
A
f

T
C

a

A
R
R
A
A

K
P
B
M

1

w
T
t
c
a
t
o
h
a
a
a
a
w
p
a
a
b
p
n
n
i
a
p

0
d

y COREView me

CL Discovery
Computers and Chemical Engineering 42 (2012) 288– 297

Contents lists available at SciVerse ScienceDirect

Computers and Chemical Engineering

j ourna l ho me pag e: w ww.elsev ier .com/ locate /compchemeng

pproximate multi-parametric programming based B&B algorithm
or MINLPs

aoufiq Gueddar, Vivek Dua ∗

entre for Process Systems Engineering, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom

 r t i c l e i n f o

rticle history:
eceived 5 October 2011
eceived in revised form 5 March 2012

a b s t r a c t

In this work an improved B&B algorithm for MINLPs is proposed. The basic idea of the proposed algorithm
is to treat binary variables as parameters and obtain the solution of the resulting multi-parametric NLP
(mp-NLP) as a function of the binary variables, relaxed as continuous variables, at the root node of the

brought to you btadata, citation and similar papers at core.ac.uk

provided by U
ccepted 8 March 2012
vailable online 22 March 2012

eywords:
arametric programming
ranch & Bound

search tree. It is recognized that solving the mp-NLP at the root node can be more computationally expen-
sive than exhaustively enumerating all the terminal nodes of the tree. Therefore, only a local approximate
parametric solution, and not a complete map of the parametric solution, is obtained and it is then used
to guide the search in the tree.

© 2012 Elsevier Ltd. All rights reserved.
INLP

. Background and problem formulation

The process synthesis area remains a very important subject
ithin chemical process design and optimization research field.

he need for optimizing plant configurations and flowsheet struc-
ures is even more critical now with constantly tightening market
onditions and commercial specifications for the products. There is
lso more concern for environmental issues and for the ability and
he flexibility of producing a wide range of products. Special classes
f process synthesis problems include: heat recovery systems,
eat and mass exchangers network synthesis, utilities systems
nd separation processes. The overall process synthesis problem
ims to find the best configuration (selection of units and inter-
ction between the different blocks of the process flow sheet) that
llows one to transform the raw materials into the desired products
hilst meeting the specified performances criteria of maximum
rofit, minimum operating cost, energy efficiency and good oper-
bility with respect to flexibility, controllability, reliability, safety
nd environmental regulations. Process synthesis problems can
e modeled as a Mixed Integer Non-linear Programming (MINLP)
roblem (Grossmann, 1996; Grossmann & Daichendt, 1996). The
onlinear terms in the MINLP are usually due to the non-linear
ature of the chemical processes and energy networks, where the
nteger variables can represent existence or not of a process unit or
 heat exchanger, existence of trays in a distillation tower, routing
ossibilities of a by-product to a final blend, etc. These problems

∗ Corresponding author. Tel.: +44 020 7679 0002; fax: +44 020 7383 2348.
E-mail address: v.dua@ucl.ac.uk (V. Dua).

098-1354/$ – see front matter © 2012 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compchemeng.2012.03.001
can also be formulated as MINLP problems (Kallrath, 2000). Stabil-
ity analysis of nonlinear model predictive control problems (Dua,
2006) and optimal configuration of artificial neural network prob-
lems (Dua, 2010) can also be formulated as MINLPs.

In this work an improved Branch & Bound (B&B) algorithm for
MINLPs is presented and its performance is analyzed. The algo-
rithm is based upon the fundamentals of parametric programming.
Considering the integer variables as parameters and solving at the
root node, the objective function, Lagrangian function, and the con-
tinuous variables are approximated as a function of the integer
variables. Using the multi-parametric programming framework,
the approximate objective and Lagrangian functions are then eval-
uated at the terminal nodes and used to guide the search in the tree.
The proposed approached improves the computational time com-
pared to standard traditional Branch & Bound algorithm through
reduction of number of nodes explored in the search tree. The
details of the algorithm are discussed next.

1.1. Mixed-Integer Nonlinear Programming

Consider the following Mixed-Integer Nonlinear Program
(MINLP), problem P1:

z1 = min
x,y

f (x, y)

subject to : h(x, y) = 0
g(x, y) ≤ 0
x ∈ �nx
y ∈ {0, 1}ny

In this formulation x is a vector of continuous variables, y is a
vector of binary variables, h is a vector of equality constraints, g is a

https://core.ac.uk/display/16231068?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
dx.doi.org/10.1016/j.compchemeng.2012.03.001
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:v.dua@ucl.ac.uk
dx.doi.org/10.1016/j.compchemeng.2012.03.001

T. Gueddar, V. Dua / Computers and Chemical Engineering 42 (2012) 288– 297 289

Table 1
mp-LP solution of the MILP.

i CRi Optimal solution given by z(y1,y2) and x(y1,y2)

1 −827.59 y1 + 2103.45 y2 ≤ 896.55 z(y1,y2) = 27931.04 y1 + 43758.63 y2 + 286758.6
0 ≤ y1 ≤ 1 x1(y1,y2) = 10344.83 y1 − 3793.10 y2 + 26206.897
0 ≤ y2 x2(y1,y2) = −5172.41 y1 + 6896.55 y2 + 6896.552

v
T
s

fi
B
m
G
O
a
s
i
i
r
i
e
O
t
i
i
t
f
s
g
O
v
p
s
p
p

m
1
r
v
v
l
t
r
a
T
u
u

1

m
G

2 −827.59 y1 + 2103.45 y2 ≥ 896.55

0 ≤ y1 ≤ 1

y2 ≤ 1

ector of inequality constraints and f is the scalar objective function.
ypically, the mass and energy balances are given by h and process
pecification by g.

The deterministic algorithms for MINLPs can be broadly classi-
ed as those based upon decomposition principles and Branch &
ound (B&B) techniques (Bonami et al., 2008; Floudas, 1995). Two
ost commonly used decomposition algorithms are based upon
eneralized Benders Decomposition (GBD) (Geoffrion, 1972) and
uter Approximation (OA) (Duran & Grossmann, 1986). In the GBD
nd the OA algorithms a sequence of iterating primal and master
ub-problems is constructed that converges in a finite number of
terations. The sequence of primal sub-problems represents non-
ncreasing upper bounds and the sequence of master sub-problems
epresents non-decreasing lower bounds. The primal sub-problem
s formulated by fixing the binary variables resulting in a nonlin-
ar program (NLP). The main difference between the GBD and the
A algorithm is in the formulation of the master sub-problem. In

he GBD algorithm the master sub-problem is based upon dual-
ty theory whereas in the OA algorithm the master sub-problem
s obtained by linearizing the constraints and the objective func-
ion. In the GBD and the OA algorithms the master sub-problems is
ormulated as a mixed-integer linear program (MILP). It has been
hown that the lower bound generated by the OA algorithm is
reater than or equal to that generated by the GBD algorithm. The
A algorithm therefore takes fewer iterations than the GBD to con-
erge and has been successfully applied to several process and
roduct design problems. Decomposition algorithm based upon
implical approximation (Goyal & Ierapetritou, 2004) and cutting
lane methods requiring repetitive solution of MILPs have also been
resented (Westerlund & Pettersson, 1995).

B&B algorithms are based upon a systematic tree search
ethodology (Borchers & Mitchell, 1994; Gupta & Ravindran,

985). At the root node of the tree all the binary variables are
elaxed as continuous variables, at the terminal nodes all the binary
ariables are fixed and at the intermediate nodes some of the binary
ariables are fixed and the remaining ones are relaxed. The prob-
em at each node of the tree corresponds to an NLP; the solution at
he root node represents a lower bound and at a terminal node rep-
esents an upper bound on the solution. The efficiency of the B&B
lgorithms depends upon enumerating as few nodes as possible.
he decision of whether to enumerate or fathom a node depends
pon the solution obtained at its predecessor node and the best
pper bound that is available.

.2. Multi-parametric programming

Consider the following multi-parametric Nonlinear Program-
ing (mp-NLP) problem (Pistikopoulos, 2009; Pistikopoulos,
eorgiadis, & Dua, 2007a, 2007b), problem P2:

z2(�) = min
x

f (x, �)
subject to : h(x, �) = 0
g(x, �) ≤ 0
x ∈ �nx

� ∈ �n�
z(y1,y2) = 45147.55 y1 + 305409.86
x1(y1,y2) = 8852.459 y1 + 24590.164
x2(y1,y2) = −2459.016 y1 + 9836.065

Parametric programming provides x*, the optimal value of x, as
a set of explicit functions of � without exhaustively enumerating
the entire space of �, the regions where these explicit functions
are valid are known as critical regions (CRs). For the solution of the
mp-NLPs, the nonlinear terms are outer-approximated and multi-
parametric linear program (mp-LP) is formulated and solved. The
points in the space of � where the difference between the solu-
tion of the NLP and the mp-LP is maximum are identified and at
those points mp-LPs are formulated and solved. This procedure is
repeated until this difference is within a certain tolerance (Dua &
Pistikopoulos, 1999).

In the next section a new B&B algorithm for solving P1 based
upon parametric programming is presented, in Section 3 illustra-
tive examples are presented and concluding remarks are presented
in Section 4.

2. Multi-parametric programming based B&B Algorithm
for MINLPs

In this work the MINLP (problem P1) is reformulated as an mp-
NLP (problem P2) by relaxing the binary variables, y, as continuous
variables bounded between 0 and 1 and treating y as parameters,
problem P3:

z3(y) = min
x

f (x, y)

subject to : h(x, y) = 0
g(x, y) ≤ 0
x ∈ �nx

y ∈ [0, 1]ny

The solution of problem P3 provides the objective function, z3,
and the continuous variables, x, as a function of y given by z3(y)
and x(y) respectively. The optimal solution can then be obtained
by fixing all the possible combinations of y and evaluating z3(y)
through simple function evaluations at those fixed values and then
selecting the best solution.

2.1. Motivating example

Consider the following MILP, formulated as an mp-LP:

z(y1, y2) = max
x

8.1x1 + 10.8x2

subject to : 0.80x1 + 0.44x2 ≤ 24000 + 6000y1
0.05x1 + 0.10x2 ≤ 2000 + 500y2
0.10x1 + 0.36x2 ≤ 6000
0 ≤ y1, y2 ≤ 1

(1)

The solution of this problem is given in Table 1. Evaluating
z(y1,y2) by fixing y1 and y2 at the binary values gives z(0,0) = 2.87E5,
z(0,1) = 3.05E5, z(1,0) = 3.15E5, z(1,1) = 3.51E5. The optimal solution
of the MILP is therefore given by z = 3.51E5, y1 = 1, y2 = 1, x1 = 3.34E4
and x2 = 7.38E3.
This approach in general can be more computationally expen-
sive than exhaustively solving the MILP or MINLP for all the possible
fixed values of y. In the next section an algorithm based upon
an approximate parametric programming, which estimates the

2 Chemi

s
a

2

P
o
s
t
t
p
b
u
e
t
o

a

s
f
g

f
t

T
M
s
�
c
g
C
c
u
s
(

U

U

90 T. Gueddar, V. Dua / Computers and

olution at the terminal nodes of the B&B tree from the solution
t the root node and intermediate nodes is presented.

.2. Approximate parametric programming

In this work a complete parametric solution profile of problem
3 is not obtained and instead an approximate parametric solution
f problem P3 is obtained. These approximations are obtained by
olving the NLP in P3 for a certain value of y, at the root node of
he B&B tree, and are given by explicit functions of y. Evaluating
hese approximate solutions at the terminal nodes of the B&B tree
rovides an estimate of the solution of the original MINLP for fixed
inary values of y. These estimated solutions are then ranked, based
pon whether the solution is feasible as well as the values of the
stimates. This ranking is then used to guide the search in the B&B
ree – so as to make decisions which nodes to fathom and which
nes to branch on.

The NLP problem for fixed integer variable y = yk is formulated
s problem P4:

zk
UB = min

x
f (x, yk)

subject to : h(x, yk) = 0
g(x, yk) ≤ 0
x ∈ �nx

The solution of this problem provides an upper bound on the
olution of P1. Assuming that f, g and h are twice continuously dif-
erentiable in x the first-order KKT conditions for problem P4 are
iven as follows:

L(x, yk) = ∇f (x, yk) +
p∑

i=1

�i∇gi(x, yk) +
q∑

j=1

�j∇hj(x, yk)

�i∇gi(x, yk) = 0, �i ≥ 0, ∀i = 1, . . . , p
hj(x, yk) = 0, ∀j = 1, . . . , q
∇L(x, yk) = 0

(2)

In (2) L is the Lagrangian function, �i the Lagrangian multipliers
or the inequality constraints and �j the Lagrangian multipliers for
he equality constraints.

heorem 1. Basic Sensitivity Theorem (Fiacco, 1976; Jackson &
cCormick, 1988). Let y0 be a vector of binary variables con-

idered as parameter values and (x0, �0, �0) a KKT triple where
0 is non-negative and x0 is feasible. Also assume that: (i) strict
omplementary slackness (SCS) holds; (ii) the binding constraint
radients are linearly independent (LICQ: Linear Independence
onstraint Qualification); and (iii) the second-order sufficiency
onditions (SOSC) hold. Then, in neighbourhood of y0, there exists a
nique, once continuously differentiable function [x(y), �(y), �(y)]
atisfying the SOSC of problem P4 with [x(y0), �(y0), �(y0)] =
x0, �0, �0), where x(y) is a unique isolated minimizer for P4 and:

= −(M0)−1N0 (3)

⎛ dx(y0)
dy

⎞

=
⎜⎜⎜⎝ d�(y0)

dy
d�(y0)

dy

⎟⎟⎟⎠ (4)
cal Engineering 42 (2012) 288– 297

M0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∇2L ∇g1 · · · ∇gp ∇h1 · · · ∇hq

−�1∇T g1 −g1
...

. . .
−�p∇T gp −gp

∇T h1
...

∇T hq

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

where

L(x, �, �, y) = f (x, y) +
p∑

i=1

�igi(x, y) +
q∑

j=1

�jhj(x, y)

N0 = (∇2
yxL · −�1∇T

y g1, . . . , −�p∇T
y gp, ∇T

y h1, . . . , ∇T
y hq)

T

(6)

Under the assumption of Theorem 1, the first order
Taylor–Lagrange expansion of [x(y), �(y), �(y)]T in a neighborhood
of y0 can be stated as:[

x(y)
�(y)
�(y)

]
=
[

x0
�0
�0

]
− (M0)−1 · N0 · (y − y0) + o(||y||) (7)

2.3. Improved B&B algorithm for MINLPs

Based upon the theory described in the previous section, the
steps of the proposed algorithm are presented as follows:

Step 1: Initialize the upper and lower bounds of the MINLP prob-
lem (LB = −∞, UB = +∞), then relax the integer variables and solve
the corresponding NLP problem (P3). The integer vector will be
considered as a vector of continuous parameters belonging to the
[0,1] interval. If the NLP relaxation subproblem is infeasible then
the problem is infeasible as well. If the NLP relaxation solution is
integer the algorithm will terminate and the solution of this sub-
problem will be the solution of the initial MINLP problem (P1). If
the solution is fractional (either all or some of the relaxed integer
variables are in the [0,1] interval) then further branching will take
place. The lower bound is updated ZLB = Z*, where Z* is the optimal
objective function of the relaxed MINLP problem at the root node.

Step 2: Generate the terminal nodes matrix �(i,j), the dimen-
sions of this matrix are n × 2n, n being the dimension of the integer
vector and 2n the number of integer enumerations of the tree. Each
column will represent a potential integer solution vector of the
MINLP problem (P1). When an NLP subproblem relaxation leads
to a fractional solution inside the tree then the dimensions of the
terminal nodes matrix below this node will be n−k and 2n−k, where
k is the level where the node is located in the tree. For instance k = 0
corresponds to the root node and k = n to the terminal nodes.

For a given MINLP problem with 3 integer variables the terminal
nodes matrix at the root node can be presented as:

�n×2n =
(

1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0

)

Step 3: The integer vector is considered now as a parameter as
stated in problem P3. Obtain [x(y), �(y), �(y)] by using Eq. (7).

The multiparametric approximations will be performed every
time when no fathoming actions can be taken in the node. The linear
sensitivity system’s dimensions depend on the number of fractional
integer variables. In other words the U(y) vector will have as many
columns as fractional integer variables after solving a relaxed NLP

subproblem (sensitivities for the integer variables that are already
integer are not required)

Step 4: Using the estimated values of the variables from Eq. (7),
the values of the inequality and equality constraints and therefore

T. Gueddar, V. Dua / Computers and Chemical Engineering 42 (2012) 288– 297 291

cture

t
e

L

i
t

L

t

x

a
m
m
c
p
u

Fig. 1. Stru

he Lagrangian function values for the different terminal nodes are
stimated as follows:

(x(y), �(y), �(y), y) = f (x(y), y) +
p∑

i=1

�i(y)gi(x(y), y)

+
q∑

j=1

�j(y)hj(x(y), y) (8)

Step 5: The idea is to transform the constrained problem P3
nto an unconstrained problem (Fiacco, 1983; Floudas, 1995). Such
ransformation involves the use of the Lagrangian function:

(x, y, �, �) = f (x, y) +
p∑

i=1

�igi(x, y) +
q∑

j=1

�jhj(x, y) (9)

The transformed unconstrained problem then becomes finding
he stationary points of the Lagrange function.

min
,y,�,�≥0

L(x, y, �, �) = f (x, y) + �T g(x, y) + �T h(x, y) (10)

Therefore, after calculation of the Lagrangians function values
t the terminal nodes, they are ranked (from minimum to maxi-
um value), the best candidate is selected corresponding to the

inimum Lagrangian function value. The integer variable values

orresponding to the selected candidate are fixed and the NLP sub-
roblem is then solved (P4). If the NLP is feasible it will provide an
pper bound to the tree, if not, the next candidates will be selected
of the tree.

successively until a feasible solution is reached. This node will be
used to direct the branching in the tree.

Step 6: In general, when the relaxed NLP subproblem is solved at
tree level k and at the 2n−k terminal nodes the Lagrangian functions
are estimated and if �k,m(i) = ym(i) is the best candidate integer vec-
tor it is solved as an NLP (as in Step 5) then the next step is to check
its optimality. This is achieved through exploring the complemen-
tary sections of the tree as shown in Fig. 1. In this figure at level k = p
a relaxed NLP problem is solved and the Langrange function esti-
mations of the terminal nodes are derived from the relaxed node.
To check the optimality of the Lagrangian candidate the branching
step takes places. Explicit enumeration of all tree nodes is prac-
tically impossible due to the exponentially increasing number of
possible solutions. The use of bounds for the objective function to
be minimized combined with the value of the current best solution
enables the algorithm to search sections of the solution space only
implicitly. For instance from the original relaxed NLP a constraint
(y(i=p) = |1 − �p,m(i)|)is added to perform the branching.

The branched nodes fall into a class of problems that can be
formulated as Problems Pk(p) (p is a tree level between k and n):

zp(y) = min
x

f (x, y)

subject to : h(x, y) = 0
g(x, y) ≤ 0

x ∈ �nx

y(i) ∈ [0, 1]ny for i > p
y(i) = |1 − �k,m(i)| for i = p
y(i) = �k,m(i) for i < p

(11)

2 Chemi

a
s

•

•

t
s

m
u

o

r
d

3

3

b
b
t

y

−x ≤ 0
y ∈ {0, 1}

The NLP relaxation is solved to get z0 = −0.553, x0 = 0.760,
y0 = 0.752, �*

1 = 2.000, �*
2 = 0.073, �*

3 = 0.000 and �*
4 = 0.000.

The integer variable is fixed to the relaxed value y = y0 and solved
to obtain the sensitivities. Theorem 1 is used in order to obtain
the parametric sensitivities of the continuous variables and the
Lagrangian multipliers
92 T. Gueddar, V. Dua / Computers and

We can clearly verify that the sub-problems {Pk(p), k ≤ p ≤ n}are
 subdivision of the initial solution space of problem P1 as they
atisfy the following conditions:

A feasible solution of any of the sub-problems {Pk(p), k ≤ p ≤ n} is
a feasible solution of (P1)
Every feasible solution of (P1) is a feasible solution of exactly one
of the sub-problems.

This implies that the sub problems Pk(p) are disjoint, hence
he same feasible solution appearing in different subspaces of the
earch tree is avoided.

Step 7: when all the tree nodes are explored the algorithm ter-
inates. Figs. 1 and 2 provide more in-depth information to help

nderstand the algorithm better.
The detailed steps of the proposed improved B&B algorithm

utlined in this section can be summarized in the box below:

Algorithm statement
Step 1: Solve (P3) by treating y as free variable in the [0,1]
interval
Step 2: Generate terminal nodes matrix. Each column will rep-
resent a potential integer solution vector of the MINLP problem
Step 3: Obtain [x(y), �(y), �(y)] from Eq. (7)
Step 4: Evaluate L(x(y), �, �) at the terminal nodes by using
Eq. (8)
Step 5: Rank the Lagrangian functions, select the best can-
didate integer solution and for this candidate solve the NLP
(P4). If the selected candidate is infeasible then go to the next
candidate.
Step 6: Solve subset nodes for the relaxed integer vector and
fixing the branching variables (11) and apply fathoming when
criteria below apply.

Criteria 1: The optimal value of the subproblem is ≥Z* (Z*is
the best integer solution found)

Criteria 2: The NLP subproblem is infeasible
Criteria 3: The optimal solution of the NLP subproblem is

integer
If a node is fathomed then select new node. If a node cannot

be fathomed yet go to step 3 and repeat step 3–5.
Step 7: program stops when the whole tree space is explored

Examples from the literature where this approximate paramet-
ic programming approach has been applied are presented next to
emonstrate the main ideas of the approach.

. Illustrative examples

.1. Example 1: linear binary variable

This example is relatively simple but helps to demonstrate the
asic concepts of the proposed algorithm. The problem has one
inary variable and one continuous variable and is described by
he formulation below:

z = min
x

− 2.7y + x2

subject to :
1) − ln(1 + x) + y ≤ 0
2) − ln(x − 0.57) + y − 1.1 ≤ 0
3)x ≤ 2
4) − x ≤ 0

y ∈ {0, 1}

The NLP relaxation is solved to get z0 = −0.479, x0 = 1.35,
0 = 0.856, �*

1 = 0.869, �*
2 = 1.831, �*

3 = 0.000 and �*
4 = 0.000.
cal Engineering 42 (2012) 288– 297

The integer variable is fixed to the relaxed value y = y0 and solved
to obtain the sensitivities. Theorem 1 is used to obtain the para-
metric sensitivities of the continuous variables and the Lagrangian
multipliers

x(y + �y) = x ∗ + ∂x

∂y
�y and �(y + �y) = � ∗ +∂�

∂y
�y

∂x

∂y
= 2.353,

∂�1

∂y
= 18.449,

∂�2

∂y
= 3.336,

∂�3

∂y
= 0,

∂�4

∂y
= 0

x(y) = x0 + 2.353(y − y0)
�1 = �1,0 + 18.449(y − y0)
�2 = �2,0 + 3.336(y − y0)
�3 = �3,0 = 0
�4 = �4,0 = 0

The Lagrangian function is constructed using the approximate
parametric functions for x and �

L(y) = −0.479 − 0.58(y − 0.856) + (0.869 + 18.449(y − 0.856))

× (ln(2.35 + 2.353(y − 0.856)) + y)

+ (1.83 + 3.336 (y − 0.856))(− ln(0.78 + 2.353(y − 0.856))

+ y − 1.1)

The Lagrangians are estimated for the integer solutions candi-
dates (no optimization problem is solved, it is a function evaluation
only). L(y = 1) = −1.028 where L(y = 0) is undefined because of unac-
ceptable values for the log function L(y = 1) = −1.056, L(y = 0) =
UNDEF. The best Lagrangian was obtained for the candidate (y = 1),
an NLP problem is then solved by fixing y = 1 and the optimal solu-
tion is Z∗ = 0.2525, x∗ = 1.72, y∗ = 1.

The branching procedure is relatively simple in this case and
consists of solving the problem for y = 0 in order to cover the whole
feasibility space. For y = 0, Z* = 0.815 > 0.2525. Therefore this solu-
tion can be pruned.

Finally the solution to this problem is Z* = 0.2525, x* = 1.72, y* = 1.

3.2. Example 2: quadratic binary variable

z = min
x

− 2.7y2 + x2

subject to :
− ln(1 + x) + y2 ≤ 0
ln(x − 0.57) + y2 − 1.5y − 1.1 ≤ 0
x ≤ 2
x(y + �y) = x ∗ + ∂x

∂y
�y and �(y + �y) = � ∗ +∂�

∂y
�y

T. Gueddar, V. Dua / Computers and Chemical Engineering 42 (2012) 288– 297 293

e imp
Fig. 2. Flowchart of th

∂x

∂y
= −2.646,

∂�1

∂y
= 11.634,

∂�2

∂y
= −0.921,

∂�3

∂y
= 0,

∂�4

∂y
= 0

x(y) = x0 − 2.646(y − y0)

�1 = �1,0 + 11.634(y − y0)
�2 = �2,0 − 0.921(y − y0)
�3 = �3,0 = 0
�4 = �4,0 = 0
roved B&B algorithm.

The Lagrangian function is constructed using the approximate
parametric functions for x and �

L(y) = −0.553 + 3.006(y − 0.752) + (2.000 + 11.634(y − 0.752))

2
× (− ln(1.76 − 2.646(y − 0.752)) + y)

+ (0.073 − 0.921(y − 0.752))(− ln(0.19 − 2.646(y − 0.752)

+ y2 − 1.5y − 1.1)

2 Chemi

d
o
l
t
Z
p
l
Z
s

3
G

(
e
Z

c

f
b

w
t
y
f

is then applied to this part of the tree to estimate solutions at the
terminal nodes 48–63.

The best candidate (node #54) is solved with an objective func-
94 T. Gueddar, V. Dua / Computers and

The Lagrangians are estimated for the integer solutions candi-
ates (no optimization problem is solved, it is a function evaluation
nly). L(y = 1) is undefined because of unacceptable values for the
og function, L(y = 0) = 9.189. The best Lagrangian was obtained for
he candidate (y = 0), an NLP problem is then solved by fixing y = 0:
* = 0.815, x* = 0.903, y* = 0. Similarly to Example 1 the branching
rocedure is simple in this case and consists of solving the prob-

em for y = 1 in order to cover the whole feasibility space. For y = 1,
* = 0.952 > 0.815. Therefore this solution can be pruned. Finally the
olution to this problem is Z* = 0.815, x* = 0.903, y* = 0.

.3. Example 3: Process synthesis optimization I (Duran &
rossmann, 1986)

z = min 5y1 + 8y3 + 6y2 + 10x1 − 7x3 − 18 ln(x2 + 1) − 19.2
× ln(x1 − x2 + 1) + 10
Subject to : − 0.8 ln(x2 + 1) + 0.96 ln(x1 − x2 + 1) + 0.8x3 ≤ 0
ln(x2 + 1) − 1.2 ln(x1 − x2 + 1) + x3 + 2y3 − 2 ≤ 0
x2 − x1 ≤ 0
x2 − 2y1 ≤ 0
x1 − x2 − 2y2 ≤ 0
y1 + y2 − 1 ≤ 0
y ∈ {0, 1}3, a ≤ X ≤ b, X = {xj, j = 1, 2, 3}, aT = (0, 0, 0),
bT = (2, 2, 1)

Step 1: Relaxed NLP[
x∗

1
x∗

2
x∗

3

]
=
[

1.147
0.547
1.000

]
,

[
y∗

1
y∗

2
y∗

3

]
=
[

0.273
0.300
0.000

]
, z∗ = 0.759

Step2: Generate the terminal nodes matrix

�n,2n =
(

1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0

)

Number of rows = dimension of the integer vector n; number of
columns = 2n

The root node is solved with z = 0.759.

Eqs. (7) and (8) are used to estimate Lagrangians for nodes #8–15
they are only estimated and are not solved) – see Fig. 3. The best
stimate is for terminal node #13. This node is solved and gives

 = 6.010 providing an upper bound to the problem.
The branching step starts by solving node #2 by adding the

onstraint below as stated in (11):

y1 = |1 − �1,13(2)| = |1 − 0| = 1.
0 ≤ y2 ≤ 1
0 ≤ y3 ≤ 1

The objective function is greater than the best upper bound so
ar it is then fathomed. Similarly the next node explored is node #7
y adding the constraints:

y1 = �1,13(1) = 0.
y2 = |1 − �2,13(2)| = |1 − 1| = 0.
0 ≤ y3 ≤ 1
hich gives greater objective function than the upper bound. It is
hen fathomed. The next one to be explored is node #12 which
ields an objective function Z = 14.010 gives also greater objective
unction than the current upper bound and is then fathomed.

The solution is finally node #13 y = (0,1,0).
cal Engineering 42 (2012) 288– 297

3.4. Example 4: Process synthesis optimization II (Duran &
Grossmann, 1986)

Consider the following MINLP example problem (Duran &
Grossmann, 1986):

z = min 5y1 + 6y3 + 8y2 + 10y4 + 6y5 − 10x1 − 15x2 − 15x5
+15x3 + 5x4 − 20x6 + exp(x1) + exp(x2/1.2) − 60
ln(x3 + x4 + 1) + 140
Subject to : − ln(x3 + x4 + 1) ≤ 0
−x1 − x2 − 2x5 + x3 + 2x6 ≤ 0
−x1 − x2 − 0.75x5 + x3 + 2x6 ≤ 0
x5 − x6 ≤ 0
2x5 − x3 − 2x6 ≤ 0
−0.5x3 + x4 ≤ 0
0.2x3 − x4 ≤ 0
exp(x1) − 10y1 ≤ 1
exp(x2/1.2) − 10y2 ≤ 1
1.25x5 − 10y3 ≤ 0
x3 + x4 − 10y4 ≤ 0
−2x5 + 2x6 − 10y5 ≤ 0
y4 + y5 ≤ 1
y1 + y2 = 1
y ∈ {0, 1}5, a ≤ X ≤ b, X = {xj, j = 1, 2, 3, 4, 5, 6},
aT = (0, 0, 0, 0, 0, 0), bT = (2, 2, −, −, 2, 3)

A B&B tree depicting the path taken in the tree is shown in Fig. 4.
The dark coloured nodes are the nodes that were explored and light
coloured nodes were not explored. The nodes are numbered for
reference, the root node is numbered as 1 and the terminal nodes
are numbered from 32 to 63.

The approximate parametric solution of the NLP at node 1 is
used to estimate the solution at nodes 32 to 63. Estimates at nodes
32–45 give infeasible solution.

The root node is solved and gives z = −0.554 and y = (0.571, 0.429,
0.250, 0.210, 0).

The solution at this node is used to estimate Lagrangians for
terminal nodes (#32–63), these nodes are not solved. The best
Lagrangian based candidate is node #47 y (0,1,1,1,1), this node is
then solved but is infeasible, therefore the next best Lagrangian
based candidate is selected. The second best Lagrangian based can-
didate is node #46 y = �1,46 = (0,1,1,1,0), this node is then solved to
provide an upper bound for the problem (Z = 73.03).

Node #46 is then a starting point for the branching step in order
to explore the whole feasibility space. To be able to check the opti-
mality, or not, of the best lagrangian candidate, the complementary
sections of the tree will have to be explored.

Node #3 is solved as an NLP relaxation by adding the following
constraints:

y1 = |1 − �1,46(1)| = |1 − 0| = 1.
0 ≤ y2 ≤ 1, 0 ≤ y31, 0 ≤ y4 ≤ 1, 0 ≤ y5 ≤ 1

It leads to a fractional solution with an objective function of
z = 67.9 which mean no fathoming criteria can be applied yet. Fur-
ther branching should take place from this node. The same concept
tion of z = 82.13 and y = �2,54 = (1,0,1,1,0). This node is in its turn a
starting point for sub-branching in the section of tree bounded by
node #3 and nodes #63–48.

The node that is first explored is node #7 through the addition
of the following constraints:

T. Gueddar, V. Dua / Computers and Chemical Engineering 42 (2012) 288– 297 295

gramm

T
t

Fig. 3. Approximate parametric pro

y1 same as for node #3

y2 = |1 − �2,50(3)| = |1 − 0| = 1.
0 ≤ y3 ≤ 1, 0 ≤ y4 ≤ 1, 0 ≤ y5 ≤ 1
This node yields an infeasible solution it will then be fathomed.
he next node to be explored is node #12 through the addition of
he following constraints:

Fig. 4. Approximate parametric programm
ing based B&B tree for Example 3.

y1 same as for node #3

y2 = �2,54(2)
Y3 = |1 − �2,54(3)| = |1 − 1| = 0.
0 ≤ y4 ≤ 1, 0 ≤ y5 ≤ 1
This node yields an objective function (Z = 86.45) that is greater
than the current best bound (73.03) it will then be fathomed. The
next one to be explored is node #26:

ing based B&B tree for Example 4.

296 T. Gueddar, V. Dua / Computers and Chemical Engineering 42 (2012) 288– 297

Table 2
Computational results for example 2.

Algorithm Traditional Branch & Bound OA Improved B&B

Number of MIP calls – 3 MIP –
Number of NLP calls 4 NLP 3 NLP 3 NLP
Solution found in 2nd node – 2nd node

Table 3
Computational results for example 3.

Algorithm Traditional Branch & Bound OA Improved B&B

Number of MIP calls – 3 MIP –
Number of NLP calls 6 NLP 4 NLP 5 NLP
Solution found in 2nd node – 2nd node
CPU time (s) 0.064 0.613 0.051

Table 4
Computational results for example 4.

Algorithm Traditional Branch & Bound OA Improved B&B

Number of MIP calls – 7 MIP –
Number of NLP calls 15 NLP 7 NLP 12 NLP
Solution found in 12th node 6th major iteration 1st node
CPU time (s) 0.141 1.224 0.080

Table 5
Computational results for example 4.

B&B algorithm Depth first
search (DFS)

Best bound
(BB)

Best estimate
(BE)

DFS/BB mix DFS/BE mix DFS/BB/BE
mix

Automatic Improved
B&B

Number of NLP calls 22 8 8 15 12 12 15 12
12th
74.29
0.128

t
T

H
w
f
t
n

Solution found in 20th node 5th node 6th node
Obj 73.03 73.03 73.03

CPU time (s) 0.157 0.074 0.081

y1 same as for node #3

y2 = �2,54(2)
y3 = �2,54(3)
y4 = |1 − �2,54(4)| = |1 − 1| = 0.
0 ≤ y5 ≤ 1

This node yields an objective function (Z = 83.39) that is greater
han the current best bound (73.03) it will also then be fathomed.
he next one to be explored is node #55:

y1 same as for node #3

y2 = �2,50(2)
y3 = �2,50(3)
y4 = �2,50(3)
y5 = |1 − �2,50(5)| = |1 − 0| = 1.

This node yields an infeasible solution it will then be fathomed
ence, the section of tree bounded by node #3 and nodes #63–48
ill be fathomed. The initial branching procedure which started

rom the terminal node #46 can now carry on. Therefore, now that
he section below node 3 is cleared, the next node to explore is now
ode #4.
y1 = �1,46(1) = 0
y2 = |1 − �1,46(2)| = |1 − 1| = 0.
0 ≤ y3 ≤ 1, 0 ≤ y4 ≤ 1, 0 ≤ y5 ≤ 1
 node 7th node 7th node 12th node 1st node
 73.03 73.03 74.29 73.03

 0.105 0.110 0.128 0.080

This NLP problem is infeasible hence fathomed. The next one is
node #10

y1 = �1,46(1) = 0
y2 = �1,46(2) = 1
y3 = |1 − �1,46(3)| = |1 − 0| = 1.
0 ≤ y4 ≤ 1, 0 ≤ y5 ≤ 1

This node yields an objective function (Z = 79.12) that is greater
than the current best bound (73.03) it will be fathomed.

The last node to be explored is node #22

y1 = �1,46(1) = 0
y2 = �1,46(1) = 1
y3 = �1,46(1) = 1
y4 = |1 − �1,46(4)| = |1 − 1| = 0.
0 ≤ y5 ≤ 1

Similarly node #22 (z = 74.30) is also fathomed for the same
reason. The node #47 was solved as a potential Lagrangian based
candidate and has been found infeasible, therefore, no need to solve
this node again, it is then fathomed also. The solution is finally node
#46 y = (0,1,1,1,0).

4. Algorithm computational results
In this section, a comparison between the proposed improved
B&B algorithm, the traditional Branch & Bound (GAMS/SBB) and
Outer Approximation (GAMS/DICOPT) algorithms is presented for
examples 2 (Table 2), 3 (Table 3) and 4 (Table 4).

Chemi

p
T

a
a
w
o
b
t
i
g
f
a

5

n
u
s
s
a
t
p
o

A

a

R

B

T. Gueddar, V. Dua / Computers and

A more detailed comparison between (GAMS/SBB) and the pro-
osed improved B&B algorithm for Example 4 is also presented in
able 5.

The computational requirements for the proposed algorithm
re comparable to or better than for 5 out of 7 traditional B&B
lgorithms (Table 5). A more detailed computational comparison
ill be presented in the future publications; the main objective

f this work was to present and demonstrate applicability of the
asic concepts of the proposed algorithm. Different tree search
echniques (e.g. Depth First Search (DFS)) will also be explored
n conjunction with the proposed algorithm. The finite conver-
ence and guaranteed optimality properties, for convex functions
or the traditional B&B algorithm, are retained in the proposed
lgorithm.

. Concluding remarks

An approximate parametric programming solution at the root
ode and other fractional nodes of the B&B tree are obtained and
sed to estimate the solution at the terminal nodes in different
ections of the tree. These estimates are then used to guide the
earch in the B&B tree, resulting in fewer nodes being evaluated
nd reduction in the computational effort. Preliminary computa-
ional results are encouraging, future work will involve testing the
roposed algorithm on larger scale problems and comparing with
ther algorithms reported in the literature.

cknowledgment

Financial support from EPSRC (EP/G059195/1) is gratefully
cknowledged.
eferences

onami, P., Biegler, L. T., Conn, A. R., Cornuejols, G., Grossmann, I. E., Laird, C. D.,
et al. (2008). An algorithmic framework for convex mixed integer nonlinear
programs. Discrete Optimization, 5, 186–204.
cal Engineering 42 (2012) 288– 297 297

Borchers, B., & Mitchell, J. E. (1994). An improved branch and bound algorithm
for mixed-integer nonlinear programs. Computers and Operations Research, 21,
359–367.

Dua, V. (2006). Stability analysis of nonlinear model predictive control: An opti-
mization based approach. In 16th European symposium on computer aided process
engineering and 9th international symposium on process systems engineering. Ams-
terdam: Elsevier., pp. 1287–1292.

Dua, V. (2010). A mixed-integer programming approach for optimal configura-
tion of artificial neural networks. Chemical Engineering Research and Design, 88,
55–60.

Dua, V., & Pistikopoulos, E. N. (1999). Algorithms for the solution of multipara-
metric mixed-integer nonlinear optimization problems. Industrial & Engineering
Chemistry Research, 38, 3976–3987.

Duran, M. A., & Grossmann, I. E. (1986). An outer-approximation algorithm for
a class of mixed-integer nonlinear programs. Mathematical Programming, 36,
307–339.

Fiacco, A. V. (1976). Sensitivity analysis for nonlinear programming using penalty
methods. Mathematical Programming, 10, 287–311.

Fiacco, A. V. (1983). Introduction to sensitivity and stability analysis in nonlinear pro-
gramming. New York: Academic Press.

Floudas, C. A. (1995). Nonlinear and mixed-integer optimization: Fundamentals and
applications. Oxford University Press.

Geoffrion, A. M. (1972). Generalized Benders Decomposition. Journal of Optimization
Theory and Applications, 10, 237–260.

Goyal, V., & Ierapetritou, M. G. (2004). Computational studies using a novel
simplical-approximation based algorithm for MINLP optimization. Computers
and Chemical Engineering, 28, 1771–1780.

Grossmann, I. E. (1996). Mixed-integer optimization techniques for algorithmic pro-
cess synthesis. Advances in chemical engineering: Process synthesis Elsevier., pp.
171–246.

Grossmann, I. E., & Daichendt, M. M. (1996). New trends in optimization based
approaches for process synthesis. Computers and Chemical Engineering, 20,
665–683.

Gupta, O. K., & Ravindran, A. (1985). Branch and bound experiments in convex
nonlinear integer programming. Management Science, 31, 1533–1546.

Jackson, R. H. F., & McCormick, G. P. (1988). Second-order sensitivity analysis in
factorable programming: Theory and applications. Mathematical Programming,
41, 1–27.

Kallrath, J. (2000). Mixed integer optimization in the chemical process industry:
Experience, potential and future. Trans. I. Chem E. Part A, 78, 809–822.

Pistikopoulos, E. N. (2009). Perspectives in multi-parametric programming and
explicit model predictive control. AIChE Journal, 55, 1918–1925.

Pistikopoulos, E. N., Georgiadis, M. C., & Dua, V. (2007a). Multi-parametric program-

ming Wiley-VCH.

Pistikopoulos, E. N., Georgiadis, M. C., & Dua, V. (2007b). Multi-parametric model
based control Wiley-VCH.

Westerlund, T., & Pettersson, F. (1995). An extended cutting plane method for solving
convex MINLP problems. Computers and Chemical Engineering, 19, S131–S136.

	Approximate multi-parametric programming based B&B algorithm for MINLPs
	1 Background and problem formulation
	1.1 Mixed-Integer Nonlinear Programming
	1.2 Multi-parametric programming

	2 Multi-parametric programming based B&B Algorithm for MINLPs
	2.1 Motivating example
	2.2 Approximate parametric programming
	2.3 Improved B&B algorithm for MINLPs

	3 Illustrative examples
	3.1 Example 1: linear binary variable
	3.2 Example 2: quadratic binary variable
	3.3 Example 3: Process synthesis optimization I (Duran & Grossmann, 1986)
	3.4 Example 4: Process synthesis optimization II (Duran & Grossmann, 1986)

	4 Algorithm computational results
	5 Concluding remarks
	Acknowledgment
	References

