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This paper studies identification in multiple discrete choice models in which
there may be endogenous explanatory variables, that is, explanatory variables
that are not restricted to be distributed independently of the unobserved de-
terminants of latent utilities. The model does not employ large support, spe-
cial regressor, or control function restrictions; indeed, it is silent about the pro-
cess that delivers values of endogenous explanatory variables, and in this respect
it is incomplete. Instead, the model employs instrumental variable restrictions
that require the existence of instrumental variables that are excluded from latent
utilities and distributed independently of the unobserved components of utili-
ties.

We show that the model delivers set identification of latent utility functions and
the distribution of unobserved heterogeneity, and we characterize sharp bounds
on these objects. We develop easy-to-compute outer regions that, in paramet-
ric models, require little more calculation than what is involved in a conven-
tional maximum likelihood analysis. The results are illustrated using a model
that is essentially the conditional logit model of McFadden (1974), but with po-
tentially endogenous explanatory variables and instrumental variable restric-
tions.
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The method employed has wide applicability and for the first time brings in-
strumental variable methods to bear on structural models in which there are mul-
tiple unobservables in a structural equation.

Keywords. Partial identification, random sets, multiple discrete choice, endo-
geneity, instrumental variables, incomplete models.

JEL classification. C25, C26.

1. Introduction

This paper develops results on the identification of features of models of choice among
multiple, discrete, unordered alternatives. The model we employ allows for the possi-
bility that explanatory variables are endogenous. Our model uses the random utility
maximizing framework set down in the ground-breaking work of McFadden (1974). In-
dividuals choose one of M alternatives y ∈ Y = {1� � � � �M}, achieving utility uy(X�Vy) if
choice y is made. Individuals observe the utility achieved from all choices and select the
alternative that delivers maximum utility.

The econometrician observes the choice made, a realization of a discrete random
variable Y , and the explanatory variables X . There is interest in the functions u ≡
(u1� � � � � uM) and the distribution of V ≡ (V1� � � � � VM), and functionals of these features.

In the setup considered by McFadden, the explanatory variables X and unobserv-
able utility shifters V are independently distributed. Our model relaxes this restriction,
permitting components of X to be endogenous. For example, in a travel demand con-
text, one of the explanatory variables might be distance to work. This could be endoge-
nous if individuals choose where to live based in part on unobserved tastes for varieties
of transport, for instance, because they dislike driving through rush-hour traffic and pre-
fer public transit. We bring a classical instrumental variable (IV) restriction on board,
requiring that there exist observed variables Z such that Z and V are independently
distributed. Components of Z may either correspond to components of X thought to
be exogenous or may be excluded from the utility functions u1� � � � � uM . In the travel
demand setting, excluded components of Z may be variables that influence choice of
residential location but have no other role in determining propensities to travel by alter-
native transport modes. We show that this model is set identifying and we characterize
the identified set of pairs of utility functions and distributions of unobservable utility
shifters that are compatible with the distribution of the data.

In McFadden (1974), the utility functions are linear in covariates and additively sepa-
rable in unobservables. The distribution of V is fully specified such that its components
are independently and identically distributed Type 1 extreme value variates leading to
the conditional logit model. Since that seminal contribution there have been many less
restrictive, parametric specifications. Examples include the conditional probit model of
Hausman and Wise (1978), which gives V a multivariate normal distribution, and the
nested logit model of Domencich and McFadden (1975)1 in which V has a generalized
extreme value distribution. Our characterization of the identified set applies in all these

1See also Ben-Akiva (1973) and McFadden (1978).
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cases and, indeed, even in the absence of parametric restrictions. When parametric re-
strictions are imposed, this characterization consists of a collection of conditional mo-
ment inequalities to which recent methods for estimation and inference can be applied.

A novel feature of our results is that they demonstrate that instrumental variable
models can have identifying power in cases in which there are multiple unobservables
appearing in structural functions. Hitherto, IV models have required unobservables to
be scalar; see, for example, Newey and Powell (2003), Chernozhukov and Hansen (2005),
and Chesher (2010). A general approach to identification in models with multiple unob-
servables is set out in Chesher and Rosen (2013).

The IV model studied here is unrestrictive relative to many other models of mul-
tiple discrete-choice permitting endogeneity that have been used until now. In our IV
model, there is no restriction placed on the process that generates the potentially en-
dogenous explanatory variables. In this sense, the model is incomplete and generally
not point-identifying. The model does not employ large support conditions or special
regressors and there need not be alternative-specific covariates. Explanatory variables
and instrumental variables can be continuous or discrete. Because our model’s restric-
tions are weak, the model can be credibly applied in a wide variety of situations.

Here is a brief outline of the main results of the paper.

1.1 The main results

Let U and PV denote the collection of utility functions and distributions of unobserved
heterogeneity admitted by the model. The set of utility functions and distributions of la-
tent variables identified by our model is characterized by a system of inequalities that is
convenient to express in terms of a conditional containment functional associated with
a random set Tv(Y�X;u). A realization of one of these random sets, Tv(y�x;u), is the set
of values of unobserved utility shifters, V = (V1� � � � � VM), that leads to a particular real-
ization y of Y when the explanatory variables X take the value x and the utility functions
u govern choices. The conditional containment functional P0[Tv(Y�X;u) ⊆ S|z] gives
the probability conditional on instrumental variable Z = z that Tv(Y�X;u) is a subset
of the set S , which can be any test set on the support of V . Because V ∈ Tv(Y�X;u) by
construction, Tv(Y�X;u) ⊆ S implies that V ∈ S, so that also making use of the indepen-
dence of Z and V , we have

PV (S) = PV (S|z)≥ P0
[

Tv(Y�X;u) ⊆ S|z] a.e. z ∈ Z� (1.1)

where Z and V denote the support of Z and V , respectively. The notation P0[·|z] denotes
probabilities taken with respect to F0

YX|Z—the distribution of (Y�X) given Z = z, which
is identified from the data—and PV (S) is the probability mass that the distribution of
unobservables PV assigns to the set S .

We show in Theorem 1 that application of (1.1) to all closed test sets S ⊆ V charac-
terizes the identified set of structures (u�PV ).2 This in turn delivers sharp bounds on

2By the “identified set,” we mean the set of admissible structures comprising pairs (u�PV ) that deliver
the distributions F0

YX|Z for almost every z in the support of Z. Some authors term this the sharp identified
set.
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the counterfactual choice probability (CCP), or the selection probability as McFadden
(1974) called it, that an individual drawn at random from the population would choose
alternative y if his covariates were exogenously fixed at some x.

We show that in the context of any particular model, the only sets S that need to
be considered when judging whether a particular pair (u�PV ) is in the identified set are
unions of sets on the support of Tv(Y�X;u), with the property that the union of the inte-
riors of these sets is a connected set. When X is discrete, this implies that the identified
set is characterized by a finite number of inequalities, and an algorithm is provided to
enable computation of the collection of such sets and their corresponding moment in-
equalities.

We also develop characterizations of two outer regions within which the identified
set is guaranteed to lie. Even if interest ultimately lies in the identified set, computation
of these outer regions is generally a simpler task and may therefore be a useful first step
in computation of the identified set. Alternatively, an outer region may be sufficiently
informative in the context of any particular model to address the question at hand.

To illustrate, consider a model for which u∗ and P∗
V are the true (but unknown) utility

functions and the joint distribution of V . Let

℘(x� y) ≡ P∗
V

[{
v :∀y ′ ∈ Y�u∗

y(x� vy) ≥ u∗
y ′(x� vy ′)

}]
(1.2)

denote the probability that Y = y given X = x when V and X are independently dis-
tributed, equivalently, the counterfactual choice probability that a randomly drawn in-
dividual from the population would choose alternative y if his covariates were exoge-
nously set to x, holding P∗

V fixed. In the classical conditional logit model with utility
functions u∗

y(x� vy) = x′β∗
y + vy , with β∗

M normalized to zero, the probabilities involved
are the well known expressions

℘(x� y) = exp(x′β∗
y)

1 +
M−1∑
y ′=1

exp(x′β∗
y ′)

� (1.3)

Our first outer region, applicable with discrete X , contains all utility functions u∗
and distributions P∗

V such that

℘(x� y) ≥ max
z∈Z

{
P0[Y = y ∧X = x|z]} (1.4)

holds for all y and x in the support of Y and X . In a parametric setting, any researcher
able to calculate a likelihood function when explanatory variables X are assumed ex-
ogenous is able to calculate these outer regions directly. In the conditional logit case, this
outer region is convex, which simplifies computation. In the absence of any parametric
restrictions and, indeed, without even the utility-maximizing model of choice behavior
but with only knowledge of distributions F0

YX|Z , the outer region defined by (1.4) pro-
vides sharp nonparametric bounds on ℘(x� y), which may be of interest in their own
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right, for example, for counterfactual analysis.3 Our second outer region provides a re-
finement of that given by (1.4), which can be informative with discrete and continu-
ous X in models with parametrically specified or nonparametric shape-restricted utility
functions. We provide illustrations of outer regions, identified sets, and nonparametric
bounds on ℘(x� y) in particular examples in Section 4.

1.2 Related results

The prior literature on multinomial choice is substantial. Only a small subset of this lit-
erature has allowed for endogeneity. An important early contribution is Matzkin (1993),
where it is shown that if the unobservable components of utility from the different al-
ternatives are identically distributed and conditionally independent, and if there are
alternative-specific regressors with large support, then the latent utility functions can
be nonparametrically identified. Lewbel (2000) showed how a special regressor can be
used to achieve point identification in various qualitative response models, including
multinomial choice models where the joint distribution of the error and the regressors
is independent of the special regressors conditional on the instrument. Some recent pa-
pers have provided sufficient conditions for point identification under alternative as-
sumptions. Petrin and Train (2010) used a control function approach in a triangular
model. Fox and Gandhi (2009) provided sufficient conditions for nonparametric identi-
fication in a recursive setting. Chiappori, Komunjer, and Kristensen (2011) provided an
alternative route to nonparametric identification, relying on conditional independence
and completeness conditions. In limited dependent variables models with simultaneity,
Matzkin (2012) built on Matzkin (2008) to provide conditions for nonparametric identi-
fication when there are exogenous regressors with large support.

Also related is the recent literature on the estimation of demand for differentiated
products by means of random coefficient discrete-choice models pioneered by Berry,
Levinsohn, and Pakes (1995). This approach uses the insight of Berry (1994) to allow
for the endogeneity of prices. The setting in which this method is applied differs from
ours in that demand estimation is carried out on market-level data that consist of a
large number of markets. Berry and Haile (2009, 2010) established conditions for non-
parametric identification, the latter when microlevel data are also available, as in Berry,
Levinsohn, and Pakes (2004). The endogenous variable in these models is product price,
which varies across alternatives and markets, but not across individuals. Our model al-
lows endogenous variables to differ across individuals, and requires neither variables
that differ across alternatives nor covariates with large support.

3Let Y = h(·� V ) denote the choice function of an individual with unobservable utility shifter V . By the
law of total probability,

℘(x� y) = PV

[
h(x�V )= y ∧X = x|z] + PV

[
h(x�V ) = y|X 
= x�Z = z

]
P0[X 
= x|Z = z]�

With V ⊥⊥ Z but no restrictions on the choice function, PV [h(x�V ) = y|X 
= x�Z = z] can take any value on
[0�1], implying that for all z,

℘(x� y) ≥ PV

[
h(x�V )= y ∧X = x|z] = P0[Y = y ∧X = x|z]

subject to
∑

y∈Y ℘(y�x) = 1. Without restrictions on the function h(·� V ) across x, this provides sharp
bounds on the collection of ℘(x� y) across all (y�x).
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There are antecedents to our work that partially identify quantities of interest in
other models of discrete choice. Chesher (2010) and Chesher and Smolinski (2010)
study ordered discrete outcome models with endogeneity. In this paper, we focus
on choices from unordered sets of alternatives. This differs fundamentally by requir-
ing a utility specification for each of the alternatives. Each utility function admits an
unobservable and, as a consequence, the present context is one in which there are
multiple sources of unobserved heterogeneity, rather than a single source. Other re-
sults on partially identifying models of multinomial response can be found in Manski
(2007) and Beresteanu, Molchanov, and Molinari (2011), although the multinomial
response models studied and the mechanisms by which partial identification is ob-
tained in these papers are rather different and do not involve instrumental variables.4

Papers with set-identifying results for parameters of binary choice models include
Manski and Tamer (2002), Magnac and Maurin (2008), Komarova (2007), and, recently,
Chesher and Rosen (2012a), where we show how the ideas used in both this paper and
Chesher and Rosen (2013) can be used to establish identified sets in an instrumental
variable random coefficient model.

To establish that our bounds are sharp, we make use of results from random set
theory, in particular, Artstein’s inequality (Artstein (1983)). Such results in random set
theory have been previously used to establish set identification in other contexts by
Beresteanu, Molchanov, and Molinari (2011, 2012). Beresteanu, Molchanov, and Moli-
nari (2011) used the Aumann expectation of set-valued random variables to tractably
characterize the identified set in models with convex moment predictions. Their charac-
terization applies rather generally, covering as examples models of games with multiple
equilibria, and best linear prediction and multinomial choice models with interval data
on exogenous explanatory variables. In related work, Galichon and Henry (2011) used
optimal transportation theory to characterize the identified set of structural features in
econometric models of normal form games through the use of inequalities generated
by the Choquet capacity functional. They provided several approaches to facilitate the
computational tractability of this approach, with further results pertaining to optimal
transportation given in Ekeland, Galichon, and Henry (2010).

Our use of random set theory for identification analysis of an instrumental vari-
able model of multiple discrete choice is novel, though the main device employed, Art-
stein’s inequality, has been used previously. Unlike previous approaches, our construc-
tion makes use of random sets defined on the space of unobservables, rather than on
the outcome space. In models of games with strategic interactions among agents that
can yield multiple mixed or pure-strategy equilibria, and that have been the focus of
much of the previous research, exogenous variation is obtained from agents’ observed
payoff shifters. In our setup, the choice problem entails a single decision maker, and ex-
ogenous variation is provided by instruments that are independent of unobserved het-
erogeneity and that may be excluded from agents’ utility functions. Our use of random

4Specifically, Manski (2007) provided bounds on choice probabilities when agents face counterfactual
choice sets, and Appendix F of Beresteanu, Molchanov, and Molinari (2011) established set identification
results in a multinomial choice model with interval data on explanatory variables.
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set theory provides a characterization of the identified set that applies in fully nonpara-
metric, semiparametric, and parametric models, but that is more amenable to current
estimation and inference approaches in parametric models. We use the notion of core-
determining classes defined in Galichon and Henry (2011) to refine our characterization
of the identified set. They showed how this can be done in econometric models of games
under a monotonicity condition, which is not satisfied in our model. We provide a novel
algorithm for the construction of core-determining classes in our setup.

1.3 Plan of the paper

The paper proceeds as follows. Section 2 defines the instrumental variable multiple
discrete-choice model with which we work throughout. Section 3 develops our main
identification results. In Section 3.1, we provide a theorem that characterizes the iden-
tified set of structural functions and distributions of unobserved heterogeneity. In Sec-
tion 3.2, we show that when X and V are independent, equivalently if Z = X , our char-
acterization reduces to a system of equalities for the conditional probabilities P0[Y =
y|x] for all (y�x) ∈ Supp(Y�X), which are precisely likelihood contributions if the model
is parametrically specified. In Section 3.3, we provide a theorem that defines a system
of “core-determining” inequalities that are all that need to be considered when calcu-
lating the identified set. In Section 3.4, we provide two easy-to-compute outer regions.
In Section 4, the results are illustrated for three-choice models, and identified sets and
outer regions are calculated and displayed for an instrumental variable version of the
conditional logit model studied by McFadden (1974). Section 5 concludes.

2. The instrumental variable model

We begin with a model that allows utility functions to be nonseparable in unobserved
heterogeneity. We then specialize our results to the separable case, on which much of
the previous literature on models of discrete choice has focused.

2.1 Nonseparable utility

An individual makes one choice from M alternatives, obtaining utility uy(X�Vy) from
alternative y ∈ Y ≡ {1�2� � � � �M}, where for each y ∈ Y , Uy : Supp(X�Vy) → R, and where
Supp(A�B) denotes the joint support of any two random vectors A, B. The elements
of X are observed variables and the elements of V are unobservable variables that cap-
ture heterogeneity in tastes across individuals. Thus the specification of utility from each
alternative y ∈ Y is dependent on an alternative-specific unobservable Vy . Each utility
function uy(·� ·), is assumed monotone in its second argument, with strict monotonic-
ity imposed for all y < M , as we formalize in Restriction A.5 below. In Section 2.2, we
consider the common special case where the utility functions are additively separable
in unobservables.

Individuals know their values of X and V , and so choose Y to maximize uy(X�Vy).
Due to monotonicity of the utility functions uy(·� ·) in their second argument coupled
with Restriction A.4 below, ties in the utility delivered by any two alternatives occur
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with probability 0, and the utility-maximizing alternative is unique with probability 1
conditional on any realization of (X�Z).5 We impose sufficient conditions for this both
for convenience and because it is common in single agent discrete-choice models, and
henceforth define the choice function hv(X�V ;u) that delivers the utility maximizing
choice with probability 1 so that

Y = hv(X�V ;u)� (2.1)

Thus the CCP of (1.2) for choice y at covariate value x is equivalently given by

℘(x� y) ≡ PV

[
h(x�V ;u) = y

]
� (2.2)

The model comprises the following restrictions.

Restriction A.1. The variables (Y�X�Z�V ) are defined on a probability space
(Ω� F�P), where F contains the Borel sets. The support of Y is a finite set Y ≡
{1�2� � � � �M}, and the supports of X and Z are X and Z , respectively. The joint sup-
port of (Y�X�Z) is a (possibly nonstrict) subset of Y × X × Z . For any (x� z) on
the support of (X�Z), the support of V conditional on X = x and Z = z, denoted
Supp(V |X = x�Z = z), is an open subset of R

M with strictly positive Lebesgue measure.
Likewise, the support of the marginal distribution of V , denoted V , is an open, positive
Lebesgue measure subset of R

M .

Restriction A.2. For each value z ∈ Z , there is a conditional distribution of (Y�X)

given Z = z, F0
YX|Z(y�x|z). The associated conditional distribution of X given Z = z

is denoted by F0
X|Z(x|z). The conditional distributions F0

YX|Z(y�x|z) and F0
X|Z(x|z) are

identified by the sampling process. The marginal distribution of Z is either identified by
the sampling process or known a priori.

Restriction A.3. Given (V �X�Z), Y ∈ arg maxy∈Yuy(X�Vy).

Restriction A.4. For any (x� z) on the support of (X�Z), the conditional distribution
of V |(X = x�Z = z) is absolutely continuous with respect to Lebesgue measure with
everywhere positive density on its support, Supp(V |X = x�Z = z) ⊆ R

M . The marginal
distribution of V belongs to a specified family of distributions PV .

Restriction A.5. The utility functions u = {u1� � � � � uM} belong to a specified family of
functions U such that for all x ∈ X , uy(x� ·) is continuous for all y ∈ Y , is strictly mono-
tone increasing for all y <M , and uM(x� ·) is weakly monotone increasing.

5Note, however, that the tools we employ can be applied to models where outcome variables are not
uniquely determined (see, e.g., Beresteanu, Molchanov, and Molinari (2011) and Galichon and Henry
(2011)), and the present setup can be easily modified to accommodate ties in utility-maximizing choices.
Specifically, Theorem 1 goes through without modification if the conditional distribution of V |X�Z is not
absolutely continuous with respect to Lebesgue measure, while the results on core-determining classes in
Section 3.3 would require some modification. Chesher and Rosen (2012b) considered simultaneous equa-
tions models of discrete choice for which multiple or, indeed, no solutions are feasible. This raises further
issues of coherence and completeness that are logically distinct from the study of multiple discrete choice.
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Restriction A.6. The variables V and Z are stochastically independent.

Restriction A.1 formally defines the probability space on which (Y�X�Z�V ) lives. It
also provides some weak conditions on their support. The support of (Y�X�Z) is not
required to be the product of their marginal supports. The support of unobservable V

may vary when conditioning on different realizations of X and Z, but is required to be
an open, positive Lebesgue measure subset of R

M . This includes the typical case where
Supp(V |X = x�Z = z)= R

M for all (x� z).
In our identification analysis, we determine the set of observationally equivalent

structures that are admitted by the model and deliver the probability distributions
F0
YX|Z(y�x|z) of Restriction A.2. The notation P0 indicates probabilities calculated us-

ing these distributions. Under Restriction A.2, the distribution of Z is either identified or
a priori known, for example, if individual observations are intentionally drawn in accord
with a particular distribution of Z. All statements regarding almost every z ∈ Z are made
with respect to this distribution.

Restriction A.6 requires V and the variables Z to be independently distributed. This
restriction has no force unless Z has some role in the determination of X . The model
employed here is silent about this role, unlike other models used in the analysis of mul-
tiple discrete choice with potentially endogenous explanatory variables.

Our identification results permit the classes of distributions PV and utility functions
U of Restrictions A.4 and A.5 to each be either parametrically or nonparametrically spec-
ified. When they are parametrically specified, one can use inference methods for condi-
tional moment inequalities, as we discuss after Theorem 1. We do not assume the exis-
tence of alternative-specific covariates in our analysis, but Restriction A.5 is compatible
with these, as it allows for the possibility that only one of the utility functions uy(·) varies
with a particular subset of components of X . We impose strict monotonicity of all but
one of the utility functions in its corresponding unobservable and impose weak mono-
tonicity of the remaining utility function in its unobservable. Combined with Restric-
tion A.4, this guarantees that conditional on any realization of (X�Z), there is a unique
utility-maximizing choice of Y almost surely.

The classes of utility functions U and distributions PV should incorporate the same
sort of normalizations imposed to enable point identification in models in which X and
V are independently distributed. Although not required for set identification analysis,
this will ensure that the volume of resulting identified sets is not unduly inflated relative
to the well studied exogenous X case. With nonseparable utility functions, one might
impose the location and scale normalizations UM = 0 and var(U1(x�V )) = 1 for some
known value of x, and if utilities are also nonparametrically specified, one may impose
the normalization Vy ∼ U[0�1], all y ∈ Y . Other normalizations are possible, with the key
consideration that utility-maximizing choices are insensitive to an increasing transfor-
mation of utility differences.

2.2 Separable utility

A common restriction in analyses of multiple discrete choice is additive separability of
the utility functions in unobservable components. This entails a restriction on the class
of utility functions U , formally expressed below as Restriction A.5∗.
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Restriction A.5∗ (Additive Separability). Restriction A.5 holds with the added restric-
tion that for any u ∈ U , uy(X�Vy) ≡ uy(X) + Vy , where for each y ∈ Y , uy : X → R, and
where the normalization uM(x) = 0 is imposed, all x ∈ X .

Two popular examples of models that satisfy additive separability, each placing dif-
ferent sets of restrictions on the family of distributions PV , are the following.

Example 1. In an instrumental variable (IV) extension of McFadden’s (1974) condi-
tional logit model, there is just one distribution in the family PV , namely the distribu-
tion in which the elements of V are mutually independently distributed with common
extreme value distribution function as

PV

[∧
y∈Y

(Vy ≤ vy)

]
=

∏
y∈Y

exp
(−exp(−vy)

)
� (2.3)

In McFadden’s (1974) model, the class of utility functions U is restricted to the paramet-
ric family in which uy(X) ≡X ′βy for y ∈ Y and each vector βy is nonstochastic.

Example 2. An IV generalization of the conditional probit model studied in Hausman
and Wise (1978) specifies PV as a parametric family of multivariate normal, N(0�Σ),
distributions with a suitable normalization of Σ. Again one can impose uy(X) ≡ X ′βy

for all y ∈ Y .

Note that unlike the classical conditional logit and multinomial probit models, the
specifications admitted by our model do not require X and V to be independent. The
specification of PV restricts the unconditional distribution of V , PV , to be independent
and identically distributed (i.i.d.) Type 1 extreme value or multivariate normal, respec-
tively. Due to the independence Restriction A.6, the conditional distribution of V given
Z = z is also PV for any instrument value z ∈ Z , but the conditional distributions of
V |X = x or V |(X = x�Z = z) can differ. An implication is that in the conditional logit
model above, the components of V need not be independently distributed conditional
on either the realization of X or the realization of (X�Z). Thus the model need not ad-
here to independence of irrelevant alternatives once we condition on these variables.

Note that with the additively separable specification of utility, utility-maximizing
choices can be deduced from knowledge of utility functions u, covariates X , and W ≡
(W1� � � � �WM−1) ∈ R

M−1, where for each y ∈ Y ,

Wy ≡ Vy − VM�

To see why, define the utility differences

�Uy(X�W )≡Uy −UM = uy(X)+Wy�

Then there is a convenient representation for the selection of Y equivalent to (2.1) given
by

Y = hw(X�W ;u) ≡ arg max
y∈Y

�Uy(X�W )�
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Because the dependence of hw(X�W ;u) on the utilities u is crucial, it is made explicit in
the notation. Again under Restriction A.4, the set hw(x�W ;u) is singleton with probabil-
ity 1 for all x ∈ X .6

The model requires the random components of utility, V , to have a distribution in
the family PV . From the above discussion, we see that when Restriction A.5∗ is imposed,
PV is observationally equivalent to any P ′

V that produces the same distribution of W ,
denoted PW . Thus when additive separability is imposed, we let PW denote the family
of probability distributions for the random utility differences, W , implied by PV . In this
case, our interest is in the identification of the utility functions listed in u ∈ U and the
probability distribution PW ∈ PW that generate the distributions of Restriction A.2. This
reduces by one the effective dimension of unobserved heterogeneity whose distribution
we seek to set-identify. This will prove convenient for the illustration of three-choice
models taken up in Section 4, permitting representation of sets of unobservables in R

2.
Since the optimal selection of alternatives is entirely determined by utility differences,
it is convenient here to impose the common location normalization that uM(x) = 0 for
all x ∈ X . Further, PW should incorporate a scale normalization, for instance, by setting
the variance of W1 to a known constant, as required for point identification in models
with exogenous X . Such a normalization is already embedded in the restrictions of the
conditional logit model of Example 1, but must be imposed in other models, such as the
multinomial probit model of Example 2.7

3. Identification

3.1 The identified set

We now develop results on the identifying power of our model. The task is to infer what
structures are admitted by the model given knowledge of F0

YX|Z , z ∈ Z . To characterize
the identified set, we consider for any candidate (u�PV ), the probability that the multi-
variate unobservable V lies in a collection of test sets. For any such test set S , it is shown
that the restrictions of the IV model and knowledge of F0

YX|Z combined with the can-
didate utility function u are compatible with a collection of upper and lower bounds on
PV (S). The set of (u�Pv) pairs that satisfy these inequality restrictions taken over any col-
lection of test sets S comprises valid, though possibly nonsharp, bounds. We show that
taken over a sufficiently rich collection of test sets S , the implied bounds are sharp, de-
livering the identified set, which we denote D0(Z). In general, the collection of all closed
sets in V , denoted F(V), is sufficiently rich to characterize the sharp identified set. In
Section 3.3, we show how, in the context of any particular model, one can characterize a
smaller collection of test sets that are sufficient for characterization of the identified set.
We refer to these collections of test sets as core-determining classes as in Galichon and
Henry (2011).8

6Note that Restriction A.4 implies that the distribution of W conditional on X�Z is absolutely continuous
with respect to Lebesgue measure.

7See, for example, Chapter 5 of Train (2009) for further discussion of such a scale normalization for the
multinomial probit model and the implied restrictions on the variance of V .

8Throughout we use a calligraphic font (e.g., S ) to denote a set and a sans serif font (e.g., K) to denote a
collection of sets.
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Key in what follows are the sets of values of V that, for a particular list of utility func-
tions, u, deliver choice y as a utility-maximizing choice when X = x, defined as

Tv(y�x;u) ≡ {
v :y = hv(x�v;u)

} = {
v :∀k ∈ Y�uy(x� vy)≥ uk(x�vk)

}
�

For any admissible u and each x, the sets Tv(y�x;u), y ∈ Y , form a partition of R
M , ig-

noring shared boundaries that under Restriction A.4 have PV measure zero.
In the additively separable case with Restriction A.5∗ imposed, we can likewise de-

fine

Tw(y�x;u) ≡ {
w :∀k ∈ Y�uy(x)+wy ≥ uk(x)+wk

}
�

Using this set, we can then replace V with W , PV with PW , and V with W ≡ Supp(W ), and
the following derivations go through identically. These sets are illustrated for particular
structural functions in Section 4. Because the derivations are otherwise identical, we
proceed in this section with the more general case where only Restriction A.5 is imposed.

For any test set S ⊆ V , let PV |XZ(S|x�z) denote the conditional probability of the
event {V ∈ S} given X = x and Z = z. We first consider the import of the independence
Restriction A.6.

• Independence: The IV model requires V and Z to be independently distributed.
It follows that for a choice PV ∈ PV , all associated conditional distributions PV |XZ that
(i) are admitted by the IV model and (ii) can generate the probability distributions of
Restriction A.2 must satisfy the condition

∫
x∈X

PV |XZ(S|x�z)dF0
X|Z(x|z)= PV (S) (3.1)

for all values z ∈ Z and test sets S ⊆ V . The left-hand side of (3.1) is the conditional
probability PV |Z(S|z), which by independence must be invariant with respect to z.

Now consider observational equivalence conditions that all admissible utility func-
tions u ∈ U and probability distributions PV ∈ PV must satisfy if they are to be capable
of delivering the probability distributions of Restriction A.2.

• Observational equivalence: For any x ∈ X , the utility functions u deliver Y = y

uniquely for almost every V ∈ Tv(y�x;u), and for no V /∈ Tv(y�x;u), there is the require-
ment that, associated with PV , there are conditional distributions PV |XZ such that for all
(y�x� z) ∈ Supp(Y�X�Z),

PV |XZ

(
Tv(y�x;u)|x�z) = P0[Y = y|x�z]� (3.2)

These two implications of the IV model lead to a system of inequalities that must be
satisfied by all admissible (u�PV ) that deliver the distributions of Restriction A.2, namely
F0
YX|Z for z ∈ Z . This system of inequalities is now derived.
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First, if (3.2) is to be satisfied, then for any S , the smallest value that PV |XZ(S|x�z)
can take is equal to the sum of the probabilities P0[Y = y|x�z] associated with all sets
Tv(y�x;u) contained entirely within S . This is expressed in the inequality

PV |XZ(S|x�z)≥
∑
y∈Y

1
[

Tv(y�x;u) ⊆ S
]
P0[Y = y|x�z]� (3.3)

which holds for all (x� z) ∈ Supp(X�Z).
Marginalizing with respect to X given Z = z on the left- and right-hand sides of (3.3)

and simplifying using (3.1), there is

PV (S) ≥
∫
x∈X

(∑
y∈Y

1
[

Tv(y�x;u) ⊆ S
]
P0[Y = y|x�z]

)
dF0

X|Z(x|z)� (3.4)

All (u�PV ) in the identified set D0(Z) satisfy these inequalities for all S ⊆ V and almost
everywhere (a.e.) z ∈ Z . Given a choice of u ∈ U with knowledge of the distributions
F0
YX|Z of Restriction A.2, the right-hand side of (3.4) can be calculated for any test set S .

Likewise, for any such S , given a choice PV ∈ PV , the left-hand side of (3.4) can be cal-
culated.

To show that this system of inequalities taken over all closed S ⊆ V provides the
identified set, we cast (3.4) in terms of random set theory. For nonstochastic (y�x),
the set Tv(y�x;u) defined in (3.1) is a nonstochastic set of values in V . Applying this
set-valued mapping to random variables (Y�X) gives Tv(Y�X;u), a random closed set
on V .9 Specifically, the right-hand side of (3.4) is its conditional containment functional,
conditional on the instrument Z = z:

P0
[

Tv(y�x;u) ⊆ S|Z = z
]

=
∫
x∈X

(∑
y∈Y

1
[

Tv(Y�X;u) ⊆ S
]
P0[Y = y|x�z]

)
dF0

X|Z(x|z)�

Combining this with (3.4), it follows that the identified set must satisfy

P0
[

Tv(Y�X;u) ⊆ S|Z = z
] ≤ PV (S) (3.5)

for all sets S ⊆ V and instrument values z ∈ Z . The following theorem uses this informa-
tion with Artstein’s inequality (Artstein (1983)) to establish that all and only (u�PV ) that
satisfy (3.5) for all closed S and a.e. z ∈ Z can deliver the distributions of Restriction A.2,
equivalently, that these inequalities characterize the identified set.

Theorem 1. Let Restrictions A.1–A.6 hold. Then the identified set for (u�PV ) is

D0(Z) = {
(u�PV ) ∈ U × PV :

(3.6)
∀S ∈ F(V)�P0

[
Tv(Y�X;u) ⊆ S|z] ≤ PV (S)� a.e. z ∈ Z

}
�

9These are random closed sets because the sigma algebra F is endowed with the Borel sets. This guar-
antees that for any compact set S ⊆ R

M−1, the event {Tv(Y�X;u) ∩ S 
= ∅} is F -measurable. For a formal
definition of random closed sets, see, for example, Molchanov (2005) or Beresteanu, Molchanov, and Moli-
nari (2012, Appendix A).
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where F(V) denotes the set of all closed subsets of V .

Corollary 1. If Restriction A.5 is replaced with the additive separability Restric-
tion A.5∗, the identified set for (u�PW ) is

D0
w(Z) ≡ {

(u�PW ) ∈ U × PW :
(3.7)

∀S ∈ F(W)�P0
[

Tw(Y�X;u) ⊆ S|z] ≤ PW (S)� a.e. z ∈ Z
}
�

where F(W) denotes the set of all closed subsets of W .

Corollary 2. Under the restrictions of Theorem 1, for any y ∈ Y and x ∈ X , sharp
bounds on the counterfactual choice probability ℘(x� y) are given by

inf
(u�PV )∈D0(Z)

PV

(
h(x�V ) = y

) ≤ ℘(x� y) ≤ sup
(u�PV )∈D0(Z)

PV

(
h(x�V ) = y

)
� (3.8)

and the identified set for the collection of counterfactual choice probabilities

{
℘(x� y) : (x� y) ∈ Supp(X�Y)

}
�

is given by

{
℘(x� y) :∃(u�Pv) ∈ D0(Z) s.t.

(3.9)
∀(x� y) ∈ Supp(X�Y)�℘(x� y) = PV

(
h(x�V ) = y

)}
�

The proof of Theorem 1 employs Artstein’s inequality to establish sharpness. Specif-
ically, we use it to establish the existence of a random variable Ṽ and a random set T̃ ,
respectively, living on the same probability space and with the same distributions as
the original random variable V and random set Tv(Y�X;u), such that conditional on
any realization of Z, Ṽ ∈ T̃ with probability 1. This is then used to establish that ev-
ery (u�PV ) in D0(Z) can produce the distributions F0

YX|Z of Restriction A.2. Note that
the same argument applies, so that sharpness is maintained, if the containment func-
tional inequality in the definition of D0(Z) is replaced by the capacity functional in-
equality P0[Tv(Y�X;u) ∩ S 
= ∅|Z = z] ≥ PV (S) for all compact S ⊆ V . The first corollary
of the theorem is an immediate consequence for the case of separable utility functions.
Corollary 2, also an immediate consequence, provides the identified set for the resulting
counterfactual choice probabilities.

Without appeal to Theorem 1, a definition of the identified set is given by the set of
(u�PV ) such that for all Rx ⊆ X and all y ∈ Y ,

∫
x∈Rx

P0(Y = y|x�z)dF0
X|Z(x|z)

=
∫
x∈Rx

PV |XZ

({
v :h(X�v;u) = y

}|x�z)dF0
X|Z(x|z)� a.e. z ∈ Z�
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with h the choice function defined in (2.1), for some collection of conditional distribu-
tions of V given X�Z, and PV |XZ . Moreover, these distributions must conform with the
independence restriction, Restriction A.6, so that for all S ⊆ V ,

PV (S) =
∫
x∈X

PV |XZ(S|x�z)dF0
X|Z(x|z)� a.e. z ∈ Z�

Directly establishing conditions for the existence of such a collection of conditional dis-
tributions, an infinite-dimensional object when either X or Z is continuous, is gener-
ally difficult. Theorem 1 shows that the identified set is, in fact, fully characterized by a
collection of conditional moment inequalities E[m(Y�X�θ� S)|Z = z] ≥ 0 with moment
function

m(Y�X�θ� S)= PV (S)− 1
[

Tv(Y�X;u) ⊆ S
]
� θ ≡ (u�PV )�

The moment inequalities must hold for almost every z ∈ Z and for all closed S ∈ V .
We shortly establish that in the context of any particular model, it suffices to consider
a much smaller collection of test sets S , and, in particular, that when X is discrete, the
number of test sets required is finite. Given the representation of D0(Z) via moment
inequalities, at least when PV and U are parametrically specified, recently developed
methods for estimation and inference for conditional moment inequalities are applica-
ble. When covariates and instruments are discrete, the identified set is characterized by
a finite number of moment inequalities, and the inferential methods of Chernozhukov,
Hong, and Tamer (2007), Beresteanu and Molinari (2008), Romano and Shaikh (2008),
Rosen (2008), Galichon and Henry (2009), Bugni (2010), Canay (2010), or Henry, Meango,
and Queyranne (2011) can be used, among others. When instruments are continuous,
even with discrete X , the characterization embodies infinitely many unconditional mo-
ment inequalities. In this case, one could use the approach of either Andrews and Shi
(2013) or Chernozhukov, Lee, and Rosen (2013) for inference on conditional moment
inequalities. When X is continuous, there are infinitely many moment inequalities for
each z ∈ Z . This is related to, but somewhat different than, the problem of a condi-
tional inequality restriction holding with a continuous conditioning variable. Though
the structure of the problem with continuous X differs somewhat from that with contin-
uous Z, we believe suitable modifications of Andrews and Shi (2013) or Chernozhukov,
Lee, and Rosen (2013) should apply in this case. We focus in this paper on characteriza-
tion of the identified set, leaving this topic to future research.10

Finally, we stress the necessity of exogenous instruments. Indeed, the following
corollary illustrates that in our model, without restrictions on the distributions of un-
observables beyond the support and absolute continuity conditions of Restriction A.4,

10With discrete X , the number of core-determining sets and hence conditional moment inequalities of
our characterization will be finite, though possibly quite large. In such cases and under suitable conditions,
the asymptotic approximations used by Andrews and Shi (2013) and Chernozhukov, Lee, and Rosen (2013)
will be valid, yet the number of conditional moment inequalities may be large relative to sample size, a
problem studied in a related context by Menzel (2009). The best way to select among these for accurate
finite sample inference may thus pose an interesting question even with discrete X .
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there is no identifying power for u without instruments Z. That is, the existence of in-
struments Z is required to achieve nontrivial set identification in the sense that without
them, any identifying information comes solely from restrictions (e.g., parameteriza-
tions) placed on u and PV .

Corollary 3. Let the restrictions of Theorem 1 hold, let PV admit all distributions that
satisfy the support and absolute continuity conditions of Restriction A.4, and suppose
there are no exogenous instruments Z. Then all u ∈ U are observationally equivalent, so
that for all u ∈ U , there exists PV ∈ PV such that (u�PV ) ∈ D0(Z).

3.2 Relation to independent X and V

When X and V are stochastically independent, the above characterization reduces to
a collection of equalities involving maximum likelihood probabilities. To show this, set
X =Z and consider that for each x ∈ X and any u ∈ U , we have from (3.5) applied to test
sets S = Tv(y�x;u) that

∀y ∈ Y� P0[Y = y|x] ≤ PV

(
Tv(y�x;u))�

where
∑
y∈Y

P0[Y = y|x] = 1 and
∑
y∈Y

PV

(
Tv(y�x;u)) = 1�

It follows that

∀y ∈ Y� P0[Y = y|x] = PV

(
Tv(y�x;u))� (3.10)

and with sufficient restrictions on U and PV there may be point identification of u

and PV . For instance, in the conditional logit example given in Section 2, with additive
separability holding, we have uy(x) = xβy for y <M , uM(x) = 0, and PV [Tv(y�x;u)] takes
the familiar form

PV

[
Tv(y�x;u)] = exp(xβy)

1 +
M−1∑
y ′=1

exp(xβy ′)

�

In this case, (3.10) provides precisely the conditional probabilities used in the construc-
tion of the classical maximum likelihood estimator, and under the usual rank condition,
there is point identification, as shown by McFadden (1974).

3.3 Core-determining sets

It may not be feasible to consider the complete system of inequalities of Theorem 1 that
are generated as S passes through all closed subsets of V . However, a system of inequal-
ities based on only some of these sets will deliver at least an outer identification region
and this may be useful in practice.
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For some models it is possible to find a much smaller collection of the sets S ∈ F(V)

whose inequalities define D0(Z). This is a core-determining class of sets as studied by
Galichon and Henry (2011) in obtaining identified sets in models with multiple equilib-
ria.

The result of Theorem 2 below is useful to produce collections of test sets that deliver
core-determining classes of inequalities for the models considered in this paper. Unlike
Galichon and Henry (2011), we allow these sets to be dependent on the structural func-
tions u or, in parametric settings, model parameters. We call these sets core-determining
sets in what follows. In the characterization of such collections, we make use of the no-
tation int(S) and cl(S) to denote the interior and closure, respectively, of any set S . The
proof of Theorem 2 below makes use of the following lemma, which provides some prop-
erties of the sets Tv(y�x;u). In the following analysis, we make use of the support of the
random set Tv(Y�X;u),

Tv(Y�X;u) ≡ {
Tv(y�x;u) : (x� y) ∈ Supp(X�Y)

}
�

and likewise the support of Tw(Y�X;u),

Tw(Y�X;u) ≡ {
Tw(y�x;u) : (x� y) ∈ Supp(X�Y)

}
�

Lemma 1. Consider the model defined by Restrictions A.1–A.6. Under these restrictions,
the following results hold: (i) The sets Tv(y�x;u) on the support of Tv(Y�X;u) are con-
nected for any u ∈ U and x ∈ X . (ii) If Restriction A.5∗ holds, the sets Tv(y�x;u) and

Tw(y�x;u) are convex. (iii) If Restriction A.5∗ holds and V = R
M , these sets are nonempty,

with strictly positive Lebesgue measure whenever uy ′(x)− uy(x) <∞ for all y ′ ∈ Y , y ′ 
= y.

The following theorem characterizes core-determining classes of sets for the IV
model of multiple discrete choice.

Theorem 2. Let Restrictions A.1–A.6 hold. The identified set (3.6) of Theorem 1 is given
by the inequalities generated by the collection of test sets S that (i) are unions of sets on the
support of Tv(Y�X;u) and (ii) are such that the union of the interiors of the component
sets is a connected set. The same statements hold applied to the characterization given
by (3.7) in Corollary 1 if, additionally, Restriction A.5∗ holds, replacing the support of
Tv(Y�X;u) with that of Tw(Y�X;u).

Theorem 2 characterizes a collection of test sets S such that if the conditional con-
tainment inequality (3.5) holds for each of these, then it must hold for all closed S . Thus
the identified set is fully characterized by the set of pairs (u�PV ) that satisfy this inequal-
ity over this smaller collection of test sets. The reduction in the collection of required
test sets stems from the structure of the utility functions u and the utility-maximizing
framework, and will produce different collections for different u, as well as different z.
It remains an open question whether the collection of sets in Theorem 2 is minimal, in
consideration of either particular (u�Pv) or all (u�Pv) ∈ U × V . Indeed, there will, in gen-
eral, be particular (u�Pv) not in the identified set that violate inequalities for more than
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one core-determining S , and the possibility remains that there may be further, compu-
tationally useful methods to reduce the collection of sets to be checked for some of these,
at least in some classes of models. Of course, once any of the requisite inequalities are
violated, (u�Pv) can be excluded from the identified set and the other inequalities need
not be checked.

The characterization of core-determining sets in Theorem 2 applies whether X is
discrete or continuous. When X is discrete, the collection of core-determining sets is
finite and can be computed via the following algorithm. This collection varies with the
specific utility functions u under consideration, but is invariant with respect to changes
in PV . Let the support of discrete X be X ≡ {x1� � � � � xK}; X may be a finite-dimensional
vector. The algorithm can be applied to the sets on the support of Tv(Y�X;u) using the
characterization of the identified set in Theorem 1 or in the separable case to sets on the
support of Tw(Y�X;u) using the characterization of Corollary 1. We thus use T (y�x;u)
to denote either Tv(Y�X;u) or Tw(Y�X;u) throughout the remainder of this section.

For collections of sets C1 and C2, let C1 ⊗ C2 be the collection of sets obtained when
the union of each set in C1 with each set in C2 is formed.11 Let C1 ‖ C2 denote the collec-
tion of the sets that appear either in C1 or in C2.12 Let C(u) denote the collection of the
interiors of the sets on the support of T (Y�X;u):

C(u) ≡ {
int

(
T (y�x;u)) : (x� y) ∈ Supp(X�Y)

}
�

Let G(u) denote the list of core-determining sets to be produced by the algorithm.
An algorithm for producing core-determining sets when X is discrete

1. Initialization. Set G(u) = C(u) and G∗(u) = C(u).

2. Repeat steps (a)–(c) until the collection of sets G∗(u) is empty.

(a) Create the collection of sets G∗(u)⊗ C(u) and place the connected sets in this col-
lection that are not already present in G∗(u) into a collection of sets B(u).

(b) Remove any duplicate sets from B(u).

(c) Let G∗(u) = B(u) and replace G(u) by G(u) ‖ G∗(u).

3. Set G(u) equal to the collection of closures of its component sets.

Let Con(·) applied to a list of sets select the connected sets in the list. Step 2 of the
algorithm recursively creates the list of sets

C(u) ‖ Con
(
C(u)⊗ C(u)

) ‖ Con
(
Con

(
C(u)⊗ C(u)

) ⊗ C(u)
) ‖ · · · �

11This is a Kroneker-product-like operation, hence our choice of symbol. For example, if C1 = {C11� C12}
and C2 = {C21� C22}, then

C1 ⊗ C2 = {C11 ∪ C21� C12 ∪ C21� C11 ∪ C22� C12 ∪ C22}�
12Thinking of collections of sets as sets of sets, the concatenation C1 ‖ C2 is the union of the “sets” C1

and C2.
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This is the same as the list

Con
(
C(u) ‖ C(u)⊗ C(u) ‖ C(u)⊗ C(u)⊗ C(u) ‖ · · ·)�

which is evidently the list of all connected unions of sets on C(u), but is more efficient
computationally. The closures of these sets provide the collection of sets required by
Theorem 2, since the closure of a union of open sets is the same as the union of the clo-
sure of all the component sets. The algorithm terminates in at most MK−1 iterations. In
the examples in Section 4, the algorithm ran very quickly relative to other computations,
though this could change if X had richer support.

The number of core-determining sets that result is far smaller than the number of
possible unions of sets on the support of T (Y�X;u). For example, in a three-choice
model with a binary explanatory variable and separable utility, for any choice of u, there
are at most 12 potentially informative core-determining sets compared with 26 = 64 pos-
sible unions of the 6 sets on the support of T (Y�X;u). In the three-choice example stud-
ied in Section 4 in which a linear index restriction is imposed, when X takes just 7 values,
there are over 2 million unions of the 21 sets on the support of T (Y�X;u), but the num-
ber of potentially informative core-determining sets for any choice of u is at most 842.13

3.4 Two easy-to-compute outer regions

When X is discrete, there is among the core-determining inequalities always one as-
sociated with each set on the support of Tv(Y�X;u), equivalently, with each set in the
collection C(u). Application of the containment functional inequality to such sets pro-
duces the inequalities

PV

[
Tv(y�x;u)] ≥ P0[Y = y ∧X = x|z]�

which must hold for all (y�x� z) ∈ Supp(Y�X�Z), for all (u�PV ) in the identified set. Not-
ing that PV [Tv(y�x;u)] =℘(x� y), it follows that

℘(x� y) ≥ max
z∈Z

P0[Y = y ∧X = x|z] (3.11)

must hold for all (y�x) ∈ Supp(Y�X). These inequalities define an outer region within
which lies the identified set for (u�PV ). This outer region is generally informative with
discrete X , but not with continuous X , as then the probabilities on the right-hand side
of (3.11) are 0. With discrete X , but in the absence of any parametric restrictions, these
inequalities provide nonparametric bounds on the counterfactual choice probability
℘(x� y), with an upper bound implied by the requirement that for all x, ℘(x� y) must
sum to 1 across values of y. In a parametric model, ℘(x� y) is simply the probability that
would appear in a classical discrete-choice likelihood function (for independent real-
izations) constructed using (u�PV ) and defined by conditioning on observed values of
the explanatory variables X as if they were exogenous, for example, the familiar logit

13Note that with additive separability imposed, the number of core-determining sets does not depend
on whether T (Y�X;u) = Tv(Y�X;u) or T (Y�X;u) = Tw(Y�X;u) is used.
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probabilities of (1.3) in the conditional logit model. When X is endogenous, ℘(x� y) is
the counterfactual choice probability for alternative y were a randomly drawn member
of the population to have its covariates set to x, keeping PV fixed. Whenever a model is
considered for which, under an exogeneity restriction, there is a well defined parametric
likelihood function, this can be substituted for ℘(x� y) in (3.11) above, so that the outer
region defined by these inequalities is very easy and quick to compute.14

Our second outer region can be useful with either continuous or discrete X . This
outer region provides a refinement of the previous one whenever there is (y�x) for which
there exist values of x′ 
= x such that Tv(y�x

′;u) ⊆ Tv(y�x;u), because in such cases the
containment functional inequality requires

PV

[
Tv(y�x;u)] ≥

∫
(x′:Tv(y�x′;u)⊆Tv(y�x;u))

P0
[
Y = y ∧X = x′|z]dF0

X|Z
(
x′|z)�

In the three-choice models with binary X considered in Section 4, this improvement is
obtained for two of the six sets on the support of Tv(Y�X;u). In general, there are many
cases in which such improvements can be obtained. The lower bound in this inequality
can be positive with both discrete and continuous X .

4. Illustration: Three-choice models

In this section, we provide illustrative examples of identified sets, focusing on models for
choice among M = 3 alternatives in which the utility functions are assumed to be addi-
tively separable and in which X is discrete with finite support X ≡ {x1� � � � � xK}. Thus we
work with W , Pw, and T (Y�X;u) ≡ Tw(Y�X;u) throughout this section. In this case, we
can give a graphical display of the support of the set-valued random variable T (Y�X;u)
in R

2. We provide the core-determining inequalities for the case in which K = 2 and
present numerical examples of identified sets for cases where K = 2 and K = 4.

4.1 Core-determining sets

In the three-choice model, utilities are determined as

U1 = u1(X)+ V1� U2 = u2(X)+ V2� U3 = V3�

With W ≡ (W1�W2) = (V1 − V3� V2 − V3), the support of T (Y�X;u) is

T (1�x;u) = {
W :

(
W1 ≥ −u1(x)

) ∧ (
W1 ≥W2 − u1(x)+ u2(x)

)}
�

T (2�x;u) = {
W :

(
W2 ≥ −u2(x)

) ∧ (
W1 ≤W2 − u1(x)+ u2(x)

)}
�

T (3�x;u) = {
W :

(
W1 ≤ −u1(x)

) ∧ (
W2 ≤ −u2(x)

)}

for x ∈ X . The interiors of these 3K sets comprise the collection of sets C(u).

14Another interpretation of the inequality (3.4) is that the event V ∈ Tv(y�x;u) is a necessary but not
sufficient condition for the event {Y = y ∧ X = x}. In this sense, the collection of inequalities (3.4) across
all z ∈ Z parallels the use of necessary but not sufficient conditions for equilibrium proposed by Andrews,
Berry, and Jia (2004) to bound parameters in econometric models of discrete games.
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For each value x ∈ X , the collection of sets T (y�x;u), y ∈ {1�2�3}, is a partition of R
2

“centered” on a point denoted w(x) with coordinates W1 = −u1(x) and W2 = −u2(x). The
collection of sets G(u) that generates the core-determining inequalities varies with u,
depending on the relative orientation of the points w(x), x ∈ X .

When M = 3 and K = 2, there are three such orientations, illustrated in Figure 1.15

Values of W1 are measured vertically and values of W2 are measured horizontally. Sets
T (1�x;u), T (2�x;u), and T (3�x;u) lie, respectively, northwest, southeast, and south-
west of the point w(x) for each of the two possible values of x.16 The relative orienta-
tions of w(x1) and w(x2) are distinguished by the slope of the line that connects them:
(1) in which the slope is negative, (2) in which the slope is positive and less than 1/2, and
(3) in which the slope is positive and greater than 1/2. Within each of these cases, there is
one orientation in which w(x1) lies higher (in the W1 direction) than w(x2) and another
in which these positions are reversed. When K is much greater than 2, the number of
orientations to be considered may be very large. There is substantial simplification in
the case in which X is scalar, and u1(x) and u2(x) are both linear functions of x. In this
case, the locus of points described by w(x) as x varies in X is linear and there are only
six orientations to be considered, as in the case in which K = 2.

The 12 core-determining sets for the case where K = 2 when w(x2) lies northwest
of w(x1) are illustrated in Figures 2 and 3. The first six of these, shown in Figure 2, cor-
respond to those sets on the support of T (Y�X;u). The remaining six, shown in Fig-
ure 3, are nonsingleton unions of sets on the support of T (Y�X;u) obtained by following
the algorithm provided above. Other orientations likewise deliver 12 core-determining
sets.17

4.2 Illustrations of identified sets

In this section, we give examples of identified sets for particular distributions F0
YX|Z .

To keep the dimension of the identified set small enough to allow a graphical display,
we impose a linear index restriction, with utility functions determined by a parameter
α = (a01� a02� a11� a12) as

U1 = a01 + a11x+ V1� U2 = a02 + a12x+ V2� U3 = V3�

Probability distributions are generated with a01 = 0, a11 = 1, a02 = 0, and a12 = −0�5.
In each example the components of V are distributed i.i.d. Type 1 extreme value.

The endogenous variable X is generated according to

X = xk if and only if ck−1 <X∗ ≤ ck�

X∗ = d0 + d1Z + d
1/2
2 W + λg(V )� W ∼N(0�1)�

15The pdf version of this article, available on-line, has color graphics which are easier to read and inter-
pret.

16Koning and Ridder (2003) considered these partitions in a paper studying the falsifiability of utility-
maximizing models of multiple discrete choice.

17Tables 2 and 3 of an on-line working paper version of this paper, Chesher, Rosen, and Smolinski (2011),
enumerate core-determining sets for all possible orientations in three-choice models with K = 2.



178 Chesher, Rosen, and Smolinski Quantitative Economics 4 (2013)

Figure 1. Orientations of w(x) = (−u1(x)�−u2(x)) when M = 3 and K = 2.
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Figure 2. Core-determining sets for binary X : sets on the support of T (y�x;u).
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Figure 3. Core-determining sets for binary X : nonsingleton unions of sets on the support of
T (y�x;u).
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with (V �W ) ⊥⊥ Z, V ⊥⊥ W , g(V ) = V1 + V2 + V3, and λ = π−1.18 This specification is in-
tended to reflect a situation where an individual can choose X with knowledge of his
unobservable V , rendering X dependent on V and therefore endogenous. The proba-
bilities P0[Y = y ∧ X = xk|z] in the examples below were computed via numerical inte-
gration in Mathematica using the NIntegrate function.19

The scalar instrumental variable takes two values, −1 and +1. The parameters in the
model for X are set to d2 = 1/

√
2 with d1 = 1 in one set of calculations (A) and d1 = 1�5 in

another (B). In the latter case, the instrumental variable is a better predictor of the value
of the variable X , and in the discussion, we describe this as the “strong instrument” case.

The explanatory variable has K = 2 points of support in one pair of cases (I), X =
{−1�1}, and values are generated using the single threshold c1 = 0 in the ordered probit
specification above. In another pair of cases (II), K = 4, X = {−1�−1/2�1/2�1}, and the
thresholds are c1 = −1/2, c2 = 0, and c3 = 1/2.

We begin by reporting both fully nonparametric and parametric bounds on the CCPs
℘(x� y) in Figure 4, which give a feel for the relative identifying power of the parametric
restrictions. The nonparametric bounds in each panel of the figure correspond to the
CCP bounds of (3.11) and are illustrated with solid boundaries. The parametric bounds,
shown with dashed boundaries, correspond to those of Corollary 2. The panel in the
top row of the figure depicts these bounds at both support points for X when K = 2,
for both the weaker and the stronger instrument cases. The panels in the bottom row
provide bounds for the case where K = 4, where we illustrate the weak and the strong
instrument cases separately so as to keep the panels from becoming overcrowded. Each
panel illustrates joint regions for ℘(x�1) and ℘(x�2); the corresponding value for ℘(x�3)
can be computed for any such point in these regions as ℘(x�3) = 1 −℘(x�1)−℘(x�2).

In the top-left panel of Figure 4 with binary X , the nonparametric bounds for ℘(x�1)
and ℘(x�2) have a triangular shape.20 Imposing the parametric structure cuts away
part of these triangles, dispensing with higher values for ℘(−1�1) and lower values for
℘(−1�2), while discarding lower values for ℘(1�1) and higher values for ℘(1�2). The ef-
fect of the stronger instrument is more pronounced for the probabilities with x = −1.
The bounds on the CCPs for x = −1 (+1) are drawn in the upper (lower) part of the top
panel in Figure 4. It is worth noting that in this binary X model, the parametric structure
is only restrictive through the specification for the distribution of unobserved hetero-
geneity.

The bottom panels of Figure 4 depict designs where X has four points of support.
In these figures the nonparametric bounds on choice probabilities are quite wide for
intermediate values of x but significantly more informative at the extreme values of x.

18The values of λ and d2 are chosen to ensure that the variance of X∗ given Z is 1, the same as it was in
a related design that appeared in the on-line working paper Chesher, Rosen, and Smolinski (2011), so as to
enable transparent comparison to identified sets from that design. The illustrations in that version pertain
to the same setup, but where λ = 0, in which case X is, in fact, exogenous, though this is not assumed by the
econometrician. The resulting bounds are qualitatively similar to those reported here and have thus been
omitted from this version.

19Computational details for probabilities PV [S] can be found in Chesher, Rosen, and Smolinski (2011).
20The color figure in the pdf version of this article, available on-line, is easier to read and interpret.
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Figure 4. Nonparametric (solid) and parametric (dashed) bounds for counterfactual choice
probabilities. The top-left panel provides illustrations for X = {−1�1} for both a weaker
(w) and a stronger (s) instrument, and the bottom two panels provide illustrations for
X = {−1�−1/2�1/2�1} for a weaker and a stronger instrument, respectively.

The extreme value −1 (+1) of the instrumental variable delivers the sets located in the
upper (lower) parts of the lower two panels in Figure 4. In the nonparametric cases the
intermediate values for the endogenous variable x = ±1/2 deliver the large triangular
sets occupying most of the lower triangle of the lower panels of Figure 4. In the paramet-
ric case the identified set for the CCPs for these values are smaller and lie between the
sets for the values x = ±1. This is due to the ordered response nature of the specifica-
tion for X , where, in particular, Z = 1 has relatively high predictive power for X = 1, and
Z = −1 has relatively high predictive power for X = −1. With more support points for Z
and richer variation in the conditional probability of intermediate realizations of X , the
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bounds for x = −1/2 and x= 1/2 could shrink substantially. Unsurprisingly, the stronger
instrument design leads to tighter identified sets for the probabilities when x = ±1, due
to increases in P0[X = 1|Z = 1] and P0[X = −1|Z = −1].

The parametric bounds on CCPs in the bottom panels are much narrower than the
nonparametric ones, especially for the intermediate x values x = ±1/2. With four sup-
port points for X , linear utility is now a substantive restriction, leading to a decrease
in the volume of the identified sets for {℘(x� y)� y ∈ Y} relative to the nonparametric
bounds. The functional form for the utility function now carries implications for choice
probabilities across different values of x. Consider, for example, the first orientation in
the binary X example illustrated in Figure 1. Under that parameter configuration, when-
ever an individual with X = x1 is observed to have chosen Y = 2, we can conclude that
he also would have chosen Y = 2 if his X had instead been equal to x2, holding V fixed.
In the example illustrated in the bottom panels of Figure 4 with four support points,
there are a number of such relationships implied by any value of the utility parame-
ters. Thus, bounds on the CCPs at x = ±1 also serve to narrow the bounds on CCPs at
x= ±1/2, whereas in the fully nonparametric model, they did not.

We now turn to identified sets for the parameters of the utility functions when the
restrictions of the parametric conditional logit model are imposed. Figure 5 shows two-
dimensional projections of the four-dimensional identified set and of two outer regions
for each pair of parameters. Case I.A in which X is binary and the instrument is relatively
weak is illustrated in Figure 5. Cases I.B, II.A, and II.B are illustrated in Figures 6, 7, and 8.

In each case, the results were obtained by calculating membership of identified sets
and outer regions at each point on a grid of around 130,000 values of the four parame-
ters and plotting the boundary of the set or outer region for each pairing of parameters.
For each pair of values in a two-dimensional projection of a four-dimensional set, there
exists a value of the other two parameters such that the quadruple thus obtained lies in
the four-dimensional set.

In each case, three sets are drawn. The inner set is the identified set obtained using
all the core-determining inequalities of Theorem 2. The outer set is the outer region
obtained using the 3K inequalities

exp(a0y + a1yx)

1 +
2∑

y ′=1

exp(a0y ′ + a1y ′x)

≥ max
z∈Z

P0[Y = y ∧X = x|z]� y ∈ {1�2�3}�x ∈ X � (4.1)

implied by (3.11). Since, as shown in McFadden (1974), the logarithms of the choice
probabilities on the left-hand side of (4.1) are concave functions of the parameters a ≡
(a01� a11� a02� a12), these inequalities define a convex set. The intermediate set is the set
obtained using 3K inequalities in which the left-hand sides are as in (4.1) but the right-
hand sides take into account the existence of any x′ such that T (y�x′;u) ⊆ T (y�x;u).
This intermediate set is a proper subset of the other outer region because allowing for
the subset relationships leads to some increases in the values appearing on the right-
hand side of the inequalities (4.1) with no change in the values on the left-hand sides.
This set cannot be guaranteed to be convex because the identity of the values x′ that
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Figure 5. Case I.A. Two-dimensional projections of the identified set and two outer regions,
M = 3, K = 2, weaker instrument.
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Figure 6. Case I.B. Two-dimensional projections of the identified set and two outer regions,
M = 3, K = 2, stronger instrument.
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Figure 7. Case II.A. Two-dimensional projections of the identified set and two outer regions,
M = 3, K = 4, weaker instrument.
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Figure 8. Case II.B. Two-dimensional projections of the identified set and two outer regions,
M = 3, K = 4, stronger instrument.
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are involved in subset relationships depends on the relative signs and magnitudes of the
parameters a11 and a12.

In all four cases examined, the calculations suggest that all the two-dimensional pro-
jections are convex. Accordingly, boundaries drawn are the convex hulls of the points on
the grids that are calculated to lie in the each of the projected two-dimensional sets. In
each panel of the figure, the solid diamond locates the parameter value that generates
the probability distributions used in this analysis.

The IV model is quite informative for utility parameters. For example, the slope co-
efficients can be signed in the sense that all values of a11 and a12 in the identified set
have a11 > 0 and a12 < 0. This also holds true for some, but not all, of the outer regions.
Comparing Figure 5 with Figure 6 (K = 2) and comparing Figure 7 with Figure 8 (K = 4),
it is clear that the identified set and the outer regions are much smaller in the stronger
instrument case, as expected and as previously noted in examination of the bounds on
choice probabilities reported in Figure 4.

The sets in Figure 5 (K = 2) are substantially smaller than those in Figure 7 (K = 4),
as are those in Figure 6 relative to those in Figure 8. Again as discussed with regard to the
CCP bounds, this seems to occur because the predictive power of the binary instrumen-
tal variable for particular values of X decreases as the number of points of support of X
rises. Even so, Figure 4 shows that the implied bounds on CCPs can remain informative.
The bounds on both the utility parameters and the CCPs are sensitive to changes in the
support of the instrumental variable and to changes in the underlying specification of
the relationship between potentially endogenous X and the instrumental variable Z.

The outer regions are around 10 times faster to compute and they are quite informa-
tive, in some cases wrapping the identified set quite tightly. In case II.A, the intermediate
outer region is substantially smaller than the extreme outer region. We think this hap-
pens because when K is large, there are many more subset relationships and these bring
substantial refinements of the inequalities that define the extreme outer region.

5. Conclusion

We have considered multiple discrete-choice models with potentially endogenous ex-
planatory variables and an instrumental variable (IV) restriction. The IV restriction re-
quires that there exist variables that are excluded from the random utilities and dis-
tributed independently of the latent variables that induce stochastic variation in utili-
ties. Our model does not rely on special regressor, large support, triangularity, or con-
trol function restrictions. Indeed the model imposes quite minimal restrictions, being
incomplete in the sense that the model is silent about the genesis of the potentially en-
dogenous explanatory variables.

We have shown that this instrumental variable multiple discrete-choice model has
set-identifying power and we have characterized the (sharp) identified set. The general
characterization may involve a large number of inequalities. We have characterized a
smaller collection of core-determining inequalities that, in the context of any particular
model, serve to define the identified set, and we have provided an algorithm for calcu-
lating these in the case in which explanatory variables are discrete.
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We also provide easy-to-compute outer regions that can further facilitate computa-
tion of the identified set. These may be of interest in their own right, potentially being
sufficient to address the qualitative economic questions pursued in some applications.
In parametric models with discrete explanatory variables, these only require calculation
of probability expressions that appear in a conventional likelihood function, and calcu-
lation of probabilities of the joint occurrence of values of the outcome and the explana-
tory variables conditional on the instrumental variables. This was demonstrated in the
conditional logit model in Section 4. In addition, in continuing work, we are investigat-
ing the geometry of identified sets and outer regions in IV conditional probit and nested
logit models.

A novel aspect of our results is that we have characterized the identifying power of
an IV model that permits multiple unobservable variables in a structural function that
delivers a discrete outcome. We develop a general approach to models of this sort in
Chesher and Rosen (2013), in which we extend the methods employed here to other
IV models in which there are many unobservables in structural functions and possibly
continuous outcomes.

Appendix A: Proofs

Proof of Theorem 1. The set D0(Z) contains all (u�PV ) ∈ U × PV that satisfy for all
S ∈ F(V),

P0
[

Tv(Y�X;u) ⊆ S|Z = z
] ≤ PV (S)

for almost every z ∈ Z . The development in the text shows that all admissible (u�PV )

that deliver the conditional distributions F0
YX|Z , z ∈ Z , lie in this set. Further, a key re-

sult from random set theory, namely Artstein’s inequality (provided by Artstein (1983)
and Norberg (1992); see also Molchanov (2005, Section 1.4.8)), guarantees sharpness,
that is, that all (u�PV ) ∈ D0(Z) can deliver the conditional distributions F0

YX|Z , for al-
most every z ∈ Z . To apply this result, we first proceed in similar fashion to the proof
of Theorem 2.1 in Beresteanu, Molchanov, and Molinari (2012) to show that the con-
tainment functional inequalities of (3.6) are equivalent to Artstein’s inequality. To do so,
consider any (u�PV ) ∈ D0(Z) and fix z ∈ Z . Then with probability 1, we have that

∀S ∈ F(V)� P0
[

Tv(Y�X;u) ⊆ S|Z = z
] ≤ PV (S) (A.1)

by definition of D0(Z). Now using PV (S) = 1 − PV (Sc) and

P0
[

Tv(Y�X;u) ⊆ S|Z = z
] = 1 − P0

[
Tv(Y�X;u)∩ Sc 
= ∅|Z = z

]
�

it follows that (A.1) holds if and only if

∀S ∈ F(V)� P0
[

Tv(Y�X;u)∩ Sc 
= ∅|Z = z
] ≥ PV

(
Sc

)

or, equivalently,

∀S ∈ G(V)� P0
[

Tv(Y�X;u)∩ S 
= ∅|Z = z
] ≥ PV (S)�
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where G(V) here denotes the collection of all open subsets of V . By Corollary 1.4.44 of
Molchanov (2005), this is in turn equivalent to the collection of inequalities

∀S ∈ K(V)� P0
[

Tv(Y�X;u)∩ S 
= ∅|Z = z
] ≥ PV (S)�

where K(V) is the collection of all compact subsets of V . This relation is Artstein’s in-
equality. By Artstein (1983) and Norberg (1992), it follows that there exists a random
variable Ṽ and a random set T̃ realized on the same probability space as (V � Tv(Y�X;u))
such that conditional on Z = z, both Ṽ ∼ PV and T̃ is distributed identically to

Tv(Y�X;u) when (Y�X) is distributed F0
YX|Z(·|Z = z), with Ṽ ∈ T̃ with probability 1.

This implies that conditional on Z = z, there exist random variables (Ỹ � X̃) defined on
the same probability space with Ṽ ∈ Tv(Ỹ � X̃;u) and (Ỹ � X̃) distributed F0

YX|Z(·|Z = z).

The choice of z ∈ Z is arbitrary and the inequality defining D0(Z) holds for almost ev-
ery z ∈ Z . Thus the argument holds for almost every z ∈ Z , implying there exist random
variables (Ỹ � X̃) conditionally distributed F0

YX|Z a.e. z ∈ Z so that Restriction A.2 is sat-
isfied. �

The proof of Corollary 1 is identical to the proof of Theorem 1 on replacing V with
W and PV with PW .

The proof of Corollary 2 is a direct consequence of Theorem 1.

Proof of Corollary 3. Consider any u ∈ U . For each x ∈ X , let the conditional distri-
bution PV |X(·|x) of V given X = x be absolutely continuous with respect to Lebesgue
measure, with everywhere positive density on Supp(V |X = x) such that for all y ∈ Y ,
PV |X(Tv(Y�x;u)|x) = P0[Y = y|x]. Because V and X are allowed to be arbitrarily corre-
lated, any such conditional distributions for V |X coupled with u produce the observed
distributions of Y |X . The inequalities that define the identified set hold, since for any
test set S ,

P0
[

Tv(Y�X;u) ⊆ S|z]
= P0

[
Tv(Y�X;u) ⊆ S

]

=
∫
x∈X

(∑
y∈Y

1
[

Tv(y�x;u) ⊆ S
] × P0[Y = y|x]

)
dF0

X(x)

=
∫
x∈X

(∑
y∈Y

1
[

Tv(y�x;u) ⊆ S
] × PV |X

(
Tv(y�x;u)|x))

dF0
X(x)

≤
∫
x∈X

PV |X(S|x)dF0
X(x)

= PV (S)�

where the inequality holds because the sets Tv(y�x;u) have zero measure intersection
with respect to PV |X(·|x). �
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Proof of Lemma 1. (i) Consider any v� v′ ∈ Tv(y�x;u). Define v∗ such that v∗
y =

max{vy� v′
y}, and for all k 
= y, v∗

k = min{vk� v′
k}. From the monotonicity Restriction A.5,

it follows that at the specified x, the utility of choice y is weakly higher at V = v∗ than at
either v or v′, that is,

uy
(
x�v∗

y

) ≥ uy(x�vy) and uy
(
x�v∗

y

) ≥ uy
(
x�v′

y

)
�

Likewise utility from any alternative k 
= y is weakly lower at V = v∗ than at either of v
or v′. Restriction A.5 implies that, indeed, for any ṽ on the line from v to v∗, an individual
with X = x and V = ṽ is at least as disposed to y as an individual with X = x and V = v.
Thus any such ṽ is an element of Tv(y�x;u), so that the line from v to v∗ constitutes a
path in Tv(y�x;u) that connects these two points. By the same reasoning, the line from
v′ to v∗ constitutes a path in Tv(y�x;u) from v′ to v∗. Thus there is a path in Tv(y�x;u)
that connects any two points v� v′ ∈ Tv(y�x;u) and thus Tv(y�x;u) is a connected set.21

(ii) If Restriction A.5∗ holds, the sets Tv(y�x;u) and Tw(y�x;u) are convex because
for any u ∈ U and x ∈ X , these sets are an intersection of linear half spaces.22

(iii) If uy ′(x) − uy(x) = ∞ for some y ′ 
= y, then the set Tw(y�x;u) is empty. Other-
wise, for any wy = vy − vM ∈ R� there exists wy ′ = v′

y ′ − vM small enough for each y ′ 
= y

such that wy − wy ′ > uy ′(x) − uy(x). Therefore, the interior of Tw(y�x;u) is both open
and nonempty. Since Tw(y�x;u) contains its interior and any nonempty open set has
positive Lebesgue measure, Tw(y�x;u) also has positive Lebesgue measure. Note that
Tv(y�x;u) is empty if and only if Tw(y�x;u) is empty, so the same conclusions hold for
Tv(y�x;u). �

Proof of Theorem 2. We provide the proof for the more general case where Restric-
tions A.1–A.5 hold with regard to the characterization (3.6). We separate the proof into
two cases, depending on whether or not the set

Z ∅ ≡ {
z ∈ Z : P0

[
Tv(Y�X;u) = ∅|Z = z

]
> 0

}

has positive measure Z and, equivalently, on whether Tv(Y�X;u) is empty with positive
probability. The proof for the characterization (3.7), where, in addition, Restriction A.5∗
holds, follows identical steps, replacing V with W .

Case 1: Fix (u�PV ) ∈ U × PV and suppose that Z ∅ has positive measure. Then ∅ is the
union of all the sets Tv(y�x;u) with (y�x) ∈ Supp(Y�X) for which Tv(y�x;u) = ∅, that is,
the empty set can be written as a union of sets satisfying (i) and (ii). We now show that
any u ∈ U for which Z ∅ has positive measure violates the containment functional in-
equality evaluated at S = ∅ conditioning on z ∈ Z ∅, so that it indeed suffices only to use
a test set satisfying conditions (i) and (ii). This is because if the containment functional
inequality were satisfied with S = ∅, it would follow that

0 <P0
[

Tv(Y�X;u) ⊆ ∅|Z = z
] ≤ PV (∅) = 0�

21See, for example, Sutherland (2009, Chapter 12, p. 120) for the formal definition of a path and a formal
proof that any set with the property that a path exists connecting any two elements is connected.

22They are convex polytopes if one uses a definition of “polytope” that does not exclude unbounded sets.
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which is a contradiction.
Case 2: Again fix (u�PV ) ∈ U × PV and now suppose that Z ∅ has zero measure. Then

for almost every z ∈ Z , the sets on the support of Tv(Y�X;u) are connected sets with
positive Lebesgue measure. This follows from Restriction A.1, which requires that the
support of V |(X = x�Z = z) is open, in conjunction with Restriction A.5, which requires
for all (y�x) ∈ Supp(Y�X) and all u ∈ U that uy(x�vy) is continuous in vy . We now estab-
lish conditions (i) and (ii) in turn.

(i) For any set S, let CS(u) denote the collection of sets on the support of Tv(Y�X;u)
that are subsets of S . Let

GS(u) ≡
⋃

T ∈CS(u)

T

be the union of sets on the support of Tv(Y�X;u) that are contained in S . Then G S(u) ⊆
S and

P0
[

Tv(Y�X;u) ⊆ S|Z = z
] = P0

[
Tv(Y�X;u) ⊆ G S(u)|Z = z

]
�

It follows that if the inequalities of Theorem 1 hold for all unions of sets on the support
of Tv(Y�X;u), then they hold for all sets S ⊆ V , since for any such S ,

P0
[

Tv(Y�X;u) ⊆ G S(u)|Z = z
] ≤ PV

(
GS(u)

) ≤ PV (S)�

where the final inequality follows by G S(u) ⊆ S .
(ii) We now show that the inequalities associated with those sets G S(u) such that

Condition (ii) does not hold are redundant. Define

G 0
S(u) ≡

⋃
T ∈CS(u)

int(T )

and suppose that G 0
S(u) is not connected. Then CS(u) can be divided into mutually

exclusive and exhaustive subcollections of sets each belonging to CS(u), the union of
whose interiors is connected. That is, CS(u) can be written

CS(u) = {
CS�1(u)� � � � �CS�J(u)

}

for some J, dependent on S , such that for any 1 ≤ j ≤ J, the sets

G 0
S�j(u) ≡

⋃
T ∈CS�j(u)

int(T )

are connected, and for any j 
= k, G 0
S�j(u)∩ G 0

S�k(u) = ∅. Now define

GS�j(u) ≡
⋃

T ∈CS�j(u)

T �

so that G S(u) = ⋃J
j=1 GS�j(u). Consider any set Tv(y�x;u) on the support of Tv(Y�X;u).

This set is connected by Lemma 1 and has positive Lebesgue measure, since Z ∅ has zero
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measure, by the above reasoning. Therefore, it cannot be contained in both G S�j(u) and
GS�k(u) for any j 
= k since G 0

S�j(u)∩ G 0
S�k(u) = ∅. Thus

P0
[

Tv(Y�X;u) ⊆ G S(u)|Z = z
] =

J∑
j=1

P0
[

Tv(Y�X;u) ⊆ G S�j(u)|Z = z
]

(A.2)

and

PV

(
GS(u)

) =
J∑

j=1

PV

(
GS�j(u)

)
� (A.3)

Therefore,

∀j ∈ {1� � � � � J}� P0
[

Tv(Y�X;u) ⊆ G S�j(u)|Z = z
] ≤ PV

(
GS�j(u)

)

implies

J∑
j=1

P0
[

Tv(Y�X;u) ⊆ G S�j(u)|Z = z
] ≤

J∑
j=1

PV

(
GS�j(u)

)
�

and so by (A.2) and (A.3),

P0
[

Tv(Y�X;u) ⊆ G S(u)|Z = z
] ≤ PV

(
GS(u)

)
� �
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