
Computing Preferred Safe Beliefs

Luis Angel Montiel Juan Antonio Navarro

Departamento de Sistemas Computacionales, Universidad de las
Américas - Puebla

{is110493,ma108907}@mail.udlap.mx

Abstract

We recently proposed a definition of a language for nonmonotonic rea-
soning based on intuitionistic logic. Our main idea is a generalization of
the notion of answer sets for arbitrary propositional theories. We call this
extended framework safe beliefs. We present an algorithm, based on the
Davis-Putnam (DP) method, to compute safe beliefs for arbitrary propo-
sitional theories. We briefly discuss some ideas on how to extend this
paradigm to incorporate preferences.

Keywords: Answer Sets, Davis Putnam, Safe Beliefs, Preferences, Algo-
rithms.

1 Introduction

A-Prolog (Stable Logic Programming [9] or Answer Set Programming [11]) is
the realization of much theoretical work on Nonmonotonic Reasoning and AI ap-
plications of Logic Programming (LP) in the last 15 years. This is an important
logic programming paradigm that has now great acceptance in the community.
Efficient software to compute answer sets and a large list of applications to model
real life problems justify this assertion. The two most well known systems that
compute answer sets are DLV1 and SMODELS2.

We recently proposed a generalization of the notion of answer sets for arbi-
trary propositional theories [18]. We call this extended framework safe beliefs.
A first advantage of this proposed approach is the fact that the new definition
does not imply any particular restriction in the form or syntax that logic pro-
grams should have. This definition would allow, for instance, to use embedded
implications inside clauses contained in logic programs. We observe that this
broader syntax could allow us to write some clauses in logic programs using a
more natural form.

The Davis-Putnam (DP) [5] method is one of the major practical methods
for the satisfiability (SAT) problem of classical propositional logic. In the last

1http://www.dbai.tuwien.ac.at/proj/dlv/
2http://www.tcs.hut.fi/Software/smodels/

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/16230565?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

three years, Hantao Zhang (and others) developed a very efficient implementa-
tion of the Davis-Putnam method called SATO [22]. In this paper we propose
a method to compute safe beliefs for arbitrary theories based on the Davis Put-
nam method. Recent research [2], has shown that when the stable semantics
corresponds to the supported semantics, a satisfiability solver like SATO can
be used to compute stable models. Interestingly, some examples are presented
in [2] where the running time of SATO is approximately ten times faster than
SMODELS.

For this reason, we believe that our proposed approach is justified. It has
been reported in [4], from the creators of the DLV system, an approach also
based in the DP method. Their algorithm works, however, proposing candidate
models. Those candidate models are then checked to see if they are actually
answer sets and then reported.

In our approach we construct answer sets directly. The key point is that,
the splitting part of our algorithm adds ¬¬a instead of just a, which is formally
justified by our results [18]. We remark that our approach can be used to obtain
the set of safe beliefs of any propositional theory.

We also extend our notion of safe beliefs to incorporate preferences. We
call our augmented paradigm preference safe beliefs, and we also show how to
compute models under this paradigm.

In this paper we restrict our attention to finite propositional theories, the
semantics can be extended to theories with variables by grounding3. This is
a standard procedure in A-Prolog. We assume that the reader has some basic
background in logic and A-Prolog.

2 Background

In this section we review some basic concepts and definitions that will be used
along this paper. We introduce first the language of propositional logic, and de-
fine some classes of programs typically used in the context of logic programming.
Finally we make some comments on intuitionistic logic that is used to provide
a logical framework for logic programming and nonmonotonic reasoning.

2.1 Propositional Logic

We use the set of propositional formulas in order to describe rules and infor-
mation within logic programs. Formally we consider a language built from an
alphabet containing: a denumerable set L of elements called atoms or atomic
formulas; the binary connectives ∧, ∨ and → to denote conjunction, disjunc-
tion and implication respectively; the unary connective ¬ for negation; the 0-ary
connectives ⊥ and > to denote falsity and truth; and auxiliary symbols (,).

Formulas can be constructed as usual in logic. In fact, the formula ¬F can
be alternatively introduced as an abbreviation of F → ⊥, and > as ⊥ → ⊥. We

3Without function symbols to ensure that a ground program would be finite.

2

can write, as usual, F ↔ G to denote the formula (F → G) ∧ (G → F). Also,
the formula G← F is just another way of writing F → G.

A theory is a set of formulas, we restrict our attention to finite theories. For
a given theory T its signature, denoted LT , is the set of atoms that occur in
the theory T . Observe that, since we consider finite theories, their signatures
are also finite. Given a theory T we also define the negated theory ¬T =
{¬F | F ∈ T}. A positive theory is one that does not contain occurrences of the
connectives ⊥ and ¬.

We say that the weak occurrences of an atom inside a theory are those
occurrences of the atom that lie inside the scope of a negation connective, i. e.
all the occurrences of atoms in a subformula ¬F are weak.

2.2 Logic Programs

In our context a logic program is just a propositional theory. We can think, in
fact, of the words theory and program as synonyms; we use the former when
stating general results in mathematical logic, and the latter when dealing with
logic programs having a particular syntax and/or semantics.

The syntax of formulas within logic programs is usually defined in terms of
special formulas know as clauses. A clause is, in general, a formula H ← B with
implication as the principal connective. The formulas H and B are known as
the head and body of the clause respectively. The special case of a clause with
the form ⊥ ← B is known as a constraint. Each formula H, whose principal
connective is not implication, is know as a fact and is associated with the clause
H ← >.

We introduce now some of the classes of programs commonly found in the
literature. An augmented clause is a clause where both H and B can be arbitrary
logic formulas built from the connectives ∧, ∨ and ¬ arbitrarily nested. Note,
however, that embedded implications are not allowed in augmented clauses. An
augmented program is a logic program that contains only augmented clauses.

A disjunctive clause is built from a (non empty) disjunction of atoms in the
head and a conjunction of literals in the body. A disjunctive clause has then
the form

h1 ∨ · · · ∨ hn ← b1 ∧ · · · ∧ bm ∧ ¬bm+1 ∧ · · · ∧ ¬bm+l.

where each hi and bj is an atom, n ≥ 1, m ≥ 0 and l ≥ 0. A disjunctive program
is then defined as a program containing only disjunctive clauses. Observe that,
in particular, constraints are not allowed inside disjunctive programs.

Example 2.1. The following are examples of the clauses just defined

a← (b→ c) propositional
¬(p ∧ ¬q)← a ∨ (¬b ∧ c). augmented
a ∨ b← c ∧ d ∧ ¬e. disjunctive

3

2.3 Notation on Intuitionistic Logic

Intuitionistic logic provides the logic foundations of safe beliefs. This logic can
be defined in terms of Hilbert type proof systems of axioms and inference rules.
Alternative definitions can be given in terms of Kripke models.

We use the standard notation ` F to denote that F is a provable formula,
an intuitionistic theorem. If T is a theory we understand the symbol T ` F to
mean that ` (F1 ∧ · · · ∧ Fn) → F for some Fi contained in T . This is not the
usual definition given in literature, but can be shown to be equivalent because
of results like Deduction Theorem. Similarly, if U is a theory, we use the symbol
T ` U to denote T ` F for every F ∈ U . We use Cn (T) to denote the set of all
logical consequences of T , i.e. the set {F | T ` F}.

A theory T is said to be consistent, with respect to intuitionistic logic, if it is
not the case that T ` ⊥. We say that a theory T is (literal) complete iff, for all
a ∈ LT , we have either T ` a or T ` ¬a. We use the notation T U to stand
for the phrase: T is consistent and T ` U . Finally we say that two theories T1

and T2 are equivalent, under intuitionistic logic, denoted by T1 ≡ T2, if it is the
case that T1 ` T2 and T2 ` T1.

3 Logical Foundations for
A-Prolog

A popular semantic operator for logic programs is the answer set semantics.
Some of the main features of answer sets are its nonmonotonicity and the in-
tegration of negation as failure4. This sort of features are extremely useful to
deal with concepts such as default knowledge and modeling inertial rules. The
answer set semantics constitutes the formal basement of the A-Prolog program-
ming paradigm and proved to be particularly useful for several real life and
research applications.

In the original definition of answer sets [9, 11], however, the relation of the
semantics with a particular logic is not entirely clear and seems to be hid-
den under an ad hoc setting of reductions and minimal models. Safe Beliefs
were introduced in [20] in order to provide logical foundations to the A-Prolog
paradigm.

Consider the case of a logic agent. The task of such an agent is, when
provided with some initial knowledge describing its world or application domain,
to do inference and produce new knowledge. We would like our agent, for
instance, to be able to answer queries and solve problems in its application
domain.

We can use a propositional theory T to represent the initial knowledge of our
agent. Under the premise that T is consistent, it makes sense to say that the
agent knows F if the formula F is an intuitionistic consequence of the theory T .

4The negation symbol we use (¬) will play the role of the negation as failure in logic
programs. The authors in [11] use, however, the symbol not instead.

4

The use of intuitionistic logic, a logic of knowledge, as the underlying inference
system seems a natural choice for this approach.

But we also want our agent to do nonmonotonic inference. Informally speak-
ing we will allow our agent to guess or suppose things in order to make more
inference. We must be cautious, however, since we don’t wan’t our agent to
precipitate conclusions or make unnecessary assumptions. The agent should
only suppose facts if they are helpful to provide new knowledge. The following
definition formalizes this idea.

Definition 3.1. Let T be a theory and let E be a theory with LE ⊆ LT . We
say that the theory E is an explanation of T if the theory T ∪ ¬¬E is both
consistent and complete (w.r.t. intuitionistic logic).

A very natural reading of this definition, in the context of our logic agent,
would be that: “A theory E is an explanation of the agent’s world if (i) it is
consistent with its initial knowledge and (ii) supposing that E is true is enough
to answer any possible question in its domain.” This supposing corresponds to
the double negation in the intuitionistic proof system used as the underlying
inference system.

The agent is allowed now to believe things in order to obtain a complete
explanation of its world. If E is an explanation of T , it makes sense to say
that the agent believes F (assuming E) if the formula F is an intuitionistic
consequence of T ∪ ¬¬E. There can also be, of course, several explanations
for a given initial knowledge. Brave and cautions beliefs can be defined in the
natural way. The agent bravely believes a formula if there is an explanation that
makes the formula true, and cautiously believes a formula if that formula is true
under all possible explanations of its initial knowledge.

The explanations for a given theory naturally define semantics for logic pro-
grams, we call this the safe belief semantics.

Definition 3.2. Let T be a theory. If E is an explanation of T then the set of
atoms Cn (T ∪ ¬¬E) ∩ LT is a safe belief of T .

Note that, by definition, safe beliefs are subsets of the atoms that occur in
the theory T . Moreover, if M is a safe belief of T , it can be easily shown that
E = M ∪ ¬(LT \M) is an explanation of T with Cn (T ∪ ¬¬E) ∩ LT = M .

Despite the apparent lack of a logical intuition in the definition of answer
sets, it has been proved that they actually coincide with safe beliefs (in the
class of augmented programs). This is not only a significant property of safe
beliefs, but also serves to provide solid logical foundations for the A-Prolog
programming paradigm and allows natural generalizations.

Theorem 3.1. [20] Let P be an augmented program. A set of atoms M is a
safe belief of P if and only if M is an answer set of P .

Observe that our definition of safe beliefs does not impose any particular
restriction in the form or syntax that the logic programs should have. In our
particular case this definition allows the use of embedded implications inside

5

formulas, a feature that is not very common in current logic programming
paradigms. Augmented programs, for instance, do not allow embedded im-
plications. The use of the full set of propositional formulas can be useful to
describe problems in a more convenient and natural way.

We even suspect that this unrestricted syntax can be helpful to model con-
cepts like aggregation in logic programs, as the ones described in [14,15]. Some
other potential applications, suggested by M. Gelfond (e-mail communication),
could be found in the field of action languages.

Another important property of safe beliefs is that its definition naturally
follows from provability relations in a well known mathematical logic, namely
intuitionistic logic, providing solid foundations for our approach. The relation
with logic is more clear and direct than, for instance, in the original definition of
answer sets. In [20] it has also been proved, in fact, that any proper intermediate
logic can be used, instead of intuitionistic logic, to construct safe beliefs defining
exactly the same semantics.

Equivalence notions can be easily described in terms of logic. It has been
shown that logic G3 characterizes5 strong equivalence for safe beliefs [12]. We
have also shown for instance in [1,17] how the logic G3 can be used to debug a
safe belief program by taking advantage of the 3-valued nature of G3. Although
the notion of safe beliefs is quite recent, some interesting results and applications
have already been found.

4 Reduction of Theories

In this section we will define some reductions that can be applied to theories in
order to simplify their structure. The notion of reductions and/or transforma-
tions has several applications in Logic Programming; see for instance [6,16,21].
Some properties of these reductions will be studied.

Definition 4.1. For a formula F , we define its reduction with respect to the
⊥ and > symbols, denoted Reduce⊥(F), by replacing each subformula in F
according to the following rules:

1. Conjunction:

A ∧ ⊥ or ⊥ ∧A with ⊥.
A ∧ > or > ∧A with A.

2. Disjunction:

A ∨ ⊥ or ⊥ ∨A with A.
A ∨ > or > ∨A with >.

3. Implication:
5Logic G3 is the 3-valued logic defined by Gödel, also known as the logic of Here and There

(HT).

6

A→ > or ⊥ → A with >.
> → A with A.
A→ ⊥ with ¬A.

4. Negation:

¬⊥ with >; and ¬> with ⊥.

This rules should be applied until no subformula in F matches any of the
patterns presented above.

For a given theory T we can extend this definition as follows: if there is
a formula F ∈ T with Reduce⊥(F) = ⊥ then Reduce⊥(T) = {⊥}; otherwise
Reduce⊥(T) is defined as the theory:

{Reduce⊥(F) | F ∈ T,Reduce⊥(F) 6= >} .

Note that if every formula of the theory reduces to > then the entire theory
reduces to the empty theory. Also note that this reduction satisfies equivalence
with respect to intuitionistic logic, that is T ≡ Reduce⊥(T). Consequently the
equivalence is also true for classical and any intermediate logic.

Definition 4.2 (Negative Red.). [18] Given a theory T and a set of atoms M
replace in T all occurrences of those atoms in M with the symbol ⊥ to obtain
a new theory T ′. The negative reduction of T with respect to M , denoted by
ReduceN (T,M), is defined as Reduce⊥(T ′).

Definition 4.3 (Weak Positive Red.). [18] Given a theory T and a set of
atoms M replace in T all weak occurrences of those atoms in M with the symbol
> to obtain a new theory T ′. The weak positive reduction of T with respect to
M , denoted by ReduceW(T,M), is defined as Reduce⊥(T ′).

Note that, while computing the weak positive reduction of a theory, new
negation connectives can be introduced (i.e. while reducing an implication)
modifying the “weak” status of some atoms in the theory. The reduction then
should be applied several times until no weak occurrences of atoms in M appear
in the theory T .

Definition 4.4. Given a theory T and two disjoint sets of atoms MW , MN we
can define the complete reduction of T , denoted by Reduce(T,MW ,MN), as the
theory ReduceW(ReduceN (T,MN),MW).

Example 4.1. The following example illustrates our definitions of negative
and weak positive reduction. Suppose that MN = {b} and MW = {a, c}, and
consider the theory T :

a ∨ c← ¬b ∧ ¬c.
⊥ ← b ∧ c.
a← (¬b→ c).

7

then T1 = Reduce⊥(T,MN) will become:

a ∨ c← ¬⊥ ∧ ¬c. 7→ a ∨ c← ¬c.
⊥ ← ⊥∧ c. 7→ >.
a← (¬⊥ → c). 7→ a← c.

and T2 = ReduceW(T1,MW):

a ∨ c← ¬>. 7→ >.
a← c. 7→ a← c.

to finally obtain T2 = {a← c}.

This complete reduction also satisfy an equivalence condition with respect
to intuitionistic logic. Namely, given a theory T and two sets of atoms MW
and MN , the theory Reduce(T,MW ,MN) ∪ ¬¬MW ∪ ¬MN is equivalent to
T ∪ ¬¬MW ∪ ¬MN .

Another important property of this reduction is that, if the condition LT =
MW ∪ MN holds, then the theory Reduce(T,MW ,MN) is, if not reduced to
{⊥}, always a positive theory.

Other well known reductions that appear in literature can be applied to
further simplify a theory, see for instance [8,19]. Due, to lack of space, we omit
a discussion of them in this paper.

5 Computing Safe beliefs

The Davis-Putnam (DP) method is one of the major practical methods for the
satisfiability (SAT) problem of classical propositional logic. Hantao Zhang (and
others) developed a very efficient implementation of the Davis-Putnam method
called SATO [22]. Recent research has shown how this kind of solvers can be
used, under certain conditions, to efficiently compute stable models for logic
programs. Examples had been presented where the running time of SATO is
ten time faster than the leading stable model finder SMODLES.

An alternative, suggested in [13], considers the reduction of an arbitrary
theory (using a polynomial translation also presented in [13]) to a more sim-
ple disjunctive program and then use an answer set finder (such as DLV or
SMODELS) to finally compute safe beliefs.

The problem with this sort of translations, and others following a similar
approach, is that they may introduce many new atoms in order to perform
reductions “thus greatly widening the space of assignments in which the DP
procedure has to search in order to find the solutions”, as E. Giunchiglia and R.
Sebastiani [10] have already pointed out.

In this section we present a method to compute safe beliefs for arbitrary
theories based on the Davis-Putnam method. We will avoid the introduction of
new atoms by using the set of reductions presented in Section 4 that, instead of
trying to reduce the structure of the program, are helpful to evaluate the effect

8

of the decisions made by the DP method reducing the size of the evaluated
program.

Our algorithm, sketched in the function GetSafeBeliefs takes as input a pro-
gram and two sets of atoms MW and MN that contains atoms that can be
supposed as positive or negative respectively. The algorithm first reduces the
program using the information contained in MW and MN , and then it checks
for some easy conditions that can early reject a model thus avoiding unnecessary
branching. Otherwise, the function is called recursively guessing the value of a
new atom returning a set containing all the safe beliefs found. As in [10], we
apply the splitting part of the algorithm only for the atoms that occur in the
original program.

function GetSafeBeliefs(P,MW ,MN)
P ←− Reduce(P,MW ,MN).
if P = {⊥} or LP ⊂MW then

return ∅.
else if LP = MW then

return CheckPositive(P).
else

Let x be an atom from LP \MW .
return

GetSafeBeliefs(P,MW ∪ {x} ,MN)
∪GetSafeBeliefs(P,MW ,MN ∪ {x}).

end if
end function

The function GetSafeBeliefs is trying to guess, using the DP method, for
each atom whether it can be assumed to be positive or negative. When no more
guesses are possible, the function CheckPositive is used to finally determine if
the set MW is an safe belief of the reduced theory T or not.

Then the function CheckPositive takes as input a theory T . Recall that, by
the properties of the reductions applied, T is always a positive theory. The
function must return {LT } is T ` LT and {} otherwise.

The problem of determining, for a given positive theory T , if T ` LT seems
to be an NP problem. It is easy to find reductions of the Check Positive problem
to other NP-complete problems such as finding minimal models, or even the SAT
problem. A similar DP method can also be used to solve this problem trying to
find a model M ⊂ LT (proper inclusion) for the theory T . If such model exists
then it is false that T ` LT , otherwise it constitutes a proof of the fact that
T ` LT .

At the point of the algorithm when it requires to select an atom from LP \
MW , heuristics can be used to improve its performance. For instance, it is
possible to select the atom with more occurrences in the program P .

Theorem 5.1 (Correctness). The function GetSafeBeliefs(T, ∅, ∅) terminates
and returns the set of safe beliefs of the theory T .

9

Proof. (Sketch) It is immediate that the algorithm terminates since the signa-
ture of P is finite. The function CheckPositive is assumed to be correct and
return the corresponding set of safe beliefs. The final case solves the problem
recursively adding new atoms to the partially computed safe beliefs in MW and
MN .

6 Preferred Safe Beliefs

A useful topic of interest in answer set programming is to allow preferences,
see [3, 7]. Thus, we extend our safe beliefs paradigm to express a simple but
still useful form of preferences. Moreover, our algorithm presented in previous
section can be easily adjusted to compute such preferable models.

Consider the following basic example. Suppose that there are courses a, b
and c available. If one course is closed, the system adds the constraint ¬x (where
x is the course). Now consider a student asking to take course a and either b or
c. The student however prefers to take course b over c. The preference program
would be the next one:

b > c
a ∧ (b ∨ c)

Here the expression b > c denotes the preference of b over c. The preferable safe
belief of this program is {a, b}, assuming all courses were open. If b gets closed,
the program becomes:

b > c
a ∧ (b ∨ c)
¬b

This new program has, as expected, the preferable safe belief {a, c}.
The main idea, of our proposed preference semantics, is to extend the syntax

of logic programs to allow an expression of the form: a1 > · · · > an, where
a1, . . . , an are different atoms in the language.

This preference rule naturally induces an order relation among the safe be-
liefs of the given logic program. The preferred safe beliefs is then the first model
obtained with respect to this induced order.

Also observe that this extension to the semantic of safe beliefs allows to
specify the preference for a given formula F , perhaps describing some desired
condition to hold in the expected models. Simply add a new atom f at the
desired position in the expression a1 > · · · > an and, using the extended syntax
of safe beliefs, incorporate the rule f ↔ F to the original program.

The algorithm presented previously can be easily adapted to this preference
semantics. The defined order can be used to choose the most preferred atom,
still occurring in the program, to perform the next split in the DP algorithm;
and halt the recursion as soon as a model is found.

10

7 Conclusions

We presented a variant of the Davis Putnam method to compute safe beliefs.
To the best of our knowledge our algorithm is original. Furthermore, we do
not know of any algorithm to compute safe beliefs (or any similar extension of
answer sets) for arbitrary propositional theories.

Further research needs to be done in order to incorporate, for instance,
several ideas to improve efficiency as those discussed in [4]. We extended the
notion of safe beliefs to model a simple but useful form of preferences among
safe beliefs. Finally we show how to compute models of our extended language.

References

[1] Juan Carlos Acosta Guadarrama, José Arrazola, and Mauricio Osorio.
Making belief revision with LUPS. In Juan Humberto Sossa Azuela and
Gustavo Arroyo Figueroa, editors, XI International Conference on Com-
puting, México, D.F., November 2002. CIC-IPN.

[2] Yuliya Babovich, Esra Erdem, and Vladimir Lifschitz. Fages’ theorem
and answer set programming. In Chitta Baral and Mirek Truszczynski,
editors, Proceedings of the 8th International Workshop on Non-Monotonic
Reasoning, Breckenridge, Colorado, USA, April 2000.

[3] Gerhard Brewka. Logic programming with ordered disjunction. In Ulrich
Junker, editor, Preferences in AI and CP: Symbolic Approaches, Papers
from the AAAI Workshop, pages 1–8, Edmonton, Alberta, Canada, August
2002. Extended version presented at NMR-02.

[4] Francesco Calimeri, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer.
Pruning operators for answer set programming systems. In Proceedings of
the 9th International Workshop on Non-Monotonic Reasoning, pages 200–
209, 2002.

[5] M. Davis and H. Putnam. A computing procedure for quantification theory.
ACM, 7:201–215, 1960.

[6] Jürgen Dix, Mauricio Osorio, and Claudia Zepeda. A general theory of
confluent rewriting systems for logic programming and its applications.
Annals of Pure and Applied Logic, 108(1–3):153–188, 2001.

[7] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Com-
puting preferred and weakly preferred answer sets by meta-interpretation
in answer set programming. In Alessandro Provetti and Tran Cao Son, edi-
tors, Answer Set Programming: Towards Efficient and Scalable Knowledge
Representation and Reasoning, pages 45–52, Stanford, USA, 2001. AAAI
Press.

11

[8] Thomas Eiter, Michael Fink, Hans Tompits, and Stefan Woltran. Sim-
plyfying logic programs under uniform and strong equivalence. In Ilkka
Niemelä and Vladimir Lifschitz, editors, 7th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR-7), number
2923 in LNCS, pages 87–99, Florida, USA, January 2004. Springer.

[9] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for
logic programming. In R. Kowalski and K. Bowen, editors, 5th Conference
on Logic Programming, pages 1070–1080. MIT Press, 1988.

[10] Enrico Giunchiglia and Roberto Sebastiani. Applying the Davis-Putnam
procedure to non-clausal formulas. In Evelina Lamma and Paola Mello,
editors, Advances in Artificial Intelligence, 6th Congress of the Italian As-
sociation for Artificial Intelligence, number 1792 in LNAI, pages 84–94.
Springer, 1999.

[11] Vladimir Lifschitz, L. R. Tang, and H. Turner. Nested expressions in logic
programs. Annals of Mathematics and Artificial Intelligence, 25:369–389,
1999.

[12] Juan Antonio Navarro. Answer set programming through G3 logic. In
Malvina Nissim, editor, Seventh ESSLLI Student Session, European Sum-
mer School in Logic, Language and Information, Trento, Italy, August 2002.

[13] Juan Antonio Navarro. Properties of translations for logic programs. In
Balder ten Cate, editor, Eight ESSLLI Student Session, European Summer
School in Logic, Language and Information, Vienna, Austria, August 2003.

[14] Mauricio Osorio and Bharat Jayaraman. Aggregation and negation-as-
failure. New generation computing, 17(3):255–284, 1999.

[15] Mauricio Osorio, Bharat Jayaraman, and David Plaisted. Theory of partial-
order programming. Science of Computer Programming, 34(3):207–238,
1999.

[16] Mauricio Osorio, Juan Antonio Navarro, and José Arrazola. Equivalence
in answer set programming. In A. Pettorossi, editor, Logic Based Pro-
gram Synthesis and Transformation. 11th International Workshop, LOP-
STR 2001, number 2372 in LNCS, pages 57–75, Paphos, Cyprus, November
2001. Springer.

[17] Mauricio Osorio, Juan Antonio Navarro, and José Arrazola. Debugging
in A-Prolog: A logical approach (abstract). In P.J. Stuckey, editor, Logic
Programming. 18th International Conference, ICLP 2002, number 2401 in
LNCS, pages 482–483, Copenhagen, Denmark, August 2002. Springer.

[18] Mauricio Osorio, Juan Antonio Navarro, and José Arrazola. A logical ap-
proach for A-Prolog. In Ruy de Queiroz, Luiz Carlos Pereira, and Ed-
ward Hermann Haeusler, editors, 9th Workshop on Logic, Language, In-
formation and Computation (WoLLIC), volume 67 of Electronic Notes in

12

Theoretical Computer Science, pages 265–275, Rio de Janeiro, Brazil, 2002.
Elsevier Science Publishers.

[19] Mauricio Osorio, Juan Antonio Navarro, and José Arrazola. Applications
of intuitionistic logic in answer set programming. Accepted to appear at
the TPLP journal, 2003.

[20] Mauricio Osorio, Juan Antonio Navarro, and José Arrazola. Safe beliefs
for propositional theories. Accepted to appear at ELSEVIER, 2003.

[21] Mauricio Osorio, Juan Carlos Nieves, and Chis Giannella. Useful transfor-
mations in answer set programming. In Alessandro Provetti and Tran Cao
Son, editors, Proceedings of the American Association for Artificial Intel-
ligence (AAAI) 2001 Spring Symposium Series, pages 146–152, Stanford,
E.U., 2001. AAAI Press.

[22] Hanato Zhang. SATO: A decision procedure for propositional logic. Asso-
ciation for Automated Reasoning Newsletter, 22:1–3, March 1993.

13

