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The linear-chain states of 16C and their decay modes are theoretically investigated by using the antisymmetrized
molecular dynamics. It is found that the positive-parity linear-chain states have the (3/2−

π )2(1/2−
σ )2 configuration

and primary decay to 12Be(2+
1 ) as well as to 12Be(g.s.) by α-particle emission. Moreover, we show that they also

decay via the 6He + 10Be channel. In the negative-parity states, it is found that two types of linear chains exist. One
has the valence neutrons occupying the molecular orbits (3/2−

π )2(1/2−
σ )(3/2+

π ), while the other’s configuration
cannot be explained in terms of the molecular orbits because of the strong parity mixing. Both configurations
constitute the rotational bands with a large moment of inertia and intraband E2 transitions. Their α and 6He
reduced widths are sufficiently large to be distinguished from other noncluster states although they are smaller
than those of the positive-parity linear chain.

DOI: 10.1103/PhysRevC.97.054315

I. INTRODUCTION

Recent years have seen many important experimental and
theoretical studies for the linear-chain states (linearly aligned
3α particles) in 14C [1–16] and 16C [17–23]. In these C
isotopes several theoretical studies have predicted the existence
of linear-chain states with the valence neutrons playing a
glue-like role to stabilize the extreme shape. Antisymmetrized
molecular dynamics (AMD) calculations for 14C [5,11,15]
predict a positive-parity rotational band with the linear-chain
configuration having the π -bond valence neutrons. The calcu-
lations also suggest a unique decay pattern of the π -bond linear
chain, i.e., it decays not only to the 10Be(0+

1 ) but also to the
10Be(2+

1 ) by the α-particle emission. The energies, moment
of inertia, and decay pattern of the resonances observed by
the α + 10Be elastic scattering [7,9,13] reasonably agree with
the predicted π -bond linear chain. Therefore, the π -bond
linear-chain formation in 14C looks assured. In addition to
the π -bond linear chain, we also predict another linear chain
which has σ -bond neutrons. This band should have a different
decay pattern because it will dominantly decay to 10Be(0+

2 )
and 10Be(2+

3 ). Although experimental evidence is still lacking,
the resonances observed by the 9Be(9Be,α + 10Be)α reaction
[14] looks promising as candidates for the σ -bond linear chain.

The advances in the study of 14C naturally motivate us to
study the linear chains in neutron-rich C isotopes. In particular,
we expect that linear-chain states should also exist in 16C
[22] because both π - and σ -bonding orbits are simultaneously
occupied by valence neutrons. The molecular-orbital model
calculation [17] predicted that 16C has in fact the most
substantial linear chain among the C isotopes. Furthermore,
our previous work [22] predicted a positive-parity linear-chain
band built on the 0+ state at 15.5 MeV, which should be
verified experimentally. In this work, for further experimental
study, we provide additional theoretical information. The first
is negative-parity states. In the case of 14C, experiments have
reported the negative-parity resonances [7,9,13]. Therefore,

theoretical predictions are also needed for the negative-parity
resonances in 16C. The second is the decay mode of the linear-
chain configuration. Because the linear-chain band of 16C is
predicted above the α + 12Be and 6He + 10Be thresholds, the
decay pattern should provide important information to identify
the linear chain.

In this work, based on AMD calculations, we study
the positive- and negative-parity linear-chain states of 16C
and discuss their decay patterns. The positive-parity linear
chain has the valence neutrons occupying molecular orbits
(3/2−

π )2(1/2−
σ )2. We predict that the linear-chain states pri-

marily decay to 12Be(2+
1 ) as well as to 12Be(g.s.). They will

also decay to 10Be(g.s.) and 10Be(2+
1 ) by 6He emission, which

is a signature of the covalency of valence neutrons.
In the negative parity, two rotational bands composed of the

linear-chain configuration are found. One has the valence neu-
trons occupying the molecular orbits (3/2−

π )2(1/2−
σ )(3/2+

π ),
and the other does not have a clear molecular-orbit configu-
ration. Their α and 6He reduced widths are smaller than those
of the positive-parity linear-chain band, but sufficiently large
to be distinguished from other noncluster states.

The paper is organized as follows: The AMD framework is
briefly explained in the next section. In Sec. III, the density
distribution on the energy surface, excitation energies, and
decay widths are discussed for positive and negative parity.
In the last section, we summarize this work.

II. THEORETICAL FRAMEWORK

A. Variational calculation and generator coordinate method

The microscopic A-body Hamiltonian used in this work
reads

Ĥ =
A∑

i=1

t̂i − t̂c.m. +
A∑

i<j

v̂N
ij +

Z∑
i<j

v̂C
ij , (1)
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where Gogny parameter sets D1S [24], D1N [25], and D1M
[26] are used as the effective nucleon-nucleon interaction. D1N
and D1M are newer parameter sets proposed in this decade and
optimized for the description of the neutron matter equation
of state (D1N) and neutron-rich nuclear matter (D1M). It is
found that all of these parameter sets yield qualitatively the
same results and quantitative differences are rather small. For
example, the excitation energies of the linear-chain bands are
within 1 MeV of each other. Therefore, in this paper, we report
the results obtained by the D1S parameter set, because the
threshold energies are most reasonably described by the D1S.
The Coulomb interaction v̂C is approximated by a sum of seven
Gaussians. t̂c.m. is the kinetic energy of the center of mass.

The AMD wave function �AMD is represented by a Slater
determinant of single-particle wave packets,

�AMD = A{ϕ1,ϕ2, . . . ,ϕA} = 1√
A!

det[ϕi(rj )], (2)

where ϕi is the single-particle wave packet which is a direct
product of the deformed Gaussian spatial part [27], spin (χi),
and isospin (ξi) parts,

ϕi(r) = φi(r) ⊗ χi ⊗ ξi, (3)

φi(r) =
∏

σ=x,y,z

(
2νσ

π

)1/4

exp

{
−νσ

(
rσ − Ziσ√

νσ

)2
}

,

χi = aiχ↑ + biχ↓, ξi = proton or neutron. (4)

The centroids of the Gaussian wave packets, Zi , the direction of
nucleon spin, ai,bi , and the width parameter of the deformed
Gaussian, νσ , are the variables determined by the frictional
cooling method explained below. Note that the AMD wave
function (2) can be analytically decomposed into the internal
wave function �int and the center-of-mass wave function �c.m.,

�AMD = �int�c.m., (5)

�c.m. =
∏

σ=x,y,z

(
2Aνσ

π

)1/4

exp
{−Aνσ R2

σ

}
, (6)

Rσ = 1

A

A∑
i=1

riσ . (7)

Therefore, the center-of-mass kinetic energy t̂c.m. is exactly
removed and the model is free from the spurious motion. The
intrinsic wave function is projected to the eigenstate of the
parity to investigate both of the positive- and negative-parity
states,

�� = P ��int = 1 + �Px

2
�int, � = ±, (8)

where P � and Px denote parity projector and operator. Using
this wave function, the variational energy is defined as

E� = 〈��|H |��〉
〈��|��〉 . (9)

By the frictional cooling method [28], the variables of the wave
function (Zi ,ai,bi , νσ ) are determined so thatE� is minimized.
In this study, we add the constraint potential to the variational

energy,

Ẽ� = 〈��|H |��〉
〈��|��〉 + vβ(〈β〉 − β)2 + vγ (〈γ 〉 − γ )2, (10)

where 〈β〉 and 〈γ 〉 are the quadrupole deformation param-
eters of the intrinsic wave function defined in Refs. [5,29],
with the vβ and vγ parameters chosen to be large enough
that 〈β〉 and 〈γ 〉 are equal to β and γ after the variation.
By minimizing Ẽ�, we obtain the optimized wave function
��(β,γ ) = P ��int(β,γ ) which has the minimum energy for
each set of β and γ . Note that our previous work employed
only a β constraint, therefore the degree of freedom of γ
deformation was not explicitly included.

After the variational calculation, the eigenstate of the total
angular momentum J is projected out from ��(β,γ ),

�J�

MK (β,γ ) = P J
MK��(β,γ )

= 2J + 1

8π2

∫
d�DJ∗

MK (�)R̂(�)��(β,γ ). (11)

Here, P J
MK , DJ

MK (�), and R̂(�) are the angular-momentum
projector, the Wigner D function, and the rotation operator,
respectively. The integrals over Euler angles � are evaluated
numerically.

Next, we perform the generator coordinate method (GCM)
calculation by employing the quadrupole deformation param-
eters β and γ as the generator coordinates. The wave function
of GCM reads

�J�

Mn =
∑

i

∑
K

cJ�

Kin�
J�

MK (βi,γi), (12)

where the unknown coefficients cJ�

Kin and eigenenergies EJ�

n

are obtained by solving the Hill–Wheeler equation [30],∑
i ′K ′

HJ�

KiK ′i ′c
J
K ′i ′n = EJ�

n

∑
i ′K ′

NJ�

KiK ′i ′c
J�

K ′i ′n,

HJ�

KiK ′i ′ = 〈
�J�

MK (βi,γi)
∣∣Ĥ ∣∣�J�

MK ′ (βi ′ ,γi ′ )
〉
,

NJ�

KiK ′i ′ = 〈
�J�

MK (βi,γi)
∣∣�J�

MK ′(βi ′ ,γi ′)
〉
. (13)

We also calculate the overlap between �J�

Mn and the basis wave
function of the GCM �J�

MK (βi,γi),∣∣〈�J�

MK (β,γ )
∣∣�J�

Mn

〉∣∣2/〈
�J�

MK (β,γ )
∣∣�J�

MK (β,γ )
〉
, (14)

to discuss the dominant configuration in each state described
by �J�

Mn.

B. Single-particle orbits

The neutron single-particle orbits of the intrinsic wave
functions �int(β,γ ) provide us the motion of the valence
neutrons around the core nucleus. To construct a single-particle
Hamiltonian, we first transform the single-particle wave packet
ϕi to the orthonormalized basis,

ϕ̃α = 1√
λα

A∑
i=1

giαϕi. (15)
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Here, λα and giα are the eigenvalues and eigenvectors of the
overlap matrix Bij = 〈ϕi |ϕj 〉. Using this basis, the Hartree–
Fock single-particle Hamiltonian is derived,

hαβ = 〈ϕ̃α|t̂ |ϕ̃β〉 +
A∑

γ=1

〈ϕ̃αϕ̃γ |v̂N + v̂C |ϕ̃β ϕ̃γ − ϕ̃γ ϕ̃β〉

+ 1

2

A∑
γ,δ=1

〈
ϕ̃γ ϕ̃δ

∣∣∣∣ϕ̃∗
αϕ̃β

δv̂N

δρ

∣∣∣∣ϕ̃γ ϕ̃δ − ϕ̃δϕ̃γ

〉
. (16)

The eigenvalues εs and eigenvectors fαs of hαβ give the
single-particle energies and the single-particle orbits, φ̃s =∑A

α=1 fαsϕ̃α . We calculate the amount of the positive-parity
component in the single-particle orbit,

p+ =
∣∣∣∣〈φ̃s

∣∣∣∣1 + Px

2

∣∣∣∣φ̃s

〉∣∣∣∣2

, (17)

and angular momenta in the intrinsic frame,

j (j + 1) = 〈φ̃s |ĵ 2|φ̃s〉, |jz| =
√

〈φ̃s |ĵ 2
z |φ̃s〉, (18)

l(l + 1) = 〈φ̃s |l̂2|φ̃s〉, |lz| =
√

〈φ̃s |l̂2
z |φ̃s〉, (19)

which are used to discuss the properties of the single-particle
orbits.

C. Reduced width amplitude and decay width

Using the GCM wave function, we calculate the reduced
width amplitudes (RWA) yljπ

n
(r) for the α + 12Be and 6He +

10Be decays, which are defined as

yljπ
n

(r) =
√

A!

AHe!ABe!

〈
φHe

[
φBe

(
jπ
n

)
Yl0(r̂)

]
J�M

∣∣�J�
Mn

〉
, (20)

where φHe denotes the ground-state wave function for 4He
or 6He, and φBe(jπ

n ) denotes the wave functions for daughter
nucleus 12Be or 10Be with spin-parity jπ

n . Yl0(r̂) is the orbital
angular momentum of the intercluster motion and is coupled
with the angular momentum of Be(jπ

n ) to yield the total
spin-parity J�. AHe and ABe are the mass numbers of He and
Be, respectively. The reduced width γljπ

n
is given by the square

of the RWA,

γ 2
ljπ

n
(a) = h̄2

2μa

∣∣ayljπ
n

(a)
∣∣2

, (21)

and the spectroscopic factor S is defined by the integral of the
RWA,

S =
∫ ∞

0
r2

∣∣yljπ
n

(r)
∣∣2

dr. (22)

The partial decay width is a product of the reduced width and
the penetration factor Pl(a),

�ljπ
n

= 2Pl(a)γ 2
ljπ

n
(a), Pl(a) = ka

F 2
l (ka) + G2

l (ka)
, (23)

where a denotes the channel radius, and Pl is given by the
Coulomb regular and irregular wave functions Fl and Gl . The
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FIG. 1. The angular-momentum-projected energy surfaces for the
(a) J π = 0+ and (b) J π = 1− states as functions of quadrupole
deformation parameters β and γ . The filled circles, triangles, and
boxes in panel (a) show the ground, triangular, and linear-chain
structures, while in panel (b) the circle shows the position of the energy
minimum and filled boxes show the linear-chain configurations.

wave number k is determined by the decay Q value and the
reduced mass μ as k = √

2μEQ.
To calculate the RWA, we employ the Laplace expansion

method given in Ref. [31]. This method is applicable to
unequal-sized and deformed clusters without any approxima-
tion. The intrinsic wave functions for 10,12Be and 4,6He are
generated by the AMD energy variation. For 10Be, we obtain
two different intrinsic wave functions in which two valence
neutrons occupy so-called π and σ orbits, respectively. We
regard that the former correspond to the ground band (the 0+

1
and 2+

1 states), while the latter is the excited band (the 0+
2 and

2+
3 states). For 12Be, we obtain an intrinsic wave function in

which two of four valence neutrons occupy π orbits and the
others occupy σ orbits, which is regarded as the 12Be(0+

1 ) and
12Be(2+

1 ). We also obtain another configuration having four
valence neutrons in π orbits, which we regard as 12Be(0+

2 )
and 12Be(2+

2 ). However, the decay width to these states are
negligibly small, and so they are not discussed here. In the
following calculation, we assume that the 4He and 6He clusters
always have jπ = 0+.

We also calculate the neutron spectroscopic factors in
order to compare with the α-cluster spectroscopic factors. The
neutron spectroscopic factor Sn reads

Sn =
∫ ∞

0
r2|ϕ(r)|2dr, (24)

where ϕ(r) is the overlap amplitude which is the overlap
between the wave functions of nuclei with mass A and A + 1,

ϕ(r) = √
A + 1

〈
�J ′�′

M ′n′ (15C)
∣∣�J�

Mn(16C)
〉
. (25)

The intrinsic wave function for 15C is generated by the AMD
energy variation. The spin-parity of 15C are chosen as J ′�′ =
1/2+ (the ground state of 15C) for positive-parity states of 16C
and J ′�′ = 1/2−, 3/2−, 5/2− for negative-parity states.

III. RESULTS AND DISCUSSION

A. Energy surface and intrinsic structures

In Fig. 1, the energy surfaces for Jπ = 0+ and Jπ = 1−
states are shown as the function of quadrupole deformation
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FIG. 2. The density distributions of positive-parity states of the
(a), (b) ground, (c), (d) triangular, and (e), (f) linear-chain configu-
rations. The contour lines show the proton density distributions. The
color plots show the single-particle orbits occupied by four valence
neutrons. The lower panels show the two most weakly bound neutrons,
while the upper panels show the other two valence neutrons. Open
boxes show the centroids of the Gaussian wave packets describing
protons.

parametersβ andγ . The circles on the energy surfaces show the
position of the energy minima. First, we discuss three different
structures on the energy surface of positive parity based on their
intrinsic density distributions shown in Fig. 2. Although the
βγ -constrained AMD method is newly applied in this study,
these three structures are almost identical to those discussed in
our previous work [22].

The energy minimum of the 0+ state is located at (β,γ ) =
(0.45, 31◦) with the binding energy of 110.5 MeV. The intrinsic
density distribution at the minimum is shown in Figs. 2(a)
and 2(b). These figures clearly shown that this structure
has no outstanding clustering. Figures 2(c) and 2(d) show a
different structure that we call the triangular configuration
located around (β,γ ) = (0.70, 37◦). The 3α cluster core forms
a triangle configuration, as seen in the density distribution.
Table I rows (c) and (d) show that four valence neutrons
occupy the (sd)4 shell, indicating 2h̄ω excitation. However,
due to its asymmetric shape, the valence proton orbits are an
admixture of the positive- and negative-parity components. We
note that a similar configuration appears in 14C, which also have

TABLE I. The properties of the valence neutron orbit shown in
Fig. 2. Each column shows the single-particle energy ε in MeV, the
amount of the positive-parity component p+ and the angular momenta
defined by Eqs. (17)–(19).

ε p+ j |jz| l |lz|
(a) −8.69 0.01 0.7 0.5 1.1 1.0
(b) −3.95 0.99 2.2 0.5 1.8 0.4
(c) −5.84 0.98 2.2 1.9 1.9 1.6
(d) −2.97 0.98 2.4 1.9 2.1 1.8
(e) −6.31 0.05 1.8 1.4 1.4 1.0
(f) −3.16 0.07 2.8 0.6 2.6 0.3

10Be(π-bond)

10Be(σ-bond)

{ {

{

10Be(π-bond) {

(a)

(b)

(c)

FIG. 3. The schematic figure showing the π and σ orbits around
the linear chain. The combination of the π orbits around 10Be
perpendicular to the symmetry axis generates π orbits, while the
combination of parallel orbits around 10Be generates σ orbits.

valence neutrons shown in Fig. 2(c) but without those shown
in Fig. 2(d).

A further increase of the deformation realizes the linear-
chain configuration in the strongly prolate deformed region. In
this region, there is an energy plateau around the local energy
minimum located at (β, γ ) = (1.08, 0◦). As seen in Figs. 2(e)
and 2(f), its proton density distribution shows striking 3α
cluster configuration with linear alignment. In addition, the
properties of valence neutron orbits listed in Table I rows (e)
and (f) show that two valence neutrons occupy the so-called π
orbit and the other two neutrons occupy the σ orbit. Here the π
orbit in 16C is formed by the in-phase linear combination of the
π orbit of 10Be and is denoted as 3/2−

π and 1/2−
π depending on

the value of |jz|, as illustrated in Fig. 3(a). The σ orbit is a linear
combination of the σ orbit of 10Be, as illustrated in Fig. 3(b).
Therefore, with these definitions, this state is regarded to have
the (3/2−

π )2(1/2−
σ )2 configuration.

The energy minimum of the energy surface for the 1− states
[Fig. 1(b)] is located at (β, γ ) = (0.59, 40◦) with the binding
energy of 103.6 MeV. At the minimum, the single-particle
properties show the 1p1h configuration ν(p1/2)−1(d5/2)1.

Figures 4(a)–4(d) show a basis wave function located at
(β, γ ) = (1.02, 1◦) in Fig. 1(b). This linear-chain configuration
appears in the prolate deformed region, although there is no
plateau in the energy surface of negative parity. The density
distribution and properties of valence neutron orbits show that
the 3α core is linearly aligned and three valence neutrons
[Figs. 4(a)–4(c)] occupy (3/2−

π )2(1/2−
σ )1 orbits similar to the

linear-chain configuration of positive parity. However, the most
weakly bound valence neutron [Fig. 4(d)] occupies a different
orbit. The properties of single-particle orbit [Table II row (d)]
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FIG. 4. The density distributions of negative-parity linear-chain
states. Panels (a)–(d) correspond to the state at (β, γ ) = (1.02, 1◦),
while panels (e)–(h) correspond to the state at (β, γ ) = (1.23, 1◦). The
contour lines show the proton density distributions. The color plots
show the single particle orbits occupied by four valence neutrons.
Panels (a) and (e) show the most deeply bound valence neutrons,
while panels (d) and (h) show the most weakly bound neutrons. Open
boxes show the centroids of the Gaussian wave packets describing
protons.

show that the most weakly bound valence neutron occupies the
ungerade π orbit, which is a linear combination of the 10Be π
orbit with antiphase, as illustrated in Fig. 3(c). In addition, it can
be seen that this (3/2+

π ) orbit locates around the α particle of the
right side, preferably. Note that this type of linear chain was not
found in 14C [5,11]. We consider that this orbit is unbound in
14C and makes the negative-parity linear-chain unstable in 14C.

Figures 4(e)–4(h) show another intrinsic wave function
belonging the linear-chain configuration that appears around
(β, γ ) = (1.23, 1◦). Although the density distribution and
properties of the valence neutron orbit do not show the clear
molecular orbit nature because of the strong parity mixing, this
intrinsic wave function has the largest overlap with member
states of a linear-chain band, as mentioned in the next section.

B. Excitation spectrum

Figure 5 shows the spectrum of the positive-parity states
obtained by the GCM calculation. The properties of the several
selected states are listed in Table III. For positive parity, it
is found that three different bands exist: ground, triangular,
and linear-chain bands. We classify the excited states which

TABLE II. Properties of the valence neutron orbits shown in
Fig. 4. Each column shows the single-particle energy ε in MeV, the
amount of positive-parity component p+ and the angular momenta
defined by Eqs. (17)–(19).

ε p+ j |jz| l |lz|
(a) −6.76 0.05 2.1 1.5 1.7 1.0
(b) −6.63 0.16 2.0 1.5 1.7 1.0
(c) −2.10 0.03 2.7 0.5 2.5 0.3
(d) −0.78 0.92 3.0 1.5 2.7 1.0
(e) −4.80 0.08 2.6 1.1 2.3 0.7
(f) −4.48 0.16 2.7 1.2 2.4 0.8
(g) −4.07 0.23 2.8 1.0 2.6 0.6
(h) −2.23 0.57 3.0 1.2 2.8 0.8

TABLE III. Excitation energies (MeV), α reduced widths
(MeV1/2), α-cluster and neutron spectroscopic factors of several
selected positive-parity states. The reduced widths, α and neutron S

factors are calculated for the decays to the ground states of daughter
nuclei.

Band J π Ex γα(6.0 fm) Sα Sn

Ground 0+
1 0.00 0.00 0.03 0.22

2+
1 1.69 0.00 0.00 0.35

4+
1 4.04 0.00 0.00 0.01

Triangular 0+
2 8.35 0.01 0.05 0.12

2+
4 10.22 0.00 0.00 0.01

2+
5 10.79 0.00 0.01 0.02

Linear chain 0+
6 16.81 0.28 0.11 0.00

2+
9 17.51 0.23 0.07 0.00

4+
10 18.99 0.26 0.09 0.00

6+
5 21.49 0.23 0.07 0.00

have α reduced widths larger than 0.10 MeV1/2 at the channel
radius a = 6.0 fm as cluster states. In these results, only the
linear-chain band satisfies this condition. For the triangular
configuration, the member states have overlap larger than
0.50 with the configuration shown in Figs. 2(c) and 2(d)
are classified as the triangular band. The intraband B(E2)
strengths are listed in Table IV.

The member states of the ground band are dominantly
composed of the configurations around the energy minimum
of the energy surface. The ground state has the largest overlap
with the basis wave function shown in Figs. 2(a) and 2(b)
that amounts to 0.98, and the calculated binding energy is
111.2 MeV which is close to the observed binding energy of
110.8 MeV. The excitation energies of other member states
2+

1 and 4+
1 are also reproduced. This band has no outstanding

clustering but has a shell-model-like structure with a ν(sd)2

configuration which can be confirmed from the small α cluster
spectroscopic factors and large neutron spectroscopic factors
given in Table III.

Because of its triaxial deformed shape, the triangular con-
figuration generates two rotational bands built on the 0+

2 and 2+
5

TABLE IV. Calculated in-band B(E2) strengths for the low-spin
positive-parity states in units of e2 fm4. The number in parentheses is
the observed datum [32–36].

Ji → Jf B(E2; Ji → Jf )

Ground → ground 2+
1 → 0+

1 6.7 (0.92 ∼ 4.2)

4+
1 → 2+

1 4.1

Triangular 2+
4 → 0+

2 2.5

→ triangular 2+
5 → 0+

2 0.9

3+
3 → 2+

4 9.5

3+
3 → 2+

5 8.5

Linear chain 2+
9 → 0+

6 380.3

→ linear chain 4+
10 → 2+

9 544.3

6+
5 → 4+

10 891.4
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FIG. 5. The positive-parity energy levels up to J π = 8+. Open boxes show the observed states with the definite spin-parity assignments,
and other symbols show the calculated result. The filled circles, triangles and boxes show the ground, triangular and linear-chain bands, while
lines show the noncluster states which have reduced widths smaller than 0.10 MeV1/2 except for the triangular band.

states. The member states have overlap larger than 0.50 with
the configuration shown in Figs. 2(c) and 2(d) which amount
to, for example, 0.78 in the case of the 0+

2 state. The member
states with Jπ � 5+ are fragmented into several states because
of the coupling with the noncluster configurations. Compared
to the linear-chain states, these bands have less pronounced
clustering and α clusters are considerably distorted. As a
result, the member states gain binding energy and the low-spin
states are located well below the cluster thresholds. Because
of the α-cluster distortion and deeper binding, the triangular
configuration has small α spectroscopic factors and reduced
widths, as listed in Table III.

The linear-chain configuration generates a rotational band
which is built on the 0+

6 state located at 16.8 MeV. The
bandhead 0+

6 state has the largest overlap with the configuration
shown in Figs. 2(e) and 2(f) that amounts to 0.94. The
moment of inertia is estimated as h̄/2� = 112 keV which is
considerably larger than those of the ground band (h̄/2� =
196 keV) and triangular band (h̄/2� = 238 keV). Owing
to its large moment of inertia, the member state Jπ = 8+
located at Ex = 24.8 MeV becomes the yrast state. In addition,
the large moment of inertia brings about the huge intraband
B(E2) compared with those of the ground and triangular
bands, as listed in Table IV. In contrast to the ground and
triangular bands, the linear-chain band has the large α cluster
spectroscopic factors and very small neutron spectroscopic
factors. As all member states locate above the 4He + 12Be and
6He + 10Be thresholds, the linear-chain states should decay
into these two channels, which can be an important observable
to identify the linear-chain state as discussed in the next section.

Figure 6 shows the spectrum of the negative-parity states.
Only two states (2− and 5−), which are described by open
boxes in the figure, were observed with the definite spin-parity
assignments [19,37]. Our calculation shows the yrast band
which is built on the 2−

1 state located at 6.0 MeV, and the
2−

1 and 5−
1 member states of this rotational band are close

to the observed two states. Since this band has the 1p1h
configuration ν(p1/2)−1(d5/2)1, the spectroscopic factors in
the [15C(g.s.) ⊗ j ] channels are negligibly small but those in
the [15C(1/2−) ⊗ d5/2], [15C(3/2−) ⊗ d5/2], and [15C(5/2−) ⊗
d5/2] channels are large, as listed in Table V.

In the case of negative parity, the linear-chain configuration
generates two different types of rotational bands. In the same
manner as the positive-parity states, the excited states which
have α reduced widths larger than 0.10 MeV1/2 are classified
as cluster states, and only linear-chain bands satisfy this
condition. These bands are also located above the 4He + 12Be
and 6He + 10Be thresholds. This is in contrast to 14C in
which the linear-chain band is not obtained by the AMD

TABLE V. Neutron spectroscopic factors of yrast band for
negative parity. The components of 15C ⊗ s1/2 and 15C ⊗ d3/2 are
negligibly small.

2−
1 3−

1 4−
1 5−

1

15C(1/2−) ⊗ d5/2 0.03 0.42
15C(3/2−) ⊗ d5/2 0.34 0.04 0.19
15C(5/2−) ⊗ d5/2 0.67 0.07 0.48 0.27
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and other symbols show the calculated result. The filled boxes show the linear-chain bands, while lines show the noncluster states which have
the reduced widths less than 0.10 MeV1/2.

calculations [5,11,15]. The properties of the several selected
linear-chain states are listed in Table VI and the B(E2)
strengths are listed in Table VII.

The first band, which we call linear-chain band 1 (blue
square), is dominantly composed of the wave function shown
in Figs. 4(a)–4(d) although it is mixed with noncluster con-
figurations. Furthermore, there is a mixing of K = 0− and 1−
components. As a result, the member states of this band are
fragmented into several states. For example, we classify both
of the 1−

7 and 1−
8 states as the member states of the band, whose

overlaps with the basis wave functions shown in Figs. 4(a)–4(d)
are 0.24 and 0.64, respectively. Because of the fragmentation,

TABLE VI. Excitation energies (MeV), α reduced widths
(MeV1/2), and α-cluster spectroscopic factors of several selected
states for negative parity. γα and Sα show the decay to the ground
state (0+

1 ) of 12Be.

Band J π Ex γα(5.5 fm) γα(7.0 fm) Sα

yrast band 2−
1 6.11

3−
1 7.25 0.00 0.00 0.02

4−
1 9.34

5−
1 10.71 0.00 0.00 0.00

Linear chain 1−
7 18.28 0.04 0.00 0.01

band 1 1−
8 18.64 0.02 0.01 0.00

3−
9 19.45 0.10 0.01 0.03

3−
13 21.57 0.05 0.02 0.01

Linear chain 1−
11 22.05 0.04 0.12 0.03

band 2 3−
14 23.00 0.04 0.12 0.03

5−
15 24.76 0.03 0.11 0.02

7+
6 27.35 0.06 0.11 0.01

the intraband B(E2) values are smaller than those of positive-
parity linear-chain band. However, the moment of inertia,
h̄/2� = 118 keV, is comparable with that of positive-parity
linear chain. In this band, the neutron spectroscopic factors
are negligible. Compared with the positive-parity linear chain,
α spectroscopic factors are small, but sufficiently larger than
other negative-parity states.

The other band, the linear-chain band 2 (red squares), is built
on the 1−

11 state at Ex = 22.1 MeV which is about 3.6 MeV
higher than the linear-chain band 1. The 1−

11 state has the largest
overlap with the wave function shown in Figs. 4(e)–4(h), which
amounts to 0.92. In contrast with the linear-chain band 1, the
member states of this band have the K = 0 quantum number
and clearly form a single rotational band. In addition, the
moment of inertia, h̄/2� = 98 keV, and the intraband B(E2)
values are as large as those of positive-parity linear-chain band.
As well as the linear-chain band 1, the neutron spectroscopic

TABLE VII. The calculated in-band B(E2) strengths for the low-
spin negative-parity states in units of e2 fm4.

Ji → Jf B(E2; Ji → Jf )

Linear chain band 1 2−
9 → 1−

7 53.2
2−

9 → 1−
8 25.0

3−
9 → 2−

9 37.7
3−

13 → 2−
9 0.1

4−
11 → 3−

9 72.0
4−

11 → 3−
13 4.0

Linear chain band 2 3−
14 → 1−

11 492.2
5−

15 → 3−
14 561.6

7−
6 → 5−

15 556.1
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FIG. 7. Calculated α-decay reduced widths. Panels (a)–(c) show the decay of the positive-parity states to the ground band of 12Be. Panels
(d)–(f) show the decay of the negative-parity states to the ground band of 12Be. The channel radii a are 6.0 fm for panels (a)–(c) and 5.5 (left
side), 7.0 (right side) fm for panels (d)–(f), respectively.

factors are negligible while the α spectroscopic factors are a bit
larger but smaller than those of the positive-parity linear-chain
band.

C. Decay mode

Figure 7 shows the α reduced widths of several selected
low-spin states. For positive parity, we show the member
states of the ground, triangular, and linear-chain bands, while
for negative parity, we show only the states which have
reduced widths larger than 0.1 MeV1/2. The decay channels are
indicated as [12Be(jπ ) ⊗ l] where jπ and l denote the angular

momentum of the 12Be ground band and the relative angular
momentum between 12Be and α particles, respectively. Here,
12Be is assumed to have two neutrons in a π orbit and the
other two neutrons in a σ orbit. The channel radii a are 6.0 fm
for Figs. 7(a)–7(c) and 5.5 (left side), 7.0 (right side) fm for
Figs. 7(d)–7(f), which are chosen to be smoothly connected to
the Coulomb wave function. The detailed values of α and 6He
decay widths for linear-chain states are listed in Table VIII.

In positive parity, the linear-chain band (the 0+
6 , 2+

9 , and 4+
10

states) has large reduced widths compared with the ground and
triangular bands. Note also that the α reduced widths of other
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TABLE VIII. Partial decay widths (keV) of linear-chain bands for (a) positive-parity and (b) negative-parity linear-chain band 2. The channel
radii a are (a) 6.0 fm and (b) 7.0 fm.

(a) Positive parity

J π Ex �α(12Be(0+
1 )) �α(12Be(2+

1 )) �6He(10Be(0+
1 )) �6He(10Be(2+

1 ))

0+
6 16.81 335 1

2+
9 17.51 300 118 0

4+
10 18.99 505 954 33

6+
5 21.49 535 1591 78 18

(b) Negative parity
1−

11 22.05 198 567 77 63
3−

14 23.00 196 597 84 115
5−

15 24.76 181 615 92 173
7−

6 27.35 224 763 100 225

excited states are also much smaller than the linear-chain band.
Hence, in the calculated energy region, the linear chain band
has the largest reduced widths. Another point to be noted is
the decay pattern of the linear-chain band. The reduced widths
in the [12Be(2+

1 ) ⊗ l] channels are as large as or even larger
than those in the [12Be(0+

1 ) ⊗ l] channel. This dominance of
the 12Be(2+

1 ) component in the linear-chain band is owed to the
strong angular correlation between α clusters which is brought
about by their linear alignment. This property is in contrast to
the Hoyle state where α particles are mutually orbiting with
l = 0 and, hence, the 8Be(0+

1 ) component dominates [38].
Similar properties of the linear-chain configuration was also
discussed in 12C [39] and 14C [11]. Therefore, if the decay to
12Be(2+

1 ) is confirmed, it will provide strong evidence for the
linear-chain formation.

Figure 8 shows the 6He reduced widths of linear-chain states
for positive parity. We calculated the 6He reduced widths for
both the 6He + 10Be(0+

1 ,2+
1 ) and 6He + 10Be(0+

2 ,2+
3 ) chan-

nels. Here we assumed that the ground band of 10Be(0+
1 and 2+

1 )
has the π -orbit neutrons, while the excited state (0+

2 , 2+
3 , and so

on) of 10Be has the σ -orbit neutrons. Figure 8(a) corresponds to
the decay to 6He + 10Be(0+

1 ,2+
1 ) and the Fig. 8(b) corresponds

to the decay to 6He + 10Be(0+
2 ,2+

3 ). Although the magnitudes

of the 6He reduced widths are about a factor of two smaller
than that of α reduced widths, they are still sufficiently large
compared with any other excited states. It is also noted that
the magnitudes of 6He + 10Be(0+

1 ,2+
1 ) and 6He + 10Be(0+

2 ,2+
3 )

reduced widths are almost of the same order. This is caused
by the unique configuration of linear-chain state in 16C. The
linear-chain configuration in 16C has the two π -orbit neutrons
and two σ -orbit neutrons, so the linear-chain configuration of
16C can decay into both 10Be(0+

1 ,2+
1 ) and 10Be(0+

2 ,2+
3 ). The

results shown in Fig. 8 are consistent with this explanation.
This decay property should be compared with that of the linear
chains in 14C. As already discussed in our previous paper [11],
the π -bond linear-chain state of 14C dominantly decays into
10Be(0+

1 ,2+
1 ), while the decay to 10Be(0+

2 ,2+
3 ) is suppressed.

In contrast to the π -bond linear chain, the σ -bond linear-chain
state of 14C dominantly decays into 10Be(0+

2 ,2+
3 ) and the decay

to 10Be(0+
2 ,2+

3 ) is suppressed.
For the negative parity, it can be seen that the linear-

chain bands 1 and 2 show relatively smaller reduced widths
compared with the positive-parity linear-chain band. The
linear-chain configurations of negative parity do not match
the 4He + 12Be(0+

1 ,2+
1 ) configuration due to the existence

of the valence neutron which occupies the ungerade π+
3/2

6
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FIG. 8. The calculated 6He-decay reduced widths of linear-chain states in positive parity. In panel (a), the decay to the ground band of 10Be
is shown. In panel (b), the decay to the excited band of 10Be is shown. The channel radius a is 6.0 fm.
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FIG. 9. The calculated 6He-decay reduced widths of linear-chain states in negative parity. Panels (a)–(c) show the decay to the ground band
of 10Be. Panels (d)–(f) show the decay to the excited band of 10Be.

(see Fig. 4). Therefore, the decay to the 4He + 12Be(0+
1 ,2+

1 )
channel is suppressed. The characteristic decay patterns of the
linear-chain configuration can also be seen in negative parity;
namely, the reduced widths in the [12Be(2+

1 ) ⊗ l] channels
are larger than in the [12Be(0+

1 ) ⊗ l] channels. In addition,
the partial decay widths of the linear-chain band 2 listed in
Table VIII (b) are very large because of their high excitation
energies. Therefore, if it is observed, the linear-chain formation
in the negative-parity can be supported strongly. However,
it is not easy to distinguish the linear-chain band 1 and 2
from α reduced widths because they are almost of the same
magnitude.

Figure 9 shows the 6He reduced widths of negative-parity
linear-chain states for both the 10Be(0+

1 ,2+
1 ) and 10Be(0+

2 ,2+
3 )

channels. It is interesting that a characteristic difference be-
tween the linear-chain bands 1 and 2 appears in the 6He reduced
widths. The linear-chain band 2 has the same magnitude of
the 6He reduced widths as the α reduced widths. In addition,
the 6He reduced widths of the linear-chain band 2 are even
larger than those of positive-parity linear-chain band (see
Fig. 8). On the other hand, the linear-chain band 1 has the
smaller 6He reduced widths, especially as it rarely decays into
6He + 10Be(0+

2 ,2+
3 ). This characteristic difference enables us

to distinguish the linear-chain bands 1 and 2.
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A high-lying excited state at 20.6 MeV was observed by
the breakup of 6He + 10Be [23]. Since the spin-parity was not
assigned, several calculated excited states can be the candidate
of the observed high-lying state, including the linear-chain
states naturally. However, the positive- or negative-parity
linear-chain states only show the large 6He reduced widths
near 20.6 MeV. Although further experimental studies are
needed, we suggest the linear-chain state as the candidate for
the observed high-lying state.

IV. SUMMARY

We discussed the properties of the linear-chain states of 16C
based on the AMD. In particular, we focused on their decay
modes to allow for experimental identification.

In positive parity, it is shown that the linear-chain configu-
ration has the valence neutrons occupying molecular orbits
(3/2−

π )2(1/2−
σ )2. It generates a rotational band built on the

0+ state at 16.8 MeV and its moment of inertia is estimated
as h̄/2� = 112 keV. It is shown that the linear-chain states
have the large α and 6He reduced widths. In particular, the
large α reduced widths in the α + 12Be(2+

1 ) channel is strong
evidence for the linear-chain configuration. In the case of
the 6He decay, the magnitudes of the reduced decay widths
in both 10Be(0+

1 ,2+
1 ) and 10Be(0+

2 ,2+
3 ) channels are almost

of the same order. Compared with 14C, this is caused by the
unique configuration of linear-chain state in 16C.

In the negative-parity states, is is found that two types of
linear-chain bands exist. The first band, which we call the
linear-chain band 1, is composed of the linear-chain configura-
tion with the (3/2−

π )2(1/2−
σ )(3/2+

π ) molecular orbits. This band
is built on 1− states located around 18.5 MeV. Because of the
mixing with noncluster states and the mixing of K = 0− and
1− components, the member states are fragmented into several
states. The other band, which we call the linear-chain band 2,
is built on 1− states located around 22.1 MeV. Although this
band does not have the clear molecular-orbit configuration, the
single rotational K = 0 band is clearly formed with the large
moment of inertia h̄/2� = 98 keV. The α reduced widths of
these two linear chains are smaller than those of the positive-
parity linear-chain band, but are sufficiently large to be distin-
guished from other noncluster states. These two linear-chains
cannot be distinguished based on the α reduced widths because
they are almost same magnitude. However, the 6He reduced
widths of the linear-chain band 2 are larger than those of linear-
chain band 1. We conclude that this characteristic difference
enables us to distinguish the linear-chain bands 1 and 2.
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