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The DUAL Approach in an Infinite
Horizon Model

1. Introduction

Most of the literature dealing with the DUAL control method based on Tse
and Bar-Shalom (1973) and Kendrick (1981; 2002) seminal works deals with
finite horizon problems. In these pages the DUAL solution to the BMW in-
finite horizon model is reported. In Section 2 the problem is stated and the
augmented system treating the stochastic parameter as an additional state
variable is defined. Then the one-period ahead projection of the mean and
variance of the augmented state is obtained (Section 3). In Section 4 the
formula for the nominal path for the state and control in the infinite horizon



are presented and the time-invariant feedback rule defined. The appropriate
Riccati quantities for the augmented system are derived (Section 5). Sec-
tion 6 contains the formulae for the updated covariances of the augmented
system. Finally the new approximate cost-to-go is presented for the special
case where the desired path for the state and control are set equal to 0 and
the linear system has no constant (Section 7). A numerical example, based
on BW dataset, comparing the DUAL infinite solution optimal control with
the two-period finite horizon solution discussed in Tucci et al. (2010) is
presented in Section 8. The major conclusions are summarized in Section
9. For the reader’s sake, most of the technical derivations are confined to a
number of short appendices.

2. Statement of the Problem

Tucci et al. (2010) consider a simple control problem with one state, one
control and a time horizon of T periods in which the policy maker wants to
find ug, w1, ..., up_1 to minimize

DN | =

T—1
J = {1 wr (ar — P 4 5 3w (e — 207 + A, — )’ } (2-1)

2
t=0

where Ej is the expectation operator conditional on the information avail-
able at time 0, subject to

Tip1 =axy + Pus +y+ 641 for t=0,1, .., T—1 (2-2)

with z; and wu; the state and control variables, respectively, and the tilde
indicating the desired path of the specified variable. Also «, § and ~ are
the parameters of the system equation and ;41 is an error term identically
and independently distributed (i.i.d.) normal with mean zero and variance
g. Finally, the initial state x¢ and the penalty weights w’s and \’s are given
constants. The parameter associated with the control is assumed constant
but unknown with mean, at time ¢, b; and variance aﬁf . Also, the state is
measured without error.!

Following Tse and Bar-Shalom (1973) methods for solving active learning

!This is equivalent to setting H=I and R=0 in Kendrick (1981; 2002, Chapter 10
-11) or Tucci (2004, chapter 2-5).



stochastic control problem, Tucci et al. (2010) compute, for each time pe-
riod, the approximate cost-to-go at different values of the control and then
choose that value which yields the minimum approximate cost.? This ap-
proximate cost-to-go is decomposed into three terms and, for the present
problem, written as

JNn=JpnN+JonN+JIpN (2-3)

where Jy is the total cost-to-go with IV periods remaining and Jp n, Jo N
and Jp y are the deterministic, cautionary and probing component, respec-
tively. The deterministic component includes only terms which are not
stochastic. The cautionary one includes uncertainty only in the next time
period and the probing term contains uncertainty in all future time periods.
Thus the probing term includes the motivation to perturb the controls in the
present time period in order to reduce future uncertainty about parameter
values.?

In the following pages, this model is rewritten as an infinite horizon model
and the associated formulae for the approximate cost-to-go are derived. The
problem now is to find the set of controls u; for t = 0,1,...,00, where t =0
denotes the current period, which minimizes the linear functional

1 o0
t=0

with the desired path for the state and control set equal to 0, x; subject

to the system equation (2-2) and )\ = p!\ and wy = plw where p is the

discount factor between 0 and 1.

The control problem (2-2) and (2-4) is solved treating the stochastic pa-
rameters as additional state variables as in Kendrick (1981; 2002, Chapter
10) and restating it in terms of an augmented state vector z; as: find the

controls u; for ¢ = 0, 1, ..., co minimizing
1 > Iy * 2
J=Epq 5 tz; (2g Wiz + ul ) (2-5)

with W} having w; on the top left corner and zeros elsewhere. subject to

2See Kendrick (1981; 2002, Chapter 9-10) or Tucci (2004, chapter 2) for details.
3See Kendrick (1981; 2002, pages 97-98) for an introduction to this decomposition.



the discrete-time system equations, with no measurement equation,

zip1 = A%z + Biu + 77 + & (2-6)
with the arrays defined as

=[g]w=[3 4= (3] [ oe 5] oo

Problems (2-2) and (2-4) and (2-5)-(2-7) are equivalent “however the first
is described as a linear quadratic problem with random coeflicients and the

second as a nonlinear (in z, u and () stochastic control problem” as noted
in Kendrick (1981; 2002, page 94).

3. One-period ahead projection of the mean and variance of the
augmented state vector z

For this simple model the one-period ahead projection of the mean of the
augmented state vector z, after control at time zero is applied, is

Ty0 = awo+bouj +y (3-1)
bijo = bo (3-2)

where by is the estimate of the unknown parameter at time 0, with esti-
mated variance agfé = Jg to save on notation, xg is the initial condition for
the state and u( being the search control at iteration 7, with the Certainty
Equivalence (CE) solution being the first search control, i.e. uj = u§*. The
projected mean of the parameter is equal to its current estimate because the
unknown parameter is assumed constant.

For the BMW problem with no measurement error, the projected variances
look like?

4See, e.g., Kendrick (1981; 2002, Chapter 10, page 102) or Tucci (2004, chapter 2, pages
21-22) for details.



offy = (u§)’ogg+a

0[0
Bz _ BB
910 = ‘70|0u6
_ 2
‘71'8|€ = 0%:0’1) (3-3)

4. The Nominal Path for the State and Control

At this point the nominal, or CE, path for state and control are needed. This
is done by solving the CE problem for the un-augmented system from time 1
on, using 1|9 as initial condition and the nominal path for the parameters.
Given that in the present case all of them are assumed constant, at this
stage the estimate by is treated as the true parameter for all future periods.
Then the nominal control for a generic period j in the time-horizon can be
expressed as, in the present case,

ug,; = Gj.%'()’j + 9g; for j=1, .. o

When the conditions for the existence of an infinite horizon solution are sat-
isfied, see e.g. De Koning (1982), Hansen and Sargent (2007, section 4.2.1),
with A\; = p’ XA and w; = p’w, the optimal control law is time invariant, i.e.

G = — (A pkCPRR) " apk©Fh, (4-1)
g = —(A+ pk:CEb%)_1 bo (pk“Ery + pp©F) (4-2)

with kJCJrEl = pk‘jCE and pjcfl = ,oijE V4, where k¢F and p©F are the fixed

point solutions to the usual Riccati recursions®

KCF = w + a2pkCF — (apk®Pby)” (A + pkCFR) (4-3)

and

5In this case the Riccati equation is scalar function and can easily be solved. The
multi-dimensional case can be more complicated to solve. See Amman and Neudecker
(1997).



-1
(4-4)
respectively. Then g can be rewritten as

g=Ga 'y (14 pp*) (4-5)

with p* = [1 — p (@ + boG)] ™" (e + byG). Generalizing the results in Tucci
et al. (2010) it can be shown, by repeated substitutions, that in the infinite
horizon problem the j-th nominal control can be written as the sum of
two components (Appendix A). One associated with ;) depending upon
the control applied at time 0, ug, and the other due solely to the system
parameters and exogenous forces, in this case the constant term ~y. Namely

up; = Go,%o,; + 9o,
uo; = Go,T10 + 90 (4-6)
with
Go; = Gla+bG) ™! (4-7)
Jj—1 A
go; = Ga 'y(a+byG+byGpp*) Z (a+b@) 't 4+g  (48)
i—1
for j =2,3,...

and the nominal control at time j can be rewritten as

j—1
o, = (4 boG)Y g +a y (a + boG + boGpp*) Y (a4 beG)' ™' (4-9)
=1

In the special case where v = 0, the nominal state and control are simply

g ; = Go o5 = Go 10 (4-10)

and

zg; = (a+bG) iy (4-11)



5. Riccati Equations for the Arrays of the Augmented System

The K and p Riccati arrays of the augmented system are partitioned as

ger peP p%
K. — J J , g p 5-1
J [ kfm kfﬂ ] Pj [ pf ] (5-1)

In the former array, k**matrix corresponds to the quantity k¢Fdiscussed
in the previous section and when the condition for stabilization holds, i.e.
a + byG is stable, and v = 0 the quantities k%% = k®and kP? reduce to

KT = [p(atboG)Y " R (5-2)
with
KPP = 20k (a4 boG) |1 — e e
1 pk1* (o + boG) p o+ boG) Ty,
= %15.%:1/,071 (5_3)

as shown in Appendix B and Appendix F, and
86 2,68 2197t 88
k" = pla+bG) KL = [P (a0 + boG) } ki
-1 -
_ [,0 (o + boG)Q] KPP (5-4)
with
- -2
k‘fﬁ = pki”® [1 +3p(a+ boG)ﬂ {1 —pla+ boG)ﬂ G*
2
-1
—{pkfx <a + 2byC [1 —pla+t boa)ﬂ ) }
zzp2\—1 2 -1
(A1 + pki*b5) [1 — 6§ (a+ bpG) } (5-5)

as shown in Appendix C and Appendix F.% The elements of the p Riccati

This compares with k%% = 2ws (o + bG1) G101 and
kfﬁ = ng%xg,l +w? (a+ 2bG1)2 [f (/\1 + b2w2)] -1 xal in the two-period finite horizon



vector are defined as

Py = k§ Fao; +p " (5-6)

and

UoPj1 + Pj'il N {pﬁl + ok 0o + kﬁrxlbo
—1
X (A k5E) ! (ko + 3 1bo) (5-7)

with kSF = pIkCF and p T = pip OF.

6. Updating the Covariances of the Augmented System

For the BMW problem the updating equations for the covariances of the
augmented system look like”

Zjlj-1 (6-1)

@) @)
Em—[ Bz (0%_1)—1 1

—0 . .
Jli=1\"Jj
then the elements of the updated covariance matrix are defined as
—1
TT zf _ _Bx _ B8 _ BB Bz T zfB .
755 = 0955 = %515 = 0955 = %G1 T %11 (Uilj—l) %1 (62)

where the projected covariances take the form in (3-3) when j and j-1 replace
1 and 0, respectively. Combining (6-2) and (3-3), it yields, for j = 1,

-1
2 2 2 -1
a’fﬁ = Ulﬁ"g - Ufl‘g (Jﬁ%) Jfl’g = opq (uio; + q) (6-3)

and in general it can be shown that (Appendix D)

model.
"See, e.g., Kendrick (1981; 2002, Chapter 10, page 103) or Tucci (2004, chapter 2, pages
27-28) for details..



j-1 !

g _ 2 2 2

aj@ = o0pq (Jb Zuw—l—q)
i=0

-1

J
= oiq (aﬁu% + q)f1 1+ Z (o + boG)Q(l_z) (6-4)
feri%r
with
-1

S =G?(axg + b0u0)2 agl'g <u(2)ag|g + q) (6-5)
and

UO,O = UQ (6-6)

7. The Approximate Cost-to-Go

As in Kendrick (1981; 2002, Chapter 10) the approximate cost-to-go associ-
ated with the ‘search’ control uj is decomposed into three parts: determin-
istic Jp, cautionary Jo and probing Jp. The deterministic component for
the control at time 0 is, see, e.g., equation 10.36 in Kendrick (1981; 2002),

1 1. . CE .
IDooc = §>\0u(2) + §$/1|0 Koc,1E$1\0 +p,0,1 T1)0 (7-1)

For the model at hand, equation (7-1) can be rewritten as

ID,so = 1uf + Poug + 3 (7-2)
with
1 21 CFE
1/)1 == 5 ()\ + bok’O’l )
v = [(amo+) kST +p§T ] bo
1
vs = (amo+ N KT + 05T (azo +7) (7-3)

where k:g E = k% = pk®. The parameters in equation (7-3) simplify to



1
Y1 = §(A+bgpk”)

o = pk™boaxg
1
vy = §pkm (avg)? (7-4)

when there is no constant term and zero desired path for the state and
control (Appendix E). The cautionary component looks like

1 T 1 . | 1,TX
Joso = 5 [ (o7ud +q) + K 0F| + ki ofuy + 5 D (k%) (7-5)
j=1

By using the definitions of the k’s and rearranging the terms it yields

JC0o = 01U3 + Saug + 3 (7-6)
with
5 = %ag (/cfx +EPORR + 2/%?%0)
S = of (l;fﬂbo + l%fm> azo
S = a1 - ) ot et (-7)
BB — 2

as apparent from Appendix F, when the identity Y10 = T is used. Finally,
the probing component takes the form

1 . e 127 . _
JPooc = 3 Z [Pjﬂ1 + uop? k" bo + kﬁlbo} [p] (>\o + k‘lmbg)] ! Uﬁ? (7-8)
j=1

Similarly to Amman and Kendrick (1995) and Tucci et al. (2010), equation
(7-8) can be rewritten as

JP,oo = (7'9)

with

10



h(ug) = (udo? +q) (o2q) " (7-10)

and

g (ug) = b1 (duo + ¢3)° (7-11)
with

o = [P ) [ pla e

dy = {a+%¢41—ﬂa+%Gﬂ?h)

by — {a + 2boG [1 —pla+t boG)ﬂ 1} o (7-12)
as shown in Appendix G. At this point by substituting (7-3), (7-6) and (7-9)
into (7-1) yields

Joo = (1 +01)ud + (b2 + 82) up + (3 + 63) +

<azq> ¢1 ($auo + ¢3)°
2 (ohug +a)

(7-13)

with the parameters defined as in (7-4), (7-7) and (7-12). As shown in
Appendix H through Appendix J, these new definitions are perfectly consis-

tent with those associated to the two-period finite horizon model reported
in Amman and Kendrick (1995) and Tucci et al. (2010).

8. Numerical Example

In this section the DUAL infinite horizon control is computed using the pa-
rameter set in Beck and Wieland (2002, Figure 1, page 1367) which trans-
lates to

a=1by=-05~=0,q= 1,a§|§ =07 =025 w=1,A=0,p=0.95
(8-1)
in the present context. With this parameter set, the fixed point solution to
the usual Riccati recursions for the unaugmented system is

11



KOE = 14 pkF —0.25 (pk“F)? (0.25pkCF)
= 14 pk®F — pkCF =1 (8-2)
with pkCF =
plifies to

pk®™ = 0.95 and the time invariant optimal control law sim-

G = — (0.25pkCF) " pkF (—0.5) = 2 (8-3)

It follows that the relevant terms for the computation of the approximate
cost-to-go described in the previous section 7 specialize to

(a+byG) =1+2(=05)=0 (8-4)

pEYT = p(pk™) = P’k = (0.95)
T = 2(0.95)%(0)[1 — (0.95)(0)%] "2 =0
P = (0.95)222 — {(0.95)2]1 — 2(1)"11}%[0.25(0.95)%) "1 (1) "t = 0
(8-5)

Then the coefficients characterizing the deterministic, cautionary and prob-
ing component are, respectively,

1

¥1 = 5(0.25)0.95=0.119

Yo = 0.95(—0.5)z = —0.475z¢
1

vy = 5(0.95)953:().475:::3 (8-6)
1

o = 50.25(0.95) =0.119

dg = 0
1

b3 = 5(0.95)(1)(0.05)*1:9.5 (8-7)

and

12



1 = 0.95(0.95)%(0.25%0.95) " = 0.95% % 4
by = [14+4(=0.5)](=0.5)=0.5
ds = [1+4(=0.5)]z=(—1)0 (8-8)

By comparing the new results with those associated with a two-period model
reported in Tucci et al. (2010, equations 34-39) some interesting features
emerge. First of all the ’s in the deterministic component are the same
both in the finite and infinite model except for the fact that the former
uses undiscounted penalty weights on the state, i.e. w; = we = 1, and
the latter assumes w; = p‘w with w = 1. The same consideration explains
the slight difference existing between the new and old coefficient d; in the
cautionary component and ¢ in the probing one. It is noteworthy that the
coefficient &9 in the cautionary component and ¢o and ¢3 in the probing
one are identical in the finite and infinite model. This means that these
coefficients are not affected by the penalty weight on the state. The main
difference between the finite and infinite model lies in d3, the constant term
in the cautionary component, which jumps from 1, the variance of the system
disturbance, to 9.5 which is, approximately, half the inverse of the discount
rate, i.e. 3(1— p)~! . Therefore this coefficient reflects the infinite sum of
the discount factor p.

9. Conclusion

In these pages the DUAL solution to the BMW infinite horizon model has
been presented. The appropriate Riccati quantities for the augmented sys-
tem have been derived and the time-invariant feedback rule defined. When
the desired path for the state and control are set equal to 0 and the linear
system has no constant term, the new approximate cost-to-go looks identical
to that associated with the finite horizon solution discussed in Amman and
Kendrick (1995) and Tucci et al. (2010). Namely, the deterministic and
cautionary component are quadratic functions of the time-0 control, and
the probing component is the ratio of two quadratic functions in the time-0
control. Moreover the new definitions are perfectly consistent with those
associated to the two-period finite horizon model.

13



Appendices

Appendix A. Deriving the nominal path for control as a function
of the projected state

Given a certain control at time 0, say ug, the nominal, or Certainty Equiv-
alence (CE), value of x;, denoted by xq 1, is given by

20,1 = axg + Bug + v

when the system parameters are assumed constant and known. Then the
nominal or CE value of u1, ug 1, in a two-period control problem is given
by®

up1 = Gizo1+ 91

1
= | ——— | [aPBwaxg1 + Pw —T2) — MU A-1
< Aﬁﬁ%)[ Buszo + Buwn (v — &2) = Main] - (A-1)
where ws is the penalty on the state in the final period and the tilde stands
for desired path. When the desired path for the state and control is zero,
the above formula simplifies to

ug,1 = Giro1+ ¢
Oéﬁk‘z 1
_ (. 2 Y \swk A-2
< )\1+52k‘2>x0’1+< )\1+52k2>ﬁ( 27+ p2) (A2)

with G7 and ¢; implicitly defined, and ks and ps the appropriate Riccati
quantities, for any finite period control problem. The associated nominal
value of x5 is

To2 = axo1+ Bug1 +YTo2
= (a+BG1)zo1 + Bg1 + (A-3)

Then the nominal control for the finite horizon problem at time 2 can be
written as

8See, e.g., Tucci et al. (2010).

14



up2 = Garo2 + g2
= Go(a+pG1)xo1 +Goa (a4 LG+ 1)y
+a” Gy (BG1ky 'py + k3 ' ps) (A-4)

with g defined similarly to g;. By repeating this procedure, it is then
apparent that the nominal control at any time j in the planning horizon
can be rewritten as the sum of two components. One associated with ¢ i
depending upon the control applied at time 0, ug, and the other due solely
to the system parameters and exogenous forces, in this case the constant
term ~y. Namely,

ug,; = Gjzgj + 95 = Go jTo1 + 90,5 (A-5)
with
7—1
Goj =G |[] (a+8G) (A-6)
=1

J [i-1
dg; = a_lGj’yZ [H (a4 BG)) | +
i=1 Li=i
=17 j—1
a”'G; {kj_+11pj+1 + H (e +5G) BGiki:Lllle}
i=1 Li=it1
(A7)

where it is implied that the product term in square brackets is one when
[ > j —1 and the feedback quantities G; and g; are defined as

Gj = — Ntk kB
g = =Ntk B (b +py) (A-8)

The associated nominal state at time j can obviously be written as

15



J—1 -1 -1

i=1 i=1 Li=i
=1 T j—1

+a7ly [ I (o+BG)| BGikipis (A-9)
i=1 L=it+1

with all symbols as previously defined. When the conditions for the existence
of an infinite horizon solution are satisfied, see e.g. De Koning (1982),
Hansen and Sargent (2007), with A\; = p/A and w; = p/w, the optimal
control law is time invariant, i.e. the quantities in (A-8) specialize to

G = —[(A+pkp?)] ' apkp (A-10)
g = —(A+pkB2) " B ok + pp) (A-11)

with kj+1 = pk’j and Pjt1 = PP; Vj, where kand p are the fixed point solu-
tions to the usual Riccati recursions

k= kP = w+ a®pk — (apkB)? (A + pkB?) (A-12)

and

p=p°F = a(pky + pp) — Bpka (A + pkB2) " B (pky +pp)  (A-13)

respectively. Then equation (A-11) can be rewritten as

g=Ga 'y (1+ pp*) (A-14)
with

p*=[1-pla+BG) " (a+BG) (A-15)

In the infinite horizon model the above formulae (A-5) and (A-9) simplify
as follows

Ug,; = Gl‘oJ +g= G()J'SUQ,]_ + 90,5 for j =1, 2, - (A—16)

:E()J‘ = GSJLUOJ -+ gSJ fOI' ] = 2, 3, . (A_]_7)
with

16



Goj = G(a+pGY '=GG; for j=1.2,... (A-18)

goj = Ggo;+g for j=2,3,... (A-19)
where
Jj—1 ' j—1 '
gy = o 'yd (@+BG) +a v (a+BG) T BGp”
=1 i=1
Jj—1 .
= a 'y(a+BG+BGw")D (a+pG) (A-20)
i=1
for j7=23,...

It is important to notice that when there is no exogenous variable or inter-
cept, and the desired path for the state and control are zero as asssumed
here, the g terms disappear and the nominal control and state are simply

up; = Gla+pBGY " ag, (A-21)
zo; = (a+BGY 1z, (A-22)
for j=2,3,...

17



Appendix B. Deriving submatrix k%% of the augmented system in
the infinite horizon model

In the BMW model, when the unknown parameter g is replaced by its
estimate at time 0, b, the general formula for k%%, see e.g. Kendrick (1981;
2002, equation 10.40) or Tucci (2004, equation 2.56), specializes to

BT = uoakgta+ kS — (95 + o,k b + k5o
x (A + k57b2) T aki®hy
= pkT® (a+boG) ugy + k5" (a+boG) + p3G (B-1)
with
P = ki"xo; + pS " (B-2)

In the infinite horizon model, see, e.g., equation (A-13) in Appendix A,

PP =1 = p(a+GH)] ™" (a + Gb) pk“Fry = p*pkFy (B3
then it follows that

Py = k3"mop+ ng
= pkf®xos + pp$E
= pki* (a+boG)zo1 + & (B-4)
where
ch = pki® (+ boG) ™y (1 + pp*) (B-5)
Therefore
P5G = [pk{" (o + boG) mo1 + pki™ ( + boG) o'y (14 pp*)] G
= pkim (a + b()G) (G:IZ071 + g) (B—G)

with G and g as in equations (A-10)-(A-11) in Appendix A. Then k%% can
be rewritten as

kT = 2085 (0 + boG) (G + g) + KT (a + boG) (B-7)

18



with

kST = 2p%k5" (o + boG) (Goz + g) + k5™ (o + boG) (B-8)

Then, by repeated substitution, it can be shown that

kDT

2pkT" (a4 boG) uo,1 +

(o + boG) [zp%fﬂf (o +boG) una + (o + boG) KE®

= 20k (o + boG) g1 + 20°KF (a4 boG)  ug s + ...

= 2 PR (0 + boGY o, (B-9)
j=1

By using equation (A1.14) in Appendix A for the nominal control, it follows
that klﬁ ¥ can be viewed as the sum of two components, one dependent up-
onthe control applied at time 0, ug, and the other due solely to the system
parameters and exogenous forces, in this case the constant term ~. Namely,

K= k" (zo) + ] (B-10)
with
k,lﬁaz (56071) = 2 Z p]kifx (a+ boG)j Go,jTo,1 (B-11)
j=1
C?I = 2 Z p”ffx (a+ boG)j 90, (B-12)
=1

Replacing the definition of Gy ; , i.e. equation (Al.16a) in Appendix A, into
(A2.11a) yields

BT (wo1) = 2 (a+bGY " (a+boGY pki"Gao,
j=1

-1
= 20k (a + bG) [1—p(a—|—b0G)2 Gro1 (B-13)

The component associated with the constant term -, i.e. c/f ¥ can be rewrit-

ten as
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cfz = 2pki{" (a + boG) g +

20k1" (0 +00G) Y {g+ (90— 9)} P (@ + oGy

j=2
(B-14)
with
j—1 '
90— 9= (902—9) | D (a+bG) ™" (B-15)
=
(902 — 90,1) = (902 — 9) = Ga 'y (a + byG + byGpp*) (B-16)
because
90 — 90,i—1 =go2—g for i=1,2,...,3 (B-17)

The first infinite summation on the right hand side is equal to

D athGY T = plathG)) o (a+bGY
j=2 j=0
= p(a+bG)[1—p(a+bG)]" (B-18)

The double summation on the right hand side is equal to
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j-1 i
35y | Do (at @) T P e+ G T Y (e bG)
i=1 j=2

pj 1 (a+ bG)jf1

Mg

+ (o + bG)

+(@+bG)2Y P (a+bG)

+(a+GBPY Pl a+bG)Y !

INERNGER

Il
o

J

p (abG) [1 +p(a+bG)? +p? (o +bG)* + }

xzpﬂ (o + b@G)’

pla+boG) [1=pla+bGP| 1= pla+hG)
(B-19)

when the system is stable and p <1, then

A = 20k{" (a+ boG) g + 20k (o + boG)

X {g(a +boG)p [l — p o+ boG)] !t 4+ Ga~ty (a + byG + byGpp®)

X (a+b0G)p[1—(a+boG)2p] [1—(a+b0G)p]1}

= 20k (o + boG) g + 20k (a4 boG)? p[1 — p (o + boG)]
-1
{9+ (g02-9) [1-pa+06)] } (B-20)

Therefore when the system is stable and p <1, the component c1 “depends
only upon go,1 = g and (go2 — go,1) = (go,2 — g) and
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-1
K2 = 2pkT (a + boG) [1 —plat boa)ﬂ Go
+2pk7 (o + boG) [1 — p (a+ boG)]*

-1
Xg{l +p(a+boG) (902 —9) g™ [1 —pla+ boG)Q] ]?B-Ql)
with zg1 = #1)9. By repeating the same procedure for k:z’8 ¥ yields

ky" =2 pkT" (a+DG)  ug s (B-22)
j=2

and after replacing the nominal controls with equation (A1.14) in Appendix
A, computing the infinite summation and double summation and rearrang-
ing the terms, the quantity kg ¥ can be rewritten as

k' = Ky (z02) +ch"

217,0T 2 2 -1 Bx
= 20%k%% (a+ bG)2 [1 = p (@ + bG) ] Guo, + 5 (B-23)

with

AT = 202k (o + boG) [1 — p (a + boG)) 1
xg {1 + (902 —9) g+ p(a+b0G) (903 — go2) g [1 —pla+ boG)z} }

(B-24)
It should be noticed that
-1
kgx (37072) = szkfx (a + boG)2 |:1 —p (a + boG)Q] G.%'()’l
= pla+bhG) k" (201) (B-25)

and

& = pel™ + 20°K (0 + boG) [1 = p(a 4+ boG)] " (go2 —g)  (B-26)

Repeating this procedure it can be shown that, in general,

22



kﬁw = K" (w0,3) + &7 = [p (0 + bGP kY (w0,1)

L S bk (a4 boG) [L— plat b gz —g)

equation (B-27) simplifies to

. -1
k]ﬁx [p(a+ bGP {ka‘fx (a+bG) |1 —p(a+ boG)Z} GfCo,l}
= e, (B-25)

when the constant term -y is zero.
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Appendix C. Deriving submatrix k2 of the augmented system in
the infinite horizon model

In the BMW model, when the unknown parameter g is replaced by its
estimate at time 0 by, the general formula for k%7 | see e.g. Kendrick (1981;
2002, equation 10.42) or Tucci (2004, equation 2.57), specializes to

k= (u(z)’jkﬁ;l + uo:jkﬁl) T (“Qikﬁl + k‘gﬁﬁ)
_ [p;r’ﬂ + g jkTT by + kf—ilbo} 2
x (Aj + kﬁlbﬁ)_l (C-1)
Using the results in Appendix B, when j =1 this submatrix can be rewritten
as

KP = uoapkiTuo +2 [kgxzoa + C’gx} o + k5"

T -1 T Bx Bz 2
— pki (Oé + boG) G uo,1 + U(),lpkl bo + k2 (x(],Q) + ¢4 bo

x (0 + pkiend) (C-2)
with
kgﬁ = ug2pky ug2 + 2 {kgxmo,s + ng} up,2 + k:’?ﬁ
2
_ {pk%z (o + boG) G ug o + ug 2pks®hy + [kgz (w0,3) + ch] bo}
x (g + pken3) ! (C-3)

where G is as in equation (A-10) in Appendix A. Then, by repeated substi-
tution, it can be shown that
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o0 o
K= 3 okl 2 [k (wo00) + )T oy
j=1 i=1

[e'S) ' ) 2
-3 {ﬂ]kﬁf‘” (@ +boG) G ugj + g ;p k0o + [kfflfo,jﬂ + C?—T—l} bO}
j=1

x (A + P ki)

(C-4)
When v = 0 and the desired paths are zero the first term reduces to
- | 1.2X - | .22 2
Zﬂuﬁ Ug,j = Zﬂkl (G07j930,1)
j=1 j=1
TT 2 -1 2,2
= pkj [1 —p(a+bG) } G (C-5)

with zg1 = #1), the second one looks like

oo

Bz _

2 ) ko 41G0 w01 =
j=1

-2
1pki™ (1= p(a+ 0G| pla+bG)’ G%afy  (C-6)

and the squared portion is

00 2
> { k5™ (a4 boG) o g + pk§™boug j + KT (0441) bo |
]:

x (A + pkf:‘b%)_l =

é {(p“) PR (o + boG) {a + 260G [1 —p (a+boG)2} _1} qm}

1

2

< ()]
(C-7)

Then equation (C-4) specializes to
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-2
kfﬁ = pkt® [1 +3p(a+ boG)Q} [1 —pla+ boG)z} G2$(2),1
Tx\2 2 -’
— (pk{*)" S a + 2bpG [1 —p(a+byG) ]

_ -1
x (A1 + phki7b3) [1 —pla+ boG)ﬂ 51
= kg, (C-8)

Similarly, when v = 0, the desired paths are zero and the system is stabiliz-
able

-2
B = phi™ 1= pla+bG)’]

X

{1 +3p (o + boG)Q} p(a+byG)? G%il

~1)2 B
— (k) {a + 2boG [1 —plat bOG)Q} } (A1 + pktp2) "

X

-1
(1= pla+0G)?| pla+bG) e, (C-9)
By comparing klﬁ Fand k:g Pit is apparent that, in this special case,

k5P = p (o +boG)? kP (C-10)

and by repeating this procedure it is possible to show that in general

kfﬁ = p(a+boG)2kff1

i—1
= [pla+bo0)?] K7 (C-11)
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Appendix D. Deriving the updated variance of the augmented
system in the infinite horizon model

By Appendix D combining (3-3) and (6-2) in the text, it follows that the
updated variance of the stochastic parameter 5 in the BMW model for a
generic period j is given by

2 -1
5/3 _ ,35 BB ) 2 BB
i T 911 <Ujflljflu04_1> (uoﬂ 195-1)- 1—|—q>
—1
_ 88 2 88
= T4 (“0,j—1"j—1\j—1+q) (D-1)

It follows that

-1
ol = o404 (“0%\0 + ‘1) (D-2)
with agfé = O'b as in the text and, using this result, the updated variance for

J = 2 can be rewritten as

1
Bﬁ _ 55 2 BB
992 = 91pn4 (uO 101 T q)

1 —1 -1
= o (80l + ) (uglggg (w3055 + ) +1)
—1
= ofpalon (i +ud) +a] (D-3)

By repeating this procedure it can be shown that in general

—1
B8 _ 08 65

i = Uj—llj—1q< 0,j-175-1]j~ 1+q>
—1

= 0‘0(] ( 0|0 Z Ug,; + Q> (D_4)

when aﬁ A is replaced by its definition and up0 = up. From equation

—1]5—
(A-21) i 1n Appendix A, it is known that when there is no exogenous variable
or intercept, and the desired path for the state and control are zero as

asssumed here, the nominal control and state are simply
upj =G (a+bGy twy for j=1,2,...
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with

xo,1 = *@1\0 = axg + boug

and the unknown parameter S replaced by its estimate at time 0, i.e. bg.
Then

-1

1 -1
T = ool (uoagé * q) ! [ug 19004 (“005\?) + q) + q]
- (%q (uoagé * q) [1 + G (o + bouo) o (uoaaﬁo + q) }
- 1|1 (1 +9)7!
(D-5)
with
—1
§ = G (aao + bouwo)* o5 (wdoyy + ) (D-6)
The updated variance for j =3 is
-1
-1

then using the definition of the nominal control and rearranging yields

gé = 1|1( +8)~ [(a+boG)2(1+S‘1)*1+1}71

= ol 145+ (a+b0G)S] (D-8)

By repeating this procedure it can be shown that in general

-1

J
ol =l 1+8 Y (a+b@)*? (D-9)
s
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Appendix E. The deterministic component

The deterministic component of the approximate cost-to-go can be written
as in Kendrick (1981; 2002, equation 10.35), i.e.
1 1 . .
Jpr—t = 5/\t“? + 51‘7166}1%2“” + ptC+El37t+1\t (E-1)
with CFE indicating the Certainty Equivalence value associated with the

non-augmented model, and in the infinite horizon model when ¢ = 0 it looks
like

1 1
Ipcc = §>\0U3 + gkaE (o + bouo +7)* + pp°F (axo + bouo +7) (E-2)

where k¢F and p©F are the fixed point solutions to the usual Riccati equa-
tions, p is the discount factor and the unknown parameter g is replaced by
its estimate at time 0, i.e. bg. Equation (E-2) can be rewritten as

ID o = V1ud + oug + 3 (E-3)
with

P = % (A + pkOEb%)

o = pkFhoag

Us = 5ok° (oo’ (5-4)

when there is no constant term and the desired path for the state and control
are zero.
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Appendix F. The cautionary component

The general formula for the cautionary component of the approximate cost-
to-g0, see e.g. Kendrick (1981; 2002, equation 10.50) or Tucci (2004, equa-~
tion 2.68), for t = 0 and T = oo looks like

1
Teos = 5 ("ot + K0l ) + K707 + 5 Z’fﬁlq (F-1)

with k7" = pk™ in the infinite horizon model where k**is the fixed point
solution to the Riccati quantity described in Appendix A and

1 -
K9 = 207 (o + boG) [1 —pla+ boG)2] Grgy = k{201 (F-2)

-2
kfﬁ = pkt® [1 +3p(a+ boG)ﬂ [1 —pla+ boG)z} G2$(2),1
Tx\2 2 -’
— (pk{*)" S a+ 2bpG [1 —p(a+bQG) ]

_ -1
X (Al + pk§03) [1 —pla+ boG)Z} 51

derived in Appendix B and Appendix C, where 950 1 = 1:%|0 By using the
fact that the prOJected variances in this case look like JHO = agg u% + q,
16‘36 g‘g upgand 01‘0 0|07 after some manipulations the cautionary cost
can be rewritten as
JC,oo = 51u(2) + doug + 03 (F—4)
with
1
o = fk” o0+ 5%00 k1" b3 + g ki by
5y = O‘Okﬁﬁboamo + a(% kz’gwawo

= 0‘0 (kﬁﬁbo + kﬁ ) axg

1
53 = ikfxq(l— P Sk ot (F-5)
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Appendix G. The probing component

The general formula for the probing component of the approximate cost-to-
g0, see e.g. Kendrick (1981; 2002, equation 10.51) or Tucci (2004, equation
2.69), for t = 0 and T = oo looks like

1 & . _
JP,oo = 5 Z [pﬁ_l + uop]kl by + k‘]Jrlbo] [p] ()\0 + klmxb%)] ! O‘Jﬂlf
7=1
(G-1)

when the unknown parameter § is replaced by its estimate at time 0, i.e. by,
and k{* = pk™. By comparing the terms of this infinite summation with the
definition of submatrix k%%, it is apparent that they have a lot in common.
Namely, the j—th term multiplying the updated variance corresponds to the
‘minus term’ in the formula for kf #_ As shown in Appendix C

7j—1
K7 = pla+ G k)% = [p(a+ 006 k" (G-2)

with

-2
KPP = phke [1 +3p(a+ bgG)Q} [1 —pla+ boG)z} GPaf
rT\2 2 s
— (pkT*)" S a4+ 2bpG [1 —p(a+bG) ]

_ -1

x (A1 + pki™bg) ! [1 —pla+ boG)Z} x5,
W82, 82
_

270,1
TH,1 (G-3)

10,1 —

as given in equation (C-8). Then the probing component can be rewritten
as

o)

1 .

j=1
with 37%,1 = £%|O as before. By replacing the updated variances in (G-4) with
equation (D-9) in Appendix D it yields
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-1
Jpoc = [k’fzxo 1U§£q (“000|0 + q) ]

xZ?l{hm+mGﬂjP+Szzz<a+maﬁiﬂ_? “

forj>2

0/0
can alternatively be written as

1
with S = G2 (azo + byuo)? BB (uocrg@ + q) . The infinite sum in (G-5)

j=1 forj>2

f [ (o + boG 2]] [1 +8%7 ., (a+ boc;)2<”>]1 -
1+p(a+bG)?*(1+8)" [ (a+boG)2]2 [1+S+S(a+b0G)2}_
oot we?] L5+ Satne?+S@rne)] +.

(G-6)

with

lim [p (o + boG)Q}j_l =0

J]—00

when the system is stabilizable, and

1
1< lim 1—1—52 a+boG)( 2) :{1—#5[1—(@4‘506:)2} }<OO

—00
: K=
(G-7)
because all quantities are squared quantities or variances. One way to com-
pute this infinite sum is by using the limiting ratio approach. The ratio
between any two consecutive terms of equation (G-6) looks like

. -1
J . .
| [ (a+ b0G)’] P+Szﬁ;<a+meﬂ“ﬂ
Sj+1 o forj>2

Sj

. (@)
@m+maﬂjlb+sztg<a+mww2ﬂl

forj>2

then the limiting ratio is

32



1+ 857 ) (a4 bp@G)* 2

. Sji+1 2 .. forj>2
lim |2 = p(a+ byG)? lim : :
j—oo | Sj ( ) j—oo |1 4+ SZJ-::lz (a+ bOG)%—?)
forj>2
= p (a + bOG)2 (G-9)

When equation (G-9) is used to compute the infinite sum in (G-6) it yields
1 217t 88 (2,88 o\ 682
Jpoo = 3 [1 —p(a+boG) } Toj0 4 (U000|0 + Q> Ry 90,1 (G-10)

This means that the probing component can be rearranged as in Amman
and Kendrick ((1995)) and Tucci et al. (2010), namely

1 g (uo)
== -11
TP = 3 1 (o) (G-11)
with
-1
h (ug) = (ugoaﬁ + q) (agf) q) (G-12)
identical to the definition reported in those works and
-1
g(u) = [1=pla+bGP|  MGad, =61 (62w +0)°  (G-13)
with
o= [k (o okt8) ] [1 - o0+ boGY’]

-1
2 = {a+2boG[1—P(0¢+boG)2} }bo

b3 = {a + 2byG [1 —pla+ boG)ﬂ 1} axo (G-14)
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Appendix H. Comparing the deterministic component of the ap-
proximate cost-to-go in a two-period finite horizon
model with that in an infinite horizon model

This appendix shows that the parameter definitions in the deterministic
component of the approximate cost-to-go associated with the control applied
at time 0 reported in Amman and Kendrick (1995) and Tucci et al. (2010)
are consistent with those presented in Appendix E. The parameter ¢ in
Tucci et al. (2010, equation 5.3) takes the form

o >\0 1 2 b2w2 2

2
+A1 (@) (abwy)? } (H-1)

when there is no constant term and the desired path for the state and control
are zero. Rearranging the terms yields

Y1 = % + %b2 {wl +waa® — aPbPw) (A1 + waQ]il}
1

Similarly, the parameter 5 in their equation (5-3) looks like

Yo = woba 1—ﬂ b S S o?bwyzo + o’z
2T 2 )\1+b2’£U2 )\1—|—bQZU2 0 0

A1 2 1 2
b (—— 2 Y ab ) a®
+  wi (axp) b+ ( T b2w2> ab“ws K NF b2w2> « U)QCC[):|
(H-3)

when there is no constant term and the desired path for the state and control
are zero and after some minor manipulations it yields

P = b {w2a2 — w2a2 [/\1 + (b2’w2)] b2w2 ()\1 + b2w2)_2 + wl} axg
o = kabomo (H-4)
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Finally, the parameter 3 in Tucci et al. (2010, equation 5.3) can be rewrit-
ten as

1 272 2 2w 2
{( )\1+b2w2>abw2xo+a :Uo} + 5 ()

1 2
AL - 2b
F| (- xas) ooeen)

and after explicating the squared terms and simplifying it yields

3 =
(H-5)

+ §

1 2
s = {(w2b2 + )\1) (_>\1 T b2w2> wa%Oéz + w2a2

+2 <_)\1+1b2u12) brw3ia? + wl} % (ao)? = %k?E (axg)?
(H-6)
It is straightforward that equations (H-2), (H-4) and (H-6) are identical to
the equations in (E-4) in Appendix E when the estimate of the unknown
parameter 5 at time 0 is denoted by b, instead of by as in the present paper,
and the finite horizon Riccati quantity is replaced by its ‘infinite-horizon’
counterpart.
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Appendix I. Comparing the cautionary component of the approx-
imate cost-to-go in a two-period finite horizon model
with that in an infinite horizon model

This appendix shows that the parameter definitions in the cautionary com-
ponent of the approximate cost-to-go associated with the control applied at
time 0 reported in Amman and Kendrick (1995) and Tucci et al. (2010)
are consistent with those presented in Appendix F. In a two-period BMW
model with unknown parameter 3, this component looks like

1 1
Joo = 5 (K=ot + 2ol + P00 ) + Sh8a (I-1)
BB, 2 Bz BB BB BB

3 xrr __ — — Tr __ 1
with 10 = TojpUo T @ Ty = TggU0s Tyjg = T and k5% = wy. In Tucci

et al. (2010, equation 4.1) it takes the form

Jos = T8 (g + wgn)? + 2 ! (abwsug + b + )2
= aug + U 2| ———— ) (abwaou Wl Wok
C,2 5 0 0,1 9 N+ b2 2UQ 2U0,1 220,2
1 oiw
2 2 b%1 2
+% [0 1V)) -+ w9 -+ w1 -+ <_)\1—|—bQ’u)2> (Oéwa) :| + 9 UO
(1-2)
with ug1and xp2 the nominal, or CE, values of u; and x defined as
w1 = ot [ab2w2uo + a2bw2xo] (I-3)
’ M+ b2ws

ab?wsy 9 1 2,9
=bla— ——— —_—— b I-4
0.2 <a A1+ bQZUQ) to ot < A1+ b2w2> oabwszo - (14)

when there is no constant term and the desired path for the state and control
are zero. Then it is convenient to rewrite (I-3) and (I-4) as

B abwsy
up1 = < N 62w2> (bug + axg)

= Gll‘o’l (1—5)

and
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A+ b2w2 B A+ bQ'LUQ
= (a+0bG1)zo,1 (1-6)

b b
Too = b<a—baw2>uo+a2xo+b< m)axg

respectively, with (G1 the usual feedback law in a two-period control problem.
Then, equation (I-2) can be rewritten as

Joo = 61uf + Saug + 03 (I-7)
with
5 = “25 {Vl <w2 Aff;‘;i 2) + 1]
- 025 {@ +IG)” (w2 A14i2;%uz> “”1}
by = olwwm {V2 B 2bw§l(?:ﬂ;§; 1/3)}
_ ngQ (o + bGy) {Glamo B 2bwo (2)(\)1Gj_ab:§(zu-2|- a2x0) }
03 = 022102 [u% - wg)(\?b—iz_/ijwa)Q + g o’wy + wy + wy — )\(la—ib_u;iJ
— Do (G - W (aw0) + % (w2 +k57) (1)

because the quantities defined in Tucci et al. (2010, equation 4.4) look like

= a+bG; (1_9)
1 2
= - b
1] ( )\1 i b2w2> Q" 0wWaT(
= Giax I-10
v3 = o’z I-11)
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in this simpler setup. Equations (I-8) are identical to equations (F-5) in
Appendix F when the estimate of the unknown parameter § at time 0 is
denoted by b, instead of bgas in the rest of the present paper, because

kD 2wy (a + bG1) Grag

= iffx.%'()’l (I—l?)

B = waGhad s+ wf (a4 2G1)? [ (h + V)] ey
= ];‘fﬁl’al (1_13)

in the two-period horizon, and d; in equation (I-8) can be rearranged as
2
9

5 = 2{w2a2 + Grabwy 4+ wy + 2w [ + (a + 20G1)] G1b

+waGIb? + <

) W} 2 2 p? I-14
)\H_waz)wQ (a4 2bG1)" b (I-14)

with the first three terms in braces corresponding to k{*, the fourth term
to k’fxb and the last two to kfﬁbQ.
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Appendix J. Comparing the probing component of the approxi-
mate cost-to-go in a two-period finite horizon model
with that in an infinite horizon model

This Appendix J shows that the parameter definitions in the probing com-
ponent of the approximate cost-to-go associated with the control applied at
time 0 reported in Amman and Kendrick (1995) and Tucci et al. (2010) are
consistent with those presented in appendix Appendix G. In Tucci et al.
(2010), the function h(ug) in this component is identical to equation (G-12)
in Appendix G and their g(ug), labeled equation (3-1), takes the form

2
Wy 2
=—=—| (b -1
g(uo) <>\1 n b2w2> (buo,1 + 2o,2) (J-1)
with ug 1 and g2 the nominal, or CF, values of u; and zo defined as
ug1 = S [ab2w2uo + a2bw2xo] (J-2)
’ A+ b2w2

—b _ e —_—— b J-3
20,2 (a N 62w2> ug + a“xo + ( T b2w2> a“b wazry  (J-3)

when there is no constant term and the desired path for the state and control
are zero. Then it is straightforward to rewrite (J-2) and (J-3) as

abwsg
e B ——— b
uo,1 ( Nt b2w2> (bug + axp)

= G1 xo,1 (J-4)
and

abwy 9 abws
= b —b—F b ——+—
0,2 (a Nk b2w2> ug + a“xg + ( N+ b2w2) azg

= (a+0G1) o (J-5)

respectively, with G1 the usual optimal control law in a two-period control
problem. Using equations (J-4) and (J-5) in (J-1) and rearranging it yields
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w% 2 2
glug) = ()\14-52’(02> (a4 20G1)" x5 4
= ¢1(dauo + ¢3)° (J-6)

where the old definitions simplify to, in this simpler setup,

w2
o o= (2
A1+ b2wo

2
¢2 = ab (1 M) = (a+ 2bGy)b

A+ b2

1
= 2%(—-—— )02 2
o3 b < Nt b2w2> a“bwazg + a”xg
= (a+2bG1) axg (J-7)

Equations (J-7) are identical to equations (G-14) in Appendix G when the
estimate of the unknown parameter 3 at time 0 is denoted by b, instead of b
as in the present paper, the finite horizon Riccati quantity ws is replaced by
its infinite-horizon counterpart pk{* and the infinite path for the nominal
state and control are taken into account. By doing so, the usual optimal
control law in a two-period control problem is replaced by the infinite sum
of the time-invariant feedback matrix.
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