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The deposition of thin copper based films onto carbon steel surface is described, using premixed flames with
different oxygen/methane ratios doped with aqueous copper nitrate as precursor. We investigated the chem-
ical properties of the copper as a function of oxygen/methane ratio. Using fuel rich flames (equivalence ratio
0.665), the deposited copper film was entirely metallic. When the equivalence ratio was increased to 0.850 or
greater the copper film contained predominantly Cu2+. Furthermore, the flame can be used for post deposi-
tion modification, as demonstrated by reduction of Cu2+ containing films to Cu metal. All the films were
characterised by X-ray diffraction, Raman and scanning electron microscopy (SEM). A rotating sample holder
was employed to avoid over heating of the sample and the critical variables such as sample height in the
flame and deposition time were optimised. Deposition for 20 min, which translated to a total residence
time in the flame of approx. 76 s, produces metallic copper films of thickness 169±18 nm as determined
by anodic stripping and SEM. The microstructure of the metallic films was clearly composed of fused copper
spheres of 100–150 nm, which are probably formed in the flame and subsequently deposited on the surface
with good adhesion.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Deposition of thin coatings on surfaces is an immensely important
process to meet the demands for synthesis of functional and smart
materials. Normally coatings are deposited to extend the working
life of a particular component (e.g. anti-wear properties) or change
the surface functionality (e.g. catalytic coatings). One aspect of mate-
rials synthesis is to focus on making the deposition process quick,
efficient and environmentally sustainable. Existing deposition
methods are very varied and in general the coating method is tuned
to a particular application and coating material or property. Here we
show flame based methods for the deposition of copper based thin
films with control of oxidation state.

The deposition of metals or metal oxides is extremely important
for many commercial applications ranging from so called intelligent
coatings which respond to the environment [1,2] to structured coat-
ings on a nanometre scale for antibiotic properties [3], to name but a
few. Very often metal based coatings are deposited on a surface from
a very well chosen precursor, to create a precisely tuned coating
which may be composed of two or more metal based species. The de-
position conditions are generally unchanged as they control the integ-
rity of the coating such as uniformity and micro or nanostructure.
Chemical vapour deposition is an excellent example of this methodol-
ogy. The breadth of precursors which may be delivered concurrently
.
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provide a wide variety of surface coatings, whilst the basic physical
conditions such as substrate temperature and precursor delivery rate
are highly controlled. The precursor normally undergoes a chemical
reaction and breakdown at a hot substrate (~400 °C) resulting in the
formation of a film [4].

Here we present a technique which combines the versatility of
flame based deposition with control of oxidation state of the metal
deposit. Flame based deposition techniques are divided in two cate-
gories; flame spraying and flame pyrolysis. Flame spraying can be
used to deposit metallic particles and involves the physical blasting
of particles with the desired material onto a surface. Particles are nor-
mally in the range of tens of micrometres [5], although it is possible to
use nanoparticles and delivered from an aerosol [6]. Flame spraying
produces very uniform films with controllable thickness and physical,
mechanical properties. The chemical make-up of films produced in
this way is not very controllable, often the fuel is Kerosene mixed
with oxygen and the conditions are optimised for optimum film
growth [7]. Flame based pyrolysis or vapour based reaction followed
by deposition, also called flame chemical deposition represents a
very popular method of deposition. This method produces very
uniform films with good cope of for scale-up [8]. More relevant to
this study, Sheel et al. [9] deposited copper oxides using copper ni-
trate precursor in an oxygen rich propane burner. They showed that
the surface morphology can be changed by modification of the sub-
strate (glass) temperature producing CuO isolated particles, which
have biocide properties.

There are many examples in the literature of flame synthesis of
nanoparticles. The size, morphology and composition can very
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precisely be controlled and production can be easily scalable [8,10,11].
Many catalytic materials have been demonstrated in the form of ox-
ides and oxides decorated with noble metals. Mädler et al. [12]
showed that it was possible to synthesise gold decorated TiO2 or
SiO2 by concurrent delivery of pyrolysis precursors to produce TiO2

or SiO2 and gold nanoparticles in a methane oxygen flame and collect-
ed on filters.

In the past we have utilised flames as a medium for electrochem-
ical measurements [13–16], here we use a very simple model system
of copper deposited on a steel substrate. By adjusting the ratio of ox-
ygen and methane the oxidation state of copper can be controlled
very precisely. Metallic copper layers or Cu2+ may be deposited
depending on the flame mixture using a copper nitrate salt in aque-
ous solution.

2. Experimental details

2.1. Materials and methods

Individually controlled digital mass flow controllers (5850S,
Brooks, USA, with IGI control interface, UK) where used to control
all gas flows frommethane (99.995%), oxygen (99.9+%) and nitrogen
(99.99%) from compressed gas cylinders supplied by BOC. Before
reaching the burner the gases were thoroughly mixed in a chamber
which included a blow-out panel to protect against flash back; NB.
Pre-mixed methane and oxygen gases are explosive and hence adequate
safety precautions were taken. The ratio of methane and oxygen was
changed to obtain three stable flames with different mixtures re-
ferred to herewith as Flames 1, 2 and 3 as shown in Table 1. The
total flow rate of nitrogen stream was constant at 650 ml min−1

and was used to transport the precursor to the burner.
Aqueous solutions of copper nitrate (Sigma Aldrich) was prepared

using deionised water (Millipore Milli-Q® gradient, b0.05 S cm−2).
The solutions were introduced into the gas stream in the form of an
aerosol created from a modified ultrasonic atomiser (Index Ltd. UK). In
all this work a solution (10–20 cm3) of copper nitrate (0.5 mol dm−3)
was transferred to a modified round-bottomed flask placed in the ultra-
sonic atomiser through a side injection port by syringe during an exper-
iment. The aerosol produced in the round bottomed flaskwas carried by
the nitrogen stream to themixing chamber. On exit from the burner the
aerosol was essentially drywith small crystals of copper nitrate entering
the flame.

The burner was of a Meker design, described in reference [17],
with 19 holes each of 0.5 mm diameter, arranged in a near hexagonal
array {3, 4, 5, 4, 3}. This forms a laminar flame with a diameter of
approx. 8 mm and a height of 100 mm. The brass top-plate was
cleaned by skimming the top surface, and the holes where carefully
cleaned using a 0.5 mm diameter drill after each set of experiments.
The burner was mounted vertically on an earthed aluminium table.
The gas lines were dried by passing nitrogen at 200 ml min−1 for at
least 2 h prior to an experiment.

The samples used in all this work were carbon steel (98% Fe, 1.7%
Mn and 0.3% Cr) of rectangular shape, (cuboids: 2×1×0.6 cm). All
samples were cut from the same piece of carbon steel pipe, to main-
tain high sample uniformity. After being machined polished and
Table 1
Showing the three flame systems used in this work with their corresponding oxygen/
methane ratio, flow rates and adiabatic flame temperature.

Flame
system

Equivalence
ratioa

Flow rates, O2/CH4/N2

in ml min−1
Adiabatic flame
temperature/K

Flame 1 0.665 600/450/650 2720
Flame 2 0.850 510/300/650 2767
Flame 3 1.165 700/300/650 2788

a Equivalence ratio is calculated using (O2/CH4)/λ, where λ is the ratio of (O2/CH4)
at stoichiometric flame=2.
sonicated in acetone, the samples were mounted onto the rotating
arm 7.0 cm long, Fig. 1. The sample was passed through the flame at
a pre-defined height above the burner at a rotation rate of 5.0 Hz.
This ensured that the sample did not heat up, in fact the sample tem-
perature was not higher than 100 °C, while the temperature of the
hottest part of the flame given by the adiabatic flame temperature
was 2720 K, the surface temperature of a steel sample placed in the
flame as measured by thermal imaging camera (800–3000 K, mod.
M9100, Mikron instrument Company Inc., USA) was 1350 °C. High
speed camera (Phantom MIRO 4 monochrome) was used to estimate
the transit time of the sample (substrate) spent in the flame during
each experiment. It was estimated that for the duration of experi-
ments of 20 min, the sample (substrate) spends effectively 78 s in
the flame, (6.5% of the total time).

2.2. Characterisation techniques

The surface morphology, chemical composition/structure and film
thickness of the flame deposited samples were analysed by the means
of SEM and Energy-dispersive X-ray spectroscopy (EDX), Raman
spectroscopy, X-ray diffraction (XRD) techniques and striping vol-
tammetry, respectively. SEM images were obtained by using either
Hitachi (S-3400N model) or JEOL (field emission 6005) instruments,
while a Philips SEM instrument (XL30ESEM with Oxford Instruments
Inca WD software), was used for elemental analysis. The accelerating
voltage of 5 keV was applied in all analyses performed in wave dis-
persive mode, using Cu Lα, Fe Lα and O Kα lines. Raman spectroscopy
was used for identification of deposited species on the substrate sur-
face. The 514 cm−1 line of an Ar+ laser was used as excitation source,
(Renishaw inVia Raman Microscope).

X-ray diffraction (XRD) patterns were recorded on Bruker AXS, D4
ENDEAVOR instrument with CuKα radiation (λ1=1.54056 Å and
λ2=1.54430 Å) in reflection mode with 2θ between 5 and 85°, the
time of 2.0 s/step, and increment 0.05°. Striping voltammetry was
used for the estimation of total elemental copper deposited on the
steel samples. An Ecochimie (μAutolab, Windsor Scientific) potentio-
stat supported by GPES software was used to perform stripping vol-
tammetry of a defined surface area of the sample. An Ag/AgCl was
used as reference electrode and platinum wire was used as counter
electrode. The potential was scanned from −0.8 to −0.3 V vs. Ag/
AgCl at a scan rate of 0.1 V s−1. The charge of the oxidation peak
was determined by integration, the copper density was 8.94 g cm−3.

3. Results and discussion

In this work we used copper nitrate solution atomised in the pre-
mixed gases at room temperature. The gas stream was ignited which
produced a stable flame containing the doped copper salt. The deliv-
ery efficiency was low. During a 20 minute experiment approximate-
ly 4 cm3 of solution was atomised but only a small fraction (~5%) of
copper salts was delivered to the burner. The surface coating was
characterised as a function of deposition time, height of the sample
above the burner top and flame oxidant/fuel ratio. A blank experi-
ment was performed where a sample was placed in the flame for
20 min, rotated at 5 Hz at 1.2 cm above the burner top, with aqueous
solution containing no copper nitrate. The sample was analysed using
Raman and EDX and showed that there was little or no change to the
surface compared to a fresh untreated sample, results not shown. EDX
analysis of this sample confirmed that metal composition in atomic
percentages was, 97±2%, 1.5±0.2% and 0.4±0.03% of iron, manga-
nese and chromium, respectively, reflecting the starting composition
very closely.

In the first set of experiments, Flame 1 doped with cooper nitrate
solution, the height of the rotating sample above the burner top was
varied between 0.6 cm and 5.0 cm. The concentration of solution



Fig. 1. Photograph of flame and the sample holder which rotates and transiently positions the sample in the flame. Right; schematic of the flame deposition apparatus, showing the
flow system including the mixing chamber and nebuliser.
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(0.5M), rotating speed of 5.0 Hz and the time (20min.) of these ex-
periments were all kept constant.

It was observed that the surfaces of the samples positioned at 0.6
and 1.2 cm were smooth, evenly covered with the shiny reddish me-
tallic deposit, indicative of elemental copper. In contrast, the matt
grey surfaces were observed in samples kept at 3 and 5 cm. The evo-
lution of surface morphology and the ratio of elements present in the
thin film deposited on the steel substrate were estimated by the SEM/
EDX analyses. SEM images of all the samples alongside including a
fresh unmodified sample and the percentage copper measured by
EDX are shown in Fig. 2.

As can be seen from Fig. 2b and c, the change of a height of the
substrate from 0.6 to 1.2 cm did not result in a noticeable change of
the film morphology and in the amount of elemental copper deposit-
ed. However, further increase in height of the substrate from the
burner top to 3.0 cm and 5.0 cm, showed a significant effect on the
surface morphology of the deposit. SEM images of the substrate
held at 3 cm and 5 cm show that the surfaces of these samples were
covered with irregular, sharp grains. EDX analysis of these two sam-
ples showed that they contain much less copper and consequently,
more oxygen and iron. The appearance of the iron oxides suggests
that the coverage of copper was poor at these heights. Indeed EDX
d 
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e 

Fig. 2. SEM images (10 k magnification) as a function of height of the substrate in reducing
sample held at 0.6, 1.2, 3.0 and 5 cm above the burner top b), c), d) and e) respectively. f) sho
sample. The surface morphology was dominated by the set of parallel machining lines are
analysis showed a decrease in deposited copper, from 67 at.% at
0.6 cm, down to ca. 6.3 at.% at 5.0 cm. This was likely due to coales-
cence and further oxidation due to oxygen entrainment, of copper
particles in the flame as they travel up the flame and not adhering
to the substrate very well. Furthermore, the surface morphology of
these samples changed from smooth, equally distributed layers of el-
emental copper to the randomly distributed, isolated, copper/iron
oxide grains. The trend of these changes is graphically illustrated in
Fig. 2f. In order to reduce excess sample heating and avoid entrain-
ment of ambient oxygen (which would change the fuel oxidant
ratio), it was concluded that the optimal height of substrate for depo-
sition of elemental copper in reducing flames is 1.2 cm. Therefore, all
further investigations of copper deposition were carried out on the
samples (substrates), held at 1.2 cm above the burner top.

The deposition time was varied to see how the thickness and sur-
face morphology changes with time. In these set of experiments the
deposition time was varied between 5 and 20 min, while the height
of the sample (substrate) above the burner was kept constant at
1.2 cm. As stated earlier, the rotation speed of the sample and the
flame were also kept the same. For all the experiments, the resulting
surface coating was very uniform and adherent; it was not possible to
remove the coating with adhesive tape. EDX analysis was carried out
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Fig. 3. Anodic stripping voltammograms of the samples treated in reducing flames for 5
(___), 10 (_ _ _) and 20 (___) minutes. Flame 1, 0.5 M copper nitrate with a rotation rate
of 5 Hz. Left inset is the plot of copper film thickness against deposition time. Right
inset showing photograph of copper deposit on carbon steel after 20 min deposition
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at 5 keV and the percentage of copper was clearly increasing as the
deposition time increased (37 at.% and 67 at.% after 10 and 20 min
respectively).

The thickness of the copper film deposited on all three substrates,
was determined using stripping voltammetry. The stripping voltam-
mograms and the corresponding film thickness dependence on depo-
sition time are shown in Fig. 3. The inset in Fig. 3, clearly shows a
linear dependence of film thickness with time as expected.

In order to assess the surface morphology of the deposited copper
film, deposition for 20 min under the same conditions as shown in
Fig. 3 was performed on highly polished, substrates. The SEM images
of the deposit on these highly polished samples are shown in Fig. 4a
and b. The surface morphology showed a uniformly distributed film,
made of well ordered, spherical grains with the diameter of ca.
100–150 nm. The EDX analysis (5 keV) shows that the deposited
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Fig. 4. a) and b) SEM images of copper deposited on polished samples, c the corresponding
parison). Deposition was for 20 min in Flame 1 at fixed at 1.2 cm above the top of the burn
film consists of 90% copper. It is likely that the spherical copper grains
were probably formed in the flame and subsequently deposited on
the surface rather than grown on the surface.

The Raman spectra of all samples analysed in Flame 1 are feature-
less, as could be expected for surfaces predominantly covered by ele-
mental copper, Fig. 4c. These results are indirectly supported by the
X-ray analysis used in here primarily for identifying the phases
formed on the substrate surface and also for assessing whether and
to which extent the copper was incorporated into the substrate struc-
ture. The X-ray pattern of the deposited substrate is shown in Fig.4
and corresponds to one obtained for 10Cu–90Fe alloy [18], and CuO
[19] which is also shown in Fig. 4d. This result indicates that copper
was incorporated in the unit cell of Fe (the major component of the
carbon steel substrate). The observed diffusion and subsequent incor-
poration of copper (s.g. FM 3M, [20]), into the structure of iron (s.g.
IM 3M,) is a result of an increase in mobility of copper atoms caused
by the high temperature of the flame [15,18,21].

In a second set of experiments copper deposition was investigated
in Flame 2 and Flame 3. In both flames the substrate was kept at the
fixed height of 1.2 cm and deposition time was 20 min. As in Flame 1
experiments, blank experiments with aqueous solution containing
no copper nitratewere carried out in oxidising flames aswell, to ascer-
tain the background effect on the sample. In this case the flames were
oxidising due to high oxygen content, and as a result, the surface of the
carbon steel samples were slightly oxidised, not shown. When copper
was deposited using Flame 2 (or Flame 3), the deposit was dull grey
and powdery with low adhesion. EDX analysis showed that deposited
films typically contained 35 at.% of copper, 15 at.% of iron and 50 at.%
of oxygen. Raman spectroscopy and XRD analysis of the surface sam-
ple deposited from Flame 2 are shown in Fig. 5a and b, respectively.
The Raman spectrum of this sample shows narrow, strong peaks,
which could not be ascribed to iron oxide/hydroxide species [22],
(Fig. 5a). Instead, all the strong peaks observed at 166, 257, 412, 453,
504 and 711 cm−1, can be ascribed to the Cu2(NO3)(OH)3 known as
mineral gerhardtite [23]. The formation of copper hydroxyl nitrate
was confirmed by XRD analysis. The XRD pattern, (Fig. 5d) shows
the presence of two phases with characteristic Fe peaks at 2θ 45, 65
0
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Fig. 5. a) and b) show the Raman spectrum and XRD respectively of the sample with copper deposited for 20 min using Flame 2, with the corresponding SEM and optical images.
c) and d) show the Raman spectrum and XRD respectively of the sample with copper deposited from Flame 2 and then treated in Flame 1 containing no copper. Scale bar in optical
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and 82° [24], while the narrower peaks at 12° and 26° correspond to
Cu2(NO3)(OH)3 [25,26].

The presence of copper hydroxy nitrate can be explained by the
fact that in fuel lean (oxygen rich) flames, reduction of copper cannot
occur. Instead, it is reasonable to assume that the process of recombi-
nation of initially decomposed fragments of copper nitrate (used as a
precursor), takes place when they reach the colder substrate surface,
which compared to the flame is at much lower temperature.

When the sample coated with copper in the Flame 2 was then sub-
sequently exposed to the clean Flame 1, the oxidised Cu was reduced
to the elemental copper. This process was associated with a visible
change in colour of the deposited film, from dull grey to metallic
red, and also with improved adhesion. The SEM image of this sample,
shown in the inset of Fig. 5c, reveals the surface with different micro-
structure to the oxidised coating, inset of Fig. 5a, more evenly distrib-
uted ‘fused’ grains which exhibited a greater adherence to the surface.
This can be explained by the collapse of the initial crystalline grains
structure leading to the fusion of the grains and better wetting of sur-
face. The elemental, EDX analysis showed that the amount of copper
is increased, reaching 55 at.% and consequently, the amount of iron
and oxygen were decreased. The decrease of Cu2(NO3)(OH)3 fraction
was indicated by XRD pattern (lower intensities of corresponding
peaks), Fig. 5d. The Raman spectrum of this sample is almost feature-
less Fig. 5c similar to that obtained in the reducing flames indicating
deposition of elemental Copper (reduction of Cu2+) onto the sub-
strate surface. The deposition of elemental copper can be described
by the following equation: Cu2++2e→Cu0.

4. Conclusions

We showed that controlled deposition of thin nanometre scale
film of elemental copper on carbon steel substrate in atmospheric
pressure laminar O2/CH4/N2 flames is possible. Critical variables
such as sample height in the flame and deposition time were opti-
mised to produce high quality adherent films. We showed in this
work that a growth of uniformly thin layers of copper strongly
bound to the surface of the substrate could be relatively easy achieved
and controlled by correlating the flow rates of oxidiser/fuel ratio. A
change in equivalence ratio from 0.665 to 0.850 produces predomi-
nantly oxidised copper films (Cu2(NO3)(OH)3). It was demonstrated
that oxidised copper films could be reduced to metallic copper by ex-
posing the film to a flame with an equivalence ratio of 0.665. The
method is relatively simple and highly reproducible for thin film de-
position of copper, environmentally friendly, scalable and for relative-
ly low cost.
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