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Examination of the 22C radius determination with interaction cross sections

T. Nagahisa and W. Horiuchi
Department of Physics, Hokkaido University, Sapporo 060-0810, Japan

(Received 27 February 2018; published 23 May 2018)

A nuclear radius of 22C is investigated with the total reaction cross sections at medium- to high-incident energies
in order to resolve the radius puzzle in which two recent interaction cross-section measurements using 1H and
12C targets show the quite different radii. The cross sections of 22C are calculated consistently for these target
nuclei within a reliable microscopic framework, the Glauber theory. To describe appropriately such a reaction
involving a spatially extended nucleus, the multiple scattering processes within the Glauber theory are fully
taken into account, that is, the multidimensional integration in the Glauber amplitude is evaluated using a Monte
Carlo technique without recourse to the optical-limit approximation. We discuss the sensitivity of the spatially
extended halo tail to the total reaction cross sections. The root-mean-square matter radius obtained in this study
is consistent with that extracted from the recent cross-section measurement on 12C target. We show that the
simultaneous reproduction of the two recent measured cross sections is not feasible within this framework.
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I. INTRODUCTION

Advances in the radioactive ion beam facility have revealed
the exotic structure of short-lived neutron-rich unstable nuclei,
which has never been observed in stable nuclei, such as
halo structure [1]. The neutron dripline of carbon isotopes
is observed to be at 22C, which is known to be the heaviest
two-neutron halo nucleus found so far. This nucleus is a
key to the understanding of the shell evolution along the
neutron dripline with the magicity at the neutron numbers
14 (20C) and 16 (22C). The three-body 20C + n + n system
is the so-called Borromean, in which neither of the subsys-
tems, 20C-n and n-n, are bound, leading to an extended two-
neutron wave function with s-wave dominance predicted by
the earlier three-body calculation [2]. In fact, the two-neutron
separation energy observed is very small: 0.42 ± 0.94 MeV
[3] and 0.14 ± 0.46 MeV [4]. The s-wave two-neutron halo
structure is further confirmed by the 20C fragment momentum
distribution measurement of the two-neutron removal reaction
from 22C [5]. This nucleus has attracted much attention not only
in nuclear physics but also in atomic physics in connection to
the Efimov physics [6,7].

Research interest has now been extended to reveal the exotic
excitation mechanism of 22C [8–10]. However, the experimen-
tal situation on the 22C radius, which is one of the most impor-
tant and basic properties of an atomic nucleus, has been still un-
der discussion. Since direct electron-scattering measurement
is not feasible at the moment, and a neutron radius is difficult to
probe, the nuclear radii of unstable nuclei have often been stud-
ied by the total reaction or interaction cross sections at medium-
to high-incident energies (several tens of MeV to 1 GeV). The
first measurement of the interaction cross section of 22C was
performed in 2010 by Tanaka et al. [11]. The large interac-
tion cross section on 1H target incident at 40 MeV/nucleon
was measured 1338 ± 274 mb, resulting in a huge matter
radius of 5.4 ± 0.9 fm with large uncertainties. Recently,

high-precision measurement was made for the interaction
cross section on 12C target incident at ∼240 MeV/nucleon by
Togano et al. [12], and the resultant root-mean-square (rms)
matter radius is 3.44 ± 0.08 fm, which is quite far from the
previously extracted value 5.4 ± 0.9 fm [11]. Since the nuclear
radius has often served as one of the inputs to some theoretical
models, e.g., Refs. [6,7,13], this demands appropriate reliable
evaluation of the nuclear radius.

Here we focus on the theoretical investigation of the nuclear
radius of 22C with the total reaction cross sections. Use of
such inclusive observables has some advantages: The theory
of describing the cross section is well established, the cross
sections can be measured for almost all nuclei as long as the
beam intensity is sufficient, and the different sensitivity to
the nuclear density profile can be controlled by a choice of a
target nucleus and an incident energy. Systematic analyses of
nuclear matter radii with the total reaction cross sections on 12C
target incident at � 200 MeV/nucleon have revealed structure
changes and the role of excess neutrons of light neutron-rich
unstable nuclei [14–21]. We remark that the total reaction cross
sections on 1H target is also useful because the probe has
different sensitivity to protons and neutrons in the projectile
nucleus depending on incident energies that can be used to
extract the neutron-skin thickness of unstable nuclei [22,23].

In this paper, we evaluate the nuclear radius of a two-
neutron halo nucleus, 22C, from the total reaction cross sections
on 1H and 12C targets and discuss the sensitivity of the
halo tail to these cross sections. We employ a reliable high-
energy reaction theory, the Glauber model [24], which is a
microscopic multiple-scattering theory starting from the total
nucleon-nucleon cross section. In this work, the complete
evaluation of the Glauber amplitude is made by using a Monte
Carlo technique in order to treat the extended two-neutron
halo wave function of 22C appropriately. Also, we test the
optical-limit approximation (OLA), a standard approximation
of the Glauber model, which has been used in many analyses
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of the radius extraction (see the Appendix for references), and
quantify the possible uncertainties with this approximation.

The paper is organized as follows. Section II briefly explains
the Glauber model employed in this paper. The Glauber ampli-
tude which involves multidimensional integration is introduced
in this section. Section III is devoted to the evaluation of the
multidimensional integration using the Monte Carlo technique.
The explicit expression of the Glauber amplitude is presented
in Sec. III A. Section III B explains how to generate the wave
function of 22C. Monte Carlo configurations that crucially
determine the accuracy of the multidimensional integration
are generated in Sec. III C. They are tested in the total
reaction cross-section calculations in Sec. III D. Our results
are presented and discussed in Sec. IV. A direct comparison
between the theoretical and experimental cross sections is
made. In Sec. IV A, the validity of our calculations is confirmed
in comparison with available experimental data of 12C + 12C
and 12C + 1H systems. Then, we further confirm the reliability
of our calculations in the reactions involving 20C and 12C.
Section IV B presents our main results: We describe the
22C + 12C and 22C + 1H reactions in a consistent manner and
discuss the possible uncertainties in the radius determination
using the interaction cross section. The sensitivity of the halo
tail of 22C to the interaction cross sections is also discussed.
The conclusion is drawn in Sec. V. A detailed analysis of
approximate treatment of the Glauber amplitude is given in
the Appendix.

II. TOTAL REACTION CROSS SECTION IN THE
GLAUBER MODEL

Here we consider a high-energy collision of the projectile
(P ) and target (T ) nuclei with mass numbers AP and AT , re-
spectively. The Glauber model [24] is a microscopic multiple-
scattering theory which is widely used to study high-energy
nucleus-nucleus collisions. With the help of the adiabatic and
eikonal approximations, the final state wave function of a
projectile and target system, �f , is greatly simplified as the
product of the ground-state wave functions of the projectile
�P

0 and the target �T
0 nuclei, and the product of the phase-shift

functions of a nucleon-nucleon collision, eiχNN , as

|�f 〉 = exp

⎡
⎣i

AP∑
j=1

AT∑
k=1

χNN
(
b + ŝP

j − ŝT
k

)⎤⎦∣∣�P
0 �T

0

〉
, (1)

where b is the impact parameter vector perpendicular to the
beam direction z, and ŝP

j (ŝT
k ) denotes the two-dimensional

single-particle coordinate operator projected onto the xy plane
of the j th (kth) nucleon from the center of mass of the projectile
(target).

With this approximation, we only need to evaluate the
optical phase-shift function or the Glauber amplitude, eiχ(b),
which includes all information of the elastic processes in the
high-energy nuclear collision,

eiχ(b) = 〈
�P

0 �T
0

∣∣ AP∏
j=1

AT∏
k=1

[
1 − �NN

(
b + ŝP

j − ŝT
k

)]∣∣�P
0 �T

0

〉
,

(2)

where the profile function �NN (b) = 1 − eiχNN (b) is introduced
for the sake of convenience. The total reaction cross section is
evaluated by integrating the reaction probability,

P (b) = 1 − |eiχ(b)|2, (3)

over b as

σR =
∫

db P (b). (4)

The profile function is usually parametrized as [25]

�NN (b) = 1 − iαNN

4πβNN
σ tot

NN exp

[
− b2

2βNN

]
, (5)

where σ tot
NN , αNN , and βNN are the total nucleon-nucleon (NN )

cross section, the ratio between the real and imaginary parts
of the scattering amplitude at the forward angle, and the so-
called slope parameter, respectively. Parameter sets for various
incident energies are listed in Ref. [26] for proton-proton (pp)
and proton-neutron (pn) are employed. The nn (np) are taken
to be the same as pp (pn). For the sake of simplicity, hereafter
we omit NN in the profile function otherwise needed. The
validity of the parameter sets of the profile function has already
been confirmed in a number of examples [18,22,23,27–29].
The other inputs to the theory are the wave functions of
projectile and target nuclei. Once these inputs are set, the
theory has no adjustable parameter. We do not consider the
Coulomb breakup contributions since the effects are negligible
in systems involving small Z nuclei [23,27].

III. EVALUATION OF MULTIDIMENSIONAL
INTEGRATION IN THE GLAUBER AMPLITUDE

In general, the explicit evaluation of the Glauber ampli-
tude of Eq. (2) is difficult because the expression involves
3(AP + AT )-dimensional integration. For the 1H target, it is
possible to reduce the dimension of the integral in the Glauber
amplitude when the projectile wave function is represented by
some specific forms such as a Gaussian form [30] or a Slater
determinant of single-particle wave functions [28,31–33]. For
nucleus-nucleus scattering, the explicit evaluation is in general
tedious, and thus one has to introduce some approximations to
reduce the complexity. However, it is known that the standard
OLA cannot be applied to nucleus-nucleus reactions involving
spatially extended nuclei, leading to systematic uncertainties
on the extraction of the nuclear radii [34,35] (see also Appendix
of this paper). On the contrary, a Monte Carlo (MC) integration
offers a direct way to evaluate the multidimensional integration
in the Glauber amplitude of Eq. (2) [36–38]. We take the same
route as the MC integration succeeds in its complete evaluation.

A. Multidimensional integration in the Glauber amplitude

The multidimensional integration in Eq. (2) is evaluated
using the MC integration. For this purpose, we introduce the
A-body density,

ρA(r̄1, . . . ,r̄A) = 〈�0|
A∏

i=1

δ(ˆ̄r i − r̄ i)|�0〉, (6)
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where ˆ̄r i is the single-particle coordinate operator of the ith
nucleon from the origin. Then the complete Glauber amplitude
of Eq. (2) reads

eiχ(b) =
∫

· · ·
∫ ⎛
⎝ AP∏

j=1

d r̄P
j

⎞
⎠( AT∏

k=1

d r̄T
k

)

× ρP
AP

(
r̄P

1 , . . . ,r̄P
AP

)
ρT

AT

(
r̄T

1 , . . . ,r̄T
AT

)
×

AP∏
j=1

AT∏
k=1

[
1 − �

(
b + sP

j − sT
k

)]
, (7)

where sP
j (sT

k ) denotes the xy component of the j th (kth)
single-particle coordinate from the center-of-mass coordi-
nate of the projectile (target). The product of the A-body
densities of the projectile and target nuclei, ρP

AP
ρT

AT
, is the

guiding function of the MC integration. If appropriate MC
configurations are given, then Eq. (7) can easily be evaluated
by summing up

∏AP

i=1

∏AT

j=1[1 − �(b + sP
i − sT

j )] with these
MC configurations at each b. Since the many-body operator,∏AP

i=1

∏AT

j=1[1 − �(b + ŝP
i − ŝT

j )], is translationally invariant,
i.e., free from the center-of-mass motion, the center-of-mass
wave functions in �P

0 and �T
0 are integrated out through the

MC integration. For spherical projectile and target nuclei, the
integration over b in Eq. (4) is reduced to a one-dimensional
one over |b| which is performed simply by the trapezoidal
rule.

B. Wave function

The wave function is assumed to be the product of antisym-
metrized neutron and proton wave functions,

�0 = (An�n)(Ap�p) (8)

with AN being the antisymmetrizer for proton (N = p) and
neutron (N = n) defined by

AN = 1√NN !

NN !∑
(p1,...,pNN

)

sgn(p1, . . . ,pNN
)P(p1,...,pNN

), (9)

where the operator P(p1,...,pNN
) exchanges particle indices and

NN denotes the number of proton or neutron. For the sake of
simplicity, we assume for �N the product of the single-particle
wave function φi(r̄ i) of the ith nucleon,

�N =
NN∏
i=1

φi(r̄ i). (10)

In the present work, we have considered the three nuclei,
12C, 20C, and 22C. A configuration of the 12C wave function is
assumed to be (0s1/2)2(0p3/2)4 for both proton and neutron with
the harmonic-oscillator (HO) single-particle wave functions.
Since the charge radius of 12C is well known, the HO length
parameter can be fixed in such a way to reproduce the point-
proton radius, 2.33 fm, extracted from the charge radius [39].
For 20C and 22C, single-particle wave functions of 20C and
22C systems are generated from the phenomenological Woods-

Saxon potential [40,41],

V (r) = −V0f (r) + V1(l̂ · ŝ)
1

r

d

dr
f (r) + VC(r), (11)

where f (r) = 1/{1 + exp [(r − RN )/a]} with a = 0.65 fm,
RN = 1.25A1/3 fm. V0 is taken commonly for proton and
neutron and V1 = 0.6875V0. VC is the Coulomb potential with
a uniform charge distribution with a sphere radius RN , which
only acts on a proton.

We explain how we take the strength V0 in the following:
A proton configuration is assumed to be (0s1/2)2(0p3/2)4.
The subshell closure of the neutron numbers 14 and 16 is
assumed for neutron configurations of 20C and 22C. They
are taken respectively as (0s1/2)2(0p3/2)4(0p1/2)2(0d5/2)6 for
20C and (0s1/2)2(0p3/2)4(0p1/2)2(0d5/2)6(1s1/2)2 for 22C. These
assumptions can be reasonable to describe 22C as 20C + n +
n s-wave two-neutron halo structure [2] which is confirmed
by the 20C fragment momentum distribution measurement of
the two neutron removal reaction from 22C [5]. To simulate the
two-neutron halo structure of 22C, we first take V0 commonly
to all angular-momentum l states and fix it in such a way to
reproduce the interaction reaction cross section of 20C + 12C
measured at ∼900 MeV [42]. Since a small V0 value for l = 0
(V l=0

0 ) generates the single-particle wave function with a long
tail that crucially determines the radius of the 22C, and we only
vary V l=0

0 as a free parameter that controls the radius of 22C.
To perform the MC integration accurately, we need to

generate a large number of points, typically 106−8, which
follow the probability distribution ρP

AP
ρT

AT
but indeed it costs

computational resources because we have to take care of
(N P

p !N P
n !N T

p !N T
n !)2 permutations for the projectile and target

wave functions coming from the bra and ket sides. In order
to reduce the computational cost, we use the simple-product
wave function defined by Eq. (10). Note that in the present
case this assumption does not change any one-body physical
quantities such as nuclear radius and one-body density, but
the A-body density of Eq. (6) is modified resulting in some
cross-section differences through the Glauber amplitude of
Eq. (7). We confirm that the difference in the total reaction
cross sections on 1H target with the fully antisymmetrized and
the simple-product wave functions for 20C is small typically
less than ∼1%. Therefore, for practical reasons, we employ
the simple-product wave functions of 20C and 22C as Eq. (10).

C. Monte Carlo configurations and nuclear radius

The guiding function of the MC integration, the A-body
density (6), is constructed by a random walk with the
Metropolis algorithm [43]. The number of spatial points
(MC configurations) represented in the Cartesian coordinate
(x1,y1,z1, . . . ,xA,yA,zA) are generated by the random walk
with the step size �. The resulting MC configurations must
follow the probability distribution or the guiding function.
They are used to perform the multidimensional integration
over projectile and target coordinates. The accuracy of the
MC integration crucially depends on the number of MC
configurations M and a choice of �. Since the total reaction
cross section is closely related to the nuclear size, the MC
configurations used in this paper are required to reproduce at
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FIG. 1. Rms radii of 22C as a function of potential strengths for l =
0 with different numbers of MC configurations, M . Exact calculations
with the center-of-mass contribution are plotted for comparison.
The center-of-mass-free rms radii with M = 108 (corrected) are also
plotted for comparison. See text for details.

least the rms radius of the 22C defined by

√
〈r̄2〉 =

√√√√ 1

A

A∑
i=1

∫
d r̄ |r̄|2|φi(r̄)|2 (12)

with A = 22. We remark that the above expression (12)
involves the center-of-mass contribution. Though we exactly
exclude the center-of-mass contribution through the MC inte-
gration later, this uncorrected radius can be used for a purpose
to evaluate the precision of the MC integration. As the wave
function assumed in this paper is defined by the product of
the single-particle wave functions, the integration becomes
simple, which can also be evaluated accurately by a standard
integration method, the trapezoidal rule.

To optimize �, we generate several probability distributions
for 22C with different � values and calculate the rms radii
defined in Eq. (12) by the MC integration. Then they are
compared with the “exact” rms radii evaluated with the direct
integration in Eq. (12) by the trapezoidal rule. Finally, we set
� = 1.0 fm that minimizes the rms deviations of the rms radii
of 22C evaluated with the exact and the MC integration ranging
from ∼3 to 4 fm. We note that in such extended wave functions
the optimal � value is larger than that for a typical wave
function. In fact, � = 0.25 fm is used as the optimal value
for 12C whose wave function is not much extended.

Figure 1 displays the center-of-mass uncorrected rms radii
of 22C as a function of the potential strengths −V l=0

0 with dif-
ferent numbers of the MC configurations. The exact rms radii
are also plotted for comparison. We confirm that desired MC
configurations are successfully generated with an appropriate
choice of �, that is, all the MC configurations with M = 106−8

reproduce perfectly the exact rms radii. We will make further
tests of these MC configurations for the multidimensional
integration in the Glauber amplitude in the next subsection.
The center-of-mass corrected rms radii of 22C are also plotted
in Fig. 1 with M = 108, which can be obtained by evaluating

the multidimensional integration

√
〈r2〉 =

√√√√ 1

A

A∑
i=1

∫
· · ·
∫ A∏

j=1

d r̄j |r i |2ρA(r̄1, . . . ,r̄A).

(13)

Taking ρA(r̄1, . . . ,r̄A) as the guiding function, one can easily
perform the multidimensional integration by summing up |r i |2
(r i = r̄ i − X with X = 1

A

∑A
i=1 r̄ i) using a set of the MC

configurations. The difference between the center-of-mass cor-
rected and uncorrected radii appears to be large typically ∼0.1
fm, which cannot be neglected for the realistic calculations.

D. Tests of Monte Carlo configurations in the total reaction
cross-section calculations

Here we test the accuracy of the MC integration in the total
reaction cross-section calculations with respect to the number
of the MC configurations. For the 1H target, when the projectile
wave function is represented by the product of the single-
particle wave functions, we can factorize the expression and
evaluate the complete Glauber amplitude without recourse to
the MC integration as [28,31]

eiχ̄ (b) = 〈�0|
A∏

j=1

[1 − �(b + ˆ̄sj )]|�0〉 (14)

=
∫

· · ·
∫ ⎛
⎝ A∏

j=1

d r̄j

⎞
⎠

× ρA(r̄1, . . . ,r̄A)
A∏

j=1

[1 − �(b + s̄j )] (15)

=
A∏

j=1

[
1 −

∫
d r̄ φ∗

j (r̄)�(b + s̄)φj (r̄)

]
. (16)

Equation (15) is the explicit form for the MC integration, while
in Eq. (16) one can simply use the trapezoidal rule for the
integration over r̄ . Obviously, the above Glauber amplitude
includes the center-of-mass contribution but the expression is
useful for a test of the MC integration as was done in the
previous subsection.

The incident energies are chosen as 40 and 240 MeV for the
1H and 12C targets, respectively, where the experimental data
are available. Here the incident energy is measured in MeV per
nucleon and for simplicity is written in MeV throughout this
paper. Figure 2 compares the total reaction cross sections on
1H target evaluated with different numbers of the MC config-
urations as a function of the center-of-mass uncorrected rms
radii. In order to make a direct comparison with the expression
of Eqs. (15) and (16), they are respectively evaluated by the
MC and trapezoidal (Exact) integration. Though all the wave
functions give almost the same rms radius as shown in Fig. 1,
the cross sections shows somewhat scattered distributions,
depending on the number of the MC configurations, with
M = 106 and 107. The cross sections converge to the exact
values with increasing the number of the MC configurations.
The deviations become at most by ∼1% with M = 108. We
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FIG. 2. Tests of total reaction cross sections of 22C on 1H target
incident at 40 MeV as a function of the center-of-mass uncorrected
rms radii with different number of the MC configurations. “Exact”
values are also plotted for comparison. See text for details.

note that the convergence of the cross section is much slower
than that of an ordinary nuclear system, e.g., 12C and 20C
which typically need M = 106 and 107, respectively. More MC
configurations are needed to have sufficient statistics in the tail
regions of the extended wave function of 22C. In order to ensure
the accuracy of the total reaction cross sections of 22C on 1H
target within 1% level, we employ M = 108 configurations for
the MC integration.

Next, we apply these MC configurations to the 22C + 12C
case where the factorization method of Eq. (16) can no longer
be applied. Figure 3 displays the total reaction cross sections
of 22C on 12C target as a function of the rms radii. The
center-of-mass contribution is exactly removed through the
MC integration in Eq. (13). The trend of the cross sections
with respect to M is similar to those on 1H target: The
cross-section distributions are scattered with M = 106 and 107

and a monotonic and smooth increase of the cross sections is
obtained with M = 108 even at large rms radii. We confirm
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FIG. 3. Total reaction cross sections of 22C on 12C target incident
at 240 MeV as a function of the center-of-mass–corrected rms radii
with different number of the MC configurations. The center-of-mass
contribution is exactly excluded in the calculations.
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FIG. 4. Total reaction cross sections of 12C + 12C and 12C + 1H
collisions as a function of incident energies. Experimental data of the
total reaction (σR) and interaction (σI ) cross sections are taken from
Refs. [44–52] for 12C + 12C and Refs. [53,54] for 12C + 1H.

that one can safely use the MC configurations with M = 108

for the multidimensional integration in the Glauber amplitude
involving the very extended 22C wave function for the analysis
of both the total reaction cross sections on 1H and 12C targets.

IV. RESULTS AND DISCUSSIONS

A. Comparison with measured cross sections of 12C and 20C

Thus far, we have established that the accuracy of the
MC integration in the Glauber amplitude. In this subsection,
we show the reliability of our approach in comparison with
available experimental cross-section data of 12C and 20C on
12C and 1H targets.

Figure 4 displays the total reaction cross sections on 12C and
1H targets as a function of incident energies. Our theory nicely
reproduces the cross-section data at the low- to high-incident
energies for both the 12C and 1H targets. The medium- to high-
energy nuclear breakup processes are described systematically
very well. Though the experimental data are scattered, we see,
at a close look, some deviations from the experimental data for
the 1H target below ∼100 MeV and above ∼900 MeV at most
by 10%.

Figure 5 plots the energy dependence of the total reaction
cross sections of 20C on 12C and 1H targets. The rms radius of
20C is 3.03 fm which is determined to reproduce the interaction
cross section measured at 905 MeV [42]. We confirm that our
calculations are consistent with the interaction cross-section
data at 240 MeV for the 12C target [12] as well as that at 40
MeV for the 1H target [11].

B. 22C: Nuclear radius vs. total reaction cross sections

We have shown that our theoretical model successfully
describes the total reaction cross sections involving stable 12C
and neutron-rich 20C at wide incident energies for both the 12C
and 1H targets in a consistent manner. Finally, let us discuss
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FIG. 5. Same as Fig. 4 but of 20C. Experimental interaction cross-
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the controversy in the radius of 22C. Figure 6 displays the
total reaction cross sections of 22C on 12C target incident at
240 MeV and on 1H target incident at 40 MeV, respectively,
where the experimental data are available, as a function of
the rms radius. The cross-section data by Togano et al. [12]
with uncertainties is indicated between two horizontal lines
from which we can extract the rms radius of 22C. The resultant
rms radius is 3.38 ± 0.10 fm, which is consistent with that
extracted by Togano et al. using the sophisticated four-body
Glauber model [55], 3.44 ± 0.08 [12]. However, we find that
simultaneous reproduction of the cross-section data by Tanaka
et al. [11] is not possible within 1σ , that is, for the 1H
target, the experimental data are far from the theoretical values
(however, it is consistent with 2σ as mentioned in Ref. [12]).
Since our calculation is not feasible for very large rms radius
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FIG. 6. Total reaction cross sections of 22C on 12C and 1H targets
incident at 240 MeV and 40 MeV, respectively, as a function of
rms radii of 22C. Thin lines denote the cross sections with the HO
wave function. See text for details. Experimental data are taken from
Refs. [11,12].

beyond ∼4 fm, we extrapolate the rms radius with a form of
a log[b(R − c)], where R =

√
〈r2〉, in which a,b,c are deter-

mined by the least-squares method. The extrapolated radius is
huge � 5 fm at the lower limit (1σ ) of the experimental cross
section and never reaches the central value of the experimental
data 1338 mb [11] with the extrapolated function based on our
theoretical cross sections.

We discuss the possible uncertainties in the theoretical
calculations. We calculate the total reaction cross section on
1H target with the OLA which was employed in the analysis
of Ref. [11]. The phase-shift function of the OLA is given as
the leading order of the cumulant expansion of the complete
Glauber amplitude [24,56],

iχOLA(b) = −
∑

N=p,n

∫
d r ρN (r)�pN (b − s), (17)

where r = (s,z) with s being a two-dimensional vector perpen-
dicular to z, and the translationally invariant one-body density
of the projectile

ρN (r) =
NN∑
i=1

〈�N |δ(r̂ i − r)|�N 〉, (18)

where r̂ i denotes the ith single-particle coordinate operator
measured from the center of mass of the system. The center-of-
mass contribution in the one-body density is exactly removed
through the MC integration. It is noted that this is one of the
advantages of the present approach. In general, the removal
of the center-of-mass contribution needs some effort. Some
approximate methods for the removal prescribed, e.g., in
Refs. [41,57] becomes worse since the square overlap of the
HO and the halo wave functions of 22C becomes 0.82–0.85 in
the present range of the rms radii, while it is larger than 0.99
for a nonhalo nucleus, 20C.

The calculated total reaction cross sections with the OLA
are displayed in Fig. 6. Here we only plot the OLA results
on 1H target. More detailed comparisons between the com-
plete Glauber calculation and the OLA for nucleus-nucleus
scattering are drawn in the Appendix. The difference between
the complete Glauber and the OLA cross sections is small,
approximately 1%, with the situation unchanged.

One may also think that the incident energy of 40 MeV is
too low in the Glauber calculation. As shown in Figs. 4 and 5,
the theory reproduces fairly well the total reaction cross section
of 20C on 1H target even at 40 MeV. Since any excited bound
state of 22C has not been observed so far, the total reaction
and interaction cross sections are equal for the 1H target and
its difference is expected to be small for the 12C target. The
Coulomb breakup effect is expected to be small. For instance,
the contribution is estimated to be less than 1% in the case of
a one-neutron halo nucleus, 31Ne with the 12C target [27]. It
becomes even smaller in the case of the 1H target. Considering
the theoretical uncertainties discussed above, we conclude that
the simultaneous reproduction of both the experimental cross-
section data for the 12C and 1H targets in Refs. [11,12] is not
possible within the error bar.

Let us discuss what is actually probed by the total reaction
cross sections on 12C and 1H targets at those specific incident
energies. The total reaction cross sections at medium- to
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FIG. 7. Difference between two reaction probabilities of the 22C
wave functions with different rms radii on 12C target at 240 MeV and
on 1H target at 40 MeV as a function of impact parameters. The
reference reaction probability (R = 3.20) is subtracted from each
probabilities with R = 3.40, 3.60, 3.80, and 4.00 fm. See text for
details. Thick lines denote the results with the halo wave functions,
while thin lines denote those with the HO wave functions.

high-incident energies are closely related to the nuclear radii
of colliding nuclei, σR ∼ π (RP + RT )2, where RP (RT ) is the
nuclear radius of the projectile (target) nucleus. In fact, Figure 6
shows good proportionality of the cross sections on the rms
radii and this enhancement is similar for the 12C and 1H targets.
It is interesting to note that this increase becomes moderate for
large-rms radii. To confirm whether this effect is due to the
halo structure, we generate a “standard” nucleus by assuming
for the 22C wave function the product of the HO single-particle
wave functions. The cross sections with the HO wave function
are plotted in Fig. 6 as a function of the rms radii which are
controlled by the HO oscillator length parameter. The cross
section firmly increases as the rms radius increases, which is
in contrast to the case with the halo wave function.

In order to clarify the reasons of the different cross-section
enhancement with the halo and HO wave functions, we show
the evolution of the reaction probabilities defined in Eq. (3)
with respect to the rms radius R. For this purpose, we calculate
the difference between two reaction probabilities defined by

DR(b) = P (b)|R − P (b)|R=3.20, (19)

where the probability with the 22C wave function which
gives R = 3.20 fm is subtracted to see clearly changes of
the probabilities. Figure 7 plots DR calculated with the halo
and HO wave functions as a function of the impact parameter
b = |b|. For both the 12C and 1H targets, the behavior of DR

with the halo and HO wave functions are quite different: The
enhancement of the reaction probability becomes smaller and
smaller when increasing the rms radius in the case of the halo
wave function, whereasDR increases monotonically in the case
of the HO wave function. For the halo wave function, since this
is very much extended, only the weakly bound two-neutron
wave function contributes to the enhancement of DR . With
large R, only a dilute neutron tail contributes to the nuclear
radius but not much to the total reaction cross section, leading
to the moderate increase of the cross sections with large R
observed in Fig. 6. In the case of the HO wave function, all
nuclear orbits extend when increasing the HO oscillator length,
resulting in the monotonic increase of the cross sections.
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FIG. 8. Total reaction cross sections of 22C on 12C and 1H targets
as a function of incident energies. The rms radius of 22C is set to be
3.38 ± 0.10 fm. The central value and the lower and upper bounds of
the cross sections are indicated by dotted and solid lines, respectively.
Experimental data are taken from Refs. [11,12].

We note, however, that the difference of the reaction
probabilities displayed in Fig. 7 appear to be similar in both
the 12C and 1H targets. This indicates that the sensitivity of
the density profile of the projectile does not depend much
on the target nuclei, 12C and 1H, for this set of the incident
energies. Since the pn total cross section as well as the range
of the interaction become large in such a low incident energy,
the contribution involving the two-neutron halo tail becomes
significant, being comparable to the case of the 12C target.
The fact is consistent with the discussion given in Ref. [26]
that showed the advantage of using the low-energy nuclear
reaction with the 1H target to probe the neutron distribution,
where the pn total cross section becomes much larger than
that of the pp one. This can also be seen in comparison of the
ordinary nucleus, 12C, and neutron-rich 20C reactions on 1H
target displayed in Figs. 4 and 5.

Finally, we plot, in Fig. 8, the theoretical total reaction cross
sections of 22C as a function of the incident energies together
with the available interaction cross-section data [11,12]. We
employ the wave function giving R = 3.38 ± 0.10 fm taken
consistently with the recent interaction cross-section data [12].
We again confirm that the target dependence is not large at
40 MeV for the 1H target and at 240 MeV for the 12C target, that
is, the cross-section variation with respect to the radius change
is almost the same. The cross sections on 12C target have some
sensitivity of the halo tail at any incident energies, whereas
the ones on 1H target lose the sensitivity with increasing
the incident energy as the pn total cross section becomes
smaller. In the figure, one can clearly see that the simultaneous
reproduction of the two experimental data within the error bar
is not feasible. Since we have only two experimental cross-
section data, it is desired to have data at a different incident
energy or target in order to clarify that the 22C size is equivalent
to a radius of medium- (A ∼ 40) or heavy- (A ∼ 200) mass
nuclei. However, we already see theoretical consistency with
the 20C cross-section data for both the 12C and 1H targets in
Fig. 5. It is unlikely to have a huge radius � 5 fm of 22C.
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V. CONCLUSION

In order to resolve the radius puzzle in 22C, we have
investigated the total reaction cross sections of 22C on 12C and
1H targets incident at medium- to high-incident energies within
the framework of a microscopic high-energy reaction theory,
the Glauber model. The complete optical phase-shift function
or Glauber amplitude in the Glauber model is evaluated with
use of a Monte Carlo technique.

The calculated total reaction cross sections on 12C and
1H targets consistently reproduce the available experimental
cross-section data for 12C and 20C. We find that the target
dependence of the radius determination of 22C is small at
240 MeV for the 12C target and 40 MeV for the 1H target. We
see, however, the simultaneous reproduction of the interaction
cross-section data of 22C obtained by the two recent measure-
ment is not possible within the error bar (1σ ). The rms matter
radius of 22C deduced from our analysis is consistent with the
radius given in Ref. [12] using the interaction cross section on
12C target incident at 240 MeV, which corresponds to that of
an A ∼ 40 nucleus. We investigate possible uncertainties in
the theoretical model and they are actually small. We conclude
that it is unlikely to obtain the huge rms matter radius of ∼5.4
fm (A ∼ 200) shown in Ref. [11].
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APPENDIX: COMPARISON WITH OTHER
APPROXIMATIONS OF THE GLAUBER THEORY

In this Appendix, we evaluate standard approximate meth-
ods of the Glauber theory and quantify theoretical uncertainties
in nucleus-nucleus total reaction cross-section calculations. In
general, the evaluation of the complete Glauber amplitude of
Eq. (2) requires tedious computations. Therefore, the so-called
optical-limit approximation (OLA) has often been used as it
only requires one-body density distributions of the projectile
and target nuclei. This approximation relies on the cumulant
expansion [24,56] which offers series expansion in terms of
the fluctuation of the distribution function. The expansion
works well for such nuclei having a standard density pro-
file. Contribution of the higher-order terms becomes more
important for an extended density distribution such as halo
nuclei. In fact, the standard OLA, which only takes the leading
term of the expansion, cannot be applied to nucleus-nucleus
reactions involving halo nuclei as it leads to some systematic
uncertainties on the extraction of the nuclear radii [34,35].

Though the OLA only takes the leading order of the the
consecutive product of the NN phase-shift functions, the
approximation already works well for the total reaction cross
sections on 1H target even though they involve a halo nucleus as
shown in Refs. [30,36] as well as in Fig. 6 of the present paper.
The phase-shift function of the OLA is given as the leading
order of the cumulant expansion of the complete Glauber

amplitude [24,56],

iχOLA(b) = −
∑

N,N ′=n,p

∫∫
d r d r ′

× ρP
N (r)ρT

N ′(r ′)�NN ′(b + s − s′), (A1)

where ρP
N (ρT

N ) is the translationally invariant one-body density
of the projectile (target) for proton N = p and neutron N = n
defined in Eq. (18).

For nucleus-nucleus scattering, where the higher-order
contribution would be sizable, the nucleon-target formalism
in the Glauber theory (NTG) [58], has often been used:

iχNTG(b) = −1

2

∑
N,N ′=n,p

(∫
d rρP

N (r)

×
{

1 + exp

[
−
∫

d r ′ρT
N ′ (r ′)�NN ′(b + s − s′)

]}

+
∫

d r ′ρT
N ′ (r ′)

×
{

1 + exp

[
−
∫

d rρP
N (r)�NN ′(b + s′−s)

]})
.

(A2)

Note that the same inputs of the OLA are required. The NTG
approximation has been applied to a number of examples
in the nucleus-nucleus total reaction cross-section calcula-
tions including stable and neutron-rich isotopes [2,18,23,27–
29,41,59–63]. Here we quantify the extent to which the
higher-order terms are included in the NTG approximation
in comparison with the complete Glauber calculation and the
standard OLA.

Figure 9 plots the total reaction cross sections of 12C, 20C,
and 22C on 12C target as a function of the incident energies
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details. The rms radii of 12C, 20C, and 22C employed in the calculations
are 2.33, 3.03, and 3.38 fm, respectively.
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calculated with the complete Glauber amplitude (2), the NTG
approximation (A2), and the OLA (A1). The wave functions
of those nuclei are taken consistently with the charge radius
for 12C, and the interaction cross sections at 900 MeV [42] for
20C and at 240 MeV [12] for 22C. For 12C + 12C scattering,
as already exemplified in Refs. [18,41], we again confirm
that the NTG gives better results than those obtained by the
OLA and takes care of most of the multiple-scattering effects
missing in the OLA, showing the cross sections much closer
to the complete Glauber calculations. The NTG approximation
also works well for 20C but large deviation appears with the
OLA. For 22C, as expected, the OLA considerably deviates
from the calculated cross sections obtained with the complete
Glauber amplitude. The deviations of these approximations
from the complete calculation appear to be minimum at around

100–200 MeV. The NTG always gives better results than those
of the OLA but it is still not sufficient at low- and high-incident
energies, say, 3% deviation at 1000 MeV from the complete
calculation. Though the deviations of these approximations are
smaller at 240 MeV, these theoretical uncertainties actually
affect the radius extraction from the measured cross-section
data [12]: The extracted radii are R = 3.33 ± 0.09 and 3.23 ±
0.07 fm with the NTG and OLA, respectively, while R =
3.38 ± 0.10 fm with the complete Glauber calculation. The
deviations become even larger when increasing the halo tail and
at different incident energies. Here we have seen that the NTG
approximation works well for the standard density profile but
not for the halo density. One needs to care about the uncertain-
ties included in these approximations when the nuclear radius
is extracted from the total reaction cross section on 12C target.
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