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We argue that on its face, entanglement theory satisfies laws equivalent to thermodynamics if the
theory can be made reversible by adding certain bound entangled states as a free resource during
entanglement manipulation. Subject to plausible conjectures, we prove that this is not the case in
general, and discuss the implications of this for the thermodynamics of entanglement.
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FIG. 1. Reversible and irreversible processes in thermody-
namics.
The pioneering papers in quantum information theory
[1–3] revealed a potential irreversibility in entanglement
processing. They suggested that by local operations and
classical communication (LOCC), one needs more pure
entangled states to produce a state than can be drawn
from it. Some researchers expressed the intuition that this
is due to some ‘‘second law’’ in entanglement processing.
The first paper making this analogy rigorous was [4].
However the authors did not discuss irreversibility, in-
stead building the analogy in the region of full revers-
ibility—in the domain of pure states (see also [5]). It was
sometimes argued that irreversibility is where entangle-
ment and thermodynamics differ, as, e.g., the Carnot
cycle is reversible. In [6] a different point of view was
presented which attempted to account for this irrevers-
ibility. The leading idea was that entanglement is analo-
gous to energy and that distillation of pure entanglement
is like drawing work (the amount of pure entanglement
drawn from a state is Ed while the amount needed
to create a state we denote by Ec). Meanwhile, the ex-
treme case of irreversibility was discovered: the bound
entangled (BE) state. One cannot draw any pure en-
tanglement from them, but entanglement is needed to
create them.

In this paper we will investigate aspects of the latter
analogy and argue that it is extremely useful for under-
standing the basic laws of entanglement processing. We
study the consequences of our proposal, and make the
theory precise so that testing is possible.We first show that
the very fact of irreversibility does not cancel the anal-
ogy, rather it is a constitutive element. This enables us to
state the three laws of entanglement for such a theory.
However, next we show that the analogy with reversible
thermodynamics does not appear to hold in general. We
then speculate on possible ways the basic laws of thermo-
dynamics may still yield insights into quantum informa-
tion theory.

The main observation we will need is that what con-
stitutes thermodynamics, and distinguishes it, e.g., from
mechanics, is that there are two forms of energy: disor-
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a single heat bath of energy E we need precisely this
amount of work. The second law says that this creation
is irreversible: from a single heat bath one cannot draw
work. Thus the second law accounts for the basic irrevers-
ibility of the heat bath formation: it is due to loss of
information. In its ideal version, thermodynamics offers
also a reversible change of work into heat and vice versa
(the Carnot cycle). However, this is possible only if one
has heat reservoirs from the very beginning. This is
depicted in Fig. 1. To summarize: (i) there is a form of
energy that cannot be used to draw work (single heat
baths); (ii) it can, however, be used to store work, but
(iii) work can be stored in heat only if there is some heat
at the beginning (iv) in the latter case work can be stored
reversibly.

Let us now argue that thus far, entanglement processing
not only does not exclude a perfect analogy with the
features of thermodynamics outlined above, but suggests
strongly that there is one. (We will then provide a new
result, which, up to a plausible conjecture, precludes such
a prima facia possibility.) We will follow an idea related
to the entanglement-energy analogy of [6].

First it is reasonable to assume that pure state entan-
glement is analogous to mechanical energy, while mixed
state entanglement corresponds to energy that may be
partly accumulated in the form of heat. Now, distillation
[1], i.e., drawing pure entanglement from mixed states, is
like running an engine that produces work out of heat.
There is a question: in thermodynamics we have systems
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that have energy but no work can be drawn from them—
single heat baths. If we did not have a counterpart of it in
entanglement processing, then a constitutive element
would be missing. However, there exist so-called bound
entangled states [7] that are entangled (have ‘‘energy’’)
but this energy cannot be used, i.e., changed into an
ordered form. Thus BE states are the counterpart of a
‘‘single heat bath’’—a completely disordered form of en-
tanglement. Other mixed states would represent partially
ordered entanglement: work stored in thermodynamical
systems (e.g., pairs of reservoirs of different tempera-
tures). The process of forming a BE state out of pure
states could be thought of as analogs to Joule’s experiment
establishing the equivalence between work and heat
where all work is (irreversibly) changed into heat. The
energy of the created heat bath is equal to the amount of
work added to the system. This leads us to the conclusion:
The counterpart of total energy would be entanglement
cost (amount of pure entanglement needed to produce the
state). At this moment one can ask a pointed question:
does a counterpart to the first law hold in entanglement
theory? Is the entanglement in a BE state still present? Or
perhaps to form the state one needs entanglement but
during the formation process it gets dissipated [8]. This
is very much connected with the main question which we
will now address: Can we have an analog of reversible
work extraction? One might say no, because in entangle-
ment processing there is irreversibility. This is, however,
not an adequate answer. Let us argue that we can have a
perfect analogy of reversible work extraction, despite the
fact that generically we need more singlets to create a
state than can be draw from it.

First note, that any thermodynamical system has more
energy than we can draw from it (excluding the case
when one of the reservoirs has zero temperature). This
is due to the second law. The same is true for entangle-
ment: for a generic mixed state ED < Ec. Thus the irre-
versibility of entanglement processing could be due to a
second law of entanglement that says ‘‘the disorder of
entanglement can only increase.’’ Now, according to
Fig. 1, for a given state %, the following two conditions
should be matched: (i) One should be able to distill Ed of
pure entanglement, but in such a way that the garbage left
over from the distillation procedure (denoted by %g) is a
BE state with Ec�%g� � Ec�%� � Ed�%� � Eb�%�

%! %g �  � � n; (1)

(ii) one should be able to form the state % out of Ed�%�
singlets plus a BE state of entanglement cost equal to
Eb�%�.

This is a consequence of conservation of Ec which
would be analogous to the first law. Even though we
will show that in general this will not hold, we think it
is important to realize how this theory would look.
Indeed perhaps reversible thermodynamics of entangle-
ment is an important element of the total, more compli-
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cated picture. Besides, the independent development [11]
suggests that for some classes of mixed states this theory
may be valid.

Thus, we would have the following reversible thermo-
dynamics of entanglement: There is a unique measure of
entanglement (Ec); Ed is not an autonomous measure of
entanglement: it is the ‘‘work’’ that can be drawn in units
of Ec; processes of formation and distillation are revers-
ible in the sense described above; the process of changing
pure entanglement into mixed entanglement is irrevers-
ible [12].

Exactly as in statistical physics we would have two
kinds of irreversible processes: dissipation (where Ec
decreases) and pure decoherence (where Ec is constant,
but Ed decreases). The first irreversibility does not exist in
optimal processes (which we consider). The second could
be removed if the processes start with some initial supply
of BE states. Then to form a state, one would not need to
create disordered entanglement out of the ordered form
but only dilute the ordered one into the noisy entangle-
ment of BE states.

Usually hypothetical reversibility in entanglement
processing is associated with a unique measure of entan-
glement, in the sense that there is only one function
monotonic under operations. Indeed, we can state the
above in such a way that there will only be one measure
of entanglement. Since bound entanglement is used only
as a source of fully disordered entanglement, it is not
actually a resource. Thus we can treat it as free of charge
(say heat is cheap, only work costs). Our class of opera-
tions would then be as postulated in [13]: LOCC plus BE
ancillas. This does not make the theory trivial, since we
still cannot obtain singlets for free. Then, however, the
only monotone would be ED. Actually, it would be equal
to the (regularized) relative entropy distance to the set of
nondistillable states [14–16]. At this point we can even
formulate a precise theorem.

Theorem 1: If under a given class of operations C that
includes mixing states, one can reversibly transform %
into pure states, then any asymptotically continuous func-
tion E that is monotonic under the class C satisfies

E1�%� � E1
R �%�; (2)

where ECR is the relative entropy distance from the set of
states that is closed under C.

The above notation indicates the regularization of a
function M�%� given by M1�%� � limn!1

1
nM�%�n�.

Remark: For such states we thus have a unique entan-
glement measure equal to the familiar regularized rela-
tive entropy of entanglement.

Proof: Uniqueness comes from reversibility and
uniqueness of the entanglement measure in the pure state
case [4,17] (that again comes from reversibility between
pure states [3]). ECR is a monotone under C [18], and is also
asymptotically continuous if the considered set is convex
[17] (which is the case since C includes mixing).
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Thus we can formulate the second law. Surprisingly, it
has the same form as in statistical physics: it is Uhlmann
monotonicity—see, e.g., [19]—saying that under com-
pletely positive maps the relative entropy does not in-
crease. Indeed from this, one gets that the relative
entropy distance is monotonic, from which our theorem
follows. In this way the law gives the optimal entangle-
ment that can be distilled exactly as the second law gives
the Carnot efficiency. This also suggests a feedback to
thermodynamics: it seems possible to express the extract-
able work by means of the relative entropy distance from
the single heat bath states (for a fixed Hamiltonian).
Indeed, Theorem1 appears to be satisfied in thermody-
namics. We hope to come back to this interesting point
elsewhere. It is also rather amusing that in this theory we
would have an analog to the third law of thermodynam-
ics: one cannot distill singlets with perfect fidelity

Let us return to the question of whether we can have
reversibility for all states. Recall that for this proposal:
Reversible thermodynamics of entanglement � possibility
of reversible separation of bound and pure entanglement.

Below we show a counterexample. To this end we need
to be more rigorous. The first problem is that if there are
NPT [20] bound entangled states, then BE cannot be for
free, as such states together with some PPT [20] states are
distillable, so that singlets would be for free too. Thus we
should not speak about BE states, but rather about the
smaller class of states that is closed under LOCC and
under tensor product. Call this set the Hyper-Set (HS).
Thus to produce a counterexample, we should show that
there is a state for which ELOCC�HS

d < ELOCC�HS
c , where

LOCC� HS is LOCC operations plus states from HS as
free ancillas. One can also consider the class of hyper-
maps that includes the class LOCC� HS—namely the
maps that do not move states outside of HS or the subclass
of these consisting of the maps that are closed under
tensor product.

We do not know the set HS or the class of hypermaps.
However, the following result [21] adds an additional
restriction: any NPT state can be distilled with the help
of some PPT state. The HS would therefore not be able to
include PPT states and any NPT state. The conditions on
other sets are also very restrictive, and we therefore
conjecture that the HS is PPT and the class is PPT maps
[22] introduced in [23].

Let us therefore define PPT entanglement of formation
EPPT
f . Recall that the traditional entanglement of forma-

tion was defined as [2] Ef�%� � inf
P
i piS�%

i
A�, where the

infimum runs over all ensembles % �
P
i pij iih ij and

%iA is obtained by partial trace of  i. One knows that the
entanglement cost is given by the regularized entangle-
ment of formation [24]

Ec � E1
f : (3)

To define the PPT version of Ef we need the notion of
phase-separated states. A state is called phase separated
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if it is either pure or PPTor a tensor product of both. Then
we define

EPPT
f �%� � inf

X

i

pif�%i�; (4)

where the infimum runs over decompositions of % into
phase-separated states, and f�%PPT

AB � � 0, f� AB� �
S�TrA�j iABh j� � f�j iABh j � %PPT

A0B0�, i.e., we count
only the pure entanglement. This quantity intuitively
measures the entanglement cost under LOCC� PPT,
like entanglement of formation Ef was associated with
entanglement cost under LOCC. Indeed, following [24]:

Proposition 1: If EPPT
f is monotonic under PPT maps,

and asymptotically continuous [25], then its regulariza-
tion is equal to the entanglement cost under PPT maps.

If the assumptions hold, then we have counterpart of
(3) for PPT maps. Consider now the state

% � pj �ih �j � �1� p�j �ih �j; p 2 �0; 1�;

(5)

with  � � �1=
���
2

p
��j00i � j11i�. We have Ef � Ec �

H�12 �
�������������������
p�1� p�

p
� [26] where H�x� � �x logx� �1�

x� log�1� x� is the binary entropy. Also EPPT
d � EPPT

R �
S�%A� � S�%� � 1�H�p� [2,15].

We will now state the main result of the paper.
Theorem 2: For the state (5) p � 1=2; 0; 1 the PPT

distillable entanglement is strictly smaller than the regu-
larized PPT entanglement of formation.

Proof: We will prove that EPPT
f � EPPT1

f � Ec. We will
actually show that it is true for all maximally correlated
(MC) states [15] defined as % �

P
ij aijjiiihjjj. We need

the following facts about MC states: (i) A state %AB �
�A0B0 is MC iff % and � are MC; (ii) any state in the
support of an MC state is MC; (iii) if a MC state is PPT
then it is separable. To see (i) note that (a) all pure states in
the support of MC state have the same Schmidt decom-
position (SD); (b) a state is MC if its eigenvectors have the
same Schmidt decomposition. Thus if %AB � �A0B0 is MC,
then its eigenvectors  iAB ��

i
A0B0 (where  iAB and �i

A0B0

are eigenvectors of %AB and �A0B0 , respectively) have the
same SD. This is possible only if it is true for vectors  iAB
and �i

A0B0 separately. Thus both %AB and �A0B0 have to be
MC. Similarly the converse holds. Fact (ii) can be found,
e.g., in [15]. Proof of (iii) is straightforward.

Now we can prove the theorem. From (i) it follows that
if % is MC then so is % � n. Now take any ensemble % �P
i pi%i, with phase-separated %i. Because of (ii) we have

that all %i are MC. Then (iii) implies that if %i is PPT, it
must be separable. Otherwise it is either pure or product
j ih j � �PPT of a pure state and a PPT state. However,
due to (i), �PPT must be MC, hence it is separable. Thus
we do not have PPT states in decomposition, so that
EPPT
f �%�n� � Ef�%

�n�, hence EPPT1
f � E1

f �%�. However,
we have [26,27] E1

f � Ef. Of course, for states (5) with
p � 0; 1=2; 1 we have Epttd < Ec. This ends the proof.
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Thus, under the conjectures that EPPT
f is monotonic

under PPT and asymptotically continuous and that HS is
PPT, we obtain that there is no reversible thermodynamics
of entanglement. Instead we in general have some dissi-
pation of entanglement even in optimal processes. Since
E1
R is the entanglement that could be distilled in the

reversible case one can be tempted to argue that the
difference between Ec and E1

R gives the amount of en-
tanglement dissipated during formation, while E1

R � Ed
is that dissipated during distillation. Then the process of
formation of BE states could be nondissipative, while for
maximally correlated states, the whole bound entangle-
ment would be dissipated during formation of the state.
That is, bound entanglement is needed to create the state,
but is lost during creation (this is supported by the fact
that one can localize the information corresponding to
the bound entanglement for these states [28]).

Does it mean that thermodynamical analogies should
be abandoned? First of all, let us emphasize that even if
we do not have reversible thermodynamics of entangle-
ment it is definitely instructive to know how far we are
from this regime. Thus one might be able to understand
the theory looking at deviations from the desired behav-
ior. Moreover, there is still place for the analogy. It may be
that one can account for the Ec that is dissipated. Perhaps
we sometimes operate in the nonequilibrium regime, or
perhaps when distilling entanglement we have phase tran-
sitions (cf. [29]). Then we may have irreversiblity due to
the release of heat. A result disproving the conjecture that
EPPT
f is asymptotically continuous would also reopen the

possibility that these three laws may still hold as is.
Finally, in a recent development [11] a nontrivial state

was exhibited, for which there is reversibility under PPT
maps, even though Ed < Ec. If one can show that the PPT
map can be realized by means of LOCC� PPT, we would
obtain a nontrivial regime where reversible thermody-
namics of entanglement hold.

To summarize, the features that distinguish entangle-
ment theory from reversible thermodynamics are not due
to the existence of bound entanglement (or distillation-
formation irreversibility). Rather the problem is that two
‘‘phases,’’ bound entanglement and free (pure) entangle-
ment cannot in general be separated without loss of
entanglement cost. Finally, we believe that our paper
provides a new, clearer picture of entanglement theory,
and that further investigation into the thermodynamics of
entanglement is warranted.
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