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We investigate origins of predictive one-zero neutrino mass textures in a systematic way. Here, we search
Abelian continuous(discrete) global symmetries, and non-Abelian discrete symmetries, and show how to
realize these neutrino masses. We then propose a concrete model involving a dark matter candidate and an
extra gauge boson and show their phenomenologies.
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I. INTRODUCTION

One of the most important issues in particle physics is to
solve the mystery of the flavor structure of quarks and
leptons, such as the generation number, mass hierarchy,
mixing angles, and CP phases. Indeed, a huge number of
studies have been done using various approaches. The
texture ansatz is one of the interesting approaches. (See, for
a review, e.g., [1].) By assuming a certain mass texture, one
can derive several predictions among masses and mixing
angles as well as CP phases.
The experimental data on the neutrino sector have

become more precise through neutrino oscillation experi-
ments, although there remain unknown aspects of the
neutrino sector, e.g., the absolute values of neutrino masses
and the question of whether neutrinos are Majorana or
Dirac fermions. Thus, it would be interesting to apply the
texture ansatz to the lepton sector. Actually, a lot of authors
have historically been analyzing neutrino mass textures in
various setups. For example, it is known that only seven
neutrino mass patterns (two-zero textures) can predict
neutrino oscillation data without conflict of current neu-
trino oscillation data [2] in the case where neutrinos are
Majorana fermions with rank-three mass matrix [3].
Recently, type-I seesaw models with maximally res-

tricted texture zeros have been systematically classified and
analyzed numerically in Refs. [4,5], where charged-lepton
mass matrix is assumed to be diagonal and only two

families of right-handed neutrinos have Dirac mass terms
with three active neutrinos. Then, the active neutrino mass
matrix has one texture zero, and obviously one of active
neutrinos is massless. Such patterns with one texture zero
lead to several interesting predictions among neutrino
masses and mixing angles. Indeed, such predictions for
the normal hierarchy are not compatible with the exper-
imental data. Also, some of patterns with one texture zero
for the inverted hierarchy are already ruled out by experi-
ments, while others are compatible.
Although the texture ansatz is quite interesting as

mentioned above, it is unclear why such a pattern of mass
matrix is realized. Our purpose is to explore origins of the
neutrino mass textures obtained in Refs. [4,5]. In this paper,
in order to realize those textures, we apply flavor sym-
metries such as global Uð1Þ symmetries, discrete Abelian
symmetries ZN , and non-Abelian discrete symmetries. The
flavor symmetries provide a hint to explore the underlying
theory beyond the standard model (SM).
Indeed non-Abelian discrete flavor symmetries have

been studied by a lot of authors in order to realize the
lepton masses and mixing angles as well as the CP phases.
(See, for review, Refs. [6–8].) Furthermore, it has been
shown that some non-Abelian discrete flavor symmetries
appear in superstring theory with certain compactifications.
Heterotic string theory on toroidal ZN orbifolds can lead
non-Abelian flavor symmetries, e.g., D4, and Δð54Þ [9].
(See also [10,11].)1 Similarly flavor symmetries can be
realized in magnetized D-brane models and intersecting
D-brane models within the framework of type II superstring
theory [13,14]. In addition, these flavor symmetries may be
subgroups of the modular symmetry in superstring theory
[15]. Thus, flavor symmetry would make a bridge between
the neutrino physics and underlying high energy physics.

*kobayashi@particle.sci.hokudai.ac.jp
†nomura@kias.re.kr
‡hiroshi.okada@apctp.org

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.
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The minimal non-Abelian discrete symmetry is S3 and
the next one is D4. Thus, in this paper we consider these S3
andD4 flavor symmetries as well as global Uð1Þ symmetry
to realize the neutrino mass textures obtained in Refs. [4,5].
We will show that one can realize the desired textures by
the D4 flavor symmetry and Uð1Þ symmetry, but not by the
S3 flavor symmetries. Also it will be found that the Uð1Þ
models need more Higgs fields than the D4 flavor models.
Then, we study the D4 flavor model by using a concrete
model.2

This paper is organized as follows. In Sec. II, we give a
brief review on the neutrino mass textures classified in
Refs. [4,5]. In Sec. III, we study their realization by applying
Abelian symmetries and non-Abelian discrete symmetries.
In Sec. IV, we propose a concrete model, in which we
formulate the boson sector, fermion sector, and dark matter
sector (DM), and analyze collider physics based on an
additional gauge symmetry. Then we discuss the DM
candidate. Finally we conclude and discuss in Sec. V.

II. NEUTRINO MASS TEXTURES

In this section, we review the neutrino mass textures
obtained in Refs. [4,5]. We consider the flavor basis, where
charged lepton mass matrix is diagonal. Also we study the
models, that only two families of right-handed neutrinos
have Dirac mass terms with three families of left-handed
neutrinos.
Active neutrino mass matrix is supposed to be induced

from canonical mechanism; mν ≈mDM−1
N mT

D after the
spontaneously electroweak symmetry breaking. Here, mD
is (3 × 2) Dirac mass matrix and MN is (2 × 2) Majorana
mass matrix that come from the following Lagrangian;
yDij

L̄Li
H̃SMNRj

þMNij
N̄c

Ri
NRj

, where H̃SM ≡ ðiσ2ÞH�
SM

with the second Pauli matrix σ2, HSM is the SM Higgs,
and NR are right-handed neutrinos. Then the neutrino mass
matrix can be diagonalized by an unitary matrix UPMNS as

UT
PMNSmνUPMNS ¼ diagðm1; m2; m3Þ; ð2:1Þ

UPMNS ¼

2
64

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

3
75
2
64
1 0 0

0 eiα=2 0

0 0 1

3
75; ð2:2Þ

wherem1;2;3 are neutrinomass eigenvalues, which are positive real, cðsÞ12;13;23 ≡ cosðsinÞθ12;13;23 are the threemixing angles,
δ is the DiracCP phase, and α is theMajorana phase. Note here that there exists only oneMajorana phase due to reducedMN .
For the Dirac mass matrixmD, the maximally allowed number of texture zeros is one or two. Then, such matricesmD are

classified as [4]

T1∶

2
64
0 ×

× 0

× ×

3
75; T2∶

2
64
0 ×

× ×

× 0

3
75; T3∶

2
64
× ×

0 ×

× 0

3
75; U1∶

2
64
× ×

0 ×

× ×

3
75; U2∶

2
64
× ×

× ×

0 ×

3
75;

T4∶

2
64
× 0

0 ×

× ×

3
75; T5∶

2
64
× 0

× ×

0 ×

3
75; T6∶

2
64
× ×

× 0

0 ×

3
75; U3∶

2
64
× ×

× 0

× ×

3
75; U4∶

2
64
× ×

× ×

× 0

3
75: ð2:3Þ

For the right-handed neutrino Majorana mass matrix MN , the maximally allowed number of texture zeros is one or two.
Then, such matrices MN are classified as [4]

R1∶
�
× 0

0 ×

�
; R2∶

�
0 ×

× ×

�
; R3∶

�
× ×

× 0

�
:S∶

�
0 ×

× 0

�
: ð2:4Þ

By combining these matrices, we can obtain the neutrino mass matrices mν. Among all combinations, the realistic patterns
of mν are classified [4]:

a∶

2
64
× 0 ×

0 × ×

× × ×

3
75; b∶

2
64
× × 0

× × ×

0 × ×

3
75; c∶

2
64
× × ×

× 0 ×

× × ×

3
75; d∶

2
64
× × ×

× × ×

× × 0

3
75: ð2:5Þ

2See for models with the D4 flavor symmetry, e.g., Refs. [16–21].
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These are one-zero textures. Explicitly, these patterns are
realized by the following combinations: a for ðT1;4; R1Þ, b
for ðT2;5; R1Þ, c for ðT3;4; R2Þ or ðT1;6; R3Þ or ðU1;3; SÞ or
ðU1; R2Þ or ðU3; R3Þ, and d for ðT5;6; R2Þ or ðT2;3; R3Þ or
ðU2;4; SÞ or ðU2; R2Þ or ðU4; R3Þ. However, since all the
combinations including U require more Higgs doublets
than those with T1−6, we do not consider these cases. The
other combinations lead to the neutrino mass matrix mν,
which is not compatible with the experimental data.
Furthermore, all of the above patterns are compatible with
the experiments for the inverted hierarchy, but not for
the normal hierarchy. Also obviously, one of neutrinos is
massless. For the above patterns of mν, one finds the
following relations [4]

m1

m2

¼ −
ðU�

PMNSÞi2ðU�
PMNSÞj2

ðU�
PMNSÞi1ðU�

PMNSÞj1
; ð2:6Þ

1

1þ rν
¼
����ðU�

PMNSÞi2ðU�
PMNSÞj2

ðU�
PMNSÞi1ðU�

PMNSÞj1

����2; rν≡Δm2
21

Δm2
31

; ð2:7Þ

where we can identify Δm2
21 þ jΔm2

31j ¼ m2
2 and jΔm2

31j ¼
m2

1, since only inverted hierarchy is allowed for all the
textures by the current neutrino oscillation data. Moreover,
cos δ can bewritten in terms of observables and rν by solving
Eq. (2.6) directly, while cos α is also obtained in terms of the
sameparameters of cos δ by the fact that the imaginary part of
Eq. (2.7) is zero.3

III. REALIZATIONS OF TEXTURE ZEROS

Here, we study realization by use of global Uð1Þ sym-
metry, S3 and D4 as well as ZN .

A. Abelian symmetries

Here, we consider a global Uð1Þ symmetry to realize
predictive textures, where we fix the number of right-
handed neutrinos to be two generations, i.e., NR1;2

. A
flavor-dependent Uð1Þ symmetry in the lepton sector is
useful to realize the diagonal mass matrix of the charged
lepton sector. That is, the Uð1Þμ−τ, Uð1Þe−μ and Uð1Þe−τ
would be good candidates. Here, let us study the realization

of the Dirac mass texture T4 by assuming the global
Uð1Þμ−τ symmetry.4 The assignment of Uð1Þμ−τ charges
is shown in Table I. We also assignUð1Þμ−τ charges, n1 and
n2 to NR1

and NR2
. In order to realize Dirac neutrino mass

terms, we have to introduce new SUð2ÞL doublet Higgs
fields Hi, and their minimal number is four, i.e., Hi (i ¼ 1,
2, 3, 4). Also, in order to realize the mass matrix MN , we
have to introduce singlet scalar fields, φ1;2;3. Here, the
charges n1, n2 should satisfy the condition, n1 ≠ n2 and n1,
n2 ≠ 0 in order to realize the desired Dirac texture of T4,
and they should also satisfy ðn1; n2 � 1; n1 þ 1Þ ≠ �1, þ2
to forbid non-diagonal entries in the charged-lepton
mass matrix. Under these symmetries and fields, one can
write renormalizable coupling terms in the Lagrangian as
follows:

−LLepton ¼
X

l¼e;μ;τ

ylL̄Ll
HSMlR

þ yD1
L̄Le

H̃1NR1
þ yD2

L̄Lμ
H̃2NR2

þ yD3
L̄Lτ

H̃3NR1
þ yD4

L̄Lτ
H̃4NR2

ð3:1Þ

þ yN1
N̄C

R1
NR1

φ1 þ yN2
N̄C

R2
NR2

φ2

þ yN3
N̄C

R1
NR2

φ3 þ H:c:; ð3:2Þ

where several dangerous Goldstone bosons (GBs) can be
evaded by introducing soft-breaking mass terms under
Uð1Þμ−τ symmetry; m2

ijH
†
i Hj þ H:c: i ≠ j ¼ 1–4.

After the spontaneous symmetry breaking, the charged-
lepton mass matrix and Dirac neutrino mass matrix are
given by

ml ¼ vHffiffiffi
2

p

2
64
ye 0 0

0 yμ 0

0 0 yτ

3
75≡

2
64
me 0 0

0 mμ 0

0 0 mτ

3
75; ð3:3Þ

TABLE I. Field contents of fermions and bosons and their charge assignments under SUð2ÞL ×Uð1ÞY × Uð1Þμ−τ in the neutrino to
realize the one-zero neutrino textures T4, where n1 ≠ n2, n1, n2 ≠ 0 and ðn1; n2 � 1; n1 þ 1Þ ≠ �1, þ2.

Fields LLe
LLμ

LLτ
eR μR τR NR1

NR2
HSM H1 H2 H3 H4 φ1 φ2 φ3

SUð2ÞL 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1
Uð1ÞY − 1

2
− 1

2
− 1

2
−1 −1 −1 0 0 1

2
1
2

1
2

1
2

1
2

0 0 0
Uð1Þμ−τ 0 1 −1 0 1 −1 n1 n2 0 n1 n2 − 1 n1 þ 1 n2 þ 1 −2n1 −2n2 −n1 − n2

3Neutrino mass eigenvalues are positive and real without loss
of generality, because of reduced mass matrix.

4A gauged symmetry will be analyzed in elsewhere, since
several phenomenologies are very different from the global one.
A comprehensive study has been done, e.g., by Ref. [22] in which
two-zero textures are realized, imposing two flavor dependent
Uð1Þ gauge symmetries.
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mDðT4Þ ¼
1ffiffiffi
2

p

2
64
yD1

vH1
0

0 yD2
vH2

yD2
vH3

yD4
vH4

3
75≡

2
64
mD1

0

0 mD2

mD3
mD4

3
75;
ð3:4Þ

where vH and vHi denote vacuum expectation values
(VEVs) of the neutral components of HSM and Hi,
respectively. Then, the T4 pattern of the Dirac neutrino
mass matrix in Ref. [4] is derived. Also the right-handed
neutrino mass matrix is given by

MN ¼ 1ffiffiffi
2

p
�
yN1

vφ1
yN3

vφ3

yN3
vφ3

yN2
vφ2

�
≡

�
M1 M12

M12 M2

�
; ð3:5Þ

where vφi
denote VEVs of φi. From the above equation,

one straightforwardly finds each of texture R1, R2, and R3

in absence of φ3, φ1, and φ2.
We can realize the Dirac neutrino mass texture T1 with

the same charge assignment except replacing the charges of
H1 and H2 such that H1 and H2 have Uð1Þμ−τ charges, n2
and n1 − 1. Then, we can realize the Dirac neutrino mass,

mDðT1Þ ¼
1ffiffiffi
2

p

2
64

0 yD1
vH1

yD2
vH2

0

yD2
vH3

yD4
vH4

3
75≡

2
64

0 mD1

mD2
0

mD3
mD4

3
75:
ð3:6Þ

Similarly, the patterns, T5 and T2, are realized by
Uð1Þe−μ instead of Uð1Þμ−τ. Also the patterns, T6 and
T3, can be realized by use of Uð1Þτ−e instead of Uð1Þμ−τ.

Once any globalUð1Þ symmetries realize these predictive
one-zero neutrino textures, discrete Abelian symmetries ZN
are also possible in the same field contents, where N ≤ 19.

B. Non-Abelian discrete symmetries

Here, we study the realization with non-Abelian discrete
symmetries [7].

1. S3 symmetry

First of all, we study the S3 symmetry, which is the
minimal group in the non-Abelian discrete symmetries.
The irreducible representations of S3 are the doublet 2, and
the trivial singlet 1 and the nontrivial singlet 10. Here, we
use the real representation [7],5 and their products are
expanded as

�
x1
x2

�
2

⊗
�
y1
y2

�
2

¼ ðx1y1 þ x2y2Þ1 ⊕ ðx1y2 − x2y1Þ10 ⊕
�
x1y2 þ x2y1
x1y1 − x2y2

�
2

; ð3:7Þ

�
x1
x2

�
2

⊗ ðy0Þ10 ¼
�−x2y0

x1y0

�
2

; ðxÞ10 ⊗ ðyÞ10 ¼ ðxyÞ1: ð3:8Þ

We assign ðLLl
;lRÞ (l ¼ e, μ) to the S3 doublets 2, and LLτ

, τR to the S3 trivial singlets 1. In addition, we introduce four
Higgs fields, which correspond to the S3 doublet, HD ∼ 2, S3 singlets, H1 ∼ 1, and H2 ∼ 10. Then the renormalizable
coupling terms of the charged-lepton sector are given by

Ll ¼ yl1
½ðL̄Le

HD2
þ L̄Lμ

HD1
ÞeR þ ðL̄Le

HD1
− L̄Lμ

HD2
ÞμR�

þ yl2ðL̄Le
HD1

þ L̄Lμ
HD2

ÞτR þ yl3ðL̄Le
H1eR þ L̄Lμ

H1μRÞ þ yl4L̄Lτ
ðHD1

eR þHD2
μRÞ

þ yl5L̄Lτ
H1τR þ yl6ðL̄Le

H2μR − L̄Lμ
H2eRÞ þ H:c: ð3:9Þ

After the spontaneously electroweak symmetry breaking, the charged-lepton mass matrix can be found as

ml ¼ 1ffiffiffi
2

p

2
64
yl1vD1

þ yl3v1 yl1vD1
þ yl6v2 yl2vD1

yl1
vD2

− yl6v2 −yl1vD2
þ yl3v1 yl2vD2

yl4vD1
yl4vD2

yl5v1

3
75; ð3:10Þ

where VEVs are denoted by hHii≡ vi=
ffiffiffi
2

p
and hHDi

i≡ vDi
=

ffiffiffi
2

p
for i ¼ 1, 2. Once hHDi ¼ hH2i ¼ 0, the diagonal

charged-lepton mass matrix is realized;

5Note here that the complex representations cannot construct the diagonal mass matrix of charged lepton.
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ml ¼ 1ffiffiffi
2

p

2
64
yl3v1 0 0

0 yl3v1 0

0 0 yl5v1

3
75: ð3:11Þ

However, from the above mass matrix, one cannot repro-
duce the mass difference between the masses of electron
and muon. Thus, S3 symmetry is not favorable.6

2. D4 symmetry

Next, we investigate the D4 flavor symmetry that
is the next minimal group in the non-Abelian
discrete symmetries. The irreducible representations of
D4 symmetry are the doublet 2, and the trivial singlet 1,
and three nontrivial singlets, 10, 100, 1000.7 Here, we also
use the real representation, and their productions
are shown in the Appendix. We assign ðLLl

;lRÞ
(l ¼ e, μ) to the D4 doublets 2, and LLτ

; τR to the
D4 trivial singlets 1. In addition, we introduce 6 Higgs
fields, which correspond to all of the D4 irreducible
representations, 2, 1, 10, 10, 100, 1000, that is, HD ∼ 2,
H1 ∼ 1, H2 ∼ 10, H3 ∼ 100, H4 ∼ 1000. Then the renorma-
lizable coupling terms of the charged-lepton sector are
given by

Ll¼yl1ðL̄Le
HD1

þL̄Lμ
HD2

ÞτRþyl2L̄Lτ
ðHD1

eRþHD2
μRÞ

þyl3ðL̄Le
H1eRþL̄Lμ

H1μRÞþyl4ðL̄Le
H2eR−L̄Lμ

H2μRÞ
þyl5ðL̄Le

H3μRþL̄Lμ
H3eRÞþyl6ðL̄Le

H4μR−L̄Lμ
H4eRÞ

þyl7L̄Lτ
H1τRþH:c: ð3:12Þ

After the spontaneously electroweak symmetry breaking,
the charged-lepton mass matrix can be found as

ml ¼ 1ffiffiffi
2

p

2
64
yl3

v1 þ yl4v2 yl5v3 þ yl6
v4 yl1vD1

yl5v3 − yl6v4 yl3v1 − yl4v2 yl1vD2

yl2vD1
yl2vD2

yl7v1

3
75;
ð3:13Þ

where their VEVs are denoted by hHii≡ vi=
ffiffiffi
2

p
(i ¼ 1;…; 4) and hHDi

i≡ vDj
=

ffiffiffi
2

p
for j ¼ 1, 2. Once

hHDi ¼ hH2;3;4i ¼ 0 and/or yl1;2;5;6 ¼ 0, the diagonal
charged-lepton mass matrix is realized;

ml ¼ 1ffiffiffi
2

p

2
64
yl3

v1 þ yl4v2 0 0

0 yl3v1 − yl4v2 0

0 0 yl7v1

3
75:
ð3:14Þ

From the above equation, one can reproduce the mass
difference between the masses of electron andmuon. Thus,
the D4 flavor symmetry can be the minimal candidate to
reproduce the desired textures. To realize the diagonal mass
matrix of the charged lepton sector, we just need H1 and
H2, but we do not need HD or H3;4.
Next, let us explore the neutrino sector; Dirac and

Majorana masses. We classify the models by assigning
systematically two right-handed neutrinos to two of the D4

irreducible representations, 2, 1, 10, 100, 1000.

In the case of ðNR1
; NR2

Þ ∼ 2.—The Majorana mass matrix
is given by

MN ¼ M

�
1 0

0 1

�
; ð3:15Þ

where these two masses are degenerated. Then the Dirac
neutrino mass matrix is given by

mD ¼ 1ffiffiffi
2

p

2
64
yD1

v1 þ yD2
v2 yD3

v3 þ yD4
v4

yD3
v3 − yD4

v4 yD1
v1 − yD2

v2
yD5

vD1
yD5

vD2

3
75: ð3:16Þ

Hence one finds the desired Dirac mass matrix in the case
of hH3;4i ¼ 0

8

mDðT4Þ ¼

2
64
mD1

0

0 mD2

mD3
mD4

3
75: ð3:17Þ

For this realization, we need HD, H1 and H2, but not H3

or H4.
Now, let us study the models, that NR1

and NR2
are

assigned to twoD4 singlets. If one assignsNR1
andNR2

into
the same singlet representation under D4, the Majorana
mass matrix does not give any vanishing elements without
imposing additional symmetries. Thus, we restrict our-
selves to the models such that NR1

and NR2
are assigned to

D4 singlets different from each other.
When we assign NR1

and NR2
into different D4 singlets

such as ðNR1
; NR2

Þ ∼ ð1; 10Þ, ð100; 1000Þ, etc., the Majorana
mass matrix is give by6Note here that Refs. [23,24] realize the appropriate charged-

lepton mass matrix, by imposing an additional Z2 symmetry.
7The singlets, 1, 10, 100, 1000, correspond to 1þþ, 1−−, 1þ−, 1−þ

in Ref. [7], respectively.

8In case of hH1;2i ¼ 0, T1 can be obtained. However, the
electron and muon are massless. Thus, this case is ruled out.
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MN ¼
�
M1 0

0 M2

�
: ð3:18Þ

That is the R1 form.

In the case of ðNR1
; NR2

Þ ∼ ð1; 10Þ.—The Dirac neutrino
Yukawa mass matrix is given by

mD ¼ 1ffiffiffi
2

p

2
64
yD1

vD1
yD2

vD1

yD1
vD2

−yD2
vD2

yD3
v1 yD4

v2

3
75: ð3:19Þ

This form cannot clearly reproduce any types of desired
Dirac mass matrices, since yD1

and yD2
are located in the

same column of upper (2 × 2) matrix. When we assign
ðNR1

; NR2
Þ ∼ ð100; 1000Þ, we obtain a similar result. Then,

these two cases are not favorable, but the other cases are
favorable.

In the case of ðNR1
; NR2

Þ ∼ ð1ð10Þ; 100ð1000ÞÞ.—The Dirac
neutrino mass matrix is given by

mD ¼ 1ffiffiffi
2

p

2
64

yD1
vD1

yD2
vD2

�yD1
vD2

�yD1
vD1

yD3
v1 yD4

v3ð4Þ

3
75; ð3:20Þ

where “þ” and “−” in the (2,1) component corresponds to
NR1

∼ 1 and NR1
∼ 10, respectively, and “þ” or “−” in the

(2,2) component and v3 and v4 in the (3,3) component
correspond to NR2

∼ 100 and NR2
∼ 1000, respectively. One

straightforwardly finds the desired Dirac mass matrices T1

and T4 in the cases with hHD1
i ¼ 0 and hHD2

i ¼ 0,
respectively. For example, in the case of ðNR1

; NR2
Þ ∼

ð1; 100Þ, we need HD, H1;2;3, but not H4.
In order to obtain T2;3;5;6, one straightforwardly finds

them by reassigning the fields of the SM leptons. For
example, once we assign ðLLe

; LLτ
Þ ∼ ðeR; τRÞ ∼ 2, and

ðLLμ
; μRÞ ∼ 1, then one finds T2 or T5. On the other hand,

when we assign ðLLμ
;LLτ

Þ∼ ðμR;τRÞ∼2, and ðLLe
;eRÞ∼1,

then one finds T3 or T6.
To summarize results in this section, one can realize the

desired textures by D4, but not by S3. Indeed, the D4 flavor
symmetry is interesting from the viewpoints of both high

energy physic [9–11,13–15,25–27]. and bottom-up model
building approach [16–21]. Similarly, we can discuss
realization by using other non-Abelian discrete flavor
symmetries. Also we can realize the desired textures by
Abelian symmetries, Uð1Þ and ZN . We need more Higgs
fields in the Abelian models than the D4 models. Thus, the
D4 flavor symmetry is useful to realize the desired textures.
Note here that the textures c and d in Eq. (2.5) cannot be
realized by D4 symmetry, because MN is diagonal (R1

form).9 In the next section, we propose a concrete model
with the D4 flavor symmetry.

IV. A CONCRETE MODEL IN D4 SYMMETRY

Here, we study a concrete model based on the D4

symmetry. First, we explain our setup. Basically, our model
corresponds to the scenario, where NR1;2

are assigned to the
D4 doublet in Sec. III B 2. In addition, we also introduce
the third right-handed neutrino NR3

, but arrange it such that
NR3

has no Dirac mass term with left-handed neutrino and
no Majorana mass terms with NR1;2

. For such a purpose, we
assume additional Uð1Þ gauge symmetry, that is, Uð1ÞB−L.
Its charge assignment is the same as the conventional one
except the right-handed neutrino sector. For the right-
handed neutrino sector, we assign Uð1ÞB−L charges, −4,
−4, 5 toNR1;2;3

, respectively. That is the so-called alternative
Uð1ÞB−L [28–34]. All gauge anomalies are canceled with
this choice. In the boson sector, we introduce several new
bosons H2, η1;10;D, φ2;8, φ0

8, ζ in addition to the SM Higgs
H, where H gives the masses for the quark sector and the
charged lepton sector, while H2 gives mass difference
between electron(positron) and muon(antimuon). Here,
their VEVs are symbolized by hHi≡ vH, hH2i≡ v0H,
hη1;10;Di≡ vη;η0ηD , hφ2;8i≡ vφ2;φ8

, hφ0
8i≡ vφ0

8
, hζi≡ vζ.

Also η and φ8, respectively, provide the Dirac and right-
handed neutrino masses, η0 and φ0

8, respectively, provide
the difference between the (1-1) and (2-2) elements of mD
andMN , and ηD gives the masses for the third row of Dirac
mass matrix. ζ and φ2 play a role in evading dangerous GBs
due to accidental symmetries in the scalar potential. TheD4

symmetry assures diagonal mass matrices for charged

TABLE II. Field contents of fermions and bosons and their charge assignments under SUð2ÞL ×Uð1ÞY × Uð1ÞB−L ×D4 in the
neutrino and Higgs sector, where l ¼ e, μ is flavor index.

Fields LLl
LLτ

lR τR NRi
NRτ

H H2 η1 η10 ηD φ8 φ0
8 φ10 ζ φ2

SUð2ÞL 2 2 1 1 1 1 2 2 2 2 2 1 1 1 2 1
Uð1ÞY − 1

2
− 1

2
−1 −1 0 0 1

2
1
2

1
2

1
2

1
2

0 0 0 1
2

0
Uð1ÞB−L −1 −1 −1 −1 −4 5 0 0 −3 −3 −3 8 8 10 −6 2
D4 2 1 2 1 2 1 1 10 1 10 2 1 10 2 1 1

9If an additional symmetry is introduced in the basis of
ðNR1

; NR2
Þ ∼ 1 under D4 symmetry, c and d can be realized,

but this is beyond our scope.
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leptons and right-handed neutrinos, and Uð1ÞB−L plays a
role in restricting (2 × 2) mass matrix for right-handed
neutrinos which contribute to active neutrino masses. In
addition, our Uð1ÞB−L charge assignment makes NR3

stable

and it can be a DM candidate. All the field contents and their
charge assignments are shown in Table II. Under these
contents with symmetries, one can write renormalizable
Yukawa coupling terms and the Higgs potential as follows10:

−LLepton ¼ ylðL̄Le
eR þ L̄Lμ

μRÞH þ y0lðL̄Le
eR − L̄Lμ

μRÞH2 þ yτL̄Lτ
τRH þ yDðL̄Le

NRe
þ L̄Lμ

NRμ
Þη̃1

þ y0DðL̄Le
NRe

− L̄Lμ
NRμ

Þη̃01 þ yD3
L̄Lτ

ðNRe
η̃D1

þ NRμ
η̃D2

Þ þ yNðN̄C
Re
NRe

þ N̄C
Rμ
NRμ

Þφ8

þ y0NðN̄C
Re
NRe

− N̄C
Rμ
NRμ

Þφ0
8 þ H:c:; ð4:1Þ

V ¼ λ1;10;Dðζ†η1;10;DÞðH†η1;10;DÞ þ λ01ðζ†η1ÞðH†
2η10 Þ

þ λ0Dðζ†ηDÞðH†
2ηDÞ þ λ0ðζ†HÞφ�

8φ2 þ H:c:; ð4:2Þ

where V is the Higgs potential with non-trivial terms. These
nontrivial terms forbid dangerous GBs arising from isospin
doublets that spoil the model. In our model, we have two
GBs that can be identified with CP-odd bosons of φ2 and
φ8ðφ0

8Þ.11

A. Lepton sector

The resulting mass matrices are give by

ml ¼ 1ffiffiffi
2

p

2
64
ylvH þ y0lv

0
H 0 0

0 ylvH − y0lv
0
H 0

0 0 yτvH

3
75

≡
2
64
me 0 0

0 mμ 0

0 0 mτ

3
75; ð4:3Þ

mD ¼ 1ffiffiffi
2

p

2
64
yDvη þ y0Dvη0 0

0 yDvη − y0Dvη0

yD3
vηD1

yD3
vη0D2

3
75

≡
2
64
mD1

0

0 mD2

mD3
mD4

3
75; ð4:4Þ

MN ¼ 1ffiffiffi
2

p
"
yNvφ8

þ y0Nvφ0
8

0

0 yNvφ8
− y0Nvφ0

8

#

≡
�
M1 0

0 M2

�
: ð4:5Þ

The above neutrino Dirac mass matrix mD corresponds
to Eq. (3.17). Also the above Majorana mass matrix MN
basically corresponds to Eq. (3.15). However, since there
are two fields φ8 and φ0

8, we obtain M1 ≠ M2. Then, we
can obtain

mν ≈

2
666664

m2
D1

M1
0

mD1
mD3

M1

0
m2

D2

M2

mD2
mD4

M2

mD1
mD3

M1

mD2
mD4

M2

m2
D3

M1
þ m2

D4

M2

3
777775; ð4:6Þ

which corresponds to the pattern a in Eq. (2.5). Applying
the discussion in Sec. II to our model, we find

m1

m2

¼ −
ðU�

PMNSÞ12ðU�
PMNSÞ22

ðU�
PMNSÞ11ðU�

PMNSÞ21
: ð4:7Þ

Therefore, one obtains two relations from the above
relation:

cos δ ¼ ½s412ð1þ rνÞ − c412�s223s213 þ rνc223s
2
12c

2
12

2½s212ð1þ rνÞ þ c212�s12c12s23c23s13
; ð4:8Þ

cos α ¼ −½s412ð1þ rνÞ þ c412�s223s213 þ ð2þ rνÞc223s212c212
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ rν
p ðc223 þ s223s

2
13Þs212c212

;

ð4:9Þ

where Eq. (4.8) is derived by solving Eq. (4.7) directly,
while Eq. (4.9) is obtained by the fact that the imaginary
part of Eq. (4.7) is vanishing. Applying the current neutrino
oscillation data [2], we find some predictions. In Fig. 1, we
show the allowed region between α=π and δ=π and it
suggests as follows; 0.075≲ α=π ≲ 0.15 and 0.49≲ δ=π ≲
0.52 at 3σ confidential level (CL) (blue region), 0.105≲
α=π ≲ 0.13 and 0.50≲ δ=π ≲ 0.51 at 1σ CL (red region),
and ðα=π; δ=πÞ ≈ ð0.11; 0.51Þ at best-fit value (BF)
(black dot).
Consistency check: Replacing a≡ m2

D1

M1
, b≡ m2

D2

M2
, r31≡

mD3
=mD1

, r42 ≡mD4
=mD2

Eq. (4.6) can be rewritten in
terms of four parameters as follows:

10We show valid multiplication rules for D4 in the Appendix.
11In addition, one has to introduce soft breaking terms of D4

symmetry in order to forbid accidental symmetries that also
induce dangerous GBs. The breaking patterns are given by
Ref. [7], and any patterns are fine because it does not affect
our model. Thus, we do not discuss this issue further.
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mν ≈

2
64

a 0 ar31
0 b br42

ar31 br42 ar231 þ br242

3
75: ð4:10Þ

It implies that ðmνÞ33 component is uniquely fixed once a,
b, r31, r42 are determined by experimental values. While
experimental value of ðmνÞ33; ððmexp

ν Þ33≡Þ½U�
PMNSdiagðm1;

m2; m3ÞU†
PMNS�33, is independently determined by exper-

imental result, too. In Fig. 2, we show the allowed region
between jðmνÞexp33 j and jðmνÞ33j, where the red line repre-
sents jðmνÞexp33 j ¼ jðmνÞ33j. It suggests the theoretical con-
sequence is in favor of the experimental result that is
consistent with the original paper [4].

B. Phenomenology

In this subsection, we discuss phenomenology of the
model such as collider physics and dark matter physics.

At the LHC Z0 can be produced as it couples to the SM
quarks, and can decay into the SM leptons providing clear
di-lepton signal. On the other hand the signatures from
exotic scalar bosons are more complicated containing more
particles in final states and their branching ratios depend on
the parameters in the scalar potential so that we have less
predictability, although they can also be produced via Z0
interaction and through electroweak interaction if an
exotic scalar boson comes from iso-doublet. Thus, we
focus on Z0 production in s-channel followed by decay
mode of Z0 → lþl− and estimate the constraints for new
gauge coupling constant and mass of Z0. Then dark matter
relic density is briefly discussed taking into account the
constraint for Z0 interaction.

1. Collider physics and constraints

Here, we explore collider physics focusing on Z0 boson
and provide constraints for its mass and gauge coupling
constant. The relevant gauge interactions are given by

Lint ¼ gBLZ0
μ

�
1

3
Q̄Lγ

μQL þ 1

3
ūRγμuR þ 1

3
d̄RγμdR

− L̄γμL − ēRγμeR þ 1

2
QB−L

NRi
N̄Ri

γμγ5NRi

þQB−L
Φ ð∂μΦ�Φ −Φ�∂μΦÞ

�
; ð4:11Þ

where flavor indices for the SM fermions are omitted
and Φ ¼ fη1; η10 ; ηD;φ8;φ0

8;φ10; ζg; note that φ2 is not
included here since we assume its CP-odd component is
Nambu-Goldstone boson absorbed by Z0. The mass of Z0 is

given by mZ0 ¼ gBL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ΦBL
ðQB−L

Φ vΦBL
Þ2

q
where ΦBL and

vΦBL
indicate scalar field with B − L charge QB−L

Φ and its
VEV, respectively. The partial decay widths of Z0 are
estimated as

ΓZ0→f̄SMfSM ¼ ðQB−LgBLÞ2
12π

mZ0

�
1−

4m2
fSM

m2
Z0

�3
2

;

ΓZ0→N̄Ri
NRi

¼
ðQB−L

NRi
gBLÞ2

96π

�
1−

4m2
NRi

m2
Z0

�3
2

;

ΓZ0→Φ1Φ2
¼ ðQB−L

Φ gBLÞ2
48π

mZ0λ
1
2ðmZ0 ;mΦ1

;mΦ2
Þ

×

�
1−

2ðm2
Φ1

þm2
Φ2
Þ

m2
Z0

þ ðm2
Φ1

−m2
ϕ2
Þ

m4
Z0

�
;

λðmZ0 ;mΦ1
;mΦ2

Þ ¼ 1þm4
Φ1

m4
Z0
þm4

Φ2

m4
Z0
− 2

m2
Φ1
m2

Φ2

m4
Z0

− 2
m2

Φ1

m2
Z0
− 2

m2
Φ2

m2
Z0
; ð4:12Þ

0.020 0.025 0.030

0.020

0.025

0.030

m exp
33 eV

m
33

eV

FIG. 2. Allowed region between jðmνÞexp33 j and jðmνÞ33j, where
the red line represents jðmνÞexp33 j ¼ jðmνÞ33j.

BF

0.06 0.08 0.10 0.12 0.14
0.47

0.48

0.49

0.50

0.51

0.52

0.53

FIG. 1. Allowed region between α=π and δ=π to satisfy the
current neutrino oscillation data. Also the blue, red, and black
regions, respectively, represent predictions in light of the exper-
imental input results at 3σ CL, 1σ CL, and BF. Here, the black
horizontal line presents the best-fit value (BF).
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where fSM denotes the SM fermions and fΦ1;Φ2g indicate
components of Φ. We estimate branching ratios (BRs)
for Z0 decay in cases: (1) mZ0 < 2mNRi

and mZ0 < 2mΦ;
(2) mZ0 > 2mNRi

and mZ0 < 2mΦ; (3) mZ0 > 2mNRi
and

mZ0 > 2mΦ, where mΦ represents exotic scalar mass
assuming they are mostly the same scale. In Table III,
we show the BRs for Z0 decay where we ignored depend-
ence on final state mass assuming m2

NRi
;Φ ≪ m2

Z0 if kine-

matically allowed in cases (2) and (3) for simplicity. We
find that BRs for the SM fermions are significantly sup-
pressed when all exotic scalar modes are open.
Then we discuss constraint on gBL from the LHC

experiments for three cases above. Our Z0 boson is
produced via Z0q̄q coupling and the production cross
section is estimated using CalcHEP 3.6 [35] implement-
ing relevant interactions. The most stringent constraint
comes from the process pp → Z0 → lþl−ðl ¼ e; μÞ and
we estimate the corresponding cross section for each case.
In Fig. 3, we compare ratio between σ · BRðpp → Z0 →
lþl−Þ and σ · BRðpp → Z → lþl−Þ in our model with
the experimental constraints corresponding to 95% confi-
dence level (CL) observed limit indicated by red curve
[36] where solid, dashed and dotted curve correspond to

cases (1), (2), and (3), respectively, and we apply gBL ¼
0.3ð0.1Þ in left(right) plots. Thus, the lower limit of mass Z0
is relaxed when the exotic scalar modes of Z0 decay are
kinematically allowed: the lower limit of mZ0 is around
3300(2000) GeV for gBL ¼ 0.3ð0.1Þ in 95% CL. For
case (3), the Z0 boson dominantly decays into exotic scalar
bosons which further decay into SM particles via gauge
interaction and/or couplings in the scalar potential provid-
ing multi-particle final states. The detailed analysis of the
scalar modes is beyond the scope of our analysis.

2. Dark matter

In this subsection, we discuss a dark matter candidate;
XR ≡ NR3

, whose stability is assured by the Uð1ÞB−L
symmetry with alternative charge assignment for the SM
singlet fermions. Here, let us assume any contributions
from the Higgs mediating interaction are negligibly small
so as to avoid the constraints from direct detection searches
as LUX [37], XENON1T [38], and PandaX-II [39]. Then
DM annihilation processes are dominated by the gauge
interaction with Z0 and GB αG ≡ zφ10

mainly originated
from φ10, and their relevant Lagrangian in basis of mass
eigenstate is found to be

case 1

case 2

case 3
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B
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Z
'

l
l

B
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Z
l

l

case 1

case 2

case 3

1500 2000 2500 3000 3500 4000 4500
10 9

10 8

10 7

10 6

10 5

mZ' GeV

B
R

Z
'

l
l

B
R

Z
l

l

FIG. 3. The ratio between σ · BRðpp → Z0 → lþl−Þ and σ · BRðpp → Z → lþl−Þ where l ¼ e, μ and the red curve indicates the
experimental constraints which corresponds to 95% confidence level observed limit. The left(right) plot corresponds to gBL ¼ 0.3ð0.1Þ.

TABLE III. Branching ratios for Z0 decay in cases: (1) mZ0 < 2mNRi
and mZ0 < 2mΦ; (2) mZ0 > 2mNRi

and mZ0 < 2mΦ;
(3) mZ0 > 2mNRi

and mZ0 > 2mΦ where we ignored dependence on final state mass assuming m2
NRi

;Φ ≪ m2
Z0 if kinematically allowed

in case (2) and (3). For exotic scalar modes, BRs for all components are summed up.

lþ
i l

−
i ν̄iνi q̄iqi NR1;2

NR3
η�1η1 η�

10η10 η�DηD φ�
8φ8 φ0�

8φ
0
8 φ�

10φ10 ζ�ζ

Case (1) 0.15 0.077 0.051 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Case (2) 0.073 0.037 0.024 0.15 0.23 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Case (3) 0.0076 0.0038 0.0025 0.015 0.024 0.034 0.034 0.068 0.12 0.12 0.19 0.068
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−L ⊃
1

2
QX

BLgBLX̄γ
μγ5XZ0

μ þ i
MX

vφ10

X̄PRXαG þ c:c:; ð4:13Þ

where QX
BL ¼ 5, MX ≡ yN3

vφ10
=

ffiffiffi
2

p
, vφ10

≪ vφ2
. Here, we require Z0 mass and gauge coupling gBL to satisfy the relation

gBL=mZ0 ≲ 1=ð6.9 TeVÞ from LEP experiment [40] as well as the constraints from the LHC experiments as discussed in the
previous subsection. The relic density of DM is then given by [41,42]

Ωh2 ≈
1.07 × 109ffiffiffiffiffiffiffiffiffiffiffiffiffi

g�ðxfÞ
p

MPlJðxfÞ½GeV�
; ð4:14Þ

where g�ðxf ≈ 25Þ is the degrees of freedom for relativistic particles at temperature Tf ¼ MX=xf,MPl ≈ 1.22 × 1019 GeV,

and JðxfÞð≡ R∞
xf

dx hσvreli
x2 Þ is given by [32,43]

JðxfÞ ¼
Z

∞

xf

dx

2
64
R
∞
4M2

X
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4M2

X

p
½WZ0 ðsÞ þWzφ0 ðsÞ�K1ð

ffiffi
s

p
MX

xÞ
16M5

Xx½K2ðxÞ�2

3
75; ð4:15Þ

WZ0 ðsÞ ≈ 4ðs − 4M2
XÞ

3π

���� 5g2BL
s −m2

Z0 þ imZ0ΓZ0

����2X
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
f

s

s
ðsþ 2m2

fÞjQf
BLj2; ð4:16Þ

WαGðsÞ ≃
jMXj4
64πv4φ10

2
664ð3s2 − 4M4

XÞ

0
BB@ π

2sM2
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

X

4sM2
X − s2

s
−
tan−1

h
s−2M2

Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð4M2

X−sÞ
p

i
s3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

X − s
p

1
CCA − 4

3
775; ð4:17Þ

where we assumed Z0 boson and scalar bosons are heavier
than X to forbid corresponding annihilation processes
kinematically, for simplicity. Here, decay width of Z0 is
given by Eq. (4.12) where Z0 can decay into 2X, if
kinematically allowed. We find that two characterized
solutions of measured relic density Ωh2 ≈ 0.12 [44] in
the above formula. The first one is a sharp region at around
MX ∼mZ0=2, that is a resonant solution from the contri-
bution 2X → Z0 → ff̄ in Eq. (4.16). The second one is the
region in lighter mass of DM that mainly arises from the
contribution 2X → 2αG in Eq. (4.17). In the former case
DM mass is around TeV scale to obtain right relic density
due to the collider constraints for Z0 mass while in the latter
case DM mass can be Oð10Þ GeV to Oð100Þ GeV which
depend on the coupling factor MX=vφ10

; for more details,
see, e.g., Refs. [32,43].

V. CONCLUSION

We have systematically explored the origins of neu-
trino textures in the canonical seesaw model with two
right-handed neutrinos based on global Uð1Þμ−τ flavor
symmetry, and smaller non-Abelian flavor symmetries,
and we have shown several promising symmetries to find
predictive textures, Uð1Þμ−τ and D4, depending on appro-
priate charge assignments of our fields. Moreover, we
have found that D4 symmetry can realize a predictive

texture b only. Then we have proposed a concrete model
based on local Uð1ÞB−L and D4 symmetries that involves
a dark matter candidate and extra gauge boson. To show
properties of the model, we have analyzed the neutrino
physics, collider physics regarding Z0 boson and relic
density of dark matter. We have shown that constraints for
Z0 mass and interactions can be relaxed when exotic
scalar modes of Z0 decay are kinematically open, and relic
density of dark matter can be explained by annihilation
mode via Z0 exchange and/or annihilation into physical
Goldstone bosons.

ACKNOWLEDGMENTS

T. K. was is supported in part by MEXT KAKENHI
Grant No. JP17H05395. This research is supported
by the Ministry of Science, ICT and Future Planning,
Gyeongsangbuk-do and Pohang City (H.O.). H. O. is
sincerely grateful for the KIAS member.

APPENDIX: MULTIPLICATION RULES
FOR D4 GROUP

Here, we show the valid multiplication rules for D4

group that consists of four irreducible singlets 1, 10, 100, 1000
and one irreducible doublet 2, where we have used a real
representation [45];
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�
x1
x2

�
2

⊗
�
y1
y2

�
2

¼ ðx1y1 þ x2y2Þ1 ⊕ ðx1y1 − x2y2Þ10 ⊕ ðx1y2 þ x2y1Þ100 ⊕ ðx1y2 − x2y1Þ1000 : ðA1Þ

The other relations are given by 2 ⊗ 1ð10; 100; 1000Þ ¼ 2, 10 ⊗ 10ð100; 1000Þ ¼ 1ð1000; 100Þ, 100 ⊗ 100ð1000Þ ¼ 1ð10Þ, and,
1000 ⊗ 1000 ¼ 1 in Ref. [7].
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