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ABSTRACT. In this study, the characteristics and physical behaviour of 8 different packing 

materials were compared. The materials were selected according to previous works in the field 

of biofiltration including organic and inorganic or synthetic materials. Results pre-selected those 

more acceptable support materials for the main function they have to perform in the biological 

system: high surface contact, rugosity to immobilize the biomass, low pressure drop, nutrients 

supply, water retentivity or a commitment among them. Otherwise, pressure drop have been 

described by means of the respective mathematic expressions in order to include phenomena in 

the classical biofiltration models.  

 

 

1 INTRODUCTION 

Biological treatment have become and effective and economical alternative to the 

traditional systems of gas treatment. However, several packing materials have been used 

in biofiltration without a global agreement about which one is the most adequate to 

immobilize biomass. Carrier materials may be organic, natural inorganic, or entirely 

synthetic. The nature of the packing material is a fundamental factor for successful 

application of biofilters because it affects the frequency at which the medium is 

replaced and other key factors such as bacterial activity and pressure drop across the 

bioreactor (Devinny et al., 1999).  

Moreover, particles vary in size, which affects important medium characteristics such as 

resistance to air flow and effective biofilm surface area. If the size of the bed pellets is 

too small provides for large specific surface areas, available for essential mass 

exchange, but it also creates resistance to gas flow, while if it is too large, it favours 

gaseous flows but reduces the number of potential sites for the microbial activity 

(Delhoménie et al. 2002). Adu and Otten (1996) have reported that particle size is a 

parameter more influential to the performance than the gas flow rate.   

Among the naturals carriers reported, compost, peat, soil and the wood derivatives are 

the most extensively used while GAC, perlite, glass beads, ceramic rings, polyurethane 



foam, polystyrene and vermiculite are some of the several synthetic or inert carriers 

which have been studied (Kennes et al., 2001). 

Specific surface area, porosity, density, water retention capacity and the nutrients 

availability are some of the most important characteristics of the filter media (Janni et 

al. 2001). In this work, a comprehensive study of physical parameters for different 

packing materials commonly used in biofiltration has been performed. Pressure drop 

was also determined for each packing material to determinate the inherent economical 

cost to flow the air through the bed. To this aim, pressure drop was evaluated in each 

case depending on the flow rate, the bed porosity and the water content circulating 

through the material media in countercurrent flow. Pressure drops have been described 

by means of mathematical expressions relating the effects of the studied factors in order 

to include this parameter in classical biofiltration models.  

 

 

2 MATERIALS AND METHODS 

 

2.1 Experimental setup 

Pressure drop assessment experiments were carried out using a lab-scale plant 

consisting of a PVC column with an inner diameter of 4.6 cm and a height of 70 cm 

(Figure 1). The compressed air was conducted by 2 different circuits. In the former, the 

air stream was passed through a water column in order to increase the relative humidity 

and in the latter, the air stream arrived completely dry to the fixed bed. The inlet air 

pressure and the flow rate were controlled and measured by means of a pressure 

regulator (Norgren Excelon) and a flowmeter (Tecfluid 2100) respectively. Throughout 

this study, the gaseous stream was supplied in up-flow mode. Tap water was sprinkled 

continuously at the top of the fixed bed be means of a peristaltic pump (Magdos LT-10) 

and the water content was measured by an optical level sensor. Pressure drop was 

determined by means of two digital differential pressure meter used according to the 

limit detection and precision (Testo 512-20hPa and Testo 506-200 hPa).  

 

 
 

 

Figure 1.  Schematic of the lab-scale setup. 1: humidification column; 2: fixed bed for pressure 

drop study; 3: fixed bed for water retentivity study; 4: flow meters; 5: pressure regulator; 6: 

peristaltic pump; 7: digital differential pressure meter. 



2.2 Packing materials 

A total of 8 common packing materials used in biofiltration were studied and compared 

by determining their main physico-schemical properties. Organic packing materials 

analysed were coconut fibre, pine leaves, peat and compost from sludge of a waste-

water treatment plant. The inorganic or synthetic packing materials studied were 

polyurethane foam, lignite from Mequinenza mines (Spain), lava rock and an advanced 

material based on a thin layer of compost over a clay pellet. 

 

2.3 Analytical methods 

Characterization of packing materials were carried out according to standard methods 

(APHA, 1980; ASTM, 1990; TMECC, 2002). The following properties were compared 

in each case: specific surface area, elementary analysis, extractable phosphor content, 

organic matter, humidity, water holding capacity, retentivity, ph, conductivity and 

buffer capacity of the leachate.  

Specific surface area and material density were determined by the BET technique in a 

Micromeritics, model Tristar 3000, apparatus.  

Elementary analysis was realised by combustion in standard conditions using 

sulfanilamida as standard (EA-1108 ThermoFisher Scientific). Extractable phosphor 

was determined by the technique of ICP in a multichannel analyser in standard 

conditions (Thermo Jarell-Ash model 61E Polyscan) using Baker Instra as digester of 

the sample. Surface rugosity was observed by means of a Scanning Electron 

Microscope (Jeol JSM-840). 

Humidity and organic matter were determined by drying and combustion standard 

procedures. Water holding capacity was measured keeping the material wet sparkling 

constantly tap water for 100 minutes and determining the weight changes. Water 

retentivity was measured by keeping wet material in constant contact with dry air flow 

circulating through the bed and measuring the loss of weight of the bed. Conductivity, 

pH and buffer capacity was determined for the materials leachate submerging them in 

water for 1 hour in controlled conditions of temperature and agitation.  

 

 

3 RESULTS AND DISCUSSION 

 

3.1 Characterization of packing materials 

High nutrient, phosphorous, potassium and sulphate contents, as well as trace elements, 

are required for the establishment of a dense process culture. Regarding to the 

elementary composition of organic packing materials (Table 1), it is shown that the 

compost is the material with the highest content in nitrogen and phosphorus (2.7 % and 

14.500 ppm, respectively. It must be pointed out that immature coal (lignite) studied 

showed a significant concentration of sulphur (8,8 %) which is related to the quality of 

the material. Also, presence of sulphur has been detected in compost as well. On the 

other hand, phosphorous concentration in lava rock (1800 ppm) is higher than expected 

probably due to the pre-treatment of this material to garden applications.  

Among the organic material analysed, coconut fibre and pine leaves present the highest 

organic matter content (higher than 85% by weight). The organic matter detected in coal 

(next to 80%) is a reflex of the immature nature of this material.  

 



Table 1. Elementary composition of packing materials. 

 

Nitrogen (%) Carbon (%) Hydrogen (%) Sulphur (%)
Phosphorus 

(ppm)

Organic matter 

(%)

Coconut fiber 1,17 45,05 6,18 0,12 256 91,62

Pine leaves 0,56 45,18 6,10 0,05 191 86,71

Peat 1,26 21,99 2,56 0,15 455 66,23

Compost 2,68 33,86 4,63 0,63 14487 53,56

Advanced material 0,34 2,45 0,18 0,19 1259 2,57

Lava rock 0,00 0,40 0,00 0,00 1821 0,63

Coal 0,85 44,37 4,06 8,81 98 79,69  
 

In general, it is desirable to have media with a high water-holding capacity. Organic 

media are 40 to 80% water (by weight) when they are saturated (Devinny et al. 2002). 

Packing materials studied keep a water holding capacity inside the typical interval, 

being in the higher values for coconut fibre, pine leaves and peat (Table 2). The 

humidity of the materials is similar in all the studied cases but there are appreciable 

differences in water retentivity.  

Regarding to the specific surface, coal is the material with the highest value (6 m
2
 m
-3
), 

while compost is the highest among the organic materials (2,8 m
2
 m
-3
).  

 
Table 2. Physical characteristics of packing materials. 

 
Surface area 

(m 2 m -3 )
Humidity (%)

Water holding 

capacity (g·g -1 )

Water retentivity 

(% dia -1 )

Conductivity 

(µS)
pH

Buffer capacity 

(ml SO 4
2- ·l -1 )

Coconut fiber 1,68 6,62 3,90 192,24 315 5,93 33

Pine leaves 0,50 7,79 1,51 422,78 216 6,90 120

Peat 1,43 6,97 1,80 66,38 338 5,13 20

Compost 2,82 7,83 0,68 57,89 470 7,24 128

Advanced material 0,76 37,62 0,58 41,90 226 5,72 13

Lava rock 0,62 0,06 0,18 23,33 33 7,21 33

Coal 5,99 4,85 0,28 41,62 205 6,51 45

Polyeurethane foam 0,02 - - 416,45 - - -  
 

Packing materials studied showed a pH close to the neutrality or slightly acid (pH ≈ 5 

for peat) and a buffer capacity inferior to 150 ml SO4
2-
 l
-1
 in all the cases. Leachate 

conductivity of the materials was similar among them (excepting lava rock), being 470 

µS the highest value determined in compost. 

The surface rugosity of the materials has been observed and compared by means of 

Scanning Electron Microscopy.  As a sample of organic materials, coconut fibre shows 

an important surface rugosity which could aim to fix the microorganisms to the surface 

(Figure 2). Conversely, polyurethane foam shows the opposite situation where the 

surface observation at 1000 magnifications shows a completely flat surface. 

 



a)      b) 

 
Figure 2. Microscopic observation of the rugosity of a) coconut fibre at different magnifications 

by SEM (x30, x1000) and b) polyurethane foam (x30, x1000). 

 

3.2 Parameters influence in pressure drop 

Pressure drop tests were carried out at 7 different flow rates, 5 different water contents 

and 3 different bed porosities. Flow rates were selected in the range to obtain empty bed 

residence times commonly used in biofiltration (from 5 to 40 seconds). Water content 

circulating through the bed was regulated by means of the peristaltic pump avoiding 

flooding episodes. Porosity was selected through different particle size or different 

degrees of compactation depending on the materials as for instance, coconut fibre or 

pine leaves. Results were represented in surface plots to observe simultaneously the 

parameters influence pressure drop.   

Figure 3 shows the effect for coconut fibre and compost as examples of organic packing 

materials behaviour. Regarding water content, the influence is very similar for both 

materials in opposition to empty bed porosity influence where results do not show 

significant differences.  

Figure 4 shows an example of the behaviour of non-organic materials, concretely 

polyurethane foam and the advanced material. Polyurethane foam showed more 

important pressure drop in the range of study, presenting significantly differences for 

the different bed porosities tested. Water content is a parameter less influencing in 

comparison to organic samples. Drop pressure in advanced material, in the only 

possible porosity allowed by its shape and structure, shows a strong dependence on 

water content, being more important at high flow rates.  
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Figure 3. Influence of operational parameters in drop pressure for coconut fibre (a) and compost 

(b). 
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Figure 4. Influence of operational parameters in drop pressure for polyurethane foam (a) and 

advanced material (b). 

 

3.3 Mathematical expressions in drop pressure 

Drop pressure in a fixed bed has been described through several semiempirical 

mathematical expressions. In most of works, the pressure drop is described by the well-

known Ergun equation (Ergun, 1952), which may be written as (Eq. 1):  
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Where: 

P∆  is the pressure drop in Pa; H  is the height of the fixed bed in m; µ  is the viscosity 

of the air in Pa s; 0v  is the superficial velocity in m s
-1
; ε  is the porosity of the bed; pd  

is the equivalent spherical diameter of the particle in m; a  is the first parameter of the 

Ergun equation, b  is the second parameter of the Ergun equation. 

Parameters a and b are related to the friction factor. In addition the expression term 

related to parameter a is significant for flow under very viscous conditions while the 

parameter b term is only significant when viscous effects are not as important as inertia. 

Some authors have fitted satisfactorily experimental data to a modified Ergun equation 

adapting the coefficients of the expression be means of a correction factor (Delhoménie 

et al. 2003). Other authors have used a specific relation due to the heterogeneity of the 

material and the difficulty to model pressure drop with the classical Ergun equation 

(Comiti and Renaud, 1989). In this study, parameters a and b from Ergun equation have 

been fitted as a function of the material, the porosity and the water content. Pressure 

drop (∆P/H) as a function of the empty bed velocity has been fitted by a lineal 

regression. In all cases the correlation coefficient R
2
 was superior to 0,990 indicating 

the correct linearity between operational parameters and pressure drop. 

This experimental study incorporated the effect of water content in pressure drop 

although this parameter is not present in Ergun equation. For this reason, parameter a 

and b were fitted as a function of water content in the bed in order to find a relationship 

which describes this effect in the pressure drop estimation.  

Table 3 shows the final results of this systematic study in order to compare the water 

content effect in each material. Water content for compost, lava rock and the advanced 



material biofilter showed the strongest effect in parameter a. In the case of parameter b 

the dependence on water content was markedly lower.  

Thus, it is possible to express a modified Ergun equation incorporating the water 

content effect in the pressure drop predictions for some packing materials. These results 

may be useful to incorporate pressure drop phenomena in classical biofilter models. 

 
Table 3. Ergun equation parameters as a function of water content in biofilters. 

 
ε a ordinate a slope b ordinate b slope

0,70 12,634 -0,069 0,250 0,003

0,76 132,370 0,720 0,595 0,009

0,79 432,090 4,077 1,199 0,004

0,94 0,626 0,004 0,062 0,001

0,96 2,145 0,019 0,090 0,000

0,99 9,130 0,750 0,333 -0,011

0,73 75,398 0,340 0,512 0,005

0,76 115,150 0,384 0,531 0,001

0,77 234,900 2,276 0,766 0,002

0,58 14,618 0,212 0,176 0,001

0,63 35,182 0,387 0,248 0,002

0,64 100,830 0,270 0,466 0,007

0,91 1,885 0,014 1,146 0,058

0,92 2,524 0,016 2,517 0,144

0,96 9,378 0,059 11,196 0,000

Advanced material 0,65 12,342 1,458 0,160 0,009

Lava rock

Immature coal

Pine leaves

Compost

Coconut fibre

 
 

 

4 CONCLUSIONS 

 

Commonly used packing materials in biofiltration have been characterized and 

compared for a better knowledge of their advantages and drawbacks. Coconut fibre, 

pine leaves, peat, compost, polyurethane foam, coal, lava rock and an advanced material 

have been studied. Organic materials, especially compost and coconut fibre, are suitable 

to release extra inorganic nutrients. Moreover, these materials are able to keep water 

content at optimal levels for microorganisms and show the highest specific surface. 

Surface observation by Scanning Electron Microscope shows a better condition to fix 

the biomass in organic materials. On the contrary, inorganic or synthetic materials offers 

higher contact surface and produce cleaner drainage water. Otherwise, pressure drop 

have been determined for each packing materials as a function of flow rate, water 

content and bed porosity in order to represent the several effects simultaneously and 

obtain a mathematical expression to include phenomena in classical biofilter models. A 

water content dependence has been found through a modified Ergun equation for 

several packing materials.  
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