details of each of the

aCGH experimental processes. The LIMS users requested a system that would

allow them to easily record and recall the details of the multiple experimental

steps required as part of an aCGH experiment. The LIMS developers also

required the details of the experiment steps to be recorded to enable them to

provide quality control information to the LIMS users. This information was

also essential in downstream analysis.

• Provide a system capable of dealing with high throughput aCGH projects.

The project managers identified the requirement for the ArrayPipeLine LIMS

71

LIMS 2.3.2 Object orientation of the ArrayPipeLine LIMS source code

to be able to cope with high throughput aCGH projects involving thousands

of samples. This requirement was based on information on the number of

samples that were likely to pass through the laboratory for aCGH profiling in

the coming months and years.

• Extend the ArrayPipeLine LIMS GUI to support all the new functionality The

LIMS users identified the need for the LIMS to provide easy to use interface

for recording samples and aCGH experiments. The LIMS users were not

comfortable simply using a database interface to record the new information

the LIMS would now allow, they instead required a more user friendly way to

interact with the new functionality.

• Record details of the analysis steps performed on the aCGH experimental

results. The developers of the LIMS required the ability to record all the

detailed information associated with processing aCGH experimental data.

As each analysis step of which there are multiple can involve numerous

parameters, it was important for the developers that all of this information

was recorded for data reproducibility.

2.3.2 Object orientation of the ArrayPipeLine LIMS source code

Work completed in combination with my supervisor on the problems with the

original LIMS code base lead to the creation of an API for development of the

ArrayPipeline LIMS. Using object oriented programming techniques we were able

to create a generic toolkit of Perl modules that would enable developers to create

useful LIMS solutions in a way which was simple to use and required minimal effort.

The toolkit includes a number of methods that extend the functionality of two Perl

modules; DBI.pm (Bunce, 2012) the standard database interface module for Perl

72

LIMS 2.3.2 Object orientation of the ArrayPipeLine LIMS source code

and CGI.pm (Stein, 2007), the common gateway interface class for Perl. Alongside

Perl, the toolkit has been developed using two other standards in bioinformatics

application development: the open source database MySQL and the freely available

Apache web server. Although we have chosen to use MySQL and Apache for

development of the toolkit, it should be possible to use any database based on

the Structured Query Language (SQL) and any CGI capable web server.

ArrayPipeLine LIMS framework

The ArrayPipeLine LIMS software framework is build upon four generic object-

oriented Perl modules that all share the ‘LIMS’ namespace on CPAN, LIMS::Base,

LIMS::Database::Util, LIMS::Web::Interface and LIMS::Controller. Implementation

specific functionality has been provided using the object oriented technique of

inheritance to create sub-classes of the core LIMS::Controller class for example

LIMS::ArrayPipeLine.

LIMS::Base is the base Perl class for the LIMS suite of object oriented

Perl modules, implementing a number of higher level generic methods important

for generating the user interface and interacting with the underlying database.

LIMS::Base methods provide functionality in two main areas, configuration settings

and error handling. The ‘load config’ method is one example of the available

configuration methods, it parses configuration files into a Perl data structure allowing

for simple query and retrieval. The ‘get error string’ method of LIMS::Base is an

example of the available error handling methods, the method when called, returns all

the accumulated errors from the multiple possible sources in a session, in a formatted

string ready for output.

LIMS::Database::Util is the object-oriented Perl module that serves as an object

layer or DataBase Interface (DBI) for any LIMS database. The module inherits from

73

LIMS 2.3.2 Object orientation of the ArrayPipeLine LIMS source code

LIMS::Base and provides automation for DBI services required by a LIMS database,

enabling rapid development of Perl CGI scripts. The DBI methods in the module

are wrappers for DBI.pm calls, catching possible errors so that the way they are

reported can be controlled in the CGI script. The module contains nine methods for

returning databases results in different data structures in order to suit the differing

requirements of the developer, the methods in LIMS::Database::Util are able to

return the following Perl data structures: scalar, array, two dimensional array, hash,

two dimensional hashes and binary objects. The module also contains two methods

for inserting data into a database, and a single method for updating values already

present in a database. The LIMS::Database::Util methods ‘insert into table’ and

‘insert with placeholders’ both insert new data into a database, the first method

‘insert into table’ is a simple method that only requires the name of the table to

insert the data into and the values to insert in a pre-formatted string. The second

method ‘insert with placeholders’ is more sophisticated, by using a two dimensional

array for input it allows users to easily insert multiple records in a table using a single

call to the method. Unlike other methods, the method will also ‘kill the pipeline’ if

any errors are caught, or commit the new records to the database upon successful

completion. The method can return either a list of the newly inserted ids created

by insert statement or it can return the number of inserted rows. Where update

operations are required ‘simple update placeholders’ method provides an easy to use

method, single values in a selected table are updated when provided with an updated

value and ‘WHERE’ clause.

The development of multi-layered applications such as LIMS is made more

difficult because errors can be generated at many different levels of the application,

from the development language Perl, the database, the database interface, the web

sever or the common gateway interface. Correctly tracking and handling these

74

LIMS 2.3.2 Object orientation of the ArrayPipeLine LIMS source code

errors is essential in creating a robust application. Three methods, ‘db error’,

‘standard error’ and ‘any error’ handle the errors in the LIMS::Database::Util

module, and the ‘kill pipeline’ method prints them out upon killing the script;

‘db error’ returns any database (DBI) errors that have been caught; ‘standard error’

can be used to set any error/complaint in a CGI script, or returns any standard error

that has already been set; while ‘any error’ returns true if errors of any type have

been caught. The ‘is unrepentant’ method can be called at any point in a script to

cause the script to die if any errors are thrown, printing out all errors and issuing

a rollback call to the database. When combined with any critical actions that need

take place in the LIMS this method can prevent a database from becoming corrupt.

LIMS::Web::Interface is the object-oriented Perl module designed to act as a layer

between a LIMS database and its web interface. It inherits from the LIMS::Base

module and provides automation for services required in developing a LIMS web

interface. The LIMS object provides methods for formatting the HTML layout of a

new page quickly and easily; the header and sidebar HTML are both printed using

a single method call to ‘print header’, the page content is then added, and finally

the page footer HTML is printed with a method call to ‘finish’ which also closes

open connections to the backend database and forwards any parameters that have

been set. The method, ‘is back sensitive’, which when called in an interface script,

prevents the user from using the back button on their browser by rejecting an old

session id. This functionality prevents multiple submission of a web page which

could result in duplicate data entering the database.

The creation of correctly formatted URLs incorporating CGI parameter values

is important, so the LIMS::Web::Interface module contains forwarding methods

that will transfer data across multiple CGI pages. The method ‘param forward’

will forward all the currently set parameters in a web page as hidden values

75

LIMS 2.3.2 Object orientation of the ArrayPipeLine LIMS source code

and ‘format url base query’ formats the current user name and session identifier

parameter values to append to a CGI script’s URL, ‘format redirect full’ generates

a URL for a given script which including all required parameters. The use of

formatting methods means that URLs are never hard coded in any scripts, so any

change to a URL can be made in a single configuration file rather than in multiple

locations across all CGI scripts.

Although the tasks fulfilled by this module are relatively simple, they are very

useful as they are so frequently used in the generation of web based user interfaces.

By using method calls to a module the developer reduces the number of lines of

code that needs to be written which both decreases the amount of time it takes

to create a new interface but also reduces the possibility of introducing errors

or bugs into the code. Also using the LIMS modules allows the developer to

concentrate on functionality of content rather than layout, using the header, sidebar

and footer methods allow developers easily to maintain a consistent style throughout

all interfaces.

LIMS::Controller is a versatile object-oriented Perl module designed to control

a LIMS database and its web interface. Inheriting from the LIMS::Web::Interface

and LIMS::Database::Util classes, the module provides automation for many core

and advanced functions required of a web/database object layer, enabling rapid

development of Perl CGI scripts. The LIMS::Controller module extends Apache

and MySQL authorisation and security by providing methods for verifying the

username and password of anyone attempting to access a restricted web page, using a

‘user information’ table in the LIMS database. If this step is successful then a session

is automatically generated, however if inactive for longer than the set session time

the session expires and authentication is again required. The method ‘new guest’

is similar but does not require the user parameters and does not verify login which

76

LIMS 2.3.2 Object orientation of the ArrayPipeLine LIMS source code

allows developers to quickly and easily generate non sensitive web pages suitable for

a wider audience using the LIMS template. The method ‘new script’ returns a new

object without CGI/DBI or user login which is useful for rapid prototyping of new

methods against the LIMS database.

The LIMS::ArrayPipeLine module inherits from LIMS::Controller, the module

adds implementation specific functionality for the Translational Research

Laboratory CGH-Microarray LIMS. Methods are provided for formatting the HTML

layout of each page, divided into a header, sidebar and footer. A single method

‘print trl header’ calls methods that print the CGI header, the page title, and the

sidebar, ready for the CGI script to add content to the body of the web page. At the

end of a script, a modified version of the method finish will call a method to print the

TRL page footer. The static HTML elements inserted by the LIMS::ArrayPipeLine

module are specified in a configuration file, this removes the need to replicate sections

of HTML code across all interface scripts. Removing the need to replicate sections

of HTML reduces the possibility of introducing HTML errors or bugs.

Testing was undertaken to establish if it would be possible to discard the original

data files by placing them into the database as binary long objects (BLOBs).

However following testing we were unsatisfied that using BLOBs was a good

substitute for storing the data files, we had difficulties on a number of occasions

using BLOBs recreating the stored data files. Because of this we made the decision

within the ArrayPipeLine LIMS to store the original experimental data files in a

simple file system.

The LIMS::ArrayPipeLine module provides methods for dealing with data files,

by having the directory structure set in a configuration file the object methods

provide consistent paths for storing and retrieving data. This approach makes the

ArrayPipeLine LIMS less susceptible to errors with file locations when compared to

77

LIMS 2.3.3 Extending the ArrayPipeLine LIMS database for sample data

a situation where the location of files is hard coded into each script which introduces

more opportunities for mistakes to be introduced into the code base. The methods

‘storage path’ and ‘web path’ append a file name or path with either the storage

path for LIMS files, or the web path to retrieve them.

The LIMS software framework enables developers to interact with databases and

create interfaces in a quick and simple manner, as an example, the source code listed

below uses just 27 lines of code to create a simple login interface.

1

2 use L I M S : : A r r a y P i p e L i n e ;

3

4 my $ p i p e l i n e = p i p e l i n e−>n e w _ g u e s t (' User Login ') ;

5 my $q = $ p i p e l i n e−>g e t _ c g i ;

6 my $ b a s e _ u r l = $ p i p e l i n e−>b a s e _ u r l ;

7 $ p i p e l i n e−>s e t _ s h o r t _ s i d e b a r ;

8 $ p i p e l i n e−>p r i n t _ t r l _ h e a d e r ;

9

10 i f ($q−>p a r a m (' l ogout ')){

11 $ p i p e l i n e−>l o g _ o u t ;

12 pr in t $q−>p({− s t y l e=> ' font−s t y l e : i t a l i c ; ' } , ”You have been logged out”) ;

13 } e l s e {

14 pr in t $q−>s t a r t _ f o r m (− m e t h o d=>”POST” ,

15 −a c t i o n=>” http :// $ba s e u r l / cgi−bin / l ims index . c g i ”) ,

16 $q−>h i d d e n (” web id ” , $q−>p a r a m (' web id ')) ,

17 $q−>p (' ; ') ,

18 $q−>t a b l e (Tr (td ({− s t y l e=> ' text−a l i g n : r i g h t ; ' } , ' User Name : ') ,

19 td (t e x t f i e l d (− n a m e=> ' user name ' ,− s i z e=>20))) ,

20 Tr (td ({− s t y l e=> ' text−a l i g n : r i g h t ; ' } , ' Password : ') ,

21 td (p a s s w o r d _ f i e l d (− n a m e=> ' password ' ,− s i z e=>20)))) ,

22 $q−>p (' ; ') ,

23 $q−>s u b m i t (− n a m e=> ' Login ') ;

24 }

25 $ p i p e l i n e−>f i n i s h ;

2.3.3 Extending the ArrayPipeLine LIMS database for sample data

In total, eleven new tables were added to the ArrayPipeLine LIMS database to

capture all the sample information a laboratory would create through the process

of performing high throughput aCGH projects. A graphical representation of the

78

LIMS 2.3.4 Extending the ArrayPipeLine LIMS database for aCGH experiment data

tables that were added can be see in the entity-relationship diagram in Figure 2.1.

As can be seen in Figure 2.1 by the number of relationships they each have, the

three most important tables that were added were the patient info, specimen

and tumour tables. The patient info table holds the details of a patient for which

a sample has been recorded, the information in the table relates to clinical features

of the patient such as the patient’s age at diagnosis, the outcome of the disease

and the length of time before the outcome. The specimen table is a non cancer

specific sample table that allows a patient to have one or more normal samples such

as a peripheral blood sample that might be used as a normal control in an aCGH

experiment. If a patient’s sample is a tumour, the specimen table can also record the

additional information associated with tumour samples through a relationship with

the tumour table. A tumour entry in the database records clinical information such

the stage and grade of the tumour. It can been seen in the figure that the external

sample table ext sample is not related to any of the other tables, but this important

table allows the addition to the database of samples missing collection, specimen and

tumour information, thus making downstream analysis pipelines available for these

samples.

2.3.4 Extending the ArrayPipeLine LIMS database for aCGH experiment

data

In order to be able to capture all the information created by an aCGH experiment

required the addition of the most database tables of the three different data sources,

eleven new tables in total. The entity-relationship diagram in Figure 2.2 represents

all the new database tables and their relationships, and this clearly demonstrates

how the database structure reflects the aCGH experimental workflow. The tables

79

LIMS 2.3.4 Extending the ArrayPipeLine LIMS database for aCGH experiment data

Figure 2.1: This figure shows an Entity Relationship Diagram (ERD) of the sample
information portion of the ArrayPipeLine LIMS. Each box represents a new table in the
database and each row in the box represents a column in the table with solid lines between
boxes representing identifying relationships and dotted lines non identifying relationships.
Primary key fields are shown as yellow, foreign key fields are shown as red and all other
fields are shown as blue. Filled diamonds show fields in the table which are unable to take
null values and empty diamonds show fields in the table which can take null values (figure
created with MySQL workbench http://wb.mysql.com/ using crow’s foot notation)

80

LIMS 2.3.4 Extending the ArrayPipeLine LIMS database for aCGH experiment data

represent the key experimental steps, while relationships between the tables both

show the passage of data through the system and the order in which the steps take

place.

The experimental process begins with fluorescent labelling of test and control

samples. This step is recorded in the database by the target table which links

a biological sample to a fluorochrome in the fluorochrome table. Additional

information regarding the efficiency of the labelling reaction can also be stored

in this table for quality control purposes. Following the process of labelling, the

samples are then hybridised to a microarray; this is recorded in the database

by the cgh experiment table, which associates up to three fluorescently labelled

samples with a microarray slide and a procedure identifier. The procedure identifier

links to the procedure info table, which records details of a laboratory procedure,

including: a description of the procedure, who carried out the procedure and when

it was carried out. All this information about the aCGH experiment is then given

a unique experiment identifier generated by the table. After hybridisation, the

microarray slide is scanned using a laser to produce images for each fluorescent

label used in the experiment; the details of each scanned image are captured in the

database in the image table. This table records where the image resides on the file

system, the experiment identifier linking it to the samples used and details of how

the image was generated including the software used and a number of values which

relate to the settings used for the data collection.

The last step of the aCGH experimental process, modelled by the new database

tables, is the image analysis of the scanned images, in which intensity values for

each spot on the microarray are generated from the laser scanned images. The

image analysis table is central to this process, recording the location on the

file system of the results file created by the image analysis, the image analysis

81

LIMS 2.3.4 Extending the ArrayPipeLine LIMS database for aCGH experiment data

software applied to the data and a number of values relating to the quality of the

scanned images used. As more than one image is used in the process of image

analysis, the processed images table was created to break the many to many

relationship between the image and image analysis tables, recording each of the

image identifiers used in the image analysis.

There were two safeguards in place to prevent problems that would arise if any

of the stored files were moved on the file system and their location and not also

updated in the database. The first is the systematic naming used for all stored files,

database identifiers were used to name each file that had been processed, in this

way it would still be possible to match a file to the data being held in the database.

In a situation where stored files were not only moved but also renamed it would

be possible to restore the file system to a given time point in the previous month,

by using a filesystem snapshot which are generated daily as part of the laboratories

backup protocol.

We made the decision not only to store the location of the data file created

by the image analysis, but also to store the spot intensity data in the database

as well, with the two tables scanarray data and bluefuse data designed for this

purpose. The choice to record the intensity data from the image analysis in the LIMS

database was made for a number of reasons, including: the database data would act

as an additional form of data backup in case the original files became corrupted; the

database data would be faster to access programmatically; and to provide the ability

to execute complex queries more easily. The scanarray data and bluefuse data

tables record data from the intensity files created by the image analysis methods for

each spot on the microarray. These intensity files contain a very large number of

values for each spot. However only values that cannot be calculated are recorded

in the database to reduce redundancy in the data. The reason for creating a table

82

LIMS 2.3.5 Extending the ArrayPipeLine LIMS database for analysis pipeline data

for each image analysis method is that the Scanarray and Bluefuse software differ

in approach, with each method generating a number of unique values. Rather than

having a single data table containing multiple redundant values we chose to use

individual tables for each method.

The unlinked table automator file is concerned with the tracking and

management of each aCGH scanned image and image analysis results file processed

by the LIMS, providing details of any changes made to the file names and the location

on the file system of every file.

2.3.5 Extending the ArrayPipeLine LIMS database for analysis pipeline

data

The database design for recording information on the analysis steps applied to

aCGH data involved the addition of seven new database tables to the original

schema. The two key tables in this set of seven are the data analysis and

processed data tables. The data analysis table records the action of transforming

a data set in some way and the processed data table records the results of a data

transformation. The data analysis table propagates a unique identifier for every

data transformation and to this identifier it associates the original scanned data

source and the transformation which has taken place. The processed data table

records several values for each feature in the transformed data set which can include

normalised log2 intensity ratios, segment level log2 ratios and aCGH call probability.

However, not all the values need to be entered for a feature, which allows for the

application of different analysis pipelines.

The remaining five tables are concerned with the recording of analysis pipelines;

the pipeline info table simply records the name and description of a unique

83

LIMS 2.3.5 Extending the ArrayPipeLine LIMS database for analysis pipeline data

Figure 2.2: This figure shows an Entity Relationship Diagram (ERD) of the aCGH
experiment portion of the ArrayPipeLine LIMS. Each box represents a new table in the
database and each row in the box represents a column in the table with solid lines between
boxes representing identifying relationships and dotted lines non identifying relationships.
Primary key fields are shown as yellow, foreign key fields are shown as red and all other
fields are shown as blue. Filled diamonds show fields in the table which are unable to take
null values and empty diamonds show fields in the table which can take null values (figure
created with MySQL workbench http://wb.mysql.com/ using crow’s foot notation)

84

LIMS 2.3.6 Extending the ArrayPipeLine GUI

analysis pipeline identifier which is generated by the table; the analysis pipeline

table records the order of analysis steps applied in a pipeline and associates these

to an analysis pipeline identifier. The analysis info table records each analysis

step linking together an analysis name with a param set which is a record of the

parameter settings used for the method, which are stored in the param set table.

2.3.6 Extending the ArrayPipeLine GUI

Work carried out again in combination with my supervisor, lead to development of

number of new views for the user interface, to support the addition and retrieval of

the new data the LIMS database was now capable of supporting. I created interfaces

for recording the details of biological samples in a sample collection figure 2.6. Added

functionality for recording extra information associated with tumour samples was

also created figure 2.4. Details of external samples which did not belong in any of the

laboratories’ collections could also be recorded in a separate interface I developed

figure 2.7. I also developed an easy to use interface for recording details of the

labelling protocol figure 2.5 which allowed users to detect problems with labelling

reactions by calculating QC scores using measurements from a spectrophotometer.

Super user functionality was also added for those users deemed responsible enough,

administration pages allowed super users to create new sample collections as well as

other higher functions figure 2.8.

The development of the new interfaces for user interaction in the ArrayPipeLine

LIMS was made far simpler using the LIMS Perl modules described earlier in this

section, since the modules enabled the generation of far simpler code that is easy to

maintain. The LIMS objects also significantly increased the speed of development

of new user interface web pages. As each web page is divided into a header, sidebar

and footer, the HTML for each can be stored in a configuration file. There is a

85

LIMS 2.3.6 Extending the ArrayPipeLine GUI

Figure 2.3: This figure shows an Entity Relationship Diagram (ERD) of the analysis
pipeline portion of the ArrayPipeLine LIMS. Each box represents a new table in the
database and each row in the box represents a column in the table with solid lines between
boxes representing identifying relationships and dotted lines non identifying relationships.
Primary key fields are shown as yellow, foreign key fields are shown as red and all other
fields are shown as blue. Filled diamonds show fields in the table which are unable to take
null values and empty diamonds show fields in the table which can take null values (figure
created with MySQL workbench http://wb.mysql.com/ using crow’s foot notation)

86

LIMS 2.3.6 Extending the ArrayPipeLine GUI

Figure 2.4: Screenshot of the ArrayPipeLine LIMS new tumour interface

Figure 2.5: Screenshot of the ArrayPipeLine LIMS interface for recording labelling
experiments

87

LIMS 2.3.6 Extending the ArrayPipeLine GUI

(a) Screenshot of the ArrayPipeLine LIMS samples index

(b) Screenshot of the ArrayPipeLine LIMS new patient interface

(c) Screenshot of the ArrayPipeLine LIMS new specimen interface

Figure 2.6: Screenshots of the ArrayPipeLine samples interface.

88

LIMS 2.3.6 Extending the ArrayPipeLine GUI

(a) Screenshot of the initial ArrayPipeLine LIMS interface for recording an external
sample

(b) Screenshot of the ArrayPipeLine LIMS interface for recording details of an
external sample

Figure 2.7: Screenshots of the ArrayPipeLine external sample interface.

89

LIMS 2.3.7 Continuous integration

large number of lines of code behind these simple to use methods, which means that

developers working on an interface for a LIMS are able to focus on the content of

the interface they wish to build.

2.3.7 Continuous integration

One agile development practice successfully used during the development of the

ArrayPipeLine LIMS was continuous integration. Evidence for the use of continuous

integration can been seen in figure 2.9, which shows the gradual increase over time of

lines of source code and source files in the project version control system, reflecting

the constant addition of the new features at each minor release of software. A

more traditional approach with a structured release pattern, would produce spikes

of development activity close to each major release iteration. Using a continuous

integration approach allowed us to quickly respond to any changes in the demands

of the user, resulting in a system that delivered all the required functionality and no

more. Contrast this result with the possible outcomes of a project working to a set

of static demands or a project that does not formally recognise the need to interact

with their users. In both of these cases software may be delivered that is lacking

new features, or containing redundant features due to changes occurring during the

development process.

2.4 Conclusions

The extension of the ArrayPipeLine LIMS successfully created an informatics

solution for the TRL laboratory users, for the management and analysis of the

associated data produced by the aCGH experiment workflow. The work to

extend the LIMS also yielded extra functionality which made the LIMS capable

90

LIMS 2.4. CONCLUSIONS

(a) Screenshot of the ArrayPipeLine LIMS protocols management
interface

(b) Screenshot of the ArrayPipeLine LIMS interface for adding new
fluourochromes

(c) Screenshot of the ArrayPipeLine LIMS users management interface

Figure 2.8: Screenshots of the ArrayPipeLine administration interface.

91

LIMS 2.4. CONCLUSIONS

of supporting the aCGH profiling of large projects. This was important for the

laboratory as the intention was to perform aCGH analysis on large sample sets

numbering in the thousands.

The reason why the extension of the ArrayPipeLine LIMS was a success was

because it provided users with the exact features they requested, at the same time

the new features were delivered in a stable and robust system. The robustness of

the LIMS means that it is able accurately to store all the experimental data arising

from the aCGH workflow, including precise details of every step of the process such

as details of the manipulation, the biological sample being manipulated, the batch

of the reagents being used and which laboratory user performed the manipulation.

The success of the extension of the ArrayPipeLine LIMS can be predominately

attributed to the agile techniques and software development best practices used

in the development process. The first software development best practice that

was applied to this project was implementation of a system that allowed us to

effectively reuse new and old source code, for this, we applied object oriented

programming techniques. The process of converting the original LIMS source code

and all subsequent source code to use object oriented techniques was described in

section 2.3.2 of the results. The result of using an object oriented code base was the

creation of tools that better modelled the underlying system, these tools also allowed

us to generate solutions using fewer lines of code resulting in less redundancy and

fewer mistakes across the project.

The implementation of a Version Control System (VCS) to manage and track the

LIMS source code was a relatively simple task which had very positive implications

on the project. The time required for developers on the project to integrate VCS

into their workflow was minimal, but the results of using a VCS far outweighed

these small overheads. The VCS helped more easily to manage situations where

92

LIMS 2.4. CONCLUSIONS

Date

To
ta

l l
in

es
 o

f s
ou

rc
e

co
de

 /
To

ta
l n

um
be

r o
f s

ou
rc

e
fil

es

200

400

600

800

1000

2007 2008 2009

Source code

Source files

Figure 2.9: Continuous integration in the LIMS version control system. This figure shows
the gradual accumulation of source files and lines of code over the development period of
the ArrayPipeLine LIMS. The blue line represents the number of source files and the red
line represents the number of tens of lines of source code plotted against date.

93

LIMS 2.4. CONCLUSIONS

more than one developer was required to work on the same source code, enabling

code integration without confusion or risk of code loss. The VCS was also invaluable

in creating a robust system, as once a software bug was identified in the code the

VCS could be used to track it down quickly. The workflow using the VCS after

identifying a bug in the source code is as follows; retrieve the last working version

from the repository; compare the broken version to the working version to identify

differences; correct any of the differences that were causing the bug; finally test the

new code and commit the new working version back to the repository.

An important decision in the design of the LIMS was the use of a relational

database for storage of all data associated with the LIMS. While many systems

utilise RDMS technology, the extensive use of foreign key constraints together

with normalisation can be seen to complicate the database structure unnecessarily.

However when a database is designed correctly and these features are fully

implemented, as is the case with the ArrayPipeLine LIMS, databases can be an

extremely effective tool for testing and validating the data imported and exported

in a system and ensuring the logic of the system is maintained. The relationships

between the tables added to the database and the use of effective type constraints

on individual values in the tables enforce the integrity of the data in the database.

For example the relationships in the database mean that data cannot be entered out

of sequence such as entering the results of an experiment which does not exist in the

database.

Extending the ArrayPipeLine LIMS using effective software development

techniques including agile practices for bioinformatics has resulted in a thoroughly

tested, robust system for recording and managing the data generated by microarray

experiments specifically aCGH. The ArrayPipeLine LIMS therefore provides us with

an unambiguous record of every aCGH experiment performed in our laboratory,

94

LIMS 2.4. CONCLUSIONS

allowing us to perform meta-analysis across experiments with confidence in the data

source. Without the use of the software development approaches described above,

the LIMS would be likely to contain errors which we would not be able to detect,

thus leading to inconsistent data which we would have less confidence in.

95

CHAPTER 3

An analysis pipeline for aCGH

3.1 Background

Microarray CGH experiments are complex multistep processes, introducing

numerous opportunities for the incorporation of errors or biases into the experiment.

The most common sources of errors and biases introduced into microarray

experiments include:

• Sample handling errors created through human error, such as incorrect

identification of samples used in an experiment.

• Results file handling errors, incorrectly associating the wrong scanned

microarray image files or image analysis results file to an experiment.

• Fluorescent dye problems, such as inefficient labelling of a DNA sample or

deterioration in probe quality.

96

An analysis pipeline for aCGH 3.1. BACKGROUND

• Hybridisation problems caused by uneven deposition of the hybridisation

mixture on the microarray slide or inconsistent washing steps during the

removal of excess hybridisation mixture before laser scanning, both of which

can generate signal associated artefacts in the results.

• Laser scanning or image analysis problems caused by the use of suboptimal

settings.

In order to detect the presence of these errors and biases and successfully remove

their effect on microarray CGH data, it is necessary to carryout a number of data

processing steps before interpreting the results of an experiment (Olson, 2006).

Simple QC checks are able to detect basic errors, such as mistakes in sample

handling. Simple visualisation techniques can be used to detect experiments with

poor signal ranges or hybridisation or wash problems.

Once identified, the effects of many of these problems can be successfully

corrected by the process of normalisation, a technique which aims to remove all biases

from experimental data to leave only the biologically relevant signals (Yang et al.,

2002). Spatial and signal effects are the most common sources of bias in microarray

CGH data (Neuvial et al., 2006) and therefore there are specific normalisations

methods that have been described for correcting these two different forms of bias

(Neuvial et al., 2006) and (Smyth, 2005). Signal normalisation aims to correct signal

bias caused by technical limitations of the fluorescent dyes and laser scanners used.

Spatial normalisation corrects experimental artefacts introduced by hybridisation

and washing processes. Once normalisation is complete, differences between test

and control samples should only be due to the biological system under study and

not due to experimental effects.

97

An analysis pipeline for aCGH 3.1. BACKGROUND

Once the microarray data has been through QC and normalisation, a further two

steps are required in order to produce biologically relevant results for researchers.

Segmentation and copy number calling are both analytical methods which are

exclusive to microarray CGH data and not required for other microarray application

such as expression analysis (van de Wiel et al., 2011). The process of segmentation

aims to pinpoint the location of the breakpoints where copy number changes take

place. Copy number calling methods aim to assign each microarray feature to one

of three defined copy number states which are ‘gained’, ‘lost’, and ‘normal’. Some

calling algorithms also have a fourth ‘amplified’ status for high level gains. This step

provides researchers with clear biological meaning to the results of an experiment.

The extension of the ArrayPipeLine LIMS described in chapter 2 provided the

laboratory with a well organised system for the tracking and storage of experimental

data from microarray CGH experiments. Central to the LIMS system was an

efficient relational database, capable of storing all relevant data generated by aCGH

experiments. However a demand existed within the laboratory to develop a robust

and flexible way to apply the informatics steps discussed in order to process the raw

intensity data being stored in the LIMS database, to ensure data quality, generate

meaningful biological results and aid with data visualisation. To achieve this goal

required the ability to apply analysis methods sequentially forming an analysis

pipeline, where a pipeline is simply a system by which the output of one process

serves as the input of the next process and so on. In our case the initial input of the

pipeline are the raw intensity values produced by a CGH microarray experiment,

while the individual pipeline steps consist of separate analysis tasks, such as quality

control filtering and normalisation.

The aim of this chapter of my thesis was therefore to fulfil the demands in

the laboratory for a modular, automated analysis pipeline for the processing of

98

An analysis pipeline for aCGH 3.2. IMPLEMENTATION

large amounts of experimental data. It was also necessary to create easy to use

visualisation tools that would allow the user to interpret results generated by the

analysis pipeline. The requirements of the system were for it to be flexible, in order

to cope with rapid change in the analysis methods used, but at the same time

consistently produce highly accurate results that could be developed in a timely

manner. These requirements made the use of agile and extreme programming

software development techniques highly appropriate for this project. Using agile

(and more specifically, extreme programming) techniques while developing the

analysis pipeline allowed us to test the hypothesis central to this thesis; that the best

way to construct bioinformatics software is through the use of a formalised software

development approach using agile techniques.

3.2 Implementation

3.2.1 Technical requirements of an analysis pipeline

At the time of designing the analysis pipeline it was evident from the literature

that a great deal of effort had already been invested by researchers into developing

statistical methods for the analysis of microarray experiments (Quackenbush, 2002).

Owing to the fact that such a large amount of work had already been carried out

developing these analytical methods, a decision was made that the analysis pipeline

would be developed, where possible, using published methods for each of the analysis

steps required. Using published analysis methods removed the need to develop new

statistical methods, saving a great deal of time and resulting in more rapid assembly

of the analysis pipeline. Using published analysis methods also provides the users of

the analysis pipeline with a high level of quality assurance in the statistical methods

99

An analysis pipeline for aCGH 3.2.1 Technical requirements of an analysis pipeline

that comes from using methods that have already been peer reviewed.

A very large proportion of published microarray analysis methods elected to

release their software as part of the Bioconductor project (Gentleman et al.,

2004) and new methods continue to do so. Since its first description in 2004,

the Bioconductor project has been a very successful resource for the field of

computational biology and bioinformatics. This success is due in no small part

to the excellent development practices which were adopted by developers from the

beginning of the project. The practices that are employed in the Bioconductor

project include object-oriented programming techniques, modularisation of the

source code and accurate and thorough documentation.

All of the methods we initially wanted to implement as part of the analysis

pipeline were included in Bioconductor, enforcing our first design constraint upon

the analysis pipeline; the statistical programming language R would need to be used

for coding the analysis workflows. The statistical programming language R is a

high-level interpreted language that was the chosen language for the Bioconductor

project owing to a number of features which make it well suited for bioinformatics

application development, including:

• The ability easily and quickly to prototype new computational methods as well

as a great deal of support in the language for creating, testing, and distributing

software in the form of ‘packages’.

• The Comprehensive R Archive Network (CRAN), contains several hundred

open source packages addressing a wide range of statistical analysis and

visualisation objectives.

• R has a well developed and tested set of functions and packages that provide

access to different databases and to web resources.

100

An analysis pipeline for aCGH 3.2.2 Integrating Perl and R

• R includes a large number of built in statistical and numerical algorithms

including machine learning algorithms.

• The increasing size of modern data sets makes the computational power

required for analysis a very important consideration, therefore it is reassuring

that R has also been the basis for pathbreaking research in parallel statistical

computing a technique which can greatly improve the speed of computation.

• Finally perhaps the most important feature of R is its active user and developer

communities.

A design decision was also made to the use of the programming language Perl for

all non analytical tasks in the pipeline such as network tasks, pipeline management

and the visualisation of analysis results. This decision was taken in order to maximise

the interoperability between the existing ArrayPipeLine LIMS, which was fully

developed in Perl, and the analysis pipeline to be developed.

3.2.2 Integrating Perl and R

As it became clear it would be necessary to use both R and Perl programming

languages for the development of the analysis pipeline solution, an effort was made

to investigate and test available methods capable of integrating these two languages

in an attempt to simplify the pipeline development process. At the time this work

was carried out there were two freely available solutions for integrating Perl and R,

the RSPerl package (Lang, 2007) and a Perl module available from CPAN called

Statistics::R (P. and Angly, 2011).

101

An analysis pipeline for aCGH 3.2.2 Integrating Perl and R

RSPerl

This package provides a bidirectional interface for calling R from Perl and Perl from

R by embedding one interpreter (e.g. R) within the process of the other interpreter

(e.g. Perl). The RSPerl package has the advantage of allowing users to call functions

in the other language as if they were part of the local environment. Part of an

example Perl script which uses RSPerl to perform spatial normalisation of aCGH

data using the MANOR Bioconductor package is shown below to demonstrate how

the RSPerl package may be used.

1 use R ;

2 use RReferences ;

3 use TRL : : ArrayPipeLine : : Pipeline_Data ;

4

5 &R : : initR ('−−s i l e n t ') ;

6 &R : : library (”MANOR”) ;

7 my $manor_data = pipeline_data_manor−>new ($experiment_id) ;

8 &R : : eva l (” setArrayDes ign <<− f unc t i on (arrayCol , arrayRow , spotCol , spotRow) {

9 xxarrayDesign <<− c (arrayCol , arrayRow , spotCol , spotRow)

10 }”) ;

11 &R : : eva l (” setArrayValues <<− f unc t i on (xCol , xRow, xName , xch1 fmean , xch1 bg val ,

xch2 fmean , xch2 bg va l) {

12 Col <<− as . numeric (xCol) ;

13 Row <<− as . numeric (xRow) ;

14 Name <<− as . cha rac t e r (xName) ;

15 ch1 fmean <<− as . numeric (xch1 fmean) ;

16 ch1 bg va l <<− as . numeric (xch1 bg va l) ;

17 ch2 fmean <<− as . numeric (xch2 fmean) ;

18 ch2 bg va l <<− as . numeric (xch2 bg va l) ;

19 xxarrayValues <<− data . frame (Col ,Row,Name, ch1 fmean , ch1 bg val , ch2 fmean ,

ch2 bg va l) ;

20 }”) ;

21 &R : : eva l (” setCloneValues <<− f unc t i on (Name, Pos i t ion , Chromosome) {

22 xxcloneValues <<− data . frame (Name, Pos i t ion , Chromosome)

23 }”) ;

102

An analysis pipeline for aCGH 3.2.2 Integrating Perl and R

24 my ($arrayCol , $arrayRow , $spotCol , $spotRow) = $manor_data−>array_design ;

25 &R : : call (” setArrayDes ign ” , $arrayCol , $arrayRow , $spotCol , $spotRow) ;

26 my ($aCol , $aRow , $aName , $aCh1_mean , $aCh1_bg_val , $aCh2_mean , $aCh2_bg_val) =

$manor_data−>array_values ('mean ' , 'median ') ;

27 &R : : call (” setArrayValues ” , $aCol , $aRow , $aName , $aCh1_mean , $aCh1_bg_val , $aCh2_mean ,

$aCh2_bg_val) ;

28 &R : : eva l (” array <<− l i s t (arrayValues = arrayValues , arrayDes ign = arrayDes ign) ”) ;

29 &R : : eva l (” c l a s s (array) <<− \”arrayCGH\” ”) ;

30 my ($aClone_Names , $aChromosomes , $aPositions) = $manor_data−>clone_values ;

31 &R : : call (” setCloneValues ” , $aClone_Names , $aPositions , $aChromosomes) ;

32 &R : : eva l (” array \ $c loneValues <<− c loneValues ”) ;

33 &R : : eva l (” array \ $ id . rep <<− \”Name\””) ;

34 &R : : eva l (”data (f l a g s) ”) ;

35 &R : : eva l (” rep . f l a g \ $args \ $rep . thr <<− 0 .1 ”) ;

36 &R : : eva l (” l o c a l . s p a t i a l . f l a g \ $args <<− a l i s t (var = \”LogRatio \” , by . var = NULL, nk

= 5 , prop = 0 .25 , thr = 1 . 2 , beta = 1 , fami ly = \” gauss ian \”) ”) ;

37 &R : : eva l (”SNR. f l a g \ $snr . thr <<− 3”) ;

38 &R : : eva l (”SNR. f l a g \ $args \$var .FG <<− \” ch2 fmean \””) ;

39 &R : : eva l (”SNR. f l a g \ $args \$var .BG <<− \” ch2 bg va l \””) ;

40 &R : : eva l (” amplicon . f l a g \$ampli . thr <<− 2”) ;

41 &R : : eva l (” f l a g . l i s t <<− l i s t (s p a t i a l=l o c a l . s p a t i a l . f l a g , SNR=SNR. f l ag , amplicon=

amplicon . f l a g) ”) ;

42 &R : : eva l (” xxarray . norm <<− norm . arrayCGH(xxarray , f l a g . l i s t=f l a g . l i s t , FUN=median ,

na . rm=TRUE)”) ;

43 capture_R_output () ;

44 e x i t ;

45

46 sub capture_R_output {

47 my $pid ;

48 re turn i f ($pid = open STDOUT , ” |−”) ;

49 d i e ” cannot f o rk : $! ” un l e s s de f ined $pid ;

50 open (FILE , ”>/rout . txt ”) ;

51 whi l e (<STDIN>){

52 p r i n t FILE $_ ;

53 }

54 c l o s e FILE ;

55 e x i t ;

56 }

103

An analysis pipeline for aCGH 3.2.2 Integrating Perl and R

Statistics::R

The Statistics:: R module creates a bridge between Perl and R permitting the control

of the R interpreter through Perl in different architectures and operating systems.

The module is easy to setup, requiring only that the module is pointed towards the

location of the local systems R binary file. The module also provides users with the

ability to use the same R bridge for multiple Perl processes, avoiding the unnecessary

computational overhead of creating and running multiple connections. Below is a

Perl code snippet using the Statistics::R module to perform spatial normalisation

of aCGH data using the MANOR Bioconductor package as in the previous code

example:

1 use Statistics : : R ;

2

3 my $R = Statistics : : R−>new (r_bin=> 'C:\Program F i l e s \R\R−2.3.1\ bin \Rterm . exe ') ;

4 $R−>startR ;

5

6 $R−>send (” r e qu i r e (MANOR)”) ;

7

8 $R−>send (” spot . names <− c (\”Name\” ,\”ID\” ,\”F635 .Mean\” ,\”F532 .Mean\” ,\”B635 .Mean

\” ,\”B532 .Mean\”) ; ac <− import (\” $ i n p u t f i l e \” , spot . names=spot . names , type

=\”gpr \” , sep=\”\ t \”) ”) ;

9

10 $R−>send (”pos <− read . t ab l e (\” $ c l o n e p o s f i l e \” , sep =\”;\” , as . i s=TRUE) ; names (pos

) <− c (\”Name\” , \” Pos i t i on \” , \”Chromosome\”) ; ac\ $c loneValues<−pos ; ac\ $ id .

rep<−\”Name\””) ;

11

12 $R−>send (”data (f l a g s) ; l o c a l . s p a t i a l . f l a g \ $args <− a l i s t (var = \”LogRatio \” , by .

var = NULL, nk = $nk , prop = $prop , thr = $thr , beta = $beta , fami ly = \”

gauss ian \”) ; rep . f l a g \ $args \ $rep . thr <− 0 . 5 ; f l a g . l i s t <− l i s t (s p a t i a l =

l o c a l . s p a t i a l . f l a g , spot = spot . co r r . f l a g , r e f . snr = r e f . snr . f l a g , rep = rep .

f l a g , unique = unique . f l a g) ”) ;

13

14 $R−>send (”ac . norm <− norm . arrayCGH(ac , f l a g . l i s t = f l a g . l i s t , FUN = median , na . rm

104

An analysis pipeline for aCGH 3.2.2 Integrating Perl and R

= TRUE) ; ac . norm <− s o r t . arrayCGH(ac . norm) ”) ;

15

16 p r i n t $R−>read ;

17

18 $R−>stopR () ;

Limitations

After testing both the freely available Perl/R integration solutions, we identified a

number of serious limitations in both of the solutions. The main limitation of the

RSPerl package was the difficulty in the setup and maintenance of the system, caused

by they way in which RSPerl very closely ties together the Perl and R software on

system making them highly dependent on each other. This dependency makes it

very difficult to update and maintain both pieces of software independently as is

necessary to be able to utilise the latest features in each language. Which is an

important consideration as the Perl core package currently has a monthly release

cycle. The RSPerl package was also poorly supported on non Linux systems which

was a problem as the laboratory IT infrastructure relied heavily on Mac OS X

operating system.

The Statistics::R module avoided the setup and maintenance issues of RSPerl,

but in doing so it provided a solution that was not true integration. Crucially

Statistics::R does not allow data objects to be passed between languages, or functions

to be called directly from the other language. The only communication that can

be performed is using methods that pass and capture strings from each language.

During testing of the Statistics::R module I detected problems with inconsistent

results being returned, a situation which is unacceptable for an analysis pipeline.

Due to the limitations we identified during our tests we felt that neither solution

provided a simple and effective means for interacting with the R language from

105

An analysis pipeline for aCGH 3.2.3 User requirements of an analysis pipeline

within a Perl program to perform statistical analysis. We therefore decided not to

pursue the use of either solution in the development of the analysis pipeline.

The chosen solution

The approach that was chosen for the analysis pipeline development was to proceed

without integrating the Perl and R languages. Instead the pipeline would apply

both languages separately, using the most appropriate language in each case, for

instance; using R for statistical analysis tasks and using Perl for network operations

and logging tasks. The analysis steps would be performed using R scripts that are

launched and managed by means of Perl programs, while the consistency of the

data would be maintained through transactions with the ArrayPipeLine relational

database (accessed using the RMySQL package for R and the DBI module for Perl).

The approach that we chose does have some advantages. Using Perl and R

in isolation in this way is very similar to the way many developers use Perl and

HTML for the development of web services, in an approach known as templating.

Templating systems for Perl are well established and are very popular for web

development tasks. These systems allow developers to separate HTML and Perl

source code allowing for clear separation of concerns, with Perl programmers able

to concentrate on Perl programming and web developers able to concentrate on the

HTML code. In the same way the analysis pipeline allows R programmers to write R

scripts without worrying about knowledge of Perl, while allowing Perl programmers

to write Perl code without knowledge of R.

3.2.3 User requirements of an analysis pipeline

In order to determine the required functionality for an aCGH analysis pipeline, we

needed to consider the requirements of the two different users groups that would use

106

An analysis pipeline for aCGH 3.2.3 User requirements of an analysis pipeline

the analysis pipeline.

• Computational users will need to analyse large numbers of experiments

quickly and easily in a robust framework, using the pipeline output for

further downstream analyses such as combining information across multiple

experiments to search for patterns in the data. The most important feature in

an analysis pipeline for computational users is the format and availability of

the output data.

• Laboratory users will need to quickly and easily assess the quality of an

individual or small batch of experiments using simple to use visualisation tools.

Laboratory users should not have to control the analysis pipeline, but instead

need to be able to visualise processed data by simply providing the raw data

files.

The two different user groups also had a number of feature requirements in common

for the analysis pipeline:

• The ability to perform analysis is a automated or semi-automated fashion,

making it easy to use and simple to analyse large numbers of experiments in

one go.

• The need to have thorough error checking to ensure it provides high quality

results.

• The need to provide a clear and simple to follow audit trail for all the analyses

performed, ensuring the creation of highly reproducible data.

107

An analysis pipeline for aCGH 3.2.4 Pipeline construction

3.2.4 Pipeline construction

Considering both the technical and user demands that we identified, there were

numerous ways in which a solution could be implemented. By far the simplest

approach involves creating a standalone script that performs the required analysis

from start to finish. This basic approach is very often selected in many laboratories

as it has the major advantage of being fast to deliver which is an important factor

in an academic research setting. The approach we chose for the analysis pipeline

had a number of advantages over simple standalone analysis scripts, these include:

the extensive use of logging to enable the quick identification and resolution of

any problems encountered; source code tests to address concerns about robustness;

automatic recording the settings of analyses maintaining reproducibility; the ability

to apply exactly the same pipeline of analysis to every experiment in a large scale

high throughput project; finally modular analysis units that can be combined easily

in different ways to quickly create a variety of different pipelines for analysis.

3.2.5 Development techniques

In order to test the hypothesis that agile development techniques are ideally

suited for the development of bioinformatics applications, the analysis pipeline was

implemented using a number of agile practices in order to asses how they effected

the development process. The agile practices that were chosen for this development

task, along with some more general programming best practices, are as follows;

• A test first approach for the development of Perl analysis objects. The use of

test first programming would create robust error free code that would produce

accurate results. A test first approach generates a testing framework that

allows for easy refactoring and addition of new features to the code base.

108

An analysis pipeline for aCGH 3.3. RESULTS

These tasks can be confidently performed with the knowledge that any errors

introduced into the code base would be immediately identified and resolved.

• The on site customer practice was applied as the development team was located

in the same open plan office space as the laboratory researchers who would use

the software, allowing the frequent interaction of developers and customers.

• A practice of frequent software releases was adopted to ensure the project

was progressing correctly by frequently giving the users something to test and

comment on.

• Object oriented programming techniques were used to creating modular code

that is easy to re-use allowing for rapid development.

3.3 Results

3.3.1 Analysis pipeline

Raw data processing

The first step of the analysis pipeline is raw data processing, which is concerned

with the parsing and storage of new experiment files, represented in Figure 3.1 by

a schematic diagram of the analysis pipelines raw data processing pipeline. This

process is launched upon the addition of new files to an assigned data drop box

on the laboratory server. In our own configuration of the analysis pipeline the raw

data processing step is launched manually as we found that laboratory users would

deposit data in batches making the constant monitoring of the drop box unnecessary.

However constant monitoring of the data drop box would be trivial to implement

through the use of a simple UNIX cron job or event handler. The raw data files

109

An analysis pipeline for aCGH 3.3.1 Analysis pipeline

consist of a single image analysis output file containing raw intensity values along

with a TIFF format image of the microarray slide for fluorochrome used in the

experiment.

The first task undertaken by the data processing script is to parse the

configuration file, from which the path to the data drop box and other environment

variables are obtained. Following this, important metadata regarding the scanning

process and the image analysis process is extracted and recorded in the database.

Scanning parameters recorded in the information header of the TIFF images, such

as laser and filter settings important for confirming the fluorochrome identity, are

extracted using the Perl Image::ExifTool module; and details of the image analysis

are extracted from the header of the raw intensity files, including the identities

of the image files used in the analysis. The process of parsing these files and

adding them to the database is aided through the use of a suite of microarray

file handling Perl modules developed in the laboratory (http://search.cpan.org/

dist/Microarray/). A total of five different QC checks are then made for each

experiment to ensure data integrity, with the checks performed shown below:

• Has the identified raw data already been processed?

• Are the accompanying TIFF image files present in the data drop box, or are

they already present in the ArrayPipeLine LIMS database?

• Do the microarray slide barcodes in the raw data file and image files match?

• Does the microarray slide used in the experiment exist in the ArrayPipeLine

LIMS database?

• Are details of the experiment present in the ArrayPipeLine LIMS database?

110

An analysis pipeline for aCGH 3.3.1 Analysis pipeline

After the new data from an experiment have passed these QC checks, all the

relevant data are then parsed out of the files and entered into the ArrayPipeLine

LIMS database. The data which are extracted and recorded in the database include

the spot level intensity values for each channel as well as all additional values

generated by the image analysis software that are not possible to calculate.

The final step of raw data processing is the archiving of the original data files.

Without a copy of the original TIFF images it is impossible to re-perform image

analysis on an experiment while the disposal would shorten the audit trail by one

step possibly making it harder to investigate any problems that may be identified

with the data later on. The absence of original files also makes it difficult to double

check an important finding, possibly instead requiring researchers to repeat what

are expensive experiments.

The TIFF image files and the raw intensity files are moved to a storage location

that is set again in the local configuration file, which in the case of our laboratory

is on protected RAID5 storage. Along with moving the files the system also

systematically renames all files with their unique database ID in order to avoid

possible errors and the details of each archived file is recorded in the ArrayPipeLine

LIMS database.

As problems may occur at any step during data processing the analysis pipeline

was built in a robust way to cope with any errors. Upon detecting a problem in

anyone of the many QC checks the analysis pipeline generates an interpretable error

message in the pipeline error log file and the data entered into the ArrayPipeLine

LIMS database up to that point is removed and the database is rolled back to

its state before the analysis pipeline was started, avoiding inconsistencies being

introduced into the database. Removal of data from the database upon discovery

of an error during the analysis pipeline is a measure made possible because all of

111

An analysis pipeline for aCGH 3.3.1 Analysis pipeline

the database operations made by the analysis pipeline are made within one single

database transaction. Database transactions are a single unit of work performed by

the RDBMS, they are mainly used in this way to provide a recovery point following

a failure, in order to maintaining consistency in the database.

Normalisation method selection

A two step normalisation procedure was selected for all aCGH data to minimise the

impact of the two most common sources of bias in our experiments. The first most

common bias in data was spatial effects introduced in the experimental process in

hybridisation or washing stages. The next most common bias in the data was a signal

bias across all the signal from a fluorescent dye, possibly caused by different affinities

of the two dyes or by degradation of one of the dyes during the experiment. A handful

of normalisation methods specifically for aCGH data were available, including: a

stepwise framework designed to reduce intensity, spatial, plate and background

bias (Khojasteh et al., 2005) and a method called popLowess that normalised

the effect imposed by copy number imbalances (Staaf et al., 2007). However the

stepwise framework approach was not made available as a software package and

the popLowess method was tested but performed poorly, most likely because the

type of bias it corrected was not effecting our data. For the first normalisation step

to remove spatial bias in the data we instead chose MANOR (Neuvial et al., 2006),

chosen because at the time the analysis pipeline was developed it was the only spatial

normalisation solution developed for aCGH data. Limma (Smyth, 2005) was chosen

for the second step of the normalisation procedure as it implements a method for

performing a loess normalisation, loess being a regression modelling method that

has been shown to be effective in normalisation of signal bias in microarray data

(Yang et al., 2002). Implementation of both of these normalisation methods was

112

An analysis pipeline for aCGH 3.3.1 Analysis pipeline

made simple as both were developed in R as part of the Bioconductor project.

Segmentation method selection

The solution chosen for the segmentation step in our analysis pipeline was DNAcopy

(Venkatraman and Olshen, 2007), this decision was based upon both published

performance and on considering the ease of implementation. At the time the analysis

pipeline was developed there had been two studies (Willenbrock and Fridlyand,

2005; Lai et al., 2005) comparing the performance of a number of segmentation

algorithms, and both of these studies found that the circular binary segmentation

method DNAcopy performed very well in terms of sensitivity and specificity with

similar or superior results to all the other methods tested. The GLAD (Hupé et al.,

2004) segmentation method that also performed well in the two method reviews was

also evaluated, however DNAcopy performed better than GLAD in the detection

of known aberrations from a well studied ovarian cancer cell line. The DNAcopy

algorithm like MANOR and Limma was also developed as an R package within the

Bioconductor project which again fitted well with the design of the analysis pipeline

framework.

Copy number calling method selection

CGHcall (van de Wiel et al., 2007) was selected to perform copy number calling

on the identified segments. The CGHcall algorithm was selected firstly because it

achieves high calling accuracy for aCGH data, the algorithm is able to do this by

combining the previously calculated segmentation results with a more biologically

accurate model than other methods. The method allows for fluctuations in the

levels of the different copy number calls by using random effects and combines the

segmentation results with a mixture model to obtain the most likely classification

113

An analysis pipeline for aCGH 3.3.1 Analysis pipeline

per segment rather than per individual clone. The output generated by CGHcall was

also more attractive as a solution in our pipeline as it produces four copy number

states to better model the underlying biology and each call is a probability not a

‘hard call’ so we are able to set our own thresholds for deciding on a copy number

call.

Creating analysis pipelines

The system for creating analysis pipelines centres around launching a series of

analysis scripts coded using R. The management of this process in controlled using

a suite of Perl modules, with the individual elements of the analysis suite detailed

below.

The LIMS::ArrayPipeLine::ManorAnalysis module manages the execution of an

R script that uses the Bioconductor package MANOR (Neuvial et al., 2006). The

MANOR package performs spatial normalisation on the microarray raw channel

intensity ratios, correcting or removing spots in regions of bias. An example of

how simple it is to create a ManorAnalysis module is given below. The pipeline

object used in the script contains a number of methods for interacting with the

ArrayPipeLine LIMS database as well as local configuration settings.

114

An analysis pipeline for aCGH 3.3.1 Analysis pipeline

1 use LIMS : : ArrayPipeLine : : ManorAnalysis ;

2

3 my $oManor_analysis = manor_analysis−>new (

4 analysis => ' manor ana lys i s ' ,

5 analysis_id => 'MANOR nk22 ' ,

6 params => {

7 nk=>22,

8 beta=>1,

9 thr=>1.2 ,

10 prop=>0.25 ,

11 family=> ' gauss ian ' }

12) ;

13

14 $oManor_analysis−>pipeline_object ($pipeline) ;

15 $oManor_analysis−>run ($db_id) ;

The LIMS::ArrayPipeLine::LowessAnalysis module manages the execution of a

R script that uses the Bioconductor package limma to perform lowess normalisation

of microarray data to remove any systemic bias introduced through the differences

in the fluorescent dyes used. The limma package takes as input raw intensity values

for each channel of the experiment and corrects these values if a bias is detected.

An example similar to that given for the ManorAnalysis module is given below for

the LowessAnalysis module.

115

An analysis pipeline for aCGH 3.3.1 Analysis pipeline

1 use LIMS : : ArrayPipeLine : : LowessAnalysis ;

2

3 my $oLowess_analysis = lowess_analysis−>new (

4 analysis => ' l ow e s s a n a l y s i s ' ,

5 analysis_id => 'Lowess Normal i sat ion (d e f au l t) ' ,

6 params => {

7 span=>0.3 ,

8 iterations=>4}

9) ;

10

11 $oLowess_analysis−>pipeline_object ($pipeline) ;

12 $oLowess_analysis−>run ($db_id) ;

The LIMS::ArrayPipeLine::CGHcallAnalysis module manages the execution of

an R script that uses the Bioconductor packages DNAcopy (Venkatraman and

Olshen, 2007) and CGHcall (van de Wiel et al., 2007) for segmenting and calling

aCGH data. The packages take as input data, the normalised log2 intensity ratios

which are used to produce biologically meaningful copy number called genomic

segments. An example of how to create a CGHcallAnalysis module is given below.

1 use LIMS : : ArrayPipeLine : : CGHcallAnalysis ;

2

3 my $oCGHcall_analysis = CGHcall_analysis−>new (

4 analysis => ' c g h c a l l a n a l y s i s ' ,

5 analysis_id => 'CGHcall 1 . 5 ' ,

6 params => {sdundo=>1.5}

7) ;

8

9 $oCGHcall_analysis−>pipeline_object ($pipeline) ;

10 $oCGHcall_analysis−>run ($db_id) ;

In order to follow the principals of object oriented programming, the suite

contains the LIMS::ArrayPipeLine::PipelineStep module. This module is a parent

116

An analysis pipeline for aCGH 3.3.1 Analysis pipeline

class for all the previously described modules. The module provides common

methods to reduce redundancy in the code base and allow new analysis modules

to be created very quickly and easily with the writing of just a handful of simple

methods using the powerful object orientation concept of inheritance.

The most important module in the suite is the PipelineAnalysis module which

manages the execution of an analysis pipeline. This module acts as a container

for PipelineStep objects, launching each analysis step in sequence as well as

recording the details of the pipeline in the ArrayPipeLine LIMS database. The

PipelineAnalysis module can also be used to retrieve the details of a previously

performed analysis pipeline which can then be used to repeat the specific analysis

steps. Since the PipelineAnalysis module records the exact setting of the pipeline,

multiple versions of the same analysis pipeline can be recorded and used, such as

creating a low medium and high stringency QC filtering pipeline to produce a range

of results from which the most appropriate may be chosen. An example of generating

an analysis pipeline from settings stored in the ArrayPipeLine LIMS database using

the PipelineAnalysis module is given below.

1 my $oPipeline_analysis = pipeline_analysis−>new (

2 pipeline_name => ' de f au l t a n a l y s i s p i p e l i n e ' ,

3 data => [' exp 1 ' , ' exp 2 ' , ' exp 3 ']) ;

4

5 $oPipeline_analysis−>set_pipeline_object ($pipeline) ;

6 $oPipeline_analysis−>launch_pipeline ;

Logging

At every stage of both the raw data processing and analysis pipeline, details of all

important actions taken as well as any errors encountered are recorded in log files,

117

An analysis pipeline for aCGH 3.3.2 Visualisation of results

enabling users very quickly and easily to discover and diagnose problems encountered

by the pipeline.

3.3.2 Visualisation of results

The visualisation tools developed for the analysis pipeline consist of object oriented

Perl modules which are capable of generating QC and results plots utilising the

Perl GD module and Thomas Boutell’s GD image library (http://www.libgd.org/).

The plots are generated rapidly on demand for the web user interface each

time a user requests a plot. This design feature allows us to save a

considerable amount of disk space that would be required if we had to save

each plot. The visualisation tools are split into two separate Perl modules;

one for QC plots (Microarray::Image::QC Plots) and one for generating CGH

plots(Microarray::Image::CGH Plot).

The QC plot module Microarray::Image::QC Plots is capable of producing four

different ways of visualising the quality of an aCGH experiment:

The MA plot is used for the detection of systematic biases in microarray

experiments that can be generated by differences in the hybridisation efficiencies

of the fluorescent dyes used. For each spot on the microarray, the MA plot shows

the log of the intensity ratio of the two channels (M) plotted against the log of the

average channel intensity (A). The calculation used to derive M and A are shown in

equations 3.1 and 3.2 respectively.

M = log2

CH1

CH2
(3.1)

A = log2

1

2
CH1× CH2 (3.2)

118

An analysis pipeline for aCGH 3.3.2 Visualisation of results

The MA plot of a good quality experiment will show a single cluster of points

centred around a M value of 1 as can be see in Figure 3.2(a). On a MA plot

of a poor quality experiment, in which there is bias in the signal intensities, the

distribution of points will move away from a M value of 1, as can be seen in

Figure 3.2(b). An example of how easy it is to generate a MA plot using the

Microarray::Image::QC Plots module is shown below.

1 use Microarray : : Image : : QC_Plots ;

2 use Microarray : : File : : Data ;

3

4 my $oData_File = data_file−>new ($data_file) ;

5 my $oMA_Plot = ma_plot−>new ($oData_File) ;

6 my $ma_plot_png = $oMA_Plot−>make_plot ;

7

8 open (PLOT , '>ma plot . png ') ;

9 p r i n t PLOT $ma_plot_png ;

10 c l o s e PLOT ;

The intensity scatter plot is very similar to the MA plot as it is also a method for

detecting intensity channel biases in the data. The intensity scatter plot displays the

distribution of the channel one raw intensity data points against the distribution of

the channel two raw intensity data points. A good quality experiment will produce

a scatter plot with the slope of the line that passes through the distribution at one

see Figure 3.3(a) as an example. A poor quality experiment with a biases in one

channel will produce a scatter plot with the slop of the line that passes through

the distribution greater or less than one as can be seen in Figure 3.3(b).Generating

an intensity scatter plot using the Microarray::Image::QC Plots module is just as

simple as generating an MA plot.

119

An analysis pipeline for aCGH 3.3.2 Visualisation of results

Figure 3.1: A schematic diagram showing the routes of data and the various steps that
comprise the analysis pipelines raw data processing procedure. At the top of the figure
raw data are first deposited in a designated data drop repository, next QC checks are
made on the data and if QC is passed then the raw data are parsed and inserted into the
ArrayPipeLine LIMS database. Finally in the last box of the figure the original raw files
are archived. Additional files involved in the process can be seen on the left hand side of
the figure, the local configuration file contains settings and parameters which are required
for the process to run and the process and error log files record all the actions of data
processing

120

An analysis pipeline for aCGH 3.3.2 Visualisation of results

1 use Microarray : : Image : : QC_Plots ;

2 use Microarray : : File : : Data ;

3

4 my $oData_File = data_file−>new ($data_file) ;

5 my $oIntensity_Scatter_Plot = intensity_scatter−>new ($oData_File) ;

6 my $intensity_scatter_plot_png = $oIntensity_Scatter_Plot−>make_plot ;

7

8 open (PLOT , '> i n t e n s i t y s c a t t e r . png ') ;

9 p r i n t PLOT $intensity_scatter_plot_png ;

10 c l o s e PLOT ;

A heatmap is a graphical representation of data where the values taken by a

variable in a two-dimensional map are represented as colours. A microarray heatmap

is constructed by plotting every spot on the microarray according to its X and Y

coordinates on the microarray slide, and colouring each spot on a scale according

to a relevant variable. Heatmaps are false colour representations of the microarray

slide and as such they are very useful for detecting spacial effects within experiments.

The QC Plots module contains methods that allow users to generate two different

forms of microarray heatmap plots: the log2 ratio heatmap and the channel intensity

heatmap.

The log2 ratio heatmap function of the QC Plots module can accept as input

either raw or normalised values from an experiment. Individual spots on the plot

are coloured according to the log2 of their signal intensity ratio; values greater than

1 are coloured red; values between 1 and 0 are scaled from red to yellow respectively;

values between 0 and -1 are scaled from yellow to green; and values below -1 are

coloured green. This plot will allow a researcher to quickly diagnose if a microarray

experiment has been affected by any spatial bias. Spacial effects in microarray

experiments are typically the result of problems with the hybridisation or washing

steps of the experiment.

121

An analysis pipeline for aCGH 3.3.2 Visualisation of results

(a) MA plot of good quality data

(b) MA plot of poor quality data

Figure 3.2: MA plots produced by the QC Plots module. Each point on the MA plot
represents an individual spot on a microarray slide, they are plotted according to the
average intensity across channels on the X axis and the channel intensity ratio on the
Y axis. (a) the majority of the points in the MA plot lie on a horizontal line centred
around 0 on the Y axis. This shows in a clear and simple way that the experimental
data used to create the plot does not contain any signal biases and is therefore a good
quality experiment. (b) in this plot the majority of the points do not lie on a horizontal
line centred around 0, instead the data is split into two separate clouds with the larger
cloud on the right moving away from 0. This indicates that a bias in signals from the two
intensity channels exists, therefore quickly and easily demonstrating that the experimental
data used to create the plot is poor quality.

122

An analysis pipeline for aCGH 3.3.2 Visualisation of results

(a) Intensity scatter plot of good
quality data

(b) Intensity scatter plot of poor
quality data

Figure 3.3: Intensity scatter plots generated by the QC Plot module. Each point on
the plots represents a spot on a microarray slide, plotted according to the first channel
intensity on the X axis and the second channel intensity on the Y axis. (a) the data in
this plot comes from a good quality experiment, this is clearly shown in the plot as the
distribution of the points matches a slope with a gradient of one. (b) the data in this plot
comes from a poor quality experiment. This can be detected easily as the distribution of
points does not create a slope with a gradient of one, the cloud of points is pushed towards
the X axis suggesting that either the first channel has failed to produce good signals or
the second channel is producing far more signal than the first channel.

Single channel intensity heatmap plots allow users to investigate spatial effects

further, as they provide the ability to identify the source of the bias. The intensity

heatmap function in the QC Plots module accepts raw intensity from an individual

channel of the experiment, the points on the plot are coloured using a range which

goes from black for an intensity of 0 to white for saturated microarray spots with

the maximum intensity value that is possible to detect using a laser scanner.

The heatmaps in Figure 3.4(a) and 3.5(a) are examples from good quality

experiments which show very little evidence of spatial effects as an even level of

signal can be see across the entire microarray slides. The heatmaps in Figure 3.4(b)

and 3.5(b) are examples from poor quality experiments which clearly show a number

of spatial effects, with irregular distribution of signal intensity across the microarray

slides. The heatmap functions in the QC plots module make it very easy to quickly

123

An analysis pipeline for aCGH 3.3.2 Visualisation of results

generate new heatmap plots, this is illustrated below with some example code for

generating an intensity heatmap for the second channel of an experiment.

1 use Microarray : : Image : : QC_Plots ;

2 use Microarray : : File : : Data ;

3

4 my $oData_File = data_file−>new ($data_file) ;

5 my $oInt_Heatmap = intensity_heatmap−>new ($oData_File) ;

6 my $int_heatmap_png = $oInt_Heatmap−>make_plot (plot_channel=>2) ;

7

8 open (PLOT , '>int heatmap . png ') ;

9 p r i n t PLOT $int_heatmap ;

10 c l o s e PLOT ;

The other plotting module which is part of Microarray::Image is the CGH plot

module, which is a specialised module for creating a single aCGH plot. The aCGH

plot displays the log2 ratio values of each feature on the microarray linearly according

to its position along the genome, from chromosome 1 to the sex chromosomes X and

Y. Using these plots it is possible to identify the shifts in ratio which equate to

changes in copy number in the sample DNA. Figure 3.6(a) shows the an aCGH plot

generated using the CGH plot module, for each spot on the microarray, the log2 of

the intensity ratio is plotted against the genomic location of the feature; segments

of DNA which share the same copy number are shown using horizontal bars and

the points and bars are coloured according to the copy number call assigned to the

segment, copy number gain is coloured red, copy number loss coloured green and

normal regions coloured yellow. CGH plots allow users to quickly and easily visualise

copy number gains and can be used as another form of QC as the separation of

regions of loss and gain from normal is a good indication of how well the experiment

has worked.

124

An analysis pipeline for aCGH 3.3.2 Visualisation of results

(a) Log2 intensity ratio heatmap of good quality experiment

(b) Log2 intensity ratio heatmap of poor quality experiment

Figure 3.4: Log2 ratio heatmap plots generated using the QC Plot module. Each spot
on a microarray is plotted according to its X and Y coordinates on the slide, creating a
false colour image of the microarray. The points on this heatmap are coloured according
to log2 intensity ratio using a colour scale that ranges from green (ratio of -1) to red(ratio
of 1) with yellow (ratio 0) the intermediate. (a) this heatmap image clearly shows an even
coverage of intensity values across the microarray with no concentrated regions of high
or low intensity, such spatial effects can be introduced through problems in experimental
stages such as hybridisation or washing. Thus the experiment that this data was taken
from was of high quality. (b) the heatmap in this figure is an example from a poor quality
experiment that has a spacial bias. The heatmap is clearly dominated by green points,
this may have been caused by signal from the red channel being knocked out because of
problems in the hybridisation process.

125

An analysis pipeline for aCGH 3.3.2 Visualisation of results

Because the features on the array are plotted according to genomic position, the

CGH plot module requires the location of each feature as well as the log2 ratio values.

In order to allow researchers to concentrate on smaller more interesting regions

it is possible to use the CGH plot module to generate aCGH plots for individual

chromosomes and an example of such a single chromosome plot is show in 3.6(b).

126

An analysis pipeline for aCGH 3.3.2 Visualisation of results

(a) Single channel intensity heatmap of good quality experiment

(b) Single channel intensity heatmap of poor quality experiment

Figure 3.5: Single channel intensity heatmap plots generated using the QC Plot module.
Each spot on a microarray is plotted according to its X and Y coordinates on the slide,
creating a false colour image of the microarray. The points on this heatmap are coloured
by the intensity value from a single channel, ranging from black (intensity of 0) to white
(saturated an intensity greater than the maximum intensity that can be measured by a
laser scanner). This plot allows users if they have a detected a spatial bias using the
log2 ratio heatmap to identify which channel in the experiment is causing the problem.
(a) the heatmap shown here has bright spots across the entire microarray slide and does
not display any regions of spatial biases as it is from a good channel in a good quality
experiment. (b) the heatmap shown in this figure was created from data from a poor
quality channel, this is obvious from the total lack of good quality strong signal spots that
show as bright points on the heatmap. The heatmap also highlights a spatial bias in the
data as the spots on the lower half of the array appear brighter that those spots on the
top half.

127

An analysis pipeline for aCGH 3.3.3 Testing

1 use Microarray : : Image : : CGH_Plot ;

2 use Microarray : : File : : Data ;

3 use Microarray : : File : : Clone_Locns ;

4

5 my $oData_File = data_file−>new ($data_file) ;

6 my $oClone_File = clone_locn_file−>new ($clone_file) ;

7

8 my $oGenome_Image = genome_cgh_plot−>new ($oData_File , $oClone_File) ;

9 my $oChrom_Image = cgh_plot−>new ($oData_File , $oClone_File) ;

10

11 my $genome_png = $oGenome_Image−>make_plot ;

12 my $chrom_png = $oChrom_Image−>make_plot (

13 plot_chromosome=>1,

14 scale=>100000) ;

3.3.3 Testing

As a result of applying the XP practice of test driven development during this

work, a test suite which supports all the code described was developed. The

test suite contains tests capable of covering every required component of the

analysis pipeline code base. The process data.t test script was developed to

test the raw data processing pipeline, run following any changes to the raw data

processing pipeline, more than 250 individual test ensure no bugs have been

indadvertedly introduced. The pipeline data.t script runs more than 150 tests

on the LIMS::ArrayPipeLine::Pipeline Data module, which is an essential module

for extracting data from the LIMS database, with the resulting objects used as

input for running analysis pipelines modules. Finally the pipeline analysis.t

tests the functionality of the analysis pipeline modules using 181 individual tests.

The tests were written in Perl using a number of specific testing modules including;

Test::Group, Test::Differences, Test::Deep and Test::More. These modules

128

An analysis pipeline for aCGH 3.3.4 Customer feedback

allowed for simple and rapid development of a testing framework, as they provide

access to essential methods.

The test suite provided a number of important advantages in the development

process; using a test first strategy meant that only the minimal amount of source

code required to meet the requirements of a task were written. The developers

were immediately aware that enough source code had been written once all the tests

created were successfully passed by the new solution. The test suite also provided the

developers with a ‘safety net’ that allowed source code to be refactored or improved

with the reassurance that if the new code passed all the tests if would not cause any

problems or generate any bugs.

3.3.4 Customer feedback

During the development described in this chapter we followed the agile practice

of having onsite customers. Having customers working in the same office as the

developers, in this case the customers were ArrayPipeLine LIMS users, allowed the

developers to get rapid feedback on queries relating to the development of the LIMS.

This practice was most useful during the development of the experiment visualisation

tools. As an example of the impact of this practice, shown below are extracts from

the version control log for the Image.pm module. The Image.pm module is a core

module in the visualisation toolkit used for generating the QC and aCGH plots

provided in the LIMS. The first line of each log entry states the revision number,

the next line contains information on the date, revision author and the number

of lines changed in the revision and the third line contains the developer message

recording details of the changes made in the revision.

129

An analysis pipeline for aCGH 3.3.4 Customer feedback

(a) Whole genome CGH plot of a primary ovarian tumour

(b) Single chromosome CGH plot of chromosome 6 from a primary ovarian tumour

Figure 3.6: CGH plots generated using the CGH Plot module. The aCGH plot displays the normalised log2 intensity ratio
of every feature present on a microarray according to its genomic location. Individual values from replicate spots present on the
platform are combined to generate a single value for each feature. The X axis of the aCGH plot represents the genomic position of
each feature, the Y axis of the plot is the normalised log2 intensity ratio of the feature. Log2 ratios approaching 0.5 are considered to
be copy number gains, log2 ratios approaching -0.5 are considered to be copy number losses and log2 ratios around 0 are considered
to have the same copy number as the control sample and are termed normal. The plots in this figure are also displaying the results
of segmentation and copy number calling. Segments are depicted using horizontal bars which correspond to the segment average log2
ratio, copy number calls are represented using the colouring system yellow are features with a copy number of 0 (normal), green
features have a copy number of +1 (gain) and red are features with a copy number of -1 (losses). (a) whole genome aCGH plot from
an ovarian tumour sample, vertical lines represent chromosome boundaries. (b) single chromosome aCGH plot of chromosome 6 from
the previous whole genome aCGH plot. Using this zoomed in view it possible to detect the small normal segment before the region
of copy number gain that is not visible in the whole genome plot.

130

An analysis pipeline for aCGH 3.3.4 Customer feedback

1 revision 1 .8

2 date : 2007−06−25 18 : 08 : 25 +0100; author : james ; state : Exp ; lines : +390 −206;

3 printing whole and single chromosome plots

4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−

5 revision 1 .7

6 date : 2007−06−21 16 : 21 : 08 +0100; author : james ; state : Exp ; lines : +253 −11;

7 moving average over a window of genomic distance

8 −−−−−−−−−−−−−−−−−−−−−−−−−−−−

9 revision 1 .5

10 date : 2007−06−07 16 : 44 : 31 +0100; author : james ; state : Exp ; lines : +10 −3;

11 added code to allow different clone sources f o r the cgh plot

12 −−−−−−−−−−−−−−−−−−−−−−−−−−−−

13 revision 1 .3

14 date : 2007−05−31 18 : 03 : 15 +0100; author : james ; state : Exp ; lines : +335 −98;

15 added log2 and intensity heatmap methods

16 −−−−−−−−−−−−−−−−−−−−−−−−−−−−

17 revision 1 .1

18 date : 2007−05−24 10 : 49 : 59 +0100; author : james ; state : Exp ;

19 Adding class f o r generating microarray plots

The first version of the Image.pm module revision 1.1 contained the basic

functionality required for creating simple plots from microarray data. ArrayPipeLine

LIMS users however requested the ability to generate more complex plots such as

heatmaps for quality control processes. Therefore features were added in the third

revision 1.3 of the module to allow users to generate an increased number of QC

plots including heatmaps. The ability to load information on the genomic position of

clones from multiple sources was later requested by users. The ability to load clone

information from both files and databases was then delivered in the fifth revision 1.5

of the module. Users then required the ability to remove excess noise from aCGH

plots in order to generate easier to interpret copy number profiles. This request was

resolved by adding the ability to average the clone values in a sliding window revision

1.7. The final revision shown in this example was the result of users requiring the

ability to look in greater detail at the copy number profiles of specific chromosomal

131

An analysis pipeline for aCGH 3.3.4 Customer feedback

regions of the genome. To solve this the ability to generate aCGH plots for single

chromosomes at higher resolution was added in revision 1.8. The version control

log in this example shows a stepwise progression in functionality of the module,

caused by the developers responding quickly to the feedback of feedback from the

onsite customers of the ArrayPipeLine LIMS. This practice allowed the developers

to generate software that were very close to the customers specification.

132

An analysis pipeline for aCGH 3.4. CONCLUSIONS

3.4 Conclusions

This chapter has described the construction of an analysis pipeline for aCGH

experiments, from raw intensity values from aCGH experiments to meaningful

biological results by assigning a copy number status of either loss, normal, gain or

amplified to every feature on the microarray. The problem of effectively translating

high throughput data into biologically meaningful results is common in laboratories

using these techniques. As such, the solutions presented here and the findings from

the development process using agile techniques is highly relevant. The process of

converting raw data into biologically meaningful results is not a trivial informatics

task, such an analysis process needed to be flexible, to allow the applied methods

to be easily tuned in order to extract the maximum amount of high quality data

possible. The system also needed to be well tested and capable of detecting any

errors in the data to ensure all results being produced are reliable.

The idea of constructing modular systems for constructing reproducible data

analysis pipeline is not a new one, at the time of development of our analysis pipeline

solutions existed that had elements of the functionality we desired in our system

including Taverna (Hull et al., 2006), ICENI (Furmento et al., 2002), Biopipe (Hoon

et al., 2003), Wildfire (Tang et al., 2005) and Galaxy (Giardine et al., 2005). Taverna

and ICENI are both frameworks which use Web-Services for components, with the

Taverna interface requiring the user to connect together output and input ports of

components to build a workflow. Both of these tools are closely integrated with

deployment of workflows over distributed computing resources or ‘grids’. Taverna

also has an extensible architecture that allows integration of third party software

tools. Biopipe is a workflow framework based on BioPerl which allows for execution

of workflows across a single computing cluster. Wildfire is a framework that uses a

133

An analysis pipeline for aCGH 3.4. CONCLUSIONS

visual programming interface to allow users to compose programs into workflows that

can be run over clusters or grids. In contrast to Taverna and ICENI, Wildfire works

directly with program executables, rather than web-services. Galaxy differs from all

the previous solutions, as it provides a web portal for integrating and interrogating

existing datasets. Galaxy also allows users to filter and perform calculations on their

quires as well as visualise them. An important feature of the Galaxy system is that

every action the user makes is recorded and stored for reproducibility of results and

analysis workflows.

All the workflow systems described above differ in their architecture as well as

different features like workflow language, Primary data types, available resources,

mechanism to add additional resources and extensibility. The workflow systems

mentioned above can also differ in their ability to be implemented on parallel

processors or grids (Tiwari and Sekhar, 2007). Although two of the solutions

(Taverna and Galaxy) came very close to the specifications we required we chose

to develop our own solution for executing and recording our analysis workflows due

to a number of reasons. Unfortunately none of the frameworks natively supported

both Perl and R, the two languages most favoured by our development team. Many

of the solutions had additional complexity that was unnecessary for the purpose we

desired, such as supporting grid technology which we did not have access to. Many of

the solutions also had extensive user interfaces that would not be required with our

analysis pipelines being managed and run by bioinformaticians with programming

experience. The available resources of the frameworks mentioned was also biased

towards sequence based analysis with little support for microarray data or analysis

methods.

The bioinformatics solution we developed in our laboratory to meet our

requirements centred around a suite of object oriented Perl modules which

134

An analysis pipeline for aCGH 3.4. CONCLUSIONS

managed the entire analysis pipeline, utilising statistical analysis methods from

the Bioconductor project that are implemented in the statistical programming

language R. In order to respond to demands from the laboratory based users of

the analysis pipeline, object oriented Perl modules were also created that allowed

the visualisation of the results and were incorporated into the ArrayPipeLine LIMS

GUI. The analysis pipeline software that was developed makes it easy for users with

basic knowledge of the Perl programming language to create different pipelines that

can be applied to any experiment in the ArrayPipeLine LIMS database with very

little effort, while also insulating users from the complex statistical Bioconductor

packages implemented so far which can be difficult to master.

The result of using formalised software development approaches, including a

number of agile development techniques, was the creation of two very successful

software projects in the analysis pipeline suite of Perl modules and the visualisation

modules. Evidence of the success of the analysis pipeline system comes from the fact

that the system has been in constant use in our laboratory for more than three years,

processing all of the laboratory’s aCGH data, and remains in use today. The success

of this software can be attributed mainly to the reliability of the software consistently

to produce accurate results, which is the direct consequence of employing test-first

programming in its development. The process of test-first programming creates

software with fewer bugs and which is much easier to maintain, as only source

code that is required for passing a test is written, cutting out anything unnecessary

thus keeping the source code clean and easy to understand. The analysis pipeline

modules have a test suite containing a large number of tests. We have not yet put the

analysis pipeline Perl module on CPAN for use by other developers because of some

dependancy the modules have with the ArrayPipeLine LIMS database. It would

be more than possible with some development time to remove this dependancy by

135

An analysis pipeline for aCGH 3.4. CONCLUSIONS

allowing the user to define different data sources. This would enable other developers

to utilise this code base for generating analysis pipelines.

The plots generated by the Microarray::Image::QC Plots and

Microarray::Image::CGH Plot modules described in this chapter were made

into an easy to use tool for the laboratory users, using a web based interface as

part of the ArrayPipeline LIMS. Due to the rapid speed at which the two modules

are capable of generating plots, the implementations in the ArrayPipeLine LIMS

create plot images on the fly, when requested by the user. This approach has the

significant advantage of saving large amounts of disk space that would otherwise

be needed for caching all plots requested. These LIMS functions are used on a very

regular basis by laboratory researchers for quality control purposes and visualisation

of experimental results. The two Perl modules have also been made available on

CPAN and are part of a wider set of tools created by our laboratory for managing

the analysis of microarray experiments using Perl (Morris et al., 2008b). The high

level of user-satisfaction with the visualisation modules and associated LIMS tools

can, like the analysis pipeline modules, be attributed to the application of agile

development techniques. The visualisation tools of the ArrayPipeLine LIMS were

developed using very high levels of customer feedback as we followed the principle

of developers working in the same open office space as the customer.

In both the analysis pipeline and plotting projects, the use of the programming

best practice of object oriented programming greatly increased the speed and quality

of development. This was due mainly to the use of the object oriented concept of

inheritance, where new classes are created as sub-classes of an existing super-class.

The sub-class inherits the attributes and behaviours of the super-class reducing the

generation of redundant code, resulting in fewer mistakes and easier to maintain,

higher quality code.

136

An analysis pipeline for aCGH 3.4. CONCLUSIONS

An example of the use of object oriented inheritance in development of the code

for this chapter comes from the creation of the three analysis pipeline modules

(ManorAnalysis, lowessAnalysis and CGHcallAnalysis). The PipelineStep class was

used as a super-class for the analysis sub-classes to inherit from and contains the

majority of the methods required for performing an analysis step. The individual

analysis modules required only a small number of new methods to be written in

order for these modules to pass their tests. This was also the case for the code in the

Microarray::Image modules where new plot classes such as ma plot, intensity scatter

and intensity heatmap were easily created using the Image module as a super-class.

This module takes care of a large proportion of the common tasks required to

generate a plot, meaning the development of the new plot classes only involved

creating a handful of methods to handle the different forms of data.

A relatively simple way in which the work in this chapter could easily be taken

further is through the development of a web interface to the analysis pipeline

software. An easy to use interface that would allow users to build their own analysis

pipelines and run them against any experimental data in the ArrayPipeLine LIMS

database would be highly useful to the laboratory based users as this functionality is

currently only available through the use of Perl scripts. Having the ability to select

the specific steps to run on some experimental data as well as being able to specify

all the analysis parameters would allow users that are not able to write Perl scripts

to interact with the data in the ArrayPipeLine LIMS in a way they are not currently

able to.

The idea of providing greater functionality for those users of the ArrayPipeLine

LIMS analysis pipeline who are not literate in a scripting language such as Perl could

be further expanded with the creation of an automated way to create new analysis

modules for the analysis pipeline. Currently the only way to add a new analysis

137

An analysis pipeline for aCGH 3.4. CONCLUSIONS

module to the analysis pipeline is to write a (albeit simple) Perl module, restricting

such users from adding new pipeline analysis steps that they might wish to evaluate.

The use of agile development techniques such as test first programming and

customer involvement as described in this chapter has yielded highly successful

software projects and serves as proof that these techniques can be used to very

positive effect in a bioinformatics setting.

138

CHAPTER 4

The somatic genetic profile of an ovarian

tumour is a strong determinant of prognosis

4.1 Background

DNA copy number profiling using aCGH was performed on 94 primary stage III/IV

serous ovarian adenocarcinomas in the hope of identifying recurrent aberrations that

may be linked to the mechanisms underlying the development of this cancer. Clinical

information in the form of patient survival data was used in combination with the

results of the aCGH profiling in an attempt to leverage even more information from

the data.

A secondary aim in analysing the data from this project was the validation of the

bioinformatic tools described in the pervious two chapters. Both the ArrayPipeLine

LIMS and the analysis pipeline Perl/R framework were developed to support large

aCGH profiling projects, so the execution of this project using these tools would

therefore serve as a good test of principle for the developed software.

139

MALOVA 4.2. MATERIALS AND METHODS

This work involved the research and implementation of existing statistical

approaches and techniques as well as the development of novel methods for the

downstream analysis of aCGH data. In contrast to the single experiment analysis

processes that have been discussed so far in this thesis, downstream analysis

processes involve the combination of data and analysis across multiple aCGH

experiments.

4.2 Materials and methods

4.2.1 Patient data

This study was performed on formalin-fixed, paraffin-embedded (FFPE) ovarian

tumour samples from the MALOVA (MALignant OVArian cancer) study, explained

in more detail here (Høgdall et al., 2003, 2004; Kjaerbye-Thygesen et al., 2006).

MALOVA is a multidisciplinary Danish study covering epidemiology (lifestyle

factors), biochemistry and molecular biology with the purpose of identifying risk

factors and prognostic factors for ovarian cancer. Preoperative blood samples as

well as tumour tissue samples were obtained from most of the patients from the

participant hospitals with a primary epithelial ovarian tumour. A total of 681 OC

patients and 235 women with LMP were included in the MALOVA study (Høgdall

et al., 2007).

a population based collection of malignant ovarian cancer cases, containing 667

ovarian tumour sections accompanied by highly detailed epidemiological data. All

the samples selected for investigation were FIGO grade III or IV with a patient age

less than 70 years old, FIGO stages were obtained from clinical records and were

reviewed by two gynaecologists, both specialised in ovarian cancer (Høgdall et al.,

140

MALOVA 4.2.2 Sample preparation

2007). In total 94 samples were profiled using the ‘Mermaid’ aCGH microarray

(Dafou et al., 2009). The samples were divided into two data sets based on patient

survival; the first data set contained samples from patients with a time to outcome

greater than 60 months, where the study outcome was patient death. The second

data set contained samples from patients with a time to outcome that was less than

24 months. A training set of samples was formed through carefully matching by

means of age(+/- 2 years), tumour stage and tumour grade, pairs of samples from

the two different prognosis data sets. This approach yielded a training set of 80

well matched samples from 40 good and 40 poor surviving cases. The remaining 14

unmatched samples formed a validation data set to be used for the accuracy testing

of any classification models created by the downstream analysis.

All of the following experimental steps, up to scanning the hybridised microarray

slides (data analysis section 4.2.5), were all carried out in our laboratory by the

tumour profiling groups research assistant Tanya Lebi.

4.2.2 Sample preparation

Formalin fixed paraffin embedded (FFPE) tumour sections were reviewed by a

pathologist, and regions containing greater than 80% neoplastic cells were identified.

Tumour sections were needle microdissected from a single 10x field ensuring that 80%

or more of the dissected cells were neoplastic in character. The DNA of the dissected

cells was extracted by proteinase K digestion. Genomic DNA was extracted from

peripheral blood lymphocytes (PBL) by Whatman.

141

MALOVA 4.2.3 The Mermaid CGH microarray

4.2.3 The Mermaid CGH microarray

The ‘Mermaid’ array (Dafou et al., 2009) is the in house manufactured aCGH

platform, a whole genome tiling-path microarray that has spotted on its surface

32,450 BAC clones from the human genome high-resolution BAC re-arrayed clone

set (Krzywinski et al., 2004) supplied by the BACPAC Resource Centre (BPRC),

part of the Children’s Hospital Oakland Research Institute (CHORI) in Oakland,

California, USA. The set provides coverage of the human genome sequence in

excess of 99%. The tiling-path configuration provides us with an effective genomic

resolution for detection of copy number gains and losses of less than 0.5 Mbp.

BAC DNA preparations were amplified by ‘rolling-circle amplification’ using the

Phi29 polymerase (GE Healthcare) and purified using MultiScreen PCR384 filter

plates (Millipore), before being denatured and diluted in a DMSO-based printing

buffer (Genetix). The entire clone set is printed onto UltraGAPS microarray

slides (Corning) at a feature diameter of approximately 110µm, using a QArray

printing robot (Genetix) and 50m silicon printing pins (Parallel Synthesis). NCBI

Human Genome build 35 (HG17) BAC clone locations for the array features derived

from BAC end-sequence and fingerprint analysis were provided by the BPRC and

converted to build 36 (HG18) locations using the UCSC lift-over tool (Hinrichs et al.,

2006).

4.2.4 Microarray hybridisation

The patient’s tumour DNA was used as the test sample and the reference sample in

the experiment was the patient’s PBL DNA where available, otherwise a commercial

pooled female genomic DNA sample (Promega Life Sciences) was used. The test

and reference samples were both amplified by whole genome amplification using the

142

MALOVA 4.2.5 Data analysis

WGA-II kit (Sigma). The samples were then differentially labelled using Alexa-

3 (reference) or Alexa-5 (test) dyes using the BioPrime Total kit (Invitrogen).

Non human and repetitive DNA sequence was then removed by prehybridisation

with Cot1 DNA (Invitrogen). The labelled samples were finally hybridised to the

microarray for 16-18 hours.

4.2.5 Data analysis

Slides were scanned using a ScanArray Express laser scanner (Perkin Elmer) at 5µm

resolution and raw fluorescence data were extracted from scan images using BlueFuse

software (BlueGnome, Cambridge, UK). The raw data were then imported and

processed using our own bespoke data analysis pipeline, which utilises a number of

R packages. First, a two stage normalisation procedure is performed, which involves

firstly the detection and normalisation or removal of any local or global spatial effects

using MANOR (Neuvial et al., 2006); and secondly the data are log2-ratio normalised

to remove any dye bias using an implementation of the loess algorithm (Smyth, 2004)

in LIMMA (Smyth, 2005). The data are then segmented into regions of discrete copy

number by circular binary segmentation using DNAcopy (Venkatraman and Olshen,

2007), and DNA copy number status for each BAC clone was determined using

CGHcall (van de Wiel et al., 2007).

4.2.6 Expert supervised filtering

After all the raw experimental data had been processed 20 samples were removed

from the validation set. Reducing this set from 80 to 60 samples, 30 good and 30

poor. The excluded experiments were selected through manual curation of the aCGH

profiles by an aCGH expert. Profiles displaying either of the following characteristics

143

MALOVA 4.2.7 Statistical analysis

were excluded:

• The profile displayed minimal genomic instability producing what was termed

a ‘flat profile’, an example of which can been seen in the first panel of figure

4.1.

• The profile exhibited a high degree of variation in neighbouring BACs in the

experiment producing what was termed a ‘wide spread profile’, an example of

which can been seen in the second panel of figure 4.1.

4.2.7 Statistical analysis

Recurrent region identification

Identification of recurrent regions of aberration was carried out across three different

sample sets. The first data set comprised all 60 tumour samples in order to

identify common aberrations. The remaining two sample sets contained the 30 good

survival patient samples and the 30 poor survival patient samples, enabling us to

identify aberrations unique to the different classes. Recurrent regions of loss or gain

present across the different sample sets were identified using a statistical approach

implemented in the R package KCSmart (Klijn et al., 2008). The KCSmart package

was chosen to over the other available methods discussed in the introduction. With

no published comparison of these methods available they were difficult to compare,

as all the methods looked at the problem in slightly different ways. We decided to

instead consider more practical factors in selecting the best method such as availably

of the software, software requirements, ease of installation, input data format and

type of data output. The KCSmart package best met all the criteria we defined

for the selection of a recurrent aberration detection solution. The criteria were as

follows:

144

MALOVA 4.2.7 Statistical analysis

(a) Profile displaying minimal genomic instability.

(b) Profile exhibiting a high degree of variation in neighbouring BACs.

Figure 4.1: Two example aCGH profiles excluded from further analysis after expert
supervised filtering. The aCGH plot displays the normalized log2 intensity ratio of every
feature present on a microarray according to its genomic location. The X axis of the aCGH
plot represents the genomic position of each feature, the Y axis of the plot is the normalised
log2 intensity ratio of the feature. The plots in this figure are also displaying the results
of segmentation and copy number calling. Segments are depicted using horizontal bars
which correspond to the segment average log2 ratio, copy number calls are represented
using the colouring system yellow are features with a copy number of 0 (normal), green
features have a copy number of +1 (gain) and red are features with a copy number of -1
(losses).

145

MALOVA 4.2.7 Statistical analysis

• The software should generate a statistical confidence measure for the regions

it identifies.

• The software should be implemented in a framework supported by the

ArrayPipeLine LIMS.

• The software should be freely available and open source.

• The software should also be actively supported.

The input data for this analysis was first extracted from the ArrayPipeLine database

as normalised log2 ratio values for each feature on the ‘Mermaid’ array for each

experiment. These data was then filtered to remove features from the analysis

which possessed values for less than 50% of the experiment in the given data set.

For experiments which passed this filtering step, but which had missing values,

an attempt was made to impute missing values to increase the density of data.

This follows the methodology used in the KCSmart paper in the analysis of a

set of breast cancer data (Klijn et al., 2008). The imputation algorithm applied

simply identified, where possible, one upstream and one downstream feature based

on genomic location. The average log2 ratios from these two neighbouring features

for the experiment in question was then assigned as the missing value. Each one of

the three sample sets was analysed in the same way using KCSmart, three kernel

smoothed estimates (KSE) (feature density = 0.5Mb) were generated using small

(width = 2Mb), medium (width = 8Mb) and large (width = 24Mb) kernels and

for each KSE a significance threshold was generated using a permutation approach

(2000 permutations, alpha = 0.01). We took advantage of the ability of the KCSmart

algorithm to treat chromosome arms separately by providing telomere locations for

each chromosome from the Homo Sapiens, Ensembl v49 release.

146

MALOVA 4.2.7 Statistical analysis

Recurrent region feature selection

We applied a simple algorithm to the significant recurrent regions identified by

KCSmart in order to eliminate those regions which did not show a clear difference

in occurrence between the good survival and poor survival datasets. For each

recurrent region the algorithm calculated the average KCscore of all the BAC

features contained in the region. The KCscore is a value calculated by the KCSmart

algorithm, which represents a measure of the combined log2 ratio across all the

experiments in the data set. If a significant recurrent region was identified from the

good survival data set then the algorithm calculates the average KCScore of all the

BAC features contained in the same region from the poor survival data set, or vice

versa. The percentage difference of these two values is then calculated and if this

difference is below a set threshold the region is rejected as being similarly recurrent in

both good and poor groups: if the difference is above the threshold, then the region

is selected as a feature for classification as it is differentially recurrent between the

two groups under investigation.

Unique breakpoint identification

In an effort to reduce the complexity of the data set, we produced an alternative

feature set comprised of every unique breakpoint in the project. This was achieved

by looking across all experiments to find unique breakpoints to use as features. With

all the segments identified by DNAcopy for each experiment held in a database table

it was simple to retrieve a list of distinct breakpoint values thus creating a list of

unique minimal segments for the experiments in the project. The idea is based

on combining the information in a segment to reduce the impact of non biological

signals. Using this approach we were also able significantly to reduce the complexity

147

MALOVA 4.2.7 Statistical analysis

of the data.

Support Vector Machine analysis

Support Vector Machines (SVMs) were built in R using the e1071

(Evgenia Dimitriadou and Andreas Weinges Hornik, 2011) library to classify

the survival of patients based on data from the identified differential occurring

recurrent regions of copy number gain and loss. The following list details the SVM

options and settings that the e1071 library requires to train a SVM:

• kernel the e1071 library contains four kernel types:

– linear u>v

– polynomial γ(u>v + c0)
d

– radial basis exp{−γ|u− v|2}

– sigmoid tanh{γu>v + c0}

• type SVMs can be used as a classication machine, as a regression machine,

or for novelty detection. The e1071 library supports these different modes of

operation using the type parameter and the following options:

– C-classification

– nu-classification

– one-classification (for novelty detection)

– eps-regression

– nu-regression

• fitted boolean value indicating whether the tted values should be computed

and included in the model or not.

148

MALOVA 4.2.7 Statistical analysis

• scale logical vector indicating the variables to be scaled. If scale is of length

1, the value is recycled as many times as needed. Per default, data are scaled

internally (both x and y variables) to zero mean and unit variance. The centre

and scale values are returned and used for later predictions.

• cost cost of constraints violation it is the C-constant of the regularization

term in the Lagrange formulation.

• tolerance tolerance of termination criterion.

• epsilon epsilon in the insensitive-loss function.

• shrinking option whether to use the shrinking-heuristics.

All the work shown in this chapter used the following parameter and setting when

using the e1071 library: kernel = linear type = C-classification fitted = default:

TRUE scale = TRUE cost = default: 1 tolerance = default: 0.001 epsilon =

default: 0.1 shrinking = default: TRUE

To select the best combination of recurrent features to use for the classification,

we carried out an analysis to assay the performance of every possible combination.

For each combination of features, aCGH data from those chromosome regions was

provided to an SVM for classification of survival. The accuracy which is measured as

the percentage of correctly classified samples, achieved by each SVM was measured

using a leave-one-out cross-validation approach. Classification performance was

compared using either DNA copy number status calls provided by the CGHcall

package, or individual log2 ratio data for each BAC.

All the possible feature combinations were generated by a function in the gtools

library (cran.r project.org, 2012). The performance in terms of accuracy for each

combination was recorded in a database table, making it easy to retrieve the best

149

MALOVA 4.2.7 Statistical analysis

performing combinations. Initial combination analysis looked to find the best

performing features from a set of more than 1 million combinations of the 20 best

ranked features. Performing the generation of over 1 million SVMs took over 5 days

of computing time, thus to improve this performance we modified our code taking

advantage of the Simple Network Of Workstations (snow) R package (Tierney et al.,

2012) allowing us to run the analysis in parallel making use of the 16 processor cores

contained in our server. The parallelization of the analysis resulted in the analysis

running more than 5 times quicker than the original approach, thus the required

computing time for over 1 million different combinations was reduced to less than 1

day. The implementation of parallelization was very useful for the users of the down

stream analysis pipeline, as it made it far more feasible to perform the SVM analysis

described in this chapter each time new data was added to the ArrayPipeLine

database. This was important because the generation of new experimental data in

the laboratory was limited by some pieces of equipment, this subsequently resulted

in aCGH results from new samples being created in batches of around ten samples.

Having the ability to run the downstream analysis pipeline is a timely manor enabled

the users to carefully monitor the effect new data had on the analysis and quickly

detect any problems with data quality. The successful parallelization of this analysis

process was also a useful proof of principle, that showed the value of this relatively

simple computational technique in performing analysis tasks quicker without the

requirement for more or higher performance computers.

Classifier validation

After combination analysis had yielded accuracy values for every possible

combination of the selected features, it is a trivial task to select the best performing

combinations from the database using a simple SQL statement. Once defined, the

150

MALOVA 4.2.7 Statistical analysis

best performing combinations were tested using an independent set of samples to

validate the results and to show the classification model is not over fitted to the

training data. For each of the best performing combinations a SVM model is built

again using the full training set (n=60), this model is then used to predict the class

of 14 test samples. In order to assess the predictive performance of each model an

accuracy (A) value is calculated using equation 4.1 along with the model specificity

(Sp) or true negative rate using equation 4.2, sensitivity (Sn) or true positive rate

using equation 4.3 and Matthews Correlation Coefficient (MCC) which takes into

account true and false positives and false negatives using equation 4.4. Where true

positives denote poor prognosis patients correctly identified, true negatives denote

good prognosis patients correctly identified, false positives denote poor prognosis

patients incorrectly identified and false negatives denote good prognosis patients

incorrectly identified.

A =
TP + TN

TP + FP + TN + FN
(4.1)

Sp =
TN

TN + FP
(4.2)

Sn =
TP

TP + FN
(4.3)

MCC =
(TP ∗ TN)− (FN ∗ FP)√

(TP + FN) ∗ (TN + FP) ∗ (TP + FP) ∗ (TN + FN)
(4.4)

where TP, TN, FP and FN denotes the number of true positives, true negatives,

false positives and false negatives, respectively.

151

MALOVA 4.2.7 Statistical analysis

Random forests

Random forests were constructed, in order to evaluate their accuracy in classifying

the survival of patients, based on recurrent regions of copy number gain and loss.

Comparing their performance to the SVMs produced by the e1071 library we would

be able to select the best method to use for identifying the most informative

regions. For constructing random forests we employed the R package randomForest

(Breiman et al., 2012). This implementation is based on the original Fortran code

authored by Leo Breiman, the inventor of random forests. We applied random

forests with parameter configurations for the values of ntree = 5000 (number of

trees to build), mtryFactor =0.5, 1, 2 (a multiplicative factor of the default value of

mtry parameter denoting the number of features to be randomly selected for each

tree), and nodesize = 1 (minimal size of the terminal nodes of the trees in a random

forest), these parameters being consistent with the recommendations of the software

documentation.

Gene prioritisation

In order to identify possible oncogenes, or tumour suppressor genes, whose copy

number might impact survival, genes within the regions used for classification were

analysed using CGprio (Furney et al., 2008). The CGprio tool generates a probability

of how likely a gene is an oncogene or tumour suppressor, using a prediction method

based on a hidden Markov model built using gene and protein properties that are

likely to contribute to a gene’s potentiality to be oncogenic.

To investigate regions of interest using the CGprio tool, the Ensembl gene ID of

every gene present in the region was retrieved using the Ensembl release v49 biomart

tool (Kasprzyk et al., 2004). The list of Ensembl gene IDs was then entered into

152

MALOVA 4.3. RESULTS

the CGprio web based interface. For each gene, CGprio returns a probability that

the gene is either an oncogene or tumour suppressor gene. CGprio was considered

to be in agreement with the aCGH data if it predicted a tumour suppressor gene

in a region of copy number loss, or if it predicted an oncogene in a region of copy

number gain.

4.3 Results

4.3.1 Quality control

After filtering to remove features with normalised log2 intensity values missing in

more than than 50% of the samples, the number of features in the dataset containing

all the tumour samples was reduced by 3,381 leaving 28,273 or 89.31% of features

from the 31,654 BAC clones on the Mermaid microarray with locations mapped to

the hg18 assembly. In the good survival sample set, the number of features removed

by this filtering step was 3,376 leaving 28,272 or 89.33% of features. In the poor

survival sample set the number of features removed by this filtering step was 3,356

leaving 28,298 or 89.39% of features.

4.3.2 Recurrent region identification

The identification of recurrent regions of copy number variation was carried out

using the KC-Smart algorithm. Run in parallel, the analysis of all nine cases took

a little under 24 hours to complete, the vast majority of this computation time

being taken up by the permutation analysis KS-smart performs which is required

to calculate a significance value for the recurrent regions. The resulting totals of

significant (p<0.01) recurrent regions found in each of the three different data sets

153

MALOVA
4.3.3 Significant recurrent copy number aberrations in stage III/IV serious ovarian

tumours

Table 4.1: KC-Smart Regions Identified for each sample set and for each of the three
kernel widths

Sample Set 2Mb Kernel 8Mb Kernel 24Mb Kernel Present Across All Kernels

Losses gains Losses gains Losses gains Losses gains

All (n=60) 46 44 27 21 40 41 44 43

Good (n=30) 25 13 12 12 34 37 23 10

Poor (n=30) 18 21 12 11 33 37 18 15

using the three different kernel widths can be seen in table 4.1. The high number

of copy number gains and losses across all the samples is a clear reflection of the

late stage tumour samples that were used, although there is very little difference in

the number or copy number aberrations detected between the two different survival

classes.

4.3.3 Significant recurrent copy number aberrations in stage III/IV

serious ovarian tumours

The identification of recurrent regions of copy number change performed using

the KC-smart algorithm on the entire dataset of 60 tumours provides us with an

interesting view of the most common genomic regions lost and gained in stage III/IV

serious ovarian tumours. Figure 4.2 shows the results of the KC-smart analysis using

three differently sized kernels. The profiles show the KC score for each BAC on

the microarray plotted according to genomic location, with different chromosomes

coloured alternately and the additional red and green horizontal lines showing the

significance cut-offs which are also calculated by the KC-smart method for the

recurrent regions.

The use of three different kernel widths was an approach advocated by the

154

MALOVA4.3.4 Significant recurrent copy number aberrations in good prognosis tumours

authors of the method, helping to detect potentially interesting recurrent regions

that would otherwise be too small or large for detection using a single kernel

approach. The effect of using different kernel widths is apparent in the profiles

of Figure 4.2; the smallest kernel (2Mb) is capable of detecting smaller regions of

recurrent aberration, producing a profile containing a large number of independent

peaks representing multiple smaller recurrent regions. The KC score profile

generated by the medium kernel (8MB) produced a smoother profile than the

small kernel width, consistent with the kernel detecting large regions of recurrent

aberration. This effect is accentuated further by the large kernel (24Mb) which is

the smoothest of the three kernels with fewer peaks of recurrent aberration.

Overall the KC-smart profiles from the complete set of samples demonstrate a

very high degree of genetic instability across the entire genome, with all chromosomes

containing as least one significant recurrent region across all of the kernel widths with

the exception of chromosome 19 4.2. There was no significant difference between the

total number of aberrations which resulted in the gain of genetic material (n=43) and

the total number of aberrations that resulted in a loss of genetic material (n=44).

4.3.4 Significant recurrent copy number aberrations in good prognosis

tumours

The KC-smart profiles produced from the set of 30 tumour samples which

represented good patient survival shown in Figure 4.3 are similar to the profiles of

all the samples combined in Figure 4.2, however the good survival KC-smart profiles

have fewer regions reaching the statistical significance cut-off. There are highly

significant regions of gain on chromosomes 3, 7, 8 and 16 and highly significant

losses on chromosomes 1, 4, 21 and X.

155

MALOVA4.3.5 Significant recurrent copy number aberrations in poor prognosis tumours

4.3.5 Significant recurrent copy number aberrations in poor prognosis

tumours

The KC-smart profiles produced from the set of 30 tumour samples which

represented poor patient survival shown in Figure 4.4 are similar to both the good

survival profiles and the combined set of all samples with a large number of recurrent

copy number gains and losses. There is also similarity with the good survival profiles

in the location of the recurrent aberrations, as the poor survival KC-smart profile

shows significant recurrent gains on chromosomes 3 as in the good survival profile,

there are also a number of less significant gains across a number of chromosomes

not detected by the good survival results including 5, 12, 17 and 20. The KC-smart

profile for the poor survival samples shows significant recurrent losses of genetic

material on chromosomes 5, 17, and in similarity with the good survival results

additional significant recurrent losses on chromosomes 21 and X. There was no

difference observed in the total number of recurrent regions of CNV between the

good and poor prognosis data sets as in both prognosis data sets 33 significant

regions were identified.

4.3.6 Unique Breakpoint Identification

After analysis of the 60 experiments contained in the project we were able to

identify 7630 unique minimal regions, this is a large reduction in the number of

features describing the experiments in the project from an original number of 31654.

We are therefore able to use less than a quarter of the features to fully study all

the experiments, this reduction will allow more complex statistical analyses to be

performed in much less time.

156

MALOVA 4.3.6 Unique Breakpoint Identification

●●

●●●
●●●●
●
●
●
●
●●●●
●
●
●
●
●●●
●

●

●

●

●
●
●
●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●
●●●●
●
●
●
●
●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●

●●

●●●●
●●
●●
●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●●●●●
●
●●●●●●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●
●●
●●
●●
●●●●●●●●●●●●
●
●
●●●●●●●●
●●●●●●●●●●●●●●
●●●●
●●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●
●
●
●
●
●●●●●
●
●
●
●●
●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●
●●●
●●●●●●●●●●●●●●●●●
●●
●●●●●●●
●
●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●
●
●
●
●
●
●
●●●●●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●
●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●●
●●●●●
●●●●
●●●●●●●●●●●

●●
●●●

●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●
●
●
●
●
●●●●●●
●●
●●
●●●●●●●●●●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●●●●●●●●●

●

●●●
●●
●●●
●●
●
●
●
●
●
●
●
●●
●●●●●●●●●
●
●
●
●
●
●
●●●●●●●●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●
●
●
●
●●
●●●●●●●●●●●
●●
●●●●●
●
●
●
●
●
●●●●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●
●●
●●●●●
●
●
●
●
●
●●●●●
●●
●●
●●●●●●●●●●●●●●
●
●
●
●
●
●●
●●●
●
●
●
●
●
●
●
●●●

●●●●●●

●●
●●
●●
●
●
●
●
●
●
●●●
●
●
●
●
●
●
●●●●●
●●
●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●
●●●
●●●●●●●●
●
●
●●●●●●
●
●
●
●
●
●●
●●
●●
●●
●●●●●
●
●
●
●
●
●
●
●
●●●●●●●●
●●
●●
●
●
●
●●
●●●●●
●
●
●
●●●●●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●●●
●●●
●●
●
●
●
●
●●
●

●

●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●
●
●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●
●●●
●●
●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●●●●●●●●●
●●●●●

●●●●●●

●●●●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●
●
●
●
●
●
●●●●●●●●●●●●
●●
●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●
●
●●●●●●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●●
●●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●
●●
●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●
●●
●●
●●●
●●●
●●
●●
●●
●●
●
●
●
●
●
●●●●●
●
●
●●●●●●
●●
●●
●
●
●
●
●
●
●
●●
●●●●●●●
●
●
●
●●●●●
●●
●●
●●●●
●
●
●
●
●●●●●
●●
●●
●●
●●
●●●●●●●
●●
●
●
●
●
●
●
●

●

●

●

●

●

●
●●●●
●
●
●
●●●●●
●
●
●
●●●●●●
●●
●●●●●●
●
●
●
●
●
●●●●●●●●●
●
●
●
●
●●
●●●●●

●

●●●●
●●●
●●●●●●●●●●●●●●●●●
●●
●
●
●●
●●
●●●●●●●
●●●●●●●●
●●

●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●●●●●●●●●●
●
●
●
●●
●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●
●●

●●
●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●●●●●●●●●●●
●
●
●●●●●
●
●
●
●●
●●●●
●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●●●●
●
●
●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●
●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●
●
●
●
●●●●●
●●
●●
●●
●●
●
●●
●●
●●●●●●●●●●●●
●
●
●
●
●
●●
●●●●●●●
●●
●●
●●●
●●●●

●●●●●●

●●●●●●●●●●●●●●●●
●●
●●
●●●
●●●●●
●
●
●
●
●
●●●●●●●●
●●●
●●
●●●●●●●
●
●
●●●●●●●
●●
●●
●●●●●●●●●●●●●
●●
●●●●●
●
●●●●●●●
●●
●●
●●
●●●●●●
●
●
●
●
●
●●●●●
●●
●●●●●●●●●●●●●●
●●
●
●
●
●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●
●
●
●
●
●
●●●●●
●
●
●
●●
●●●
●●●
●●
●●
●●
●●
●●
●●●●●●●●●●
●●●●●●●
●
●
●
●
●●●●●●●●●●●●
●●
●
●
●
●●
●●●●●
●●●●●●●
●●
●●●●●●●●●●●●●●●

●

●●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●
●●●●●●●●●●●
●
●
●
●
●●●
●
●
●
●
●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●

●

●●●●●●●●●●●●●●
●●●●
●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●
●●
●●●
●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●
●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●

●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●
●●●●●●●●●●●●●●
●●●●●●●
●
●
●
●
●
●
●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●
●●●●●
●
●
●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●
●●●●●●
●●
●
●●
●●●●●●●●●●●●●

●

●●●●●●
●●●●
●●●●
●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●

●

●●●●●●●●
●●●●●●●●●●●●●●●
●●●
●●
●●
●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●
●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●
●
●
●
●
●●
●●●●●●●●●●●●●●●●
●
●
●
●
●
●●●●●●●●●●●●●●
●●●●●
●
●
●
●
●
●
●●●●
●
●
●
●
●
●●●●
●
●
●●●●
●
●
●
●
●
●●
●●●●
●
●●●●●
●
●
●
●
●
●●
●●●●
●
●
●
●
●
●●●●●
●
●
●●
●●
●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●
●●●●●●●
●●●●
●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●
●●●
●●●
●●

●●
●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●

●

●●●
●●
●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●●
●●●
●
●
●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●
●●
●
●●
●●●●●●●●●●●

●●●●●●●

●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●
●
●
●●
●●●
●
●
●
●
●●●●●
●●
●●
●●
●●●
●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●●
●●●●
●
●
●
●
●
●
●●●●●●●
●
●
●
●
●●
●●●●●●●●●●●
●
●
●
●
●
●

●
●
●
●●
●●●
●
●
●
●
●
●
●
●
●
●
●
●●●●
●
●
●
●
●
●
●
●
●●●●●
●
●
●
●
●

●

●●
●
●
●
●
●●
●●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●
●
●
●
●
●●
●●●●
●●●
●●
●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●
●●●

●●
●

●●●
●●●
●●●
●●
●
●
●
●
●
●●
●●●●●●●●●●●●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●
●●
●
●
●
●
●●
●●●●●●●●●●●
●●
●
●
●
●●
●●●
●
●
●
●
●
●●●●●●
●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●
●●
●
●
●●
●●●●●●●●●●●●●●
●●
●●
●

●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●●●●●●●●

●●

●●
●
●
●

●

●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●
●
●
●
●●●●●●
●
●
●●
●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●
●
●
●
●
●●
●●●
●
●
●
●
●
●●●●●●●●●
●●
●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●
●
●●●●

●●●●●●

●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●●
●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●
●●
●●●
●●●●●
●
●
●●●●●●●●●●●
●●
●●
●●
●●
●●●
●●
●●●
●●●●●●●●●●●●●●
●●
●●
●●
●●●●●●●●●

●

●●●
●●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●●
●●●
●●●●●●●●●●●●●●●
●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●●
●●●●●●●●●●●●●●
●●
●●
●●
●●●
●●●●●●●●
●
●
●●●●●●
●●
●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●
●

●
●
●
●
●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●●●●
●
●
●
●
●●●●

●●●●●●●

●●
●●
●●
●●
●●
●
●
●
●
●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●
●
●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●
●
●
●●
●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●

●●●●●●●

●●●●●●
●●●●
●●●
●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●
●●
●●●
●●●●●●●●●●●●
●
●
●
●
●●

●

●●●●●
●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●●●
●
●
●
●
●
●
●●●●
●●
●●●●

●●●●

●
●
●
●●●●●●
●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●
●●●●
●
●
●
●
●
●●●●●●●
●●●
●●
●
●
●
●
●
●●●●●
●
●
●
●
●
●●●●
●
●
●
●
●
●●
●●●●●●●●●●
●
●
●
●●
●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●
●
●
●
●
●
●●
●●
●●●●●●●●●●●
●●
●●
●●
●●●●●
●
●
●
●
●
●
●
●●●●●●●
●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●
●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●
●●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●●●●
●●●●●
●●●●
●●●●●●●●●●●
●●●●●●●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●●
●●●●
●
●
●●●●●●●●●●
●●
●
●
●
●
●●●●
●
●
●

●

●

●

●
●
●●●●
●
●
●
●
●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●●●
●
●
●
●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●

●●●●
●●●●●●
●●●●●
●●●●●●●
●●●
●●
●●●
●●●●●●
●
●
●●●●●●●●●●
●●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●
●●●
●●
●●
●
●
●
●●
●●●●
●
●
●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●●
●●●●●●●●●●●●●●●
●●
●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●

●●●●●●●●●●●●●
●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●●●●●●●●●
●
●
●
●
●
●●
●●●●●●●●●●●
●
●
●
●
●●●●●●●●●
●●●●●●●●●●●●●●
●●
●
●
●●
●●●●●●●
●
●
●
●●●●●●●
●●
●
●
●●
●●●●●●●●●●●
●
●
●
●
●

●

●
●
●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●
●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●
●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●●
●●●●●●●●●●●●
●●
●●

●
●●●●●●●
●●
●●
●●
●●
●●
●●
●●●
●
●
●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●
●●●●
●●
●●
●●●●●●●●●●●●●●
●●
●●
●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●
●
●
●
●●
●●●●●
●
●
●
●
●
●
●●●●●●●●●●●●●●
●
●
●
●
●
●
●●
●●
●●●●
●●●●
●●
●●●●●●●
●
●
●
●
●●●●●●●●
●●
●●●
●●●●
●
●
●●●●●●●●
●●●●●●●
●●
●●
●●
●●●●●●●●●●●●●●●
●●●●●●●●●●

●

●●●
●
●
●
●
●

●

●

●
●
●
●●●●●
●●
●●●●●●
●
●
●
●
●●●●●●●●●●●●
●●●●
●●●●
●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●
●●
●
●
●
●
●
●
●
●
●
●●
●

●

●●●●●●●●●●●●●●●●●
●●
●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●
●
●
●
●
●●●●●●●
●●
●
●
●
●
●●
●●●●●●●●●●●●●●
●●
●●
●●
●●●●●●●●●●●●●●●
●
●
●
●
●
●
●●●●●●●
●
●
●
●
●●
●●
●●
●●
●
●
●●

●

●●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●
●●
●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●●

●

●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●●●●●
●●
●●
●●●●●●●●●●●●●
●●
●●●
●●●●●●●●●●●●
●●●●●●●●●
●●
●●
●●
●●●●
●●●●●●●●
●
●
●
●
●●●●
●
●
●
●
●
●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●
●●●●●

●

●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●

●●●

●
●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●●●●●●
●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●
●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●●●●●●
●●●●●●●●●●●●
●●
●●
●●●●●●●
●
●●●●●●●●●●●●●●●●●
●●●
●

●

●●●●●●●●●●
●●
●
●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●
●●
●●●●●●●●●●●●●●●●●●
●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●●
●●
●●
●●●●●●●●●●●●●●●●
●
●
●
●
●
●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●
●●●●
●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●

●●●
●●
●
●
●
●
●
●●
●●●●●●●●●●●●●
●
●●●●●
●
●
●
●
●
●
●
●
●●
●●●●●●●●●●●
●
●
●
●●
●●
●
●
●
●
●
●●
●

●

●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●
●●
●●●●●●●●●●●●●●●●●●●●
●●
●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●
●●●●
●●
●
●
●
●
●●
●●●●
●
●
●
●
●●●●●●●
●●
●●
●
●
●
●
●
●
●●●●
●
●●●●●●
●●
●●
●●
●
●
●
●
●
●
●●
●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●
●
●

●

●

●

●

●

●

●
●●●
●

●

●

●

●

●

●
●
●●●
●●●
●●
●●
●●●●●●●●●●●
●
●
●

●

●

●

●

●

●
●●●●
●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●
●
●
●
●
●
●

●

●
●
●●●●
●
●
●
●
●
●
●
●
●
●●●●
●●
●●●
●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●
●
●
●●●●●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●
●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●
●●
●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●
●●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●
●
●
●
●
●
●●
●●●●

●●

●●
●
●
●
●
●
●
●
●●
●●●●●●●●●
●●●●●●
●●
●●●
●●●●●●●●●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●
●●
●●●●●
●
●
●
●
●
●●●●
●●
●●●●●●●●●●
●●●●●●
●
●
●●●●
●
●
●
●
●
●
●
●
●●
●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●●●●●
●
●
●
●
●●●●●●●
●
●
●
●
●●●●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●●
●●●●●●●●●●
●●
●●●●●●●●●●
●
●
●
●
●●●●●●●
●●
●●
●●
●●
●●
●●●
●●

●
●
●
●
●●

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Genomic Position

K
C

S
co

re

(a) KCSmart profile from all samples using a 2Mb kernel

●●

●●●
●●●

●●

●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●
●●●

●●●●●●●●
●●●

●●

●●●●●●●●●●●●●●
●●●●●●●●●
●●

●●●●●
●●●●●
●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●

●●

●●●●●
●●●●●
●●●●●●
●●●●●●●●●●●●●●
●●

●●●●●●●●●●●
●●●

●

●●●●●●●●●
●●●●●
●●●●●●
●●●

●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●

●●●●●●●●●
●●●●●
●●●●
●●●●
●●●●●
●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●●
●●

●●●●●●

●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●

●

●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●
●●●

●

●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●
●●●●●
●●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●

●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●

●●●●●●●●●●●
●●●●●●●●●●●●●
●●

●

●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●

●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●

●●
●●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●●
●●●●

●●●●●●

●●
●●●●●●●●●
●●●

●●●●●
●●●●
●●●●
●●●●●●
●●

●

●●●

●●●●●●●●

●●
●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●

●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●

●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●

●●●●●

●

●●●

●●●●●●

●●●
●●●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●

●●●●●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●

●●●●●●●

●●●●●●●●●●●●
●●●

●●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●
●●

●●●●●●
●●●●●●
●●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●

●●●●●●●

●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●
●●

●

●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●
●●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●

●●●●●●●

●●●●●●●●●●●
●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●●●●●●
●●

●●●●●

●●

●●●●●●●●●
●●●●●●
●●●●●●●
●●

●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●●
●●●●●●

●

●●

●●

●●●
●●●●●●●●●●
●●

●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●

●●

●●●●●●

●●
●●●●●●
●●●●●
●●●●●
●●●●●●●
●●

●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●●●●
●●●●●

●

●●●●●●●●●●●●
●●●●●●●●●
●●●

●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●

●●

●

●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●

●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●●●
●●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●

●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●
●●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●●

●●
●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●
●●●●●
●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●
●●

●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●●●●
●●●●●●●●●●●●●
●●●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●
●●●●
●●●●
●●●●●
●●●

●●●●●●●●●●●●●●●●●●

●

●●

●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●●●

●

●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●
●●●●●●●●
●●●●●●●●●
●●

●●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●●●
●

●

●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●

●

●●●
●●●

●●●●

●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●●

●

●●

●●●●

●●●●●●●●●●●
●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●
●●●●●●
●●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●
●●●●●●●●●●
●●●●●●●●●●●
●●

●●●●●●●●●
●●●●●●
●●●●●●
●●●●●●●●

●●

●●●●●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●●●
●●

●●●●
●●●
●●●
●●●
●●●
●●●
●

●●●●●●●

●●●●●●
●●●

●●

−
0.

1
0.

0
0.

1
0.

2

Genomic Position

K
C

S
co

re

(b) KCSmart profile from all samples using a 8Mb kernel

●●

●●

●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●

●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●

●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●

●●●●●●

●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●●●

●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●

●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●

●

●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●

●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●

●●●

●

●●●

●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●●●●●

●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●●●●●

●●●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●

●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●

●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●

●●

●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●

●●●●●●

●●●

●

●●

●●●●●●

●●●
●●

●

●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●

●●●●●●●

●●

●

●●

●●●●

●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●

●

●●

●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●●

●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●●●●●●●●●●●●●●●●●●

●●

●

●●
●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●

●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●

●●

●●●●●●●●●●●●●●●●●

●●●

●

●●

●●●●●●●●●●●●●●●●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●

●●●●

●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●

●

●●

●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●●

●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●

●●●

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20

Genomic Position

K
C

S
co

re

(c) KCSmart profile from all samples using a 24Mb kernel

Figure 4.2: Output from KCSmart analysis of all 60 tumour samples at three different
kernel widths. The KC score for every feature on the Mermaid aCGH microarray is plotted
on the Y axis against the features genomic location on the X axis. The alternating light
and blue colours represent chromosomes and the red and green lines are the significance
thresholds calculated by KC-smart. Peaks below the red line are significantly recurrent
copy number losses and peaks above the green line are significantly recurrent copy number
gains.

157

MALOVA 4.3.6 Unique Breakpoint Identification

●●

●●
●●●●
●
●
●
●
●
●
●●●
●
●
●
●
●●●
●

●

●

●

●

●
●
●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●
●●
●
●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●
●●

●●●●
●●
●
●
●
●●
●●●●●●●●●●
●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●●
●●
●●●●
●
●
●
●
●●●●●●
●●
●●●
●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●
●●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●

●●

●●●
●
●
●●●●●●
●●
●●
●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●●●●●●●●●●●●●●
●●
●
●●
●●●●
●
●
●
●●●●●
●●
●●●●●●●●●●●●●●●●●●●
●●
●●●
●●●●●●●●●●●
●
●
●
●
●
●
●
●●●●●
●●
●
●
●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●
●●
●
●
●●
●●●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●●
●●●●●●●●●●●●●
●●
●●
●●

●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●
●●●
●●●●
●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●●●●●●
●●
●●●
●●●●●●●●
●●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●
●●
●●
●●●
●●●●●●●●●

●

●●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●●●●●●●●●
●
●
●
●
●
●
●
●
●
●●●●●●●●●
●●
●
●
●●
●●
●●●●●●●●●●●●●
●●●●●●
●
●
●
●
●●
●●●●●●●●●●●●
●●●●●
●
●
●
●
●
●●●●
●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●●●●●
●●
●●
●●●●●●●●●●●●●●
●
●
●
●
●
●
●●●●
●
●
●
●
●
●
●
●●●

●●●●●●

●●
●●●
●●
●
●
●
●
●
●●●●
●
●
●
●
●
●●●●●●●
●●●●●●●●●●●●●●●
●●
●
●
●
●
●●
●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●
●●
●●●●●●●●●●●●
●●●
●●●
●●●●●●●●●●●●●●●●●
●
●
●
●
●
●●
●●
●●
●●
●●
●●●●
●
●
●
●
●
●
●
●●●●●●●●●
●●
●
●
●
●
●
●
●●
●●●
●
●
●
●
●
●●●●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●
●●
●●
●●
●
●
●
●
●
●
●●
●

●

●●●●●●
●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●
●
●
●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●
●●
●●●
●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●●●
●●
●●
●●●●●●●●●●●●●
●●●

●●●●●●

●●●
●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●
●
●
●
●
●
●●●●●●●●●●●
●●
●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●
●●●●●●●
●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●
●
●
●●●●●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●
●●●

●

●●●●●●●●
●●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●
●●●
●●●●
●●●●●●●●●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●
●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●
●●
●●
●
●
●
●
●
●
●
●
●●
●●●●
●
●
●●●●●●●●
●●
●
●
●
●
●
●
●
●●
●●●●●●
●
●
●
●●●●●
●
●
●
●●
●●●
●
●
●
●
●
●●●●●●●
●●
●●
●●●●●●●●●●
●●
●
●
●
●
●
●

●

●

●

●
●
●●●●
●
●
●●●●●●●●●●●●●●
●●
●●●●●●
●
●
●
●
●
●
●
●
●●●●●●
●
●
●
●
●
●●●●●●●

●

●●●●●
●●●●●●●●●
●●
●●●
●●●
●●
●
●
●
●●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●
●
●●●●●●●
●●
●
●
●
●
●
●
●
●●
●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●
●●
●
●●
●●●●●●●●●●●●
●●
●●
●●
●●●●●●●

●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●
●●●
●●
●●
●●●
●●●

●●
●●●
●●●●●●●●●●●●●●●
●●●
●●●
●●●●●●●●●●●●●●
●●●●●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●
●●●
●●●
●●●●
●●

●●●●
●●●
●●●

●

●●●●●●●●●●●●●●●●●
●
●
●
●
●●●●●●
●
●
●
●
●
●●●●
●
●
●
●
●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●
●●●
●●

●●●●●●

●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●
●●●●
●●●●●
●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●
●●●●●●●●●●
●●●●●
●●●●●●
●●●
●●●●
●●●●●●●●●●●●●●●

●

●●●●●●●
●
●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●
●
●
●
●●
●●●●●●●●●●●
●
●
●
●
●
●
●●●●●●●●●●●●
●
●
●●
●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●
●●
●●●
●●●
●
●
●
●
●
●●●●●●●
●●●
●●
●●
●●●●●
●
●
●
●
●
●●●●●
●●
●●
●●
●●●●●●●●●●●●
●●●●●●
●
●
●
●
●●●●●●
●●
●●
●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●
●
●
●
●
●
●●
●●●●
●
●
●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●
●
●
●
●●●●
●
●
●
●
●
●●●●●●
●●
●●
●●●●●●●
●●
●
●
●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●
●
●●
●●●●
●
●
●●●●●
●
●
●
●
●
●●
●●●●●●●●●●●

●

●●●
●
●
●
●
●
●
●
●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●
●●
●●
●●●●●●●●●
●
●
●
●
●
●●●
●
●
●
●
●
●●●●●
●●
●●●
●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●●●

●

●●●●●●●●●●●●●●
●●
●●
●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●
●●
●●●
●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●●
●
●
●
●●●●●●●●●
●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●
●●
●
●●
●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●
●●
●●
●●●●
●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●
●●●●●●●●●●●●●●
●●
●●
●●
●●●
●●

●

●●●
●●
●●
●●●●●●●●●●●●●●●
●●●
●●
●●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●
●●●
●●●
●●●●●●●●●●
●●●●●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●

●●●●●●
●●●●●●●
●
●
●
●
●
●●●●●●
●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●
●●
●●●●●●
●●●●●●●
●●
●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●●●●●●●●●●●●●
●●●
●●●
●●
●●
●●
●●●●●●●●●●●●●●

●

●●●●●●●●●
●●●
●●●
●●●●●●●●●●●
●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●

●●
●●●
●●●●●●●●●●
●
●
●
●
●
●●●●●●●●●●●●
●●
●
●●
●●
●●
●●●
●●●●●●●●
●
●
●
●●●●●●●●●
●●●●●●
●●
●●
●●
●●●

●●●●
●●
●●
●●●
●

●

●●●●●●●
●●
●●●
●
●
●
●
●●●●●●●●
●●●●
●●●
●●●●●●●●●●●●●
●●
●●
●●
●●●●●●●●●●●●
●●●
●●●
●●
●●
●●●
●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●
●●●●
●
●
●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●
●●
●
●
●●
●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●
●
●
●
●
●
●●
●●●●●●●●●●●●●●●
●
●
●
●
●
●
●●●●
●
●
●
●
●●
●●●
●
●
●
●
●●●
●
●

●

●

●

●
●
●●●●
●
●
●
●●●●
●
●
●
●
●
●●●●●
●
●
●
●
●●●●●
●
●
●
●●
●●●●●●●●
●
●
●
●
●●●●●●●●●
●

●

●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●
●●●
●●●
●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●

●●●●●●●

●●●●●●
●●●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●
●●●

●●
●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●
●●●●●●●●●

●

●●●●
●●●
●●●●●●●●●●●●●●●●●
●●
●
●
●
●
●
●
●●●●●
●
●
●●●●●●●●●●●●●●●●
●
●
●
●
●●
●●●●●●●●●●●●
●●
●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●
●●
●●●●●●●●●●●●●●
●●
●
●
●●
●●
●●
●●
●●
●●●●
●
●
●
●
●
●
●●●●
●
●
●
●
●
●●
●●●●
●●●●●●●●●●●
●
●
●
●●
●●●●●●●●●●
●●●
●●●
●
●
●
●
●
●●●
●
●
●
●
●
●
●
●
●
●●●●●
●
●
●
●
●
●●●●●
●
●
●
●
●
●●
●●●●●●●●●●●●●●●●
●
●
●

●

●

●

●

●

●
●
●
●●●●●●
●
●
●
●

●
●
●
●●●
●
●
●
●
●

●
●
●
●
●
●●
●●●●●●●

●

●●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●
●●
●●●●
●●●
●●
●●
●●●●●
●
●
●●●●●
●
●
●
●
●
●
●●
●●●●
●●●
●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●
●●●●
●
●
●●●●●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●
●●●●
●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●●●
●●●
●●
●
●
●
●
●
●●
●●●●●●●●●●●●
●
●
●
●
●
●
●
●●●●●●
●●
●●
●●●
●●

●●

●●●●●
●
●
●
●
●●
●●●●●●●●●●●
●●
●
●
●
●
●
●
●
●●●
●

●

●

●

●
●
●
●●●●●●●●●●●●
●●
●
●
●●
●●
●●●●●●●●●●
●●●●●●●●●
●●●●
●●
●●
●●
●●
●●●●●●●●●
●
●●●●●●●●●●●●●●●
●●●●
●●
●
●
●
●
●●
●●●●●●●●●●●●●●
●●
●●

●

●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●
●●●●●●●●●

●●

●●
●
●
●

●

●

●

●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●
●
●
●
●●●●●●
●
●
●●
●●●●●●
●●●
●●●
●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●
●
●
●
●
●●
●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●
●●●●●●●●●

●●●●●●

●●●●●●●●●●●
●
●
●
●●●●●●●●●●●
●
●
●
●
●●
●●●●●●●●●●●
●
●
●
●●●●●●
●
●
●
●
●
●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●
●
●
●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●●●●●●
●●●●●
●●●●●●●●●●●●
●●●
●●●

●

●●●●
●●
●
●
●
●
●
●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●
●●
●●
●●●●
●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●
●●
●●●
●●●●●
●●●●
●●●
●●●●●●●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●●●●●●
●●
●●
●●
●●
●●●●●●●●●●●●●
●●
●●
●●
●●
●●●
●●●●●●●●
●
●
●
●
●●●●●
●
●
●
●
●●
●●●●●
●●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●

●

●

●
●
●
●
●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●
●●●
●●●
●●●●●●●●●●●●●●●●●
●●
●
●
●
●
●
●●
●●●
●
●
●
●
●
●●●

●●●●●●●

●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●
●
●
●
●
●●●●●●●
●●●●●●●●●●
●●
●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●
●
●●●●●●
●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●
●
●
●
●
●
●●●
●●●●●●●●●
●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●
●●●●●●●●●●●●

●●●●●●●

●●●
●●●
●●●●
●●
●●
●●
●●●●
●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●
●
●●●●●●●
●●
●●
●●●
●●●●●●●●●●●
●●
●●●●●●●●●●●●●●
●
●
●
●
●
●
●

●

●●●●●●●●●●●●●●
●
●
●
●●●●●
●●
●●●●●●●●●●●●●●●●
●●●
●
●
●
●
●
●●●●
●
●
●
●
●●●●●●●
●●●●
●

●●●●

●
●●●●●●
●●
●●
●●●●
●●●
●●
●
●
●
●●
●●●●●●●●●●●●●
●
●
●
●
●
●
●●●●●
●●
●●
●●
●
●
●
●
●
●
●●●●
●
●
●
●
●
●
●●●●●
●
●
●
●
●
●●●●●●●●●●
●
●
●
●
●
●●●●
●
●
●●●●●●●●●
●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●
●
●
●
●
●
●
●
●●
●●●●●
●●●●
●●●
●●●●
●●●●●
●
●
●
●
●
●
●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●
●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●●
●●●●●●●●●●●●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●●●
●
●
●
●
●
●●●
●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●●●●
●
●
●
●
●
●●●●●●●●
●
●
●
●
●
●
●●
●●
●
●

●

●

●

●

●
●
●●●●
●
●
●
●
●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●
●●
●●●
●
●
●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●
●●●●●●●●
●●
●●
●●●
●●●●
●●
●
●
●
●●
●●●
●
●
●
●
●
●
●●●●●●
●●
●
●
●
●
●
●
●
●
●●●●
●
●
●●●●●●●●
●●●●●●●
●●●
●
●
●
●
●
●
●
●●●●
●
●
●
●
●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●●
●●●●●●
●
●
●
●●●●●●●●●
●
●
●
●
●
●
●
●●
●●

●●
●
●
●
●
●
●
●
●●
●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●
●●●●●●●●●
●
●
●
●
●●
●●●●●●●●
●●●●●●●●●●●●●●●
●●
●●●●●●
●
●
●
●●●●●
●
●
●
●
●
●●
●●●●
●
●
●
●
●
●
●●●●●●
●
●
●
●
●
●●
●●●
●
●
●
●●●●●
●
●
●

●

●

●

●
●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●
●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●
●●●●●●●●●●●●●●●
●●
●●
●●
●●●●●●●●●●
●
●●●●●●●●
●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●●
●●●
●●●●●●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●
●
●
●
●●●●●
●
●
●
●
●●
●●
●●
●●
●●●●
●
●
●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●●●●●●●●●●●●●●●●●
●●●
●●
●
●
●
●●
●●●●●●●●●●
●●
●●
●●
●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●●
●●●●
●
●
●
●
●
●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●●
●●●●
●●●●
●●●●●●●●
●
●
●
●
●●●●●●●●●
●●
●●●●●●
●
●
●
●●●●●●●
●●●●●
●●
●●
●
●●
●●●
●●●●●●●●●●●●●●●●
●●●●●●●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●
●●●●●
●●●●●
●
●
●
●
●
●
●●●●●●●●●●●
●●
●●
●●
●●●●●●
●●●●●●●●
●
●
●
●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●
●●
●●●●●●●●●●●●●
●●●●●●
●●●●●●●
●
●
●
●
●
●
●
●
●●●●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●

●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●
●
●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●
●
●
●
●
●
●●●●●●●
●●
●●
●●
●●
●●●●●●●●●●●●●
●●
●
●
●
●●
●●●●●●●●●●●●●●●
●
●
●
●
●
●
●●●●●●●
●●
●
●●
●●
●●
●●
●
●
●
●●

●

●●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●
●●
●●
●●
●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●

●

●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●●●●●●
●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●
●●
●●
●●●●●●
●●
●●
●●●●●●
●●●●●●●●
●
●
●
●
●●●●
●
●
●
●
●
●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●
●●●●●
●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●

●
●
●●
●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●●●●●
●
●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●
●
●
●
●
●
●●
●●

●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●●
●
●
●
●
●
●
●●●●●●●●
●●
●●
●
●●
●●

●

●●●●
●●
●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●●●●●●
●
●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●
●●●●●
●●●
●●●
●●●●●●●●●●●●●●
●
●
●
●
●
●
●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●
●●●
●●
●●●

●

●●

●●●●

●●
●●
●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●●
●●●●●●●●●●●●
●●
●
●
●
●
●
●
●

●

●

●
●
●
●

●

●●●
●●
●●●

●●●●

●
●
●
●
●●
●●●●●●●●●●●●●●●●●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●●
●●●●●●
●●
●
●●
●●●●
●
●
●
●
●●●●●●●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●
●
●
●
●●●●
●
●●
●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●
●●●
●

●

●

●

●

●

●
●
●●
●●
●
●
●
●
●
●
●●
●●●●●●●●
●
●
●

●

●

●

●

●

●
●●●●
●
●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●
●
●
●
●
●
●●●●
●
●
●
●
●
●
●
●
●
●●●●
●
●●
●●●
●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●●●●●●●
●
●
●●●●●●●
●●
●
●
●
●●
●●●●
●
●
●●●●●●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●

●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●
●●
●●
●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●●●●●
●
●
●
●●●●●●●●●●●●●
●●
●
●
●
●
●●●●●
●
●
●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●
●
●
●
●
●●
●●●●

●●

●●
●●
●
●
●
●●
●●●
●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●
●
●
●●●●●
●
●
●
●
●●
●●
●●●
●

●●●●●●●

●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●●●●●
●●
●●
●●
●●
●●●●●
●●●●
●●●●●●●●
●
●
●●●●●
●
●
●
●
●
●●●●●●●●●●●●●
●●
●●●
●●●●●
●
●
●
●
●
●●●●●
●●
●●
●●●●
●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●
●●●●●●●●●●
●
●
●
●
●●

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

Genomic Position

K
C

S
co

re

(a) KCSmart profile from good survival samples using a 2Mb kernel

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●
●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●
●●●●
●●●●
●●●●
●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●

●●

●●●●
●●●●
●●●●
●●●●●
●●

●●●
●●●●●●
●●●●●●●
●●

●●●●●●●●●●●●●●●

●

●●●●●●●●●
●●●●●
●●●●●●●●
●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●●
●●●

●●●●●
●●●●
●●●●
●●●
●●●●
●●●●
●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●

●●●●●●

●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●●
●●●

●

●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●

●

●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●
●●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●

●

●●●●●●●●●●
●●●●●
●●●●●
●●●●●●●
●●

●●●●●●
●●●●●
●●●●
●●●●●
●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●

●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●

●

●●

●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●

●

●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●●
●●●

●●●●●●

●●
●●●

●●●●●
●●●●●
●●●●●●
●●●

●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●

●

●●●

●●●●●●●●

●●●
●●●●●●●●●●
●●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●●
●●

●●●●●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●

●

●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●

●●●●●●●●

●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●●●
●●●

●●●●●●●●●●●
●●●●●●●●●

●

●●●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●

●●●●●●

●●
●●

●●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●

●●●●●●

●●●

●

●●●
●●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●

●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●
●●●●●
●●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●

●●●●●●●●●
●●●●●●

●●●●●●●

●●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●

●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●●
●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●●●●●

●●●●●●●●
●●

●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●
●●●●●●●
●●

●●●●●●
●

●●

●●●●●●●
●●●●
●●●●
●●●●
●●●●●●
●●●

●●●●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●●●
●●●●

●

●●

●●

●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●

●

●●

●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●

●●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●

●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●

●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●●
●●

●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●●

●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●●●
●●

●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●●●
●●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●
●●●●●
●●●●●●
●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●
●●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●●
●●●●●●
●●●

●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●●

●

●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●
●●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●

●

●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●●
●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●

●

●●●
●●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●

●

●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●
●●

●●●

●●●●●●●
●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●

●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●

●

●●●
●●●

●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●●
●●●

●

●●

●●●●

●●●●●●
●●●●●●
●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●
●●●●
●●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●
●●●●●●●
●●●●●●

●●

●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●

●●●●●
●●●●●
●●●●●
●●

●●●●●●●

●●●●●●●●
●●●

●●●●●●●
●●●●●●●●
●●●

−
0.

1
0.

0
0.

1
0.

2

Genomic Position

K
C

S
co

re

(b) KCSmart profile from good survival samples using a 8Mb kernel

●●

●●

●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●

●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●

●●

●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●

●

●●●

●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●

●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●

●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●

●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●

●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●

●●

●

●●

●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●●

●●●●●●●●

●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●●●●●

●●
●●●

●

●●●

●●●●●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●

●●●●●●●

●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●

●●●●●●●

●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●

●●

●●
●●●

●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●

●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●

●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●

●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●

●

●●

●●●●

●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●

●●

●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●●●●●●●●●●●●●●●●●●

●●

●

●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●

●

●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●

●●

●●●●●●●●●●●●●●●●●

●●●

●

●●

●●●●●●●●●●●●●●●●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●

●●●●

●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●

●

●●

●●●●

●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●●

●●●●●●●

●●
●●

●●●

●●

●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20

Genomic Position

K
C

S
co

re

(c) KCSmart profile from good survival samples using a 24Mb
kernel

Figure 4.3: Output from KCSmart analysis of 30 good survival tumour samples at
three different kernel widths. The KC score for every feature on the Mermaid aCGH
microarray is plotted on the Y axis against the features genomic location on the X axis.
The alternating light and blue colours represent chromosomes and the red and green lines
are the significance thresholds calculated by KC-smart. Peaks below the red line are
significantly recurrent copy number losses and peaks above the green line are significantly
recurrent copy number gains.

158

MALOVA 4.3.6 Unique Breakpoint Identification

●●

●●●●●●●●●●●●●●
●
●
●
●●
●●●
●
●
●
●
●
●
●●●●●●●●●●●●
●●
●●●
●●●●●●●●
●●
●●●
●●●●●●
●●
●
●
●
●
●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●
●●
●●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●

●●●●
●●
●
●
●
●
●
●●
●●●
●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●
●
●
●
●
●●
●●
●●●●●●
●
●
●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●
●
●
●
●●

●●

●●●●●●●●●●●
●●
●
●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●
●●
●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●●
●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●
●●●
●●
●●●
●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●
●●●●●●●●●

●

●●●●
●●●●●●●●●
●●
●
●
●●
●●
●●●●●●●●
●
●
●
●●●●●●●●●
●●●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●
●●
●
●
●●
●●●●●●●●●●●●●●●●●●
●
●
●
●
●●●●●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●
●
●
●
●●●●●●●
●●●●●●●●●●●●●●
●●
●
●
●
●
●●
●●●●
●
●
●
●
●
●
●●●

●●●●●●

●●
●●
●●
●●
●
●
●
●●●●●
●
●
●
●
●●●●●●
●●
●●●●●●●●●●●●●●●●●
●●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●
●
●
●
●
●
●●
●●●
●●●●●●●
●
●
●
●
●
●
●
●
●●●●●●●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●
●●●
●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●●
●●●●
●●
●●
●
●
●●
●●

●

●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●
●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●
●●●
●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●
●●●

●●
●●●●
●●●●●●●●●●●●●

●●●●●●

●●●●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●●
●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●
●●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●
●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●
●●●
●●●
●●
●●
●●●●●●
●●●●●●
●●
●●
●●
●●
●●
●
●●
●●
●●●●●●●●●●●●●●●●●
●●●●●●●
●
●
●●●●●●
●●
●
●
●
●
●
●●
●●●●●●●
●●
●
●
●
●
●

●

●

●

●

●
●
●
●●●
●
●
●
●
●
●●●●●
●
●
●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●
●●
●●
●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●
●●
●
●●
●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●
●
●●
●●●
●
●
●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●
●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●
●●●●●●
●●●●●●●
●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●
●●●●●

●●●●●●

●●●●
●●
●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●
●●●
●●●●●●●
●
●
●
●●●●●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●
●
●
●
●●●●●●●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●

●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●●
●●
●●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●
●
●●●●
●
●
●●●●●●●
●●
●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●
●●●●●●●
●●●●●●●●●●●●
●●●●
●●●●●●●

●

●●●●●●●●●●●●●
●●●
●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●
●●●●
●●●
●●●
●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●
●●●●

●

●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●
●
●
●
●
●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●
●●
●●
●●●
●●●●●
●
●
●
●
●
●●●●●●●●●●
●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●

●

●●●●●●
●●●●
●●●●●●●●●●●●●●●●●
●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●
●●●
●●●
●●●●●●●●●
●
●●●●●●●●●●●
●●
●●
●●●
●●

●●●
●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●

●

●●●●●●●
●●●●●
●
●
●
●
●●●●●●●●
●●
●●
●
●
●●
●●●●●●●●●●●●●●
●●
●
●●
●●●●
●
●
●
●●●●●●●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●
●●●●

●●●●●●●

●●●●●●●●●●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●
●●
●
●
●
●
●
●
●●
●●
●●
●●
●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●●●●●●●●●
●●
●●●●●●●●●●●●
●
●
●
●
●
●
●●●
●
●
●
●
●
●
●
●●●●
●
●
●
●
●
●●
●●●●●●●
●
●
●
●
●●●●●●●●●

●

●●●●●●
●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●
●●●

●●●●●●●

●●●●●
●●●●
●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●

●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●
●
●
●
●
●
●●
●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●
●●●●
●●
●
●
●
●
●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●
●●●
●●●
●●●●●●●●●●●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●●●●●●
●
●
●
●
●●●●●
●
●
●●
●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●●●●●●●●●
●
●
●
●
●
●
●
●●●●●
●
●
●
●
●
●
●
●●
●●●●
●
●
●●

●

●●
●
●
●
●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●
●
●
●
●
●●
●●●●
●●●
●●
●●●
●

●●●●●●●
●●

●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●
●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●

●
●

●●●●●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●
●●●
●●●●●●●●
●
●
●
●●●●●●●●●●

●●
●●●●
●
●
●
●
●
●
●●
●●●●●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●●
●●●●●●●●●●●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●
●
●
●
●
●
●●
●●●●●
●●●●●●●
●
●
●
●
●
●

●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●●●●●●●●●

●●

●●●
●
●
●

●

●

●
●
●
●●
●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●
●
●
●
●
●
●●●●
●
●
●
●
●
●●
●●●●
●●●●
●●●●●●●●●●●●●●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●
●
●
●
●
●
●●●●●●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●

●●●●●●

●●●●●●●●●●●●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●
●●●●●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●
●●
●●
●
●
●
●
●●
●●●
●
●
●
●
●
●
●
●●●●●●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●
●●●
●●
●●
●●
●●

●

●●●●●●●●
●●●
●●●●●
●●●●
●●

●●●●●●

●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●
●●●
●●●●
●●

●●
●●
●●
●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●
●●●●●●●●
●●
●●
●●●
●●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●●●●●●●●●

●●●●●●●

●●●
●●
●●
●●
●●
●
●
●
●
●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●
●
●
●●●●●●●
●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●●●●
●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●

●●●●●●●

●●●●●●●
●●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●

●●●●
●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●●

●

●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●
●●
●
●
●
●
●
●
●
●●●
●
●
●
●
●
●●●●●
●●
●●●●

●●●●

●
●
●
●●●●●●●
●●
●●
●●
●●
●
●
●
●
●
●●●●●
●
●
●
●●●●●●●●●
●
●
●●●●●●●●
●●
●●●
●●●
●●
●●●●●●●
●
●
●
●●●●●●●
●●
●●
●●●●●●●●●●●
●●
●●
●●●

●●
●
●
●
●
●
●●
●●
●●●●●●●●●●●●●●●
●●
●●
●●
●●●●
●
●
●
●
●
●
●
●●●●●
●●
●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●
●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●
●●●●●●●●●●●●●●●●●●●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●
●●
●●
●●●●●
●
●
●
●
●
●
●
●●●●●
●●
●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●●●
●
●
●
●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●●
●●
●
●●
●●●●●●●●●●●●●●
●●●●●●
●
●
●
●●●●●●●●●●
●●●
●●●●●
●●●●●●●●●●●
●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●
●●●
●●●●●●●●●●●●●●●●
●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●●●
●●●

●●
●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●●●●●●●●
●
●
●
●
●●
●●●●●●●●●●●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●
●●
●
●
●●
●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●
●●
●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●
●
●
●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●
●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●●
●●●●●●●●●●●●●
●●●

●●●
●●
●●●●●●
●
●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●
●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●
●
●
●
●●
●●●●●●●●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●●
●
●
●
●
●
●●●●●●
●●●
●●●●●
●●
●
●
●
●●
●●●●●●●●●●●
●●
●●
●●●●●
●
●
●
●
●●●●●●●●
●●●
●●●
●●●●●●●●●●●●●●
●●●●●●●●
●●
●●
●●●●●●●●●●●●●●
●●●
●●●●●●●●●

●

●●●
●
●
●
●
●
●
●
●
●
●
●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●
●●
●
●
●
●
●
●●
●●●
●

●

●●●●●●
●
●
●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●
●●
●●
●●●●●●●●●●●●●
●●
●●
●●
●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●●●●●●
●
●
●
●
●
●
●
●●
●●
●
●
●●
●

●

●●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●
●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●●
●●
●●
●●
●
●
●
●
●
●
●
●●
●●

●

●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●
●●●
●
●
●

●

●
●
●
●
●●
●●●●●
●●
●●
●●
●●●●
●
●
●
●
●●●●
●
●
●
●
●
●●
●●●
●●●
●●
●●●
●●●●●●●●●●●●
●
●
●
●
●
●●●●
●
●
●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●●
●●●●●●●●●●●●

●

●●●●●●●●●●●●●
●●
●●●
●●●●●●●●●●●●

●●●

●●
●●

●●
●●
●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●
●●
●●
●●●
●●●●●

●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●

●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●●
●●●●●●●●●●
●
●
●●●●●●●
●●
●●
●●
●●
●●●●●●●●●●●●●●
●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●
●●
●●●
●

●

●●●●●●●●●●●●●●●●
●●
●●
●●●
●●●●●●●●●●●●●●●
●
●●●●●●
●●
●

●●●●●●●●●●●●●●●●●

●●
●
●
●
●
●
●
●●
●●●●●●●●●●●●●●●
●
●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●
●●●●●●●

●

●●●●●●●●●●●●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●
●
●
●
●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●
●●●
●

●

●●
●●
●●
●●●●●●●●●
●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●
●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●

●●●●

●●
●●●●●●●●●●●●●●●●●
●●●●
●●●
●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●
●●
●
●
●
●
●
●●●●●●●
●
●
●
●●●●●●●
●●
●●
●●●
●●●
●●
●●●●●●●●●●
●●
●●
●●●
●●
●
●
●●
●●●
●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●
●
●
●

●

●

●

●

●
●
●●●
●
●

●

●

●

●
●●●●●●●●
●
●
●
●
●
●●
●●●●●●●●●
●
●

●

●

●

●

●

●
●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●
●
●
●
●●●●●
●
●
●
●
●
●
●
●●●●●●●●●
●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●

●●●●
●●●●●●●●●●●
●
●
●
●
●
●●●●●
●
●
●
●
●●●●●●●●●
●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●
●●
●
●
●
●●
●●●●

●●

●●
●
●
●
●
●
●●
●●●●
●
●
●●●●●●●●●●
●●
●●
●●
●●
●●●●
●●●
●●
●●●
●●●●●●●●●●●●●●●●●
●
●
●
●●
●●●
●
●
●
●
●
●●●
●
●
●
●●●●●●●●●●●
●●●●●●●●●●
●
●
●
●
●●
●●●●●●●

●●●●●●●

●●●●●●●●●●●
●
●
●
●●
●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●
●●
●●
●●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●
●●
●●●

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

Genomic Position

K
C

S
co

re

(a) KCSmart profile from poor survival samples using a 2Mb kernel

●●

●●
●●●●●
●●●●
●●●●●
●●●●●●
●●●

●●●●●●●●●●
●●●●●●●●●●●●●
●●

●●●●●●

●●

●●●●●●●●●
●●●●●
●●●●
●●●●
●●●●●
●●●●●●●
●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●

●●

●●●●●●●
●●●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●

●●●
●●●

●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●

●●●●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●

●●●●●●

●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●●●

●

●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●

●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●●
●●●

●

●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●

●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●

●

●●

●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●

●●

●

●●
●●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●

●●
●●●

●●

●

●●●

●●●●●●●●

●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●

●●
●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●●●

●●●●●●

●●●
●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●

●●●●●●
●●●●●
●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●

●●●●●●●●●●●
●●

●

●●●
●●

●●●●●●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●

●●●

●

●●
●●●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●●
●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●
●●●●
●●●●
●●●●●
●●●●●●●
●●

●●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●
●●●●
●●●●
●●●●●
●●

●

●●●
●●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●

●●●●●●●

●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●

●●

●●

●●●
●●●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●●
●●●●●

●

●●

●●

●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●●●●

●●
●●●●●●●
●●●●●●
●●●●●●●●
●●●

●●●●●●
●●●●●
●●●●●●
●●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●
●●●●
●●●●●
●●●●●●
●●●●●●●●●●●●
●●

●

●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●
●●●●
●●●●
●●●●
●●●●●
●●●

●●●

●

●●●●●●●●●●●●●
●●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●●
●●

●●●●●●●

●●●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●
●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●●

●●●
●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●
●●●●●
●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●

●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●
●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●
●●●●●
●●●●
●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●
●●

●●●●●●●●

●

●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●

●

●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●
●●●●●
●●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●●
●●●
●●●
●●●●●
●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●●
●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●
●●●

●

●●

●●●●●●●●●●●●●●●●●

●●●

●

●●●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●

●

●●●
●

●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●

●

●●

●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●
●●●●●●●●●●●●●
●●

●●●●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●

●●

●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●

●●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●

●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Genomic Position

K
C

S
co

re

(b) KCSmart profile from poor survival samples using a 8Mb kernel

●●

●●
●●

●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●

●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●●

●●●●●●

●●●
●●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●

●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●

●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●

●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●

●

●●

●●●●●●

●●●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●

●

●●●

●●●●●●●●

●●●
●●

●●

●

●●●

●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●

●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●●●●●

●●●

●

●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●

●●●●●●●

●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●

●●●●●●●

●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●

●●

●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●●●●

●●●

●

●●

●●●●●●

●●●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●

●●●●

●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●

●●

●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●

●●●●●●●●●●●●●●●●●●●●

●●

●

●●

●●●●●●●●●●●●●●●●●●●●

●●

●

●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●

●●

●●●●●●●●●●●●●●●●●

●●●

●

●●

●●●●●●●●●●●●●●●●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●

●●●●

●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●

●●●
●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●●

●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●

●●●
●●

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Genomic Position

K
C

S
co

re

(c) KCSmart profile from poor survival samples using a 24Mb
kernel

Figure 4.4: Output from KCSmart analysis of 30 poor survival tumour samples at
three different kernel widths. The KC score for every feature on the Mermaid aCGH
microarray is plotted on the Y axis against the features genomic location on the X axis.
The alternating light and blue colours represent chromosomes and the red and green lines
are the significance thresholds calculated by KC-smart. Peaks below the red line are
significantly recurrent copy number losses and peaks above the green line are significantly
recurrent copy number gains.

159

MALOVA 4.3.7 Recurrent region feature selection

4.3.7 Recurrent region feature selection

We applied our algorithm described in the recurrent region feature selection section

of the methods of this chapter for identifying the unique significantly recurrent

regions between the two survival classes using a variety of different cut off values

for the percentage difference in average KC score between classes in order to select

the best cut-off. The aim of this stage was to select the most discriminative regions

and at the same time reduce the number of features taken forward to the next stage

of analysis. The reduction in the number of features was required in order to make

the the next analysis step, which is computationally intensive, feasible using the

computing resources that were available to us.

A cut off level of 20% difference in the average KC score between classes

reduces the number of features by over half; however the total number of possible

combinations for 27 (134 million) was too high for analysis to be completed in

a reasonable amount of time. At a difference of 20% there is a possibility of still

including regions which are recurrent in both classes. Increasing the cut-off value to

a minimum difference between classes of 25% reduced the number of unique regions

further to 23 recurrent features. However, 23 features still generates more than

8 million possible combinations, which using our current hardware to assess the

accuracy of each combination would take over 8 days. With our vision of the aCGH

analysis pipeline being a system capable of quickly and easily re-analysing projects,

an analysis step that would take over a week to complete would be unacceptable.

The difference cut-off in average KC score between classes that produced the best

results in terms of reducing the number of features to a computationally manageable

amount while keeping a good set of discriminative regions for further analysis was

33% which provided 16 regions, generating a manageable 65,535 combinations for

160

MALOVA 4.3.7 Recurrent region feature selection

Table 4.2: KC-Smart features selected for classification

Region Chromosome Region Start (Mb) Region End (Mb) Region Size (Mb) Aberration

11 133 134 1 Loss

12 89 93.5 4.5 Loss

12 103.5 105 1.5 Loss

13 32 40 8 Loss

13 47 53 6 Loss

16 0.5 6 5.5 Gain

18 66.5 74.5 8 Loss

10 0.5 1 0.5 Gain

10 11 15 4 Gain

15 19 34 15 Loss

15 68.5 69.5 1 Loss

17 7.5 22.5 15 Loss

17 28 32.5 4.5 Loss

20 31 34.6 3.6 Gain

20 45 62 17 Gain

23 1 58.5 57.5 Loss

analysis.

The analysis of all 65,535 combinations in fact took just under 24 hours to

complete, splitting the analysis into 16 processes running in parallel (2 processes for

each core of a dual quad core processor). As detailed in the materials and method

section we applied this approach using a number of different input data sources, we

were able to achieve the highest accuracy scores using the unique breakpoint regions

and CGHcall data.

The highest leave one out cross validation accuracy across all 65,535 combinations

was 83.33%, achieved by 1 single combination of 7 features. The specificity or true

negative rate for this combination of features was 66.66% with a sensitivity or true

positive rate of 90% and a Matthews Correlation Coefficient (MCC) of 0.57. The

SVM classifier which achieved this performance, was created using CGHcall copy

161

MALOVA 4.3.8 SVM Classifier Validation

Table 4.3: Best performing combination of KC-Smart features

Region Chromosome Region Start (Mb) Region End (Mb) Region Size (Mb) Aberration

11 133 134 1 Loss

13 32 40 8 Loss

13 47 53 6 Loss

16 0.5 6 5.5 Gain

18 66.5 74.5 8 Loss

15 19 34 15 Loss

15 68.5 69.5 1 Loss

number calls of the unique segments as the variables in the recurrent regions.

The size and location of each of the 7 features is given in Table 4.3. The size

of the 7 regions varies from two regions of 1Mb up to the largest religion of 15Mb;

the size of the regions is not smaller than a single mega base, as this is limited by

the size of the smallest kernel (2Mb) used in the KC-smart recurrent region analysis

step. The 7 regions occur on just 5 chromosomes, with two regions on chromosomes

13 and 15 and single regions on chromosomes 11, 16 and 18. Table 4.3 also displays

the aberration type, from the combination of 7 regions only the single region on

chromosome 16 was a recurrent gain in copy number, with the remaining 6 regions

all recurrent copy number losses.

4.3.8 SVM Classifier Validation

The best performing classifier was validated using an independent set of 14 cases not

included in the training set. The SVM was trained using data from all 60 cases from

the training set, and then used to predict the survival status of the 14 test cases.

The SVM correctly classified 12 of 14 cases, providing a classification accuracy of

85.7%.

162

MALOVA 4.3.9 Most informative regions

Table 4.4: The significant recurrent regions ranked by number of contributions to
accurate (>=75%) SVM classifiers created using unique segments and CGHcall calls

Region Chromosome Region Start (Mb) Region End (Mb) Percentage of accurate

combinations (n=234) containing region

16 0.5 6 89

13 47 53 70

15 68.5 69.5 65

15 19 34 63

18 66.5 74.5 61

20 45 62 57

20 31 34.5 54

10 0.5 1 52

11 133 134 50

12 89 93.5 45

10 11 15 43

17 28 32.5 41

13 32 40 39

12 10.35 10.5 29

17 7.5 22.5 17

4.3.9 Most informative regions

A measure of how informative each of the 16 recurrent regions used in the

classification analysis was calculated by counting the number of times a region

was used in an accurately classifying SVM (leave one out cross validation accuracy

>=75 %). SVMs built using using the CGHcall call for every unique segment in the

regions generated 234 different accurate combinations, the percentage of accurate

combinations in which each of the 16 regions feature is listed in table 4.4. The table

shows that the 5.5Mb region on chromosome 16 is the most important region in this

analysis, as it contributes to 89% of accurate SVMs. In total 8 of the 16 regions

contribute to more than 50%.

SVMs built using using the average log2 ratio for every microarray feature in

163

MALOVA 4.3.9 Most informative regions

Table 4.5: The significant recurrent regions ranked by number of contributions to
accurate (>=75%) SVM classifiers created using BAC log2 ratios

Region Chromosome Region Start (Mb) Region End (Mb) Percentage of accurate

combinations (n=92) containing region

16 0.5 6 91

15 19 34 88

20 45 62 83

10 11 15 77

11 133 134 70

13 47 53 68

18 66.5 74.5 66

12 89 93.5 52

12 10.35 10.5 49

10 0.5 1 48

13 32 40 43

20 31 34.5 34

15 68.5 69.5 29

17 7.5 22.5 23

17 28 32.5 21

X 1 58.5 1

the regions generated 92 different accurate combinations, the percentage of accurate

combinations in which each of the 16 regions feature is listed in table 4.5. The table

shows that the same region on chromosome 16 that was ranked first in the previous

table, is also ranked first in this table because it is in 91% of the accurate SVMs.

Increasing the accuracy threshold for the SVMs to 80% for the analysis performed

using the CGHcall call for every unique segment reduces the number of combinations,

but it further confirms the previous results, as can be seen in table 4.6, as the region

on chromosome 16 remains the most influential.

164

MALOVA 4.3.10 Gene Analysis

Table 4.6: The significant recurrent regions ranked by number of contributions to
accurate (>=80%) SVM classifiers created using unique segments and CGHcall calls

Region Chromosome Region Start (Mb) Region End (Mb) Percentage of accurate

combinations (n=14) containing region

16 0.5 6 100

18 66.5 74.5 86

15 19 34 79

13 47 53 71

11 133 134 57

15 68.5 69.5 57

13 32 40 50

17 28 32.5 43

20 31 34.5 43

12 89 93.5 36

10 0.5 1 36

20 45 62 36

10 11 15 29

12 10.35 10.5 14

4.3.10 Gene Analysis

The most influential regions on SVM classification accuracy that were present in

>80% of accurate SVMs were selected for further analysis in order to illustrate the

utility of the previously described approach to identify interesting putative targets.

The CGPrio resource described in the methods section was applied to the 4 regions

in an attempt to reduce the number of possible targets genes in each region. Table

4.7 contains a summary of the CGprio results for each of the most informative

KC-smart regions.

The 5.5Mb region on chromosome 16 contained 223 genes, this number was

reduced to just 6 genes using a CGprio oncogene probability threshold of 0.9. The

set of 6 genes contained 3 genes previously associated with cancer(UBE2I, CREBBP

and TFAP4). The influential region on chromosome 15 contain the most genes at

165

MALOVA 4.3.11 Random forests

249, however this was reduced to just 2 genes with a CGprio tumour suppressor

probability greater than or equal to 0.9. The 2 genes were: UBE3A which has been

associated cervical cancer along with a number of other diseases and KLF13 which

has been associated with erythroleukemia. The region on chromosome 18 contained

the lowest number of genes at 28, with none of this smaller set of genes achieving

a CGprio tumour suppressor probability greater than or equal to the threshold 0.9.

The 17Mb region on chromosome 20 contained 211 genes, this was reduced to a more

manageable 14 genes using a CGprio oncogene probability threshold of greater than

or equal to 0.9. The 14 genes include 4 genes that have previously been associated

with cancer (ZMYND8, TNFRSF6B, GNAS and TAF4) and 2 specifically with

ovarian cancer (NCOA3, PTK6).

4.3.11 Random forests

Random forest classifiers were constructed as described in the methods section using

the 16 regions identified in the recurrent region feature selection process on the data

from the 60 samples that passed QC. The accuracy results of the random forests

were disappointing, out of 1000 forests generated none produced an accuracy >50%.

Based on these results and the performance of the SVM classifiers we decided to

use SVMs in the large feature combination analysis to identify the most important

regions for classification success. Our conclusion is supported by work comparing

of random forests and support vector machines on microarray expression data in

diagnostic and prognostic classification, which found that SVMs offer classification

performance advantages compared to random forests (Statnikov et al., 2008).

166

MALOVA 4.3.11 Random forests

Table 4.7: Genes contained in the most influential classification regions

Chromosome Region Region Total Gene CGprio

start (Mb) end (Mb) genes name probability

16 0.5 6 223

UBE2I 0.9974

TRAF7 0.9799

CASKIN1 1.0

SRRM2 0.9714

CREBBP 1.0

TFAP4 0.9966

18 66.5 74.5 28

15 19 34 249

UBE3A 0.9013

KLF13 0.9748

20 45 62 17

ZMYND8 0.9993

NCOA3 1

MOCS3 0.983

CEBPB 0.999

PTPN1 0.983

CBLN4 991

TNFRSF6B 0.999

SRMS 0.973

PTK6 0.994

RAB22A 0.992

VAPB 0.974

NPEPL1 0.963

GNAS 0.999

TAF4 0.999

167

MALOVA 4.4. CONCLUSIONS

4.4 Conclusions

The work presented in this chapter has resulted in the identification of four very well

supported genomic regions that appear to influence classification of patient survival

through changes in copy number. These regions contain a number of interesting

putative gene targets, a number are predicted to be associated with cancer and a

number of those genes have actually been associated with cancer, adding weight to

the case for these regions being important in ovarian cancer progression.

This work also demonstrated that the somatic genetic profile of an ovarian

tumour measured by aCGH is a strong determinant of prognosis. Therefore

confirming a genuine biological link between the copy number profile of a tumour

and the survival period of the patient.

The approach applied here, using a recurrent region identification method to

identify the best features to take forward for machine learning approaches; to then

use the contribution made by each of the identified features in the machine learning

process to pull out the most important regions for the biological phenomenon

under study has worked extremely well. This has proved to be successful strategy

for identifying putative targets for further investigation in the search for better

understanding and therapeutic solutions for ovarian cancer.

Additionally, it can be concluded from the success of this project that the

bioinformatics tools developed earlier in the project and described in the previous

chapters successfully supported the informatics requirements of this project.

168

CHAPTER 5

Discussion

In this chapter I will discuss the results of the work presented in chapters 2, 3 and

4 of this thesis. I will also discuss where this work fits into the two research areas of

bioinformatics and ovarian cancer research which it covers, and what contribution

the thesis makes to work in both these fields of scientific research.

The aims of this project were to develop bioinformatics tools to support

the management and analysis of high throughput data arising from microarray

CGH experiments. These tools would then be used to investigate the genetic

basis of patient survival in a study of ovarian tumour samples. Throughout the

project, modern software development techniques were implemented at all stages of

development, which in addition to the expected benefits of applying such practices

would also help to demonstrate the suitability of such approaches to the field of

bioinformatics.

At the end of this project all of the initial aims were successfully achieved; The

first aim of creating bioinformatics tools for management and analysis tools for high

throughput microarray CGH project was met primarily through the tools developed

169

Discussion

and described in chapters 2 and 3.

The extension in functionality of the ArrayPipeline LIMS, which was the initial

focus of work for the project, has proven to be an ideal solution for the management

of high throughput microarray CGH data. Evidence for the success of the LIMS

comes from the fact that the software is still currently in use in the laboratory and

now contains data from more than 500 experiments. The success of these extensions

to the LIMS functionality can be attributed to the software development techniques

used. First, agile approaches towards responding to customer requirements were

fundamental in ensuring the correct functionality was implemented as and when

required. Since the entire aCGH project was still in development, this meant new

features were requested and new builds released on a regular basis. Due to the

schedule of regular incremental releases, the code base had to be flexible, so the use

of version control was essential, documentation had to be of a high standard and

constantly up to date. This process resulted in a LIMS which allowed users easily

to record and track every step in the complex process of performing and analysing

a microarray CGH experiment, as well as allowing users further to manage such

experiments in the context of larger projects. In extending the ArrayPipeLine LIMS

we also developed an easy to use object oriented programming toolkit that made

creating new features and user interfaces very quick and simple.

The ArrayPipeLine LIMS was a successful solution also because all the data

recorded in the ArrayPipeLine LIMS are stored in ways which ensure a high level of

accuracy in the data. The methods used to verify data accuracy centred around the

numerous quality control checks which were built into the LIMS, such as source code

software tests and the use of a carefully structured relational database. The extensive

use of relational database functionality, such as transaction safe tables, strict type

checking and foreign key constraints are important for ensuring data integrity. For

170

Discussion

instance, the use of transactions during the raw data processing process means that

if any operation in this pipeline is not successfully completed, the database is able

to ‘roll back’ to its previous state; and foreign key constraints are used extensively

to enforce important relationships between data in the ArrayPipeLine database.

The third aim and central theme of this project was to illustrate how the use

of formalised software development practices including agile techniques and other

development best practices are suitable for bioinformatics projects, and that these

approaches produce more successful results. I have demonstrated across the three

results chapters the way in which modern software development techniques including

agile were applied successfully in each task of the project. The success of each sub-

project serves as clear proof that agile practices are highly suitable for bioinformatics

applications, and that the software they produce is more fault tolerant, easier to

maintain and overall more successful than software created without the use of formal

development practices.

The suite of perl modules that allowed the simple and rapid generation of analysis

pipelines which are described in chapter 3 satisfied the second part of the initial

aim of the project, to develop tools for the analysis of high throughput data from

microarray CGH data experiments. The analysis pipeline modules successfully

harnessed two very powerful programming languages, Perl and R, together with

analysis methods from the Bioconductor project, to create a framework for creating

bespoke analysis pipelines. The analysis pipeline modules interact with the

ArrayPipeLine LIMS for seamless data extraction and storage. The modules make

it easy for users to track exactly what analysis a dataset has undergone, including all

the parameters used, as every analysis step is recorded in the ArrayPipeLine LIMS

database. Together, these features make the system extremely flexible and greatly

simplify the re-analysis of entire data sets, while ensuring reproducibility and data

171

Discussion

integrity.

The scalability of the management and analysis tools developed was identified

as an important additional consideration, owing to the fact that the laboratory

was aiming to profile a large number of samples using microarray CGH technology.

Both the ArrayPipeLine LIMS and the analysis pipeline modules meet the required

scalability demands through the use of development solutions whose scalability is

well proven. The ArrayPipeLine LIMS uses object oriented Perl for the application

logic, the Apache websever to serve the web based user interface and a MySQL

relational database for the backend storage. Perl, MySQL and the Apache web

server are all well proven development tools that have been shown to be highly

scalable through their use in many much larger projects. The analysis pipeline

modules are highly flexible, making the incorporation of new analysis methods for

larger datasets straightforward, and finally the use of object oriented programming

techniques means it is very easy to expand the features of the modules.

The second aim of the project was to apply the bioinformatics tools developed

for management and analysis of microarray CGH projects to some real data to

demonstrate the ability of the system to cope with the demands of large number of

cCGH experiments. The system was successfully applied to aCGH experiments

carried out on just under one hundred ovarian cancer samples as part of an

investigation attempting to identify recurrent copy number alteration of consequence

associated with patient survival. The bioinformatics framework allowed the analysis

of this project to be completed quickly and easily, with the extensive quality control

measures available ensuring the quality of the data being analysed, thus providing

greater confidence in the findings made.

172

Discussion 5.1. EXTENSION OF THE ARRAYPIPELINE LIMS

5.1 Extension of the ArrayPipeLine LIMS

The work to extend the ArrayPipeLine LIMS resulted in a very successful solution,

to the user demands that were made to support the laboratories aCGH experiment

workflow. One very important choice of large impact made very early in the project

was the decision to proceed with the development of our own bespoke LIMS. This

decision obviously resulted in a good deal of time at the beginning of the project

being spent on LIMS development. A valid question on this decision could be why

time was spent on the development of a solution that already existed in commercial

or freely available LIMS solutions? In order to answer this question it is necessary to

define what was required in a LIMS solution for the laboratory which are described

in detail in section 1.3.5 of the introduction. Briefly the essential features in a

LIMS required by our laboratory were: support for the manufacture of aCGH

microarrays; an analysis solution that provided flexibility to respond to new methods

and approaches quickly; an API to enable higher level programming tasks against

the data for higher level analysis; and support for the aCGH technology.

We assessed the available LIMS solutions at the beginning of the project, but

no single application was available that was able to meet all our requirements. The

solution which came closest to meeting these requirements was the analysis platform

BASE previously mentioned in the introduction (Saal et al., 2002). The BASE

platform was a successful application for gene expression microarray data, however

at the time this thesis began, it did not support either aCGH specific analysis, or

crucially the microarray manufacturing process.

The ArrayPipeLine LIMS contribution to the aCGH community includes its use

by a commercial company (Cambridge BlueGnome) for tracking their own aCGH

manufacturing processes, and further contribution, beyond the aCGH community,

173

Discussion 5.2. ANALYSIS PIPELINE

was made possible with the release of the core modules of the LIMS API on

CPAN (Jones, 2008). This ‘toolbox’ of Perl source code created as a result of the

work carried out extending the ArrayPipeLine LIMS, allows developers with basic

knowledge of the Perl programming language to quickly and easily create their own

LIMS applications (Morris et al., 2008a).

The work carried out to develop the ArrayPipeLine LIMS also serves as an

excellent example of how the informatics of high throughput projects should be

organised. As it is essential to have a fully featured LIMS solution to manage the

informatics demands that high throughput science brings, the ArrayPipeLine LIMS

provides us with traceability, reproducibility and a high level of confidence in the

results generated in the laboratory. With this in mind, the LIMS API has since

been used rapidly to implement another LIMS in our Department, managing high-

throughput SNP genotyping using the Fluidigm system (personal communication).

5.2 Analysis pipeline

The analysis pipeline modules are a flexible, robust and highly traceable system for

pre-processing aCGH data. The pipeline modules do however have some limitations.

In this section I will discuss these limitations and also discuss some of the design

decisions that were taken in the process of their development.

The analysis pipeline suite of modules does not include modules for all the

available aCGH analysis methods in the Bioconductor project, but instead only

specific methods were selected and implemented, based on their suitability with the

data being generated in the laboratory and the published assessments of the best

performing methods for certain analysis steps.

The authors of the MANOR package reported that the most common source

174

Discussion 5.2. ANALYSIS PIPELINE

of bias in the aCGH experiments they witnessed were spacial artefacts, and

the MANOR algorithm was designed to identify and either remove or normalise

such artefacts. The MANOR package was also the only available aCGH specific

normalisation package available at the time the analysis pipeline modules were

developed, with the vast majority of normalisation methods designed specifically

for expression arrays.

We felt if was necessary to apply a normalisation method specific to aCGH,

because aCGH data has important differences compared with gene expression

microarray data. The most obvious difference between the two technologies is

the dynamic rage of the data, with aCGH aiming to capture single copy number

increases or decreases in segments of DNA whereas gene expression experiments aim

to capture enrichment in gene expression which can be thousands of times higher

than the reference. However, it was clear that signal bias was also a common issue

with our aCGH experiments, so we also implemented an analysis pipeline module

for signal correction using the loess package in Bioconductor.

The choice of which segmentation method to implement in the analysis pipeline

suite required assessment of the available methods. This analytical challenge has

been the most researched in aCGH informatics: there are a number of different

methods available to perform segmentation of aCGH data. We considered the results

of two published reviews which assessed the performance of a number of methods.

Both reviews identified DNAcopy as a method which performed very well, having the

best operational characteristics in terms of its sensitivity and FDR for breakpoint

detection (Willenbrock and Fridlyand, 2005). The CGHcall method for assigning

segments a discrete copy number status was chosen for inclusion in the analysis

pipeline because it was the only method at the time capable of performing such an

analysis that also provided probability scores for each status and was also compatible

175

Discussion 5.2. ANALYSIS PIPELINE

with the output format from the DNAcopy segmentation method.

The analysis pipeline modules implement methods (MANOR, loess, DNAcopy,

CGHcall) that process the raw intensity signals from an aCGH experiment into

discretized copy number values. It has however been suggested in some papers that

by processing the raw experimental signal in such a way, interesting biological signals

are lost and the best solution is in fact to use the raw intensity data for identification

of recurrent regions from multiple samples. Discretization approaches, because they

employ a cut-off to assign a copy number status based on, for example, probability

values, will always result in situations where a genuinely aberrant segment of DNA

is called as normal because it is just under the threshold; or a normal segment of

DNA is called as aberrant due to being just over the given threshold.

While the above might be true of high quality data, the data from FFPE is

generally noisy and of highly variable quality. As a result, we considered pre-

processing necessary in order to standardise the quality between experiments.

However our downstream analysis was not concerned with detecting the smallest

changes, or as many changes as possible, but rather at establishing common profiles

that might be specific to histopathological and clinical features of the disease. For

this reason, the analysis method implemented in the KCsmart package which uses

raw data was chosen for downstream analysis. Processing of the data still remains

vitally important for visualisation.

Work further to extend the functionality and usability of the suite of analysis

pipeline modules would include implementation of new analysis methods published

since the end of this thesis. New methods could be added to the analysis pipeline

suite of modules very easily and entire data sets re-analysed with little effort, if

required.

To make the analysis pipeline suite of modules available to others would require

176

Discussion 5.3. MALOVA

some further development to make the modules less dependant on the ArrayPipeLine

LIMS database. A more generic system could use any simple analysis script, not

necessarily just R scripts or shell scripts, to launch other software solutions. A

generic set of modules could then be added to CPAN for wider use beyond just

aCGH. This work could be carried out in combination with work on the underlying

code base to utilise use of new technologies which make object oriented development

even easier, such as using the Perl object system Moose (Infinity Interactive, 2011)

for creating and maintaing Perl objects.

An analysis pipeline created using the analysis pipeline modules currently runs

as a single process and does not make use of modern multicore processors or compute

farms. However it would be trivial to implement a system to dispatch individual

tasks in a pipeline as jobs to a compute farm, or on a cloud based service.

5.3 MALOVA

The analysis of the 94 stage III/IV ovarian tumour samples described in chapter 4

of this thesis yielded a number of interesting results. These profiles confirmed our

expectations that these advanced stage tumours would contain many chromosomal

aberrations, with nearly all chromosomes containing at least one significant recurrent

region of gain or loss.

The analysis of these data also identified 16 significantly recurrent regions which

showed different representation between good and poor survival patients. Four

of these recurrent regions were independently identified in a study which looked

for associations between copy number aberration and chemotherapy resistance in

a similar data set to mine (Etemadmoghadam et al., 2009). Etemadmoghadam

et al. identified recurrent copy number aberration from 118 late stage serous

177

Discussion 5.3. MALOVA

Table 5.1: Regions of overlap with Etemadmoghadam et al

Aberration Chromosome Region(Mb) Region Etemadmoghadam Etemadmoghadam

Size (Mb) Region (Mb) Region Size (Mb)

Gain 20 45-62 17 55.64-56.45 0.8

Loss 12 89-93.5 4.5 86.72-86.75 0.03

Loss 13 47-53 6 47-52.88 5.9

Loss 18 66.5-74.5 8 61.9-64.08 2.2

ovarian tumours using high-resolution oligonucleotide microarrays. They found that

amplification of 19q12, containing cyclin E (CCNE1), and 20q11.22-q13.12, mapping

immediately adjacent to the steroid receptor coactivator NCOA3, was significantly

associated with poor response to primary treatment (Etemadmoghadam et al., 2009).

While my analysis did not identify the 19q12 region, it did confirm the region of

gain on 20q, identifying a slightly larger and completely overlapping region to the

one described by Etemadmoghadam et al. The three other regions of similarity

between our two studies are regions of loss on chromosome 12, chromosome 13 and

chromosome 18 (see Table 5.1).

I was then able to construct an SVM classifier that used aCGH data from the

16 recurrent regions identified, to predict the survival status of a patient with an

accuracy of 83.3%. This classifier was then validated with an accuracy of 85.7%,

using independent data to confirm there were no problems associated with over-

fitting. However, the approach used to identify the most accurate SVM classifier

involved testing every possible combination of the 16 recurrent regions, and hence

introduces the significant issue of multiple testing; by testing over 60,000 SVM

classifiers, we would expect a number to provide accurate classifications by chance.

While this problem is alleviated to some extent by validation of the classifier with

independent data, I decided also to consider the contributions each of the regions

178

Discussion 5.4. BIOINFORMATICS SOFTWARE DEVELOPMENT PRACTICES

made to the most accurate classifiers. Ranking the recurrent regions used in the SVM

analysis by how often they contribute to accurate classification helps to overcome

the issues of multiple testing and over-fitting, since it does not test individual results.

The ability to classify patient survival based on a DNA copy number profile has

some clinical utility. However, a more important outcome of this analysis is that the

regions identified as being associated with survival would clearly represent potential

therapeutic targets. This is supported by the identification of a number of genes

that have already been associated with cancer from the four most influential regions

for SVM classifier accuracy.

A clear limitation of this work is the small sample size of just under one hundred

cases. This will have directly impacted on the sensitivity of detecting regions of

gain/loss and better refining their boundaries, as well as the ability accurately to

train/test a SVM. Following the completion of this thesis, work has continued in

the laboratory and much of the analysis work I have presented has been repeated

with larger sample sets. Interestingly, this has resulted in the identification of the

CCNE1 locus on chromosome 19 as one of the most influential regions for survival

classification, confirming the earlier findings of Etemadmoghadam et al (manuscript

in preparation). In addition, the data published by Etemadmoghadam et al will be

used to validate the results of the most recent work, providing greater confidence in

the results generated.

5.4 Bioinformatics software development practices

The issue of software development practices in bioinformatics remains very

important and will become more important with second and third generation

sequencing technologies. While this issue has been neglected in the past, it is now

179

Discussion 5.4. BIOINFORMATICS SOFTWARE DEVELOPMENT PRACTICES

receiving attention from many researchers, there are also a number of exemplary

bioinformatics projects demonstrating the power of using software development best

practices for bioinformatics.

However practices only deliver their full value when they are shared among

all practitioners, and unfortunately for the field of bioinformatics this is not

the case. Even the most basic techniques are not routinely used even in a

leading bioinformatics research institute. For instance, in a small survey of forty

computationally based researchers in Human Genetics at the Wellcome Trust Sanger

Institute, less than a quarter use a version control system. The personal experiences

of several colleagues suggests that other practices such as software testing and inline

documentation are similarly poorly applied across the field. The lack of clear

standards in bioinformatics software development will inevitably result in poorly

functioning software and results that are difficult to reproduce and potentially

incorrect.

One possible mechanism for wider adoption of basic software best practices would

be through the use of source code reviews in the publication process. A recent letter

in the journal Nature suggests that all the programming code associated with a

published papers should also be published (Barnes, 2010). This approach would

both encourage scientists to write better quality code and allow a greater level of

peer review of source code, which is currently lacking in the scientific publication

process.

If researchers working in the field of bioinformatics were to adopt more

rigorous software development practices, then far more bioinformatics projects would

generate high quality software that meets user’s requirements and produce accurate,

reproducible results. In addition, early career training in such practices would yield

huge gains in productivity from developers, benefitting both individual projects and

180

Discussion 5.4. BIOINFORMATICS SOFTWARE DEVELOPMENT PRACTICES

the entire bioinformatics community.

In summary, the most basic best practices that every bioinformatics project

should attain are as follows;

• Testing to ensure accurate results

• Thorough documentation for reproducibility

• Version control of source code

• Re-use source code were suitable solutions are available, or develop software in

a manor to encourage the generation of reusable code such as object oriented

programming

• Customer interaction to ensure the delivery of suitable software, where

appropriate

When using version control systems to manage the source code for a project

it is important to make use of more advanced features such as version tagging or

labelling. Labelling is a feature of most VCSs, it allows developers to associate

a symbolic tag to a particular set of revisions, such as a significant release of

software. This is a very useful technique because the revision numbers used by

VCSs do not record information on the software release version. I encountered a

great deal of difficulty during the writing of this thesis in attempting to use early

versions of theArrayPipeLine LIMS. This task was made challenging because the

revision numbers of individual files do not relate to significant steps in the projects

development. Therefore to be able to run an older revision of the software needed

knowledge of all the required revision numbers of all the dependant files, as the

number of files that each part of the ArrayPipeLine LIMS depends on is very large

this was an extremely difficult task. However, running an older revision of software

181

Discussion 5.5. FUTURE PROSPECTS

would be relatively trivial had revision tags been used in the development process,

thus allowing us to recreate the software at each release step.

Many of the agile approaches such as the planning game, pair programming

and an on-site customer from extreme programming and the 30 day sprint and

daily meetings from srum are unlikely to be of real benefit in an academic software

development setting. Agile also assumes that a development task can not be

understood and fully designed and planned for up front which is many cases is wrong.

Using an agile approach in such a situation could delay the delivery of a solution due

to the necessity to regularly discuss requirements with customers. Agile approaches

also do not help in the very common situation where a major decision needs to be

made at the beginning of a project, such a wether to use an existing solution or build

a new one. However overall it is clear that a number of the best practices promoted

by the agile movement are perfectly suited to the field of bioinformatics.

5.5 Future prospects

A clear priority for the future prospects of this work is the continued identification

of new ovarian cancer genes. New targets for potential therapeutic targets and

prognostic markers are still required. The process of identifying these new genes

however is quickly moving to away from aCGH and towards sequencing of entire

cancer genomes using next generation sequencing technologies (The International

Cancer Genome Consortium, 2010). Identifying copy number aberrations from

sequence data will require new processing techniques as this technology produces

counts of reads as an output and not intensity values. Dimension reduction may also

be necessary to relieve the computational burden for downstream analysis (van de

Wiel et al., 2011).

182

Discussion 5.5. FUTURE PROSPECTS

One clear advantage and exciting opportunity of moving away from aCGH to

sequencing based investigations, will be the ability to detect the genomic alterations

that are not detected by aCGH. Alterations such as mutations, SNPs, unbalanced

translocations and inversions have been neglected using aCGH, but will now be fully

studied in the hope of detecting novel causative variants for cancer.

An interesting future prospect of bioinformatics development is also closely tied

to the rise of low cost genomic sequencing. Second and third generation sequencing

technologies will provide some of the largest bioinformatics challenges in the near

future. This is because that the rate of sequence production, and therefore, the

requirements for data storage and processing power is outstripping Moore’s law

for microprocessors, which states that computational power will double every 18

months. This means that in small and medium laboratories it is becoming very

hard to purchase and maintain the levels of computational power necessary to work

with large volumes of sequencing data.

One possible answer to this problem, that is gathering strength, is the use

of cloud computing. Cloud computing services like those provided by Amazon’s

Elastic Compute Cloud (EC2) service provide scalable computing services on remote

computing clusters allowing users to pay only for the resources they need. This

makes it possible for a small laboratory to gain access to a large compute cluster,

for a short period of time, without the costly expense of creating and maintaining

their own physical cluster.

Cloud technologies will also make packaging and distributing software and

pipelines for use by other groups far easier as in the past this has been challenging

due to software dependencies and site-specific configuration options. In a cloud

computing environment these pipelines can be packaged into virtual machine images

and stored in a way that lets anyone copy them, run them and customise them

183

Discussion 5.6. CONCLUDING REMARKS

for their own needs, thus avoiding the software installation and configuration

complexities. A virtual machine is a piece of software running on the host computer

that emulates the properties of a computer (Stein, 2010).

5.6 Concluding remarks

This thesis makes contributions to both the fields of bioinformatics and ovarian

cancer research. To the field of bioinformatics, this thesis adds a number of high

quality tools for the management and analysis of high throughput data. This

statement is upheld through the availability of a number of Perl modules on CPAN

and the fact that the ArrayPipeLine LIMS and analysis pipeline code is still being

successfully used in the laboratory today. Also for the field of bioinformatics, I

was able to argue and demonstrate the importance and value of using formalised

software development practices in bioinformatics project development. Finally in

the field of ovarian cancer research, using the bioinformatics tools described in this

thesis, I was able to show that the aCGH profile of an ovarian tumour can be used

to identify important genomic regions which contribute to patient survival. This

work will hopefully lead to further identification and characterisation of novel genes

that affect the development of ovarian cancer and hopefully yield possible clinical

applications against a disease that has not seen any significant increase in survival

rates over the past 50 years.

In considering the different approaches that could have been taken to complete

this project, it is very easy to identify a number of different applications for Perl

development that are now becoming widely adopted in production level projects.

Web development frameworks like Catalyst (Catalyst Foundation, 2012), Mojo

(Riedel, 2012), CGI::Application (Erlbaum, 2012) and Jifty (Vincent et al., 2012)

184

Discussion 5.6. CONCLUDING REMARKS

which automate a great deal of the repetitive tasks of website development would

have made development of the LIMS easier. The DBIx::Class (Trout, 2012) object

relational mapper for Perl makes working with data in databases much easier,

making it an ideal tool for the LIMS API. The MOOSE object system (Infinity

Interactive, 2011) for Perl which is currently becoming popular would have made

the development of the array pipeline modules an even easier task.

The central theme to this thesis, which was the importance of formalised software

development practices for bioinformatics application development, was independent

of the technology chosen to develop the resulting tools. Therefore the choice

of programming languages and other software solutions while important was not

critical, as it was the development practices (testing, customer interaction) used

that had the largest impact on the quality of software produced.

185

Bibliography

Amaratunga, D., Cabrera, J., and Lee, Y.-S. (2008). Enriched random forests.

Bioinformatics , 24(18), 2010–2014.

Ambler, S. W. (2010). Introduction to data normalization: A database ”best”

practice. http://www.agiledata.org/essays/dataNormalization.html.

Bain, S. L. (2008). Emergent Design: The Evolutionary Nature of Professional

Software Development . Addison-Wesley Professional, 1 edition.

Barnes, N. (2010). Publish your computer code: it is good enough. Nature,

467(7317), 753.

Bast, R. C., Hennessy, B., and Mills, G. B. (2009). The biology of ovarian cancer:

new opportunities for translation. Nature reviews. Cancer , 9(6), 415–428.

Baxter, S. M., Day, S. W., Fetrow, J. S., and Reisinger, S. J. (2006). Scientific

software development is not an oxymoron. PLoS Comput Biol , 2(9), e87+.

Beck, K. (1999). Embracing change with extreme programming. Computer , 32(10),

70–77.

Benedet, J. L., Bender, H., Jones, H., Ngan, H. Y., and Pecorelli, S. (2000).

FIGO staging classifications and clinical practice guidelines in the management of

186

BIBLIOGRAPHY BIBLIOGRAPHY

gynecologic cancers. FIGO Committee on Gynecologic Oncology. International

journal of gynaecology and obstetrics: the official organ of the International

Federation of Gynaecology and Obstetrics , 70(2), 209–262.

Bentley, D. R., Deloukas, P., Dunham, A., French, L., Gregory, S. G., Humphray,

S. J., Mungall, A. J., Ross, M. T., Carter, N. P., Dunham, I., Scott, C. E.,

Ashcroft, K. J., Atkinson, A. L., Aubin, K., Beare, D. M., Bethel, G., Brady, N.,

Brook, J. C., Burford, D. C., Burrill, W. D., Burrows, C., Butler, A. P., Carder,

C., Catanese, J. J., Clee, C. M., Clegg, S. M., Cobley, V., Coffey, A. J., Cole,

C. G., Collins, J. E., Conquer, J. S., Cooper, R. A., Culley, K. M., Dawson, E.,

Dearden, F. L., Durbin, R. M., de Jong, P. J., Dhami, P. D., Earthrowl, M. E.,

Edwards, C. A., Evans, R. S., Gillson, C. J., Ghori, J., Green, L., Gwilliam,

R., Halls, K. S., Hammond, S., Harper, G. L., Heathcott, R. W., Holden, J. L.,

Holloway, E., Hopkins, B. L., Howard, P. J., Howell, G. R., Huckle, E. J., Hughes,

J., Hunt, P. J., Hunt, S. E., Izmajlowicz, M., Jones, C. A., Joseph, S. S., Laird, G.,

Langford, C. F., Lehvaslaiho, M. H., Leversha, M. A., McCann, O. T., McDonald,

L. M., McDowall, J., Maslen, G. L., Mistry, D., Moschonas, N. K., Neocleous, V.,

Pearson, D. M., Phillips, K. J., Porter, K. M., Prathalingam, S. R., Ramsey,

Y. H., Ranby, S. A., Rice, C. M., Rogers, J., Rogers, L. J., Sarafidou, T., Scott,

D. J., Sharp, G. J., Shaw-Smith, C. J., Smink, L. J., Soderlund, C., Sotheran,

E. C., Steingruber, H. E., Sulston, J. E., Taylor, A., Taylor, R. G., Thorpe, A. A.,

Tinsley, E., Warry, G. L., Whittaker, A., Whittaker, P., Williams, S. H., Wilmer,

T. E., Wooster, R., and Wright, C. L. (2001). The physical maps for sequencing

human chromosomes 1, 6, 9, 10, 13, 20 and X. Nature, 409(6822), 942–943.

biojava.org (2012). Biojava. http://biojava.org/.

bioperl.org (2011). Bioperl. http://www.bioperl.org/.

biopython.org (2012). Biopython. http://biopython.org/.

Brazma, A., Parkinson, H., Sarkans, U., Shojatalab, M., Vilo, J., Abeygunawardena,

N., Holloway, E., Kapushesky, M., Kemmeren, P., Lara, G. G. G., Oezcimen, A.,

Rocca-Serra, P., and Sansone, S.-A. A. (2003). Arrayexpress–a public repository

187

BIBLIOGRAPHY BIBLIOGRAPHY

for microarray gene expression data at the ebi. Nucleic acids research, 31(1),

68–71.

Breiman, L. (2001). Random forests. Machine Learning , 45, 5–32.

10.1023/A:1010933404324.

Breiman, L., Cutler, A., Liaw, A., and Wiener, M. (2012). randomforest: Breiman

and Cutler’s random forests for classification and regression. http://cran.r-

project.org/web/packages/randomForest/index.html.

Bunce, T. (2012). Dbi.pm. http://search.cpan.org/ timb/DBI-1.622/DBI.pm.

Canonical (2012). Storm. https://storm.canonical.com/.

Carter, N. P. (2007). Methods and strategies for analyzing copy number variation

using DNA microarrays. Nature Genetics , 39(7 Suppl), S16–S21.

Carvalho, B., Ouwerkerk, E., Meijer, G. A., and Ylstra, B. (2004). High

resolution microarray comparative genomic hybridisation analysis using spotted

oligonucleotides. Journal of clinical pathology , 57(6), 644–646.

Catalyst Foundation (2012). Catalyst web framework: Perl mvc framework.

http://www.catalystframework.org/.

Chacon, S. (2012). Git. http://git-scm.com/.

Chin, K., DeVries, S., Fridlyand, J., Spellman, P. T., Roydasgupta, R., Kuo, W.-

L., Lapuk, A., Neve, R. M., Qian, Z., and Ryder, T. (2006). Genomic and

transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell ,

10(6), 529–541.

Christersson, J. V., Nordborg, N., Svensson, M., and Hakkinen, J. (2009). Base

- 2nd generation software for microarray data management and analysis. BMC

Bioinformatics , 10(1), 330+.

Cockburn, A. (2004). Crystal Clear: A Human-Powered Methodology for Small

Teams . Addison-Wesley Professional, 1 edition.

188

BIBLIOGRAPHY BIBLIOGRAPHY

Codd, E. F. (1970). A relational model of data for large shared data banks. Commun.

ACM , 13(6), 377–387.

Codd, E. F. (1971a). Further normalization of the data base relational model.

Technical Report RJ909, IBM.

Codd, E. F. (1971b). Normalized data base structure: a brief tutorial. In Proceedings

of the 1971 ACM SIGFIDET (now SIGMOD) Workshop on Data Description,

Access and Control , SIGFIDET ’71, pages 1–17, New York, NY, USA. ACM.

Conrad, D. F., Pinto, D., Redon, R., Feuk, L., Gokcumen, O., Zhang, Y., Aerts, J.,

Andrews, T. D., Barnes, C., Campbell, P., Fitzgerald, T., Hu, M., Ihm, C. H.,

Kristiansson, K., MacArthur, D. G., MacDonald, J. R., Onyiah, I., Pang, A. W.,

Robson, S., Stirrups, K., Valsesia, A., Walter, K., Wei, J., Tyler-Smith, C., Carter,

N. P., Lee, C., Scherer, S. W., and Hurles, M. E. (2009). Origins and functional

impact of copy number variation in the human genome. Nature, 464(7289), 704–

712.

Consortium, B. A. C. R., Cheung, V. G., Nowak, N., Jang, W., Kirsch, I. R., Zhao,

S., Chen, X. N., Furey, T. S., Kim, U. J., Kuo, W. L., Olivier, M., Conroy, J.,

Kasprzyk, A., Massa, H., Yonescu, R., Sait, S., Thoreen, C., Snijders, A., Lemyre,

E., Bailey, J. A., Bruzel, A., Burrill, W. D., Clegg, S. M., Collins, S., Dhami, P.,

Friedman, C., Han, C. S., Herrick, S., Lee, J., Ligon, A. H., Lowry, S., Morley, M.,

Narasimhan, S., Osoegawa, K., Peng, Z., Plajzer-Frick, I., Quade, B. J., Scott,

D., Sirotkin, K., Thorpe, A. A., Gray, J. W., Hudson, J., Pinkel, D., Ried, T.,

Rowen, L., Shen-Ong, G. L., Strausberg, R. L., Birney, E., Callen, D. F., Cheng,

J. F., Cox, D. R., Doggett, N. A., Carter, N. P., Eichler, E. E., Haussler, D.,

Korenberg, J. R., Morton, C. C., Albertson, D., Schuler, G., de Jong, P. J., and

Trask, B. J. (2001). Integration of cytogenetic landmarks into the draft sequence

of the human genome. Nature, 409(6822), 953–958.

Consortium, D. (2012). DSDM consortium. http://www.dsdm.org/.

Conway, D. (2000). Object Oriented Perl: A Comprehensive Guide to Concepts and

Programming Techniques . Manning Publications.

189

BIBLIOGRAPHY BIBLIOGRAPHY

cplusplus.com (2012). C++ language. http://www.cplusplus.com/.

cran.r project.org (2012). Comprehensive R Archive Network. http://cran.r-

project.org/.

cran.r project.org (2012). gtools: Various R programming tools. http://cran.r-

project.org/web/packages/gtools/index.html.

Cunningham, W. (2001). The Agile Manifesto. http://agilemanifesto.org/.

Dafou, D., Ramus, S. J., Choi, K., Grun, B., Trott, D. A., Newbold, R. F., Jacobs,

I. J., Jones, C., and Gayther, S. A. (2009). Chromosomes 6 and 18 induce

neoplastic suppression in epithelial ovarian cancer cells. Int. J. Cancer , 124(5),

1037–1044.

Dasarathy, B. V., editor (1990). Nearest Neighbor: Pattern Classification Techniques

(Nn Norms : Nn Pattern Classification Techniques). Ieee Computer Society.

Diskin, S. J., Eck, T., Greshock, J., Mosse, Y. P., Naylor, T., Stoeckert, C. J.,

Weber, B. L., Maris, J. M., and Grant, G. R. (2006). Stac: A method for

testing the significance of DNA copy number aberrations across multiple array-

CGH experiments. Genome Research, 16(9), 1149–1158.

DuBois, P. (2008). MySQL (4th Edition). Addison-Wesley Professional, 4 edition.

Duda, R. O. and Hart, P. E. (1973). Pattern Classification and Scene Analysis .

John Wiley & Sons, first edition.

Dudley, J. T. and Butte, A. J. (2009). A quick guide for developing effective

bioinformatics programming skills. PLoS Comput Biol , 5(12), e1000589+.

Eilers, P. H. C. and de Menezes, R. X. (2005). Quantile smoothing of array CGH

data. Bioinformatics , 21(7), 1146–1153.

ensembl.org (2012). Ensembl perl api documentation.

http://www.ensembl.org/info/docs/api/index.html.

190

BIBLIOGRAPHY BIBLIOGRAPHY

Erlbaum, J. (2012). Cgi::application. http://cgi-app.org/.

Etemadmoghadam, D., deFazio, A., Beroukhim, R., Mermel, C., George, J., Getz,

G., Tothill, R., Okamoto, A., Raeder, M. B., Group, A. S., Harnett, P., Lade, S.,

Akslen, L. A., Tinker, A. V., Locandro, B., Alsop, K., Chiew, Y.-E., Traficante,

N., Fereday, S., Johnson, D., Fox, S., Sellers, W., Urashima, M., Salvesen, H. B.,

Meyerson, M., and Bowtell, D. (2009). Integrated genome-wide dna copy number

and expression analysis identifies distinct mechanisms of primary chemoresistance

in ovarian carcinomas. Clinical Cancer Research, 15(4), 1417–1427.

Evgenia Dimitriadou, Kurth, D. M. and Andreas Weinges Hornik, F. L. (2011).

e1071: Misc functions of the department of statistics (e1071), tu wien.

http://cran.r-project.org/web/packages/e1071/index.html.

Fagin, R. (1977). Multivalued dependencies and a new normal form for relational

databases. ACM Trans. Database Syst., 2(3), 262–278.

Fagin, R. (1979). Normal forms and relational database operators. In Proceedings

of the 1979 ACM SIGMOD international conference on Management of data,

SIGMOD ’79, pages 153–160, New York, NY, USA. ACM.

Fridlyand, J. (2004). Hidden Markov models approach to the analysis of array CGH

data. Journal of Multivariate Analysis , 90(1), 132–153.

Furmento, N., Mayer, A., McGough, S., Newhouse, S., Field, T., and Darlington,

J. (2002). ICENI: Optimisation of component applications within a Grid

environment. Parallel Computing , 28(12), 1753–1772.

Furney, S. J., Calvo, B., Larrañaga, P., Lozano, J. A., and Lopez-Bigas, N. (2008).

Prioritization of candidate cancer genes–an aid to oncogenomic studies. Nucleic

acids research, 36(18), e115+.

Geeknet, Inc. (2012). sourceforge. https://sourceforge.net/.

Gentleman, R., Carey, V., Bates, D., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B.,

Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S.,

191

BIBLIOGRAPHY BIBLIOGRAPHY

Irizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A., Sawitzki, G., Smith, C.,

Smyth, G., Tierney, L., Yang, J., and Zhang, J. (2004). Bioconductor: open

software development for computational biology and bioinformatics. Genome

Biology , 5(10), R80+.

Giardine, B., Riemer, C., Hardison, R. C., Burhans, R., Elnitski, L., Shah, P.,

Zhang, Y., Blankenberg, D., Albert, I., Taylor, J., Miller, W., Kent, W. J., and

Nekrutenko, A. (2005). Galaxy: a platform for interactive large-scale genome

analysis. Genome research, 15(10), 1451–1455.

GitHub Inc (2012). Github. https://github.com/.

Guttman, M., Mies, C., Dudycz-Sulicz, K., Diskin, S. J., Baldwin, D. A., Stoeckert,

C. J., and Grant, G. R. (2007). Assessing the Significance of Conserved Genomic

Aberrations Using High Resolution Genomic Microarrays. PLoS Genet , 3(8),

e143+.

Haverty, P., Hon, L., Kaminker, J., Chant, J., and Zhang, Z. (2009). High-resolution

analysis of copy number alterations and associated expression changes in ovarian

tumors. BMC Medical Genomics , 2(1), 21+.

hibernate.org (2012). HIBERNATE. http://www.hibernate.org/.

Highsmith, J. (2002). Agile Software Development Ecosystems . Addison-Wesley

Professional.

Highsmith, J. A. (2000). Adaptive Software Development: A Collaborative Approach

to Managing Complex Systems . Dorset House.

Hinrichs, A. S., Karolchik, D., Baertsch, R., Barber, G. P., Bejerano, G., Clawson,

H., Diekhans, M., Furey, T. S., Harte, R. A., Hsu, F., Hillman-Jackson, J., Kuhn,

R. M., Pedersen, J. S., Pohl, A., Raney, B. J., Rosenbloom, K. R., Siepel, A.,

Smith, K. E., Sugnet, C. W., Sultan-Qurraie, A., Thomas, D. J., Trumbower, H.,

Weber, R. J., Weirauch, M., Zweig, A. S., Haussler, D., and Kent, W. J. (2006).

The UCSC Genome Browser Database: update 2006. Nucleic Acids Research,

34(suppl 1), D590–D598.

192

BIBLIOGRAPHY BIBLIOGRAPHY

Hodgson, G., Hager, J. H., Volik, S., Hariono, S., Wernick, M., Moore, D., Albertson,

D. G., Pinkel, D., Collins, C., Hanahan, D., and Gray, J. W. (2001). Genome

scanning with array CGH delineates regional alterations in mouse islet carcinomas.

Nature Genetics , 29(4), 459–464.

Høgdall, E. V., Christensen, L., Kjaer, S. K., Blaakaer, J., Bock, J. E., Glud,

E., Nørgaard-Pedersen, B., and Høgdall, C. K. (2003). Distribution of HER-2

overexpression in ovarian carcinoma tissue and its prognostic value in patients with

ovarian carcinoma: from the Danish MALOVA Ovarian Cancer Study. Cancer ,

98(1), 66–73.

Høgdall, E. V., Ryan, A., Kjaer, S. K., Blaakaer, J., Christensen, L., Bock, J. E.,

Glud, E., Jacobs, I. J., and Høgdall, C. K. (2004). Loss of heterozygosity on the X

chromosome is an independent prognostic factor in ovarian carcinoma: from the

Danish ”MALOVA” Ovarian Carcinoma Study. Cancer , 100(11), 2387–2395.

Høgdall, E. V. S., Christensen, L., Kjaer, S. K., Blaakaer, J., Kjærbye-Thygesen,

A., Gayther, S., Jacobs, I. J., and Høgdall, C. K. (2007). CA125 expression

pattern, prognosis and correlation with serum CA125 in ovarian tumor patients.

Gynecologic Oncology , 104(3), 508–515.

Hoon, S., Ratnapu, K. K., Chia, J.-m., Kumarasamy, B., Juguang, X., Clamp, M.,

Stabenau, A., Potter, S., Clarke, L., and Stupka, E. (2003). Biopipe: A Flexible

Framework for Protocol-Based Bioinformatics Analysis. Genome Research, 13(8),

1904–1915.

Hsu, L., Self, S. G., Grove, D., Randolph, T., Wang, K., Delrow, J. J., Loo, L., and

Porter, P. (2005). Denoising array-based comparative genomic hybridization data

using wavelets. Biostatistics , 6(2), 211–226.

Huang, H., Nguyen, N., Oraintara, S., and Vo, A. (2008). Array CGH data modeling

and smoothing in Stationary Wavelet Packet Transform domain. BMC genomics ,

9 Suppl 2.

193

BIBLIOGRAPHY BIBLIOGRAPHY

Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M. R., Li, P., and Oinn,

T. (2006). Taverna: a tool for building and running workflows of services. Nucleic

Acids Research, 34(suppl 2), W729–W732.

Hupé, P., Stransky, N., Thiery, J.-P., Radvanyi, F., and Barillot, E. (2004).

Analysis of array CGH data: from signal ratio to gain and loss of DNA regions.

Bioinformatics , 20(18), 3413–3422.

Infinity Interactive (2011). Moose: A postmodern object system for Perl.

http://moose.iinteractive.com/.

Jones, C. (2008). Core LIMS modules in CPAN.

http://search.cpan.org/dist/Microarray/.

Jong, K., Marchiori, E., Meijer, G., Vaart, and Ylstra, B. (2004). Breakpoint

identification and smoothing of array comparative genomic hybridization data.

Bioinformatics , 20(18), 3636–3637.

Jong, K., Marchiori, E., van der Vaart, A., Chin, S.-F. F., Carvalho, B., Tijssen,

M., Eijk, P. P., van den Ijssel, P., Grabsch, H., Quirke, P., Oudejans, J. J.,

Meijer, G. A., Caldas, C., and Ylstra, B. (2007). Cross-platform array comparative

genomic hybridization meta-analysis separates hematopoietic and mesenchymal

from epithelial tumors. Oncogene, 26(10), 1499–1506.

Kallioniemi, A. (2008). CGH microarrays and cancer. Current Opinion in

Biotechnology , 19(1), 36–40.

Kallioniemi, A., Kallioniemi, O. P., Sudar, D., Rutovitz, D., Gray, J. W., Waldman,

F., and Pinkel, D. (1992). Comparative genomic hybridization for molecular

cytogenetic analysis of solid tumors. Science, 258(5083), 818–821.

Kane, D., Hohman, M., Cerami, E., McCormick, M., Kuhlmman, K., and Byrd, J.

(2006). Agile methods in biomedical software development: a multi-site experience

report. BMC Bioinformatics , 7(1), 273+.

194

BIBLIOGRAPHY BIBLIOGRAPHY

Kasprzyk, A., Keefe, D., Smedley, D., London, D., Spooner, W., Melsopp, C.,

Hammond, M., Rocca-Serra, P., Cox, T., and Birney, E. (2004). EnsMart: A

Generic System for Fast and Flexible Access to Biological Data. Genome Research,

14(1), 160–169.

Kent, W. (1983). A simple guide to five normal forms in relational database theory.

Commun. ACM , 26(2), 120–125.

Khojasteh, M., Lam, W. L., Ward, R. K., and MacAulay, C. (2005). A stepwise

framework for the normalization of array CGH data. BMC bioinformatics , 6(1),

274+.

Kjaerbye-Thygesen, A., Frederiksen, K., Høgdall, E. V., Glud, E., Christensen,

L., Høgdall, C. K., Blaakaer, J., and Kjaer, S. K. (2006). Smoking and

overweight: negative prognostic factors in stage III epithelial ovarian cancer.

Cancer epidemiology, biomarkers & prevention : a publication of the American

Association for Cancer Research, cosponsored by the American Society of

Preventive Oncology , 15(4), 798–803.

Klijn, C., Holstege, H., Ridder, J., Liu, X., Reinders, M., Jonkers, J., and

Wessels, L. (2008). Identification of cancer genes using a statistical framework

for multiexperiment analysis of nondiscretized array cgh data. Nucl. Acids Res.,

36(2), gkm1143+.

Krzywinski, M., Bosdet, I., Smailus, D., Chiu, R., Mathewson, C., Wye, N., Barber,

S., Brown-John, M., Chan, S., Chand, S., Cloutier, A., Girn, N., Lee, D., Masson,

A., Mayo, M., Olson, T., Pandoh, P., Prabhu, A.-L. L., Schoenmakers, E., Tsai,

M., Albertson, D., Lam, W., Choy, C.-O. O., Osoegawa, K., Zhao, S., de Jong,

P. J., Schein, J., Jones, S., and Marra, M. A. (2004). A set of BAC clones spanning

the human genome. Nucleic acids research, 32(12), 3651–3660.

Lai, W. R., Johnson, M. D., Kucherlapati, R., and Park, P. J. (2005). Comparative

analysis of algorithms for identifying amplifications and deletions in array cgh

data. Bioinformatics (Oxford, England), 21(19), 3763–3770.

195

BIBLIOGRAPHY BIBLIOGRAPHY

Lang, D. T. (2007). The R/Splus Perl interface. http://www.omegahat.org/RSPerl/.

Lapointe, J., Li, C., Giacomini, C. P., Salari, K., Huang, S., Wang, P., Ferrari,

M., Hernandez-Boussard, T., Brooks, J. D., and Pollack, J. R. (2007). Genomic

Profiling Reveals Alternative Genetic Pathways of Prostate Tumorigenesis. Cancer

Research, 67(18), 8504–8510.

Larrañaga, P., Calvo, B., Santana, R., Bielza, C., Galdiano, J., Inza, I. n., Lozano,

J. A., Armañanzas, R., Santafé, G., Pérez, A., and Robles, V. (2006). Machine

learning in bioinformatics. Briefings in Bioinformatics , 7(1), 86–112.

Lawrenson, K. and Gayther, S. A. (2009). Ovarian cancer: A clinical challenge that

needs some basic answers. PLoS Med , 6(2), e1000025.

Levi, F. (1999). Cancer mortality in europe, 1990-1994, and an overview of trends

from 1955 to 1994. European Journal of Cancer , 35(10), 1477–1516.

Li, T., Zhang, C., and Ogihara, M. (2004). A comparative study of feature

selection and multiclass classification methods for tissue classification based on

gene expression. Bioinformatics , 20(15), 2429–2437.

Liu, J., Mohammed, J., Carter, J., Ranka, S., Kahveci, T., and Baudis, M. (2006).

Distance-based clustering of CGH data. Bioinformatics , 22(16), 1971–1978.

Lockwood, W. W., Chari, R., Chi, B., and Lam, W. L. (2006). Recent advances

in array comparative genomic hybridization technologies and their applications in

human genetics. European journal of human genetics : EJHG , 14(2), 139–148.

Marioni, J. C., Thorne, N. P., and Tavaré, S. (2006). BioHMM: a heterogeneous

hidden Markov model for segmenting array CGH data. Bioinformatics , 22(9),

1144–1146.

MATLAB (2012). version 7.14.0 (R2012a). The MathWorks Inc., Natick,

Massachusetts.

Morris, J., Gayther, S., Jacobs, I., and Jones, C. (2008a). A Perl toolkit for LIMS

development. Source Code for Biology and Medicine, 3(1), 4+.

196

BIBLIOGRAPHY BIBLIOGRAPHY

Morris, J. A., Gayther, S. A., Jacobs, I. J., and Jones, C. (2008b). A suite of perl

modules for handling microarray data. Bioinformatics , 24(8), 1102–1103.

Myers, C. L., Dunham, M. J., Kung, S. Y., and Troyanskaya, O. G. (2004). Accurate

detection of aneuploidies in array CGH and gene expression microarray data.

Bioinformatics , 20(18), 3533–3543.

Neuvial, P., Hupe, P., Brito, I., Liva, S., Manie, E., Brennetot, C., Radvanyi, F.,

Aurias, A., and Barillot, E. (2006). Spatial normalization of array-CGH data.

BMC Bioinformatics , 7(1), 264+.

Noble, W. S. (2009). A quick guide to organizing computational biology projects.

PLoS Comput Biol , 5(7), e1000424+.

Olson, N. (2006). The microarray data analysis process: From raw data to biological

significance. Neurotherapeutics , 3, 373–383. 10.1016/j.nurx.2006.05.005.

ORACLE (2012). Java. http://www.oracle.com/us/technologies/java/index.html.

P., G. M. and Angly, F. (2011). Statisitcs::R.

http://search.cpan.org/ fangly/Statistics-R-0.27/lib/Statistics/R.pm.

Palmer, S. R. and Felsing, J. M. (2002). A Practical Guide to Feature-Driven

Development . Prentice Hall, 1 edition.

Perl.org (2011). Comprehensive Perl Archive Network. http://www.cpan.org/.

Perl.org (2012). Perl programming language. http://www.perl.org/.

Picard, F., Robin, S., Lavielle, M., Vaisse, C., and Daudin, J. J. (2005). A statistical

approach for array CGH data analysis. BMC Bioinformatics , 6(1), 27+.

Pinkel, D. and Albertson, D. G. (2005). Array comparative genomic hybridization

and its applications in cancer. Nature genetics , 37 Suppl.

Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., Collins, C.,

Kuo, W.-L., Chen, C., Zhai, Y., Dairkee, S. H., Ljung, B.-m., Gray, J. W., and

197

BIBLIOGRAPHY BIBLIOGRAPHY

Albertson, D. G. (1998). High resolution analysis of DNA copy number variation

using comparative genomic hybridization to microarrays. Nature Genetics , 20(2),

207–211.

Poppendieck, M. and Poppendieck, T. (2003). Lean Software Development: An Agile

Toolkit . Addison-Wesley Professional.

Price, D. R. and Ximbiot (2006). Concurrent versions system.

http://www.nongnu.org/cvs/.

Python Software Foundation (2012). Python programming language.

http://www.python.org/.

Quackenbush, J. (2002). Microarray data normalization and transformation. Nature

Genetics , 32 Suppl, 496–501.

r-project.org (2012). The R project for statistical computing. http://www.r-

project.org/.

Rauch, A., Rüschendorf, F., Huang, J., Trautmann, U., Becker, C., Thiel, C., Jones,

K. W., Reis, A., and Nürnberg, P. (2004). Molecular karyotyping using an SNP

array for genomewide genotyping. Journal of Medical Genetics , 41(12), 916–922.

Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D.,

Fiegler, H., Shapero, M. H., Carson, A. R., Chen, W., Cho, E. K. K., Dallaire,

S., Freeman, J. L., González, J. R., Gratacòs, M., Huang, J., Kalaitzopoulos,

D., Komura, D., MacDonald, J. R., Marshall, C. R., Mei, R., Montgomery, L.,

Nishimura, K., Okamura, K., Shen, F., Somerville, M. J., Tchinda, J., Valsesia,

A., Woodwark, C., Yang, F., Zhang, J., Zerjal, T., Zhang, J., Armengol, L.,

Conrad, D. F., Estivill, X., Tyler-Smith, C., Carter, N. P., Aburatani, H., Lee,

C., Jones, K. W., Scherer, S. W., and Hurles, M. E. (2006). Global variation in

copy number in the human genome. Nature, 444(7118), 444–454.

Riedel, S. (2012). mojolicious. http://mojolicio.us/.

198

BIBLIOGRAPHY BIBLIOGRAPHY

Rios, D., McLaren, W., Chen, Y., Birney, E., Stabenau, A., Flicek, P., and

Cunningham, F. (2010). A database and API for variation, dense genotyping

and resequencing data. BMC Bioinformatics , 11(1), 238+.

Rouveirol, C., Stransky, N., Hupé, P., Rosa, P. L. L., Viara, E., Barillot, E., and

Radvanyi, F. (2006). Computation of recurrent minimal genomic alterations from

array-CGH data. Bioinformatics (Oxford, England), 22(7), 849–856.

rubyonrails.org (2008). Active record. http://ar.rubyonrails.org/.

Rueda, O. M. and Diaz-Uriarte, R. (2010). Finding recurrent copy number alteration

regions: A review of methods. Current Bioinformatics , 5(1), 1–17.

Saal, L., Troein, C., Christersson, J. V., Gruvberger, S., Borg, A., and Peterson, C.

(2002). BioArray Software Environment (BASE): a platform for comprehensive

management and analysis of microarray data. Genome Biology , 3(8).

Savola, S., Klami, A., Tripathi, A., Niini, T., Serra, M., Picci, P., Kaski, S., Zambelli,

D., Scotlandi, K., and Knuutila, S. (2009). Combined use of expression and CGH

arrays pinpoints novel candidate genes in Ewing sarcoma family of tumors. BMC

Cancer , 9(1), 17+.

Schwaber, K. and Beedle, M. (2001). Agile Software Development with Scrum (Series

in Agile Software Development). Prentice Hall, 1 edition.

Shah, S. P., Xuan, X., DeLeeuw, R. J., Khojasteh, M., Lam, W. L., Ng, R., and

Murphy, K. P. (2006). Integrating copy number polymorphisms into array CGH

analysis using a robust HMM. Bioinformatics , 22(14), e431–e439.

Shah, S. P., Lam, W. L., Ng, R. T., and Murphy, K. P. (2007). Modeling recurrent

DNA copy number alterations in array CGH data. Bioinformatics , 23(13), i450–

458.

Shah, S. P., Cheung, K.-J., Johnson, N. A., Alain, G., Gascoyne, R. D., Horsman,

D. E., Ng, R. T., and Murphy, K. P. (2009). Model-based clustering of array CGH

data. Bioinformatics , 25(12), i30–i38.

199

BIBLIOGRAPHY BIBLIOGRAPHY

Smyth, G. K. (2004). Linear models and empirical bayes methods for assessing

differential expression in microarray experiments. Statistical applications in

genetics and molecular biology , 3(1).

Smyth, G. K. (2005). Limma: linear models for microarray data., pages 397–420.

Springer, New York.

Solinas-Toldo, S., Lampel, S., Stilgenbauer, S., Nickolenko, J., Benner, A., Döhner,

H., Cremer, T., and Lichter, P. (1997). Matrix-based comparative genomic

hybridization: biochips to screen for genomic imbalances. Genes, chromosomes &

cancer , 20(4), 399–407.

Staaf, J., Jonsson, G., Ringner, M., and Christersson, J. V. (2007). Normalization

of array-CGH data: influence of copy number imbalances. BMC Genomics , 8(1),

382+.

Statnikov, A., Wang, L., and Aliferis, C. F. (2008). A comprehensive comparison

of random forests and support vector machines for microarray-based cancer

classification. BMC bioinformatics , 9(1), 319+.

Stein, L. (2010). The case for cloud computing in genome informatics. Genome

Biology , 11(5), 207+.

Stein, L. D. (2007). Cgi.pm. http://search.cpan.org/ markstos/CGI.pm-

3.59/lib/CGI.pm.

Stratton, M. R., Campbell, P. J., and Futreal, P. A. (2009). The cancer genome.

Nature, 458(7239), 719–724.

Tang, F., Chua, C. L., Ho, L. Y., Lim, Y. P., Issac, P., and Krishnan, A. (2005).

Wildfire: distributed, Grid-enabled workflow construction and execution. BMC

Bioinformatics , 6(1), 69+.

The Apache Software Foundation (2011). Subversion.

http://subversion.apache.org/.

200

BIBLIOGRAPHY BIBLIOGRAPHY

The Cancer Genome Atlas Research Network (2008). Comprehensive genomic

characterization defines human glioblastoma genes and core pathways. Nature,

455(7216), 1061–1068.

The International Cancer Genome Consortium (2010). International network of

cancer genome projects. Nature, 464(7291), 993–998.

Theisen, A. (2008). Microarray-based comparative genomic hybridization (aCGH).

Nature Education 1(1).

Tierney, L., Rossini, A. J., Li, N., and Sevcikova, H. (2012). snow: Simple Network

Of Workstations. http://cran.r-project.org/web/packages/snow/index.html.

Tiwari, A. and Sekhar, A. K. T. (2007). Workflow based framework for life science

informatics. Computational Biology and Chemistry , 31(5-6), 305–319.

Trout, M. S. (2012). Dbix::class. http://search.cpan.org/perldoc?DBIx

van de Wiel, M. A., Kim, K. I., Vosse, S. J., van Wieringen, W. N., Wilting, S. M.,

and Ylstra, B. (2007). CGHcall: calling aberrations for array CGH tumor profiles.

Bioinformatics , 23(7), 892–894.

van de Wiel, M. A., Picard, F., van Wieringen, W. N., and Ylstra, B. (2011).

Preprocessing and downstream analysis of microarray DNA copy number profiles.

Briefings in Bioinformatics , 12(1), 10–21.

Van Wieringen, W. N., Van De Wiel, M. A., and Ylstra, B. (2007). Weighted

clustering of called array cgh data. Biostat , pages kxm048+.

Vapnik, V. N. (1995). The nature of statistical learning theory . Springer-Verlag New

York, Inc., New York, NY, USA.

Venkatraman, E. S. and Olshen, A. B. (2007). A faster circular binary segmentation

algorithm for the analysis of array CGH data. Bioinformatics , 23(6), 657–663.

Vermeesch, J. R., Melotte, C., Froyen, G., Van Vooren, S., Dutta, B., Maas, N.,

Vermeulen, S., Menten, B., Speleman, F., De Moor, B., Van Hummelen, P.,

201

BIBLIOGRAPHY BIBLIOGRAPHY

Marynen, P., Fryns, J.-P., and Devriendt, K. (2005). Molecular Karyotyping:

Array CGH Quality Criteria for Constitutional Genetic Diagnosis. Journal of

Histochemistry & Cytochemistry , 53(3), 413–422.

Vincent, J., Vandiver, A., and Glasser, D. (2012). Jifty. http://jifty.org/.

von Eschenbach, A. C. and Buetow, K. (2007). Cancer informatics vision: caBIG.

Cancer informatics , 2, 22–24.

Wang, P., Kim, Y., Pollack, J., Narasimhan, B., and Tibshirani, R. (2005). A

method for calling gains and losses in array CGH data. Biostatistics , 6(1), 45–58.

Wang, Y. and Wang, S. (2007). A novel stationary wavelet denoising algorithm

for array-based DNA Copy Number data. International journal of bioinformatics

research and applications , 3(2), 206–222.

Wang, Y., Makedon, F., and Pearlman, J. (2006). Tumor classification based on

DNA copy number aberrations determined using SNP arrays. Oncology reports ,

15 Spec no., 1057–1059.

Wilhelm, M., Veltman, J. A., Olshen, A. B., Jain, A. N., Moore, D. H., Presti,

J. C., Kovacs, G., and Waldman, F. M. (2002). Array-based comparative genomic

hybridization for the differential diagnosis of renal cell cancer. Cancer research,

62(4), 957–960.

Willenbrock, H. and Fridlyand, J. (2005). A comparison study: applying

segmentation to array CGH data for downstream analyses. Bioinformatics

(Oxford, England), 21(22), 4084–4091.

Yang, Y. H., Buckley, M. J., and Speed, T. P. (2001). Analysis of cDNA microarray

images. Briefings in bioinformatics , 2(4), 341–349.

Yang, Y. H., Dudoit, S., Luu, P., Lin, D. M., Peng, V., Ngai, J., and Speed, T. P.

(2002). Normalization for cDNA microarray data: a robust composite method

addressing single and multiple slide systematic variation. Nucleic Acids Research,

30(4), e15.

202

BIBLIOGRAPHY BIBLIOGRAPHY

Zeggini, E., Scott, L. J., Saxena, R., Voight, B. F., Marchini, J. L., Hu, T., de Bakker,

P. I. W., Abecasis, G. R., Almgren, P., Andersen, G., Ardlie, K., Bostrom, K. B.,

Bergman, R. N., Bonnycastle, L. L., Borch-Johnsen, K., Burtt, N. P., Chen, H.,

Chines, P. S., Daly, M. J., Deodhar, P., Ding, C.-J., Doney, A. S. F., Duren,

W. L., Elliott, K. S., Erdos, M. R., Frayling, T. M., Freathy, R. M., Gianniny,

L., Grallert, H., Grarup, N., Groves, C. J., Guiducci, C., Hansen, T., Herder, C.,

Hitman, G. A., Hughes, T. E., Isomaa, B., Jackson, A. U., Jorgensen, T., Kong,

A., Kubalanza, K., Kuruvilla, F. G., Kuusisto, J., Langenberg, C., Lango, H.,

Lauritzen, T., Li, Y., Lindgren, C. M., Lyssenko, V., Marvelle, A. F., Meisinger,

C., Midthjell, K., Mohlke, K. L., Morken, M. A., Morris, A. D., Narisu, N.,

Nilsson, P., Owen, K. R., Palmer, C. N. A., Payne, F., Perry, J. R. B., Pettersen,

E., Platou, C., Prokopenko, I., Qi, L., Qin, L., Rayner, N. W., Rees, M., Roix,

J. J., Sandbaek, A., Shields, B., Sjogren, M., Steinthorsdottir, V., Stringham,

H. M., Swift, A. J., Thorleifsson, G., Thorsteinsdottir, U., Timpson, N. J.,

Tuomi, T., Tuomilehto, J., Walker, M., Watanabe, R. M., Weedon, M. N., Willer,

C. J., Illig, T., Hveem, K., Hu, F. B., Laakso, M., Stefansson, K., Pedersen,

O., Wareham, N. J., Barroso, I., Hattersley, A. T., Collins, F. S., Groop, L.,

McCarthy, M. I., Boehnke, M., and Altshuler, D. (2008). Meta-analysis of genome-

wide association data and large-scale replication identifies additional susceptibility

loci for type 2 diabetes. Nature Genetics , 40(5), 638–645.

203

Appendices

204

.1. SOURCE CODE APPENDIX

.1 Source code appendix

This appendix lists the name and file type of each source code files included on the

additional CD by chapter.

205

.1.1 Chapter 2

.1.1 Chapter 2

File name File Type

Base.pm Perl module

Controller.pm Perl module

Interface.pm Perl module

Util.pm Perl Module

lims index.cgi Perl CGI script

lims login.cgi Perl CGI script

admin.cgi Perl CGI script

collection admin.cgi Perl CGI script

filter admin.cgi Perl CGI script

fluorochrome admin.cgi Perl CGI script

laser admin.cgi Perl CGI script

protocol admin.cgi Perl CGI script

specimen admin.cgi Perl CGI script

tumour admin.cgi Perl CGI script

user admin.cgi Perl CGI script

patient.cgi Perl CGI script

specimen.cgi Perl CGI script

ext specimen.cgi Perl CGI script

tumour.cgi Perl CGI script

labelling.cgi Perl CGI script

file download.cgi Perl CGI script

206

.1.2 Chapter 3

.1.2 Chapter 3

File name File Type

process data.pl Perl script

process data test.pl Perl test script

ArrayPipeLine.pm Perl module

pipeline analysis.t Perl test script

PipelineAnalysis.pm Perl module

PipelineStep.pm Perl module

LowessAnalysis.pm Perl module

ManorAnalysis.pm Perl module

CGHcallAnalysis.pm Perl module

Pipeline Data.pm Perl module

pipeline data test.pl Perl test script

Image.pm Perl module

QC Plots.pm Perl module

CGH Plot.pm Perl module

plot generator.cgi Perl CGI script

plot view.cgi Perl CGI script

image viewer.cgi Perl CGI script

manor view.cgi Perl CGI script

manor.cgi Perl CGI script

MANOR normalisation.r R script

DNAcopy segmentation.r R script

lowess normalisation.r R script

207

.1.3 Chapter 4

.1.3 Chapter 4

File name File Type

aCGH analysis functions.r R library

recurrent region analysis.r R script

recurrent region input parser.pl Perl script

recurrent region input parser test.pl Perl script

region selection.r R script

region validation.r R script

208

