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Abstract. We consider Cannon cone types for a surface group
of genus g, and we give algebraic criteria for establishing the cone
type of a given cone and of all its sub-cones. We also re-prove that
the number of cone types is exactly 8g(2g − 1) + 1. In the genus
2 case, we explicitly provide the 48× 48 matrix of cone types, M,
and we prove that M is primitive, hence Perron-Frobenius. Finally
we define vector-valued multiplicative functions and we show how
to compute their values by means of M .

1. Introduction

Let Γg be a surface group of genus g. There are several definitions of
cone types available for surface groups, in this paper we are interested
on those called simply Cannon cone types [C], not to be confused to
the canonical Cannon cone types [FP].

The aim of this paper is to give an overview on Cannon cone types,
provide a matrix (for g = 2), called matrix of cone types, whose
columns are cone types of successors of any element of Γ2 with a given
cone type, show that it is a Perron-Frobenius matrix, and to apply it
in the computation of elementary multiplicative functions.

Even though some results on cone types are “folklore” by now, as far
as we know there are no results available in the literature that can help
us in constructing such a matrix. We try to fill this gap in the present
work. Our approach to cone types is more of combinatorial/algebraic
type than geometric.

We believe that there is a necessity to explicitly provide the matrix of
cone types, for its potential use in numerical algorithms; this feeling, at
the time of Cannon’s manuscript, maybe was not so urgent. Recently,
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instead, in the work of Gouezel [G], the matrix of canonical Cannon
cone types has been used to estimate numerically the lower bound of the
spectral radius of a random walk on a genus 2 surface group, improving
a previous result by Bartholdi [B].

Another possible application of the matrix of cone types is related to
the construction of vector-valued elementary multiplicative functions,
and the associated new class of representations on surface groups. The
latter have been already defined for free groups by Kuhn and Steger in
[KS] (see also [KSS]), further extended to virtual free groups by Iozzi,
et al. in [IKS], and presently object of a work in progress on surface
groups by Kuhn, Steger and their collaborators.

The structure of the paper is the following: after a review on cone
types in Section 2, in Section 3 we establish an algebraic criterion to
determine any element’s cone type (which is equivalent to determine
the cone type of each cone); this will lead us also to a proof for the
well known fact that there are exactly 8g(2g− 1) + 1 cone types in Γg.
In Section 4 we provide cone types for each successors of the 48 + 1
possible cone types in Γ2. In Section 5 we construct the matrix of
cone types and we show that it is a Perron-Frobenius matrix. Finally,
in Section 6 we apply the matrix of cone types in the computation of
elementary multiplicative functions.

In the meanwhile, we provide a drawing of (part of) the Cayley graph
of the genus 2 surface group (octagons group) in a form that we believe
new and hopefully useful, so to facilitate the reader to imagine a figure
that is not easy to describe in a drawing.

2. Cannon cone types

To fix notations we recall some basic concepts on hyperbolic groups
in the sense of Gromov, such as distance, length, geodesic, Cayley
graph, etc... referring to Ohshika’s book [O] for more details.

Definition 2.1. Given a group G, a subset A ⊂ G is called a generator
system of G if every element of G is expressed as a product of elements
of A. G is said finitely generated if it has a finite generator system.

In this paper we assume that a generator system of G is symmetric,
i.e. closed under inverses.

If G has a generator system A, then there is a canonical surjective
group homomorphism p : F (A) → G, whose kernel is called the set of
relators. Here F (A) is the free group on A, identified with the set of
reduced words on A, i.e., words in which an element and its inverse are
not juxtaposed. We consider the identity as the empty word.
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If R ⊂ G is a subset, then we denote by << R >> the normal closure
of R in G, which is the intersection of all normal subgroups containing
R. Intuitively, this is the smallest normal subgroup containing R. It is
easy to see that the elements of << R >> are

g1x
n1
1 g
−1
1 g2x

n2
2 g
−1
2 . . . gkx

nk
k g
−1
k ,

for n1, . . . , nk ∈ Z, x1 . . . xk ∈ R, and g1, . . . , gk ∈ G (not necessarily
distinct).

Definition 2.2. If G has a finite generator system A, we say that G
is finitely presented if there is a finite set R = {w1, . . . , wn} ⊂ ker p ⊂
F (A) such that << R >>= ker p. Hence G ∼= F (A)/ << R >>. In
that case we write G = 〈A|R〉 and we call such a presentation of G a
finite presentation. The words w1, ..., wn are called relators.

The fundamental group, Γg, of a compact surface of genus g ≥ 2, is
a finitely presented group. Its usual presentation is

Γg = 〈a1, . . . , ag, b1, . . . , bg|[a1, b1] · · · [ag, bg]〉.
where the bracket means the usual commutator [a, b] = aba−1b−1.

In this paper we shall deal manly with g = 2, and in this case, for
simplicity, we shall write and fix the set of generators as follows

(2.1) Γ2 = 〈a, b, c, d|[a, b][c, d] = aba−1b−1cdc−1d−1〉.

Definition 2.3. Let G be a discrete, finitely generated group with a
finite generator system A. The Cayley graph G of G with respect to A
is a graph defined as follows.

(1) The vertices of G are the elements of G.
(2) The (unoriented) edges are (non-ordered) couples (x, xa) with

a ∈ A.

We can introduce a metric, denoted by d, on a Cayley graph by
letting the length of every edge be 1 and defining the distance between
two vertices to be the minimum length of edges joining them.

The metric on G induces a metric on G when the latter is identified
with the set of vertices of G. We call this metric on G (still denoted by
d) the word metric with respect to A. In particular, for x ∈ G, we call
the distance from the identity “e”, with respect to the word metric, the
length of x, and we denote it by |x|.

We have also that, for all x, y, z ∈ G, d(xy, xz) = d(y, z).

Definition 2.4. A geodesic segment joining two vertices x, y in G (or,
more briefly, a geodesic from x to y) is a map f from a closed interval
[0, l] ⊂ R to G such that f(0) = x, f(l) = y and d(f(t), f(s)) = |t− s|
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for all t, s ∈ [0, l] (in particular l = d(x, y). When there is no confusion,
we also call the image of f a geodesic segment with endpoints x and y
and we denote it by xy. We should note that such a geodesic segment
need not be unique.

If in the geodesic segment xw we have x = e and w = y ∈ G, we say
that w is a geodesic word (representing y). In this case d(e, y) = |w|.

Definition 2.5. Given three points x, y, z ∈ G, a geodesic triangle
∆x,y,z on G with vertices x, y, z, is formed by three geodesic segments
xy, yz, zx. The group G is said hyperbolic if there exists a constant
δ > 0, depending only on G, such that, for any geodesic triangle ∆x,y,z,
one has that each u ∈ xy is at distance at most δ from zx ∪ yz.

One should note that the constant δ in the previous definition has
no much importance except in the case δ = 0 (R-trees).

Remark 2.6. Γg is hyperbolic.

Its Cayley graph, G, is a planar graph, a tessellation of the hyperbolic
space H2 with the following properties:

(1) Every vertex belongs to 4g polygons each of 4g edges and vertex
angle 2π

4g
;

(2) Every two polygons share one (and only one) edge;
(3) G is bipartite and self-dual.

Definition 2.7. Given any two vertices x, y ∈ G we say that y is a
successor of x if (x, y) is an edge and |y| = |x| + 1. In this case x is
called a predecessor of y.

A simple realization for (part of) the Cayley graph of Γ2 is given in
Figure 1, available also at https://www.geogebra.org/m/Jqayn5UZ

Its center vertex is the identity “e”, and, given any vertex, any suc-
cessor is obtained by juxtaposing generators in counterclockwise verse
in this order

(2.2) a, d, c−1, d−1, c, b, a−1, b−1.

We now give the definition of cone type for elements of G.

Definition 2.8 ([BH]). Let G be a group with finite generating set A
and corresponding word metric d.

The cone type of an element x ∈ G, denoted by C(x), is the set of
words z ∈ F (A) such that

d(e, xz) = d(e, x) + |z|,
(hence d(e, xz) = d(e, x) + |z| = d(e, x) + d(x, xz)).

https://www.geogebra.org/m/Jqayn5UZ
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Figure 1. The Cayley graph of Γ2 (part of).

In other words, if x is represented by a geodesic word u, then the
cone type of x is the set of words z such that uz is also a geodesic.

An alternative definition of cone type involves the cone of a vertex.

Definition 2.9 ([G]). The cone of a vertex x ∈ G, C(e, x), is the set of
vertices y ∈ G for which there is a geodesic from e to y going through
x.

The cone type of x is then defined as the set

{x−1y, for y ∈ C(e, x)} = x−1C(e, x).

We see that the two definitions coincide once we identify G as the
vertex set of G, since if z ∈ F (A) and d(e, xz) = d(e, x) + |z|, then
z = x−1xz and xz ∈ C(e, x), since |z| = d(x, xz). On the other hand, if
y ∈ C(e, x), then

d(e, xx−1y) = d(e, y) = d(e, x) + d(x, y) = d(e, x) + d(e, x−1y).

Next we consider the definition of cone type for a cone, which relies
on the action by isometries of the group G on its Cayley graph, this
action is simply transitive on the vertices.
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Definition 2.10. Given two vertices x, y ∈ G the cone at vertex y is

C(x, y) = {z ∈ G, d(x, z) = d(x, y) + d(y, z)}.
The group G acts on the the collection of cones by (left) translation

zC(x, y) = C(zx, zy), z ∈ G.
We say that two cones have the same type if they are in the same

orbit. We may as well identify the set of cone-types with the set of
cones C(x, e) whose vertex is e ∈ G.

From

C(x) = {z ∈ G, d(e, xz) = d(e, x) + d(x, xz)} = x−1C(e, x)

= {z ∈ G, d(x−1, z) = d(x−1, e) + d(e, z)}
= C(x−1, e),

we see that the cone type of x, C(x), is a representative of the cone
type of C(x−1, e), and the latter cone has the same cone type of C(e, x)
(same orbit).

A free group of rank m has 2m + 1 cone types with respect to any
set of free generators. For more general hyperbolic groups we can refer
to a result due to Cannon:

Theorem 2.11 (Theorem 2.18, [BH]). If a group G is hyperbolic, then
it has only finitely many cone types (with respect to any finite generating
set).

Proof. The proof is based on the following result:
Let r ≥ 1 be an integer. Define the r-level of g ∈ G as the set of

elements h satisfying the following

|h| ≤ r and |gh| < |g|.
If the Cayley graph of G is δ-hyperbolic, the constant r = 2δ + 3 is

such that if two elements g1 and g2 have the same r-level, then the two
cone types of g1 and g2 are the same. �

3. An algebraic criterion

In order to determine all the possible cone types in Γg, we shall
establish an algebraic criterion to determine any element’s cone type
(which is equivalent, as shown in the previous section, to determine the
cone type of each cone); this will lead us also to a proof for the well
known fact that there are exactly 8g(2g − 1) cone types in Γg, besides
the cone type of the identity element. As far as we know, no proof of
this fact is available in the literature.
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It is important for us to determine the exact cone types of an element
(and of each successor), in order to encode this informations in a matrix
useful for algorithmic computations.

We focus on Γ2, the general case being similar.
We need first some Lemmas.

Lemma 3.1. If w1w2 . . . wn is a geodesic word where each wi is a
generator, then

C(w1w2 . . . wn) ⊂ C(w2 . . . wn) ⊂ · · · ⊂ C(wn).

Proof. It is sufficient to show the first inclusion.
If z /∈ C(w2 . . . wn), since w2 . . . wn is a geodesic word,

d(e, w2 . . . wnz) < d(e, w2 . . . wn) + |z| = n− 1 + |z|
implies

d(e, w1w2 . . . wnz) ≤ d(e, w1) + d(w1, w1w2 . . . wnz)

= d(e, w1) + d(e, w2 . . . wnz)

< 1 + n− 1 + |z| = d(e, w1w2 . . . wn) + |z|.
Hence z /∈ C(w1w2 . . . wn). �

If we look for a proof of the opposite inclusion, we need to consider
either any cyclic permutation of the relator

[a, b][c, d] = aba−1b−1cdc−1d−1,

or of its inverse. To be short, we say that an element of Γ2 belongs
to R if it is represented by a sub-word of a cyclic permutation of the
relator or of its inverse, or both (for example ba−1b−1c ∈ R while
ba−1b−1a /∈ R). Note that elements in R have length at most 4. Also,
from now on, when considering a geodesic word, say u1u2 . . . un, we
intend that each ui is a generator.

Lemma 3.2. Let u1, . . . , ui be one, two or three generators, so that
i = 1, 2, 3. Let y ∈ Γ2, such that u1 . . . ui ∈ C(y). Assume that for any
geodesic word w1 . . . wJ , such that y = w1 . . . wJ , the (geodesic) word
wJu1 . . . ui does not belong to R. Then:

(1) If z is such that u1 . . . uiz is a geodesic word, then for any geo-
desic w1 . . . wJ such that y = w1 . . . wJ , the word
w1 . . . wJu1 . . . uiz is geodesic, too.

(2) C(u1 . . . ui) ⊂ C(yu1 . . . ui), and so C(u1 . . . ui) = C(yu1 . . . ui).

Proof. The second sentence follows from the first one and Lemma 3.1.
Assume, on the contrary, that there exists a geodesic word w1 . . . wJ =
y such that w1 . . . wJu1 . . . uiz is not a geodesic word. Then it contains
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either couples like ss−1 (s being a generator) or a sequence of (at least)
5 generators in a cyclic permutation of the relator [a, b][c, d] (or its
inverse), or both.

The first case is excluded, since both w1 . . . wJu1 . . . ui and u1 . . . uiz
are geodesic words.

In the second case, since both w1 . . . wJu1 . . . ui and u1 . . . uiz are
geodesic words, and i ≤ 3, we get that the sequence of 5 must contain
wJu1 . . . ui against our assumption.

�

Example 3.3. Applying the Lemma 3.2 to points such as x = bc, we
get C(c) = C(bc).

For points such as x = aba, it yields C(aba) = C(ba). Note that
ba ∈ R and so the procedure stop here.

Consider now points such as x = abcd. In this case neither bcd nor
abcd belong to R so we get

C(abcd) = C(bcd) = C(cd).

The above lemma does not apply to x = dcd−1c−1a−1dc; in this case
note that c−1a−1dc /∈ R but since

x = dcd−1c−1a−1dc = aba−1b−1a−1dc,

and b−1a−1dc ∈ R, the cone type of x is not the same of a−1dc.

Finally we have

Lemma 3.4. Let u1, u2, u3, u4 be four generators, such that u1u2u3u4
is a geodesic word in R.

Let y ∈ Γ2, such that u1u2u3u4 ∈ C(y). We have:

(1) If z is such that u1u2u3u4z is a geodesic word, then for any
geodesic word w1 . . . wJ such that y = w1 . . . wJ , we get that
w1 . . . wJu1u2u3u4z is a geodesic word, too.

(2) C(u1u2u3u4) = C(yu1u2u3u4).
Proof. The second sentence follows from the first one and Lemma 3.1.
Assume, on the contrary, that there exists a geodesic word w1 . . . wJ =
y such that w1 . . . wJu1u2u3u4z is not a geodesic word, then it contains
either couples like ss−1 (s being a generator) or a sequence of (at least)
5 generators in a cyclic permutation of the relator [a, b][c, d] (or its
inverse), or both.
The first case is excluded, since both w1 . . . wJu1u2u3u4 and u1u2u3u4z
are geodesic words.

In the second case, since u1u2u3u4z is a geodesic words, and since
u1u2u3u4 ∈ R, we get that the sequence of 5 must contain wJu1u2u3u4
against the fact that w1 . . . wJu1u2u3u4 is a geodesic word. �
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Example 3.5. Consider again x = dcd−1c−1a−1dc = aba−1b−1a−1dc.
Since b−1a−1dc ∈ R, the cone type of x is the same of b−1a−1dc.

The following lemma states the uniqueness of cone types for elements
in R.

Lemma 3.6. Elements in R (of length at most 4) have distinct cone
types.

Hence, if x, z ∈ R and C(x) = C(y), then x = y.

Proof. For any couple of words x, z ∈ R it is easy to explicitly provide
an element y ∈ C(x) not in C(z) and vice versa. For example b−1a−1d ∈
C(a) while b−1a−1d /∈ C(ba), since bab−1a−1d = cdc−1. �

Lemma 3.7. Let x ∈ Γ2 and u1 . . . u|x| be a geodesic word representing
x. Assume the suffix us = u|x|−2u|x|−1u|x| /∈ R. Then C(x) = C(us).

The same conclusion holds if us = u|x|−1u|x|.

Proof. The proof is an application of Lemma 3.2.
Let up = u1 . . . u|x|−3, and consider a geodesic word y1 . . . y|x|−3 = up.

Note that us ∈ C(up) since u1 . . . u|x| is a geodesic word.
If y|x|−3us ∈ R, then also us ∈ R, which is a contradiction. Hence

y|x|−3us /∈ R, and, by Lemma 3.2, we get C(x) = C(upus) = C(us). �

As a consequence of Lemmas 3.2, 3.4, and 3.6, we have

Proposition 3.8. All the possible cone types of Γ2 (C(e) excluded) are
those determined by geodesic words obtained as sub-words, with length
at most 4, of any cyclic permutation of the relator [a, b][c, d] or of its
inverse [d, c][b, a], adding up to 48.

Proof. The first sentence is a consequence of the previous Lemmas.
The second one is established by looking for words of length at most
4 in any cyclic permutation of either aba−1b−1cdc−1d−1, or its inverse
dcd−1c−1bab−1a−1, and adding up. Precisely we have:

• 8 words of length 1;
• 2(7 + 1) words of length 2, (7 in the relator, 1 in the following

permutation, twice);
• 2(6+1+1) words of length 3, (6 in the relator, 1 in the following

2 permutations, twice);
• (5 + 1 + 1 + 1) words of length 4, (5 in the relator, 1 in the

following 3 permutation, just once, since for the inverse you get
the same words).

Adding up we get 6× 8 = 48. �

The above reasoning can be applied to a generic surface group Γg,
leading to
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Theorem 3.9. All the possible cone types of Γg (C(e) excluded) are
those determined by geodesic words obtained as sub-words, with length
at most 2g, of any cyclic permutation of either [a1, b1] . . . [ag, bg], or its
inverse [bg, ag] . . . [b1, a1], adding up to 8g(2g − 1).

Proof. Looking for words of length at most 2g in any cyclic permutation
of either the relator [a1, b1]. . . [ag, bg] or its inverse [bg, ag]. . .[b1, a1], we
have:

• 4g words of length 1;
• 2((4g−1) + 1) words of length 2, (4g−1 in the relator, 1 in the

following permutation, twice);
• 2((4g − 2) + 1 + 1) words of length 3, (4g − 2 in the relator, 1

in the following 2 permutations, twice);
• . . . . . .
• 2((4g−(2g−2))+(2g−2)) words of length 2g−1, (4g−(2g−2)

in the relator, 1 in the following 2g − 1 permutations, twice);
• ((4g − (2g − 1)) + (2g − 1)) words of length 2g, (4g − (2g − 1)

in the relator, 1 in the following 2g− 1 permutation, just once,
since for the inverse you get the same words).

Adding up we get

4g(1 + 2 + 2 + · · ·+ 2︸ ︷︷ ︸+1) = 4g(2 + 2(2g − 2))

2g − 2

= 8g(1 + 2g − 2) = 8g(2g − 1)

�

4. Cone type of successors

We say, in short, that a cone type of an element of Γ2 is a quadruple,
triple, double, single, if it is one of the 48 cone types defined by elements
in R, of length, respectively 4, 3, 2, 1.

It is convenient to organize the cone types in singles, doubles, triples,
and quadruples. We follow the order shown in Table 1.

We now provide cone types for each successors of the 48 elements in
Table 1. As it will be shown in Proposition 4.2, the list of cone types
of successors depends only on the cone type.

• We start with the generator a. Successors of a are

aa, ad, ac−1, ad−1, ac, ab, ab−1,

and we need to find the cone type of the first 5 only, since they
are not in R.
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Table 1. Cone types in Γ2.

singles doubles triples quadruples
1 b−1 9 b−1c 25 b−1cd 41 b−1cdc−1

2 a 10 b−1a−1 26 b−1a−1d 42 aba−1b−1

3 d 11 ab 27 aba−1 43 dc−1d−1a
4 c−1 12 ab−1 28 ab−1a−1 44 c−1d−1ab
5 d−1 13 dc−1 29 dc−1d−1 45 d−1aba−1

6 c 14 dc 30 dcd−1 46 cdc−1d−1

7 b 15 c−1d−1 31 c−1d−1a 47 ba−1b−1c
8 a−1 16 c−1b 32 c−1ba 48 a−1b−1cd

17 d−1a 33 d−1ab
18 d−1c−1 34 d−1c−1b
19 cd 35 cdc−1

20 cd−1 36 cd−1c−1

21 ba−1 37 ba−1b−1

22 ba 38 bab−1

23 a−1b−1 39 a−1b−1c
24 a−1d 40 a−1dc

We note that for each u = a, d, c−1, d−1, c, the geodesic word
au /∈ R. Hence by Lemma 3.2 we get that C(au) = C(u). The
same argument works for any of

b, c, d, a−1, b−1, c−1, d−1,

and we observe that successors of singles are either singles or
doubles.
• We consider ab. Successors of ab are

aba, abd, abc−1, abd−1, abc, abb, aba−1,

and we have to find the cone type of the first 6 only, since the
last one determines a cone type by itself.

Note that for each u = d, c−1, d−1, c, b, both the geodesic
words abu, and bu, are not in R. Hence by Lemma 3.2 applied
twice, we get that C(abu) = C(bu) = C(u).

On the other hand, aba /∈ R, while ba ∈ R. So we conclude
that C(aba) = C(ba). The same argument works for any double
listed in Table 1, and we observe that successors of doubles can
be singles, doubles or triples.
• Consider now aba−1. Successors of aba−1 are

aba−1d, aba−1c−1, aba−1d−1, aba−1c, aba−1b, aba−1a−1, aba−1b−1
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and we have to find the cone type of the first 6 only.
For each u = c−1, d−1, c, b, a−1, both geodesic words ba−1u,

and a−1u, are not in R. Hence by Lemma 3.2 we get that

C(aba−1u) = C(ba−1u) = C(a−1u) = C(u).

On the other hand, ba−1d /∈ R, while a−1d ∈ R. So we
conclude that

C(aba−1d) = C(ba−1d) = C(a−1d).

The same argument works for any of the triples listed in Table
1, and we observe that successors of triples are singles, doubles
or quadruples.
• Finally let us consider aba−1b−1 = dcd−1c−1. Successors of
aba−1b−1 are

aba−1b−1a, aba−1b−1d, aba−1b−1c−1,
aba−1b−1d−1, aba−1b−1a−1, aba−1b−1b−1.

Note that for u = d, c−1, a, b−1, all geodesic words ba−1b−1u,
a−1b−1u, and b−1u are not in R. Hence by Lemma 3.2, we get
that C(aba−1b−1u) = C(u).

On the other hand, ba−1b−1a−1, and a−1b−1a−1 are not in R,
while b−1a−1 is. So we conclude that

C(ba−1b−1a−1) = C(a−1b−1a−1) = C(b−1a−1).
Similarly ba−1b−1d−1 = cd−1c−1d−1, and d−1c−1d−1 are not in
R, while c−1d−1 is. So we conclude that

C(ba−1b−1d−1) = C(d−1c−1d−1) = C(c−1d−1).
The same argument above works for every quadruple listed in
Table 1, and we observe that successors of quadruple are either
singles or doubles.

Lemma 4.1. If the cone type of x ∈ Γ2 is C(z) where z ∈ R, then
there exists a geodesic word u1u2 . . . u|x|−|z|+1 . . . u|x| which represents x,
ending with z (i.e. u|x|−|z|+1 . . . u|x| = z), and such that u|x|−|z|z /∈ R.

Proof. We first show that there exists a geodesic word u1 . . . u|x| which
represents x and ends with z.

For any geodesic word x1 . . . xJ which represents x let us denote by
sx,k = xJ−k+1 . . . xJ , 1 ≤ k ≤ 4 the longest suffix which belongs to R.

Let n = |z|, 1 ≤ n ≤ 4, and, say, z = z1 . . . zn.
Now assume, on the contrary, that any geodesic word which repre-

sents x does not end with z. Then for any geodesic word x1 . . . xJ such
that x = x1 . . . xJ we have xJ−n+1 . . . xJ 6= z1 . . . zn.
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If for some representation we have k = 4, then the cone type of x is
C(sx,4) by Lemma 3.4, and by uniqueness of cone type we must have
z = sx,4 which is a contradiction.

Hence for all other representations of x we have k < 4. Let’s take one
with the longest suffix sx,k ∈ C(x1 . . . xJ−k) (it exists since otherwise
we find a shorter geodesic representing x).

If for any geodesic word y1 . . . yJ−k which represents x1 . . . xJ−k we
have that yJ−ksx,k /∈ R , then by Lemma 3.2,

C(z) = C(x) = C(x1 . . . xJ−ksx,k) = C(sx,k),
and again, by uniqueness, z = sx,k, a contradiction.

So there exists a geodesic word y1 . . . yJ−k representing x1 . . . xJ−k
and yJ−ksx,k ∈ R. Thus we have found a representation of x =
y1 . . . yJ−ksx,k, where the suffix yJ−ksx,k ∈ R is longer then sx,k, yielding
again a contradiction. This complete the first part of the proof.

Next, given a geodesic word u1u2 . . . u|x|−|z|z which represents x we
can exclude u|x|−|z|z ∈ R if z is a quadruple, since the word is geodesic.
In all other cases we have, by Lemma 3.1,

C(z) = C(x) ⊂ C(u|x|−|z|z) ⊂ C(z),

and so, by Lemma 3.6, we get u|x|−|z|z /∈ R.
�

Proposition 4.2. If x, z ∈ Γ2, z ∈ R, and C(x) = C(z), then the cone
type of any of the successors of x is the same as the cone type of the
successor of z corresponding to the same generator.

Proof. By Lemma 4.1 there exists a geodesic word which represents x,
say u1u2 . . . u|x|−|z|+1 . . . u|x|, ending with z (i.e. u|x|−|z|+1 . . . u|x| = z),
and such that u|x|−|z|z /∈ R.

Let us consider a successor y of x. We have y = xa, with a ∈ A∩C(x)
and d(e, xa) = d(e, x) + 1, yielding a ∈ C(z), and, by definition of cone
type, d(e, za) = d(e, z) + d(e, a) = d(e, z) + 1. Hence za is a successor
of z.

Also a ∈ C(x) implies that u1u2 . . . u|x|−|z|za is a geodesic word rep-
resenting xa.

If za ∈ R is a quadruple, by Lemma 3.4 this yields C(xa) = C(za).
If za ∈ R and |za| ≤ 3, let y = u1u2 . . . u|x|−|z| and consider a

geodesic word v1v2 . . . v|x|−|z| = y.
Note that za ∈ C(y) so that v1v2 . . . v|x|−|z|za is geodesic.
If v|x|−|z|za ∈ R then, also, v|x|−|z|z ∈ R and, by Lemmas 3.2, and

3.1,

C(v|x|−|z|z) ⊂ C(z) = C(x) ⊂ C(v|x|−|z|z).
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It follows C(v|x|−|z|z) = C(z), and by uniqueness of cone types we
have v|x|−|z|z = z and so the contradiction v|x|−|z| = e.

Hence v|x|−|z|za /∈ R, and by Lemma 3.2

C(xa) = C(yza) = C(za).

So it remain to consider the case za /∈ R.
If za /∈ R and |za| ≤ 3, we apply Lemma 3.7 to obtain C(xa) =
C(za).

If za /∈ R and |za| = 4, then |z| = 3, and the cone type of z = z1z2z3,
is a triple. Also, by Lemma 3.2 applied to y = z1, C(za)C(z2z3a).

Since the cone type of a successor of a triple can only be a single,
double, or quadruple, it follows z2z3a 6 inR.

Therefore we have by Lemma 3.7,

C(xa) = C(z2z3a) = C(za).

The same reasoning apply for za /∈ R and |za| = 5, recalling that
quadruples do not have triples and quadruples as successors.

If za /∈ R and |za| = 5, then |z| = 4, and the cone type of z =
z1z2z3z4, is a quadruple. Since the cone type of a successor of a quadru-
ple can only be either a single or a double, it follows z2z3z4a 6 inR,
(otherwise, by Lemma 3.4, C(za)C(z1z3z4a)).

Hence, by Lemma 3.2 applied to y = z1z2, C(za)C(z3z4a).
Since the cone type of a successor of a quadruple can only be either

a single or a double, it follows z3z4a 6 inR.
Therefore we have by Lemma 3.7,

C(xa) = C(z3z4a) = C(za),

and the proof is complete. �

5. Matrix of cone types

Based on the discussion preceding Lemma 4.1, and Proposition 4.2
we can now construct a matrix, indexed by cone types, in which any
column gives the cone type of any successor of the element whose cone
type indexes the column. We work in the surface group of genus two,
so we are speaking about a 48 × 48 matrix. We think it is better to
provide the matrix as a block matrix. As we shall see, the matrix is
sparse. It should be mentioned that any order of cone types indexing
its columns (and corresponding rows) gives a similar matrix, hence we
follow the order provided in Table 1.

Next we list the 16 blocks, Mi,j, i, j = 1, . . . , 4, of the main matrix
M . Note that indexes i, j refer to single, doubles, etc... for example,
indexes M1,4 means that rows are indexed by singles, and columns by
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quadruples. We set 0 whenever Mi,j is the zero matrix, and I for the
identity matrix.

(5.1) M =


M1,1 M1,2 M1,3 M1,4

M2,1 M2,2 M2,3 M2,4

0 I 0 0
0 0 M4,3 0

 .

The first block is an 8× 8 matrix

M1,1 =



1 0 1 1 1 1 0 0
1 1 1 1 0 1 0 0
1 1 1 1 0 0 1 0
1 1 0 1 0 0 1 1
1 1 0 0 1 0 1 1
0 1 0 0 1 1 1 1
0 0 1 0 1 1 1 1
0 0 1 1 1 1 0 1


.

In the same column it follows a 16× 8 matrix

M2,1 =



1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1



,

In the second column, first row, we have
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M1,2 =



1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 1
1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1
0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1
0 1 1 1 1 0 0 1 1 1 0 0 1 1 1 0
0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0
1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0
1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1
1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1


,

and then, in the same column,

M2,2 =



0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0



.

In the third column, we have

M1,3 =



1 1 0 0 1 1 0 0 0 0 1 1 1 1 1 1
1 1 0 0 0 0 1 1 0 0 1 1 1 1 1 1
1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0
0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 0
0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1
1 1 1 1 1 1 0 0 1 1 0 0 0 0 1 1
1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1


.
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M2,3 =



0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0



.

M4,3 =



1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0


.

Finally in the last column we have

M1,4 =



1 1 0 0 0 0 1 1
1 1 1 0 0 0 0 1
1 1 1 1 0 0 0 0
0 1 1 1 1 0 0 0
0 0 1 1 1 1 0 0
0 0 0 1 1 1 1 0
0 0 0 0 1 1 1 1
1 0 0 0 0 1 1 1


.
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M2,4 =



0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0



.

Definition 5.1. A square non-negative matrix T is said to be primitive
if there exists a positive integer k such that T k > 0.

Proposition 5.2. The matrix M is a primitive matrix.

Proof. A direct computation shows that M5 > 0.
More precisely, all elements in the first 8 rows of M2 are strictly

positive, and the same for the first 16 rows of M3, the first 32 rows of
M4, and all rows in M5. �

As a consequence, by Perron-Frobenius Theorem [S, Theorem 1.1],
we obtain the following

Proposition 5.3. There exists an eigenvalue r of M such that:

1) r is real, and r > 0;
2) r is associated to strictly positive left and right eigenvectors;
3) r > |λ| for any eigenvalue λ 6= r;
4) The eigenvectors associated with r are unique up to constant

multiples;
5) r is a simple root of the characteristic equation of T.

6. Elementary multiplicative functions

In this section we recall the definition of vector-valued elementary
multiplicative functions on Γ2, by Kuhn and Steger, and we show how
they can be easily computed by means of the matrix of cone types.
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To set the vectorial context we need to define maps between finite
dimensional vector spaces indexed by cone types. In this section we
use letters as a, b, . . . to denote arbitrary generators, not to be confused
with the set of generators provided in (2.1).

We consider triples (a, c′, c), where c, c′ are cone types, and a ∈ A.
We call a triple admissible if, given c = C(z) for some z ∈ Γ2, we have
a ∈ A ∩ C(z), (so that if z is represented by a geodesic word u, then
ua is also a geodesic) and c′ = C(za), i.e. c′ is the cone-type of the
a-successor of z.

A matrix system (system in short) (Vc, Ha,c′,c) consists of finite di-
mensional complex vector spaces Vc, for each cone-type c, and linear
maps Ha,c′,c : Vc → Vc′ for each admissible triple (a, c′, c). For non-
admissible triples (a, c′, c) we set Ha,c′,c = 0.

Definition 6.1. For x, y ∈ G, consider the cone C(x, y) with cone-type
c = C(x−1y), vc ∈ Vc.

The elementary multiplicative function µ[C(x, y), vc] is defined as

µ[C(x, y), vc](z) =



0, z /∈ C(x, y),

vc, z = y,∑
a∈A

ya∈C(x,y)
c′=C(x−1ya)

µ[C(x, ya), Ha,c′,c(vc)](z), z 6= y.

Note that the action of Γ2 on cones by translation (see Definition
2.10), γC(x, y) = C(γx, γy), γ ∈ Γ2, implies

(6.1) µ[C(x, y), vc](γ
−1z) = µ[C(γx, γy), vc](z).

The recursive definition yields an equivalent definition of elementary
multiplicative function in terms of geodesics between two vertices.

Note that any geodesic between two vertices has the same length.
Also, since Γ2 is hyperbolic, the number of geodesics between two fixed
vertices is finite.

We recall that elements of R are geodesic sub-word of a cyclic per-
mutation of the fundamental relation [a, b][c, d] = e or of its inverse
[d, c][b, a] = e.

Consider any geodesic word representing y ∈ G, say y = w1 . . . wn,
wi ∈ A, and the set of all geodesic quadruples in w1w2 . . . wn which
belong to R.

Definition 6.2. For y ∈ G, Ry is defined as the set of all geodesic
quadruples, in any geodesic word representing y, which belong to R,
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i.e.

Ry = {wiwi+1wi+2wi+3 ∈ R,
for all geodesic wordsw1w2 . . . wn = y, wi ∈ A} .

If q ∈ Ry, the quadruple q′ is called the twin of q if q = q′ represents
the same group element, but q 6= q′ as a geodesic path in the Caley
graph (q′ always exists).

Note that if q ∈ Ry, and q′ is the twin of q, then also q′ ∈ Ry. Also
Ry = ∅ means that, if y ∈ C(e, a), for a given a ∈ A, there is only one
geodesic from e to y passing through a.

Remark 6.3. If a given geodesic word contains more then one quadru-
ple in Ry, then they can have at most one element in common, since
any two octagons have at most one edge in common. One such example
is:

y = (aba−1b−1)a−1dc = (dcd−1c−1)a−1dc = aba−1(a−1b−1cd).

Also note that the replacement of a quadruple q by its twin q′ = q can
change the number of quadruples in Ry.

In the example above, aba−1b−1a−1dc contains 2 quadruples: q1 =
aba−1b−1 and q2 = b−1a−1dc, but if we replace q1 with q′1 = q1 then the
number of quadruples drops to 1. This reflects the number of different
geodesic paths from e to y.

Hence it is necessary to introduce a notation which takes into account
the several occurrences of quadruples.

Notation 6.4. The notation follows a hierarchical dyadic approach.
Since both the number of geodesic words representing y and the

number of generators is finite, the first quadruple in Ry can be defined
as follows. First let us fix an order on generators and on its inverses.

Let i = 1, . . . , n, be the smallest index such that y = w1w2 . . . wn,
wiwi+1wi+2wi+3 ∈ Ry, and wi is the smallest in the given order on
generators.

We set w0,j = wj, for j = i, . . . , i+3 and we define the first quadruple
in Ry as q0 = w0,iw0,i+1w0,i+2w0,i+3; its twin in Ry is denoted by q1 =
w1,iw1,i+1w1,i+2w1,i+3. Hence q0 = q1 as a geodesic word, but q0 6= q1
as a geodesic path.

If we set δi = 0, 1, at the nth stage q(δ1,...,δn−1,0) denotes the next
quadruple in Ry after q(δ1,...,δn−1), while q(δ1,...,δn−1,1) denotes the twin of
q(δ1,...,δn−1,0).

In the example above, ordering as in Table 1,

b−1 < a < d < c−1 < d−1 < c < b < a−1,
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we have

y = (aba−1b−1)a−1dc = (dcd−1c−1)a−1dc = aba−1(a−1b−1cd).

q0 = aba−1b−1, q1 = dcd−1c−1

q(0,0) = b−1a−1dc, q(0,1) = a−1b−1cd.

Finally, we shall use the notation δ = (δ1, . . . , δn), and qδ for short;
if δ = (δ1, . . . , δn−1, 0), and

qδ = wδ1,...,δn−1,0,iwδ1,...,δn−1,0,i+1wδ1,...,δn−1,0,i+2wδ1,...,δn−1,0,i+3,

then we shall indicate its twin by setting δ′ = (δ1, . . . , δn−1, 1), and

qδ′ = wδ1,...,δn−1,1,i . . . wδ1,...,δn−1,1,i+3.

If there is no confusion, we shall omit δ at all.

The following lemmas will be crucial for an alternative expression of
elementary multiplicative functions.

Lemma 6.5. Let x, y ∈ G be such that Ry 6= ∅, and y ∈ C(x).
Let i = 1, . . . , n, be the smallest index such that y = w1w2 . . . wn,

and wiwi+1wi+2wi+3 ∈ Ry. Denote it by w0,iw0,i+1w0,i+2w0,i+3, and its
twin by w1,iw1,i+1w1,i+2w1,i+3.

Let q0 be the first quadruple in Ry, say y = w1w2 . . . wn and q0 =
w0,iw0,i+1w0,i+2w0,i+3.

Let a ∈ A ∩ C(x).

If i = 1, then

xy ∈ C(e, xa)⇔ either w0,1 = w1 = a, or w1,1 = a;

If i > 1, then

xy ∈ C(e, xa)⇔ w1 = a.

Proof. First note that xy ∈ C(e, xa) means

d(e, xy) = d(e, xa) + d(xa, xy) = d(e, xa) + d(a, w1w2 . . . wn).

Since y ∈ C(x), and a ∈ C(x), the latter is equivalent to

|x|+ n = |x|+ 1 + d(a, w1w2 . . . wn).

Therefore xy ∈ C(e, xa) is equivalent to

(6.2) n− 1 = d(a, w1w2 . . . wn) = d(e, a−1w1w2 . . . wn).

If i = 1, and a−1w1 6= e, then (6.2) implies a−1w1w2w3w4 ∈ R and it
equals a geodesic word of length 3. The latter implies also w1w2w3w4 ∈
R. Being

w1w2w3w4 = w0,1w0,2w0,3w0,4 = w1,1w1,2w1,3w1,4,
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then

a−1w1w2w3w4 = a−1w1,1w1,2w1,3w1,4,

and both are equal to a geodesic word of length 3, hence necessarily
a−1w1,1 = e.

If i > 1, then w1w2w3w4 /∈ R. Hence (6.2) implies a−1w1 = e.
The reversed implications are immediate. �

A similar reasoning leads to the following lemma.

Lemma 6.6. Let x, y ∈ G, such that Ry = ∅, and y ∈ C(x).
Let a ∈ A ∩ C(x). Then, if w1w2 . . . wn is the (only) geodesic word

representing y, we have

xy ∈ C(e, xa)⇔ w1 = a.

In the following, the value of an elementary multiplicative function
µ[C(e, b), v] in z ∈ C(e, b) is obtained as a (finite) sum over all geodesic
paths from b to z.

Proposition 6.7. Let b ∈ A, c0 = C(b), and vc0 ∈ Vc0 . Then, for
z ∈ C(e, b), z 6= b, we have

µ[C(e, b), vc0 ](z) =
∑

geodesic wordsw1w2...wn
b−1z=w1w2...wn

[
n∏
j=1

Hwj ,cj ,cj−1

]
(vc0),

with notation c0 = C(b), cj = C(bw1 . . . wj), and

n∏
j=1

Hwj ,cj ,cj−1
= Hwn,cn,cn−1Hwn−1,cn−1,cn−2 . . . Hw1,c1,c0 .

Proof. Since z ∈ C(e, b), z 6= b, then d(e, z) = d(e, b) + d(b, z) and we
can write b−1z = w1w2 . . . wn, where w1w2 . . . wn is a geodesic word,
n = |z| − 1. Set y = b−1z.

We have either Ry = ∅, or Ry 6= ∅.
In the first case, w1w2 . . . wn is the only geodesic word representing

y, hence by Definition 6.1 and Lemma 6.6 applied to x = b,

µ[C(e, b), vc0 ](z) =
∑
b′∈A

bb′∈C(e,b)
c′=C(bb′)

µ[C(e, bb′), Hb′,c′,c0(vc0)](z)

= µ[C(e, bw1), Hw1,c1,c0(vc0)](bw1 . . . wn)
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where c0 = C(b), c1 = C(bw1), since all other instances are null. A
repeated application of Lemma 6.6 yields

µ[C(e, b), vc0 ](bw1 . . . wn)

= µ[C(e, bw1 . . . wn), Hwn,cn,cn−1 . . . Hw1,c1,c0(vc0)](bw1 . . . wn)

= Hwn,cn,cn−1 . . . Hw1,c1,c0(vc0),

as desired.
If Ry 6= ∅, instead, we consider the first quadruple q0 ∈ Ry, and its

twin q1,

q0 = w0,i0 . . . w0,i0+3 = w1,i1 . . . w1,i1+3 = q1.

We consider the quadruple next to q0, if any, and its twin, say

q(0,0) = w(0,0),i(0,0) . . . w(0,0),i(0,0)+3 = w(0,1),i(0,1) . . . w(0,1),i(0,1)+3 = q(0,1),

where i0 + 2 < i(0,0) and i0 + 3 ≤ i(0,0).
Similarly for q1, if any, say

q(1,0) = w(1,0),i(1,0) . . . w(1,0),i(1,0)+3 = w(1,1),i(1,1) . . . w(1,1),i(1,1)+3 = q(1,1),

with i1 + 3 ≤ i(1,0), and so on so forth...
Consider q0. Lemma 6.5 implies

µ[C(e, b), vc0 ](z) =
∑
b′∈A

bb′∈C(e,b)
c′=C(bb′)

µ[C(e, bb′), Hb′,c′,c0(vc0)](z)

=



µ[C(e, bw0,1), Hw0,1,c0,1,c0(vc0)](bw1 . . . w4 . . . wn)

+µ[C(e, bw1,1), Hw1,1,c1,1,c0(vc0)](bw1,1 . . . w1,4 . . . wn),
if i0 = 1,

µ[C(e, bw1), Hw1,c1,c0(vc0)](bw1 . . . w4 . . . wn), if i0 > 1.

where, in the i0 = 1 case, w0,1 = w1, c1 = c0,1 = C(bw0,1), and c1,1 =
C(bw1,1).

Since the subsequent quadruple, if any, has in common with the
previous one at most one element (either w4 or w1,4), see Remark 6.3,
by Lemma 6.5, with obvious meaning of symbols, we get in the i0 = 1
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case (if there is no subsequent quadruple, we set i(δj ,0) = n+ 1)

µ[C(e, b), vc0 ](z)

= µ[C(e, bw0,1w0,2w0,3), Hw0,3,c0,3,c0,2 . . . Hw0,1,c0,1,c0(vc0)](bw1 . . . wn)

+ µ[C(e, bw1,1w1,2w1,3), Hw1,3,c1,3,c1,2 . . . Hw1,1,c1,1,c0(vc0)](bw1,1 . . . wn)

= . . .

= µ[C(e, bw0,1 . . . wi(0,0)−1), Hwi(0,0)−1,ci(0,0)−1,ci(0,0)−2
. . .

. . . Hw0,3,c0,3,c0,2 . . . Hw0,1,c0,1,c0(vc0)](bw1 . . . wi(0,0)−1 . . . wn)

+ µ[C(e, bw1,1 . . . wi(1,0)−1), Hwi(1,0)−1,ci(1,0)−1,ci(1,0)−2
. . .

. . . Hw1,3,c1,3,c1,2 . . . Hw1,1,c1,1,c0(vc0)](bw1,1 . . . wi(1,0)−1 . . . wn),

while, if i0 > 1, we get

µ[C(e, b), vc0 ](z)

= µ[C(e, bw1 . . . wi0−1), Hwi0−1,ci0−1,ci0−2
. . . Hw1,c1,c0(vc0)](bw1 . . . wn).

We apply Lemma 6.5 recursively to any summand so generated, for
any subsequent quadruple and corresponding twin which contribute to
a different way of writing y as a geodesic word.

After a finite number of steps,we get

µ[C(e, b), vc0 ](z)

=
∑

geodesic words bw1w2...wn
such that z=bw1w2...wn

µ[C(e, bw1 . . . wn), Hwn,cn,cn−1 . . .

. . . Hw1,c1,c0(vc0)](bw1 . . . wn)

=
∑

geodesic wordsw1w2...wn
such that b−1z=w1w2...wn

[
n∏
j=1

Hwj ,cj ,cj−1

]
(vc0).

�

We provide now a realization of elementary multiplicative functions
in terms of the matrix of cone types M . The key point is that any
admissible triple (a, c′, c) is independent from a.

Proposition 6.8. Let x, y ∈ Γ2 such that C(x) = C(y). Let a ∈
A ∩ C(x) and b ∈ A ∩ C(y). If C(xa) = C(yb) then a = b.
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As a consequence, if triples (a, c′, c), (b, c′, c) are admissible, then
a = b (and we can simply write (c′, c)).

Proof. There exists z ∈ R such that C(x) = C(y) = C(z). By Proposi-
tion 4.2, we get

C(za) = C(xa) = C(yb) = C(zb),
where a, b ∈ A ∩ C(z). By results of Section 4 we know that different
successors of z ∈ R have different cone types, yielding za = zb and so
a = b. �

Let us consider the scalar case, first, where any matrix system is as
follows: Vc = C, for each cone type c, and, for any admissible triple
(a, c′, c), Ha,c′,c is multiplication by a non-zero complex number, while
Ha,c′,c = 0 otherwise. Let M = (mc′,c) be the matrix (5.1), indexed by
cone types.

We note that, for any couple of cone types c′, c and for any a ∈
A, mc′,cHa,c′,c = Ha,c′,c, and the latter is non-zero only for admissible
triples. Hence, by Proposition 6.8, we can set Hc′,c = mc′,cHa,c′,c and
consider a new matrix N = (Hc′,c), with non-zero entries in the same
positions as M .

Also, for any cone type c, let Vc = (0 . . . 1 . . . 0) be the vector with 1
at the c-position, and Ec = V >c Vc be the 48× 48 matrix whose entries
are all null except the (c, c) diagonal element (equal to 1).

Corollary 6.9 (Scalar case). Let b ∈ A, c0 = C(b), and v ∈ C. Then,
for z ∈ C(e, b), z 6= b, we have

µ[C(e, b), v](z) =
∑

geodesic wordsw1w2...wn
b−1z=w1w2...wn

[
n∏
j=1

Hcj ,cj−1

]
v

= VcnN

 ∑
geodesic wordsw1w2...wn

b−1z=w1w2...wn

Ecn−1NEcn−2 . . . NEc1

NV >c0 v,
with notation c0 = C(b), cj = C(bw1 . . . wj), cn = C(z).

Proof. It is easy to see that, for any triple (a, c′, c),

Vc′NV
>
c = (0 . . . 1 . . . 0)N


0
...
1
...
0

 = Hc′,c,
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and that the latter is Ha,c′,c if the triple is admissible, and 0 otherwise.
�

Also, by (6.1) we get a similar result for cones like C(b, e).

Proposition 6.10. Let b ∈ A, c0 = C(b−1), and vc0 ∈ Vc0 . Then, for
z ∈ C(b, e), z 6= e, we have

µ[C(b, e), vc0 ](z) =
∑

geodesic wordsw1w2...wn
z=w1w2...wn

[
n∏
j=1

Hwj ,cj ,cj−1

]
(vc0),

where c0 = C(b−1), cj = C(b−1w1 . . . wj), and
n∏
j=1

Hwj ,cj ,cj−1
= Hwn,cn,cn−1Hwn−1,cn−1,cn−2 . . . Hw1,c1,c0 .

In the scalar case, with notation as in Corollary 6.9

µ[C(b, e), v](z) =
∑

geodesic wordsw1w2...wn
z=w1w2...wn

[
n∏
j=1

Hcj ,cj−1

]
v

= VcnN

 ∑
geodesic wordsw1w2...wn

z=w1w2...wn

Ecn−1NEcn−2 . . . NEc1

NV >c0 v,
with notation c0 = C(b−1), cj = C(b−1w1 . . . wj), cn = C(b−1z).

Proof. Since b−1z 6= b−1, and b−1z ∈ C(e, b−1), by (6.1) and Proposition
6.7

µ[C(b, e), vc0 ](z) = µ[C(e, b−1), vc0 ](b−1z)

=
∑

geodesic wordsw1w2...wn
z=w1w2...wn

[
n∏
j=1

Hwj ,cj ,cj−1

]
(vc0),

where c0 = C(b−1), cj = C(b−1w1 . . . wj), cn = C(b−1z) and
n∏
j=1

Hwj ,cj ,cj−1
= Hwn,cn,cn−1Hwn−1,cn−1,cn−2 . . . Hw1,c1,c0 .

�

The vector case follows naturally. Let dc be the dimension of the
(finite dimension) vector space Vc. Ha,c′,c can be identified with a dc′×dc
matrix, and Ha,c′,c = 0 for non-admissible triples. Let d =

∑
c dc.
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As before, for any couple of cone types c′, c and for any a ∈ A,
multiplication by the scalar mc′,c yields mc′,cHa,c′,c = Ha,c′,c, and the
latter is zero for non-admissible triples. Hence, by Proposition 6.8, we
can set Hc′,c = mc′,cHa,c′,c and define a (block) d×d matrixN = (Hc′,c).

Also, let Vc = (0 . . . I . . . 0) be the block matrix with the identity
matrix I at the dc-position, and Ec = V>c Vc be the d× d block matrix
whose entries are all null except the (dc, dc) diagonal element (equal to
I).

Corollary 6.11 (Vector case). Let b ∈ A, c0 = C(b), and v ∈ Vc0 .
Then, for z ∈ C(e, b), z 6= b, we have

µ[C(e, b), v](z) =VcnN

 ∑
geodesic wordsw1w2...wn

b−1z=w1w2...wn

Ecn−1NEcn−2 . . .NEc1

NV>c0v,
with notation c0 = C(b), cj = C(bw1 . . . wj), cn = C(z).

Proposition 6.10 extends similarly.
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