View metadata, citation and similar papers at core.ac.uk

VOLUME 93, NUMBER 17

brought to you by .{ CORE

22 OCTOBER 2004

Distillation Protocols: Output Entanglement and Local Mutual Information

Michat Horodecki,' Jonathan Oppenheim,'* Aditi Sen(De),? and Ujjwal Sen®

Unstitute of Theoretical Physics and Astrophysics, University of Gdarisk, 80-952 Gdarisk, Poland
“Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom

3nstitut fiir Theoretische Physik, Universitidt Hannover, D-30167 Hannover, Germany
(Received 22 June 2004; published 20 October 2004)

A complementary behavior between local mutual information and average output entanglement is
derived for arbitrary bipartite ensembles. This leads to bounds on the yield of entanglement in
distillation protocols that involve disinguishing. This bound is saturated in the hashing protocol for

distillation, for Bell-diagonal states.
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Introduction.—Distillation of entanglement [1,2] is a
key issue in attaining nonclassical tasks in quantum
communication protocols [3]. In a typical communication
protocol, entanglement must be shared between distant
partners (Alice and Bob). Since channels are invariably
noisy, the partners usually end up with mixed state en-
tanglement, which must then be distilled into pure form
via local operations and classical communication
(LOCCQ), to make them amenable to the envisaged quan-
tum communication protocol.

The aim of this paper is twofold. We obtain an upper
bound on local mutual information, /“OCC, of arbitrary
bipartite ensembles. We then use this bound to provide
bounds on the yield of entanglement in any distillation
protocol that uses local distinguishing of ensembles of
states. The obtained bounds are then compared with the
yield in the existing distillation protocols (e.g. [1,2,4])
and similar generalizations thereof, and also in some
other cases, in which the distillation is based on a distin-
guishability protocol [5,6]. As a spin-off, we obtain a
complementarity relation between local mutual informa-
tion and average output entanglement.

Generalized universal Holevo-like upper bound on
local mutual information—To begin, we obtain a gener-
alized Holevo-like bound on local mutual information
for arbitrary bipartite ensembles. Suppose then that a
source prepares the ensemble R = {p,, 0%} and sends
the A part to Alice and the B part to Bob. The task of
Alice and Bob is to estimate the identity x of the sent
state. If Alice and Bob are together, so that they are
allowed to perform global operations, the mutual infor-
mation is bounded by the Holevo quantity [7], yr =
S(e) — > ,.p.S(@,), where @ is the average ensemble state
> PO, S(+) is the von Neumann entropy and is defined
for a state g as S(p) = —trolog, 0. We will however need
the following result [8,9], which is a generalization of the
Holevo bound on mutual information.

Lemma 1: If a measurement on ensemble Q = {p,, 0.}
produces result y with probability p,, and leaves a post-
measurement ensemble Q¥ = {p,,, 0,}, then the mutual
information I (between the identity of state in the en-
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semble and measurement outcome) extracted from the
measurement has the following bound:

Here x o is the average Holevo bound for the possible
postmeasurement ensembles, i.e., Y p,Xo»-

Suppose now that Alice and Bob are far apart, so that
they are able to perform only local operations and com-
municate classically between the operations. In this sce-
nario, universal Holevo-like upper bound on local mutual
information for an arbitrary bipartite ensemble {p,, 04%}
was obtained in [9]

LOCC A B\ __ Z
IMOCC < S(o%) + S(e®) ng%gpxS(ex). (2)

A(B
Here 0t = trp(y)(04%), and @*®) = tryy)> p,0f%. In
this paper, we will prove a generalization of this bound.
Precisely, we show that

M0°C < s(0*) + S(0%) — Y p.S(ef)

- Z pa,b,...,(n)S<pr|ab,...,(n)Qﬁab yyyyy (n)) (3)
a,b,....(n) X

Here {p.jap...0n) Q?Iﬁb,...,(n)} is the postmeasurement en-

semble obtained after the measurement in the nth step,
and p,; () 1s the probability of the sequence of mea-
surement outcomes in steps 1, 2, ..., n. Our generalization
in (3) is related to the previous bound in (2), in a similar
way as Lemma 1 is related to the original Holevo bound.
We will now prove the inequality in (3). To start the
protocol for obtaining the identity x of the given en-
semble R = {p,, 048}, Alice makes a measurement
[10], and suppose that she obtains an outcome a, with
probability p,. Suppose that the postmeasurement en-
semble (for outcome a at Alice) is R, = {p, Q?ﬁ}.
The results presented in this paper are in terms of
mutual information, which when maximized over all
measurement strategies gives the ‘“‘accessible informa-
tion”. All the results are of course true for the extreme
case of the best measurement strategy (for attaining
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maximal mutual information), but are true also for any
other nonextreme measurement strategy. The mutual in-
formation gathered from the measurement of Alice has
the following bound due to Lemma 1: [{ = yga — XRA-
Here yga is the Holevo quantity of the A part of the
ensemble R, i.e., of the ensemble R4 = {p,, 04}. And
Xra 1s the Holevo quantity of the A part of the ensemble
R, The subscript 1 in /{' indicates that the information is
extracted from the first measurement.

After Alice communicates her result to Bob, his en-
semble is RE = {p,, Qfla}, with 08 = tr,(048). Suppose
now that Bob performs a measurement and obtains out-
come b with probability p;, so that the postmeasurement
ensemble (at his part) is RE = {p, . Qflub}, where
0%, = tra(e4l,). So (again due to Lemma 1), the infor-
mation extracted in Bob’s measurement has the following
bound: I§ = ¥rs — Xrs -

This procedure of measuring and communicating the
result goes on for an arbitrary number of steps, and by the
chain rule for mutual information (see, e.g., [11]), the
mutual information obtained in all steps is /"0°¢ = 4 +
I8 +1{ + ---. Note that this quantity depends on the
measurement strategy followed by Alice and Bob.

Now we (repeatedly) use the following facts: (i) The
von Neumann entropy is concave (i.e., S(p,0; + p20,) =
p1S(01) + p.S(0,), for arbitrary density matrices @, and
0,, and probabilities p; and p,) and positive. (ii) A mea-
surement on one subsystem cannot change the state at a
distant subsystem. (iii) The average change (initial mi-
nus final) of von Neumann entropy due to a measure-
ment on one subsystem cannot be less than the average
change in a distant subsystem. So, for example, after
the first measurement by Alice, we have Y p,S(0%) —

ZapaprxlaS(Qﬁa) = prxS(Qf) - ZupaprxlaS(Qﬁa)‘
(iv) The Holevo quantity is positive.

Then after n steps of measurements, we obtain the
inequality (3).

We have assumed that the last measurement is per-
formed by Alice. The last term of the bound (3) is a
contribution from this last measurement by Alice. We
will see below that the final result is free from this
asymmetry. Moreover, for the same measurements, but
using the above items (i)-(iv) in a different way, one can
reach the inequality (3), but with A and B interchanged,
1.e., we also have

110%C = §(0%) + 5(e%) — ¥ p.S(e?)

- Z pa,b,...,(n*l)S<pr|ab,...,(n*l)

a,b,..,(n—1)
X Qf|ab,...,(n—l)>' (4)

Note that now the last term is a contribution from the
next-to-last measurement, which (due to the assumption
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that Alice performed the last measurement) is performed
by Bob. Inequalities (3) and (4) give us upper bounds on
local mutual information, for arbitrary bipartite ensem-
bles. These inequalities are true for any measurement
strategy of Alice and Bob. In particular, they are true
for the one which maximizes /M°“C. This is then the so-
called locally accessible information (1£2¢C),

The last terms in the bounds on local mutual informa-
tion in inequalities (3) and (4) respectively are negative
quantities, due to the positivity of von Neumann entropy.
Leaving it out, we have the inequality (2).

Input and output entanglements.—We now try to write
the bounds on local mutual information in (3) and (4) in a
more revealing form. To that end, note that the von
Neumann entropy of either of the local density matrices
of a bipartite state is no smaller than the entanglement of
formation [2], and the entanglement of formation is a
lower bound for any asymptotically consistent measure
of bipartite entanglement [12].

Then, the last term in the upper bound of Eq. (4)

is=— Za,b,...,(nf1)pa,b,...,(n—I)E(prxlab,...,(n—I)Q‘;‘f;bw”(nf]))’
which in turn [by the fact that entanglement cannot
increase (on average) under LOCC] is no greater than

Z pa,b,...,(n)E<pr|ab,...,(n) Qﬁlﬁb,...,(n) >: %)
x

a,b,....(n)

where E denotes any asymptotically consistent measure
of bipartite entanglement. The last term of (3) is directly
= the right-hand side of (5), by the fact that the von
Neumann entropy of local density matrix is = any
asymptotic entanglement measure. The right-hand side
of (5) (without the minus sign) is just the average entan-
glement that we obtain at the output in the n step local
measurement protocol between Alice and Bob. We denote
it by E,,. Note that from here on, the results are inde-
pendent of whether it was Alice or Bob who ended the
protocol.

Referring back to the inequalities (3) and (4), we have

LOCC A By _ N _F
105 = 5(e") + 5(e”) = max > p.S(€%) = Eow (6)

It is possible to write Eq. (3) in an even more revealing
way. Note that S(0*) + S(e?) = N, where N is the num-
ber of qubits (two-dimensional quantum systems) in the
Alice-Bob system. That is, N = log,d,dp, where d, and
dp are, respectively, the dimensions of the Hilbert spaces
of Alice’s and Bob’s particles. Moreover, we have
S(08) = £(p4?), where again £ denotes any asymptoti-
cally consistent measure of bipartite entanglement [2,12].
The quantity 3, p.E(04B) is the average input (initial)
entanglement in the Alice-Bob system. We denote it by
E:n. We use a separate notation for the asymptotic entan-
glement measure for the input states than that in the
output states, to underline the fact that they can be differ-
ent measures. It is known that there exist several asymp-
totically consistent measures of bipartite entanglement
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(see [13]). We will come back to this point later. So finally
we have

[M0°C = N = &, = Eque (7)

Equation (7) can also be obtained from Eq. (4), with the
additional assumption of monotonicity under LOCC of E.
Before connecting above bounds on local mutual infor-
mation with entanglement distilled in distillation proto-
cols, let us note some interesting features of these
inequalities.

Complementarity between extracted and unused infor-
mation.—One way of interpreting the result in Eq. (7) is to
note that the terms "0 and E,, depend on the mea-
surement protocol followed by Alice and Bob. The other
two terms (N and &;,) are fixed for a given ensemble. So,
writing the inequality as /"O°C + E_, = N — &,,, we see
that the left-hand side can be interpreted as a sum of
“extracted information” (I*°°C) and ‘“‘unused informa-
tion” (E,,). Independently (i.e., considered separately),
the extracted and unused informations depend on the
measurement strategy followed by Alice and Bob.
However for all strategies, the sum of the extracted and
unused informations is bounded by N — &;,.

On bound entanglement with nonpositive partial trans-
pose.—Another interesting feature of the inequality (7) is
that the entanglement measures E and £ need not be the
same measures. They must only be no greater than the von
Neumann entropy of either of the local density matrices.
In particular, any asymptotically consistent measure of
bipartite entanglement satisfies such conditions (see [13]).
This may have nontrivial consequences. For example, we
may require that £ must be a convex function, and keep E
to be such that it need not necessarily be convex [14]. The
only entanglement measure for which there is some evi-
dence for nonconvexity is for distillable entanglement [2],
and this is related to the phenomenon of bound entangle-
ment [15]. Precisely, it was shown in Ref. [16] that dis-
tillable entanglement can be proven to be nonconvex, if
there exists a certain bound entangled state [17], having
nonpositive partial transpose (NPT) [18]. Bound entan-
glement, and more particularly NPT bound entangle-
ment, is not a well understood phenomenon of quantum
mechanics. We believe that the inequality (7), may have
important consequences for NPT bound entangled states.
The point that we make here is also to be seen with
respect to the fact that below we actually relate the output
entanglement E,, to entanglement distilled in different
distillation protocols, and bound entanglement is pre-
cisely that entanglement which cannot be distilled.

Bound on entanglement distillable via protocols cor-
recting all errors.—We will now consider distillation
protocols based on full distinction between the possible
pure states in a decomposition of m copies a bipartite state
p. Suppose therefore that Alice and Bob share m copies of
the state p given by
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p= Zl’i|¢i><‘ﬁi|- ®)

where ;) are eigenvectors of p. Alice and Bob can
imagine that they actually share some string of the form
i, ®...8¢; . Now we propose the following strategy
for distillation. Alice and Bob try to fully distinguish
between all strings. That is, they apply some LOCC
operation that tells them what is the string that they share.
Usually during such distinguishing, they destroy the
string to some degree. For example, the protocol of dis-
tinguishing two pure orthogonal states, given in [5],
destroys the states completely. Yet in the hashing protocol
for distilling entanglement, Alice and Bob are able to
distinguish strings without destroying all entanglement
they share [2].

In the case of full distinguishing (in some distillation
protocol P), the accessible information is mS(p). The
initial entanglement per input pair is equal to S, =
S .piS(p?), where p? is the local density matrix of [¢;).
Since we have full distinguishing, the final entanglement
is pure entanglement, so that it can be converted revers-
ibly by LOCC, into singlets |~ ) = %(IOl} — |10)) [19].
Thus the output entanglement is the entanglement Dp that
has been distilled in such protocol P. Using the inequality
(6) we have then

S=S4+Sp—Ss— Dp, )]

where for ease of notation, we have used the notations § =
S(p), S4 = S(Trgp), and Sy = S(Tryp). This gives

DPSSA_’_SB_S_EA' (10)

Note that since |¢;) are pure, Sy = 3 piS(Trgly; Xii]) =
S piS(TrylXi;]) = Sg. So the last term in the above
inequality (10) can be replaced by Sp. For the case of
Bell-diagonal states (i.e. states that are diagonal in the
canonical maximally entangled basis [20]), we have S, =
Sp = S, = logyd so that in that case, inequality (10)
gives us

Dp(p) = log,d — S(p). (11)

This result is compatible with the fact that the quantity
log,d — S(p) can be attained by hashing methods that
reveal all errors [2,4].

It is also instructive to consider a hypothetical proto-
col, in which Alice and Bob would divide their m systems
into two groups G; and G, of length m; and m — m,
respectively. Now by applying some LOCC actions, Alice
and Bob would aim to get to know the identities of the
states of systems from G,, while G, would serve as a
resource to do this and would be destroyed during proto-
col. The protocol differs from the previous one, as in the
present case Alice and Bob do not aim to distinguish
between states of systems from this latter group.

Suppose now that such a protocol (P’) exists. Then the
output entanglement is 1, S4, the input one is mS,, while
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the mutual information is equal to m;S(p). The entangle-
ment Dp distillable in this protocol is therefore equal to
the output entanglement divided by m:
S
DPI = 7104 .
m

We obtain the following constraint for r = =L
Sp+Sp—S

<A "B A (12)

S+ Sa

which finally leads to

+ 85— S, —
siLﬁi;Q&. (13)
S+3S,

Dp
(We remember that S, = Sj.) For Bell-diagonal states it
gives the following bound:

(logzd)2

logad + S(p)’ 19

Dp(p) =
(For Bell-diagonal states in 2 ® 2, this reduces to
Dp/(p) Sﬁ(m.) The bound is always nonzero, even

for separable states. This means that the inequality (6)
is not the only restriction on local mutual information in
this complicated situation. This is however not surprising,
as in the considered protocol, we assumed that using a
part of the string, we can get the whole information about
the rest of the string, but nothing about the used part.
What one expects is that at the some point, one perhaps
would also gain some information about the used part.
Note here that the bound in (14) is for those distillation
protocols in which one bases on a distinguishing protocol.

Conclusions.—We have shown that it is possible to ob-
tain bounds on the yield in distillation protocols, basing
on distinguishability, of bipartite states, from a comple-
mentarity connecting local mutual information with av-
erage output entanglement, for the case of bipartite en-
sembles. For Bell-diagonal states, saturation of this bound
is obtained in the hashing protocol for distillation. It is
consistent with results of [21], where to beat hashing
bound, degenerate codes were applied. Whether any dis-
tillation protocol is a distinguishing process remains an
open question.
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Note added.—After completion of our work, we came
to know of the recent related work in Ref. [22].
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