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Tumor metabolism has been the object of several studies in the past, leading to
the pivotal observation of a consistent shift toward aerobic glycolysis (so-called
Warburg effect). More recently, several additional investigations proved that tumor
metabolism is profoundly affected during tumorigenesis, including glucose, lipid and
amino-acid metabolism. It is noticeable that metabolic reprogramming can represent
a suitable therapeutic target in many cancer types. Epstein–Barr virus (EBV) was the
first virus linked with cancer in humans when Burkitt lymphoma (BL) was described.
Besides other well-known effects, it was recently demonstrated that EBV can induce
significant modification in cell metabolism, which may lead or contribute to neoplastic
transformation of human cells. Similarly, virus-induced tumorigenesis is characterized by
relevant metabolic abnormalities directly induced by the oncoviruses. In this article, the
authors critically review the most recent literature concerning EBV-induced metabolism
alterations in lymphomas.
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INTRODUCTION

Oncogenic viruses are an important public health issue since they are responsible for 20% of total
human cancer cases. The seven following viruses are currently considered proper human oncogenic
viruses: hepatitis B and C virus (HBV and HCV) account for approximately 80% of cases of
hepatocellular carcinoma (HCC) worldwide. Human papillomavirus (HPV, 16 and 18 especially) is
implied in cervical cancer, anogenital neoplasms, and head and neck tumors. Human herpes virus
8 (HHV8) is responsible for AIDS-related Kaposi’s sarcoma. Merkel cell polyomavirus (MCPyV),
causes Merkel cell carcinoma. HTLV-1 is the agent causing adult T-cell lymphoma. Epstein–Barr
virus (EBV), finally, is associated with many tumors including nasopharyngeal carcinoma (NPC)
and different lymphoma subtypes (Table 1; Luo and Ou, 2015).

These oncogenic viruses exert their oncogenic power by interfering with multiple molecular
signaling pathways. Sometimes they directly integrate their DNA in the host cell one [as does
HPV in cervical cancer cells (Fang et al., 2014) or HBV in hepatocytes inducing HCC development
(Herrmann et al., 1995)], some others they alter the expression of miRNAs (Ambrosio et al., 2014b),
and in other cases, they directly interact with proteins expressed by normal or cancer cells (this
is the most important pathogenetic way by which HCV induces HCC; Tsai and Chung, 2010).
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TABLE 1 | Association between oncoviruses and lymphomas.

Disease Oncovirus Experimentally proven
metabolic abnormality

Main Postulated
involved
oncogene

Reference

Post-transplant lymphoproliferative
disease

EBV No MYC Cesarman, 2011; Nourse et al., 2011

Diffuse large B-cell lymphoma∗ EBV No NF-kB Kanno et al., 1997; Dojcinov et al.,
2011; Kato et al., 2014

Burkitt lymphoma EBV Yes: increased import of key
nutrients, increased fatty acid
synthesis and glycolysis

MYC Yoon et al., 2007; Daye and Wellen,
2012; Dang, 2013; Eberlin et al., 2014;
Altman et al., 2016

Hodgkin lymphoma EBV No NF-kB Chapman and Rickinson, 1998;
Kuppers, 2009

Primary effusion lymphoma HHV-8+/EBV± No PI3K/AKT Okada et al., 2014; Mediani et al., 2016

Multicentric Castleman disease HHV-8+ No Not known Wang et al., 2016

Adult T-cell leukemia/lymphoma HTLV-1 No NF-kB Bangham and Ratner, 2015

EBV-positive T-cell lymphoproliferative
disorders

EBV No PI3K/AKT Anagnostopoulos et al., 1992; Ho et al.,
1999; Au et al., 2004; Zhou et al.,
2007; Cai et al., 2015

Adapted from “Immunodeficiency-associated viral oncogenesis” by A. Pierangeli, G. Antonelli and G. Gentile, 2015, Clinical Microbiology and Infection, Volume 21, Issue
11, 975 – 983. EBV, Epstein–Barr virus; HHV-8, human herpesvirus-8; HTLV-1, human T-cell lymphotropic virus type 1. ∗Not in the post-transplant setting. Based on the
expression of virus-encoded molecules proved to be an effect in experimental model.

Of these changes, certain ones may induce chronic
inflammation, and others can disrupt the cellular genetic
and epigenetic integrity (Fang et al., 2014) or interfere with
the host cell homeostasis and DNA repair mechanisms, thus
determining genome instability and deregulating the cell
cycle (Luo and Ou, 2015). Some of these changes are strictly
connected with metabolic dysfunction, such as enhanced
glucose uptake and glycolysis, dysregulation of molecular
pathways regulating oxidative stress, or alterations of lipid
metabolic expression patterns (Luo and Ou, 2015; Lo et al.,
2017).

The link between metabolic alterations and cancerogenesis,
even when not caused by oncogenic viruses, is still under
investigation. It is certain that the tumor cell goes through
a metabolic rearrangement, such as an augmented glucose
capture, and many metabolic patterns have proven to be
altered in cancer cells in linkage to oncogenes’ mutations
(Lo et al., 2017). A number of oncogenes, such as MYC,
hypoxia inducible factors-1 alpha subunit (HIF1A), and tumor
suppressor p53 (Yeung et al., 2008) as well as some pathways,
such as phosphoinositide 3-kinase (PI3K/AKT) and protein
kinase B (PKB), or the mammalian target of rapamycin
(MTORC1) one (Wieman et al., 2007), are known to be
involved in the energy metabolism regulation of cancer
cells.

The interaction between tumor and metabolism of the cell may
be direct, via the increase of nutrients that are available for tumor
growth (for example, by interacting with glucose transporters and
glycolytic enzymes). It may also be indirect, via the modulation
of cell proliferation pathways, such as the PI3K and mitogen-
activated protein kinase (MAPK), or stress response factors, such
as HIF1A and 5′ AMP-activated protein kinase (AMPK), that are
related to metabolic control (Chen and Russo, 2012; Noch and
Khalili, 2012).

The study of these mechanisms may be useful not only to fully
understand the pathogenesis of virus-induced tumors, but also to
widen the range of therapeutic options, combining anti-viral and
antiglycolytic or anti-lipid therapies in the cure of virus-driven
cancers.

In this review, we are going to focus on how EBV infected cells
are more likely to develop cancer. We will consider in particular
some types of cancers, and how metabolic dysregulation can be
one of the possible ways EBV employs to drive cancerogenesis in
these cells.

EPSTEIN–BARR VIRUS AND
CANCEROGENESIS

The EBV is a lymphocryptovirus of the γ-herpesvirus family.
It affects up to 90% of human adult population, typically
establishing a life-long persistent infection. It is considered a
group 1 carcinogen, according to the International Agency for
Research on Cancer, for its remarkable association with a large
variety of lymphoid and epithelial malignancies. According to
unadjusted estimates, nearly 3.7 million people are suffering
from EBV-driven cancers (de Martel et al., 2012). EBV has
been detected not only in Burkitt’s lymphoma (Navari et al.,
2015), in which the virus itself was discovered, and NPC, in
which it is almost always present, but it is also being related
to Hodgkin lymphoma, post-transplant lymphoproliferative
disorders (PTLD), T-cell non-Hodgkin lymphomas (NHL),
and gastric carcinomas. The evidence of association with
breast, HCCs, and smooth muscle cell-derived tumors in
immunodeficient individuals is less clear (Niedobitek et al.,
2001). Probably – since a pathogenetic role of EBV has been
demonstrated in so many cancers and the virus itself is so
widespread – it is not impossible to think that a certain
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percentage of cases of any type of cancer might conceal the
presence of EBV infection; nevertheless, B lymphocytes and
epithelial cells remain its preferential host cells.

The association with EBV can depend for most of these
tumors on geographical factors [e.g., Burkitt lymphoma (BL)],
histological subtype of the tumor (e.g., Hodgkin lymphoma), or
the cellular subtype infected (e.g., in T-cell lymphomas usually
only some of the cells are infected; Niedobitek et al., 2001).

The pathogenetic role of EBV in cancer development is
complex and yet not fully understood. An important role is for
sure played by latency products; these are expressed for the most
part of the virus lifetime, that is to say when the virus is not
in its lytic cycle replication, but in its latent phase. These affect
genes which are necessary for the immortalization of B-cells, by
permanently inducing the physiological molecular pathways that
lead to B-cell activation and cell division. These are the Epstein–
Barr nuclear antigen (EBNA) 1, 2, -LP, 3A, 3B, and 3C and the
latent membrane protein (LMP) 1, 2A, and 2B protein families.
Furthermore, two small (170 bases in length) non-polyadenylated
non-coding nuclear RNAs, the EBV encoded small RNAs 1 and 2
(EBER and EBER2), are abundantly expressed in latent infection,
up to 107 copies per cell (Niedobitek et al., 2001).

Based on how these genes are expressed in different
combinations in EBV-infected cells, three possible latency
patterns have been identified (Table 2).

Remarkably, recent evidence suggests that atypical latency
patterns are common, at least in lymphoid tumors (Abate
et al., 2015). Probably, the most commonly implicated in
cancerogenesis gene products are EBNA2 and LMP1 (Young and
Rickinson, 2004).

METABOLIC ALTERATIONS IN TUMORS

Cells can depend for their energy supply on two different major
pathways: oxidative phosphorylation and extra-mitochondrial
glycolysis. Usually, healthy and normally vascularized cells
tend to rely mostly on oxidative phosphorylation for ATP
synthesis, since this pathway is more effective in terms of
energy supply, while they tend to depend on glycolysis only
in conditions of hypoxia. In cancers, however, cells typically

TABLE 2 | Canonical EBV latency patterns.

Latency

I II III

EBERs + + +

EBNA1 + + +

EBNA2 − − +

EBNA3, A, B, C − − +

EBNA-LP − − +

LMP1 − + +

LMP2, A,B − + +

miRNAs BART miRNAs
(modest)

BART
miRNAs

(high)

BHRF1 miRNAs (high)
BART miRNAs
(modest)

tend to increase the extra-mitochondrial glycolysis. Even in the
presence of oxygen, they usually rely on this metabolic pathway
for ATP synthesis, rather than on oxidative phosphorylation.
This metabolic reprogramming process is known as the Warburg
effect (Warburg et al., 1927; Gatenby and Gillies, 2004). Not
only it allows malignant cells’ survival even in conditions of
hypoxia, but also it contributes to cell proliferation: the energy
that is not converted into ATP can in fact be shifted toward the
constitution of various macromolecules (proteins, nucleic acids,
and lipids), which are useful to the cell growth (Jones and Bianchi,
2015). Moreover, the decrease of oxidative phosphorylation also
probably leads to a less efficient reactive oxygen species (ROS)
production, such as hydrogen peroxide and superoxide anion,
which can be harmful to the cell or promote cellular senescence
(Kim and Dang, 2006).

Not only do cancer cells tend to use glucose differently from
normal cells, but they also need more of it for their rapid growth:
the number of glucose transporters on the cell membrane is
typically increased. The avid uptake of glucose by tumors is
the rationale for their detection by fluorodeoxyglucose positron
emission tomography (FDG-PET; Macheda et al., 2005).

Finally, lipid metabolism too has proven to be altered in many
cancer types: first, fatty acids, phospholipids, and cholesterol,
the three main lipid molecules of our cells, are significantly
increased and actively biosynthesized in tumor cells. Second,
choline kinase, an enzyme playing a key role in the biosynthesis
of phosphatidylcholine, is upregulated in multiple cancer cell
lines (Janardhan et al., 2006) and, third, active sterol biosynthesis
helps cell proliferation (Huang and Freter, 2015). Moreover, there
is a significant overexpression of genes involved in cholesterol
biosynthetic pathway in refractory tumors (Krycer and Brown,
2013; Huang and Freter, 2015).

Many findings suggest a correlation between EBV infection
and some of these metabolic alterations. During EBV infection,
the virus meets the amplified bioenergetic and biosynthetic
demands, by hijacking host cell metabolism to increase nutrient
uptake and anabolic metabolism. Doing this, it mirrors the
Warburg effect normally occurring in highly proliferating and
neoplastic cells. Nevertheless, unlike cancer cells, EBV undergoes
powerful selection for efficiency, and has the capacity to rapidly
and strongly reprogram host cell metabolism (Cuninghame et al.,
2014; Mesri et al., 2014; Pierangeli et al., 2015; Levy and Bartosch,
2016). Particularly, EBV can affect glucose and lipid metabolism,
while altering enzymatic functions (e.g., HIF1A and AMPK) and
inducing ROSproduction (Lo et al., 2017).

EBV-DRIVEN CARBOHYDRATE
METABOLIC ALTERATIONS IN
NASOPHARYNGEAL CARCINOMA (NPC)

Ninety-five percent of NPC cases in South China (where this
cancer is most commonly diagnosed) are of the histological type
III according to the WHO classification (undifferentiated type),
which is associated with EBV infection (Raab-Traub, 2002). In
the EBV-infected NPC cells, the most common latency program
is latency II type. This includes the expression of LMP1 and
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LMP2, EBNA1, EBERs, as well as some EBV-encoded miRNAs
(Table 2). Among these antigens, LMP1 is considered as a crucial
oncoprotein (Figure 1), as it is implicated in the maintenance
of latent infection and in the malignant transformation. LMP1
has also a role in the metastatic and local invasion, enhancing the
production of angiogenic factors, as well as in the processes linked
to inflammation and antigen presentation, which may favor the
tumor progression, but also its immune escape ability (Hitt et al.,
1989; Dawson et al., 2012). Myeloid-derived suppressor cells
(MDSCs) are key regulatory cells that have a role in this latter
process, as they are physiologically appointed to inflammation
control but are also able to favor immune escape (Cai et al., 2017).

The microenvironment of a wide range of tumors, including
NPC, has shown to be enriched in MDSCs. EBV may be
implied in their expansion, though it is not clear how yet. One
possible hypothesis is that LMP1 promotes MDSC expansion
by increasing the rate of extra-mitochondrial glycolysis in
cancer cells. This is consistent with the observation that a high
expression level of LMP1, glucose transporter 1 (GLUT1), and
CD33+MDSCs is frequently reported in NPC sections (Cai et al.,
2017).

Recent studies have confirmed that LMP1 prompts the
so-called “aerobic glycolysis” by inducing the expression of
multiple glycolytic genes, including GLUT1 and hexokinase 2

(HK2; Lo et al., 2015). One other way LMP1 increases GLUT1
levels is by blocking its K48-ubiquitination and p62-dependent
autolysosomal degradation, thus stabilizing the protein (Cai
et al., 2017). The increase in glucose consumption and in
the production of lactate suggests that the augmented glucose
avidity is almost entirely used to implement extra-mitochondrial
glycolysis.

This metabolic reprogramming induces an expansion of the
MDSC subset mainly by favoring some inflammatory pathways.
The expression of the Nod-like receptor family protein 3
(NLRP3) inflammasome is increased, as well as COX-2 and
P-p65 ones, so that their downstream cytokines (IL-1β, IL-6, and
GM-CSF) are also increased (Cai et al., 2017).

Other current findings have implied that LMP1 is also
involved in the fibroblast growth factor 2 and fibroblast growth
factor receptor 1 (FGF2/FGFR1) pathway activity, which can
also contribute to the increase of aerobic glycolysis in the EBV-
infected epithelial, and in turn lead them to evolve in NPC (Lo
et al., 2015).

Constitutive FGFR1 activation, due to mutation or
overexpression of FGFR1 or its ligands, is known to induce
cellular transformation and has been documented in a variety
of human malignancies (Kelleher et al., 2013). This activation
is common in NPC, especially in cases that are LMP1-positive,

FIGURE 1 | Role played by LMP1 in cancerogenesis.
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FIGURE 2 | Metabolic alterations induced in cancer cells by EBV infection and possible therapeutic targets.

i.e., the EBV-infected ones. With respect to these cases, LMP1
leads to the constitutive activation of the FGFR1 signaling
pathway, not only by increasing FGFR1 expression, but also
by upregulating FGF2 (Lo et al., 2017). The role of this
pathway in cancer transformation and growth is confirmed
by the fact that FGFR1 inhibitors attenuate both LMP1-
mediated aerobic glycolysis, reducing lactate dehydrogenase
A (LDHA) phosphorylation and activity in nasopharyngeal
epithelial cells, and cellular transformation, proliferation,
migration, and invasion (Kelleher et al., 2013; Lo et al.,
2015).

GLUT1 upregulation via MTORC1/nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-kB) signaling
pathways is another main oncogenic pathway of EBV in NPC
cells (Wieman et al., 2007; Lo et al., 2017). MTORC1 is a
serine/threonine protein kinase pathway that is evolutionarily
conserved. It is involved in regulating energy metabolism and
cell growth by controlling protein translation and ribosome
biogenesis (Zhang et al., 2017). It is usually activated by
PI3K/AKT and other phosphorylating pathways. In EBV-
infected cells, LMP1 activates MTORC1 which, in turn,
upregulates the expression of GLUT1. C-terminal activating
region 2 (CTAR2) of LMP1 is probably the main domain
involved in MTORC1 activation, through an IKK-mediated

process (phosphorylation of TSC2 at Ser939; Zhang et al.,
2017).

It has been demonstrated that disrupting the activity of
MTORC1 signaling in EBV-driven NPC effectively suppresses
both LMP1-induced NF-kB activation and GLUT1 transcription.
On the other hand, blocking NF-kB signaling preserves MTORC1
activity but alters GLUT1 transcription. This result suggests that
GLUT1 is a direct target of NF-kB signaling (Lo et al., 2017; Zhang
et al., 2017).

LMP1 seems to be implied also in the process of DNA
damage response (DDR), especially when involved in radio-
resistance. HK2 expression levels are positively correlated to
LMP1 expression in NPC tissues, and they are associated with
poor survival rates after tumor radiation (Xiao et al., 2014; Lo
et al., 2017). In particular, LMP1 can inhibit the phosphorylation
and the activity of the DNA-dependent protein kinase (DNA-
PK), a key enzyme for the double-strand breaks (DSBs) repair
(Lu et al., 2016; Lo et al., 2017). Together with other oncoproteins
(EBNA1 and EBNA2), LMP1 can also increase the cellular levels
of ROS and alter the mitotic checkpoint (Gruhne et al., 2009). As
a matter of fact, ROS levels fluctuate (due to inefficient oxidative
phosphorylation) in EBV-infected cells. Increases or decreases in
the level of ROS seem to favor carcinogenesis (Gruhne et al., 2009;
Lu et al., 2016).
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Moreover, by disrupting the physical interaction between
AMPK and DNA-PK, LMP1 can reduce AMPK phosphorylation
and change its subcellular location after irradiation (Lu et al.,
2016). AMPK is a crucial energy sensor that, as a negative
regulator of glycolysis, helps the maintenance of cellular energy
homeostasis. However, it is also a regulator of the DDR pathway
in response to genomic stress. A decrease in AMPK activity is
associated with resistance to irradiation-induced apoptosis, and
thus to a poorer clinical outcome in NPC patients treated with
radiation therapy. At the same time, the reactivation of AMPK,
which may be obtained via AMPK activators, significantly
promotes radiosensitivity and could be efficiently used for
facilitating NPC radiotherapy (Lu et al., 2016).

EBV-DRIVEN CARBOHYDRATE
METABOLIC ALTERATIONS IN
LYMPHOMAS

EBV is a powerful lymphocyte growth-promoter and
transformer. It is etiologically linked to many lympho-
proliferative disorders and malignant lymphomas including
BL, Hodgkin lymphoma, some types of diffuse large B cell
lymphomas, and rare B lymphomas of the immunocompromised
state, as well as T/NK cell lymphoproliferative disorders,
for example, extranodal NK/T-cell lymphoma, nasal type
(Shannon-Lowe et al., 2017).

The part played by EBV in these tumors’ pathogenesis shares
some common points with that of EBV in NPC, including
the mostly LMP1-driven metabolic disruption, which plays an
important role in this case as well (Figure 2).

Glucose consumption, a hallmark of the Warburg effect, is
common to antigen or mitogen stimulated lymphocytes and
many B-lymphomas. This suggests the importance of a glycolysis-
based mechanism to support rapid lymphocyte proliferation
(Sariban-Sohraby et al., 1983; Sommermann et al., 2011). The
way this mechanism works is now beginning to be understood
(Sariban-Sohraby et al., 1983) and it is becoming clear how some
key genes (such as PI3K and TP53) probably play a crucial role in
it (Calvo-Vidal and Cerchietti, 2013).

Moreover, recent findings suggest that, especially during cell
proliferation and stress conditions, other substrates, besides
glucose, can become an important driving force for glycolysis,
this including nucleotide biosynthesis and glycine-folate
metabolism (Calvo-Vidal and Cerchietti, 2013).

As for nucleotide biosynthesis, one of the major requirements
for cell proliferation is the production of DNA and RNA
which needs the incorporation of about ten carbon atoms
for each nucleotide (9 for pyrimidines and 10 for purines,
respectively; Calvo-Vidal and Cerchietti, 2013). Five of these
atoms are derived from the ribose-phosphate pathway. If an
exogenous source of nucleotides is available, nucleotides can be
obtained by the salvage pathway as well. Nevertheless, when
there is an important increase in lymphocytes’ proliferation, the
number of nucleotides required is so high that the de novo
pathway must be activated (Calvo-Vidal and Cerchietti, 2013).
One proof of this can be the increased activity of the inosine

monophosphate dehydrogenase (IMPDH) activity, an enzyme
catalyzing a fundamental reaction of de novo purine biosynthesis
(nicotinamide adenine dinucleotide-dependent oxidation of
inosine monophosphate to xanthosine monophosphate), which
has been demonstrated in T-cell and B-cell leukemias and
lymphomas (Hovi et al., 1976; Nagai et al., 1991; Calvo-Vidal and
Cerchietti, 2013).

A possible source for purine synthesis is glycine, which
can supply carbon both to the DNA itself (together with
nitrogen) and to folates that are required for the synthesis
of purines and thymidine. It has been shown that cancer cell
proliferation is associated to in vitro glycine consumption (while
its depletion prolongs the cell cycle) and that the upregulation of
its endogenous mitochondrial production is required for cancer
cells’ metabolic reprogramming (Jain et al., 2012; Calvo-Vidal and
Cerchietti, 2013).

It has also been suggested that the glycine pathway plays
a role in genetic and epigenetic cell integrity. Its alterations
may then affect the response of lymphoma cells to therapy,
both chemotherapy and epigenetic-targeted one (Calvo-Vidal
and Cerchietti, 2013; Vazquez et al., 2013).

The NF-kB pathway has been hypothesized as another
pathway involved in glucose import. NF-kB activation is
typical of transformed B lymphocytes including Herpes virus
transformed lymphoblasts, mimicking antigen co-receptor
signaling in B-lymphocytes (Kawauchi et al., 2008; Krawczyk
et al., 2010). NF-kB and its regulatory upstreaming protein
inhibitor of nuclear factor kappa B kinase subunit beta (IKBKB)
transcription can probably favor lymphoma cell survival by
promoting the increase of GLUT proteins on the plasma
membrane via AKT (Sommermann et al., 2011).

Glucose import across the lymphocyte cell membrane, in
fact, is mostly facilitated by GLUT proteins, the levels of which
can be regulated by some oncogenes and tumor suppressors.
For example, MYC and RAS induce GLUT1 mRNA (Osthus
et al., 2000), while p53 suppresses GLUT1, 3, and 4 expression
(Schwartzenberg-Bar-Yoseph et al., 2004). PI3K instead increases
both GLUT1 and GLUT3 expression (by inducing their mRNA
through the HIF1A pathway), and GLUT4 translocation to the
plasma membrane (moving from the storage vesicles under the
effect of AKT activation) in B lymphocytes (Zelzer et al., 1998;
Mîinea et al., 2005; Satoh, 2014) and probably in T-cells as well
(Wieman et al., 2007).

Taken together, these findings suggest that NF-kB signaling,
increasing the glucose import, supports proliferation and
resistance of cancer cells (Sommermann et al., 2011) and that
EBV has an important role in its activation (Gewurz et al.,
2011). As a matter of fact, the inhibition of the NF-kB pathway
in the EBV transformed B-cells lowers the glucose uptake to
the point of triggering its autophagy-induced death. When NF-
kB is inhibited, an alternate carbon source can overcome the
effect on autophagy and cell death, whereas autophagy inhibitors
accelerate them (Pujals et al., 2015).

HIF1A is another important factor which has been implied
both in epithelial and B-cell derived cancers in EBV infection
(Cuninghame et al., 2014). As the name says, this factor is
typically expressed in hypoxic conditions by normal cells to adapt
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to the hostile environment. It can also be expressed in tumor
cells enhancing glycolysis and activating MYC. In addition,
the stabilization of HIF1A and its translocation to the nucleus
can upregulate genes involved in cell growth, survival, and
angiogenesis (Cuninghame et al., 2014).

It has been wondered whether the increased expression
of HIF1A in cancer cells is a consequence of the necessity
for adaptation to the hypoxic tumor microenvironment (Lo
et al., 2013, 2015) or it is an intrinsic initiating event of the
tumor development. The fact that EBV infected B cells show
upregulation of HIF1A protein expression seems to validate the
latter hypothesis (Wakisaka et al., 2004; Lo et al., 2013, 2015; Xiao
et al., 2014; Sung et al., 2016). The proteins that increase HIF1A
expression are different in the different latency patterns: LMP1
stimulates HIF1A transcriptional activity through the p42/44
MAPK pathway (Wakisaka et al., 2004; Lo et al., 2013, 2015; Sung
et al., 2016) and contributes to its stabilization (Kondo et al., 2006;
Lo et al., 2013, 2015); both LMP1 and EBNA-1 upregulate HIF1A
and its downstream targets, IL-8 and VEGF (O’Neil et al., 2008;
Lo et al., 2013, 2015, 2017); EBNA-3s, which are expressed in
lymphatic chronic leukemia (LCL), bind the prolyl hydroxylase
enzymes (PHD1 and PHD2), blocking their phosphorylating
activity and thus stabilizing HIF1A (the complex HIF1, composed
of HIF1A and ARNT, is regulated by proteolysis of its α-subunits,
mediated by the oxygen-dependent hydroxylation of specific
prolyl residues; Appelhoff et al., 2004; Darekar et al., 2012; Lo
et al., 2013, 2015, 2017).

LIPID METABOLISM ALTERATION

Lipids are a wide group of diverse hydrophobic molecules
including triacylglycerides, phosphoglycerides, sphingolipids,
and sterols. Lipids are involved in cellular functions as both
structural components and as signaling factors (Santos and
Schulze, 2012). As for the structural role, fatty acids are used
for the synthesis of triacylglycerides, while phosphoglycerides,
sphingolipids, and sterols represent the principal components of
the plasma membrane and of other cellular membranes (Santos
and Schulze, 2012). As for the role in signaling, lipids can function
as hormones and as second messengers (Santos and Schulze,
2012). Therefore, lipid metabolism abnormalities in cancer cells
substantially affect membrane constitution, energy production,
and cellular signaling (Santos and Schulze, 2012; Hashmi et al.,
2015).

These alterations have been demonstrated both in NPC (Daker
et al., 2013) and in lymphomas (Ambrosio et al., 2012).

One common lipid metabolism alteration in EBV infection
is the increased expression of fatty acid synthase (FASN), an
enzyme that plays a key role in the cell endogenous fatty acid
synthesis (FAS) mediating the multiple condensation reaction
between malonil-CoA and acetyl-CoA molecules which leads to
the palmitate FAS (Figure 2). In particular, the transcription
factor immediate-early (IE) protein BRLF1 (R) – an inductor of
the lytic form of EBV infection – can activate FASN expression
through a p38 stress MAPK-dependent mechanism. At the same
time, BRLF1 can favor directly or indirectly the transcription of

other early viral promoters, including the EBV IE gene, BZLF1
(Z), that could have a role in increasing FAS too (Li et al., 2004).

De novo FAS is physiologically very active during the
embryological and fetal life (especially in the lung development
since FAs are used for synthesizing the surfactant) and in adult
females under hormone stimulation during the menstrual cycle,
being useful to the thickening of the endometrial wall, and to
the supply of milk with fatty acids during lactation. As for the
other tissues, a high-level FASN expression is normally limited
to liver, brain, lung, and adipose tissue in adults, as the main
lipid income for the cell comes from circulating lipids (Weiss
et al., 1986; Pizer et al., 1997; Wagle et al., 1999; Kusakabe
et al., 2000; Anderson et al., 2007). FASN expression can be
increased, though, in human epithelial cells infected with EBV
in its lytic form (Li et al., 2004) and in cancer cells (Lo et al.,
2017). In cancer, fatty acids, whatever the levels of circulating
triglycerides, are preferentially obtained by the activation of
FASN gene products in order to engage a de novo synthesis
of palmitate as opposed to what normally happens in healthy
cells of well-nourished adult individuals, which tend to rely on
fatty acids obtained from the diet (Menendez and Lupu, 2007;
Lo et al., 2017). A FAS increase, mediated by FASN increased
expression, has been demonstrated in breast cancer (especially
HER2+ one; Yoon et al., 2007), prostate cancer (Swinnen et al.,
2000), colorectal cancer (Li et al., 2000), and recently also in
BL, where it seems to be related to EBERs’ expression levels
(Ambrosio et al., 2012). One important confirmation to these
findings is that the FASN-driven tumorigenesis in EBV-infected
cells can be efficiently blocked by the use of FASN inhibitors (Li
et al., 2004).

As we have seen, tumor cells shift their metabolism to
aerobic glycolysis. However, aerobic glycolysis diverts citrate
away from the mitochondrial Krebs, which is necessary for FAS.
To promote aerobic glycolysis and FAS at the same time in rapidly
proliferating cells, glutamine needs to be rapidly replenished into
the tri-carboxylic acid (TCA) cycle (Lo et al., 2017). Glutamine
is an amino acid which supplies alternative intermediates for
TCA cycle. It is transported into cells through the SLC1A5
transporter, and then converted through an anaplerotic reaction
to α-ketoglutarate (Daye and Wellen, 2012; Lo et al., 2013, 2015;
Altman et al., 2016). It has been noticed that many cancer
cells use glutamine for oxidative phosphorylation, FAS, and
protein synthesis, and that γ-herpesviruses, including EBV, can
induce glutaminolysis. Specifically, LMP1 was found to increase
glutamine uptake and to induce elevate levels of intracellular
glutamate in EBV-infected nasopharyngeal epithelial cells (Lo
et al., 2013, 2015, 2017).

One key gene that has been related both to carbohydrate and
to lipid metabolic dysregulation in lymphomas is MYC (Lo et al.,
2017). MYC is a very well-known oncogene that contributes to
tumorigenesis by regulating key genes implicated in patterns that
converge to boost cellular growth and proliferation (Dang, 2013).
Its effects can be both direct (increase of energetic supplies) and
indirect (regulation of ribosomal and mitochondrial biosynthesis,
glucose, glutamine, and lipid metabolism; Dang, 2013; Lo et al.,
2017). Although the role of MYC in lymphomas’ lipids regulation
has not been completely elucidated yet (Eberlin et al., 2014),
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the analysis of lipid pattern expression has shown different
profiles between the MYC overexpressing ones and the others.
How this is obtained is still under investigation: according to
the most recent analyses, MYC could be implied in increasing
the FAS and the cell supply of acetyl-CoA, necessary for
lipid synthesis and nuclear histone acetylation (Morrish et al.,
2010).

Of interest, an aberrant MYC expression in EBV-infect
lymphoma cells has been seen, both in BL and other lymphomas
(Bultema et al., 2009; Fish et al., 2014). The concomitance
of EBV infection and MYC aberrant expression may suggest
either a cooperative role, or a mutual compensation driving
lymphomagenesis (e.g., early role for EBV and subsequent
acquisition of MYC aberrations). In LCL EBV-infected cells, for
example, EBNA2 activates MYC transcription (Kaiser et al., 1999)
via the EBV super-enhancers (ESEs; Zhou et al., 2015; Liang et al.,
2016), a cluster of genes binding to many different EBNAs and
transcriptional factors playing a role in LCL proliferation and
survival (Lo et al., 2017). EBNA3 and EBV miRNAs seem to play a
role as well in this process, which is currently under investigation
(Bajaj et al., 2008; Lo et al., 2017).

CLINICAL IMPLICATIONS

Since metabolic shift is a consistent aberration differentiating
neoplastic from normal cells, it is conceivable that interference
with that process may represent an effective therapeutic strategy.
EBV was demonstrated to be highly efficient in reprogramming
infected cell metabolism toward amplified anabolism. For this
reason, it represents a powerful strategy to identify key enzymes
involved in this process and consider them as cancer metabolism
drug targets (Figure 2; Galluzzi et al., 2013; Singh et al.,
2015).

Because EBV was demonstrated to deregulate glycolysis, anti-
glycolytic therapy might look as a promising opportunity in
the management of EBV-related cancers (Xiao et al., 2014).
Unfortunately, the inhibition of glycolytic enzymes may increase
the risk of adverse events such as hypoglycorrhachia. To
overcome this limit, it might be possible to target glucose
transporters and glycolytic enzymes that are preferentially used
by cancer cells compared with normal cells (Hay, 2016). Another
possible solution is to use anti-diabetic drugs that do not cause
hypoglycemia, such as metformin. Metformin has been found
to induce G1 cell-cycle arrest and inhibit the proliferation of
neoplastic cells (Anisimov et al., 2005; Libby et al., 2009; Cairns
et al., 2011; Lo et al., 2013, 2015; Lei et al., 2017). The therapeutic
value of metformin in solid tumors has been confirmed by many
clinical trials and is worthy of further investigation in the context
of hematological malignancies (Lo et al., 2013, 2015; Chae et al.,
2016; Gong et al., 2016).

Regarding the induction of HIF1A expression, topotecan
and bortezomib, two drugs that inhibit HIF1A translation and
transactivation, respectively, have been FDA-approved for the
treatment of lymphoid and solid cancers (Kummar et al., 2011;
Lo et al., 2013, 2015, 2017; Raedler, 2015). Ganetespib, a drug
that inhibits HIF1A stability, is currently being evaluated in a

Phase III trial for solid tumors (Lo et al., 2013, 2015, 2017;
Jhaveri and Modi, 2015) while novel HIF1A inhibitors are under
development. Agents that interfere with some of the downstream
effectors of HIF1A, including VEGF and carbonic anhydrase
IX, have been designed as well. Carbonic anhydrase can, in
fact, maintain the intracellular pH in a range that is compatible
with cell proliferation while it lowers the microenvironmental,
extracellular, pH conferring a survival advantage to tumor cells
growing in a hypoxic and acidic microenvironment (Chiche
et al., 2009). Agents decreasing the ROS levels in the cells, in
particular superoxide dismutase mimetics, have also been shown
to reduce HIF1A expression in experimental cancer settings
(Batinic-Haberle et al., 2010).

The AMPK activator 5-aminoimidazole-4-carboxamide
ribonucleotide formyl-transferase/IMP cyclohydrolase
(ATIC, formerly named AICAR) has been shown to inhibit
neoplastic cell growth and potentiate the cytotoxic effects of
chemotherapeutic drugs in different kind of cancers (Rattan
et al., 2005; Lo et al., 2013, 2015).

As for FAS, several FASN inhibitors have been investigated
in vitro and xenograft studies and preliminary results show them
to have both a killing tumor direct effect and a sensitizing effect
to other cancer common therapies, e.g., 5-FU and trastuzumab
(Pizer et al., 1998; Kridel et al., 2004; Vázquez et al., 2008).

CONCLUSION

Oncoviruses, including EBV, can reprogram host cell metabolism
to support viral persistence and tumor initiation. In the
presence of pre-existing or acquired genetic mutations, the
virus may indeed enable malignant transformation. In the
case of some aggressive B-NHL (i.e., DLBCL and endemic
BL), it is currently thought that genetic aberration such as
MYC rearrangements would occur in an EBV-positive memory
cell re-entering the germinal enter reaction. Remarkably,
this model is compatible with “hit and run” hypothesis.
In fact, despite allowing tumor initiation, viral particles can
be lost during tumor progression, thus not diminishing the
importance of viral contribution. Recent evidence shows that
tumors apparently negative for EBV do carry reminiscence
of a previous infections in terms of both residual viral
DNA or miRNAs (Mundo et al., 2017). The metabolic shift
as well as the anti-apoptotic phenotype would facilitate the
complete acquisition of the malignant phenotype in EBV-infected
cells.

Currently, a number of metabolism-interfering drugs are
under evaluation in clinical trials, some of which have been
approved by the FDA for cancer treatment. Hopefully, it will be
possible to combine them with conventional chemotherapies, as
well as with the newest targeted agents to increase anti-tumor
efficacy while containing treatment toxicity. Lastly, the clear
evidence that oncoviruses, and specially EBV, have a relevant
role in the establishment of malignant lymphomas (Ambrosio
et al., 2014a), should prompt current research to improve the
vaccination strategies against these common pathogens as it
happened for HPV.

Frontiers in Microbiology | www.frontiersin.org 8 June 2018 | Volume 9 | Article 1233

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01233 June 7, 2018 Time: 14:29 # 9

Piccaluga et al. EBV and Cancer Metabolism

AUTHOR CONTRIBUTIONS

PP, AW, MA, YA, and LL equally contributed to this article in
terms of data collection, writing and critical revision. PP and LL
coordinated the work.

FUNDING

This work was supported by the Centro Interdipartimentale per
la Ricerca sul Cancro “G. Prodi”, BolognAIL, AIRC IG 2013
N.14355, RFO, and FIRB Futura 2011 RBFR12D1CB (PP).

REFERENCES
Abate, F., Ambrosio, M. R., Mundo, L., Laginestra, M. A., Fuligni, F., Rossi, M.,

et al. (2015). Distinct viral and mutational spectrum of endemic burkitt
lymphoma. PLoS Pathog. 11:e1005158. doi: 10.1371/journal.ppat.1005158

Altman, B. J., Stine, Z. E., and Dang, C. V. (2016). From Krebs to clinic: glutamine
metabolism to cancer therapy. Nat. Rev. Cancer 16, 619–634. doi: 10.1038/nrc.
2016.71

Ambrosio, M. R., De Falco, G., Gozzetti, A., Rocca, B. J., Amato, T.,
Mourmouras, V., et al. (2014a). Plasmablastic transformation of a pre-existing
plasmacytoma: a possible role for reactivation of Epstein Barr virus infection.
Haematologica 99, e235–e237. doi: 10.3324/haematol.2014.111872

Ambrosio, M. R., Navari, M., Di Lisio, L., Leon, E. A., Onnis, A., Gazaneo, S., et al.
(2014b). The Epstein Barr-encoded BART-6-3p microRNA affects regulation of
cell growth and immuno response in Burkitt lymphoma. Infect. Agent Cancer
9:12. doi: 10.1186/1750-9378-9-12

Ambrosio, M. R., Piccaluga, P. P., Ponzoni, M., Rocca, B. J., Malagnino, V.,
Onorati, M., et al. (2012). The alteration of lipid metabolism in Burkitt
lymphoma identifies a novel marker: adipophilin. PLoS One 7:e44315.
doi: 10.1371/journal.pone.0044315

Anagnostopoulos, I., Hummel, M., Finn, T., Tiemann, M., Korbjuhn, P.,
Dimmler, C., et al. (1992). Heterogeneous Epstein-Barr virus infection patterns
in peripheral T-cell lymphoma of angioimmunoblastic lymphadenopathy type.
Blood 80, 1804–1812.

Anderson, S. M., Rudolph, M. C., McManaman, J. L., and Neville, M. C. (2007). Key
stages in mammary gland development. Secretory activation in the mammary
gland: it’s not just about milk protein synthesis! Breast Cancer Res. 9:204.
doi: 10.1186/bcr1653

Anisimov, V. N., Berstein, L. M., Egormin, P. A., Piskunova, T. S., Popovich, I. G.,
Zabezhinski, M. A., et al. (2005). Effect of metformin on life span and on the
development of spontaneous mammary tumors in HER-2/neu transgenic mice.
Exp. Gerontol. 40, 685–693. doi: 10.1016/j.exger.2005.07.007

Appelhoff, R. J., Tian, Y. M., Raval, R. R., Turley, H., Harris, A. L., Pugh, C. W.,
et al. (2004). Differential function of the prolyl hydroxylases PHD1, PHD2,
and PHD3 in the regulation of hypoxia-inducible factor. J. Biol. Chem. 279,
38458–38465. doi: 10.1074/jbc.M406026200

Au, W. Y., Pang, A., Choy, C., Chim, C. S., and Kwong, Y. L. (2004). Quantification
of circulating Epstein-Barr virus (EBV) DNA in the diagnosis and monitoring of
natural killer cell and EBV-positive lymphomas in immunocompetent patients.
Blood 104, 243–249. doi: 10.1182/blood-2003-12-4197

Bajaj, B. G., Murakami, M., Cai, Q., Verma, S. C., Lan, K., and Robertson, E. S.
(2008). Epstein-Barr virus nuclear antigen 3C interacts with and enhances the
stability of the c-Myc oncoprotein. J. Virol. 82, 4082–4090. doi: 10.1128/JVI.
02500-07

Bangham, C. R., and Ratner, L. (2015). How does HTLV-1 cause adult T-cell
leukaemia/lymphoma (ATL)? Curr. Opin. Virol. 14, 93–100. doi: 10.1016/j.
coviro.2015.09.004

Batinic-Haberle, I., Reboucas, J. S., and Spasojevic, I. (2010). Superoxide dismutase
mimics: chemistry, pharmacology, and therapeutic potential. Antioxid. Redox
Signal. 3, 877–918. doi: 10.1089/ars.2009.2876

Bultema, R., Longnecker, R., and Swanson-Mungerson, M. (2009). Epstein-
Barr virus LMP2A accelerates MYC-induced lymphomagenesis. Oncogene 28,
1471–1476. doi: 10.1038/onc.2008.492

Cai, Q., Chen, K., and Young, K. H. (2015). Epstein–Barr virus-positive T/NK-cell
lymphoproliferative disorders. Exp. Mol. Med. 7:e133. doi: 10.1038/emm.201
4.105

Cai, T. T., Ye, S. B., Liu, Y. N., He, J., Chen, Q. Y., Mai, H. Q., et al. (2017).
LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion
in nasopharyngeal carcinoma. PLoS Pathog. 13:e1006503. doi: 10.1371/journal.
ppat.1006503

Cairns, R. A., Harris, I. S., and Mak, T. W. (2011). Regulation of cancer cell
metabolism. Nat. Rev. Cancer 11, 85–95. doi: 10.1038/nrc2981

Calvo-Vidal, M. N., and Cerchietti, L. (2013). The metabolism of lymphomas.
Curr. Opin. Hematol. 20, 345–354. doi: 10.1097/MOH.0b013e328362
3d16

Cesarman, E. (2011). Gammaherpesvirus and lymphoprolliferative disorders in
immunocompromised patients. Cancer Lett. 305, 163–174. doi: 10.1016/j.
canlet.2011.03.003

Chae, Y. K., Arya, A., Malecek, M. K., Shin, D. S., Carneiro, B., Chandra, S., et al.
(2016). Repurposing metformin for cancer treatment: current clinical studies.
Oncotarget 7, 40767–40780. doi: 10.18632/oncotarget.8194

Chapman, A. L. N., and Rickinson, A. B. (1998). Epstein–Barr virus in Hodgkin’s
disease. Ann. Oncol. 9(Suppl. 5), S5–S16. doi: 10.1093/annonc/9.suppl_5.S5

Chen, J. Q., and Russo, J. (2012). Dysregulation of glucose transport, glycolysis,
TCA cycle and glutaminolysis by oncogenes and tumor suppressors in
cancer cells. Biochim. Biophys. Acta 1826, 370–384. doi: 10.1016/j.bbcan.2012.0
6.004

Chiche, J., Ilc, K., Laferrière, J., Trottier, E., Dayan, F., Mazure, N. M., et al. (2009).
Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth
by counteracting acidosis through the regulation of the intracellular pH. Cancer
Res. 9, 358–368. doi: 10.1158/0008-5472.CAN-08-2470

Cuninghame, S., Jackson, R., and Zehbe, I. (2014). Hypoxia-inducible factor 1 and
its role in viral carcinogenesis. Virology 45, 370–383. doi: 10.1016/j.virol.2014.
02.027

Daker, M., Bhuvanendran, S., Ahmad, M., Takada, K., and Khoo, A. S. (2013).
Deregulation of lipid metabolism pathway genes in nasopharyngeal carcinoma
cells. Mol. Med. Rep. 7, 731–741. doi: 10.3892/mmr.2012.1253

Dang, C. V. (2013). MYC, metabolism, cell growth, and tumorigenesis. Cold Spring
Harb. Perspect. Med. 3:a014217. doi: 10.1101/cshperspect.a014217

Darekar, S., Georgiou, K., Yurchenko, M., Yenamandra, S. P., Chachami, G.,
Simos, G., et al. (2012). Epstein-Barr virus immortalization of human B-cells
leads to stabilization of hypoxia-induced factor 1 alpha, congruent with the
Warburg effect. PLoS One 7:e42072. doi: 10.1371/journal.pone.0042072

Dawson, C. W., Port, R. J., and Young, L. S. (2012). The role of the EBV-
encoded latent membrane proteins LMP1 and LMP2 in the pathogenesis of
nasopharyngeal carcinoma (NPC). Semin. Cancer Biol. 22, 144–153. doi: 10.
1016/j.semcancer.2012.01.004

Daye, D., and Wellen, K. E. (2012). Metabolic reprogramming in cancer:
unraveling the role of glutamine in tumorigenesis. Semin. Cell Dev. Biol. 23,
362–369. doi: 10.1016/j.semcdb.2012.02.002

de Martel, C., Ferlay, J., Franceschi, S., Vignat, J., Bray, F., Forman, D., et al.
(2012). Global burden of cancers attributable to infections in 2008: a review
and synthetic analysis. Lancet Oncol. 13, 607–615. doi: 10.1016/S1470-2045(12)
70137-7

Dojcinov, S. D., Venkataraman, G., Pittaluga, S., Wlodarska, I., Schrager, J. A.,
Raffeld, M., et al. (2011). Age-related EBV-associated lymphoproliferative
disorders in the Western population: a spectrum of reactive lymphoid
hyperplasia and lymphoma. Blood 117, 4726–4735. doi: 10.1182/blood-2010-
12-323238

Eberlin, L. S., Gabay, M., Fan, A. C., Gouw, A. M., Tibshirani, R. J., Felsher, D. W.,
et al. (2014). Alteration of the lipid profile in lymphomas induced by MYC
overexpression. Proc. Natl. Acad. Sci. U.S.A. 111, 10450–10455. doi: 10.1073/
pnas.1409778111

Fang, J., Zhang, H., and Jin, S. (2014). Epigenetics and cervical
cancer: from pathogenesis to therapy. Tumour Biol. 35, 5083–5093.
doi: 10.1007/s13277-014-1737-z

Fish, K., Chen, J., and Longnecker, R. (2014). Epstein-Barr virus latent
membrane protein 2A enhances MYC-driven cell cycle progression in a mouse
model of B lymphoma. Blood 123, 530–540. doi: 10.1182/blood-2013-07-
517649

Frontiers in Microbiology | www.frontiersin.org 9 June 2018 | Volume 9 | Article 1233

https://doi.org/10.1371/journal.ppat.1005158
https://doi.org/10.1038/nrc.2016.71
https://doi.org/10.1038/nrc.2016.71
https://doi.org/10.3324/haematol.2014.111872
https://doi.org/10.1186/1750-9378-9-12
https://doi.org/10.1371/journal.pone.0044315
https://doi.org/10.1186/bcr1653
https://doi.org/10.1016/j.exger.2005.07.007
https://doi.org/10.1074/jbc.M406026200
https://doi.org/10.1182/blood-2003-12-4197
https://doi.org/10.1128/JVI.02500-07
https://doi.org/10.1128/JVI.02500-07
https://doi.org/10.1016/j.coviro.2015.09.004
https://doi.org/10.1016/j.coviro.2015.09.004
https://doi.org/10.1089/ars.2009.2876
https://doi.org/10.1038/onc.2008.492
https://doi.org/10.1038/emm.2014.105
https://doi.org/10.1038/emm.2014.105
https://doi.org/10.1371/journal.ppat.1006503
https://doi.org/10.1371/journal.ppat.1006503
https://doi.org/10.1038/nrc2981
https://doi.org/10.1097/MOH.0b013e3283623d16
https://doi.org/10.1097/MOH.0b013e3283623d16
https://doi.org/10.1016/j.canlet.2011.03.003
https://doi.org/10.1016/j.canlet.2011.03.003
https://doi.org/10.18632/oncotarget.8194
https://doi.org/10.1093/annonc/9.suppl_5.S5
https://doi.org/10.1016/j.bbcan.2012.06.004
https://doi.org/10.1016/j.bbcan.2012.06.004
https://doi.org/10.1158/0008-5472.CAN-08-2470
https://doi.org/10.1016/j.virol.2014.02.027
https://doi.org/10.1016/j.virol.2014.02.027
https://doi.org/10.3892/mmr.2012.1253
https://doi.org/10.1101/cshperspect.a014217
https://doi.org/10.1371/journal.pone.0042072
https://doi.org/10.1016/j.semcancer.2012.01.004
https://doi.org/10.1016/j.semcancer.2012.01.004
https://doi.org/10.1016/j.semcdb.2012.02.002
https://doi.org/10.1016/S1470-2045(12)70137-7
https://doi.org/10.1016/S1470-2045(12)70137-7
https://doi.org/10.1182/blood-2010-12-323238
https://doi.org/10.1182/blood-2010-12-323238
https://doi.org/10.1073/pnas.1409778111
https://doi.org/10.1073/pnas.1409778111
https://doi.org/10.1007/s13277-014-1737-z
https://doi.org/10.1182/blood-2013-07-517649
https://doi.org/10.1182/blood-2013-07-517649
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01233 June 7, 2018 Time: 14:29 # 10

Piccaluga et al. EBV and Cancer Metabolism

Galluzzi, L., Kepp, O., Vander Heiden, M. G., and Kroemer, G. (2013). Metabolic
targets for cancer therapy. Nat. Rev. Drug Discov. 12, 829–846. doi: 10.1038/
nrd4145

Gatenby, R. A., and Gillies, R. J. (2004). Why do cancers have high aerobic
glycolysis? Nat. Rev. Cancer 4, 891–899. doi: 10.1038/nrc1478

Gewurz, B. E., Mar, J. C., Padi, M., Zhao, B., Shinners, N. P., Takasaki, K., et al.
(2011). Canonical NF-κB activation is essential for Epstein-Barr Virus latent
membrane protein 1 TES2/CTAR2 gene regulation. J. Virol. 85, 6764–6773.
doi: 10.1128/JVI.00422-11

Gong, J., Kelekar, G., Shen, J., Shen, J., Kaur, S., and Mita, M. (2016). The
expanding role of metformin in cancer: an update on antitumor mechanisms
and clinical development. Target Oncol. 11, 447–467. doi: 10.1007/s11523-016-0
423-z

Gruhne, B., Sompallae, R., and Masucci, M. G. (2009). Three Epstein-Barr
virus latency proteins independently promote genomic instability by inducing
DNA damage, inhibiting DNA repair and inactivating cell cycle checkpoints.
Oncogene 28, 3997–4008. doi: 10.1038/onc.2009.258

Hashmi, S., Wang, Y., Suman, D. S., Parhar, R. S., Collison, K., Conca, W., et al.
(2015). Human cancer: is it linked to dysfunctional lipid metabolism? Biochim.
Biophys. Acta 1850, 352–364. doi: 10.1016/j.bbagen.2014.11.004

Hay, N. (2016). Reprogramming glucose metabolism in cancer: can it be
exploited for cancer therapy? Nat. Rev. Cancer 16, 635–649. doi: 10.1038/nrc.20
16.77

Herrmann, G., Gregel, C., and Hubner, K. (1995). [Pathogenetic role of HBV in
liver cell carcinoma of Western European patients]. Verh Dtsch Ges Pathol. 79,
126–131.

Hitt, M. M., Allday, M. J., Hara, T., Karran, L., Jones, M. D., Busson, P.,
et al. (1989). EBV gene expression in an NPC-related tumour. EMBO J. 8,
2639–2651.

Ho, J. W., Liang, R. H., and Srivastava, G. (1999). Differential cytokine expression
in EBV positive peripheral T cell lymphomas. Mol. Pathol. 52, 269–274. doi:
10.1136/mp.52.5.269

Hovi, T., Smyth, J. F., Allison, A. C., and Williams, S. C. (1976). Role of adenosine
deaminase in lymphocyte proliferation. Clin. Exp. Immunol. 23, 395–403.

Huang, C., and Freter, C. (2015). Lipid metabolism, apoptosis and cancer therapy.
Int. J. Mol. Sci. 16, 924–949. doi: 10.3390/ijms16010924

Jain, M., Nilsson, R., Sharma, S., Madhusudhan, N., Kitami, T., Souza, A. L., et al.
(2012). Metabolite profiling identifies a key role for glycine in rapid cancer cell
proliferation. Science 336, 1040–1044. doi: 10.1126/science.1218595

Janardhan, S., Srivani, P., and Sastry, G. N. (2006). Choline kinase: an
important target for cancer. Curr. Med. Chem. 13, 1169–1186. doi: 10.2174/
092986706776360923

Jhaveri, K., and Modi, S. (2015). Ganetespib: research and clinical development.
Onco Targets Ther. 8, 1849–1858.

Jones, W., and Bianchi, K. (2015). Aerobic glycolysis: beyond proliferation. Front.
Immunol. 6:227. doi: 10.3389/fimmu.2015.00227

Kaiser, C., Laux, G., Eick, D., Jochner, N., Bornkamm, G. W., and Kempkes, B.
(1999). The proto-oncogene c-myc is a direct target gene of Epstein-Barr virus
nuclear antigen 2. J. Virol. 73, 4481–4484.

Kanno, H., Naka, N., Yasunaga, Y., Iuchi, K., Yamauchi, S., Hashimoto, M.,
et al. (1997). Production of the immunosuppressive cytokine interleukin-10 by
Epstein-Barr-virus-expressing pyothorax-associated lymphoma: possible role in
the development of overt lymphoma in immunocompetent hosts. Am. J. Pathol.
150, 349–357.

Kato, H., Karube, K., Yamamoto, K., Takizawa, J., Tsuzuki, S., Yatabe, Y., et al.
(2014). Gene expression profiling of Epstein–Barr virus-positive diffuse large
B-cell lymphoma of the elderly reveals alterations of characteristic oncogenetic
pathways. Cancer Sci. 105, 537–544. doi: 10.1111/cas.12389

Kawauchi, K., Araki, K., Tobiume, K., and Tanaka, N. (2008). p53 regulates
glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell
transformation. Nat. Cell Biol. 10, 611–618. doi: 10.1038/ncb1724

Kelleher, F. C., O’Sullivan, H., Smyth, E., McDermott, R., and Viterbo, A.
(2013). Fibroblast growth factor receptors, developmental corruption and
malignant disease. Carcinogenesis 34, 2198–2205. doi: 10.1093/carcin/bg
t254

Kim, J. W., and Dang, C. V. (2006). Cancer’s molecular sweet tooth and the
Warburg effect. Cancer Res. 66, 8927–8930. doi: 10.1158/0008-5472.CAN-06-
1501

Kondo, S., Seo, S. Y., Yoshizaki, T., Wakisaka, N., Furukawa, M., Joab, I., et al.
(2006). EBV latent membrane protein 1 up-regulates hypoxia-inducible factor
1alpha through Siah1-mediated down-regulation of prolyl hydroxylases 1 and
3 in nasopharyngeal epithelial cells. Cancer Res. 66, 9870–9877. doi: 10.1158/
0008-5472.CAN-06-1679

Krawczyk, C. M., Holowka, T., Sun, J., Blagih, J., Amiel, E., DeBerardinis, R. J., et al.
(2010). Toll-like receptor-induced changes in glycolytic metabolism regulate
dendritic cell activation. Blood 115, 4742–4749. doi: 10.1182/blood-2009-10-
249540

Kridel, S. J., Axelrod, F., Rozenkrantz, N., and Smith, J. W. (2004). Orlistat is a
novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res. 64,
2070–2075. doi: 10.1158/0008-5472.CAN-03-3645

Krycer, J. R., and Brown, A. J. (2013). Cholesterol accumulation in prostate cancer:
a classic observation from a modern perspective. Biochim. Biophys. Acta 1835,
219–229. doi: 10.1016/j.bbcan.2013.01.002

Kummar, S., Raffeld, M., Juwara, L., Horneffer, Y., Strassberger, A., Allen, D., et al.
(2011). Multihistology, target-driven pilot trial of oral topotecan as an inhibitor
of hypoxia-inducible factor-1alpha in advanced solid tumors. Clin. Cancer Res.
17, 5123–5131. doi: 10.1158/1078-0432.CCR-11-0682

Kuppers, R. (2009). The biology of Hodgkin’s lymphoma. Nat. Rev. Cancer 9,
15–27. doi: 10.1038/nrc2542

Kusakabe, T., Maeda, M., Hoshi, N., Sugino, T., Watanabe, K., Fukuda, T., et al.
(2000). Fatty acid synthase is expressed mainly in adult hormone-sensitive cells
or cells with high lipid metabolism and in proliferating fetal cells. J. Histochem.
Cytochem. 48, 613–622. doi: 10.1177/002215540004800505

Lei, Y., Yi, Y., Liu, Y., Keller, E. T., Qian, C. N., Zhang, J., et al. (2017). Metformin
targets multiple signaling pathways in cancer. Chin. J. Cancer 36:17. doi: 10.
1186/s40880-017-0184-9

Levy, P., and Bartosch, B. (2016). Metabolic reprogramming: a hallmark of viral
oncogenesis. Oncogene 35, 4155–4164. doi: 10.1038/onc.2015.479

Li, J. N., Mahmoud, M. A., Han, W. F., Ripple, M., and Pizer, E. S. (2000). Sterol
regulatory element-binding protein-1 participates in the regulation of fatty
acid synthase expression in colorectal neoplasia. Exp. Cell Res. 261, 159–165.
doi: 10.1006/excr.2000.5054

Li, Y., Webster-Cyriaque, J., Tomlinson, C. C., Yohe, M., and Kenney, S. (2004).
Fatty acid synthase expression is induced by the Epstein-Barr virus immediate-
early protein BRLF1 and is required for lytic viral gene expression. J. Virol. 78,
4197–4206. doi: 10.1128/JVI.78.8.4197-4206.2004

Liang, J., Zhou, H., Gerdt, C., Tan, M., Colson, T., Kaye, K. M., et al. (2016). Epstein-
Barr virus super-enhancer eRNAs are essential for MYC oncogene expression
and lymphoblast proliferation. Proc. Natl. Acad. Sci. U.S.A. 113, 14121–14126.
doi: 10.1073/pnas.1616697113

Libby, G., Donnelly, L. A., Donnan, P. T., Alessi, D. R., Morris, A. D., and Evans,
J. M. (2009). New users of metformin are at low risk of incident cancer: a
cohort study among people with type 2 diabetes. Diabetes Care 32, 1620–1625.
doi: 10.2337/dc08-2175

Lo, A. K., Dawson, C. W., Young, L. S., Ko, C. W., Hau, P. M., and Lo, K. W.
(2015). Activation of the FGFR1 signalling pathway by the Epstein-Barr virus-
encoded LMP1 promotes aerobic glycolysis and transformation of human
nasopharyngeal epithelial cells. J. Pathol. 237, 238–248. doi: 10.1002/path.
4575

Lo, A. K., Dawson, C. W., Young, L. S., and Lo, K. W. (2017). The role of metabolic
reprogramming in gamma-herpesvirus-associated oncogenesis. Int. J. Cancer
141, 1512–1521. doi: 10.1002/ijc.30795

Lo, A. K., Lo, K. W., Ko, C. W., Young, L. S., and Dawson, C. W.
(2013). Inhibition of the LKB1-AMPK pathway by the Epstein-Barr virus-
encoded LMP1 promotes proliferation and transformation of human
nasopharyngeal epithelial cells. J. Pathol. 230, 336–346. doi: 10.1002/path.
4201

Lu, J., Tang, M., Li, H., Xu, Z., Weng, X., Li, J., et al. (2016). EBV-LMP1 suppresses
the DNA damage response through DNA-PK/AMPK signaling to promote
radioresistance in nasopharyngeal carcinoma. Cancer Lett. 380, 191–200. doi:
10.1016/j.canlet.2016.05.032

Luo, G. G., and Ou, J. H. (2015). Oncogenic viruses and cancer. Virol. Sin. 30,
83–84. doi: 10.1007/s12250-015-3599-y

Macheda, M. L., Rogers, S., and Best, J. D. (2005). Molecular and cellular regulation
of glucose transporter (GLUT) proteins in cancer. J. Cell Physiol. 202, 654–662.
doi: 10.1002/jcp.20166

Frontiers in Microbiology | www.frontiersin.org 10 June 2018 | Volume 9 | Article 1233

https://doi.org/10.1038/nrd4145
https://doi.org/10.1038/nrd4145
https://doi.org/10.1038/nrc1478
https://doi.org/10.1128/JVI.00422-11
https://doi.org/10.1007/s11523-016-0423-z
https://doi.org/10.1007/s11523-016-0423-z
https://doi.org/10.1038/onc.2009.258
https://doi.org/10.1016/j.bbagen.2014.11.004
https://doi.org/10.1038/nrc.2016.77
https://doi.org/10.1038/nrc.2016.77
https://doi.org/10.1136/mp.52.5.269
https://doi.org/10.1136/mp.52.5.269
https://doi.org/10.3390/ijms16010924
https://doi.org/10.1126/science.1218595
https://doi.org/10.2174/092986706776360923
https://doi.org/10.2174/092986706776360923
https://doi.org/10.3389/fimmu.2015.00227
https://doi.org/10.1111/cas.12389
https://doi.org/10.1038/ncb1724
https://doi.org/10.1093/carcin/bgt254
https://doi.org/10.1093/carcin/bgt254
https://doi.org/10.1158/0008-5472.CAN-06-1501
https://doi.org/10.1158/0008-5472.CAN-06-1501
https://doi.org/10.1158/0008-5472.CAN-06-1679
https://doi.org/10.1158/0008-5472.CAN-06-1679
https://doi.org/10.1182/blood-2009-10-249540
https://doi.org/10.1182/blood-2009-10-249540
https://doi.org/10.1158/0008-5472.CAN-03-3645
https://doi.org/10.1016/j.bbcan.2013.01.002
https://doi.org/10.1158/1078-0432.CCR-11-0682
https://doi.org/10.1038/nrc2542
https://doi.org/10.1177/002215540004800505
https://doi.org/10.1186/s40880-017-0184-9
https://doi.org/10.1186/s40880-017-0184-9
https://doi.org/10.1038/onc.2015.479
https://doi.org/10.1006/excr.2000.5054
https://doi.org/10.1128/JVI.78.8.4197-4206.2004
https://doi.org/10.1073/pnas.1616697113
https://doi.org/10.2337/dc08-2175
https://doi.org/10.1002/path.4575
https://doi.org/10.1002/path.4575
https://doi.org/10.1002/ijc.30795
https://doi.org/10.1002/path.4201
https://doi.org/10.1002/path.4201
https://doi.org/10.1016/j.canlet.2016.05.032
https://doi.org/10.1016/j.canlet.2016.05.032
https://doi.org/10.1007/s12250-015-3599-y
https://doi.org/10.1002/jcp.20166
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01233 June 7, 2018 Time: 14:29 # 11

Piccaluga et al. EBV and Cancer Metabolism

Mediani, L., Gibellini, F., Bertacchini, J., Frasson, C., Bosco, R., Accordi, B., et al.
(2016). Reversal of the glycolytic phenotype of primary effusion lymphoma cells
by combined targeting of cellular metabolism and PI3K/Akt/ mTOR signaling.
Oncotarget 7, 5521–5537. doi: 10.18632/oncotarget.6315

Menendez, J. A., and Lupu, R. (2007). Fatty acid synthase and the lipogenic
phenotype in cancer pathogenesis. Nat. Rev. Cancer 7, 763–777. doi: 10.1038/
nrc2222

Mesri, E. A., Feitelson, M. A., and Munger, K. (2014). Human viral oncogenesis: a
cancer hallmarks analysis. Cell Host Microbe 15, 266–282. doi: 10.1016/j.chom.
2014.02.011

Mîinea, C. P., Sano, H., Kane, S., Sano, E., Fukuda, M., Peränen, J., et al. (2005).
AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab
GTPase-activating protein domain. Biochem. J. 391(Pt 1), 87–93. doi: 10.1042/
BJ20050887

Morrish, F., Noonan, J., Perez-Olsen, C., Gafken, P. R., Fitzgibbon, M.,
Kelleher, J., et al. (2010). Myc-dependent mitochondrial generation of acetyl-
CoA contributes to fatty acid biosynthesis and histone acetylation during
cell cycle entry. J. Biol. Chem. 285, 36267–36274. doi: 10.1074/jbc.M110.14
1606

Mundo, L., Ambrosio, M. R., Picciolini, M., Lo Bello, G., Gazaneo, S., Del Porro, L.,
et al. (2017). Unveiling another missing piece in EBV-Driven lymphomagenesis:
EBV-Encoded MicroRNAs expression in EBER-Negative burkitt Lymphoma
Cases. Front. Microbiol. 8:229. doi: 10.3389/fmicb.2017.00229

Nagai, M., Natsumeda, Y., Konno, Y., Hoffman, R., Irino, S., and Weber, G.
(1991). Selective up-regulation of type II inosine 5′-monophosphate
dehydrogenase messenger RNA expression in human leukemias. Cancer Res. 51,
3886–3890.

Navari, M., Etebari, M., De Falco, G., Ambrosio, M. R., Gibellini, D., Leoncini, L.,
et al. (2015). The presence of Epstein-Barr virus significantly impacts the
transcriptional profile in immunodeficiency-associated Burkitt lymphoma.
Front. Microbiol. 6:556. doi: 10.3389/fmicb.2015.00556

Niedobitek, G., Meru, N., and Delecluse, H. J. (2001). Epstein-Barr virus infection
and human malignancies. Int. J. Exp. Pathol. 82, 149–170. doi: 10.1111/j.1365-
2613.2001.iep190.x

Noch, E., and Khalili, K. (2012). Oncogenic viruses and tumor glucose metabolism:
like kids in a candy store. Mol. Cancer Therap. 11, 14–23. doi: 10.1158/1535-
7163.MCT-11-0517

Nourse, J. P., Jones, K., and Gandhi, M. K. (2011). Epstein-Barr Virus-related post-
transplant lymphoproliferative disorders: pathogenetic insights for targeted
therapy. Am. J. Transplant. 11, 888–895. doi: 10.1111/j.1600-6143.2011.
03499.x

Okada, S., Goto, H., and Yotsumoto, M. (2014). Current status of treatment for
primary effusion lymphoma. Intractable Rare Dis. Res. 3, 65–74. doi: 10.5582/
irdr.2014.01010

O’Neil, J. D., Owen, T. J., Wood, V. H., Date, K. L., Valentine, R., Chukwuma,
M. B., et al. (2008). Epstein-Barr virus-encoded EBNA1 modulates the AP-1
transcription factor pathway in nasopharyngeal carcinoma cells and enhances
angiogenesis in vitro. J. Gen. Virol. 89(Pt 11), 2833–2842. doi: 10.1099/vir.0.
2008/003392-0

Osthus, R. C., Shim, H., Kim, S., Li, Q., Reddy, R., Mukherjee, M., et al. (2000).
Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc.
J. Biol. Chem. 275, 21797–21800. doi: 10.1074/jbc.C000023200

Pierangeli, A., Antonelli, G., and Gentile, G. (2015). Immunodeficiency-associated
viral oncogenesis. Clin. Microbiol. Infect. 21, 975–983. doi: 10.1016/j.cmi.2015.
07.009

Pizer, E. S., Chrest, F. J., DiGiuseppe, J. A., and Han, W. F. (1998). Pharmacological
inhibitors of mammalian fatty acid synthase suppress DNA replication and
induce apoptosis in tumor cell lines. Cancer Res. 8, 4611–4615.

Pizer, E. S., Kurman, R. J., Pasternack, G. R., and Kuhajda, F. P. (1997).
Expression of fatty acid synthase is closely linked to proliferation and stromal
decidualization in cycling endometrium. Int. J. Gynecol. Pathol. 16, 45–51.
doi: 10.1097/00004347-199701000-00008

Pujals, A., Favre, L., Pioche-Durieu, C., Robert, A., Meurice, G., Le Gentil, M.,
et al. (2015). Constitutive autophagy contributes to resistance to TP53-mediated
apoptosis in Epstein-Barr virus-positive latency III B-cell lymphoproliferations.
Autophagy 11, 2275–2287. doi: 10.1080/15548627.2015.1115939

Raab-Traub, N. (2002). Epstein-Barr virus in the pathogenesis of NPC. Semin.
Cancer Biol. 12, 431–441. doi: 10.1016/S1044579X0200086X

Raedler, L. (2015). Velcade (Bortezomib) receives 2 New FDA Indications: for
retreatment of patients with multiple myeloma and for first-line treatment of
patients with mantle-cell lymphoma. Am. Health Drug Benefits 8, 135–140.

Rattan, R., Giri, S., Singh, A. K., and Singh, I. (2005). 5-Aminoimidazole-4-
carboxamide-1-beta-D-ribofuranoside inhibits cancer cell proliferation in vitro
and in vivo via AMP-activated protein kinase. J. Biol. Chem. 280, 39582–39593.
doi: 10.1074/jbc.M507443200

Santos, C. R., and Schulze, A. (2012). Lipid metabolism in cancer. FEBS J. 279,
2610–2623. doi: 10.1111/j.1742-4658.2012.08644.x

Sariban-Sohraby, S., Magrath, I. T., and Balaban, R. S. (1983). Comparison of
energy metabolism in human normal and neoplastic (Burkitt’s lymphoma)
lymphoid cells. Cancer Res. 43, 4662–4664.

Satoh, T. (2014). Molecular mechanisms for the regulation of insulin-stimulated
glucose uptake by small guanosine triphosphatases in skeletal muscle and
adipocytes. Int. J. Mol. Sci. 15, 18677–18692. doi: 10.3390/ijms151018677

Schwartzenberg-Bar-Yoseph, F., Armoni, M., and Karnieli, E. (2004). The tumor
suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene
expression. Cancer Res. 64, 2627–2633. doi: 10.1158/0008-5472.CAN-03-0846

Shannon-Lowe, C., Rickinson, A. B., and Bell, A. I. (2017). Epstein-Barr virus-
associated lymphomas. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372:20160271.
doi: 10.1098/rstb.2016.0271

Singh, S. R., Tan, M., and Rameshwar, P. (2015). Cancer metabolism: targeting
metabolic pathways in cancer therapy. Cancer Lett. 356(2 Pt A), 147–148.
doi: 10.1016/j.canlet.2014.06.002

Sommermann, T. G., O’Neill, K., Plas, D. R., and Cahir-McFarland, E. (2011).
IKKbeta and NF-kappaB transcription govern lymphoma cell survival through
AKT-induced plasma membrane trafficking of GLUT1. Cancer Res. 71,
7291–7300. doi: 10.1158/0008-5472.CAN-11-1715

Sung, W. W., Chu, Y. C., Chen, P. R., Liao, M. H., and Lee, J. W. (2016). Positive
regulation of HIF-1A expression by EBV oncoprotein LMP1 in nasopharyngeal
carcinoma cells. Cancer Lett. 382, 21–31. doi: 10.1016/j.canlet.2016.0
8.021

Swinnen, J. V., Vanderhoydonc, F., Elgamal, A. A., Eelen, M., Vercaeren, I.,
Joniau, S., et al. (2000). Selective activation of the fatty acid synthesis pathway
in human prostate cancer. Int. J. Cancer 88, 176–179. doi: 10.1002/1097-
0215(20001015)88:2<176::AID-IJC5>3.0.CO;2-3

Tsai, W. L., and Chung, R. T. (2010). Viral hepatocarcinogenesis. Oncogene 29,
2309–2324. doi: 10.1038/onc.2010.36

Vazquez, A., Tedeschi, P. M., and Bertino, J. R. (2013). Overexpression of
the mitochondrial folate and glycine-serine pathway: a new determinant of
methotrexate selectivity in tumors. Cancer Res. 73, 478–482. doi: 10.1158/0008-
5472.CAN-12-3709

Vázquez, M. J., Leavens, W., Liu, R., Rodríguez, B., Read, M., Richards, S., et al.
(2008). Discovery of GSK837149A, an inhibitor of human fatty acid synthase
targeting the beta-ketoacyl reductase reaction. FEBS J. 275, 1556–1567. doi:
10.1111/j.1742-4658.2008.06314.x

Wagle, S., Bui, A., Ballard, P. L., Shuman, H., Gonzales, J., and Gonzales, L. W.
(1999). Hormonal regulation and cellular localization of fatty acid synthase in
human fetal lung. Am. J. Physiol. 277(2 Pt 1), L381–L390. doi: 10.1152/ajplung.
1999.277.2.L381

Wakisaka, N., Kondo, S., Yoshizaki, T., Murono, S., Furukawa, M., and Pagano,
J. S. (2004). Epstein-Barr virus latent membrane protein 1 induces synthesis of
hypoxia-inducible factor 1 alpha. Mol. Cell Biol. 24, 5223–5234. doi: 10.1128/
MCB.24.12.5223-5234.2004

Wang, H. W., Pittaluga, S., and Jaffe, E. S. (2016). Multicentric castleman disease:
where are we now? Semin. Diagn. Pathol. 33, 294–306. doi: 10.1053/j.semdp.
2016.05.006

Warburg, O., Wind, F., and Negelein, E. (1927). The metabolism of tumors in the
body. J. Gen. Physiol. 8, 519–530. doi: 10.1085/jgp.8.6.519

Weiss, L., Hoffmann, G. E., Schreiber, R., Andres, H., Fuchs, E., Körber, E.,
et al. (1986). Fatty-acid biosynthesis in man, a pathway of minor importance.
Purification, optimal assay conditions, and organ distribution of fatty-acid
synthase. Biol. Chem. Hoppe Seyler 367, 905–912. doi: 10.1515/bchm3.1986.367.
2.905

Wieman, H. L., Wofford, J. A., and Rathmell, J. C. (2007). Cytokine stimulation
promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of
Glut1 activity and trafficking. Mol. Biol. Cell. 18, 1437–1446. doi: 10.1091/mbc.
e06-07-0593

Frontiers in Microbiology | www.frontiersin.org 11 June 2018 | Volume 9 | Article 1233

https://doi.org/10.18632/oncotarget.6315
https://doi.org/10.1038/nrc2222
https://doi.org/10.1038/nrc2222
https://doi.org/10.1016/j.chom.2014.02.011
https://doi.org/10.1016/j.chom.2014.02.011
https://doi.org/10.1042/BJ20050887
https://doi.org/10.1042/BJ20050887
https://doi.org/10.1074/jbc.M110.141606
https://doi.org/10.1074/jbc.M110.141606
https://doi.org/10.3389/fmicb.2017.00229
https://doi.org/10.3389/fmicb.2015.00556
https://doi.org/10.1111/j.1365-2613.2001.iep190.x
https://doi.org/10.1111/j.1365-2613.2001.iep190.x
https://doi.org/10.1158/1535-7163.MCT-11-0517
https://doi.org/10.1158/1535-7163.MCT-11-0517
https://doi.org/10.1111/j.1600-6143.2011.03499.x
https://doi.org/10.1111/j.1600-6143.2011.03499.x
https://doi.org/10.5582/irdr.2014.01010
https://doi.org/10.5582/irdr.2014.01010
https://doi.org/10.1099/vir.0.2008/003392-0
https://doi.org/10.1099/vir.0.2008/003392-0
https://doi.org/10.1074/jbc.C000023200
https://doi.org/10.1016/j.cmi.2015.07.009
https://doi.org/10.1016/j.cmi.2015.07.009
https://doi.org/10.1097/00004347-199701000-00008
https://doi.org/10.1080/15548627.2015.1115939
https://doi.org/10.1016/S1044579X0200086X
https://doi.org/10.1074/jbc.M507443200
https://doi.org/10.1111/j.1742-4658.2012.08644.x
https://doi.org/10.3390/ijms151018677
https://doi.org/10.1158/0008-5472.CAN-03-0846
https://doi.org/10.1098/rstb.2016.0271
https://doi.org/10.1016/j.canlet.2014.06.002
https://doi.org/10.1158/0008-5472.CAN-11-1715
https://doi.org/10.1016/j.canlet.2016.08.021
https://doi.org/10.1016/j.canlet.2016.08.021
https://doi.org/10.1002/1097-0215(20001015)88:2<176::AID-IJC5>3.0.CO;2-3
https://doi.org/10.1002/1097-0215(20001015)88:2<176::AID-IJC5>3.0.CO;2-3
https://doi.org/10.1038/onc.2010.36
https://doi.org/10.1158/0008-5472.CAN-12-3709
https://doi.org/10.1158/0008-5472.CAN-12-3709
https://doi.org/10.1111/j.1742-4658.2008.06314.x
https://doi.org/10.1111/j.1742-4658.2008.06314.x
https://doi.org/10.1152/ajplung.1999.277.2.L381
https://doi.org/10.1152/ajplung.1999.277.2.L381
https://doi.org/10.1128/MCB.24.12.5223-5234.2004
https://doi.org/10.1128/MCB.24.12.5223-5234.2004
https://doi.org/10.1053/j.semdp.2016.05.006
https://doi.org/10.1053/j.semdp.2016.05.006
https://doi.org/10.1085/jgp.8.6.519
https://doi.org/10.1515/bchm3.1986.367.2.905
https://doi.org/10.1515/bchm3.1986.367.2.905
https://doi.org/10.1091/mbc.e06-07-0593
https://doi.org/10.1091/mbc.e06-07-0593
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01233 June 7, 2018 Time: 14:29 # 12

Piccaluga et al. EBV and Cancer Metabolism

Xiao, L., Hu, Z. Y., Dong, X., Tan, Z., Li, W., Tang, M., et al. (2014).
Targeting Epstein-Barr virus oncoprotein LMP1-mediated glycolysis sensitizes
nasopharyngeal carcinoma to radiation therapy. Oncogene 33, 4568–4578. doi:
10.1038/onc.2014.32

Yeung, S. J., Pan, J., and Lee, M. H. (2008). Roles of p53, MYC and HIF-1 in
regulating glycolysis - the seventh hallmark of cancer. Cell. Mol. Life Sci. 65,
3981–3999. doi: 10.1007/s00018-008-8224-x

Yoon, S., Lee, M. Y., Park, S. W., Moon, J. S., Koh, Y. K., Ahn, Y. H., et al.
(2007). Up-regulation of acetyl-CoA carboxylase alpha and fatty acid synthase
by human epidermal growth factor receptor 2 at the translational level in breast
cancer cells. J. Biol. Chem. 282, 26122–26131. doi: 10.1074/jbc.M702854200

Young, L. S., and Rickinson, A. B. (2004). Epstein-Barr virus: 40 years on. Nat. Rev.
Cancer 4, 757–768. doi: 10.1038/nrc1452

Zelzer, E., Levy, Y., Kahana, C., Shilo, B. Z., Rubinstein, M., and Cohen, B. (1998).
Insulin induces transcription of target genes through the hypoxia-inducible
factor HIF-1alpha/ARNT. EMBO J. 17, 5085–5094. doi: 10.1093/emboj/17.17.
5085

Zhang, J., Jia, L., Lin, W., Yip, Y. L., Lo, K. W., Lau, V. M., et al. (2017).
Epstein-Barr Virus-encoded latent membrane protein 1 upregulates glucose
transporter 1 transcription via the mTORC1/NF-kappaB Signaling Pathways.
J. Virol. 91:e02168-16. doi: 10.1128/JVI.02168-16

Zhou, H., Schmidt, S. C., Jiang, S., Willox, B., Bernhardt, K., Liang, J.,
et al. (2015). Epstein-Barr virus oncoprotein super-enhancers control B
cell growth. Cell Host Microbe 17, 205–216. doi: 10.1016/j.chom.2014.
12.013

Zhou, Y., Attygalle, A. D., Chuang, S. S., Diss, T., Ye, H., Liu, H., et al. (2007).
Angioimmunoblastic T-cell lymphoma: histological progression associates with
EBV and HHV6B viral load. Br. J. Haematol. 138, 44–53. doi: 10.1111/j.1365-
2141.2007.06620.x

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Piccaluga, Weber, Ambrosio, Ahmed and Leoncini.
This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction
in other forums is permitted, provided the original author(s) and the
copyright owner are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Microbiology | www.frontiersin.org 12 June 2018 | Volume 9 | Article 1233

https://doi.org/10.1038/onc.2014.32
https://doi.org/10.1038/onc.2014.32
https://doi.org/10.1007/s00018-008-8224-x
https://doi.org/10.1074/jbc.M702854200
https://doi.org/10.1038/nrc1452
https://doi.org/10.1093/emboj/17.17.5085
https://doi.org/10.1093/emboj/17.17.5085
https://doi.org/10.1128/JVI.02168-16
https://doi.org/10.1016/j.chom.2014.12.013
https://doi.org/10.1016/j.chom.2014.12.013
https://doi.org/10.1111/j.1365-2141.2007.06620.x
https://doi.org/10.1111/j.1365-2141.2007.06620.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

	Epstein–Barr Virus-Induced Metabolic Rearrangements in Human B-Cell Lymphomas
	Introduction
	Epstein–Barr Virus and Cancerogenesis
	Metabolic Alterations in Tumors
	Ebv-Driven Carbohydrate Metabolic Alterations in Nasopharyngeal Carcinoma (Npc)
	Ebv-Driven Carbohydrate Metabolic Alterations in Lymphomas
	Lipid Metabolism Alteration
	Clinical Implications
	Conclusion
	Author Contributions
	Funding
	References


