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The utilization of ad-level partially entangled state, shared by two parties wishing to communicate classical
information without errors over a noiseless quantum channel, is discussed. We analytically construct determin-
istic dense coding schemes for certain classes of nonmaximally entangled states, and numerically obtain
schemes in the general case. We study the dependency of the maximal alphabet size of such schemes on the
partially entangled state shared by the two parties. Surprisingly, ford.2 it is possible to have deterministic
dense coding with less than one ebit. In this case the number of alphabet letters that can be communicated by
a single particle is betweend and 2d. In general, we numerically find that the maximal alphabet size is any
integer in the rangefd,d2g with the possible exception ofd2−1. We also find that states with less entanglement
can have a greater deterministic communication capacity than other more entangled states.
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I. INTRODUCTION

Dense coding, originally introduced by Bennett and
Wiesner[1], is the surprising utilization of entanglement to
enhance the capacity of a quantum communication channel.
Two parties, Alice and Bob, communicate by sending a spin-
1
2 particle(a qubit) over a noiseless quantum channel. As no
more than two spin states can be perfectly distinguished,
Alice can encode only one of two different letters, say 0 or 1,
within each particle she sends. This is no better than using a
classical communication channel. However, Bennett and
Wiesner have shown that if Alice and Bob each have one
particle of a maximally entangled pair, it is possible for the
sender Alice to transform the two-particle state into four or-
thogonal states by acting locally on her particle. After send-
ing Bob her half of the pair, he will be able to distinguish the
four different states perfectly by measuring the pair of par-
ticles collectively. Surprisingly, this enables the transmission
of one of four letters by sending a single qubit, provided that
the two parties share initial entanglement.

Numerous aspects of dense coding have been studied.
Among these are generalizations to pairs of entangledd-level
systems[1], to continuous variables[2], and to settings in-
volving more than two parties[3]. Other works[4–6] studied
dense coding in the asymptotic limit, where many copies of a
partially entangled state are used.

In this paper we consider the case of pure nonmaximal
entanglement between two separatedd-level systems. We are
not interested in the asymptotic channel capacity, but rather
in thedeterministicprocedure, where the parties wish to dis-
tinguish without errors messages encoded by acting only on
a singled-level particle. We use exact and numerical meth-
ods to study the relation between a stateucl, whose entangle-
ment is given by its entropySscd, andNmaxscd, the maximal
size of the alphabet which can be perfectly communicated. In
other words,Nmaxscd denotes the maximal number of or-
thogonal states that can be generated by means of a unitary
transformation acting locally on Alice’s part of the given
entangled state.

Our results suggest that for a dimensiond.2, determin-
istic dense coding processes which utilize partially entangled
states are possible for any maximal alphabet sizeNmaxscd in
the rangefd,d2g with the possible exception ofd2−1. Since
the total dimension of Alice and Bob’s state isd3d, this
appears to be an interesting boundary effect. The maximal
alphabet sizeNmax=d2 is only possible with maximally en-
tangled states. Using numerical methods, the existence of all
values exceptd2−1 has been fully verified ford=3 (see Fig.
1) and d=4, and partially ford=5, . . . ,7. Analytically, we
have been able to construct dense coding schemes for an
alphabet size that is a multiple ofd (i.e., kd, k=2, . . . ,d−1),
and for an alphabet size ofd+1.

We have found(both analytically and numerically) that
there are states with less than one ebit of entanglement that
can be used for deterministic dense coding, although in this
case the maximal alphabet size is less than 2d, whered is the
dimension. Therefore, our method is not equivalent to the
trivial approach wherein deterministic concentration trans-
forms a nonmaximal state, which must have more than one
ebit of entanglement, into a single ebit[11], to be used in the
standard dense coding scheme.

In addition, we find that entanglement, while playing an
important role in the communication capacity, does not com-
pletely determineNmaxscd. We numerically find that one can
have two states with the property that the less entangled one
is in fact better for deterministic communication. That is, we
can haveNmaxsc1d.Nmaxsc2d while Ssc1d,Ssc2d. This is
perhaps also interesting in light of[7] where it was shown
that states with less entanglement sometimes have a greater
probability of being distinguished by separated parties who
can only communicate classically. A related situation has
been reported in[8] wherein nonmaximal states, rather than
maximal, were needed to perform certain remote operations.

This paper is organized as follows. We first review deter-
ministic dense coding with maximally entangledd-level sys-
tems. Then we proceed to formulate the problem considered
in this paper. Section IV treats the two-dimensional case ana-

PHYSICAL REVIEW A 71, 012311(2005)

1050-2947/2005/71(1)/012311(7)/$23.00 ©2005 The American Physical Society012311-1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UCL Discovery

https://core.ac.uk/display/16231304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


lytically and shows that nonmaximal states cannot be used to
distinguish perfectly more than two letters. In Sec. V we
present exact forms for two different kinds of deterministic
dense coding schemes in dimensionsd.2. In Sec. VI our
numerical results are presented and discussed. Finally, we
summarize the results in Sec. VII.

II. DENSE CODING WITH MAXIMAL ENTANGLEMENT

We consider a bipartite qudit pure state. That is, a system
composed of twod-level separated subsystems. This system
is initially prepared in a maximally entangled state

uc00l =
1
Îd

o
i=0

d−1

uilA ^ uilB, s1d

where A sBd denotes Alice’s(Bob’s) subsystem. Alice en-
codes an alphabet of sized2, which we denote as
hsm,ndjm,n=0

d−1 , using a sethUmn
A j of local unitary operations on

particleA. There are many possible[10] realizations of this
set of operators. An elegant, and undoubtedly the most com-
mon, construction is

Umn= sXdmsZdn, s2d

whereX, the shift operator, andZ, the rotate operator, are
defined by

Xukl = usk + 1dmodsddl,

Zukl = es2pik/ddukl. s3d

It can easily be verified thatucmnl=sUmn
A

^ 1Bduc00l form an
orthogonal basis of the two-qudit Hilbert space. After encod-
ing the lettersm,nd, Alice sends her particle to Bob through
the quantum channel. Bob performs a projective measure-
ment of the two-particle state onhucmnlj to decode the mes-
sage.

A few remarks are in order here. First, we note that for
qubits sd=2d, this basis is just the well known Bell basis:

uc00l =
1
Î2

su00l + u11ld, uc01l =
1
Î2

su00l − u11ld,

uc10l =
1
Î2

su10l + u01ld, uc11l =
1
Î2

su10l − u01ld. s4d

Second, trying to understand intuitively the difference be-
tween the classical and quantum cases, we note that theshift
operators may be regarded as “classical,” in the sense that
they correspond to the possibility of sendingd distinct values
of a classical dit. The rotate operators may be regarded as the
quantum enhancement, which enables the local realization of
d2 orthogonal two-qudit states.

III. DETERMINISTIC DENSE CODING
WITH NONMAXIMAL ENTANGLEMENT

We now introduce the main problem this paper addresses.
Instead of using a maximally entangled state, we consider an
arbitrary bipartite pure state. This can be written in the
Schmidt representation[9] as

ucl = o
i=0

d−1

ÎliuilA ^ uilB, o
i=0

d−1

li = 1, s5d

whereuilA suilBd are the Schmidt basis for systemA sBd.
We are interested in a maximally sized set of local unitary

operatorshUi
Aji=0

Nmaxscd−1 that transformucl into orthogonal
states. That is, for all 0ø i , j ,Nmaxscd we have

kcusUi
A†

^ 1BdsUj
A

^ 1Bducl = di,j . s6d

Substituting the state(5) into (6) yields

di,j = o
k,l=0

d−1

ÎlkllkkuUi
†Ujullkkull = o

k=0

d−1

lkkkuUi
†Ujukl

= TrsLUi
†Ujd s7d

where L is a d3d diagonal matrix of the Schmidt coeffi-
cients ofucl sLkk=lkd. Note that the matricesUi are unitary
in the usual sensesUi

†Ui =1d, but the orthogonality of opera-
tors is now defined with respect to a nontrivial weight vector
(the Schmidt coefficients), rather than the usual trace. For the
rest of this paper orthogonality of operators should be under-
stood in this sense.

In this paper our goal is to study the effect of the partially
entangled stateucl on Nmaxscd, the maximal size of the set of
unitaries satisfying(7). In other words, we would like to

FIG. 1. Numerical mapping ofNmaxscd, the maximal number of
orthogonal unitaries with respect toucl over the domain of pure
states of two qutritsucl=Îl0u00l+Îl1u11l+Î1−l0−l1u22l. The
horizontal axis isl0 and the vertical axis isl1. The region of
interest is defined byl1øl0, l0+l1ø1, andl1ù s1−l0d /2. This
region was found to be divided into five subregions characterized
by different values ofNmaxscd. Contour lines of the entanglement,
Sscd, are plotted in the background. It is evident thatSscd does not
determineNmaxscd. There are many statesucl and ufl having
Sscd.Ssfd, but Nmaxscd,Nmaxsfd. States with minimal entangle-
ment, admitting at leastN orthogonal unitariessN=4,5,6,7d, are
indicated in the figure. Note that no region with eight unitaries was
found. The only case where nine unitaries exist is the maximally
entangled statesl0=l1=1/3d.
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understand and characterize the relationNmaxscd.
We first note that for any choice ofucl, there always ex-

ists a set of at leastd such unitaries. This is the set of shift
operators introduced in the previous section. Let us explicitly
verify that orthogonality is indeed maintained:

kcusXA
n†

^ 1BdsXA
m

^ 1Bducl

= o
i,j

Îlil jksi + ndmodsddus j + mdmodsddlki u jl = dn,m. s8d

That this set is always orthogonal should not surprise us as it
corresponds to the possibility of encodingd distinct values in
a single dit in the classical case.

IV. THE TWO-DIMENSIONAL CASE

We begin by considering the case of partially entangled
qubits sd=2d. We shall show that for all nonmaximally en-
tangled states, onlyNmaxscd=2 unitaries can be constructed.
This means thatdeterministicdense coding with partial en-
tanglement is not possible ind,3 dimensions; partially en-
tangled qubits have no advantage over pure product states or
classical bits.

For convenience, and without loss of generality, we as-
sume that 1P hUij. We parametrize U=eisW ·n̂u=cosu1
+ i sinussW ·n̂d, wheresW are the Pauli matrices, andn̂ is a unit
vector. Since1P hUij, it follows from Eq. (7) that for all 1
ÞUP hUij, TrsL1Ud=0. That is,

0 = sl0 + l1dcosu + isl0 − l1dn̂z sinu s9d

which determinesu=p /2 and n̂z=0. Suppose we want to
have a set of three unitariesh1 ,U1,U2j. U1s2d must therefore
be of the formU1s2d= issxx1s2d+syy1s2dd. Again, applying Eq.
(7) with i =1 and j =2, U1 andU2 must satisfy

0 = TrsLU1
†U2d = sl0 + l1dsx1x2 + y1y2d

+ isl0 − l1dsx1y2 − y1x2d. s10d

For nonmaximal entanglement we havel0−l1Þ0, and the
normalization condition setsl0+l1=1. In addition we have
x1

2+y1
2=x2

2+y2
2=1. Combining all these restrictions, Eq.(10)

has no solutions. This proves that in the two-dimensional
case, for a nonmaximally entangled stateucl, Nmaxscd=2.

V. HIGHER DIMENSIONS, EXACT SOLUTIONS

In this section we show deterministic dense coding
schemes for some classes of partially entangled states ind
.2 dimensions. First, we present a geometric approach for
constructing dense coding schemes with an alphabet size of
N=kd, where kød is an integer. The partially entangled
states on which these schemes are based have all Schmidt
coefficients not greater than 1/k. Next, we present a nongeo-
metric approach for the explicit construction of deterministic
dense coding schemes with an alphabet size ofd+1. These
schemes utilize the partially entangled stateucdl
=Îsd−1d /du00l+Îs1/ddu11l+0oi=2

d−1uii l. Note that these are
states with less than one ebit of entanglement ford.2.

A. The geometric approach

Regarding the shift operators as “classical,” and the rotate
operators as the quantum enhancement, one may try to gen-
eralize the maximal dense coding scheme by constructing
rotations, orphaseoperators, suitable for the given nonmaxi-
mal entanglement.(Recall that the shift operators need not
be changed since they are orthogonal with respect to any
state.) In analogy to(3), we are looking for a sethZnjn=0

k−1

defined by

Znu jl = eiu j
n
u jl, s11d

where 0ø j ,d, 0øn,kød, andu j
n are real phases whose

choice will be discussed shortly. The orthogonality require-
ment dictates that

dm,n = kcuZn
†Zmucl = o

i,j

Îlil je
isu j

m−ui
ndkii u j j l = o

j

l je
isu j

m−u j
nd.

s12d

A set ofk such operators for a given stateucl can be used to
constructN=kd orthogonal operators[in the sense of(7)],
namely,Umn=sXdmsZnd, where 0øm,d and 0øn,kød.
In this construction the total number of operators is a mul-
tiple of d. In the classical or nonentangled case, it is 13d,
and in the maximal case it isd3d. As we will show in the
following sections, this scheme is not an optimal one in the
sense that there are other schemes using the same partially
entangled stateucl with an alphabet size ofNmax.N=kd.
This is why we denote the alphabet sizeNscd rather than
Nmaxscd. However,Nscd is a lower bound ofNmaxscd.

To examine the relation between the initial stateucl and
Nscd, let us consider the simple case where we look fork
=2 phase operators. Again, we assume that1P hZij, so that
Eq. (12) reduces tooilie

iui =0. In other words, we are faced
with the geometric task of forming a polygon usingd vectors
of lengths hl0,l1, . . . ,ld−1j. This can always be accom-
plished if the longest vector is shorter than the sum of the
others. Assuming that theli’s are given in descending order,
this condition is simplyl0ø1/2. For the rest of the paper we
will assume that the Schmidt coefficients are indeed given in
descending order.

For the generalization tok.2 phase operators satisfying
(12), we have no simple geometric interpretation. Similar
phase factors were also used independently in the context of
deterministic teleportation schemes[14]. It can be shown
that such phases can only be found ifl0ø1/k. However, it is
not known that this requirement is sufficient. As an example,
for states in four dimensions whose Schmidt coefficients sat-
isfy 1/3 =l0=l1=l2+l3 sd=4d, we can constructN=3
34=12 operators by using products of the four shift opera-
tors, and the three phase operators defined by the phases
u0

m=0, u1
m=2pm/3, u2

m=u3
m=4pm/3, where 0øm,3.

In order to prove[15] that l0ø1/k is a necessary condi-
tion for the existence ofkd phases satisfying Eq.(12), we

define ak3d matrix V, whose elements areVnj=Îl je
iu j

n
.

From Eq.(12) it follows that VV† is thek-dimensional iden-
tity matrix. Therefore, thed-dimensional Hermitian matrix
V†V hask eigenvalues equal to 1, andd−k eigenvalues equal
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to zero. Note also that the diagonal elements of this matrix
are given bysV†Vd j j =kl j. We now use a part of the Schur-
Horn theorem[16] which states that the vector of the diago-
nal elements of a Hermitian matrix is majorized by the vec-
tor of its eigenvalues. Therefore, in our case, the vector
skl0,kl1, . . . ,kld−1d is majorized by the vector of eigenval-
ues (1, 1,…, 1, 0,…,0). In particular, this proves that
l0⇐1/k.

We note that states withl0ø1/k have entanglementS
ù log2k ebits. Furthermore, all such states are majorized by a
maximally entangled state of ak-level system residing in a
d-dimensional Hilbert spacefs1/Îkdoi=0

k−1uii l+0oi=k
d−1uii lg, and

thus can be converted to it by local operations and classical
communication[11,12]. For this “maximally” entangled state
a construction similar to(3) trivially yields kd orthogonal
states. Note, however, that in order to concentrateucl deter-
ministically into a maximally entangledk-level state, one
must use both local operations and classical communications
[13], whereas in our construction only local operations are
used. The additional communication required to convert non-
maximally entangled states into maximally entangled ones,
would reduce the net gain in communication.

B. A nongeometric approach

As we have already mentioned, the geometric approach,
although guided by the appealing separation into “classical”
and quantum encoding operators, is not necessarily optimal.
Consider, for example, the state

uc3l =Î2

3
u00l +Î1

3
u11l + 0u22l s13d

in d=3 dimensions. Sincel0= 2/3 . 1/2, using the geo-
metric approach we can only use the three operators
h1 ,X,X2j. This, however, does not mean that the maximal
size of a set of orthogonal unitaries is just three. In fact, if we
abandon the phase and shift operators, we find the larger set
h1 ,X,U3,U3

†j, where

U3 =1−
1

2
0 −

Î3

2

0 1 0

Î3

2
0 −

1

2
2 s14d

is a rotation by 2p /3 within the subspace spanned by
hu0l , u2lj. This set consists of four orthogonal unitaries(with
respect touc3l). As will be discussed in the next section, our
numerical results suggest thatuc3l is the state with minimal
entanglement ind=3 dimensions admitting more than three
orthogonal unitaries. Note that the above construction is by
no means unique. It can be generalized to an arbitrary dimen-
sion d as follows. The partially entangled state is

ucdl =Îd − 1

d
u00l +Î1

d
u11l + 0o

i=2

d−1

uii l. s15d

The set of d+1 orthogonal unitaries ish1d,Xjø hUd
kjk=0

d−2,
where

Ud
ku0l = −

1

d − 1
u0l +

Îd

d − 1o
j=1

d−2

e2pikj /sd−1du j + 1l,

Ud
ku1l = u1l. s16d

The effect ofUd
k on all other basis vectors is restricted only

by the unitarity requirementUd
k†

Ud
k=1. Let us verify explic-

itly that hUd
kj is indeed an orthogonal set(we omit the sub-

script d):

TrsLUk†
Uld =

d − 1

d
k0uuUk†

Uldu0l +
1

d
k1uuUk†

Uldu1l

=
1

dsd − 1dS1 + do
j=1

d−2

e2pisl−kd j /sd−1dD +
1

d

=
1

d − 1
+

1

d − 1o
j=1

d−2

e2pisl−kd j /sd−1d

=
1

d − 1o
j=0

d−2

e2pisl−kd j /sd−1d = dk,l s17d

and also

TrsL · 1 ·Ukd =
d − 1

d
k0uUku0l +

1

d
k1uUku1l

= −
d − 1

d

1

d − 1
+

1

d
= 0,

TrsLX†Ukd =
d − 1

d
k0uX†Uku0l +

1

d
k1uX†Uku1l

=
d − 1

d
k1uUku0l +

1

d
k2uUku1l = 0. s18d

This construction can be further generalized to cases where
l0=d/N=sm−1d /m for some integerm. Note that all these
states have less than one ebit of entanglement, and that for
large d, l0=sd−1d /d.1, which means that the entangle-
ment required for having more than the “classical”d unitar-
ies approaches zero.

VI. NUMERICAL ANALYSIS OF THE GENERAL CASE

In the general case, we were unable to find a parametri-
zation of Eq.(7) which leads to an exact solution. Numerical
results are, however, obtainable. We first describe the nu-
merical methods we have used, and some considerations re-
garding the reliability and accuracy of these results. Next, we
present and discuss the numerical results we have obtained.

A. Numerical methods and considerations

To study this problem numerically, we have used standard
numerical multivariate root-finding routines. These routines
try to converge to a solution, starting from a given(usually
random) point in the domain of parameters. The process ei-
ther results in a set of values of the unknown parameters that
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is a root of the given multivariate function(with a certain
controlled error), or fails to converge. Generally with such
routines, a failure to converge means that the procedure got
stuck in a local minimum, and that another trial with a dif-
ferent starting point may converge to a root. A consistent
failure to converge over a sufficient number of trials suggests
that the specified function has no roots. With our problem,
for a given stateucl and a chosen alphabet size ofN, it is
possible to express the set of equations in(7) as a multivari-
ate root-finding problem. The unknown parameters we wish
to solve are those describing the unitarieshUiji=0

N−1. Since the
number of these parameters is quite large(d2−1 parameters
per unitary), restarting the numerical procedure with random
starting points a sufficient number of times in order to deter-
mine that there is no solution is not feasible. However, we
noticed that for any choice ofucl and N only one of two
cases occurs. Either the procedure finds a solution for any
given starting point(not necessarily the same solution for
different starting points, but it always finds a solution), or no
solution is found for all given starting points. This was
checked for many choices of pure states and sizes of alpha-
bets, using 100 random starting points for each choice. This
fact indicates that the two cases differ substantially in the
number and density of solutions. Therefore, when perform-
ing a systematic, high-resolution mapping of the domain of
pure states and sizes of alphabet we used a single random
starting point to determine whether dense coding is possible
for a choice ofucl andN or not. For a small set of values of
ucl andN which are of special interest, and will be described
later on, we did use several starting points to enhance the
reliability of our results. To confirm our results we have veri-
fied that in all cases where we know that deterministic dense
coding is possible(i.e., maximal entanglement and the cases
discussed in the previous section), the numerical procedure
indeed found a solution. Furthermore, the fact that our re-
sults, which will be described in detail shortly, demonstrate
the existence of well defined regions with smooth boundaries
indicates that the our numerical analysis captured the true
properties of this system, and not some random artifacts.

B. Numerical results

Using the method described above, we have mapped the
entire domain of pure states in three dimensions and some
regions of the domain of pure states up to dimensiond=7.
The increasing nature of both the number of parameters de-
scribing the unitaries, and the size of the domain of pure
states, makes an exhaustive mapping in high dimensions ex-
tremely time consuming. Figure 1 graphically presents the
results for the three-dimensional case. It is evident that one
can have two statesucl and ufl having Sscd.Ssfd but
Nmaxscd,Nmaxsfd. Naively, one may expect more entangle-
ment to mean greater deterministic communication capacity,
yet this is not so. Such cases were also found in our partial
mappings of higher dimensions and have led us to conclude
that in finite dimensional systems,Nmaxscd, the maximal
number of orthogonal unitaries, does not depend directly on
the entanglement, but on some other function of the Schmidt
coefficientsli. We attribute this to the fact that the entangle-

ment measure(the von Neumann entropy) is an asymptotic
quantity, while the process we consider here can be carried
out deterministically with a single entangled pair.

An intriguing observation is that we did not find partially
entangled pure states for which it is possible to construct a
maximal set of eight orthogonal unitaries(but we did find all
steps withNmaxø7). Similarly, we have not found any pure
state in d=4 dimensions, admitting the construction of a
maximal set of 15 orthogonal unitaries(and again, we did
find all steps withNmaxø14). This leads to the conjecture
that there are no states which admit a maximal set ofd2−1
orthogonal unitaries ind dimensions. We have proved this to
be the case in two dimensions, but, due to the increasing size
of the numerical problems, we have only been able to check
this conjecture numerically ford=3,4. This was done by
applying the numerical procedure to states which are nearly
maximally entangled. When trying to findd2−2 unitaries, the
procedure gets as close to a root as desired. However, when
trying to find d2−1 unitary operators, there seems to be a
positive finite minimum. The value of this minimum is small,
depending on how close the state is to a maximally entangled
state. It might be that states which allow ford2−1 orthogonal
unitaries are very special and were not discovered by our
numerical techniques, or only exist in higher dimensions.
However, at the very least, the situation and solution space is
dramatically different forN=d2−1.

It is also interesting to extract from the numerical results
the minimal entanglement necessary for havingN orthogonal
unitaries. These values are easily found from Fig. 1 by find-
ing the points with minimal entanglement within each re-
gion. These points are indicated in Fig. 1. In Fig. 2 we com-
pare this quantity with the lower bound of the amount of
entanglement derived from the asymptotic channel capacity
[5], which, when measured in units of dits, is given by

C ø 1 + Sscd. s19d

Therefore, the entanglement is bounded from below by
Sscdù logd N−1 edits. It is evident that only whenN is a

FIG. 2. Minimal entanglement(in etrits) required to constructN
orthogonal unitaries as a function ofN in the three-dimensional
case. Numerical results are shown as black squares connected by
dotted lines. These entanglement values were extracted from the
minimally entangled states indicated in Fig. 1.3 symbols con-
nected by solid lines indicate the channel capacity bound.
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multiple of d is this bound achieved by our deterministic
schemes. As expected, this shows that from an asymptotic
point of view, motivated by the information capacity of the
communication protocol, the deterministic procedure is
worse than the probabilistic procedure suggested in[5],
which does achieve the bound.

While analyzing the numerical results for the three-
dimensional case we have noticed that the stateuc3l [see Eq.
(13)], for which a specific construction was presented in the
previous section, seems to be the state with minimal en-
tanglement that admits four orthogonal unitaries. This can be
seen in Fig. 1. In addition, for dimensionsd=4, . . . ,7, we
find that among all states for which the numerical procedure
yielded d+1 orthogonal unitaries, the stateucdl
=Îsd−1d /du00l+Îs1/ddu11l+0oi=2

d−1uii l [see Eq.(15)] is the
one with minimal entanglement. Ind=3,4,5 wehave estab-
lished the optimality ofucdl by applying the numerical pro-
cedure to all pure statesucl with entanglementSsucld
øSsucdld over a grid of Schmidt coefficients with resolution
0.01. Indeed, the numerical procedure foundd+1 orthogonal
unitaries only forucdl. Near the optimal state we employed a
higher mapping resolution of the order of 10−3 to locate the
optimum accurately. In dimensionsd=6,7 we established
the local optimality ofucdl with the same accuracy. How-
ever, establishing it as a global minimum takes a prohibitive
amount of computation. We therefore conjecture that the
state with minimal entanglement, admitting at leastd+1 or-
thogonal unitaries ind dimensions, isucdl.

In a similar manner, we examined the minimally en-
tangled states for which the numerical procedure found a
construction of at leastN orthogonal unitaries in dimensions
d=3, . . . ,7 for d+1,N,2d. Again, we note that ford
=3,4 we have established the optimality by mapping the
entire relevant domain with a resolution of at least 0.01,
while for d=5,6,7 weonly verified local optimality. Since
for N=2d a geometric construction for a maximally en-
tangled qubit residing ind dimensions exists, we had ex-
pected, and indeed found, that all these states have less than
one ebit of entanglement. Remarkably, all of these optimal
states have only two nonvanishing Schmidt coefficients.
Table I shows the value ofl0 of these states for different
values ofN and d. Since there are only two nonvanishing
Schmidt coefficients, specifyingl0 completely characterizes
the state. Inferring from these results, we conjecture that in
any dimensiond, the state with minimal entanglement that
admits at leastd+n sn=2, . . . ,dd orthogonal unitaries is
Îd/ sd+ndu00l+În/ sd+ndu11l. Note that although this data
were generated numerically, these values are simple fractions
of N andd. This suggests that an explicit analytical construc-
tion of the unitary operators is possible for these cases as
well.

VII. CONCLUSIONS

Let us first summarize the results of this work. The main
results are either proved analytically, or shown by an explicit
construction.

(1) We proved that deterministic dense coding with partial
entanglement is impossible in two dimensionssd=2d.

(2) We showed that deterministic dense coding with par-
tially entangled states is possible for dimensionsdù3 by
constructing exact deterministic dense coding schemes for an
alphabet size of 2d. A necessary condition for the existence
of similar schemes for alphabet sizekd s2,kødd is that it is
possible to distill deterministically ak-level maximally en-
tangled state from the initial stateucl (or equivalently, that
l0ø1/k) (albeit with classical communication).

(3) We showed an explicit dense coding scheme for an
alphabet size ofd+1 in d dimensions for the partially en-
tangled stateucdl=Îsd−1d /du00l+Î1/du11l+0oi=2

d−1uii l. This
proves that deterministic dense coding is possible with less
than one ebit of entanglement, which means that this ap-
proach is not equivalent to the trivial one wherein determin-
istic concentration transforms a nonmaximal state into an
ebit, to be used in the standard dense coding scheme.

In addition, we have used numerical methods to study the
problem in the general case. Relying upon these numerical
results we conclude the following.

(4) The optimal alphabet size grows in “steps” and can
obtain any integer value in the rangefd,d2g with the possible
exception of the alphabet size ofd2−1.

(5) Our numerical data support the conjecture that the
stateucdl is the state with minimal entanglement for which
deterministic dense coding is possible.

(6) On the basis of our numerical results we conjecture
that the stateÎd/ sd+ndu00l+În/ sd+ndu11l is the state with

TABLE I. Values of l0 for states with minimal entanglement,
such that there existN (row index) orthogonal unitary transforma-
tions in d (column index) dimensions. Numerical data and conjec-
tured behavior are shown. The estimated accuracy of the values is
10−3. Values for which global optimality is either knownsN=2dd,
or numerically verified, appear in boldface, while for other values
we have only been able to verify local optimality. Note that all
values correspond to less than one ebit of entanglement.

2 3 4 5 6 7 … … d

3

4 2/4 2/3

5 3/5 3/4

6 3/6 4/6 4/5

7 4/7 5/7 5/6

8 4/8 5/8 6/8 6/7

9 5/9 6/9 7/9

10 5/10 6/10 7/10

11 6/11 7/11

12 6/12 7/12

13 7/13

14 7/14

] � �

d+1 � d−1/d

d+2 d/d+2

A A
2d−1 d/2d−1

2d d/2d
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minimal entanglement admitting at leastd+n sn=2, . . . ,dd
orthogonal unitaries ind dimensions(see Table I). This rela-
tively simple form makes us believe that an explicit con-
struction of the unitary operators for this case can be found.

A connection between superdense coding and teleporta-
tion has been noted in the past. In[10], a one-to-one corre-
spondence between dense coding schemes and quantum tele-
portation schemes (for maximal entanglement) was
established, and we have already pointed out the similarity
between the phase operators presented in Sec. V and the
teleportation protocol with partially entangled states discov-
ered independently in[14]. It would be interesting to under-
stand the correspondence between dense coding and telepor-
tation schemes when partial entanglement is used.

Another related topic is the problem of distinguishing uni-
tary operators. The relation between this problem and super-
dense coding in the maximal case was mentioned in[17].
The conditions for distinguishing a pair of unitary operations
have been specified in[18]. It is interesting that our construc-

tions provide nontrivial sets of unitary operators which can
be perfectly distinguished by asingleapplication of the uni-
tary and asingle measurement of a specific partially en-
tangled state.

Finally, it would be interesting to examine whether the
construction of a set of unitaries that satisfy the generalized
orthogonality condition(7) sheds light on the recent proposal
for probabilistic interpretation of evolutions[19].
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