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The DUAL Approach in an Infinite

Horizon Model

1. Introduction

Most of the literature dealing with the DUAL control method based on Tse
and Bar-Shalom (1973) and Kendrick (1981; 2002) seminal works deals with
finite horizon problems. In these pages the DUAL solution to the BMW in-
finite horizon model is reported. In Section 2 the problem is stated and the
augmented system treating the stochastic parameter as an additional state
variable is defined. Then the one-period ahead projection of the mean and
variance of the augmented state is obtained (Section 3). In Section 4 the
formula for the nominal path for the state and control in the infinite horizon

1



are presented and the time-invariant feedback rule defined. The appropriate
Riccati quantities for the augmented system are derived (Section 5). Sec-
tion 6 contains the formulae for the updated covariances of the augmented
system. Finally the new approximate cost-to-go is presented for the special
case where the desired path for the state and control are set equal to 0 and
the linear system has no constant (Section 7). A numerical example, based
on BW dataset, comparing the DUAL infinite solution optimal control with
the two-period finite horizon solution discussed in Tucci et al. (2010) is
presented in Section 8. The major conclusions are summarized in Section
9. For the reader’s sake, most of the technical derivations are confined to a
number of short appendices.

2. Statement of the Problem

Tucci et al. (2010) consider a simple control problem with one state, one
control and a time horizon of T periods in which the policy maker wants to
find u0, u1, . . . , uT−1 to minimize

J = E0

{
1

2
wT (xT − x̃T )2 +

1

2

T−1∑
t=0

[
wt (xt − x̃t)

2 + λt (ut − ũt)
2
]}

(2-1)

where E0 is the expectation operator conditional on the information avail-
able at time 0, subject to

xt+1 = αxt + βut + γ + εt+1 for t = 0, 1, ..., T − 1 (2-2)

with xt and ut the state and control variables, respectively, and the tilde
indicating the desired path of the specified variable. Also α, β and γ are
the parameters of the system equation and εt+1 is an error term identically
and independently distributed (i.i.d.) normal with mean zero and variance
q. Finally, the initial state x0 and the penalty weights w ’s and λ’s are given
constants. The parameter associated with the control is assumed constant
but unknown with mean, at time t, bt and variance σββt|t . Also, the state is

measured without error.1

Following Tse and Bar-Shalom (1973) methods for solving active learning

1This is equivalent to setting H=I and R=O in Kendrick (1981; 2002, Chapter 10
-11) or Tucci (2004, chapter 2-5).
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stochastic control problem, Tucci et al. (2010) compute, for each time pe-
riod, the approximate cost-to-go at different values of the control and then
choose that value which yields the minimum approximate cost.2 This ap-
proximate cost-to-go is decomposed into three terms and, for the present
problem, written as

JN = JD,N + JC,N + JP,N (2-3)

where JN is the total cost-to-go with N periods remaining and JD,N , JC,N
and JP,N are the deterministic, cautionary and probing component, respec-
tively. The deterministic component includes only terms which are not
stochastic. The cautionary one includes uncertainty only in the next time
period and the probing term contains uncertainty in all future time periods.
Thus the probing term includes the motivation to perturb the controls in the
present time period in order to reduce future uncertainty about parameter
values.3

In the following pages, this model is rewritten as an infinite horizon model
and the associated formulae for the approximate cost-to-go are derived. The
problem now is to find the set of controls ut for t = 0, 1, . . . ,∞, where t = 0
denotes the current period, which minimizes the linear functional

J = E0

{
1

2

∞∑
t=0

(
x2twt + u2tλt

)}
(2-4)

with the desired path for the state and control set equal to 0, xt subject
to the system equation (2-2) and λt = ρtλ and wt = ρtw where ρ is the
discount factor between 0 and 1.

The control problem (2-2) and (2-4) is solved treating the stochastic pa-
rameters as additional state variables as in Kendrick (1981; 2002, Chapter
10) and restating it in terms of an augmented state vector zt as: find the
controls ut for t = 0, 1, ..., ∞ minimizing

J = E0

{
1

2

∞∑
t=0

(
z′tW

∗
t zt + u2tλt

)}
(2-5)

with W ∗t having wt on the top left corner and zeros elsewhere. subject to

2See Kendrick (1981; 2002, Chapter 9-10) or Tucci (2004, chapter 2) for details.
3See Kendrick (1981; 2002, pages 97-98) for an introduction to this decomposition.
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the discrete-time system equations, with no measurement equation,

zt+1 = Azzt + βzt ut + γz + εzt (2-6)

with the arrays defined as

zt =

[
xt
βt

]
, Az =

[
α 0
0 1

]
, βzt =

[
βt
0

]
, γz =

[
γ
0

]
, εzt =

[
εt
0

]
(2-7)

Problems (2-2) and (2-4) and (2-5)-(2-7) are equivalent “however the first
is described as a linear quadratic problem with random coefficients and the
second as a nonlinear (in x, u and β) stochastic control problem” as noted
in Kendrick (1981; 2002, page 94).

3. One-period ahead projection of the mean and variance of the
augmented state vector z

For this simple model the one-period ahead projection of the mean of the
augmented state vector z, after control at time zero is applied, is

x̂1|0 = αx0 + b0u
τ
0 + γ (3-1)

b1|0 = b0 (3-2)

where b0 is the estimate of the unknown parameter at time 0, with esti-
mated variance σββ0|0 ≡ σ

2
b to save on notation, x0 is the initial condition for

the state and uτ0 being the search control at iteration τ , with the Certainty
Equivalence (CE ) solution being the first search control, i.e. u10 ≡ uCE0 . The
projected mean of the parameter is equal to its current estimate because the
unknown parameter is assumed constant.

For the BMW problem with no measurement error, the projected variances
look like4

4See, e.g., Kendrick (1981; 2002, Chapter 10, page 102) or Tucci (2004, chapter 2, pages
21-22) for details.
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σxx1|0 = (uτ0)2 σββ0|0 + q

σβx1|0 = σββ0|0u
τ
0

σββ1|0 = σββ0|0 ≡ σ
2
b (3-3)

4. The Nominal Path for the State and Control

At this point the nominal, or CE, path for state and control are needed. This
is done by solving the CE problem for the un-augmented system from time 1
on, using x̂1|0 as initial condition and the nominal path for the parameters.
Given that in the present case all of them are assumed constant, at this
stage the estimate b0 is treated as the true parameter for all future periods.
Then the nominal control for a generic period j in the time-horizon can be
expressed as, in the present case,

u0,j = Gjx0,j + gj for j = 1, ..., ∞

When the conditions for the existence of an infinite horizon solution are sat-
isfied, see e.g. De Koning (1982), Hansen and Sargent (2007, section 4.2.1),
with λj = ρjλ and wj = ρjw, the optimal control law is time invariant, i.e.

G = −
(
λ+ ρkCEb20

)−1
αρkCEb0 (4-1)

g = −
(
λ+ ρkCEb20

)−1
b0
(
ρkCEγ + ρpCE

)
(4-2)

with kCEj+1 = ρkCEj and pCEj+1 = ρpCEj ∀j, where kCE and pCE are the fixed

point solutions to the usual Riccati recursions5

kCE = w + α2ρkCE −
(
αρkCEb0

)2 (
λ+ ρkCEb20

)−1
(4-3)

and

5In this case the Riccati equation is scalar function and can easily be solved. The
multi-dimensional case can be more complicated to solve. See Amman and Neudecker
(1997).

5



pCE = α
(
ρkCEγ + ρpCE

)
− αρkCEb20

(
λ+ ρkCEb20

)−1 (
ρkCEγ + ρpCE

)
(4-4)

respectively. Then g can be rewritten as

g = Gα−1γ (1 + ρp∗) (4-5)

with p∗ = [1− ρ (α+ b0G)]−1 (α+ b0G). Generalizing the results in Tucci
et al. (2010) it can be shown, by repeated substitutions, that in the infinite
horizon problem the j -th nominal control can be written as the sum of
two components (Appendix A). One associated with x̂1|0 depending upon
the control applied at time 0, u0, and the other due solely to the system
parameters and exogenous forces, in this case the constant term γ. Namely

u0,j = G0,jx0,j + g0,j

u0,j = G0,j x̂1|0 + g0,j (4-6)

with

G0,j = G (α+ b0G)j−1 (4-7)

g0,j = Gα−1γ (α+ b0G+ b0Gρp
∗)

j−1∑
i=1

(α+ b0G)i−1 + g (4-8)

for j = 2, 3, . . .

and the nominal control at time j can be rewritten as

x0,j = (α+ b0G)j−1 x̂1|0 +α−1γ (α+ b0G+ b0Gρp
∗)

j−1∑
i=1

(α+ b0G)i−1 (4-9)

In the special case where γ = 0, the nominal state and control are simply

u0,j = G0,jx0,j = G0,j x̂1|0 (4-10)

and

x0,j = (α+ b0G)j−1 x̂1|0 (4-11)

6



5. Riccati Equations for the Arrays of the Augmented System

The K and p Riccati arrays of the augmented system are partitioned as

Kj =

[
kxxj kxβj
kβxj kββj

]
, pj =

[
pxj
pβj

]
(5-1)

In the former array, kxxmatrix corresponds to the quantity kCEdiscussed
in the previous section and when the condition for stabilization holds, i.e.
α+ b0G is stable, and γ = 0 the quantities kxβ = kβxand kββ reduce to

kβxj = [ρ (α+b0G)]j−1 kβx1 (5-2)

with

kβx1 = 2ρkxx1 (α+ b0G)
[
1− ρ (α+ b0G)2

]−1
Gx0,1

= k̃βx1 x0,1 (5-3)

as shown in Appendix B and Appendix F, and

kββj = ρ (α+ b0G)2 kββj−1 =
[
ρ (α+ b0G)2

]j−1
kββ1

=
[
ρ (α+ b0G)2

]j−1
k̃ββ1 x20,1 (5-4)

with

k̃ββ1 = ρkxx1

[
1 + 3ρ (α+ b0G)2

] [
1− ρ (α+ b0G)2

]−2
G2

−

{
ρkxx1

(
α+ 2b0G

[
1− ρ (α+ b0G)2

]−1 )}2

(
λ1 + ρkxx1 b20

)−1 [
1− δ (α+ b0G)2

]−1
(5-5)

as shown in Appendix C and Appendix F.6 The elements of the p Riccati

6This compares with kβx1 = 2w2 (α+ bG1)G1x0,1 and

kββ1 = w2G
2
1x

2
0,1 + w2

2 (α+ 2bG1)2
[
−
(
λ1 + b2w2

)]−1
x20,1 in the two-period finite horizon
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vector are defined as

pxj = kCEj xoj + p CEj (5-6)

and

pβ = uop
x
j+1 + p βj+1 −

[
p xj+1 + uok

xx
j+1b0 + k βxj+1b0

]
×

(
λ+ k xxj+1b

2
0

)−1 (
λuo + p xj+1b0

)
(5-7)

with kCEj = ρjkCE and p CEj = ρjp CE .

6. Updating the Covariances of the Augmented System

For the BMW problem the updating equations for the covariances of the
augmented system look like7

Σj|j =

[
O O

−σβxj|j−1
(
σxxj|j−1

)−1
1

]
Σj|j−1 (6-1)

then the elements of the updated covariance matrix are defined as

σxxj|j = 0, σxβj|j ≡ σ
βx
j|j = 0, σββj|j = σββj|j−1 − σ

βx
j|j−1

(
σxxj|j−1

)−1
σxβj|j−1 (6-2)

where the projected covariances take the form in (3-3) when j and j-1 replace
1 and 0, respectively. Combining (6-2) and (3-3), it yields, for j = 1,

σββ1|1 = σββ1|0 − σ
βx
1|0

(
σxx1|0

)−1
σxβ1|0 = σ2b q

(
u20σ

2
b + q

)−1
(6-3)

and in general it can be shown that (Appendix D)

model.
7See, e.g., Kendrick (1981; 2002, Chapter 10, page 103) or Tucci (2004, chapter 2, pages

27-28) for details..
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σββj|j = σ2b q

(
σ2b

j−1∑
i=0

u20,i + q

)−1

= σ2b q
(
σ2bu

2
0 + q

)−1 1 + S

j∑
l=2

forj≥2

(α+ b0G)2(l−2)


−1

(6-4)

with

S = G2 (αx0 + b0u0)
2 σββ0|0

(
u20σ

ββ
0|0 + q

)−1
(6-5)

and

u0,0 ≡ u0 (6-6)

7. The Approximate Cost-to-Go

As in Kendrick (1981; 2002, Chapter 10) the approximate cost-to-go associ-
ated with the ‘search’ control uτt is decomposed into three parts: determin-
istic JD, cautionary JC and probing JP . The deterministic component for
the control at time 0 is, see, e.g., equation 10.36 in Kendrick (1981; 2002),

JD,∞ =
1

2
λ0u

2
0 +

1

2
x̂′1|0K

CE
0,1 x̂1|0 + p′

CE
0,1 x̂1|0 (7-1)

For the model at hand, equation (7-1) can be rewritten as

JD,∞ = ψ1u
2
0 + ψ2u0 + ψ3 (7-2)

with

ψ1 =
1

2

(
λ+ b20k

CE
0,1

)
ψ2 =

[
(αx0 + γ) kCE0,1 + pCE0,1

]
b0

ψ3 =
1

2
(αx0 + γ)2 kCE0,1 + pCE0,1 (αx0 + γ) (7-3)

where kCE0,1 ≡ kxx1 = ρkxx. The parameters in equation (7-3) simplify to
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ψ1 =
1

2

(
λ+ b20ρk

xx
)

ψ2 = ρkxxb0αx0

ψ3 =
1

2
ρkxx (αx0)

2 (7-4)

when there is no constant term and zero desired path for the state and
control (Appendix E). The cautionary component looks like

JC,∞ =
1

2

[
kxx1

(
σ2bu

2
0 + q

)
+ kββ1 σ2b

]
+ kxβ1 σ2bu0 +

1

2

∞∑
j=1

(
ρjkxx1 q

)
(7-5)

By using the definitions of the k ’s and rearranging the terms it yields

JC,∞ = δ1u
2
0 + δ2u0 + δ3 (7-6)

with

δ1 =
1

2
σ2b

(
kxx1 + k̃ββ1 b20 + 2k̃βx1 b0

)
δ2 = σ2b

(
k̃ββ1 b0 + k̃βx1

)
αx0

δ3 =
1

2
kxx1 q (1− ρ)−1 +

1

2
σ2b k̃

ββ
1 α2x20 (7-7)

as apparent from Appendix F, when the identity σββ0|0 ≡ σ
2
b is used. Finally,

the probing component takes the form

JP,∞ =
1

2

∞∑
j=1

[
p xj+1 + uoρ

jk xx1 b0 + k βxj+1b0

]2 [
ρj
(
λ0 + k xx1 b20

)]−1
σββj|j (7-8)

Similarly to Amman and Kendrick (1995) and Tucci et al. (2010), equation
(7-8) can be rewritten as

JP,∞ =
1

2

g (u0)

h (u0)
(7-9)

with
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h (u0) =
(
u20σ

2
b + q

) (
σ2b q
)−1

(7-10)

and

g (u0) = φ1 (φ2u0 + φ3)
2 (7-11)

with

φ1 =
[
ρ (kxx1 )2

(
λ+ kxx1 b20

)−1] [
1− ρ (α+ b0G)2

]−2
φ2 =

{
α+ 2b0G

[
1− ρ (α+ b0G)2

]−1}
b0

φ3 =

{
α+ 2b0G

[
1− ρ (α+ b0G)2

]−1}
αx0 (7-12)

as shown in Appendix G. At this point by substituting (7-3), (7-6) and (7-9)
into (7-1) yields

J∞ = (ψ1 + δ1)u
2
0 + (ψ2 + δ2)u0 + (ψ3 + δ3) +(

σ2b q

2

)
φ1 (φ2u0 + φ3)

2(
σ2bu

2
0 + q

) (7-13)

with the parameters defined as in (7-4), (7-7) and (7-12). As shown in
Appendix H through Appendix J, these new definitions are perfectly consis-
tent with those associated to the two-period finite horizon model reported
in Amman and Kendrick (1995) and Tucci et al. (2010).

8. Numerical Example

In this section the DUAL infinite horizon control is computed using the pa-
rameter set in Beck and Wieland (2002, Figure 1, page 1367) which trans-
lates to

α = 1, b0 = −0.5, γ = 0, q = 1, σββ0|0 = σ2b = 0.25, w = 1, λ = 0, ρ = 0.95

(8-1)
in the present context. With this parameter set, the fixed point solution to
the usual Riccati recursions for the unaugmented system is

11



kCE = 1 + ρkCE − 0.25
(
ρkCE

)2 (
0.25ρkCE

)−1
= 1 + ρkCE − ρkCE = 1 (8-2)

with ρkCE ≡ ρkxx = 0.95 and the time invariant optimal control law sim-
plifies to

G = −
(
0.25ρkCE

)−1
ρkCE (−0.5) = 2 (8-3)

It follows that the relevant terms for the computation of the approximate
cost-to-go described in the previous section 7 specialize to

(α+ b0G) = 1 + 2 (−0.5) = 0 (8-4)

ρkxx1 = ρ(ρkxx) = ρ2kxx = (0.95)2

k̃βx1 = 2(0.95)2(0)[1− (0.95)(0)2]−12 = 0

k̃ββ1 = (0.95)222 −
{

(0.95)2[1− 2(1)−1]
}2

[0.25(0.95)2]−1(1)−1 = 0

(8-5)

Then the coefficients characterizing the deterministic, cautionary and prob-
ing component are, respectively,

ψ1 =
1

2
(0.25)0.95 = 0.119

ψ2 = 0.95 (−0.5)x0 = −0.475x0

ψ3 =
1

2
(0.95)x20 = 0.475x20 (8-6)

δ1 =
1

2
0.25(0.95) = 0.119

δ2 = 0

δ3 =
1

2
(0.95)(1)(0.05)−1 = 9.5 (8-7)

and
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φ1 = 0.95 (0.95)2 (0.25 ∗ 0.95)−1 = 0.952 ∗ 4

φ2 = [1 + 4 (−0.5)] (−0.5) = 0.5

φ3 = [1 + 4 (−0.5)]x0 = (−1)x0 (8-8)

By comparing the new results with those associated with a two-period model
reported in Tucci et al. (2010, equations 34-39) some interesting features
emerge. First of all the ψ’s in the deterministic component are the same
both in the finite and infinite model except for the fact that the former
uses undiscounted penalty weights on the state, i.e. w1 = w2 = 1, and
the latter assumes wt = ρtw with w = 1. The same consideration explains
the slight difference existing between the new and old coefficient δ1 in the
cautionary component and φ1 in the probing one. It is noteworthy that the
coefficient δ2 in the cautionary component and φ2 and φ3 in the probing
one are identical in the finite and infinite model. This means that these
coefficients are not affected by the penalty weight on the state. The main
difference between the finite and infinite model lies in δ3, the constant term
in the cautionary component, which jumps from 1, the variance of the system
disturbance, to 9.5 which is, approximately, half the inverse of the discount
rate, i.e. 1

2(1 − ρ)−1 . Therefore this coefficient reflects the infinite sum of
the discount factor ρ.

9. Conclusion

In these pages the DUAL solution to the BMW infinite horizon model has
been presented. The appropriate Riccati quantities for the augmented sys-
tem have been derived and the time-invariant feedback rule defined. When
the desired path for the state and control are set equal to 0 and the linear
system has no constant term, the new approximate cost-to-go looks identical
to that associated with the finite horizon solution discussed in Amman and
Kendrick (1995) and Tucci et al. (2010). Namely, the deterministic and
cautionary component are quadratic functions of the time-0 control, and
the probing component is the ratio of two quadratic functions in the time-0
control. Moreover the new definitions are perfectly consistent with those
associated to the two-period finite horizon model.
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Appendices

Appendix A. Deriving the nominal path for control as a function
of the projected state

Given a certain control at time 0, say u0, the nominal, or Certainty Equiv-
alence (CE), value of x1, denoted by x0,1, is given by

x0,1 = αx0 + βu0 + γ

when the system parameters are assumed constant and known. Then the
nominal or CE value of u1, u0,1, in a two-period control problem is given
by8

u0,1 = G1x0,1 + g1

=

(
− 1

λ1 + β2w2

)
[αβw2x0,1 + βw2 (γ − x̃2)− λ1ũ1] (A-1)

where w2 is the penalty on the state in the final period and the tilde stands
for desired path. When the desired path for the state and control is zero,
the above formula simplifies to

u0,1 = G1x0,1 + g1

=

(
− αβk2
λ1 + β2k2

)
x0,1 +

(
− 1

λ1 + β2k2

)
β (k2γ + p2) (A-2)

with G1 and g1 implicitly defined, and k2 and p2 the appropriate Riccati
quantities, for any finite period control problem. The associated nominal
value of x2 is

x0,2 = αx0,1 + βu0,1 + γx0,2

= (α+ βG1)x0,1 + βg1 + γ (A-3)

Then the nominal control for the finite horizon problem at time 2 can be
written as

8See, e.g., Tucci et al. (2010).
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u0,2 = G2x0,2 + g2

= G2 (α+ βG1)x0,1 +G2α
−1 (α+ βG1 + 1) γ

+α−1G2

(
βG1k

−1
2 p2 + k−13 p3

)
(A-4)

with g2 defined similarly to g1. By repeating this procedure, it is then
apparent that the nominal control at any time j in the planning horizon
can be rewritten as the sum of two components. One associated with x0,1
depending upon the control applied at time 0, u0, and the other due solely
to the system parameters and exogenous forces, in this case the constant
term γ. Namely,

u0,j = Gjx0,j + gj = G0,jx0,1 + g0,j (A-5)

with

G0,j = Gj

[
j−1∏
i=1

(α+ βGi)

]
(A-6)

g0,j = α−1Gjγ

j∑
i=1

[
j−1∏
l=i

(α+ βGl)

]
+

α−1Gj

{
k−1j+1pj+1 +

j−1∑
i=1

[
j−1∏
l=i+1

(α+ βGl)

]
βGik

−1
i+1pi+1

}
(A-7)

where it is implied that the product term in square brackets is one when
l > j − 1 and the feedback quantities Gj and gj are defined as

Gj = −
(
λj + kj+1β

2
)−1

αkj+1β

gj = −
(
λj + kj+1β

2
)−1

β
(
kj+1γ + pj+1

)
(A-8)

The associated nominal state at time j can obviously be written as
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x0,j =

[
j−1∏
i=1

(α+ βGi)

]
x0,1 + α−1γ

j−1∑
i=1

[
j−1∏
l=i

(α+ βGl)

]

+α−1
j−1∑
i=1

[
j−1∏
l=i+1

(α+ βGl)

]
βGik

−1
i+1pi+1 (A-9)

with all symbols as previously defined. When the conditions for the existence
of an infinite horizon solution are satisfied, see e.g. De Koning (1982),
Hansen and Sargent (2007), with λj = ρjλ and wj = ρjw, the optimal
control law is time invariant, i.e. the quantities in (A-8) specialize to

G = −
[(
λ+ ρkβ2

)]−1
αρkβ (A-10)

g = −
(
λ+ ρkβ2

)−1
β (ρkγ + ρp) (A-11)

with kj+1 = ρkj and pj+1 = ρpj ∀j, where kand p are the fixed point solu-
tions to the usual Riccati recursions

k ≡ kCE = w + α2ρk − (αρkβ)2
(
λ+ ρkβ2

)−1
(A-12)

and

p ≡ pCE = α (ρkγ + ρp)− βρkα
(
λ+ ρkβ2

)−1
β (ρkγ + ρp) (A-13)

respectively. Then equation (A-11) can be rewritten as

g = Gα−1γ (1 + ρp∗) (A-14)

with

p∗ = [1− ρ (α+ βG)]−1 (α+ βG) (A-15)

In the infinite horizon model the above formulae (A-5) and (A-9) simplify
as follows

u0,j = Gx0,j + g = G0,jx0,1 + g0,j for j = 1, 2, . . . (A-16)

x0,j = G∗0,jx0,1 + g∗0,j for j = 2, 3, . . . (A-17)

with
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G0,j = G (α+ βG)j−1 = GG∗0,j for j = 1, 2, . . . (A-18)

g0,j = Gg∗0,j + g for j = 2, 3, . . . (A-19)

where

g∗0,j = α−1γ

j−1∑
i=1

(α+ βG)i + α−1γ

j−1∑
i=1

(α+ βG)i−1 βGρp∗

= α−1γ (α+ βG+ βGρp∗)

j−1∑
i=1

(α+ βG)i−1 (A-20)

for j = 2, 3, . . .

It is important to notice that when there is no exogenous variable or inter-
cept, and the desired path for the state and control are zero as asssumed
here, the g terms disappear and the nominal control and state are simply

u0,j = G (α+ βG)j−1 x0,1 (A-21)

x0,j = (α+ βG)j−1 x0,1 (A-22)

for j = 2, 3, . . .
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Appendix B. Deriving submatrix kβx of the augmented system in
the infinite horizon model

In the BMW model, when the unknown parameter β is replaced by its
estimate at time 0, b0, the general formula for kβx, see e.g. Kendrick (1981;
2002, equation 10.40) or Tucci (2004, equation 2.56), specializes to

kβx1 = u0,1k
xx
2 α+ kβx2 α−

(
px2 + u0,1k

xx
2 b0 + kβx2 b0

)
×
(
λ1 + kxx2 b20

)−1
αkxx2 b0

= ρkxx1 (α+ b0G)u0,1 + kβx2 (α+ b0G) + px2G (B-1)

with

pxj = kxxj x0,j + pCEj (B-2)

In the infinite horizon model, see, e.g., equation (A-13) in Appendix A,

pCE = [1− ρ (α+Gb)]−1 (α+Gb) ρkCEγ = p∗ρkCEγ (B-3)

then it follows that

px2 = kxx2 x0,2 + pCE2

= ρkxx1 x0,2 + ρpCE1

= ρkxx1 (α+ b0G)x0,1 + cp2 (B-4)

where

cp2 = ρkxx1 (α+ b0G)α−1γ (1 + ρp∗) (B-5)

Therefore

px2G =
[
ρkxx1 (α+ b0G)x0,1 + ρkxx1 (α+ b0G)α−1γ (1 + ρp∗)

]
G

= ρkxx1 (α+ b0G) (Gx0,1 + g) (B-6)

with G and g as in equations (A-10)-(A-11) in Appendix A. Then kβx can
be rewritten as

k βx1 = 2ρkxx1 (α+ b0G) (Gx0,1 + g) + kβx2 (α+ b0G) (B-7)
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with

kβx2 = 2ρ2kxx1 (α+ b0G) (Gx0,2 + g) + kβx3 (α+ b0G) (B-8)

Then, by repeated substitution, it can be shown that

kβx1 = 2ρkxx1 (α+ b0G)u0,1 +

(α+ b0G)
[
2ρ2kxx1 (α+ b0G)u0,2 + (α+ b0G) kβx3

]
= 2ρkxx1 (α+ b0G)u0,1 + 2ρ2kxx1 (α+ b0G)2 u0,2 + ...

= 2

∞∑
j=1

ρjkxx1 (α+ b0G)j u0,j (B-9)

By using equation (A1.14) in Appendix A for the nominal control, it follows

that kβx1 can be viewed as the sum of two components, one dependent up-
onthe control applied at time 0, u0, and the other due solely to the system
parameters and exogenous forces, in this case the constant term γ. Namely,

kβx1 = kβx1 (x0,1) + cβx1 (B-10)

with

kβx1 (x0,1) = 2
∞∑
j=1

ρjkxx1 (α+ b0G)j G0,jx0,1 (B-11)

cβx1 = 2
∞∑
j=1

ρjkxx1 (α+ b0G)j g0,j (B-12)

Replacing the definition of G0,j , i.e. equation (A1.16a) in Appendix A, into
(A2.11a) yields

kβx1 (x0,1) = 2

∞∑
j=1

(α+ b0G)j−1 (α+ b0G)j ρjkxx1 Gx0,1

= 2ρkxx1 (α+ b0G)
[
1− ρ (α+ b0G)2

]−1
Gx0,1 (B-13)

The component associated with the constant term γ, i.e. cβx1 , can be rewrit-
ten as
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cβx1 = 2ρkxx1 (α+ b0G) g +

2ρkxx1 (α+ b0G)
∞∑
j=2

{
g +

(
g0,j − g

)}
ρj−1 (α+ b0G)j−1

(B-14)

with

g0,j − g =
(
g0,2 − g

)j−1∑
i=1
j≥2

(α+ b0G)i−1

 (B-15)

(g0,2 − g0,1) ≡ (g0,2 − g) = Gα−1γ (α+ b0G+ b0Gρp
∗) (B-16)

because

g0,i − g0,i−1 = g0,2 − g for i = 1, 2, . . . , j (B-17)

The first infinite summation on the right hand side is equal to

∞∑
j=2

ρj−1 (α+ b0G)j−1 = ρ (α+ b0G)
∞∑
j=0

ρj (α+ b0G)j

= ρ (α+ b0G) [1− ρ (α+ b0G)]−1 (B-18)

The double summation on the right hand side is equal to
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∑∞
j=2

[
j−1∑
i=1

(α+ b0G)i−1
]
ρj−1 (α+ b0G)j−1

∞∑
j=2

ρj−1 (α+ bG)j−1

+ (α+ bG)
∞∑
j=3

ρj−1 (α+ bG)j−1

+ (α+ bG)2
∞∑
j=4

ρj−1 (α+ bG)j−1

+ (α+Gβ)3
∞∑
j=5

ρj−1 (α+ bG)j−1 + ...

=

ρ (αbG)
[
1 + ρ (α+ bG)2 + ρ2 (α+ bG)4 + ...

]
×
∞∑
j=1

ρj−1 (α+ bG)j−1

=

ρ (α+ b0G)
[
1− ρ (α+ b0G)2

]−1
[1− ρ (α+ b0G)]−1

(B-19)

when the system is stable and ρ <1, then

cβx1 = 2ρkxx1 (α+ b0G) g + 2ρkxx1
(
α+ b0G

)
×

{
g
(
α+ b0G

)
ρ [1− ρ (α+ b0G)]−1 +Gα−1γ (α+ b0G+ b0Gρp

∗)

× (α+ b0G) ρ
[
1− (α+ b0G)2 ρ

]−1
[1− (α+ b0G) ρ]−1

}
= 2ρkxx1 (α+ b0G) g + 2ρkxx1 (α+ b0G)2 ρ [1− ρ (α+ b0G)]−1

×
{
g + (g0,2 − g)

[
1− ρ (α+ b0G)2

]−1 }
(B-20)

Therefore when the system is stable and ρ <1, the component cβx1 depends
only upon g0,1 ≡ g and (g0,2 − g0,1) ≡ (g0,2 − g) and
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kβx1 = 2ρkxx1 (α+ b0G)
[
1− ρ (α+ b0G)2

]−1
Gx0,1

+2ρkxx1 (α+ b0G) [1− ρ (α+ b0G)]−1

×g

{
1 + ρ (α+ b0G) (g0,2 − g) g−1

[
1− ρ (α+ b0G)2

]−1}
(B-21)

with x0,1 ≡ x̂1|0. By repeating the same procedure for kβx2 yields

kβx2 = 2
∞∑
j=2

ρjkxx1 (α+bG)j−1 u0,j (B-22)

and after replacing the nominal controls with equation (A1.14) in Appendix
A, computing the infinite summation and double summation and rearrang-
ing the terms, the quantity kβx2 can be rewritten as

kβx2 = kβx2 (x0,2) + cβx2

= 2ρ2kxx1 (α+ bG)2
[
1− ρ (α+ bG)2

]−1
Gx0,1 + cβx2 (B-23)

with

cβx2 = 2ρ2kxx1 (α+ b0G) [1− ρ (α+ b0G)]−1

×g
{

1 + (g0,2 − g) g−1 + ρ (α+ b0G) (g0,3 − g0,2) g−1
[
1− ρ (α+ b0G)2

]−1}
(B-24)

It should be noticed that

kβx2 (x0,2) = 2ρ2kxx1 (α+ b0G)2
[
1− ρ (α+ b0G)2

]−1
Gx0,1

= ρ (α+ b0G) kβx1 (x0,1) (B-25)

and

cβx2 = ρcβx1 + 2ρ2kxx1 (α+ b0G) [1− ρ (α+ b0G)]−1 (g0,2 − g) (B-26)

Repeating this procedure it can be shown that, in general,
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kβxj = kβxj (x0,j) + cβxj = [ρ (α+ b0G)]j−1 kβx1 (x0,1)

+ρj−1cβx1 + 2
∑j

i=2 ρ
ikxx1 (α+ b0G) [1− ρ (α+ b0G)]−1 (g0,2 − g)

(B-27)

equation (B-27) simplifies to

kβxj = [ρ (α+ b0G)]j−1
{

2ρkxx1 (α+ b0G)
[
1− ρ (α+ b0G)2

]−1
Gx0,1

}
= k̃βx1 x0,1 (B-28)

when the constant term γ is zero.
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Appendix C. Deriving submatrix kββ of the augmented system in
the infinite horizon model

In the BMW model, when the unknown parameter β is replaced by its
estimate at time 0 b0, the general formula for kββ , see e.g. Kendrick (1981;
2002, equation 10.42) or Tucci (2004, equation 2.57), specializes to

kββj =
(
u20,jk

xx
j+1 + u0,jk

βx
j+1

)
+
(
u0,jk

xβ
j+1 + k ββj+1

)
−

[
pxj+1 + u0,jk

xx
j+1b0 + kβxj+1b0

]2
.

×
(
λj + kxxj+1b

2
0

)−1
(C-1)

Using the results in Appendix B, when j =1 this submatrix can be rewritten
as

kββ1 = u0,1ρk
xx
1 u0,1 + 2

[
kβx2 x0,2 + cβx2

]
u0,1 + kββ2

−
{
ρkxx1 (α+ b0G)G−1u0,1 + u0,1ρk

xx
1 b0 +

[
kβx2 (x0,2) + cβx2

]
b0

}2

×
(
λ1 + ρkxx1 b20

)−1
(C-2)

with

kββ2 = u0,2ρk
xx
2 u0,2 + 2

[
kβx3 x0,3 + cβx3

]
u0,2 + kββ3

−
{
ρkxx2 (α+ b0G)G−1u0,2 + u0,2ρk

xx
2 b0 +

[
kβx3 (x0,3) + cβx3

]
b0

}2

×
(
λ2 + ρkxx2 b20

)−1
(C-3)

where G is as in equation (A-10) in Appendix A. Then, by repeated substi-
tution, it can be shown that

24



kββ1 =
∞∑
j=1

ρjkxx1 u20,j + 2
∞∑
j=1

[
kβxj+1 (x0,j+1) + cβxj+1

]
u0,j

−
∞∑
j=1

{
ρjkxx1 (α+ b0G)G−1u0,j + u0,jρ

jkxx1 b0 +
[
kβxj+1x0,j+1 + cβxj+1

]
b0

}2

×
(
ρjλ+ ρjkxx1 b20

)−1
(C-4)

When γ = 0 and the desired paths are zero the first term reduces to

∞∑
j=1

ρjkxx1 u20,j =
∞∑
j=1

ρjkxx1
(
G0,jx0,1

)2
= ρkxx1

[
1− ρ (α+ b0G)2

]−1
G2x20,1 (C-5)

with x0,1 ≡ x̂1|0 , the second one looks like

2
∞∑
j=1

kβxj+1x0,j+1G0,jx0,1 =

4ρkxx1

[
1− ρ (α+ b0G)2

]−2
ρ (α+ b0G)2G2x20,1 (C-6)

and the squared portion is

∞∑
j=1

{
ρkxxj (α+ b0G)x0,j + ρkxxj b0u0,j + kβxj+1 (x0,j+1) b0

}2

×
(
λj + ρkxxj b20

)−1
=

∞∑
j=1

{(
ρj−1

)
ρkxx1 (α+ b0G)j−1

{
α+ 2b0G

[
1− ρ (α+b0G)2

]−1}
x0,1

}2

×
[
ρj−1

(
λ1 + ρkxx1 b20

)]−1
(C-7)

Then equation (C-4) specializes to
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kββ1 = ρkxx1

[
1 + 3ρ (α+ b0G)2

] [
1− ρ (α+ b0G)2

]−2
G2x20,1

− (ρkxx1 )2
{
α+ 2b0G

[
1− ρ (α+ b0G)2

]−1}2

×
(
λ1 + ρkxx1 b20

)−1 [
1− ρ (α+ b0G)2

]−1
x20,1

= k̃ββ1 x20,1 (C-8)

Similarly, when γ = 0, the desired paths are zero and the system is stabiliz-
able

kββ2 = ρkxx1

[
1− ρ (α+ b0G)2

]−2
×

{
1 + 3ρ (α+ b0G)2

}
ρ (α+ b0G)2G2x2o,1

− (ρkxx1 )2
{
α+ 2b0G

[
1− ρ (α+ b0G)2

]−1}2 (
λ1 + ρkxx1 b20

)−1
×

[
1− ρ (α+ b0G)2

]−1
ρ (α+ b0G)2 x2o,1 (C-9)

By comparing kββ1 and kββ2 it is apparent that, in this special case,

kββ2 = ρ (α+ b0G)2 kββ1 (C-10)

and by repeating this procedure it is possible to show that in general

kββj = ρ (α+ b0G)2 kββj−1

=
[
ρ (α+ b0G)2

]j−1
kββ1 (C-11)
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Appendix D. Deriving the updated variance of the augmented
system in the infinite horizon model

By Appendix D combining (3-3) and (6-2) in the text, it follows that the
updated variance of the stochastic parameter β in the BMW model for a
generic period j is given by

σββj|j = σββj−1|j−1 −
(
σββj−1|j−1u0,j−1

)2 (
u20,j−1σ

ββ
j−1|j−1 + q

)−1
= σββj−1|j−1q

(
u20,j−1σ

ββ
j−1|j−1 + q

)−1
(D-1)

It follows that

σββ1|1 = σββ0|0 q
(
u20σ

ββ
0|0 + q

)−1
(D-2)

with σββ0|0 ≡ σ
2
b as in the text and, using this result, the updated variance for

j = 2 can be rewritten as

σββ2|2 = σββ1|1q
(
u20,1σ

ββ
1|1 + q

)−1
= σββ0|0q

(
u20σ

ββ
0|0 + q

)−1(
u20,1σ

ββ
0|0

(
u20σ

ββ
0|0 + q

)−1
+ 1

)−1
= σββ0|0q

[
σββ0|0

(
u20,1 + u20

)
+ q
]−1

(D-3)

By repeating this procedure it can be shown that in general

σββj|j = σββj−1|j−1q
(
u20,j−1σ

ββ
j−1|j−1 + q

)−1
= σββ0|0q

(
σββ0|0

j−1∑
i=0

u20,i + q

)−1
(D-4)

when σββj−1|j−1 is replaced by its definition and u0,0 ≡ u0. From equation

(A-21) in Appendix A, it is known that when there is no exogenous variable
or intercept, and the desired path for the state and control are zero as
asssumed here, the nominal control and state are simply

u0,j = G (α+ b0G)j−1 x0,1 for j = 1, 2, . . .
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with

x0,1 ≡ x̂1|0 = αx0 + b0u0

and the unknown parameter β replaced by its estimate at time 0, i.e. b0.
Then

σββ2|2 = σββ0|0q
(
u20σ

ββ
0|0 + q

)−1
q

[
u20,1σ

ββ
0|0q

(
u20σ

ββ
0|0 + q

)−1
+ q

]−1
= σββ0|0q

(
u20σ

ββ
0|0 + q

)−1 [
1 +G2 (αx0 + b0u0)

2 σββ0|0

(
u20σ

ββ
0|0 + q

)−1]−1
= σββ1|1 (1 + S)−1

(D-5)

with

S = G2 (αx0 + b0u0)
2 σββ0|0

(
u20σ

ββ
0|0 + q

)−1
(D-6)

The updated variance for j =3 is

σββ3|3 = σββ1|1 (1 + S)−1 q
[
u20,2σ

ββ
1|1 (1 + S)−1 + q

]−1
(D-7)

then using the definition of the nominal control and rearranging yields

σββ3|3 = σββ1|1 (1 + S)−1
[
(α+ b0G)2

(
1 + S−1

)−1
+ 1
]−1

= σββ1|1

[
1 + S + (α+ b0G)2 S

]−1
(D-8)

By repeating this procedure it can be shown that in general

σββj|j = σββ1|1

1 + S

j∑
l=2

forj≥2

(α+ b0G)2(l−2)


−1

(D-9)
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Appendix E. The deterministic component

The deterministic component of the approximate cost-to-go can be written
as in Kendrick (1981; 2002, equation 10.35), i.e.

JD,T−t =
1

2
λtu

2
t +

1

2
kCEt+1x̂

2
t+1|t + pCEt+1x̂t+1|t (E-1)

with CE indicating the Certainty Equivalence value associated with the
non-augmented model, and in the infinite horizon model when t = 0 it looks
like

JD,∞ =
1

2
λ0u

2
0 +

1

2
ρkCE (αx0 + b0u0 + γ)2 + ρpCE (αx0 + b0u0 + γ) (E-2)

where kCE and pCE are the fixed point solutions to the usual Riccati equa-
tions, ρ is the discount factor and the unknown parameter β is replaced by
its estimate at time 0, i.e. b0. Equation (E-2) can be rewritten as

JD,∞ = ψ1u
2
0 + ψ2u0 + ψ3 (E-3)

with

ψ1 =
1

2

(
λ+ ρkCEb20

)
ψ2 = ρkCEb0αx0

ψ3 =
1

2
ρkCE (αx0)

2 (E-4)

when there is no constant term and the desired path for the state and control
are zero.
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Appendix F. The cautionary component

The general formula for the cautionary component of the approximate cost-
to-g0, see e.g. Kendrick (1981; 2002, equation 10.50) or Tucci (2004, equa-
tion 2.68), for t = 0 and T =∞ looks like

JC,∞ =
1

2

(
kxx1 σxx1|0 + kββ1 σββ1|0

)
+ kxβ1 σxβ1|0 +

1

2

∞∑
j=1

(
kxxj+1q

)
(F-1)

with kxx1 = ρkxx in the infinite horizon model where kxxis the fixed point
solution to the Riccati quantity described in Appendix A and

kβx1 = 2ρkxx1 (α+ b0G)
[
1− ρ (α+ b0G)2

]−1
Gx0,1 = k̃βx1 x0,1 (F-2)

kββ1 = ρkxx1

[
1 + 3ρ (α+ b0G)2

] [
1− ρ (α+ b0G)2

]−2
G2x20,1

− (ρkxx1 )2
{
α+ 2b0G

[
1− ρ (α+ b0G)2

]−1}2

×
(
λ1 + ρkxx1 b20

)−1 [
1− ρ (α+ b0G)2

]−1
x20,1

= k̃ββ1 x20,1 (F-3)

derived in Appendix B and Appendix C, where x20,1 ≡ x̂21|0 . By using the

fact that the projected variances in this case look like σxx1|0 = σββ0|0u
2
0 + q,

σβx1|0 = σββ0|0u0and σββ1|0 = σββ0|0 , after some manipulations the cautionary cost
can be rewritten as

JC,∞ = δ1u
2
0 + δ2u0 + δ3 (F-4)

with

δ1 =
1

2
kxx1 σββ0|0 +

1

2
σββ0|0 k̃

ββ
1 b20 + σββ0|0 k̃

βx
1 b0

δ2 = σββ0|0 k̃
ββ
1 b0αx0 + σββ0|0 k̃

βx
1 αx0

= σββ0|0

(
k̃ββ1 b0 + k̃βx1

)
αx0

δ3 =
1

2
kxx1 q (1− ρ)−1 +

1

2
σββ0|0 k̃

ββ
1 α2x20 (F-5)
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Appendix G. The probing component

The general formula for the probing component of the approximate cost-to-
g0, see e.g. Kendrick (1981; 2002, equation 10.51) or Tucci (2004, equation
2.69), for t = 0 and T =∞ looks like

JP,∞ =
1

2

∞∑
j=1

[
p xj+1 + uoρ

jk xx1 b0 + k βxj+1b0

]2 [
ρj
(
λ0 + k xx1 b20

)]−1
σββj|j

(G-1)
when the unknown parameter β is replaced by its estimate at time 0, i.e. b0,
and kxx1 = ρkxx. By comparing the terms of this infinite summation with the
definition of submatrix kββ , it is apparent that they have a lot in common.
Namely, the j –th term multiplying the updated variance corresponds to the
‘minus term’ in the formula for kββj . As shown in Appendix C

kββj = ρ (α+ b0G)2 kββj−1 =
[
ρ (α+ b0G)2

]j−1
kββ1 (G-2)

with

kββ1 = ρkxx1

[
1 + 3ρ (α+ b0G)2

] [
1− ρ (α+ b0G)2

]−2
G2x20,1

− (ρkxx1 )2
{
α+ 2b0G

[
1− ρ (α+ b0G)2

]−1}2

×
(
λ1 + ρkxx1 b20

)−1 [
1− ρ (α+ b0G)2

]−1
x20,1

= k̃ββ1,1x
2
0,1 − k̃

ββ
1,2x

2
0,1

= k̃ββ1 x20,1 (G-3)

as given in equation (C-8). Then the probing component can be rewritten
as

JP,∞ =
1

2

∞∑
j=1

{[
ρ (α+ b0G)2

]j−1
k̃ββ1,2x

2
0,1

}
σββj|j (G-4)

with x20,1 ≡ x̂21|0 as before. By replacing the updated variances in (G-4) with

equation (D-9) in Appendix D it yields
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JP,∞ =
1

2

[
k̃ββ1,2x

2
0,1σ

ββ
0|0 q

(
u20σ

ββ
0|0 + q

)−1]
×
∑∞

j=1

{[
ρ (α+ b0G)2

]j−1 [
1 + S

∑j
i=2

forj≥2

(α+ b0G)2(i−2)
]−1} (G-5)

with S = G2 (αx0 + b0u0)
2 σββ0|0

(
u20σ

ββ
0|0 + q

)−1
. The infinite sum in (G-5)

can alternatively be written as

∞∑
j=1

[
ρ (α+ b0G)2

]j−1 [
1 + S

∑j
i=2

forj≥2

(α+ b0G)2(i−2)
]−1

=

1 + ρ (α+ b0G)2 (1 + S)−1 +
[
ρ (α+ b0G)2

]2 [
1 + S + S (α+ b0G)2

]−1
+
[
ρ (α+ b0G)2

]3 [
1 + S + S (α+ b0G)2 + S (α+ b0G)4

]−1
+ ...

(G-6)
with

lim
j→∞

[
ρ (α+ b0G)2

]j−1
= 0

when the system is stabilizable, and

1 < lim
j→∞

1 + S

j∑
i=2

forj≥2

(α+ b0G)2(i−2)

 =

{
1 + S

[
1− (α+ b0G)2

]−1}
<∞

(G-7)
because all quantities are squared quantities or variances. One way to com-
pute this infinite sum is by using the limiting ratio approach. The ratio
between any two consecutive terms of equation (G-6) looks like

sj+1

sj
=

[
ρ (α+ b0G)2

]j [
1 + S

∑j+1
i=2

forj≥2

(α+ b0G)2(i−2)
]−1

[
ρ (α+ b0G)2

]j−1 [
1 + S

∑j
i=2

forj≥2

(α+ b0G)2(i−2)
]−1 (G-8)

then the limiting ratio is
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lim
j→∞

∣∣∣∣sj+1

sj

∣∣∣∣ = ρ (α+ b0G)2 lim
j→∞

∣∣∣∣∣∣∣
1 + S

∑j
i=2

forj≥2

(α+ b0G)2(i−2)

1 + S
∑j+1

i=2
forj≥2

(α+ b0G)2(i−2)

∣∣∣∣∣∣∣
= ρ (α+ b0G)2 (G-9)

When equation (G-9) is used to compute the infinite sum in (G-6) it yields

JP,∞ =
1

2

[
1− ρ (α+ b0G)2

]−1
σββ0|0 q

(
u20σ

ββ
0|0 + q

)−1
k̃ββ1,2x

2
0,1 (G-10)

This means that the probing component can be rearranged as in Amman
and Kendrick ((1995)) and Tucci et al. (2010), namely

JP,∞ =
1

2

g (u0)

h (u0)
(G-11)

with

h (u0) =
(
u20σ

ββ
0|0 + q

)(
σββ0|0 q

)−1
(G-12)

identical to the definition reported in those works and

g (u0) =
[
1− ρ (α+ b0G)2

]−1
k̃ββ1,2x

2
0,1 = φ1 (φ2u0 + φ3)

2 (G-13)

with

φ1 =
[
(ρkxx1 )2

(
λ1 + ρkxx1 b20

)−1] [
1− ρ (α+ b0G)2

]−2
φ2 =

{
α+ 2b0G

[
1− ρ (α+ b0G)2

]−1}
b0

φ3 =

{
α+ 2b0G

[
1− ρ (α+ b0G)2

]−1}
αx0 (G-14)
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Appendix H. Comparing the deterministic component of the ap-
proximate cost-to-go in a two-period finite horizon
model with that in an infinite horizon model

This appendix shows that the parameter definitions in the deterministic
component of the approximate cost-to-go associated with the control applied
at time 0 reported in Amman and Kendrick (1995) and Tucci et al. (2010)
are consistent with those presented in Appendix E. The parameter ψ1 in
Tucci et al. (2010, equation 5.3) takes the form

ψ1 =
λ0
2

+
1

2
b2

{
w2

[
α

(
1− b2w2

λ1 + b2w2

)]2
+ w1

+λ1

(
−1

λ1 + b2w2

)2

(αbw2)
2

}
(H-1)

when there is no constant term and the desired path for the state and control
are zero. Rearranging the terms yields

ψ1 =
λ0
2

+
1

2
b2
{
w1 + w2α

2 − α2b2w2
2

[
λ1 + b2w2

]−1}
ψ1 =

1

2

(
λ+ b2kCE1

)
(H-2)

Similarly, the parameter ψ2 in their equation (5-3) looks like

ψ2 = w2bα

(
1− b2w2

λ1 + b2w2

)[
b

(
− 1

λ1 + b2w2

)
α2bw2x0 + α2x0

]
+ w1 (αx0) b+

(
− λ1
λ1 + b2w2

)
αb2w2

[(
− 1

λ1 + b2w2

)
α2bw2x0

]
(H-3)

when there is no constant term and the desired path for the state and control
are zero and after some minor manipulations it yields

ψ2 = b
{
w2α

2 − w2α
2
[
λ1 +

(
b2w2

)]
b2w2

(
λ1 + b2w2

)−2
+ w1

}
αx0

ψ2 = kCE1 bαx0 (H-4)
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Finally, the parameter ψ3 in Tucci et al. (2010, equation 5.3) can be rewrit-
ten as

ψ3 =
w2

2

{(
− 1

λ1 + b2w2

)
α2b2w2x0 + α2x0

}2

+
w1

2
(αx0)

2

+λ1
2

[(
− 1

λ1 + b2w2

)
α2bw2x0

]2 (H-5)

and after explicating the squared terms and simplifying it yields

ψ3 =

{(
w2b

2 + λ1
)(
− 1

λ1 + b2w2

)2

b2w2
2α

2 + w2α
2

+2

(
− 1

λ1 + b2w2

)
b2w2

2α
2 + w1

}
1

2
(αx0)

2 =
1

2
kCE1 (αx0)

2

(H-6)
It is straightforward that equations (H-2), (H-4) and (H-6) are identical to
the equations in (E-4) in Appendix E when the estimate of the unknown
parameter β at time 0 is denoted by b, instead of b0 as in the present paper,
and the finite horizon Riccati quantity is replaced by its ‘infinite-horizon’
counterpart.
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Appendix I. Comparing the cautionary component of the approx-
imate cost-to-go in a two-period finite horizon model
with that in an infinite horizon model

This appendix shows that the parameter definitions in the cautionary com-
ponent of the approximate cost-to-go associated with the control applied at
time 0 reported in Amman and Kendrick (1995) and Tucci et al. (2010)
are consistent with those presented in Appendix F. In a two-period BMW
model with unknown parameter β, this component looks like

JC,2 =
1

2

(
kxx1 σxx1|0 + 2kxβ1 σβx1|0 + kββ1 σββ1|0

)
+

1

2
kxx2 q (I-1)

with σxx1|0 = σββ0|0u
2
0 + q, σβx1|0 = σββ0|0u0, σ

ββ
1|0 = σββ0|0 and kxx2 = w2. In Tucci

et al. (2010, equation 4.1) it takes the form

JC,2 =
σ2bw2

2
(αu0 + u0,1)

2 +
σ2b
2

(
− 1

λ1 + b2w2

)
(αbw2u0 + bw2u0,1 + w2x0,2)

2

+ q
2

[
α2w2 + w2 + w1 +

(
− 1

λ1 + b2w2

)
(αbw2)

2

]
+
σ2bw1

2
u20

(I-2)
with u0,1and x0,2 the nominal, or CE, values of u1 and x2 defined as

u0,1 =

(
− 1

λ1 + b2w2

)[
αb2w2u0 + α2bw2x0

]
(I-3)

x0,2 = b

(
α− αb2w2

λ1 + b2w2

)
u0 + α2x0 +

(
− 1

λ1 + b2w2

)
α2b2w2x0 (I-4)

when there is no constant term and the desired path for the state and control
are zero. Then it is convenient to rewrite (I-3) and (I-4) as

u0,1 =

(
− αbw2

λ1 + b2w2

)
(bu0 + αx0)

= G1x0,1 (I-5)

and
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x0,2 = b

(
α− b αbw2

λ1 + b2w2

)
u0 + α2x0 + b

(
− αbw2

λ1 + b2w2

)
αx0

= (α+ bG1)x0,1 (I-6)

respectively, with G1 the usual feedback law in a two-period control problem.
Then, equation (I-2) can be rewritten as

JC,2 = δ1u
2
0 + δ2u0 + δ3 (I-7)

with

δ1 =
σ2b
2

[
ν21

(
w2 −

4b2w2
2

λ1 + b2w2

)
+ w1

]
=

σ2b
2

[
(α+ bG1)

2

(
w2 −

4b2w2
2

λ1 + b2w2

)
+ w1

]
δ2 = σ2bw2ν1

{
ν2 −

2bw2 (2bν2 + ν3)

λ1 + b2w2

}
= σ2bw2 (α+ bG1)

{
G1αx0 −

2bw2

(
2bG1αx0 + α2x0

)
λ1 + b2w2

}

δ3 =
σ2b
2
w2

[
ν22 −

w2 (2bν2 + ν3)
2

λ1 + b2w2

]
+
q

2

[
α2w2 + w2 + w1 −

(αbw2)
2

λ1 + b2w2

]

=
σ2b
2
w2

[
(G1)

2 − w2 (α+ 2bG1)
2

λ1 + b2w2

]
(αx0)

2 +
q

2
(w2 + kxx1 ) (I-8)

because the quantities defined in Tucci et al. (2010, equation 4.4) look like

ν1 = α

(
1− b2w2

λ1 + b2w2

)
= α+ bG1 (I-9)

ν2 =

(
− 1

λ1 + b2w2

)
α2bw2x0

= G1αx0 (I-10)

ν3 = α2x0 (I-11)
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in this simpler setup. Equations (I-8) are identical to equations (F-5) in
Appendix F when the estimate of the unknown parameter β at time 0 is
denoted by b, instead of b0as in the rest of the present paper, because

kβx1 = 2w2 (α+ bG1)G1x0,1

= k̃βx1 x0,1 (I-12)

kββ1 = w2G
2
1x

2
0,1 + w2

2 (α+ 2bG1)
2 [− (λ1 + b2w2

)]−1
x20,1

= k̃ββ1 x20,1 (I-13)

in the two-period horizon, and δ1 in equation (I-8) can be rearranged as

δ1 =
σ2b
2

{
w2α

2 +G1αbw2 + w1 + 2w2 [α+ (α+ 2bG1)]G1b

+w2G
2
1b

2 +

(
− 1

λ1 + b2w2

)
w2
2 (α+ 2bG1)

2 b2

}
(I-14)

with the first three terms in braces corresponding to kxx1 , the fourth term

to k̃βx1 b and the last two to k̃ββ1 b2.
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Appendix J. Comparing the probing component of the approxi-
mate cost-to-go in a two-period finite horizon model
with that in an infinite horizon model

This Appendix J shows that the parameter definitions in the probing com-
ponent of the approximate cost-to-go associated with the control applied at
time 0 reported in Amman and Kendrick (1995) and Tucci et al. (2010) are
consistent with those presented in appendix Appendix G. In Tucci et al.
(2010), the function h(u0) in this component is identical to equation (G-12)
in Appendix G and their g(u0), labeled equation (3-1), takes the form

g(u0) =

(
w2
2

λ1 + b2w2

)
(bu0,1 + x0,2)

2 (J-1)

with u0,1 and x0,2 the nominal, or CE, values of u1 and x2 defined as

u0,1 =

(
− 1

λ1 + b2w2

)[
αb2w2u0 + α2bw2x0

]
(J-2)

x0,2 = b

(
α− αb2w2

λ1 + b2w2

)
u0 + α2x0 +

(
− 1

λ1 + b2w2

)
α2b2w2x0 (J-3)

when there is no constant term and the desired path for the state and control
are zero. Then it is straightforward to rewrite (J-2) and (J-3) as

u0,1 =

(
− αbw2

λ1 + b2w2

)
(bu0 + αx0)

= G1x0,1 (J-4)

and

x0,2 = b

(
α− b αbw2

λ1 + b2w2

)
u0 + α2x0 + b

(
− αbw2

λ1 + b2w2

)
αx0

= (α+ bG1)x0,1 (J-5)

respectively, with G1 the usual optimal control law in a two-period control
problem. Using equations (J-4) and (J-5) in (J-1) and rearranging it yields
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g(u0) =

(
w2
2

λ1 + b2w2

)
(α+ 2bG1)

2 x20,1

= φ1 (φ2u0 + φ3)
2 (J-6)

where the old definitions simplify to, in this simpler setup,

φ1 =

(
w2
2

λ1 + b2w2

)
φ2 = αb

(
1− 2b2w2

λ1 + b2w2

)
= (α+ 2bG1) b

φ3 = 2b

(
− 1

λ1 + b2w2

)
α2bw2x0 + α2x0

= (α+ 2bG1)αx0 (J-7)

Equations (J-7) are identical to equations (G-14) in Appendix G when the
estimate of the unknown parameter β at time 0 is denoted by b, instead of b0
as in the present paper, the finite horizon Riccati quantity w2 is replaced by
its infinite-horizon counterpart ρkxx1 and the infinite path for the nominal
state and control are taken into account. By doing so, the usual optimal
control law in a two-period control problem is replaced by the infinite sum
of the time-invariant feedback matrix.
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