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We study models where prices respond slowly to shocks because firms are rationally inattentive.
Producers must pay a cost to observe the determinants of the current profit maximizing price, and hence
observe them infrequently. To generate large real effects of monetary shocks in such a model the time
between observations must be long and/or highly volatile. Previous work on rational inattentiveness has
allowed for observation intervals that are either constant-but-long (e.g. Caballero, 1989 or Reis, 2006)
or volatile-but-short (e.g. Reis’s, 2006 example where observation costs are negligible), but not both. In
these models, the real effects of monetary policy are small for realistic values of the duration between
observations. We show that non-negligible observation costs produce both of these effects: intervals
between observations are infrequent and volatile. This generates large real effects of monetary policy for
realistic values of the average time between observations.
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1. INTRODUCTION

The sluggish propagation of new information from individual into aggregate prices is one of
the key mechanisms behind the transmission of monetary shocks and the analysis of their real
effects. We study microfounded models where prices respond slowly to shocks because firms
must pay a fixed cost to observe the determinants of the profit maximizing price, as in the
“rational inattentiveness” literature. The timing of these observations is random, and the firm’s
frequency of observation determines the velocity with which new information is embedded into
prices, so that large real effects of monetary shocks require infrequent observations. For a given
mean frequency of observation, a larger volatility of the time between observations increases
the real effects, a result established by Carvalho and Schwartzman (2012) for the case of i.i.d.
observation times. The models in Caballero (1989), and the baseline model of Reis (2006), yield
optimally chosen constant observation times that produce infrequent adjustments but have no
volatility. These models yield real effects similar to Taylor’s exogenously staggered adjustment
model, and about half the size of what is produced by the Calvo model or the exponentially
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distributed observations as used in Mankiw and Reis (2002), parametrized to have the same mean
frequency of observations as the model with constant times. For a special case with negligibly
small observation costs Reis (2006) provides a microfoundation for random observation times.1

Although the times between observations are volatile in this case, the frequency of observations
is very high (due to the negligible costs), so that the real effects of monetary shocks are tiny.

Motivated to obtain larger effects of monetary shocks, we study models where the intervals
between optimally chosen observation times are both long and volatile. The first set of results
derives the firms’ observation times as the solution to a fully specified profit maximization
problem, with random and persistent variation in the observation costs. To obtain long and volatile
observation times, and hence larger effects of monetary policy, it is necessary to have observation
costs that are both non-negligible and sufficiently persistent. Indeed, an important innovation of
this article is to produce from first principles optimal firm decisions that are persistent rather than
i.i.d., as is standard in the previous literature. We show that the process of the observation costs
maps into the process for the optimally chosen observation times in a subtle non-linear way. For
instance, a setting with i.i.d. observation costs will produce optimally chosen constant observation
times. As the costs become sufficiently persistent, the optimal times become responsive to the
realization of the observation cost, and hence the frequency of observation becomes volatile and
persistent. The second set of results pertains to the aggregation properties of an economy with
a continuum of firms, for a given Markov process for the individual firm’s observation times.
Methodologically, this aggregation result is new and generalizes the elementary renewal theorem
in statistics where consecutive holding times (i.e. times between observations in our economic
application) are i.i.d. to an environment where holding times follow a first-order Markov process.
The paper contains several new results, summarized next, that extend and complement the ones
in the literature.

Microfoundations of optimal observation times: We use a simple general equilibrium model
of price setting to derive the distribution of the optimal times between observations from the
firm’s profit maximization problem. We assume that when the firm pays the observation cost it
learns the current value of the production cost, a key piece of information for price setting, and
also obtains a signal about future observation costs. The optimal choice for the time until the
next observation is a function of the signal, a sufficient statistic for the future observation cost at
every future date. We consider several cases, which are interesting both for their relationship to
the literature, and for their substantive monetary policy implications.

The first case is one where the signals are such that the optimally chosen observation times
are i.i.d. This case, while standard in the “rational inattentiveness” literature, has not yet been
derived as the solution of an explicit profit maximization problem with random variation in the
benefit/cost of acquiring information.2 This case yields two novel insights. First, i.i.d. observation

1. The case of negligibly small observation cost studied by Reis (2006) is one where for any given distribution of
the observation cost θ , the model is solved for a scaled process of the observation cost θ ′ =cθ where c→0 is a scaling
factor. In the scaled model, both the mean and volatility of the observation cost go to zero, but the coefficient of variation
stays constant.

2. An exception is the paper by Woodford (2009) who uses a different framework, namely the one of “rational
inattention”, to characterize optimal i.i.d. observation times. He assumes that keeping track of the state and time elapsed
is costly. When the cost of keeping track of time is sufficiently large the optimal observation times become i.i.d. because
the firm cannot base decisions on (any measure of) time and, therefore, base decisions exclusively on the current value of
the noisy signals it receives, even though the process of interest is persistent. Each of the two frameworks has weaknesses
and strengths in this particular application. On the one hand, we view the assumption of no memory using the rational
inattention model of Woodford as an extreme one. On the other hand, in the rational inattention model the design of the
signals about the state space is chosen by the decision maker. Instead, in the rational inattentiveness model that we use,
the signals are extreme: either complete or no information is revealed upon observation.
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times arise only if the evolution of the observation costs is not independent of the firm’s decision
to observe. Thus, the firm gets a new cost every time it makes an observation. This requirement
is specific to the i.i.d. case, and illustrates how special this arrangement is. The more natural
setting in which the evolution of the costs is independent of the observation times will naturally
give rise to Markov observation times, discussed next. The second insight yielded by the model
with i.i.d. observation times is that the optimal decision by the firm contains an option value
argument: a firm that is facing a very low cost (for the next observation), has an incentive not
to observe immediately, but rather to save the opportunity for a cheap observation for when it is
most valuable in future. This implies that the support of the distribution of observation cost must
include negative values to generate the arbitrarily small observation times that are common in
the literature, such as the exponentially and i.i.d. distributed observations in Mankiw and Reis
(2002). Both insights suggest that the i.i.d. case is rather special, for this reason we explore the
more general, and more realistic case, which gives rise to persistent observation times.

The second case we explore assumes that the evolution of the costs is independent of the
firm’s decision to observe. In this case the optimal decision rules imply that the times between
successive observations form a Markov process. We characterize the properties of the observation
cost process that leads to variability in the times between observations. This is important since,
as mentioned, the variability of the times between observations affects the real output effect
of an aggregate demand shock. Notice that variable observation times require both variability
in costs and that the optimal decision rule is sensitive to the realization of the cost shock. An
early contribution for volatile observation times was given by Reis (2006), who provides a
microfoundation in the limiting case of negligible observation costs. His model makes the times
between observations random, and hence volatile, but it produces very frequent observations
(due to the small costs), so that the real effects of monetary shocks are tiny. We provide a global
characterization of the decision rule, which allows for both negligible (reproducing Reis’ result)
as well as non-negligible observation costs. The latter are essential to get infrequent observations.
Interestingly, we show that for any given variability of the observation costs, the persistence of
the costs affects the sensitivity of the optimal decision rule with respect to the cost. Hence, the
persistence of the observation costs determines the variability of times between observations.
Higher persistence amplifies the variability of optimal observation times and, therefore, the real
effects of monetary shocks. On the one hand, we show that for any given (non-negligible) expected
value of the observation costs, the volatility of observation times converges to zero if persistence
is sufficiently low. In the limiting case where the observation costs are i.i.d., the volatility of times
between observations converges to zero and the real effects of monetary shocks are those of a
model with constant times between observations. On the other hand, the real effects of monetary
shocks can be substantially larger, close to those of a Calvo model with a realistic parametrization,
with observation costs that are non-negligible and sufficiently persistent.

The analysis in this article will mostly focus on a model where firms are ex ante identical but
differ ex post in their choices about the optimal observation times, which follow a Markovian
process. There are two reasons for this choice. First, as argued above, this case emerges naturally
from first principles in models where the opportunity cost of an observation is persistent. Secondly,
we notice that an alternative model with constant observation costs that differ across firms might
also be able to produce larger output effects. Such a model, however, implies a constant time
between observations, say Ti, for a given firm i, i.e. a hazard of price adjustment equal to zero and
with a vertical asymptote at Ti. Recent empirical research on the behaviour of individual prices
provides ample evidence that there is large variation in the duration between price changes at the
UPC-store level, e.g. Alvarez et al. (2015). Given the usefulness of mapping the predictions of
the model to available micro data (e.g. for the hazard rate and the distribution of the size of price
changes), we see the characterization of the Markov case as more valuable.
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Results on aggregation: Another set of results pertains to the aggregation properties of an
economy with “inattentive producers”. We denote by H(t′|t) the right CDF of the optimally
chosen times larger than t′, conditional on a gap of time equal to t between the preceding two
observations. This distribution is derived simply from the assumptions about the observation costs,
the signals and the optimal decision rules described above. While in our model the distribution
H(t′|t) is the outcome of the solution to the firms’problem facing random and persistent variability
in observation costs, our results on aggregation are independent of the specific model micro-
founding a given H. In particular, for a given H, we aggregate the times until the next observation
across a continuum of firms to characterize the stationary cross-sectional distribution of the times
until the next observation, which we denote by Q. The distribution Q is key in determining
the propagation of monetary shocks as it determines the time it takes before a given fraction of
firms makes at least one observation and, therefore, incorporates new information into prices.3 We
show that the density q associated with the cross-sectional distribution Q is given by q(t)=RK(t),
where R is a constant (the unconditional frequency of observations per unit of time), and K is
the invariant distribution of the Markov process formed by the time elapsed between consecutive
observations.4 And so by the law of large numbers, K(t) measures the cross-sectional fraction of
firms that have waited at least t periods since the last observation.

We use this result to illustrate several applications. First, we show that the cumulative output
response increases with both the average and the coefficient of variation of times between
consecutive observations, as measured in the cross-section according to the distribution K . This
finding generalizes a result by Carvalho and Schwartzman (2012), obtained for the case of i.i.d.
durations, to a framework where durations form a first-order Markov process. This extension is
important because quite special assumptions are needed to generate i.i.d. durations, as discussed
above.This result is quantitatively relevant because persistent shocks, and the associated persistent
times between observations, are essential to generate a sizeable cross-sectional variation of
observation times from a reasonable variation in the observation cost.

Secondly, our analysis of the mapping from H to Q clarifies a related theoretical result
in Reis (2006) concerning the aggregation of individual firms decision. Within the class
of i.i.d. observation times, Reis derives conditions on the individual firm’s distribution of
observation times that deliver an exponential cross-sectional distribution Q, as assumed e.g.

in Mankiw and Reis (2002). We clarify that a necessary and sufficient condition to obtain an
exponential cross-sectional distribution Q is that the firm-level distribution of observation times
H must be exponential itself. Hence, the exponential distribution of observation times, a case
often used in the literature, turns out to be obtained as an optimal decision rule only in a very
special case.5

Thirdly, under the assumption that price changes only occur upon observation dates, we derive
a mapping between the cross-sectional distribution of observation durations, K , and the kurtosis
of the size-distribution of price changes.6 This mapping can be used to calibrate the model.

3. Reis (2006) labels Q the “distribution of inattentiveness”.
4. Formally, K(t) is the invariant cumulative distribution associated with the transition function H(t′|t), as standard

in the definition of the invariant distributions for a discrete-time continuous-state Markov process.
5. Indeed, we solve analytically for the distribution of costs that implies an exponential distribution of observation

times, which has two features that we find implausible: a large proportion of costs that are negative and a very large
variability of observation costs.

6. A microfoundation of price changes occurring only upon an observation dates can be the presence of menu
costs. As shown in Proposition 1 of Alvarez et al. (2011), relatively small menu costs make price plans not optimal in
this environment at moderate inflation rates.
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Alternative microfoundations of random observation times: The aggregation results and the
characterization of the cumulative IRF of a monetary shock in terms of distribution of observation
times hold for a large class of models, beyond those with random observation costs. For instance,
the results hold in models where the benefits of observation are random. In the Online Appendix
we give an example of such a model in which the observation costs are constant but the benefits
of observing are random due to a time-varying volatility of the production cost.

The rest of the article is organized as follows. For expositional convenience, we first derive the
mapping from the individual firm’s distribution of the times between observations H to the cross-
sectional distribution Q (Section 2), and discuss three main applications of this new aggregation
result. Section 3 describes a general profit maximization problem, in the presence of a fixed
cost of observing the state. The solution to this problem yields the optimal decision rules that
micro-found the stochastic observation times of an individual firm. Section 4 shows the general
solution to the firm’s problem, in which case the optimal observation times form a first-order
Markov process. Section 5 consider a particular setup for the firm’s problem, in which case the
optimal observation times are i.i.d. Section 6 concludes.

2. AGGREGATING THE BEHAVIOUR OF INATTENTIVE PRODUCERS

This section characterizes the linkages between an individual firm’s behaviour and the cross-
sectional features that are important for modelling the propagation of an aggregate shock in
an economy with “rationally inattentive” firms. We are interested in an economy populated by
firms that observe the state underlying their prices at randomly spaced times. The interpretation of
“making an observation” is that the firm pays a cost to gather (aggregate and process) information
to be used to set prices. Upon each observation the firm chooses a new path for prices until the
next observation.

The primitive for the analysis in this section is a distribution of the firm’s times between
consecutive observations, as summarized by its right cumulative distribution function (CDF),
which we denote by H.7 Starting from a given H, this section aggregates the times between
observations across firms to characterize the stationary cross-sectional distribution of the “times
until the next observation”. That is, the fraction of firms that, at any point in time, will wait at
least t units of time until the next observation. We denote the right CDF of such distribution by
Q(t).

The distribution Q(t) is a key object in models with rational inattentive producers because it
determines the time left before a given fraction of firms will conduct an observation and adjust
their behaviour to the new information obtained. Therefore, Q directly determines the time it
takes for an aggregate shock to be incorporated into the information set of a given fraction of
firms. Thus, Q determines the speed at which a monetary shock affects the aggregate price level.
In a stationary environment there is a constant rate of observations per unit of time, which we
denote by R. In this section, we will derive both Q and R as implied by a given H. In Section 3,
we will study a model where the distribution H is itself derived from the firm’s optimal price
setting choices subject to an information-gathering friction.

Before providing an exhaustive formal analysis, we sketch two examples to fix ideas. The first
one is a classic Taylor’s model where each firm observes the state at deterministically spaced time
intervals of length T . This assumption amounts to an i.i.d. H(t) distribution which is piecewise
continuous: constant and equal to 1 for t ∈[0,T ), and zero otherwise. It is easy to see how this H(t)

7. The use of right CDF, i.e. the probability mass that the time between observations is above a given threshold,
is more convenient algebraically than the traditional (left) CDF.
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implies a unique invariant cross-sectional distribution Q(t) of times until the next observation,
with a density q(t) that is uniform for t ∈ (0,T ), and an observation rate given by R=1/T . The
second example is the widely used Calvo pricing. It assumes that the distribution of times between
observations for a firm follows a Poisson process, so that the probability that a firm waits at
least t periods after adjusting is given by the exponential distribution H(t)=e−λt for t ∈ (0,∞).
Aggregating a continuum of firms that follow this H(t) rule gives a cross-sectional distribution
of times until the next observation, Q(t), that is also exponential, and a rate of observations per
unit of time R=λ.

While the mapping from H to Q for some simple examples can be solved using intuition, a
general treatment is useful. It will allow us to extend the mapping along two important dimensions:
first, to cases where the firm hazard rate of observations is not constant (so that H(t) is not
exponential); secondly, and perhaps more interestingly, to allow for non-i.i.d. observation times
at the firm level. In the latter, the distribution of the times t between observations is allowed to
depend on the length s of the time since the last observation and denoted by H(t|s). Markovian
observation times appear to be a robust feature of a microfounded model, as we show in Section 3,
we thus see this case as an important extension of the i.i.d. observation times.8

We consider setups where the optimal decision of the firm will be such that, in a stationary
environment, the time elapsed between consecutive observations forms a stationary Markov
process. As already mentioned, the primitive of the analysis in this section is the conditional right
CDF H(t|s) for the times between consecutive observations of a firm. The function H :R2+ →
[0,1] satisfies the following: (1) H(0|s)=1 for all s≥0, (2) H(t|s)≥H(t′|s) for all t′ ≥ t, iii)
limt→∞H(t|s)=0 for all s≥0, and iv) H(t|·) is Borel-measureable, for all t ≥0. The interpretation
of H(t|s) is that if the gap between the preceding two observations is equal to s, then the probability
that the time between the current and the next observation is at least t is H(t|s). We assume that
the stochastic process for observation times is independent across firms, and that the law of large
number holds.

Let K(s) denote the invariant cumulative distribution function of the times between
consecutive observations of length up to s. Formally, K(s) is the invariant distribution associated
with the transition function H(t′|t), as will be shown below. In particular, in an interval of time
(t,t+dt) there are Rdt observations that take place. Of those, a fraction K(s) is characterized by a
gap between the preceding two observations greater or equal than s. Using the definition of K(s)
we can compute the cross-sectional distribution of times until the next observation, whose right
CDF is9

Q(t)=−R
∫ ∞

0

(∫ ∞

0
H (u+t |s) dK(s)

)
du=−R

∫ ∞

t

∫ ∞

0
H (u|s) dK(s)du . (1)

The expression is easy to interpret: the firms that will wait at least t periods before the next
observation are those that drew an observation time larger than u+t some u periods ago. The
integral inside the parenthesis measures those firms. The probability that a firm must wait this
long depends on the gap s between the preceding two observations and is given by H(u+t,s). In
the integrand, this is then weighted by (the negative of) dK(s), which gives the fraction of firms
whose preceding two observations were separated by s. Integrating over both the time until the
next observation, u, and the time between the preceding two observations, s, and multiplying by
the frequency of observation, R, gives Q(t). Note that the minus sign comes from using a right
CDF for K(s). The value of R is easily computed from equation (1), using that Q(0)=1.

8. See Alvarez et al. (2011) for a microfounded model where the optimal observation times are not i.i.d. We note
that there is no systematic treatment of this problem in the literature.

9. Integration follows Lebesgue–Stieltjes. Q(t) is also referred to as distribution of the forward times.
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Differentiating this expression we obtain the density of the cross-sectional distribution of
times until the next observation, as we summarize in the following lemma:

Lemma 1. Given the conditional right CDF, H, and its corresponding invariant distribution of
times between observations, K, the density of the times until the next observation q(t) is:

q(t)≡−∂Q(t)

∂t
=−R

∫ ∞

0
H (t |s) dK(s)≥0 , (2)

where the number of observations per unit of time is

R=− 1∫∞
0

∫∞
0 H (u|s) dK(s)du

≥0 . (3)

To complete the characterization of Q we need the (invariant) distribution of times between
observations, K(s). We distinguish between two cases: one where the distribution H is absolutely
continuous, another where H is discrete. If H(·|s) is absolutely continuous the invariant
distribution K will be differentiable with density k(t)=−∂K(t)/∂t solving:

k(t)=
∫ ∞

0
h(t |s)k(s)ds for all t ≥0 where h(t |s)≡−∂H(t|s)

∂t
≥0 for all t,s≥0 .

Likewise, since H is differentiable almost everywhere, the right CDF of the invariant measure
solves

K(t)=−
∫ ∞

0
H (t |s)dK(s) for all t ≥0. (4)

The second case occurs when H(·|s) is a step function, so that there are countably many
observation times T with non-zero probabilities. Let T ={t1,...,ti,...tI } with ti < ti+1 for i≥1
and h=[hti,tj

]
be a matrix defined as

hti,tj ≡ lim
t↑ti

H
(
t|tj
)−H

(
ti|tj

)≥0 .

Using this notation, {k(t)}t∈T is the corresponding invariant measure, i.e. a positive eigenvector
associated with h solving:

k(ti)=
∑
tj∈T

hti,tj k(tj) for all ti ∈T . (5)

In this case, the invariant measure is given by:

K(t)=

⎧⎪⎨
⎪⎩

1 if t < t1∑
ti>t k(ti) if t1 ≤ ti < tI

0 if t ≥ tI

, (6)

where the k(ti) elements solve equation (5). We collect these results in the following lemma:

Lemma 2. Given a conditional right CDF H for the times between consecutive observations, the
invariant distribution K is given by the solution of equation (4) if H(·|s) is absolutely continuous
for each t, or by the solution of equation (6) if H(·|s) is a step function.
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The results for existence and uniqueness of invariant distributions for a discrete-time Markov
process give the exact conditions for existence and uniqueness of the invariant distribution K .
We combine the results of Lemmas 1 and 2 and obtain the following proposition.

Proposition 1. Let K(t) be the invariant (right) cumulative distribution of times between
consecutive observations as in equation (4) or in equation (6). The density q(t) of the stationary
cross-sectional distribution of times until the next observation is proportional to K(t):

q(t)=RK(t) for all t ≥0 and where R= 1∫∞
0 K(s)ds

. (7)

The right CDF Q(t) is readily found by integration using that Q(0)=1.

For a proof see Appendix A. The results of Proposition 1 substantially generalize the results
in the literature about the way the economy aggregates starting from a given individual firm
distribution of observation times H(t|s). Existing results in the literature (e.g. Reis, 2006;
Carvalho and Schwartzman, 2012) are based on the case of i.i.d. observations, i.e. H(t|s1)=
H(t|s2) for all s and all pairs (s1,s2). The interpretation of Proposition 1 is simple: in a cross-
section there is a mass K(t) of firms who will wait at least t periods before the next observation. The
parameter R, measuring the average frequency of observation, scales the density proportionately.
Notice that the function q(t) is a density function even in the cases in which the invariant
distribution of times between consecutive observations K(t) does not have a density, as in the
case where K(t) is a step function (e.g. the Taylor’s model discussed above) or, more generally,
the case discussed in equation (6).

2.1. Three applications of Proposition 1

Next we discuss three applications of Proposition 1. In the first one, we show that the cross-
sectional distribution of times between observations, K(t), is a key determinant of the real effects
of monetary shocks. The second application is literature driven: we derive necessary and sufficient
conditions under which the firm distribution of observation times H(t|s) yields a distribution
K(t) that is both i.i.d. and exponential, a case studied by Reis (2006) and extensively used in
applications following Mankiw and Reis (2002). The third application studies the mapping from
the distribution K(t) to the size distribution of price changes in a simple model of price dynamics.
This mapping can be used to identify the relevant statistics about the distribution K(t) using data
on the size distribution of price changes.

2.1.1. The distribution of observations and the effect of monetary shocks. The cross-
sectional distribution of the times until the next observation, Q(t), is a key ingredient in the
propagation of monetary shocks into prices and output, yt . We summarize this effect in the single
statistic M(δ) which measures the real cumulative output effect

∫∞
0 log(yt/y0)dt of a once and

for all increase of the aggregate nominal demand of size δ occurring at time t =0:

M(δ)≡
∫ ∞

0
log

(
yt

y0

)
dt = δ

ε

∫ ∞

0
Q(t)dt. (8)

The first equality defines the cumulative output effect. The second equality is a result of the
following assumptions about the firm’s price-setting behaviour and the relationship between
prices and output: (1) the price of each firm follows the plan decided before the aggregate shock
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until a new observation time. Until the observation occurs, the firm’s price is on average δ log
points lower than in the absence of the shock. (2) The elasticity of output to nominal demand for
those firms that keep prices unchanged is constant and equal to 1/ε. The statistic Q(t) measures
the mass of firms that do not make an observation for at least t periods after the shock, and
hence the integral

∫∞
0 Q(t)dt measures the cumulated mass of firms that will not update their

prices in the future. This integral ranges between zero, when all firms adjust immediately so that
Q(t)=0 for all t ≥0, to infinity when firms never adjust so that limt→∞Q(t)=1. The units are
log percentage points, so that a value of M(δ)=0.01 measures a cumulated increase equal to 1%
relative to the steady state output. In the Online Appendix we give more details for this argument
and provide references to a general equilibrium setup, the one in Golosov and Lucas (2007), that
is consistent with the assumed behaviour. In Table 1, we quantify the cumulated output effect
using a calibrated version of the model.

The next proposition shows that M(δ) is linear in δ and that it is completely characterized by
the mean and variance of the cross-sectional distribution of times between observations:

Proposition 2. The statistic M(δ)≡ δ
ε

∫∞
0 Q(t)dt is given by

M(δ)= δ

ε

EK (t)

2
(1+(CVK (t))2) , (9)

where EK (t) and CVK (t) are, respectively, the average duration and coefficient of variation of
times elapsed between consecutive observations.

For a proof seeAppendixA. The linear relation between the size of the monetary shock and the
real cumulative output is a distinctive feature of models with time-dependent decision rules which
contrasts sharply with the non-linear behaviour that is produced by menu cost models.10 Both the
mean and the variance of the times between consecutive observations have a first-order effect on
M and, therefore, on the real effects of monetary shocks. Notice that the results of Proposition 2
are independent of the assumptions about the primitive distribution of times between observations
of the firm, H. A result similar to Proposition 2 has been obtained by Carvalho and Schwartzman
(2012) for i.i.d. observation times. In our framework, this corresponds to the case where H(t|t1)=
H(t|t2) for all t and all pairs (t1,t2). Proposition 2 extends Carvalho and Schwartzman (2012)
that allows for observation times to follow a Markov process, a case that arises naturally from
the microeconomics of the firm problem (see Sections 4 and 5).

To illustrate the economics of Proposition 2 by means of a simple example consider an
economy where each firm draws an observation of length T with probability 1−p, and otherwise
an observation of length T̄ >T , independently of the length of the last observation. The distribution
of the firm’s observation times is given by Ĥ(t)≡H(t|t′) for all t >0, where:

Ĥ(t)=

⎧⎪⎨
⎪⎩

1 if t ∈[0, T ]
p if t ∈ ( T , T̄ ]
0 otherwise

.

Given that observations are i.i.d. over time, the cross-sectional distribution of times between
consecutive observations equals the firm’s distribution of times between observations. That is,

10. See Alvarez and Lippi (2014) for a theoretical analysis of how the cumulative output effect depends on the size
of the monetary shock in menu cost models and Alvarez et al. (2015) for an analysis of models with both menu cost and
observation cost.
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K(t)= Ĥ(t) for all t (as implied by Lemma 2). Let T̂ ≡ (1−p)T +pT̄ denote the average length
of time between consecutive observations. Using Proposition 1 we obtain that R=1/T̂ and the
invariant (right) CDF of the cross-sectional times until the next observation is

Q(t)=

⎧⎪⎨
⎪⎩

1−t/T̂ if t ∈[0, T ]
1−T/T̂ −p(t−T )/T̂ if t ∈ ( T , T̄ ]
0 otherwise

. (10)

To understand equation (10) it is useful to compare two example economies. In the first economy,
indexed by a subscript 1, p1 =1 and T1 = T̄1 = T̂ . Then H1(t) is degenerate; the time between
consecutive observations is always T̂ . This is a case studied, for instance, by Caballero (1989)
and Reis (2006). In the second economy, indexed by a subscript 2, p2 ∈ (0,1), so that T2 < T̂ < T̄2,
and observation times are truly random. As the mean time between consecutive observations is
the same in the two economies, the distribution of observation times in economy 2 is obviously
a mean-preserving spread of those in economy 1. And so Proposition 2 implies that the more
variable times between observations in economy 2 cause larger real effects of a monetary shock.

This simple example clarifies the economics of Proposition 2. Intuitively, Q2(t) decays more
slowly than Q1(t) (at least for t >T2), so that the cumulative effect, as summarized by M(δ), is
larger. Both functions start from the same point Q(0)=1 but in economy 2 there is a longer tail
of possible observation times. This tail boosts the real effect of a monetary shock by delaying
the response of some firms, slowing the incorporation of the shock into prices and so prolonging
the real effect. It is easy to see this formally either by using equation (9) or integrating Q(t)
directly to give M(δ)= δ

ε (T̂/2)×[(1/p)(1−T/T̂ )2 +(T/T̂ )(2−T/T̂ )]. This shows how, for a

given average time between observations T̂ , the size of the real effects of a monetary shock
decreases with p and T . Notice that M is minimized at p=1, where it takes the value of T̂/2.
This corresponds to economy 1 discussed above. A mean preserving spread of times between
consecutive observations increases the real effects of monetary shocks.

2.1.2. The case of exponential i.i.d. observations. The case where observation times
are i.i.d. has been first studied by Reis (2006). This case occurs when H(t|s) does not depend on
s, so we denote it simply by Ĥ(t). Using Proposition 1 we obtain that the invariant distribution
K coincides with H and thus:

q(t)=RĤ(t) for all t ≥0, (11)

where the number of observations per unit of time is given by R=1/
∫∞

0 Ĥ(t)dt.11 An immediate
implication of equation (11) is that:

Corollary 1. Let the observation times be i.i.d. so that H(t|s)= Ĥ(t) for each s≥0. The cross-
sectional distribution of the times until the next observation, Q, is exponential if and only if the
firm’s distribution of the times between observations, Ĥ is exponential.

The proof follows since an exponential density is proportional to its right CDF, a property
shared by q(t)∝ Ĥ(t) in equation (11). Corollary 1 clarifies an important result in Reis’s (2006),

11. Note that this is the case considered for a renewal process, where Q is the forward recurrent time as, for instance,
in Karlin and Taylor (1998).
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namely his Proposition 6, in which the result is obtained under the same assumptions of this section
about the distribution H (i.e. firms observation times being i.i.d. so that H(t′|t)= Ĥ(t) for all t′ and
t), but where the requirement that the distribution H has to be itself exponential in order for the
cross-sectional distribution Q to be exponential is not as explicit.12 This clarification is important
because the case of an exponential cross-sectional distribution Q has been extensively used
in the “rational inattentiveness” literature that followed the seminal work by Mankiw and Reis
(2002). We conclude that the conditions for an exponential cross-sectional distribution Q are
rather restrictive: Ĥ(t) can only be exponential. Section 5.1 below will further explore this case
by establishing what primitive assumptions about the firm information and the distribution of
observation costs are necessary for the firm distribution of observation times to be exponential.

2.1.3. From the distribution of observations to the distribution of price changes.
Given the result of Proposition 2 we are particularly interested in identifying the variability of
observation times. In this section, we consider a special case where the cross-sectional distribution
of times between consecutive observations, K , can be identified from observable statistics on the
distribution of the size of price changes. We derive this mapping assuming that the target price,
p∗

t , evolves according to a Brownian motion, d log(p∗
t )=μpdt+σdBt , where Bt is the realization

of an idiosyncratic Wiener process, and μp =−σ 2/2 implies that p∗
t is a martingale.13 In this

specification of the model the cross-sectional invariant distribution of log-price changes, �log(p),
is given by a mixture of normals indexed by t, where the mixture has density corresponding to
the cross-sectional distribution of times between consecutive observations, i.e. k(t)=−K ′(t), and
each of the normals has mean and variance

(
0,σ 2 t

)
. The next lemma characterizes two useful

moments of the size distribution of price changes (see Appendix A for the proof):

Proposition 3. Let the target price p∗
t be a martingale evolving according to a Brownian motion,

d log(p∗
t )=−σ 2/2dt+σ dBt, then the variance of the log-price changes is

Var(�log(p))=σ 2EK (t) (12)

where EK (t)=∫∞
0 K(s) ds=1/R is the average duration of time between observations, and the

kurtosis of the log-price changes is equal to:

Kurt(�log(p))=3
[
(CVK (t))2 +1

]
, (13)

where CVK (t) is the coefficient of variation of times between consecutive observations (taken
with respect to the distribution K).

Proposition 3 is useful for two reasons. First, combined with the results of Lemma 2, it allows
us to obtain statistics about the cross-section distribution of price changes from the primitive
assumptions about the individual firm distribution of times between observations H. Secondly,
combined with observable statistics on the distribution of price changes, it allows us to identify the
coefficient of variation in observation times from the kurtosis of the distribution of price changes,

12. In private correspondence Reis clarified to us that his result follows from his definition of stationarity in Reis’s
(2006) Definition 1.

13. In Section 3, we discuss the possibility of price plans and give the conditions under which p∗
t is a martingale.

We argue that this case is not knife edge and that its analysis is informative for environments in which p∗
t has a small

drift (as is the case with a small inflation or with a productivity trend).
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as well as to identify the volatility of the target price from the variance and frequency of price
changes. For instance, if we use a kurtosis of price changes equal to 4, consistent with the estimates
by Alvarez et al. (2014), we obtain a coefficient of variation equal to CVK (t)=√

1/3. Combining
such estimate for CVK (t) with the results of Proposition 2, we obtain that the cumulative real
effects of a permanent innovation to money supply is about 35% larger than the corresponding
figure predicted by models with deterministic observation times (where CVK (t)=0, such as
Caballero, 1989 and Reis, 2006), and about one-third smaller than predicted by models with
exponential observation times (where CVK (t)=1, such as Mankiw and Reis, 2002).

The results of Proposition 3 (but not the other results of this section) depend on the assumption
that the innovations in log(p∗

t ) are Gaussian. In the Online Appendix, we extend our analysis to a
model where the innovations in log(p∗

t ) are not Gaussian because of the random volatility of those
innovations. This extension is useful to study the mapping from the distribution of price changes
to the distribution of observation times in a framework where the variability of observation times
is driven by a process with stochastic volatility.

3. A FIRM PROBLEM LEADING TO OPTIMAL OBSERVATION TIMES

This section studies a model of the firm’s optimal decision for observation times. This problem
gives rise to a Markov process for observations that can be represented by the conditional
distribution H(t′|t), the primitive of our analysis in Section 2. We set up the firm’s decision
problem in a relatively general formulation that encompasses several cases of interest: one where
the duration of the optimally chosen observation times is constant, one where it follows a first-
order Markov process (Section 4), and one where it is i.i.d. (Section 5). The distinction between
models of constant observation times (e.g. Caballero) and models of random observation times is
important since the variability of observation times increases the real effects of monetary shocks,
as shown in Proposition 2. Within the class of models that deliver variation in observation times,
the case of Markov persistent durations of the time between observations is appealing both
because we think it is a realistic representation of firms’ behaviour and because, everything else
being equal, more persistent durations of the time between observations increase the real effects
of monetary shocks.

While the aggregation results of Proposition 1 apply to any model of the firm’s problem that
can be represented by a distribution H(t′|t), we focus on a specific framework where variation in
observation times arises from variation in observation costs. This framework allows us to study
two cases of interest in the literature. First, the existing literature has provided a characterization
of Markov observation times, but only under the assumption of negligible observation costs
(e.g. Reis, 2006). We provide a global characterization of the decision rule, which allows
for both negligible as well as non-negligible observation costs. The latter are essential to get
infrequent observations. Secondly, a large literature has focused on i.i.d. observation times
and its implications for macroeconomic dynamics as discussed above. Despite its widespread
use, the “rational inattentiveness” literature has not provided a characterization of optimal i.i.d.
observations originating from random variation in the benefit/cost of acquiring information. This
article fills that gap and shows what features of the primal problem are relevant to obtain i.i.d.
distributed observation times. This section sets up a general environment where the firm’s optimal
stopping times can be studied. Section 4 discusses the general case of Markovian observation
times. Section 5 specializes the model to obtain i.i.d. observation times, the standard in the
literature.

The underlying economy is a simple variant of Golosov and Lucas (2007). Firms make two
types of decisions: (1) when to acquire information, and (2) the price at which to sell their good.
In particular, there is a continuum of firms, each producing a variety denoted by i, and facing
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a downward sloping demand given by C(Pi,t/Wt)=A
(
Pi,t/Wt

)−η, where A>0 is a constant,
η>1 is the price-elasticity, Pi,t is the nominal price of variety i, and Wt is the nominal wage
in period t. The production technology of each variety is linear in labour with idiosyncratic
labour productivity zi,t . It is well known that in this environment the frictionless optimal pricing
strategy of each firm is given by a constant markup over nominal marginal cost, given by Wt/zi,t .
The (log) of the labour productivity follows a Brownian motion with drift φ and volatility σ :
d log(zi,t)=φdt+σ dBi,t , where Bi,t is the realization of an idiosyncratic Wiener process. We
also assume that the product of the firm is replaced (“dies”) with a constant probability per unit
of time equal to λ, and a new product is born with productivity z=1. From a modelling point of
view the exogenous substitutions allow for an invariant distribution of firm’s productivities and
for bounded output. Finally, we assume that the nominal wage grows at a constant rate μ, so that
its dynamics between t and t+T are given by Wt+T =Wt eμT .

Information gathering: In the spirit of the rational inattentiveness literature we assume that
to gather information about the nominal marginal cost the firm must pay a fixed information-
gathering cost (see e.g. Reis, 2006), an activity we refer to as an observation. Hence, at observation
times, there is a discrete change in the information about the nominal marginal cost. While
acquiring the information is costly, firms can change prices at any time at no cost.14

The value of information: We first develop notation to quantify the value of information. For
expositional simplicity, we drop the time and firm sub-indexes. The firm’s period profits, scaled
by the nominal wage, are given by

�(p,z)≡C(p)

(
p− 1

z

)
, where p≡ P

W
, (14)

so that real profits are a function of the ratio of the nominal price to the nominal wage, p, and of
productivity, z.15

When prices are set conditional on perfect information of the current productivity z the
expected profits are

�∗(z)≡max
p

�(p,z)=A

(
1

z(η−1)

)1−η

η−η , with maximizer p∗(z)= η

η−1

1

z

where p∗(z) denotes the instantaneous profit-maximizing price as a function of productivity. We
notice that p∗(z) is the standard markup pricing of monopolistic competition.

To highlight the role of imperfect information, we compare the T -periods ahead expected
profits under perfect information with the expected profits under imperfect information. Let
L(·;T |z) denote the CDF of T -periods ahead productivity conditional on the current productivity,
z. Given the assumptions on the process for z, L(·;T |z) is a log-normal distribution. In the case
of perfect information, the T -periods ahead expected profit evaluated conditional on current
productivity z and the optimal pricing function p∗(z′), is given by∫ ∞

0
�∗(z′)dL(z′;T | z)=�∗(z)ebT , where b≡ (η−1)(φ−σ 2/2)+η(η−1)σ 2/2 . (15)

14. This differs from the models in which firms face a joint cost of observing the state and adjusting the price as in
Bonomo and Carvalho (2004), where the two costs are associated, or Alvarez et al. (2011) where the costs are dissociated
and the firm can select which one to incur.

15. We notice that, given the deterministic path of the nominal wage, scaling profits by the nominal wage and
studying the firm problem with respect to the scaled price p is without loss of generality with respect to the information
set of the firm.
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Alternatively, in the case of imperfect information the expected profits T periods ahead,
conditional on current productivity z, is a function of the best estimate of productivity z′:

�̂(T ,z)≡max
p

∫ ∞

0
�(p,z′) dL(z′;T | z) , (16)

with maximizer p̂(T ,z) given by

p̂(T ,z)= η

η−1

∫ ∞

0

1

z′ dL(z′;T | z)= η

η−1

1

z
e(σ 2/2−φ)T . (17)

The optimal price p̂(T ,z) is thus given by the markup η/(η−1) times the T periods ahead
expected value of the marginal cost 1/z′ (normalized by wages), conditional on the last observed
productivity z. We notice that p̂(0,z)=p∗(z). Using equation (16) into equation (14) we can write
�̂(T ,z) as

�̂(T ,z)=�∗(z)eaT , where a≡ (η−1)(φ−σ 2/2) . (18)

The two expected profits in equation (15) and equation (18) are taken with respect to the same
T -periods horizon. The difference between the two expressions lies in the information used to
set prices. When prices are set based upon T -periods-old information the expected profits grow
at the rate a. Instead, when prices are set with complete information the expected profits grow at
the rate b>a. Hence B≡b−a=η(η−1)σ 2/2 captures the rate at which the benefit of acquiring
information increases as a function of the time elapsed since the last observation.16 Notice that
the value of information equals (one-half) the curvature in the profit function, η(η−1), times
the incremental uncertainty σ 2. Intuitively, a higher the volatility of productivity innovations
(σ ) lowers the information content of past observations, increasing the value of information.
Likewise, a higher demand elasticity (η) boosts the impact of a given error in pricing on the
firm’s profits, thus increasing the value of information.

Price plans and price changes: Price changes between observation dates are referred to in the
literature as price plans: such price changes are based upon the information gathered in the last
observation and the law of motion of the relevant states. Equation (17) illustrates the workings of
price plans in our model: at each time T following the last observation, the firm charges the price
that maximizes expected profits. The nominal price of the firm grows at the rate μ+σ 2/2−φ,
where μ is the component reflecting nominal wage growth (recall that we are using p=P/W
as the control variable), and the σ 2/2−φ reflects the expected growth of productivity. Thus,
if μ−φ+σ 2/2 
=0 then the optimal price plan implies that prices change continuously. This
is a common element in models of rational inattentiveness that lack a physical cost of price
adjustment. A robust pattern in the data is, however, that prices change infrequently. A simple
way to obtain infrequent price changes in this class of models is to assume that the level of the
nominal marginal cost is a martingale, i.e. μ−φ+σ 2/2=0. As a result, price changes only occur
when new information arrives, so that the frequency of price changes coincide with the frequency
of observations. While this distinction is immaterial for the theoretical results of this article, being
able to map this class of models to statistics about the size and frequency of price changes may
be relevant for their quantitative implications, as we already showed in Section 2.1.3. Moreover,

16. Abel et al. (2007) also solve for optimal observation times in a framework where the benefit of doing an
observation increases at a constant rate as a function of time elapsed.
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Figure 1

Time line

in Alvarez et al. (2011) we show that price plans would not be optimal even in the presence of
a drift in the nominal marginal cost, when a price adjustment cost is added to a similar model
and calibrated to match the frequency of price changes in the U.S. economy. Therefore, in our
quantitative applications we will focus on a calibration of the model where the nominal marginal
cost is a martingale.

The cost of gathering information: We assume that acquiring information about the level of
the production cost 1/z requires the payment of an observation cost. We interpret the observation
cost as the physical cost of acquiring the information needed to make the price decision as
well as the time cost of decision making in the firm (gathering and aggregating information,
e.g. Zbaracki et al., 2004; Reis, 2006). The firm incurs an observation cost any time it acquires
information about the state. Upon payment of the observation cost, the firm learns the current
value of z. No information on the state arrives between observation dates.17 We assume that the
observation cost is equal to θ �∗(z), so that it is proportional to the value of the static monopolist
profit under complete information. This assumption serves two purposes. First, it reduces the
technical difficulty of the problem: the two expected profits in equations (15) and (18) show that
the benefits of information are proportional to �∗(z). Making the costs scale similarly leaves the
entire firm’s problem homogeneous in �∗(z), which simplifies the analysis. Secondly, when z is
persistent, this assumption is also necessary to produce i.i.d. times between observations as we
will do in Section 5.

We will call θ the observation cost. We allow for θ to be random, with a finite lower bound θ .
The processes of the observation cost θ and of the production cost z are assumed to be independent.
Immediately after paying the observation cost, the firm not only learns the current value of z,
but also receives a signal ζ ∈[ζ,∞) which is informative about the future realizations of θ . In
particular, the signal ζ summarizes all the information about the value of the observation cost to
be paid τ periods from now, for any τ ≥0. Mathematically we write F(θ ′ ;τ |ζ ) to be the CDF of
the observation cost θ ′ ∈[θ,∞) to be paid τ periods after the current observation, conditional on
the signal ζ . The dependence of the distribution F on τ allows the distribution of the observation
cost θ ′ to vary with the time elapsed between observations. In practice, we will work with a
specification where the signal ζ is proportional to the expected cost of the next observation for
any given τ , i.e. E[θ ′ ;τ |ζ ]∝ζ . Upon the next observation, when a particular cost θ ′ is realized,
a new signal ζ ′ ∈[ζ,∞) is drawn from the CDF G(·|θ ′). The timeline in Figure 1 describes the
structure of the observation cost θ , the associated signal ζ and production cost z, for an observation
date that occurs τ periods after the current observation.

17. Notice the difference with the “rational inattention” literature that developed after Sims (2003) where agents
typically process a limited amount of information every period. See Mackowiak and Wiederholt (2009) for an application
to firm price setting.
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The functions F and G fully characterize the process for the observation cost, and provide
enough flexibility to cover cases discussed in the literature as well as generalizations that we find
useful. For instance, the model of deterministic observation times studied by Caballero (1989)
and Reis (2006) is encompassed by our framework if the signal is uninformative about the future
observation cost, which is the case if F(θ ′,τ0 |ζ0)=F(θ ′,τ1 |ζ1) for all θ ′ and all pairs (τ0,ζ0).
In this case, the distribution G is irrelevant because, given that the signal is uninformative, the
mechanism to obtain the new signal is irrelevant.18

Another case discussed in the literature is one where the firm’s observation times are i.i.d.,
as proposed by Reis (2006). Our model provides a foundation to i.i.d. observation times: the
firm has to draw a signal about the future observation cost that is both informative about
the next observation cost and independent of all other shocks (including the current value of
the observation cost). In this case, the particular form of the distribution G is relevant. Formally,
observation times are i.i.d. in our model if and only if G(ζ |θ0)=G(ζ |θ1) for all ζ and all pairs
θ1,θ0. The distribution F shapes the precision of the signal. Finally, the more general case where
G(ζ |θ0) 
=G(ζ |θ1) for at least some ζ and some pairs θ1 
=θ0 allows us to extend our analysis
to the case of observation times correlated over time, a case which we find more reasonable than
the i.i.d. assumption.

The firm’s Bellman equation: Without loss of generality we consider the problem of the firm
right after it has paid the observation cost, when it is deciding the length of the time until the next
observation which we denote as τ . The state of the firm at this date consists of both the signal
ζ and the productivity z. The value of the firm V (ζ,z), i.e. the expected discounted value of the
profits net of the observation cost, solves the following recursive problem

V (ζ,z) = max
τ∈R̄+

∫ τ

0
e−(ρ+λ)s �̂(s,z)ds (19)

+ e−(ρ+λ)τ
∫ ∞

−∞

∫ ∞

θ

(
−θ ′�∗(z′)+

∫ ∞

ζ

V (ζ ′,z′)dG(ζ ′|θ ′)
)

dF(θ ′ ;τ |ζ )dL(z′;τ |z),

where real profits are discounted at rate ρ+λ, with ρ capturing the agent’s preferences discount
rate in the setup of interest (described in the appendix of Alvarez and Lippi, 2014), and λ is
due to the substitution of products. The firm chooses the time τ ≥0 between the current and
the next observation, where τ =∞ represents the case of never observing. The first term on
the right-hand side of equation (19) reflects the expectations of cumulated profits until the next
observation. Equations (15)–(18) imply that the s-periods ahead expected profits, �̂(s,z), scale
with �∗(z), i.e. E[θτ �∗(zτ )|ζ0,z0]=E[θτ |ζ0]ebτ �∗(z0). The second term on the right-hand
side of equation (19) refers to the discounted expectation of the continuation value upon the next
observation, V (ζ ′,z′), conditional on the next observation date taking place τ periods from now,
the current productivity being z, and the current signal being ζ . The integrals on the right-hand
side of equation (19) reflect the expectation of V (ζ ′,z′) with respect to the possible realizations
of z′ and ζ ′ (which also depend on the realization of θ ′).

We use that both expected profits and observation cost scale with �∗(z), together with the
independence of z′ and θ ′, to express the value function as V (ζ,z)=v(ζ )�∗(z), where the function

18. In Caballero (1989) and Reis (2006) the cost is fixed, which amounts to a degenerate F. Our setup thus delivers
a small generalization: absent an informative signal, observation times will be constant even if F is not degenerate.
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v(ζ ) solves the following simpler recursive problem:

v(ζ )= max
τ∈R̄+

∫ τ

0
e−(ρ+λ−a)tdt + e−(ρ+λ−b)τ

∫ ∞

θ

(∫ ∞

ζ

v
(
ζ ′)dG

(
ζ ′ |θ ′)−θ ′

)
dF
(
θ ′;τ |ζ ) .

(20)

We denote by the function τ (ζ ) the optimal policy that solves the firm’s problem. Notice that
this problem has relatively few parameters. The functions v(·) and τ (·) depend only on three
scalars (a, b and ρ+λ), and two functions (G and F). The first term on the right-hand side of
equation (20) contains the value of expected profits using only current information. The second
term contains the value of expected profits after a new observation, as well as the expected future
observation cost. The optimal choice of τ balances the value of information (summarized by
b>a) against the expected cost of a new observation θ ′. An immediate result of equation (20) is
that the optimal time between observations only depends on the realization of the signal ζ , and
not on productivity z. Finally, to have a finite value of a firm in the frictionless case, we assume
that λ+ρ >b. Hence, the value function is bounded below and above as follows:

0<v≡ 1

ρ+λ−a
≤v(ζ )≤ v̄≡ 1

ρ+λ−b
<∞ for all θ ∈ (0,+∞),

where the lower bound is obtained by setting τ =∞, while the upper bound is obtained in the
perfect information case when observation is always costless, and the firm observes continuously.

Obtaining H(t′|t): We can use the solution to the firm’s problem τ (ζ ), and the properties of
the process governing the signal ζ , to derive the conditional right CDF for the times between
consecutive observations, which in Section 2 was denoted by H(·|t). In particular, assume that τ (·)
is strictly increasing in ζ , a property which will be satisfied in our applications, and let ζ = ζ̂ (t)
denote the mapping from an observation of length t with the associated signal ζ , where ζ̂ (t)=
τ−1(t) is the inverse function associated with the optimal policy τ (·). For simplicity, consider
the case with no substitutions, i.e. λ=0.19 In this case, the distribution H is given by H(t′ |t)=∫∞
θ (1−G(ζ̂ (t′)|θ ′))dF(θ ′;t |ζ̂ (t)), which equals the probability of drawing a signal ζ ′ ≥ ζ̂ (t′)

at the next observation, conditional on having drawn a signal ζ = ζ̂ (t) at the last observation,
which occurred t periods ago. This requires integrating over all possible realizations of the future
observation cost θ ′, since the realization of θ ′ determines the distribution from which the signal
ζ ′ will be drawn upon the next observation.

3.1. The case of constant optimal observation times

This subsection presents a specification of the observation cost process which implies that
the optimal (consecutive) observation times have equal duration. This case serves as a useful
benchmark, and is a limiting case, of the more general case of random observations that will be
considered in the next sections. In particular, we assume that signals are uninformative about
future observation costs, so that firms face the same problem upon every observation and choose
the same time to the next observation. We assume that F(θ,τ0 |ζ0)=F(θ,τ1 |ζ1)≡ F̂(θ ) for all θ

and all pairs (τ0,ζ0) and (τ1,ζ1) and that G is arbitrary. The assumption on F means that the signal
is uninformative about future observation costs. Note that the signal could be uninformative and

19. The case with substitutions follows a similar logic, but is algebraically more involved (see the Online Appendix).
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yet F̂(θ ) does not need to be degenerate. The function G can be left unspecified because, given
that the signal is uninformative, the mechanism to obtain the new signal is irrelevant. Using these
assumptions on F in equation (20), one obtains that τ (ζ )= τ̂ and v(ζ )= v̂, so neither function
depends on ζ . In particular, letting the expected observation cost E[θ ]=∫∞

0 θ dF̂(θ )>0, the
Bellman equation becomes:

v̂= max
τ∈R̄+

∫ τ

0
e−(ρ+λ−a)tdt + e−(ρ+λ−b)τ (v̂−E[θ ]) . (21)

The analysis that follows characterizes the comparative statics of the optimal decision rule,
summarized by the constant τ̂ , as a function of the model parameter E[θ ], i.e. the expected value
of the observation cost. To do so, as well as for future use, we define the function τ̃ (·) so that the
optimal policy is τ̂ = τ̃ (E[θ ]). The function τ̃ (·) is

τ̃ (x)=
{

1
B [ln(v̄)−ln(ṽ(x)−x)] if 0<x<v

∞ if x≥v
, (22)

where ṽ(x)=
⎧⎨
⎩smallest solution of ṽ=v+Bvv̄

(
ṽ−x

v̄

) 1
Bv if 0<x<v

v if x≥v
, (23)

and B≡b−a=η(η−1)σ 2/2 summarizes the value of information. The following proposition
collects these results (see Appendix A for the proof):

Proposition 4. Assume that signals are not informative, i.e. F(θ,τ0 |ζ0)=F(θ,τ1 |ζ1)≡ F̂(θ ) for
all θ and all pairs (τ0,ζ0) and (τ1,ζ1), and E[θ ]>0. The optimal observation time is given by
τ̂ = τ̃ (E[θ ]), which is strictly increasing in E[θ ] for 0<E[θ ]<v, and infinite for E[θ ]≥v.

The optimal time between observations is increasing in the expected observation cost:
the larger the expected observation cost, the more time must elapse before the benefit of an
observation is large enough to induce the firm to pay the observation cost. As the expected value
of the observation costs becomes small, formally as E[θ ]↓0, the optimal observation time is
approximated by the square root function τ̂ ≈√

2E[θ ]/B. This limiting case in which E[θ ]↓0
reproduces Reis’s (2006) in Proposition 5, where a perturbation method was used to derive an
approximation for τ̂ . Proposition 4 generalizes Reis’s results by characterizing the solution away
from the case where E[θ ] is small. These results will be useful in the next section to characterize
the determinants of the shape of the optimal observation times in general as a function of the
expected value of the observation cost shocks and of their persistence.

4. OPTIMAL MARKOV OBSERVATION TIMES

The results of Proposition 2 imply that the case of constant observation times studied in the
literature and discussed in the previous section predicts the smallest real effects of monetary
shocks for given average time between observations EK (τ )= τ̂ , as the associated coefficient of
variation of observations is CVK (τ )=0. Studying the underpinnings of variability in observation
times is important because such variability increases the size of the real effects of monetary
shocks. This section presents a specification of the process for the observation cost implying that
optimal observation times form a first-order Markov process. The solution to the firm’s problem
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will provide a mapping from the realization of the observation cost to the optimal time between
consecutive observations, τ .

We will use this mapping to obtain a relationship from the coefficient of variation of
observation costs, CV (θ ), to the coefficient of variation of observation times, CVK (τ ). This
mapping is useful to appreciate the ability of the model to generate a given variation in observation
times, for a given variation of the observation costs.

4.1. Solving for the observation time with a specific cost distribution

We assume that the observation cost θ ≥0 follows a continuous time process, and the firm learns
about the current value of θ only at observation times. The observation cost is modelled in a
way that parallels the production cost. Both of them follow a continuous-time stochastic process
whose distribution is independent of whether and when the firm decision to observe.20 A special
case of the process for the observation cost is the one where the observation cost is constant
until a new value is drawn from the distribution F̂(·) with support on (0,∞). The cumulative
distribution in this case is given by

F(θ ′,τ |θ )=e− τ
κ 1θ ′≥θ +(1−e− τ

κ )F̂(θ ′) , κ <∞ . (24)

The arrival rate of the new value is given by the constant 1/κ (i.e. it is a Poisson process),
and it is independent of the current value of θ . We will refer to κ as the parameter governing
the persistence of observation cost, with a higher κ associated with a higher persistence. We
assume that the current realization of the observation cost is the best and only predictor of future
realizations of the observation cost. Formally we assume that ζ =θ , implying G(ζ |θ)=1ζ≥θ .
Without loss of generality we can replace ζ with θ as the argument of the firm policy and value
function, i.e. τ (θ ) and v(θ ).

Given the process for θ implied by equation (24), we can rewrite the Bellman equation in
equation (20) as:

v(θ )= max
τ∈R̄+

∫ τ

0
e−(ρ+λ−a)tdt + e−(ρ+λ−b)τ

(
e− τ

κ (v(θ )−ζ )+
(

1−e− τ
κ

)
(E[v]−E[θ ])

)
,

(25)

where E[v]≡∫∞
0 v(θ)dF̂ (θ) and E[θ ]≡∫∞

0 θ dF̂(θ ). The next two propositions characterize the
shape of the decision rule τ (θ ) that solves the problem in equation (25): the general message is
that the shape crucially depends on two parameters, the expected value, E(θ ), and the persistence,
κ , of the observation cost.

As shown by Reis’s (2006) proposition 4 the decision rule, τ (θ ), is a square root formula for
any given level of persistence κ as the expected value of the observation costs becomes tiny, i.e. as
E(θ )→0. The next proposition extends that characterization (see Appendix A for the proof). It is
shown that the shape of the optimal decision may be very different from the square root provided
that the persistence of the shocks is sufficiently small. In particular, for a given expected value of
the costs, E(θ )>0 (arbitrarily small), there is a threshold for the persistence κ such that if κ <κ

the firm chooses a strictly positive time until the next observation even if the realized observation
cost θ is tiny. Conversely, the square root result is obtained if the observation cost is sufficiently

20. The assumption that the evolution of the observation costs is independent of the decision to observe will need
to be abandoned to generate i.i.d. observation times, as discussed in Section 5.
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persistent, i.e. κ >κ̄ . The proposition assumes a sufficiently small level of the expected future
costs, i.e. for E[θ ]<v (if the condition is not satisfied, the optimal time between observations
diverges):

Proposition 5. Assume that E[θ ]<v, and let κ̄ ≡v+E[θ ]/(v̄B) and κ ≡E[θ ]/(Bv)<κ̄:

(i) for any 0<κ <∞ we have τ (θ )>0 and τ ′(θ )>0 if θ >0, with limθ→∞τ (θ )=∞ and
limθ→∞τ ′(θ )=0;

(ii) for all κ <κ we have limθ→0+ τ (θ )>0;
(iii) for all κ ≥ κ̄ we have limθ→0+ τ (θ )=0 and limθ→0+ τ ′(θ )=+∞.

The first point of the proposition states that the time between consecutive observations is
strictly positive provided that θ >0, since the firm would face unbounded losses in a finite period
of time if it were to observe the state continuously. Moreover, point (i) also states that the optimal
observation time is strictly increasing in the current value of the observation cost θ , since a higher
θ signals a higher expected value of the future observation cost.21

The next two points of the proposition are crucial to see how the shape of the optimal rule at
small values of θ depends on the persistence of the cost shocks, κ . Point (ii) states a sufficient
condition on the persistence parameter κ such that if the persistence is low enough (i.e. κ <κ) then
the optimal time between observations converges to a strictly positive value as the observation
cost converges to zero. Intuitively, as the persistence of observation costs decreases, the current
observation cost becomes a bad predictor of future observation costs. When the persistence is
sufficiently low, such expectation will be dominated by the unconditional mean, i.e. E[θ ]>0, to
the point that even when the observation cost is tiny the firm will still choose to wait for a strictly
positive time before making another observation.

A different rule obtains if the persistence parameter κ is sufficiently high (i.e. κ ≥ κ̄), a
condition described under point (iii). In this case, the optimal time between observations converges
to zero as the observation cost converges to zero (with an infinite slope at zero). The reason is
that when persistence is high the current observation cost is a good predictor of the future cost,
thus the decision rule becomes responsive to the current cost.

Figure 2 illustrates the results of our proposition through numerical examples obtained at
parameter values that reproduce the average frequency and size of price changes estimated by
Nakamura and Steinsson (2008). In these examples, and in the ones that will follow later in the
article, we will concentrate on the case in which the nominal marginal cost is a martingale (i.e.
μ−φ+σ 2/2=0) because, as it is well documented, prices change infrequently.22 We provide
more details on the calibration of the model in the Online Appendix.

4.2. Two limiting cases

To further illustrate the key role of the persistence of observation costs for optimal observation
times, the next proposition considers two limiting cases for κ: permanent observation cost, i.e.
κ →∞; and i.i.d. observation cost, i.e. κ →0 (see Appendix A for the proof). This proposition
is informative about the shape of the decision rule, not just at small values of θ as done before,

21. This can be seen noting that E[θ ′;τ |θ ]=e− τ
κ θ +(1−e− τ

κ )E[θ ] increases with θ for any time τ .
22. This is a meaningful benchmark also because if one were to add a separate cost of adjusting prices, the optimal

policy would indeed feature constant prices between consecutive observations as long as the drift in the marginal cost is
not too large (see Alvarez, 2011 for a rigorous characterization).
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Figure 2

The optimal observation times rule τ (θ ), as persistence κ varies

Note: The figure reports the optimal time to the next observation τ (θ ), in years, as a function of the signal value ζ =θ

on the horizontal axis, and for different values of persistence, as measured by κ . The distribution F̂ is assumed to be
exponential with average observation cost E[θ ]=0.05. Depending on persistence κ , this cost implies between 1.1 and
1.4 observations per year on average. We set the drift μ−φ+σ 2/2=0 to obtain infrequent price changes, and σ =0.114
to match an average size of price changes equal to 10%. The other parameters are η=5, λ=0.25, and ρ =0.02. For more
details see the Online Appendix. The dashed line plots the function

√
2θ/B .

showing that it converges pointwise to the decision rule in the problem with constant time between
observations when κ →∞.

Proposition 6. Assume that E[θ ]<v, and let τ (θ;κ) and v(θ;κ) denote, respectively, the solution
to the firm problem and associated value function in equation (25) conditional on a given
persistence parameter κ . Then we have that:

(i) for any θ ≥0, limκ→∞τ (θ;κ)= τ̃ (θ ) and limκ→∞v(θ;κ)= ṽ(θ ) where the functions τ̃ (·)
and ṽ(·) are given by equations (23)–(22);

(ii) for any θ >0, limκ→0
∂ τ (θ;κ)

∂θ = ∂ v(θ;κ)
∂θ =0.

Point (i) shows that when the observation cost is permanent, i.e. κ →∞, the optimal
observation time is given by the function τ̃ (θ ), in equation (22). One can use this expression to
show that the optimal policy is approximated by τ̃ (θ )=√

2θ/B+o(θ ), implying an elasticity of
observation times to observation costs of 1/2 in a neighbourhood of θ =0.Although the functional
form τ̃ (θ ) is the same as in Section 3.1, it is important to notice that the resulting dynamics are
very different. Because θ is Markov here, the conditional mean varies across firms, and hence
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the time between observations is not equal across firms. In the previous example, the expected
value of θ was constant both over time and across firms.

Point (ii) shows that as the cost becomes i.i.d. (i.e. κ →0) the optimal observation time is
insensitive to the realization of the current observation cost and converges to a constant, just
as in Section 3.1. Intuitively, when κ →0 the current observation cost is uninformative about
the future observation cost, while its unconditional expectation E[θ ] is the main determinant of
the optimal time to the next observation and the rule becomes flat. In Figure 2, we illustrate the
effects of the persistence parameter κ on the shape of the decision rule τ (θ ) at parameters of the
model that imply an average frequency of price changes of about 1.3 adjustments/observations
per year, and an average size of price changes equal to 10% (see the Online Appendix for more
details on the parameters choice). It is apparent that the decision rule has a square root-like shape
only when the persistence of the cost shocks is sufficiently high. Otherwise the decision rule is
flat and unresponsive to changes in the costs.

4.3. The scale of observation cost and the optimal observation times

The results of Propositions 5 and 6 relate to the findings of Reis’s (2006) Proposition 4, which
shows that the optimal time between observations is (in our notation) approximately equal to
τ (θ )≈√

2θ/B for E[θ ]→0. We have extended that characterization to a more general case when
E[θ ] is not necessarily close to zero, and showed how the shape of the optimal observation times
depends both on the average observation cost, E[θ ], and on the persistence of the observation cost,
κ . The extension to non-negligible E[θ ] is important: in the case of negligible costs (i.e. when
E[θ ]→0, a situation Reis refers to as “costless planning”) the mean frequency of observation
is very high (diverging in the limit), so that the economy becomes one with flexible prices. A
new and important result of this extension is to show that, when the costs are non-negligible, the
optimal firm behaviour is well approximated by a square root formula only if the observation costs
are sufficiently persistent. Notice in particular that our propositions imply that, as the realizations
of the observation cost converge to zero (θ ↓0), the optimal observation time will not converge
to zero if the persistence is low enough (κ <κ), and that τ (θ ) will converge to a constant as the
observation cost process converges to i.i.d. (κ →0).23 Our results highlight the crucial role of
E[θ ] for the shape of τ (θ ): the thresholds κ and κ̄ are increasing in E[θ ]. To highlight the role
of the scale of observation costs, in Figure 3 we plot the optimal τ (θ ) when, everything else
being equal, we scale the distribution of observation costs F̂ so that E[θ ] is 1/1000 smaller than
in the case of Figure 2. It is shown that the optimal time to the next observation is indeed well
approximated by the square root expression, even at very low levels of persistence. However,
the negligible observation costs used in the case of Figure 3 imply a sizeable increase in the
frequency of information gathering, from about 1.3 observation per year (in the baseline case) to
about 40 observations per year. In such a case, the quantitative behaviour of the model is close
to flexible prices.

4.4. The variation of costs and observation times

We have shown that combinations of low average observation costs and/or a high persistence
of the observation cost are associated with a higher elasticity of observation times with respect
to the observation costs. This result is useful to determine the mapping from the variation of

23. It is immediate to see the difference with the square root approximation where the observation time converges
to zero with an elasticity of one-half as the observation cost θ converges to zero.
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Figure 3

The optimal observation times as all costs gets negligible: E[θ ]→0

Note: The figure reports the optimal time to the next observation τ (ζ ), in years, as a function of the signal value ζ

on the horizontal axis, and for different values of persistence, as measured by κ . The distribution F̂ is assumed to be
exponential with average observation cost E[θ ]=0.05/1000: such negligible costs implies about forty observations per
year on average. We set the drift μ−φ+σ 2/2=0 to obtain infrequent price changes, and σ =0.114 to match an average
size of price changes equal to 10%. The other parameters are η=5, λ=0.25, and ρ =0.02. For more details see the
Online Appendix.

observation costs to the variation of observation times. The next proposition uses these results to
characterize the coefficient of variation of observation times (excluding substitutions) in terms
of the coefficient of variation of the observation cost (see Appendix A for the proof).

Proposition 7. Let E(θ )→0 and the coefficient of variation of observation cost be such that
CV (θ )>0 as E(θ )→0. Let CVK (τ ) denote the coefficient of variation of the times between
consecutive observations conditional on no substitutions. We have that

CVK (τ )= 1

2
CV (θ )+o

(√
E(θ )

)
. (26)

An increase in the coefficient of variation of observation costs affects the cross-sectional
variation of observation times with a coefficient of 1/2. The result follows from using that, as
shown by Reis’s (2006) Proposition 4, the optimal policy is approximated by τ̃ (θ )≈√

2θ/B as
E[θ ]→0, so that the elasticity of the time between observations to the observation cost is one-
half. However, as we showed above, the elasticity of observation times to the observation cost
may be much lower in the general case when E[θ ] is away from zero. To study the mapping from
the variation in observation cost to the variation in observation times when E[θ ] is away from
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Figure 4

The coefficient of variation of observation times

Note: The figure reports the coefficient of variation of times between observations (in years, including substitutions) as a
function of the coefficient of variation of observation cost, and for different values of persistence, as measured by κ , which
is the inverse of the (yearly) arrival rate. The distribution F̂ is assumed to be Gamma(α1,α2), where α1 determines the
coefficient of variation of observation costs upon a new draw, and α2 is chosen to match an yearly average frequency of
observations/adjustments equal to 1.3. We set the drift μ−φ+σ 2/2=0 to obtain infrequent price changes, and σ =0.114
to match an average size of price changes equal to 10%. The other parameters are η=5, λ=0.25, and ρ =0.02. For more
details see the Online Appendix.

zero, we assume that F̂ is a Gamma distribution with shape parameter α1 and scale parameter α2.
The parameter α1 determines the coefficient of variation of the observation cost θ . The parameter
α2 is chosen so that the average frequency of observations is 1.3 on a yearly basis. Together
with the assumption of no drift in nominal marginal cost, this matches the frequency of price
changes estimated by Nakamura and Steinsson (2008) in the U.S. data. We notice that targeting
1/E[τ (θ )]=1.3 implies an implicit target for E[θ ], an important parameter in the analysis above
to determine the elasticity of optimal observation times to observation cost.

In Figure 4, we plot the model-implied coefficient of variation of observation times (CVK (τ )
on the vertical axis) as a function of the coefficient of variation of observation costs, for different
values of cost persistence, κ . The horizontal dotted line in the figure indicates the level of variation
in observation times that is consistent with the kurtosis of the empirical distribution of price
changes.24 This shows that the model can predict variation in observation times consistent with
the distribution of price changes only when persistence in the observation cost is sufficiently

24. This uses an estimated value for the kurtosis of price changes around 4, consistent with Alvarez et al. (2014),
and the results in Proposition 3, which yields the coefficient of variation CVK (τ )=0.58.
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TABLE 1
Cumulated output effect of a monetary shock δ=0.01 (1%): M(δ)×100

κ =0.10 κ =0.33 κ =1.00 κ =4.00 κ =∞
CV (θ )=0.75 0.38 0.39 0.43 0.46 0.48
CV (θ )=1.00 0.38 0.39 0.46 0.51 0.54
CV (θ )=1.20 0.38 0.39 0.48 0.56 0.60
CV (θ )=1.40 0.38 0.39 0.51 0.62 0.68

Note: Values are percentages, i.e. M(δ)×100. The table reports the cumulated output effects to a δ=0.01 (1%) monetary
shock as a function of the coefficient of variation of observation cost, and for different values of persistence, as measured
by κ , which is the inverse of the (yearly) arrival rate. The cumulated output response is M(δ) defined in Proposition 2,
with ε=1. The distribution F̂ is assumed to be Gamma(α1,α2), where α1 determines the coefficient of variation of
observation costs upon a new draw, and α2 is chosen to match an yearly average frequency of observations/adjustments
equal to 1.3. We set the drift μ−φ+σ 2/2=0 to obtain infrequent price changes, and σ =0.114 to match an average
size of price changes equal to 10%. The other parameters are η=5, λ=0.25, and ρ =0.02. For more details see the
Online Appendix.

large. With high persistence the model predicts a sizeable variation in observation times even
when the variation in observation cost is moderate.25 Given the results of Proposition 2, the size
of the real effect of monetary shocks can be readily computed from Figure 4. Table 1 reports the
percentage cumulated output response, i.e. M(δ)×100, to a 1% monetary shock, i.e. δ=0.01,
for different combinations of CV (θ ) and κ .26 For instance, when CV (θ )=1, the cumulated output
effect is 0.38% if the average duration of the observation cost is one-tenth of a year (i.e. κ =0.1),
and 0.54% if the observation cost is permanent (i.e. κ →∞).

We conclude this section by stressing that the process of optimal observation times does not
inherit the properties of the process of the observation cost. In fact as the process of observation
cost converges to i.i.d., i.e. κ →0, the optimal time between observations converges to a constant.
The economic motivation is that when κ →0 the current observation cost is uninformative about
the cost of the next observation, so that the firm plans according to its best estimate which is the
expected value E[θ ]. An immediate implication of these result is that the model with a Markovian
stochastic process of observation cost cannot generate i.i.d. observation times, which has been a
main focus of the “rational inattentiveness” literature (see Reis, 2006, Mankiw and Reis, 2002,
Carvalho and Schwartzman, 2012). We want to remark that this is not a feature of our particular
specification of the distribution function F, but it is a more general result. In order for observations
to be i.i.d. over time, we need an environment where the signal about the future observation costs
is both informative and independent of all other shocks (including the current observation cost).
This structure cannot be achieved with an environment where the observation cost follows a
stochastic process that evolves independently of the observation decisions of the firm. We will
therefore consider a specification of the observation cost process that delivers i.i.d. observations
times in the next section.

5. OPTIMAL I.I.D. OBSERVATION TIMES

This section presents a specification of the firm problem where the optimal consecutive
observation times are i.i.d. random variables. We are interested in this case mostly because a
large literature has investigated the implications of i.i.d. observation times for the real effects of

25. In the case of κ =∞, the required standard deviation of observation cost is of the same order of magnitude of
its mean, i.e. CV (θ )≈1.

26. In the example we assume that the elasticity of real money balances to output is equal to ε=1.

 at B
anca d'Italia on A

pril 8, 2016
http://restud.oxfordjournals.org/

D
ow

nloaded from
 

http://restud.oxfordjournals.org/lookup/suppl/doi:10.1093/restud/rdv050/-/DC1
http://restud.oxfordjournals.org/


[15:38 10/3/2016 rdv050.tex] RESTUD: The Review of Economic Studies Page: 446 421–459

446 REVIEW OF ECONOMIC STUDIES

monetary shocks, such as Mankiw and Reis (2002) or more recently Carvalho and Schwartzman
(2012). The solution to the firm problem will provide a mapping from the realization of the
observation costs to the optimal time between consecutive observations, τ . As in the previous
section, we will use this mapping to obtain a relationship from the coefficient of variation of
observation costs CV (θ ) to the coefficient of variation of observation times, CVK (τ ), and hence
to the size of the real effects of monetary shocks.

Optimal i.i.d. observation times cannot be produced in an environment where the observation
cost follows a stochastic process that evolves independently of the observation decisions of the
firm, as in the previous section. In fact, persistence in the opportunity cost of observations leads to
predictability and correlation of observation times.27 To generate i.i.d. observation times, we have
to assume that, upon an observation, the firm receives a signal ζ about the future observation
cost θ ′, that is independent of the current observation cost, θ (see Figure 1 for an illustration
of the timeline of θ and ζ ). Formally, the observation times are i.i.d. over time if and only if
G(ζ |θ0)=G(ζ |θ1) for all ζ and all pairs θ1,θ0, and hence G(ζ |θ)≡ Ĝ(ζ ) for all ζ and θ .

The observation cost θ ′ will be drawn from the distribution F(θ ′,τ |ζ ), that depends both on
the realization of the signal ζ and on the time τ elapsed since then. A simple tractable case is one
where such distribution is

F(θ ′,τ |ζ )=e−γ τ 1θ ′≥ζ +(1−e−γ τ )F̂(θ ′) . (27)

The parameter γ determines the information content of the signal, which is perfectly precise if
γ =0, and has no information as γ →∞. Notice that a higher value of the signal ζ is associated
with a higher expected observation cost: E[θ ′|ζ,τ ]=e−γ τ ζ +(1−e−γ τ )

∫
θ ′dF̂(θ ′). In this case,

the realization of the signal coincides with the cost of the next observation with a probability
that decreases as time elapses, otherwise the future observation cost will be drawn from the
distribution F̂ (independent of ζ ). This specification of F captures the idea that, as time passes,
the precision of the information about the future observation cost depreciates, while preserving
tractability.

Given equation (27) and the assumption G(ζ |θ)≡ Ĝ(ζ ) for all ζ and θ , we can rewrite the
firm problem in equation (20) as:

v(ζ )= max
τ∈R̄+

∫ τ

0
e−(ρ+λ−a)tdt + e−(ρ+λ−b)τ ( E[v]−( e−γ τ ζ +(1−e−γ τ

)
E[θ ] ) ) , (28)

where E[v]≡∫ v
(
ζ ′)dĜ

(
ζ ′) and E[θ ]≡∫ θ ′dF̂(θ ′).28 The proposition below characterizes the

decision rule in this case (see Appendix A for the proof). We will use such characterization to
compare to the decision rule obtained in the case of persistent observation cost in the previous
section.

Proposition 8. Assume that F(·) is given by equation (27) with 0<γ <∞ and that v>E[θ ].
Then: (i) there exists a ζ ∗ so that 0<τ (ζ )<∞ and τ ′(ζ )>0 for all ζ ∗ ≤ζ <∞; moreover if
ζ ∗ >ζ , then τ (ζ )=0 for all ζ ≤ζ <ζ ∗; (ii) if ζ ≥0, then τ (ζ )>0 and ζ ∗ =ζ .

Point (i) of the proposition states that the time between observations, τ , increases with the
signal about the future observation cost, ζ , and does so strictly for values above a threshold ζ ∗.

27. A similar result is obtained in the Online Appendix when it is the benefit of observations that varies over time.
28. Note that the particular specification of the distribution F̂ is immaterial for this problem, as only the associated

mean E[θ ] matters.
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Figure 5

Optimal i.i.d. observation times as a function of the signal on the observation cost

Note: The figure plots the optimal time to the next observation τ (ζ ), in years, as a function of the signal value ζ on the
horizontal axis, and for different values of precision, as measured by 1/γ . The distribution Ĝ is assumed to be exponential
with average E[ζ ]=0.05, and we further assume E[θ ]=E[ζ ]. We set the drift μ−φ+σ 2/2=0 to obtain infrequent price
changes, and σ =0.114 to match an average size of price changes equal to 10%. The other parameters are η=5, λ=0.25,
and ρ =0.02. For more details see the Online Appendix.

Intuitively, a higher realization of ζ is associated with a higher expected observation cost, so the
firm delays the time of the next observation. When the realization of such signal is low enough,
i.e. ζ <ζ ∗, the expectation of the next observation cost is so low that the firm finds it optimal to
observe immediately. Point (ii) establishes that ζ ∗ must be negative for the firm to exercise the
observation immediately. In fact, if the lower bound of the support of ζ is positive, i.e. ζ ≥0, then
τ (ζ )>0. For instance, even if ζ =0 so that the cost of observing immediately would be zero,
then τ (0)>0. We notice that this is true for all values of γ . As an illustration of the properties of
the optimal firm policy, Figure 5 plots the optimal time to the next observation as a function of
the expected cost of the next observation, for different values of γ .

Comparing Figure 5 to Figure 2 one can appreciate the different properties of the optimal time
to the next observation in the cases of i.i.d. and Markov observation times, respectively. These
differences are particularly evident for expected observation cost arbitrarily close to zero. The
economics of τ (0)>0 is very different from the case of persistent observation cost in the previous
section. Here, the firm waits a strictly positive period of time before making another observation
even if the cost of observing (again) immediately is zero because of an option value argument:
if the observation occurs immediately the opportunity to potentially exercise an observation at a
low cost would be wasted because there is no correlation between consecutive observation costs.
Due to the nature of i.i.d. observation times, the setup of the problem is such that each observation
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is associated with an i.i.d. draw for the distribution of the observation cost to be paid upon the
next observation. A firm that draws a signal of low (future) observation cost will wait for the best
moment to use this option. The option value of waiting will turn out to be relevant to determine the
smallest time between observations. For instance, one important implication is that, to generate
a positive probability of arbitrarily small durations of the time between observations—e.g. in
an exponential distribution—the distribution of observation costs needs to have positive mass
on negative costs, i.e. θ <0 and

∫ 0
θ dĜ(x)>0.29 This result is interesting as a large part of the

literature that developed after Mankiw and Reis (2002) has focused on quantifying the predictions
of models of rational inattentiveness in which the distribution of the times between observations
indeed features positive mass on arbitrarily small durations. We will come back to this issue
in Section 5.1. More interestingly, the option value of waiting also reduces the variability of
observation times that follows from the variability of observation cost. This in turn reduces the
ability of such model to produce large variation in observation times and, therefore, large real
effects of monetary shocks. We discuss this in more detail later.

Next we consider two special cases for the informativeness of the signal, for which we have an
(almost) closed form solution for the optimal policy. In the case where γ =∞, the signal carries
no information about the observation cost to be paid, and hence the model coincides with the
case characterized in Proposition 4, where the policy τ (·) does not depend on the realization of
ζ . At the other extreme, γ =0, the signal is perfectly informative about the cost to be paid at the
next observation. The next two propositions describe the optimal policy and the mapping from
the variability of observation cost to the variability of observation times in the γ =0 case.

Proposition 9. Let F(θ ′,τ |ζ )=1θ ′≥ζ for all ζ , i.e. γ =0 in equation (27). The optimal policy
τ (ζ ) is given by

τ (ζ )=

⎧⎪⎨
⎪⎩

0 if ζ ≤ζ ≤E[v]− v̄
1
B [ ln(v̄)−ln(E[v]−ζ ) ] if E[v]− v̄<ζ <E[v]
∞ if ζ ≥E[v]

, (29)

where the expected value E[v]=∫∞
ζ v

(
ζ ′)dĜ

(
ζ ′) is the solution of an explicit equation that is

displayed in the proof. If ζ ≥0, then: (i) E[v]< v̄ and τ (ζ )>0 for all ζ ≥ζ ; (ii) if Ĝ is first-order

stochastically higher, then E[v] is smaller; and (iii) if Ĝ is second order stochastically higher,
then E[v] is higher.

SeeAppendixAfor the proof. Whenγ =0 the optimal policy τ (ζ ) is known in closed form up to
the value of the expected value function E[v]. It features all the properties of the case of imperfectly
informative signals (γ >0), with the exception of being characterized by an asymptote, so that
if ζ ≥E[v], then τ =+∞. This is because with γ =0 the expected cost of the next observation
does not revert to its unconditional mean as time elapses, so that if it is large enough (ζ ≥E[v])
making an observation will never be optimal for the firm. Points (ii) and (iii) of the proposition
highlight how the properties of the distribution of signals, which coincide with observation costs
in this case, affect the value of the firm.30

29. Notice that a negative observation cost is not allowed in the model where the costs are Markovian because that
would give the firm the possibility of unbounded profits by simply collecting the fees infinitely many times as long as
the cost remains negative.

30. We notice that in this case the value of E[θ ] is immaterial as observation costs are never drawn from the
distribution F̂.
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The expression in equation (29) is particularly useful to study the elasticity of τ (ζ ) with respect
to ζ . In particular, we note that τ ′(ζ )=1/[B(E[v]−ζ )]for ζ ∈ (E[v]− v̄,E[v]). This implies that
when the benefit of information B and/or the continuation value E[v] are larger, then the slope of the
optimal policy with respect to the observation cost is smaller. This suggests that economies with a
higher frequency of i.i.d. observations are characterized by a lower sensitivity of observation times
to variation in observation costs.31 The next proposition uses the analytical results of Proposition 9
to characterize the coefficient of variation of observation times (excluding substitutions) in terms
of the coefficient of variation of the observation cost in the case of i.i.d. observations with perfect
predicability (see Appendix A for the proof).

Proposition 10. Let F(θ ′,τ |ζ )=1θ ′≥ζ for all ζ , i.e. γ =0 in equation (27), and G(ζ |θ)= Ĝ(ζ )

for all ζ and θ . Moreover, let E(ζ )=∫∞
ζ ζ dĜ(ζ ) and the coefficient of variation of observation

cost be such that CV (ζ )>0 as E(ζ )→0. Let CVK (τ ) denote the coefficient of variation of times
between observations conditional on no substitutions. We have that

CVK (τ )= 1

2
(ρ+λ−b)τ̄ CV (ζ )+o

(√
E(ζ )

)
, (30)

where τ̄ =√2E(ζ )/(b−a) is a measure of the mean time between observations.

The proposition shows that the mapping from CV (ζ ) to CVK (τ ) depends on two terms. The
first term, i.e. (ρ+λ−b), is related to the discount rate in equation (28) and typically has the order
of magnitude of the interest rate. The second term, i.e. τ̄ =√2E(θ )/(b−a), is of the same order of
magnitude of the average duration of observation times. For instance, an economy with a yearly
discount rate of 5% and and average time between observations of 1 year, would be characterized
by CVK (τ )/CV (ζ )≈0.025. Such a small slope of the variability in observation times with respect
to observation costs is explained by the option value argument discussed above.

To study the mapping from the variation in observation cost to the variation in observation
times in the more general case when signals are not perfectly informative γ >0, we do the
following exercise. We assume that the distribution Ĝ is a Gamma distribution with shape
parameter α1 and scale parameter α2. The parameter α1 determines the coefficient of variation
of the observation cost θ , while the parameter α2 is chosen so that the average frequency of
observations is 1.3 on a yearly basis which, together with the assumption of no drift in nominal
marginal cost, matches the estimated frequency of price changes in the U.S. data. In Figure 6, we
plot the model-implied coefficient of variation of observation times (CVK (τ ) on the vertical axis)
as a function of the coefficient of variation of observation costs, for different values of γ . The
figure also plots the level of variation in observation times that is consistent with the kurtosis of
the distribution of price change, as explained in Section 4. The results clearly show that a much
higher variability in observation costs is needed to produce a given variability in observation
times compared to the case with persistent shocks (see Figure 4 for comparison), for all values of
γ . We conclude that the model of i.i.d. observations has a hard time generating large real effects
of monetary shocks: for the parametrization presented in Figure 6 there is no level of CV (ζ ), no
matter how large, that is able to produce the variation of CVK (τ ) consistent with the kurtosis of
the distribution of price changes.

31. Note that both the values of B and E[v] are positively associated with the average frequency of observations:
as B increases, observing more frequently is optimal; if the average frequency of observations is optimally higher, then
E[v] increases and gets closer to its upper bound v̄.
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Figure 6

Coefficient of variation of observation times with i.i.d. observation cost

Note: The figure reports the coefficient of variation of times between observations (including substitutions) as a function of
the coefficient of variation of signals about future observation cost, ζ , and for different values of precision, as measured by
1/γ . The distribution F̂ is assumed to be Gamma(α1,α2), where α1 determines the coefficient of variation of observation
costs upon a new draw, and α2 is chosen to match an yearly average frequency of observations/adjustments equal to
1.3. We set E[θ ]=E[ζ ]. We set the drift μ−φ+σ 2/2=0 to obtain infrequent price changes, and σ =0.114 to match an
average size of price changes equal to 10%. The other parameters are η=5, λ=0.25, and ρ =0.02. For more details see
the Online Appendix.

5.1. An application: microfounding exponential i.id. observations

In this section, we use our results to solve a “reverse engineering problem”: for given distribution
of times between consecutive observations K as defined in equation (4), we find parameters for the
firm problem, including the distribution of the observation cost, so that aggregating the resulting
optimal decision rules H(t′|t) we obtain the target distribution K . While we could do this for any
K , a particular interesting application, given the results by Mankiw and Reis (2002), is to use an
i.i.d. exponential K . The aim of this is to identify the type of microfoundation and the parameters
of the firm problem in Section 5 that would be consistent with this popular framework.

Let K̂ denote the invariant distribution of times between consecutive observations conditional
on no substitution. We note that the invariant distribution of observation times K including
substitutions (which are exponentially distributed with parameter λ by assumption) is exponential
if and only if K̂ is exponential, and satisfies K(t)=e−λt K̂(t) for each t ≥0. The next proposition
describes the distribution of observation cost Ĝ that microfounds an exponential distribution of
observation times, where K̂(t)=exp(−ξ t) for some ξ >0, in the case where observations are
i.i.d. and signals are perfectly informative, i.e. γ =0.
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Proposition 11. Consider the case when observation times are i.i.d. with γ =0. Let the invariant
exponential distribution of times between consecutive observations (excluding substitutions) be
K̂(t)=exp(−ξ t) with parameter ξ >0. Then the density of the observation costs (and signals) is
a displaced beta distribution Beta(αl,αr) with left parameter αl =1, right parameter αr =ξ/B,
and support (ζ, ζ + v̄), so that the density ĝ(·)= Ĝ′(·) is given by:

ĝ(ζ )= ξ

v̄B

(
E[v]−ζ

v̄

) ξ
B −1

for ζ ∈ (ζ, ζ + v̄) , (31)

where the expected value function and the lower bound of the distribution of cost are

E[v]=v+(v̄−v)
ξ v

1+ξ v
, ζ =E[v]− v̄ . (32)

The implied fraction of negative cost ζ ≤0 and the coefficient of variation of cost are

Ĝ(0)=1−
(

v

v̄
+
(

1− v

v̄

) ξ v

1+ξ v

) ξ
B

>0, and CV (ζ )=
√

ξ/B

2+ξ/B

(
1+ξv

v/v̄

)
. (33)

SeeAppendixAfor the proof. This proposition shows that if observation times are exponential,
the observation costs have to be distributed as a displaced beta distribution. The shape of this
distribution is determined by ξ/B−1, which depends on the ratio of the exponential parameter ξ

to the benefits of information: B=η(η−1)σ 2/2. The support of the cost is the interval (E[v]−
v̄,E[v]). Since the exponential distribution has positive probability for arbitrarily small values of
observation times, the option value argument of Proposition 8 implies that the lower bound is
negative. The expression for the fraction of negative cost Ĝ(0) allows us to quantify the importance
of this feature.

We next comment on the comparative static of the change in the distribution of the observation
cost as we vary the parameter of the exponential distribution of observation times. Note that if
ξ →0 observations are very infrequent, then ζ →0, so that Ĝ(0)→0 and CV (ζ )→0. In words, to
have almost no observations, the distribution of the observation cost must be almost degenerate,
concentrated around its upper bound ζ̄ =v. At the other extreme, if ξ →∞ observations are very
frequent, then ζ → v̄, the fraction Ĝ(0)→1−exp(−1)≈0.63 and CV (ζ )→+∞. The general
case moves monotonically between these two extremes, with both the fraction of negative costs,
Ĝ(0), and the coefficient of variation, CV (ζ ), being increasing functions of the frequency of
observations ξ .

In the left panel of Figure 7, we plot the fraction of negative costs as a function of the
average frequency of observations ξ , for selected parameter values. This figure plots three lines,
corresponding to three values of η, which change the value of acquiring information captured by
B. Note that for ξ ≈1.3, which roughly corresponds to the average frequency of price changes per
year in the U.S., then Ĝ(0)≈0.55, so that more than half of the observation costs are negative. We
interpret this as saying that the option value effect is very large for this model to be quantitatively
realistic, since negative observation cost have no direct economic interpretation. We also note
that the value of η has marginal impact on the value of Ĝ(0). Additionally, in the right panel of
Figure 7, we plot the coefficient of variation of the observation cost as a function of the frequency
of observations, ξ , and three values of η. For ξ ≈1.3, given our parameter values, the coefficient
of variation is about 10 at η=5. We recall that we are measuring the observation cost (ζ =θ ) as
a multiple of the frictionless yearly profit, implying that a large coefficient of variation can be
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Figure 7

Exponential i.i.d. observation times: properties of Ĝ as a function of ξ and η

Note: The figure reports the fraction of negative cost (left panel) and the coefficient of variation of cost (right panel) as
a function of the frequency of observation on the horizontal axis, for three different values of η={4,5,6}, associated
with the distribution of Proposition 11. We set E[θ ]=E[ζ ]. We set the drift μ−φ+σ 2/2=0 to obtain infrequent price
changes, and σ =0.114 to match an average size of price changes equal to 10% when the frequency of observations/price
adjustments is 1.3 on a yearly base. The discount rate is ρ =0.02. For more details see the Online Appendix.

associated with, in our view, unreasonably high values of the cost of an observation in units of
profits. Finally, the coefficient of variation of cost increases with the value of η. Intuitively, as the
value of information increases firms have incentives to observe sooner for a given realization of
the observation cost. And so more variation in costs is needed to generate large enough durations
of observations such that the observed outcomes are consistent with an exponential distribution.

6. CONCLUDING REMARKS

We explored the microfoundations, as well as the aggregation, of models where the optimal
price-setting decision of the firm is subject to information gathering costs, as in the “rational
inattentiveness” literature. Our analytical results unveil a few shortcomings of the current
literature, as well as potentially fruitful avenues for future research. We showed that a natural
modelling of the firm’s decisions, one that assumes independence of the cost process from the
firm’s decisions to gather information, produces optimal observation times that are persistent and,
for reasonable parameterizations, infrequent. These results, which deviate from existing models
mainly in the fact that observation times are not i.i.d., are also useful for generating larger real
effects of monetary policy.

Our theoretical characterization relies on a number of simplifying assumptions, whose
importance seems of interest for future research. A limitation of our framework is the absence of
physical costs of price adjustments, implying that prices change continuously in presence of a drift
in nominal marginal cost. In Alvarez et al. (2011, 2015) we explore the optimal pricing decision
of firms, and its aggregate implications, when firms face non-random observation and adjustment
costs. An important result of these papers is that price plans are not optimal for reasonable
paramterizations of the adjustment cost, so that prices change infrequently even in presence of a
drift in marginal cost. A large literature (e.g. Mankiw and Reis, 2002) has emphasized the role of
price plans for the propagation of monetary shocks to inflation and output. As in this literature,
we allow firms to use price plans at no cost. However, the monetary shock we study causes

 at B
anca d'Italia on A

pril 8, 2016
http://restud.oxfordjournals.org/

D
ow

nloaded from
 

http://restud.oxfordjournals.org/lookup/suppl/doi:10.1093/restud/rdv050/-/DC1
http://restud.oxfordjournals.org/


[15:38 10/3/2016 rdv050.tex] RESTUD: The Review of Economic Studies Page: 453 421–459

ALVAREZ ET AL. INATTENTIVE PRODUCERS 453

no predictable dynamics in nominal marginal cost so that price plans are not used by firms in
response to it.

Our results on the aggregation of firms’ actions and propagation of monetary shocks rely, for
tractability, on a framework where there are no strategic complementaries in price setting, i.e. the
profit-maximizing price of a firm is independent of the other firms’ actions. While allowing for
these strategic complementarities may increase the size of the real effects of monetary shocks, it
is not easy to predict how they would affect the mapping from the cross-sectional distribution of
observation times to the size of the real effects of monetary shocks.

We have focused on a model where the cost/benefit of making an observation varies because of
random variation in the observation cost for simplicity and ease of comparison with the previous
literature. However, there are other interesting sources of variation in the the cost/benefit ratio.
For instance, relaxing the assumption that the cost of making an observation scales with firms’
profits can deliver variability and persistence in observation times arising from variability and
persistence of the productivity process.Alternatively, in the Online Appendix, we explore a model
where observation costs are constant but their benefit varies because of time-varying volatility of
the state. Finally, adding a separate cost of adjusting prices (i.e. a menu cost) would cause firms
to differ in the gap between the price they post and the optimal one. In this specification, variation
in observation times may arise from variation across firms in the benefit, as opposed to the cost,
of the next observation. Further investigating and measuring alternative sources of variation in
the cost/benefit of observations is a useful avenue for future research.

APPENDIX

A. PROOFS

Proof. (of Proposition 1) Consider the case where H(·|s) is absolutely continuous for all s. We use a guess and verify
strategy, so we substitute equation (7) into equation (2) and write

RK(T )=−R
∫ ∞

0
H (T |s) k(s)ds for all T ≥0 . (34)

Note that this expression holds for T =0 since K(0)=H(0|s)=1 for all s since both K and H(·|s) are right CDFs. Next,
differentiate both sides of equation (34) to obtain:

k(T )=
∫ ∞

0
h(T |s) k(s)ds for all T ≥0 , (35)

which is exactly the definition of an invariant distribution given in equation (1). Consider now the case where H has
positive mass on countably many values, note that for each T we can write:

q(T ) = R
∞∑

j=1

H
(
T |tj

)
k(tj) =R

∞∑
j=1

∑
{i:ti≥T}

hij k(tj),

= R
∑

{i:ti≥T}

∞∑
j=1

hij k(tj)=R
∑

{i:ti≥T}
k(ti)=RK(T ),

where the first equality uses that times between consecutive observations take countably-many values, the second uses
the definition of h, the third permutes the summations, and the last one uses the definition of an invariant distribution.
Note that the density of the time until the next observation is piece-wise linear, with downward jumps at the observation
times T = ti for all i≥1. ‖
Proof. (of Proposition 2) First we show that

M(δ)
ε

δ
≡
∫ ∞

0
Q(t)dt = R

∫ ∞

0

∫ ∞

t
K(s)dsdt =R

∫ ∞

0
sK(s)ds

We write A(J)≡∫ J
0

∫ J
t K(s)dsdt and B(J)≡∫ J

0 sK(s)ds for all J ≥0. Note A(0)=B(0)=0. Secondly, using a prime to

denote derivative, B′(J)=JK(J) and A′(J)=∫ J
0 K(J)dt =JK(J), hence A(J)=B(J) and taking J →∞ we obtain the

desired result.
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Secondly, let the unconditional variance of τ be

Var(τ )≡−
∫ ∞

0
s2K ′(s)ds−

(
−
∫ ∞

0
s K ′(s)ds

)2

=2
∫ ∞

0
s K(s)ds−

(∫ ∞

0
K(s)ds

)2

,

where the second equality comes from integrating by parts. The latter, together with the definition of R, i.e.
∫∞

0 K(s)ds=
1/R=E[τ ] implies that

∫∞
0 s K(s)ds=1/2Var(τ )+(E[τ ])2 , which immediately implies the result. ‖

Proof. (of Proposition 3) Consider first the distribution of log-price changes of a firm observing/adjusting τ periods
after the last observation/adjustment, �log(p(τ )). Conditional on the next observation taking place in τ periods, the
distribution of log-price changes upon the next observation/adjustment is normal with mean and variance equal to 0 and
σ 2 τ , respectively. Let index the distribution of �log(p(τ )) by τ . Recall that the kurtosis of a random variable x with zero
mean is defined as Kurt(x)=m4(x)/(m2(x))2, where ms(x)=E[x−E(x)]s is the sth centred moment of x. Therefore, the
second and fourth centred moments of �log(p(τ )) are equal to m2(τ )=σ 2 τ and m4(τ )=3 σ 4 τ 2, respectively. Consider
now the cross-sectional distribution of price changes, �log(p). Such distribution is given by the mixture of normals
arising from the different firms drawing different times to the next observation, τ , each with density k(τ ).

The second moment of such mixture of normals is:∫
m2(τ )k(τ )dτ =σ 2

∫
τ k(τ )dτ.

The fourth moment of such mixture of normals is given by the weighted average of the fourth moments of each normal,
m4(τ ): ∫

m4(τ )k(τ )dτ =3σ 4
∫

τ 2k(τ )dτ.

Thus, the kurtosis of the distribution of log-price changes is given by:

Kurt(�log(p))= 3
(∫

τ 2 k(τ )dτ
)

(∫
τ k(τ )dτ

)2 = 3
(
Var(τ )+(E[τ ])2

)
(E[τ ])2

=3
(

(CV (τ ))2 +1
)
. ‖

Proof. (of Proposition 4) Taking the first-order condition with respect to τ in the right-hand side of the Bellman equation
τ̂ = 1

B

[
ln(v̄)−ln

(
v̂−E[θ ])] . Using this to eliminate τ from the Bellman equation we obtain

v̂=

⎧⎪⎪⎨
⎪⎪⎩

v̄ if E[θ ]=0

smallest solution of v̂=v+Bvv̄
(

v̂−E[θ ]
v̄

) 1
Bv

if 0<E[θ ]<v

v if E[θ ]≥v

, (36)

which can be written as: x=s(x;θ̂ ,α)≡v/v̄+α
(

x− θ̂
) 1

α
, where x≡ v̂/v̄ and α=Bv<1 under our maintained

assumptions. We are looking for a solution with v/v̄≤x≤1. Note that for θ̂ =0 then there is a unique solution v̂= v̄
–to see this note that s(x;θ̂ ,α) is strictly convex in x and that s′(1,0,α)=1. For θ̂ >0 there is also a solution of this
equation with x>1, which does not correspond to a solution for the value function. For values of θ̂ where there are two
solutions, the smallest one is in the desired range. Since increases in θ̂ shift horizontally the function s then the smallest
solution decreases with θ̂ . Since increases in α shift the function s up, then the smallest solution increases with α. Finally,
if θ̂ =v/v̄ the smallest solution is v̂=v. If θ̂ >v/v̄ then there is only one solution of x=s(x) which is not the solution of
the value function, and hence in this case τ̂ =+∞ and v̂=v. ‖
Proof. (of Proposition 5) We first prove part (i). We start by arguing that with κ >0, then τ (θ )>0 for all θ >0. This
follows because if τ (θ )=0 with θ >0 then the expected time until there is a change is strictly positive, and at each time
there is a strictly positive cost, so the expected discounted cost diverges to +∞.

Next we derive the first-order condition to the firm problem and show it is sufficient for an optimum. For
this, note that the derivative of the objective function in the Bellman equation (25) with respect to τ is equal to
e−(ρ+λ−a)τ [M(τ )−N(τ,θ )] where these functions are given by:

M(τ )≡1−(ρ+λ−b)eBτ (E[v]−E[θ ]) and

N(τ,θ )≡ (ρ+λ−b+1/κ)e(B−1/κ)τ [v(θ)−θ −(E[v]−E[θ ])] . (37)

First, we note several properties of M and N at θ >0: (a) for (i) to hold, i.e. τ (θ )>0 for any θ >0, it must be
the case that M(0)−N(0,θ )>0; (b) M(τ )−N(τ,θ ) is continuous in τ and limτ→∞M(τ )−N(τ,θ )=−∞ for all θ <∞.
From (a) and (b) we obtain that there is at least one finite solution to the first-order condition, τ (θ )<∞, for all θ <∞.
Next, we show that there is a unique local maximum. Differentiating the first-order condition with respect to τ we have

 at B
anca d'Italia on A

pril 8, 2016
http://restud.oxfordjournals.org/

D
ow

nloaded from
 

http://restud.oxfordjournals.org/


[15:38 10/3/2016 rdv050.tex] RESTUD: The Review of Economic Studies Page: 455 421–459

ALVAREZ ET AL. INATTENTIVE PRODUCERS 455

S(τ )≡Mτ (τ )−Nτ (τ,θ )=−B+κ−1
(
1−(ρ+λ−b)eBτ (E[v]−E[θ ])). We prove now that the objective function has at

least one local maximum where the first-order condition holds. Let us denote by τ1 the smallest local maximum. Notice
that S(τ1)<0 by definition of a local maximum. If there would be another local maximum τ2 >τ1, then there must be a
value of τm ∈ (τ1,τ2) that is a local minimum requiring S(τm)≥0. But notice that the function S(τ ) is strictly decreasing
in τ which is a contradiction of S(τm)≥0>S(τ1) as τm >τ1. Finally, notice that as θ →∞, then τ (θ )→∞. This follows
from equation (37) given that θ →∞ implies that N(τ,θ )→−∞ and the first-order condition can be satisfied only if
τ →+∞ so that also M(τ ) diverges to −∞.

Next we use the first-order condition to prove τ ′(θ )>0 if θ >0 and limθ→∞τ ′(θ )=0. The implicit function theorem
gives

∂τ

∂θ
= Nθ

Mτ −Nτ

>0 ,

where Nθ = (ρ+λ−b+1/κ)e(B−1/κ)τ
(
v′ (θ)−1

)
<0 because v′(·)≤0, and Mτ −Nτ <0 because τ (θ ) is a maximum.

Finally, limθ→∞τ ′(θ )=0 follows because Mτ −Nτ diverges to −∞ while Nθ either converges to zero or diverges to
−∞ but at a lower rate than Mτ −Nτ as θ converges to zero.

Next, we prove part (iii). We argue that if 1/κ is low enough then limθ→0+ τ (θ )=0. We notice that if τ =0 solves the
first-order condition to the firm problem at θ =0 then the firm value is given by v(0)= 1+1/κ (E[v]−E[θ ])

ρ+λ−b+1/κ
; substituting this

expression for v(0) into equation (37) we obtain that indeed τ (0)=0 is an extreme point. We are left to show that τ (0)=0 is a
maximum which requires the second derivative at τ =0 to be negative, S(0)=−B+κ−1 (1−(ρ+λ−b)(E[v]−E[θ ]))<0.

By using E[v]>1/(ρ+λ−a), a sufficient condition for the latter is −B+κ−1 [1−(ρ+λ−b)(1/(ρ+λ−a)−E[θ ])]<
0, implying κ >κ̄ ≡ B+(ρ+λ−a)(ρ+λ−b)E[θ ]

B(ρ+λ−a) . Finally, if limθ→0+ τ (θ )=0 then limθ→0+ τ ′(θ )=+∞ follows because

Nθ (τ ;θ )= (ρ+λ−b+1/κ)e(b−a−1/κ)τ
(
v′ (θ)−1

)
diverges as θ →0+ because v′ (θ)= −e−(ρ+λ−b+1/κ)τ (θ)

1−e−(ρ+λ−b+1/κ)τ (θ) diverges while
Mτ −Nτ converge to a finite negative value.

Finally, we prove part (ii). As above, if limθ→0+ τ (θ )=0 then the firm value is given by limθ→0+ v(θ )=
1+κ−1 (E[v]−E[θ ])

ρ+λ−b+1/κ
. By monotonicity of the value function we must have limθ→0+ v(θ )>E[v], which implies

1+κ−1 (E[v]−E[θ ])
ρ+λ−b+1/κ

>E[v] and E[θ ]/κ <1−(ρ+λ−b)E[v]. By using E[v]>v, we obtain that a necessary condition for

τ (0)=0 is that E[θ ]/κ < b−a
ρ+λ−a . Therefore, if κ ≤κ ≡ (ρ+λ−a)E[θ ]

B then limθ→0+ τ (θ )>0. Notice that E[θ ]<v guarantees
that κ̄ >κ . ‖
Proof. (of Proposition 6) We first prove part (i). Using the first-order condition in equation (37) we have that
limκ→∞M(τ ;κ)−N(τ,θ;κ)=1−(ρ+λ−b)eBτ (limκ→∞v(θ;κ)−θ ). Then solving the first-order condition immedi-
ately implies that limκ→∞τ (θ;κ)= τ̃ (θ ) and limκ→∞v(θ;κ)= ṽ(θ ) where the functions τ̃ (·) and ṽ(·) are given by
equations (23)–(22).

We now prove part (ii). We first establish the following:

Lemma 3. ∀θ >0 if 0< limκ→0τ (θ;κ) then limκ→0
∂v(θ;κ)

∂θ
= limκ→0

∂τ (θ;κ)
∂θ

=0.

We prove the first limit in this lemma using the envelope theorem and the assumed lower bounds for the limit of τ :
limκ→0

∂v(θ;κ)
∂θ

= limκ→0 1/(1−e(ρ+λ−b+1/κ)τ (θ;κ))=0. To prove the second limit in the lemma we take the limit of the
first-order condition for τ , namely equation (37),

∂τ (θ;κ)

∂θ
=

(ρ+λ−b+1/κ)e(B−1/κ)τ (θ;κ)
(

∂v(θ;κ)
∂θ

−1
)

−B+κ−1
(
1−(ρ+λ−b)eBτ (θ;κ) (E[v(θ;κ)−θ ])) ,

The limit of the numerator is zero given the result we just proved on the derivative of the value function. The limit of the
denominator is infinite given that for each θ,κ we have v<v(θ;κ)< v̄. This concludes the proof of the lemma.

We complete the proof of the proposition by adding a second lemma, which establishes that the hypothesis of the
lemma holds.

Lemma 4. We show that for each θ >0 we have limκ→0τ (θ;κ)>0.

We prove this lemma by contradiction, supposing that limκ→0τ (θ;κ)=0. Define p(θ )= limκ→0 e−τ (θ,κ)/κ . Taking
the limit on both sides of equation (25) and rearranging terms gives

(1−p(θ )) lim
κ→0

v(θ,κ)=−p(θ )θ +(1−p(θ ))E

[
lim
κ→0

v(θ,κ)−θ ′
]
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where we used Lebesgue dominated convergence exchanging the expected value and the limit. The case in which p(θ )=1
yields an immediate contradiction with θ >0. Consider now the complementary case in which p(θ )<1 we get

lim
κ→0

v(θ;κ)=E

[
lim
κ→0

v(θ ′;κ)−θ ′
]
− p(θ )

1−p(θ )
θ .

Since ∀κ we have that v(θ;κ) is decreasing in θ then it is easy to show that there exist a θ̄ >0 such that for θ ∈[0,θ̄ ) we have
limκ→0 v(θ;κ)>E

[
limκ→0 v(θ ′;κ)−θ ′]− p(θ )

1−p(θ ) θ arriving to a contradiction. Hence, we have shown that τ (θ;κ)>0 for

all θ ∈[0,θ̄ ). Finally using that for each κ the function τ (θ,κ) is strictly decreasing in κ for θ ≤ θ̄ <E[θ ], we have that
limκ→0τ (θ,κ) is weakly decreasing, and thus limκ→0τ (θ,κ)>0 for all θ >0. This completes the proof of the second
lemma. ‖
Proof. (of Proposition 7) Using the results of Reis’s (2006) proposition 4, we have that as E[θ ]→0, τ (θ )→ τ̃ (θ )=

√
2θ
B .

Let θ̄ ≡E[θ ]. Assuming a constant strictly positive coefficient of variation
√

ν >0, so that Var(θ )=ν θ̄2, and using

the square root approximation, we have E[τ ]=E[τ (θ̄ )+ τ̃ ′(θ̄ )(θ − θ̄ )]+o(θ̄ )= τ̃ (θ̄ )+o(θ̄ ) and Var(τ )=(τ̃ ′(θ̄ )
)2

Var(θ )+
o(Var(θ )) we obtain

Var(τ )

(E[τ ])2
= 1

2θ̄/(b−a)+o
(
θ̄
)
((

2θ̄

b−a
+o

(
θ̄
))−1/2

1

b−a

)2

Var(θ )+ o
(
ν θ̄2

)
2θ̄/(b−a)+o

(
θ̄
)

= 1

4

Var(θ )

(E[θ ])2
+o

(
θ̄
)
.

Proof. (of Proposition 8) The derivative of the objective function in the Bellman equation (28) with respect to τ is equal
to e−(ρ+λ−a)τ [M(τ )−N(τ,ζ )] where these functions are given by:

M(τ )≡1−(ρ+λ−b)eBτ [E[v]−E[θ ]] and

N(τ,ζ )≡ (ρ+λ+γ −b)e(B−γ )τ [E[θ ]−ζ ] . (38)

First, we note two properties of M and N : (a) if γ >0, limτ→∞M(τ )−N(τ,ζ )=−∞ for any ζ ; (b) N is strictly decreasing
in ζ for all τ <∞, while M does not vary with ζ . We distinguish two cases. The first case is if M(0)−N(0,ζ )>0 then
(b) implies that M(0)−N(0,ζ )>0 for all ζ >ζ . The first-order condition then implies that τ (ζ )>0 for all ζ and ζ ∗ =ζ .
If instead, M(0)−N(0,ζ )≤0, then ζ ∗ ≥ζ with τ (ζ )=0 and v(ζ )=E[v]−ζ for all ζ <ζ ∗. For ζ ≥ζ ∗, we have that
M(0)−N(0,ζ )≥0 which when combined with (a) it implies that the solution to the firm problem is given by the solution
to the first-order condition at a value 0<τ (ζ )<∞. Moreover, by differentiating the first-order condition at the interior
maximum we obtain

∂τ (ζ )

∂ζ
= Nζ

Mτ −Nτ

>0,

where Nζ (τ ;ζ )=−(ρ+λ+γ −b)e−(γ−b+a)τ <0, and Mτ −Nτ ≤0 by the definition of a maximum. The second case
is if M(0)−N(0,ζ )>0. In this case, the optimal τ (ζ ) is always strictly bigger than zero. Differentiating the first-order

condition with respect to τ we have S(τ )≡Mτ (τ )−Nτ (τ,ζ )=−B+γ
(
1−(ρ+λ−b)eBτ [E[v]−E[θ ]]). We prove now

that the objective function has at most one interior local maximum. Let us denote by τ1 the smallest local maximum.
Notice that S(τ1)≤0 by definition of a local maximum. If there would be another local maximum τ2 >τ1, then there
must be a value of τm ∈ (τ1,τ2) that is a local minimum requiring S(τm)≥0. But notice that the function S(τ ) is strictly
decreasing in τ which is a contradiction of S(τm)≥0>S(τ1) as τm >τ1.

To prove point that τ (ζ ) is not bounded assume for a contradiction that τ (ζ ) has an upper bound. Then, provided that
γ <∞, there exists a ζ large enough for which the value function is arbitrarily negative, and in particular smaller than v,
implying that the upper bound is not optimal. Once we have established that limζ→∞τ (ζ )=∞.

To prove point (ii) assume by contradiction that ζ ≥0 and τ (ζ )=0 then: if ζ >0, v(ζ )=E[v]−ζ <E[v], which is a
contradiction because v(ζ )≥E[v] as v(ζ ) is decreasing in ζ ; if ζ =0, then v(ζ )=E[v] which is only possible if v(ζ ) is
constant. But this is possible only if τ (ζ )=∞ for all ζ , which is contradiction given the arguments above. By definition
of ζ ∗, given that τ (ζ )>0 it follows that ζ ∗ =ζ .

Finally notice that a stochastically higher distribution of cost Ĝ implies a weakly lower value function v(ζ ) for each
ζ and hence a lower value of E[v]. For any interior optimum we have

∂τ (ζ )

∂E[v] =− ME[v]
Mτ −Nτ

<0,

since Mτ −Nτ <0 and ME[v] <0. ‖
Proof. (of Proposition 9) We first prove the part (i) of the proposition in steps.
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(1) As γ →0 in the first-order condition in equation (38) we have that

lim
γ→0

M(τ ;γ )−N(τ,ζ ;γ )=e−(ρ+λ−a)τ (1−eBτ [ρ+λ−b][E[v]−ζ ]). (39)

equation (29) is then obtained by setting the expression above equal to zero for a finite positive value of τ . If this
expression is negative at τ =0, then we set τ =0, while we set τ =∞ if it is strictly positive for all finite τ .

(2) Using the optimal policy in equation (29) in the Bellman equation (28) the value function takes the following
form

v(ζ )=

⎧⎪⎪⎨
⎪⎪⎩

E[v]−ζ if ζ ≤ζ ≤E[v]− v̄

v+Bvv̄
(

E[v]−ζ
v̄

) ρ+λ−a
B

if E[v]− v̄<ζ <E[v]
v if ζ ≥E[v]

, (40)

Integrating both sides of equation (40) with respect to Ĝ we obtain

E[v]=v
(

1−Ĝ(E[v]− v̄)
)
+Bvv̄

∫ E[v]

E[v]−v̄

(
E[v]−x

v̄

) ρ+λ−a
B

dĜ(x) +

+ v̄
∫ E[v]−v̄

ζ

(
E[v]−x

v̄

)
dĜ(x) . (41)

(3) If ζ ≥0 then τ̂ (ζ )>0. Note that E[v]< v̄ since the right hand side is the value of the case of not observation cost.
Hence τ̂ (ζ )>0, as we argued for the general case.

(4) If ζ ≥0 equation (41) becomes

E[v]=v+Bvv̄
∫ E[v]

ζ

(
E[v]−ζ

v̄

) ρ+λ−a
B

dĜ(ζ ) . (42)

The first and second derivatives of the right-handside of the last equation w.r.t E[v] are

1> [(ρ+λ)−b]
ρ+λ−a

B −1
∫ E[v]

ζ

(E[v]−ζ )
ρ+λ−a

B −1 dĜ(ζ ) ≥0,

[(ρ+λ)−b]
ρ+λ−a

B −1
(

ρ+λ−a

B
−1

)∫ E[v]

ζ

(E[v]−ζ )
ρ+λ−a

B −2 dĜ(ζ ) ≥0.

Note that the first derivative is zero at E[v]=ζ . If E[v]<1/(ρ+λ−b) the first derivative is strictly increasing
and strictly smaller than one. Hence, there is at most one solution for equation (42) with E[v]<1/(ρ+λ−b). If
there is a second intersection where E[v] satisfies equation (42) it must be at a point where E[v]>1/(ρ+λ−b)
since the slope must be larger than one. Given that the right-hand side of equation (42) is convex in E[v] there
are at most two intersection. Now we show that there is at least one intersection. Consider the case where the
distribution Ĝ is concentrated at ζ =0. Then there is a unique intersection at E[v]= v̄. Next, for any other Ĝ,
fixing a given E[v], the right-hand side of equation (42) is smaller than in the case of Ĝ concentrated. Hence,
there is always an intersection with slope smaller than one.

(5) The solution of the foc is a maximum. Consider a case where E[v]−ζ <ζ <E[v], then the second derivative of
the right-hand side of the Bellman equation, evaluated at equation (29) gives:

e−(ρ+λ−a)τ (ζ )
(
−(ρ+λ−a)+eBτ (ζ ) [−(ρ+λ)+b]2 [E[v]−ζ ]

)
=e−(ρ+λ−a)τ (ζ ) B<0.

(6) Since E

[
max(E[v]−ζ,0)

ρ+λ−a
B

]
is the expected value of a convex function of ζ for a fixed value of E[v], a mean

preserving spread in Ĝ(·) increases its value. Hence, a mean preserving spread in the distribution of ζ increases
the rhs of equation (42) for each E[v], and thus increases the value of the intersection. ‖

Proof. (of Proposition 10) Let θ̄ ≡E(θ ) and τ̄ =τ (θ̄ ). Integrating the value function in equation (28) for the case of zero
variance of observation cost gives

v(θ̄ )− θ̄ =
(
1−e−(ρ+λ−a)τ̄

)
/(ρ+λ−a)− θ̄

1−e−(ρ+λ−b)τ̄

Combining the right-hand side of this equation with equation (29) allows us to write v(θ̄ )− θ̄ = e−(b−a)τ̄

ρ+λ−b which then gives

τ ′(θ̄ )= ρ+λ−b

b−a
e(b−a)τ̄ = ρ+λ−b

b−a
e
√

2θ̄ (b−a) = ρ+λ−b

η(η−1)σ 2/2
e
√

2θ̄ η(η−1)σ 2/2 (43)
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where the last equality uses the square root formula derived above for the limit case of no variance. Next, assume a
constant strictly positive coefficient of variation

√
ν >0, so that Var(θ )=ν θ̄2. When ν ≈0, τ (θ ) is approximately given

by
√

2θ/B so that (E(τ ))2 =2θ̄/(b−a)+o
(
θ̄
)
. Using equation (43), and Var(τ )=(τ ′(θ̄ )

)2
Var(θ )+o(Var(θ )) we obtain

Var(τ )

(E(τ ))2
=
(

ρ+λ−b

b−a

)2(
1+

√
2θ̄ (b−a)+o

(
θ̄
)+ 1

2!
(
2θ̄ (b−a)+o

(
θ̄
))+ ...

)2 Var(θ )

2θ̄/(b−a)+o
(
θ̄
)

+ o
(
ν θ̄2

)
2θ̄/(b−a)+o

(
θ̄
)

=
(

ρ+λ−b

(b−a)

)2(
1+o

(√
θ̄
)) Var(θ )

2θ̄/(b−a)
(

1+ o(θ̄)
2θ̄/(b−a)

)+o
(
θ̄
)

=
(

ρ+λ−b

(b−a)

)2 Var(θ )

θ̄2

(b−a)θ̄

2

(
1+o

(√
θ̄
))(

1− o
(
θ̄
)

θ̄

)
+o

(
θ̄
)

=(ρ+λ−b)2ν
θ̄

2(b−a)

⎛
⎝1+o

(√
θ̄
)
− o

(
θ̄
)

θ̄
−

o
(
θ̄

3
2

)
θ̄

⎞
⎠+o

(
θ̄
)

=(ρ+λ−b)2ν
θ̄

2(b−a)
+o

(
θ̄
)

which, using ν = Var(θ )
(θ̄ )2 >0, gives equation (30).

Proof. (of Proposition 11) The cumulative distribution function of observation cost is given by Ĝ(ζ ;E[v])=1−
K(τ (ζ ;E[v])). By differentiating the last equation with respect to ζ , we obtain

ĝ(ζ ;E[v])=−K ′ (τ (ζ ;E[v])) ∂τ (ζ ;E[v])
∂ζ

for all ζ >ζ . (44)

Then by replacing the optimal policy and its derivative we obtain

ĝ(ζ ;E[v]) = ξ exp(−ξ τ (ζ ))

B(E[v]−ζ )

=
ξ exp

(
ξ
B log([ρ+λ−b][E[v]−ζ ])

)
B[Ev −ζ ]

= a0
exp

(
log
(
aa0

1 [E[v]−ζ ]a0
))

[E[v]−ζ ] =a0
aa0

1 [E[v]−ζ ]a0

[E[v]−ζ ] =a0 aa0
1 [E[v]−ζ ]a0−1

where a0 = ξ
B and a1 =ρ+λ−b.

E[v]=v+Bvv̄
∫ E[v]

E[v]−v̄

(
E[v]−ζ

v̄

) ρ+λ−a
B

ĝ(ζ ;E[v])dζ . (45)

Finally, by using equation (31) we obtain

E[v]=v+Bvv̄
ξ

v̄B

∫ E[v]

E[v]−v̄

(
E[v]−ζ

v̄

) ρ+λ−a+ξ
B −1

dζ , (46)

which gives

E[v]=v+Bvv̄
ξ v

1+ξ v
=v+(v̄−v)

ξ v

1+ξ v
.

The distribution ζ is then a displaced Beta distribution, i.e. ζ =c+dz where z has a standard beta distribution with shape
parameters (ã,b̃)=1,ξ/B. The displaced parameters are c=E[v]− v̄ and d = v̄. Hence the coefficient of variation of ζ ,
denoted by cv(ζ ), is:

cv(ζ )=
√

ξ/B

2+ξ/B

1

1−(1+ξ/B)(v̄−E[v])/v̄
,
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and using the expression for E[v] we obtain v̄−E[v]= (v̄−v)/(1+ξv), and then

cv(ζ )=
√

ξ/B

2+ξ/B

1

1−
(

1+ξ/B
1+ξv

)(
v̄−v

v

) ,

which using that v= (1/B)(v̄−v)/v̄ then becomes

cv(ζ )=
√

ξ/B

2+ξ/B

(
1+(ξ/B)(v̄−v)/v̄

v/v̄

)
=
√

ξ/B

2+ξ/B

(
1+ξv

v/v̄

)
‖
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