
Separation Logic + Superposition Calculus =
Heap Theorem Prover

Juan Antonio Navarro Pérez
Technische Universität München

navarrop@in.tum.de

Andrey Rybalchenko
Technische Universität München

rybal@in.tum.de

Abstract
Program analysis and verification tools crucially depend on the
ability to symbolically describe and reason about sets of program
behaviors. Separation logic provides a promising foundation for
dealing with heap manipulating programs, while the development
of practical automated deduction/satisfiability checking tools for
separation logic is a challenging problem. In this paper, we present
an efficient, sound and complete automated theorem prover for
checking validity of entailments between separation logic formu-
las with list segment predicates. Our theorem prover integrates sep-
aration logic inference rules that deal with list segments and a su-
perposition calculus to deal with equality/aliasing between memory
locations. The integration follows a modular combination approach
that allows one to directly incorporate existing advanced techniques
for first-order reasoning with equality, as well as account for addi-
tional theories, e.g., linear arithmetic, using extensions of superpo-
sition. An experimental evaluation of our entailment prover indi-
cates speedups of several orders of magnitude with respect to the
available state-of-the-art tools.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification—Formal methods; F.3.1
[Logics and Meanings of Programs]: Specifying and Verify-
ing and Reasoning about Programs—Mechanical verification;
F.4.1 [Mathematical Logic and Formal Languages]: Mathematical
Logic—Mechanical theorem proving

General Terms Verification, Logic, Reasoning

Keywords Separation Logic, Superposition

1. Introduction
Program analysis and verification tools crucially depend on the
ability to symbolically describe and reason about program behav-
iors, e.g., using constraints [21], logical formulas/predicates [1, 9,
20, 22, 34], types [25, 28], and abstract domains [8, 26]. Automated
deduction techniques can deliver automation support for such rea-
soning tasks. Today, propositional and Satisfiability Modulo The-
ory (SMT) solvers are ubiquitous components of software analy-
sis, verification, and debugging tools. These solvers can efficiently
deal with practically relevant logical theories of various scalar data

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’11, June 4–8, 2011, San Jose, California, USA.
Copyright c© 2011 ACM 978-1-4503-0663-8/11/06. . . $10.00

types, e.g., fixed length bit-vectors and numbers, as well as unin-
terpreted functions and arrays [2, 10, 14, 19].

Dealing with programs that manipulate heap-allocated data
structures using pointers imposes additional challenges on sym-
bolic reasoning tools. Existing formalisms for tracking the shape of
heap graphs, e.g., three valued structures, separation logic, Boolean
heaps, and monadic second-order logic of graph types [27, 31–
33, 35], demonstrate the feasibility of automated reasoning about
heap manipulating programs while providing a wide spectrum of
trade-offs w.r.t. automation, precision, efficiency, and applicability.

Separation logic provides a promising foundation for dealing
with programs that manipulate the heap following a certain dis-
cipline [33]. This discipline can be effectively exploited for man-
ual/tool assisted proof development [18, 28, 37], extended static
checking [6, 16], and automatic inference of heap shapes [7, 12,
17, 38]. All these approaches depend on the ability to check logical
entailment between separation logic formulas, e.g., for validation
of loop invariant candidates or fixpoint detection.

Automation of separation logic—usually extended with re-
cursively defined shape predicates such as lists, trees, or nested
containers—relies on decidable sub-classes together with the cor-
responding proof systems or heuristic approaches based on fold-
ing/unfolding strategies for recursive shape definitions [6, 7, 11,
13, 23, 29, 36, 38]. Development of practical entailment checking
tools for separation logic is a challenging problem. Since the exist-
ing proof systems pursue an intricate interplay between aliasing of
memory locations and their occurrence in scope of the shape pred-
icates, the proof search becomes a complex procedure exposed to
the non-determinism of the inference rule applications. Heuristic
approaches require sophisticated (un)folding strategies, which are
difficult to get right in a predictable and robust way. As a result, en-
tailment checkers for separation logic have not reached yet the level
of applicability on par with state-of-the-art SAT and SMT solvers.

In this paper, we present an efficient, sound and complete auto-
mated theorem prover for checking validity of entailments between
separation logic formulas with list segment predicates. In contrast
to the existing tools, our approach puts to work the framework
of paramodulation-based theorem proving [30]. Instead of repre-
senting proof rules as an axiom schema and performing a generic
inference-based proof search, by applying the framework we obtain
specialized inference rules together with an adequate, optimized
rule application strategy, without compromising either soundness
or completeness.

Our theorem prover relies on a combination of separation logic
inference rules that deal with list segments and a superposition cal-
culus to deal with equality/aliasing between memory locations. Our
separation logic inference rules are obtained from an existing proof
system for separation logic with list segments [4], which is a basis
for various separation logic based tools [6, 11, 16, 36], by factoring
out its built-in equality reasoning. We use a standard superposition

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/16230206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

calculus for equality, and rely on its ability to generate (partial)
models. The model generation ties together the equality and list
segment reasoning. Given an entailment to check, our prover first
constructs a model for the equality predicates and then uses this
model to disambiguate the heap shape for the subsequent treatment
of the list segments. Since the reasoning about the list segments can
produce additional equalities, the entire process is repeated with the
updated model.

By explicating the connection between the equality and sepa-
ration logic inferences through the equality models, our theorem
prover becomes more efficient than the original proof system. Since
the equality model excludes certain heap shapes from considera-
tion, several non-deterministic proof search steps in the original
proof system turn into deterministic ones and can be efficiently im-
plemented using a rewriting process.

An experimental evaluation of our entailment prover indicates
speedups of several orders of magnitude with respect to the avail-
able state-of-the-art tools. Our implementation, which is written in
Prolog to allow a declarative specification of the inference rules
of the proof system, is able to check thousands of entailments of
increasing complexity in seconds rather than minutes.

This paper makes the following contributions:

1. An effective factorization an important existing proof system
for separation logic into equality and separation reasoning;

2. An algorithm for proving entailments that exploits this factor-
ization;

3. Application of equality models for disambiguating heap shapes
and thus eliminating the corresponding non-determinism from
the proof search;

4. An efficient implementation of the theorem prover and its eval-
uation.

In summary, to the best of our knowledge we present to the first
paramodulation-based automated theorem prover for separation
logic with list segments.

Our ultimate goal is a theorem prover for an expressive frag-
ment that combines separation logic with other theories useful for
program reasoning, including arithmetic and various data struc-
ture shapes (such as trees). We believe that building upon a well-
understood calculus, such as superposition, offers a viable start-
ing point. Existing extensions of superposition with linear arith-
metic [24] and SMT theories [3, 15] suggest immediate steps for
extending expressiveness of our current fragment. The increas-
ing extensibility and programmability of state-of-the-art theorem
provers, where Z3 is a prominent example, suggest that the pre-
sented approach could be implemented within the existing tools.

2. Illustration
We illustrate our theorem proving algorithm using the following
example. Assume we want to establish the validity of an entailment
E given by

c 6' e ∧ lseg(a, b) ∗ lseg(a, c) ∗ next(c, d) ∗ lseg(d, e)

→ lseg(b, c) ∗ lseg(c, e) ,

where ' is equality among program expressions, next(x, y) is a
portion of the heap in the program state where x ‘points to’ y;
lseg(x, y) is a portion of the heap (possibly empty if x = y)
containing an acyclic path from x to y following the ‘points to’
relation; and ‘∗’ is the union of disjoint portions of the heap. The
entailment itself states that any program state, composed of a stack
and a heap, which satisfies the conditions on the left-hand side of
the formula, should also satisfy the right-hand side.

The first step of our approach is to build a clausal representa-
tion of the negation of the entailment, i.e. ¬E. This set, denoted
cnf(E), has the tree clauses:

c' e→∅ (1)
∅→ lseg(a, b) ∗ lseg(a, c) ∗ next(c, d) ∗ lseg(d, e) (2)

lseg(b, c) ∗ lseg(c, e)→∅ (3)

where ∅ → F asserts a formula to be true, while F → ∅ asserts a
formula as false. More generally, a clause such as A,B → C,D
asserts that if all the facts on the left-hand side are true, then at
least one of the facts on the right should be true.

From the clause (2), since lseg(a, b) ∗ lseg(a, c) represents two
disjoint portions of the heap, we know that either a ' b or a ' c,
i.e. one of these two segments should be empty. Thus we derive a
new clause

∅→ a' b, a' c . (4)

Now we ask a superposition-based theorem prover to find for us a
model for the pure clauses, those which only contain equalities, that
have been computed so far, i.e. (1) and (4). Such a prover could tell
us that assuming a ' c, and the rest of the variables distinct from
each other, would do. In particular a' c satisfies the clause (4).

We apply this information and derive a new clause by ‘superpo-
sition’ of (4) into (2) to obtain

∅→ a' b, lseg(a, b) ∗ next(a, d) ∗ lseg(d, e) , (5)

where c is replaced with a and a resulting empty list segment is
removed. Note that a ' b also appears in the clause, intuitively as
a reminder that ‘we have yet to try’ the other alternative. But let us
continue by analyzing the heap described in clause (5). Now, from
next(a, d), we know that a is definitely pointing to something in
the heap; and thus the disjoint lseg(a, b) should be empty. So, in
either case, a' b and we derive a new pure clause

∅→ a' b . (6)

We ask our superposition-based prover to find us a new model, and
this time it tells us that, in fact, just setting a ' b would do. This
is enough to satisfy the clause (6), as well as the previous two pure
clauses. So we now try a superposition of (6) into (2) to obtain

∅→ lseg(a, c) ∗ next(c, d) ∗ lseg(d, e) , (7)

this time replacing b with a and removing the empty list segment.
This description of a heap now looks all fine, so let us apply a
superposition of (6) into clause (3), which comes from the left-hand
side of the entailment, to produce

lseg(a, c) ∗ lseg(c, e)→∅ . (8)

Now we see that it is possible to match and ‘resolve away’ these
two complementary heap formulas by ‘unfolding’ the list segment
lseg(c, e) into the disjoint union of next(c, d) ∗ lseg(d, e). This is
in fact possible if c 6'e; but if otherwise c'e then lseg(c, e) would
be empty while next(c, d) ∗ lseg(d, e) is definitely not (at least c
is pointing to something). So we have to continue and consider the
alternative when

∅→ c' e . (9)

But this time when we ask our superposition-based prover to find
us a model for the pure clauses, we are told that there are no
models anymore! In fact the clauses (1) and (9) are contradictory
and derive the empty clause. This exercise proves that the set of
clauses cnf(E), equivalent to ¬E, is not satisfiable and thus the
original entailment must be valid. More than this, these inference
steps actually constitute a proof of the validity of the entailment
(c.f. Figure 4) which we describe later in detail in Section 5.

3. Preliminaries
This section presents preliminary definitions. We introduce nota-
tion for dealing with relations and functions, separation logic, as
well as equality reasoning using superposition.

Relations We write x⇒ y to denote the ordered pair (x, y) and,
for a binary relation R, x⇒R y to denote x⇒ y ∈ R. The domain
domR of a relation is the projection of R on its first component,
i.e. domR = {x | ∃y : x⇒R y}. We write ⇒∗R to denote the
reflexive and transitive closure of R; and ⇔∗R for the symmetric,
reflexive, and transitive closure of R. An element y is irreducible
by R if y /∈ domR. Furthermore, y is a normal form of x with
respect to R if x⇒∗R y and y is irreducible.

A binary relation R is well-founded if there is no infinite se-
quence x1 ⇒R x2 ⇒R · · · ; and confluent if having x⇒∗R y and
x⇒∗R y′ implies that there is a z such that y⇒∗R z and y′⇒∗R z.
A well-founded and confluent relation is called convergent. Given
a convergent relation R, every x has a unique normal form denoted
by xR. Furthermore, we have that x⇔∗R y if and only if xR ≡ yR,
i.e. two elements are equivalent with respect to R whenever their
normal forms are identical.

Functions A function f is a relation where x⇒f y and x⇒f y
′

implies y ≡ y′. If x ∈ dom f we write f(x) to denote the (unique)
element y such that x⇒f y. We say that f is a function from X
to Y , denoted f : X → Y , if dom f = X and f(x) ∈ Y for
each x ∈ X . In contrast, f is a partial function form X to Y ,
denoted f : X ⇀ Y , if dom f ⊆ X and f : dom f → Y . We
write f [a⇒ b] for a function update such that (f [a⇒ b])(x) = b if
x ≡ a and (f [a⇒b])(x) = f(x) otherwise. Semicolons are used to
compose function updates, i.e., f [a⇒b; c⇒d] = (f [a⇒b])[c⇒d].
Given a pair of functions f and g, we write h = f ∗ g when
h = f ∪ g and dom f ∩ dom g = ∅, i.e. h is the union of two
functions f and g with disjoint domains.

Edges and paths A relation R is an edge from x to y, denoted
R : x⇒ y, if R = {x⇒ y}; and a relation R is a simple path from
x to y, denoted R : x⇒∗ y, if R = {x1⇒ x2, . . . , xn−1⇒ xn}
where x1 = x, xn = y, and xi 6= xj if i 6= j. Each simple
path from x to y is acyclic, and y /∈ domR. Edges and simple
paths are functions. For example, R = {a⇒ b, b⇒ c, c⇒ d} is a
simple path and a function with domR = {a, b, c}; and applying
an update R[b⇒ d; d⇒ c] = {a⇒ b, b⇒ d, d⇒ c, c⇒ d}, the
simple path property is invalidated.

3.1 Separation logic
Separation logic is used to reason about programs that manipulate
pointer data structures [33]. The following is an abridged presenta-
tion of the considered fragment from Berdine et al. [5].

Syntax Let Var be a set of constant symbols together with a
distinguished constant symbol nil such that nil /∈ Var. We use Var
to represent program variables, and nil represents the null pointer.
Let x and y be constant symbols. We say that x' y is a pure atom,
while next(x, y) and lseg(x, y) are basic spatial atoms. Then, we
write f(x, y) for a basic spatial atom, where f is either next or f is
lseg, and refer to x as the address of the atom. Given a multiset of
basic spatial atoms that contains elements S1, . . . , Sn, we say that
S1∗· · ·∗Sn is a spatial atom; and emp denotes the empty multiset.
A spatial atom Σ is well-formed if (1) no basic atom in Σ has a nil
address, and (2) no two basic atoms in Σ share the same address.

The set of separation logic formulas consists of pure atoms, spa-
cial atoms, and their boolean combinations obtained using conjunc-
tion ∧, disjunction ∨, and negation ¬. A literal is either an atom
A or its negation ¬A; an entailment F → G is a shorthand for
¬F ∨ G; and a logic equivalence F ↔ G abbreviates the formula

F →G ∧G→ F . For a formula F , constant symbols x and y, the
substitution F [y/x] replaces all occurrences of x in F with y.

Semantics Let Loc be a set of memory locations and nil a spe-
cial location such that nil /∈ Loc. We define Loc+ = Loc ∪ {nil}.
An interpretation (s, h) for a separation logic formula consists
of a function stack s : Var → Loc+ and a partial function heap
h : Loc ⇀ Loc+. Given a stack s, we define the evaluation func-
tion ŝ : Var ∪ {nil} → Loc+ as ŝ = s[nil⇒ nil].

Given an interpretation (s, h) and an atom A, we define the
satisfaction relation s, h |= A as follows:

s, h |= x' y if ŝ(x) = ŝ(y) ,
s, h |= next(x, y) if h : ŝ(x)⇒ ŝ(y) ,
s, h |= lseg(x, y) if h : ŝ(x)⇒∗ ŝ(y) ,
s, h |= S1 ∗ · · · ∗ Sn if exist h1, . . . , hn such that

h = h1 ∗ · · · ∗ hn and
s, hi |= Si for each 1 ≤ i ≤ n.

From the above definition follows that the empty spatial atom
emp can only be satisfied by an interpretation (s, ∅). We extend
the satisfaction relation |= to deal with logical connectives in a
canonical way, i.e. s, h |= ¬F if (s, h) does not satisfy F , while
s, h |= F1 ∧ · · · ∧ Fn if (s, h) satisfies every conjunct Fi, and
s, h |= F1 ∨ · · · ∨ Fn if (s, h) satisfies some disjunct Fi. We also
write s |= F when, for all heaps h, the pair (s, h) is a model of F .

An interpretation that satisfies a formula is called a model; a
formula is satisfiable if it has a model; and a valid formula is
satisfied by every interpretation. Note that an entailment F →G is
valid if every model of F satisfies G or, equivalently, if F ∧ ¬G is
not satisfiable. Program analysis and verification tools often require
checking the validity of entailments of the form

Π ∧ Σ→Π′ ∧ Σ′

where Π and Π′ are conjunctions of pure literals, while Σ and Σ′

are spatial atoms.

3.2 Clausal normal form
We use a clausal form to represent logic formulas. A clause is a
disjunction of the form

¬A1 ∨ · · · ∨ ¬An ∨An+1 ∨ · · · ∨An+m
where eachAi is an atom and at most one of them is a spatial atom.
A set of clauses S represents the conjunction of its elements. Thus,
an interpretation satisfies the set of clauses S if the interpretation
satisfies every clause in S. For brevity, we write clauses in the form

Γ→∆ ,

where the sets Γ = {A1, . . . , An} and ∆ = {An+1, . . . , An+m}
are, respectively, the sets of negative and positive atoms in the
clause. Commas are used in clauses to denote union and element
inclusion, e.g. Γ,Γ′, A→ ∆ stands for Γ ∪ Γ′ ∪ {A} → ∆. The
symbol 2 denotes the empty clause, i.e. the clause Γ→ ∆ where
both Γ = ∆ = ∅. A clause is pure if it contains only pure atoms,
and is spatial otherwise. Given a set of clauses S we write Pure(S)
to denote the subset of pure clauses contained in S.

Let E be an entailment Π ∧ Σ→Π′ ∧ Σ′ such that

Π = P1 ∧ · · · ∧ Pn ∧ ¬N1 ∧ · · · ∧ ¬Nm ,

Π′ = P ′1 ∧ · · · ∧ P ′n′ ∧ ¬N ′1 ∧ · · · ∧ ¬N ′m′ .

We define a clausal embedding function cnf (stands for clausal
normal form) that takes an entailment E and returns a representa-
tion of its negation ¬E given by the set of clauses:

cnf(E) = {∅→ P1, . . . , ∅→ Pn, ∅→ Σ

N1→∅, . . . , Nm→∅, Π′+,Σ′→Π′−} ,

where the sets Π′+ = {P ′1, . . . , P ′n′} and Π′− = {N ′1, . . . , N ′m′}
are, respectively, the sets of atoms occurring positively and nega-
tively in Π′. Because the conjunction of clauses cnf(E) is logically
equivalent to ¬E, the entailment E is valid if and only if its clausal
embedding cnf(E) is not satisfiable.

Since it is enough for our purposes, we assume that clauses have
at most one spatial atom. Furthermore, in the following we assume
that the symbols Γ and ∆ represent sets of pure atoms, and a spatial
atom occurring in a clause (if any) is written explicitly. Therefore a
clause can either be a pure clause, Γ→∆, a positive spatial clause,
Γ→ Σ,∆, or a negative spatial clause, Γ,Σ→∆.

3.3 Superposition calculus for equality reasoning
A key point of our approach is that it allows the use of existing
and well established techniques in automated deduction in order to
reason about equality in the context of separation logic. A proof
system which fits our needs is that of the superposition calculus as
presented, for example, by Nieuwenhuis and Rubio [30] (specifi-
cally the system I defined for general clauses in their Section 3.5).
This is a proof system with inference rules such as

Γ→ x' y,∆ Γ′→ x' y′,∆′

Γ,Γ′→ y ' y′,∆,∆′

where the clauses above the line are the premises of the rule and
the clause below is its conclusion.

Given a set of clauses S, if clauses matching the premises of an
inference rule are found in S, then we say that S derives the con-
clusion of the inference rule. In general we write S `X C if it is
possible to derive a clause C from a set S by a successive applica-
tion of inference rules inX ; and write CnsX (S) = {C | S `X C}
to denote the set of all consequences derived from S by inferences
in the set X . A set of clauses S∗ is saturated, with respect to the
inferences X , if S∗ = CnsX (S∗).

In the particular case of the proof system I, a number of super-
position inference rules are defined which derive clauses that logi-
cally follow from S by interpreting ‘'’ as an equality relation. To
make the system useful in practice, inferences are constrained with
respect to an appropriate order � over the terms of the language,
and only ‘maximal’ atoms are allowed to participate in inferences.
For further details we refer the reader to [30]; in the following we
only give a brief summary of the concepts and definitions that are
required to develop the work in this paper.

The proof system I is refutation complete for pure clauses. This
means that if S∗ = CnsI(S) is the saturation of a set S of pure
clauses, then the empty clause 2 ∈ S∗ if, and only if, the set S is
not satisfiable. Completeness of the proof system is proved showing
that if 2 /∈ S∗ then it is possible to build a model, given by a
relation R, as a witness of the satisfiability of S. In this case R
satisfies a pure atom x ' y, denoted R∗ |' x ' y, if x ⇔∗R y.
Moreover, if R is a convergent relation, then R satisfies an atom
x' y if, and only if, their normal forms xR ≡ yR are identical.

The relation R = Gen(S∗) is defined in terms of a generat-
ing function Gen (see Definition 3.8 in [30]) which selects some
clauses C ∈ S∗ and generates edges x⇒R y. For our purposes it
is not important exactly how are clauses are selected from S∗; as
we only rely on the following properties of such relation R.

Lemma 3.1. Let S∗ be a set of pure clauses saturated with respect
to I, and let R = Gen(S∗). The relation R is (1) convergent;
and (2) if there is an edge x⇒R y then x � y, there is a clause
Γ→x'y,∆ ∈ S∗—which generated the edge—andR∗ 6|' Γ→∆
(c.f. Lemma 3.9 in [30]).

We will sometimes write 〈R, g〉 = Gen(S∗) to denote the fact
that the generating function provides both the relation R and a

mapping g from each edge in R to its corresponding generating
clause in S∗ satisfying the conditions of item 2 in previous lemma.

Completeness is established showing that, if the proof system I
is unable to derive the empty clause, then R is indeed a model of
the set of pure clauses.

Theorem 3.1. Let S be a set of pure clauses, let S∗ = CnsI(S)
and let R = Gen(S∗). If 2 /∈ S∗ then R∗ |' S.

Observe that, in this context, models and interpretations for pure
clauses are defined in terms of a relation (w.r.t. |') while, in the
previous section, we used a stack and a heap (w.r.t. |=). A simple
result shows that, in fact, for a pure formula there is a one to one
correspondence between its relation and stack models. For this we
only need to make the assumption that nil is a minimal element with
respect to the order � used to generate the relation, i.e. x � nil for
every other constant symbol x in the logic.

Definition 3.1. Given a convergent relation R, the induced stack
sR : Var → Loc+ is defined as sR(x) = nil if xR ≡ nil, and
sR(x) = ι(xR) otherwise; where ι : Var→ Loc is an arbitrary, but
fixed, injection that maps different program variables into different
non-nil memory locations.

The condition asking nil to be a minimal element makes sure
that if x⇔∗R nil, then xR ≡ nil and sR maps x to nil . Moreover, by
definition ŝR(x) = ŝR(xR). In the following, to ease the notation
and if a suitable relation R clear by context, we simply write x̂ as a
shorthand for the memory location ŝR(x).

Theorem 3.2. Let R be a convergent relation and let F be a pure
formula. R∗ |' F if, and only if, sR |= F .

Proof. Since the formula F is pure it is enough to consider the case
of a pure atom x ' y and an arbitrary heap h. The result follows
since, from the definition of sR, the normal forms are identical,
i.e. xR ≡ yR, if and only if the two symbols evaluate to the same
memory location, i.e. x̂ = ŷ. �

4. Proof system for separation logic entailments
In the previous section we described the superposition calculus,
the proof system I, which allows us to reason about equalities in
the pure fragment of the logic. We now focus on introducing the
necessary inference rules to reason about the spatial component of
our separation logic formulas.

4.1 Spatial reasoning
The proof system SI is obtained by augmenting I with a number
of additional inference rules shown in Figure 1. These rules are
grouped into three main groups of normalization, well-formedness,
and unfolding inferences.

N : The normalization inference N1 allows to use the information
in a pure clause to ‘rewrite’ the spatial atom occurring on
a positive spatial clause; while the rule N2 discards trivial
basic atoms of the form lseg(x, x). Rules N3 and N4 are their
respective counterparts for negative spatial clauses.

W: The second group of well-formedness rules, W1 to W5, check
for possible inconsistencies that could occur in positive spatial
clauses. In particular they make sure that nil is not used as an
address in the heap, and that two disjoint parts of the heap do
not share a common address.

U : Finally the unfolding inferences include the rules U1 to U5,
which perform a one-step ‘unfold’ of a basic atom lseg(x, z)
in a negative spatial clause by using the information contained
in a positive spatial clause; and the rule SR of spatial resolu-

Normalization (N):

N1
Γ→ x' y,∆ Γ′→∆′,Σ

Γ,Γ′→∆,∆′,Σ[y/x]
N2

Γ→∆, lseg(x, x) ∗ Σ

Γ→∆,Σ

N3
Γ→ x' y,∆ Γ′,Σ→∆′

Γ,Γ′,Σ[y/x]→∆,∆′
N4

Γ, lseg(x, x) ∗ Σ→∆

Γ,Σ→∆

Well-formedness (W):

W1
Γ→∆, next(nil, y) ∗ Σ

Γ→∆
W2

Γ→∆, lseg(nil, y) ∗ Σ

Γ→ y ' nil,∆
W3

Γ→∆, next(x, y) ∗ next(x, z) ∗ Σ

Γ→∆

W4
Γ→∆, next(x, y) ∗ lseg(x, z) ∗ Σ

Γ→ x' z,∆ W5
Γ→∆, lseg(x, y) ∗ lseg(x, z) ∗ Σ

Γ→ x' y, x' z,∆

Unfolding (U):

U1
Γ→∆, next(x, z) ∗ Σ Γ′, lseg(x, z) ∗ Σ′→∆′

Γ′, next(x, z) ∗ Σ′→ x' z,∆′
U2

Γ→∆, next(x, y) ∗ Σ Γ′, lseg(x, z) ∗ Σ′→∆′

Γ′, next(x, y) ∗ lseg(y, z) ∗ Σ′→ x' z,∆′
y 6≡ z

U3
Γ→∆, lseg(x, y) ∗ Σ Γ′, lseg(x, nil) ∗ Σ′→∆′

Γ′, lseg(x, y) ∗ lseg(y, nil) ∗ Σ′→∆′
y 6≡ nil

U4
Γ→∆, lseg(x, y) ∗ next(z, w) ∗ Σ Γ′, lseg(x, z) ∗ Σ′→∆′

Γ′, lseg(x, y) ∗ lseg(y, z) ∗ Σ′→∆′
y 6≡ z

U5
Γ→∆, lseg(x, y) ∗ lseg(z, w) ∗ Σ Γ′, lseg(x, z) ∗ Σ′→∆′

Γ′, lseg(x, y) ∗ lseg(y, z) ∗ Σ′→ z ' w,∆′
y 6≡ z SR

Γ,Σ→∆ Γ′→∆′,Σ

Γ,Γ′→∆,∆′

Figure 1. Spatial inference rules of the SI proof system

Well-formedness
W1 : next(nil, y) ∗ Σ→∅
W2 : lseg(nil, y) ∗ Σ→ y ' nil

W3 : next(x, y) ∗ next(x, z) ∗ Σ→∅
W4 : next(x, y) ∗ lseg(x, z) ∗ Σ→ x' z
W5 : lseg(x, y) ∗ lseg(x, z) ∗ Σ→ x' y, x' z

Unfolding
U1 : next(x, z) ∗ Σ→ x' z, lseg(x, z) ∗ Σ

U2 : next(x, y) ∗ lseg(y, z) ∗ Σ→ x' z, lseg(x, z) ∗ Σ

U3 : lseg(x, y) ∗ lseg(y, nil) ∗ Σ→ lseg(x, nil) ∗ Σ

U4 : lseg(x, y) ∗ lseg(y, z) ∗ next(z, w) ∗ Σ→ lseg(x, z) ∗ next(z, w) ∗ Σ

U5 : lseg(x, y) ∗ lseg(y, z) ∗ lseg(z, w) ∗ Σ→ z ' w, lseg(x, z) ∗ lseg(z, w) ∗ Σ

Figure 2. Separation logic axiom schemas

tion, which resolves away a common spatial atom occurring in
complementary spatial clauses.

These inference rules, which can be thought of as coming from
the separation logic axiom schemas in Figure 2, are a variation
of the proof system for separation logic entailments originally
proposed by Berdine et al. [5]. The main difference between the two
systems is that, while the proof system from Berdine et al. operates
at the level of entailments; our inferences have been rearranged in
the form of clauses. This is key to the results presented in this paper,
since it allows us to clearly separate the stages of pure equality
and spatial reasoning, thus enabling the direct application of a wide
array of techniques from the theorem proving community into the
context of separation logic.

4.2 Soundness
It is easy to check that all inferences of the SI proof system are
sound; namely if a pair (s, h) of a stack and a heap is a model of

the premises of an inference rule, then (s, h) is also a model of the
conclusion of the rule.

Theorem 4.1. Let E ≡ Π ∧ Σ→ Π′ ∧ Σ′ be an entailment, and
let S∗ = CnsSI(cnf(E)). If 2 ∈ S∗ then the entailment is valid.

Proof. As all inferences in SI preserve models, any model of the
clausal embedding cnf(E) would also be a model of the empty
clause 2. However, since the empty clause doesn’t have any mod-
els, the set of clauses cnf(E) is unsatisfiable and, by construction
of the embedding, E is valid. �

4.3 Completeness by model generation
The completeness of the SI proof system is proved by showing
that, if the system is unable to derive the empty clause from the
clausal embedding of an entailment, then it is possible to build a
counterexample for the entailment.

The sketch of the proof is as follows: In section 3.3 we described
a construction that generates a convergent relation R as a model of

a satisfiable set of pure clauses and, furthermore, how this relation
induces a corresponding stack sR. What remains to be done is, after
a suitable relation R is fixed, to build a corresponding heap that is
used to refute a given entailment. For this we introduce the notion
of the graph of a spatial atom Σ; in particular we show that if Σ is
well-formed, then its graph grR Σ is actually a heap.

Given a spatial atom Σ, we also define its normalization with
respect to the relation R and prove that normalization inferences
are able to ‘normalize’ the spatial atom. Then we prove that well-
formedness inferences make sure that the normalized ΣR is indeed
well-formed. Finally we show that if unfolding inferences are able
to successfully rewrite a spatial atom Σ′R into another ΣR, then
sR |= Σ→ Σ′. Otherwise, if the unfolding fails, then it is possible
to tweak the graph grR Σ into a counterexample showing that
sR, h 6|' Σ→ Σ′; and thus allows us to refute entailments.

Now that we have sketched the main idea of the proof, we are
ready to delve into its details. We start by defining, as promised,
the graph and the normalization of a spatial atom with respect to a
given relation R.

Definition 4.1. The graph of a basic spatial atom S with respect to
a convergent relation R is grR S = {x̂⇒ ŷ} if either

• S ≡ next(x, y), or
• S ≡ lseg(x, y) and x̂ 6= ŷ;

and grR S = ∅ otherwise. The graph of Σ ≡ S1 ∗ · · · ∗ Sn is
defined as grR Σ = grR S1 ∪ · · · ∪ grR Sn.

Definition 4.2. Given a spatial atom Σ and a convergent relation
R, the normal form of Σ with respect toR is the atom ΣR obtained
by (1) replacing each constant symbol x occurring in Σ with its
normal form xR, and then (2) removing any trivial basic atoms of
the form lseg(x, x).

For example, given a relation R = {w⇒ y} and an spatial
atom Σ ≡ lseg(x, y) ∗ lseg(y, w) ∗ lseg(y, z) ∗ next(w, y), the
normalized ΣR ≡ lseg(x, y)∗ lseg(y, z)∗next(y, y), and its graph
is given by grR Σ = {x̂⇒ ŷ, ŷ⇒ ẑ, ŷ⇒ ŷ}. As the following
lemma shows, this normal form is useful since it allows to quickly
determine the relationships between an atom Σ, a relationR and its
graph grR Σ.

Lemma 4.1. Given a spatial atom Σ and a convergent relation R:

1. grR Σ = grR ΣR and sR |= Σ↔ ΣR;
2. if two constants x 6≡ y occur in ΣR, then R∗ 6|' x' y;
3. if ΣR is well-formed, then h = grR Σ is a heap and sR, h |= Σ;

Proof. Both claims in the first item follow from the observation
that the evaluation x̂ = ŝR(x) = ŝR(xR) or, in other words, the
stack sR cannot distinguish between a constant x and its normal
form xR. Furthermore, since trivial atoms the form lseg(x, x) have
an empty graph and are only satisfied by the empty heap, they can
be safely removed from ΣR.

The second item trivially holds since the constants x, y in ΣR
are already in their normal forms and, if x 6≡ y, then R∗ 6|' x' y.

For the last item let ΣR ≡ S1 ∗ · · · ∗ Sn, and take hi = grR Si
for each basic spatial atom in ΣR. Note that if xi is the address of
the basic atom Si, and since there are no trivial atoms in ΣR, then
necessarily domhi = {x̂i}. Because ΣR is well-formed it follows
that h = h1 ∗ · · · ∗ hn is indeed a heap (i.e. nil /∈ domh and any
two heaps hi, hj with i 6= j have disjoint domains). Moreover,
by construction sR, hi |= Si and, therefore, sR, h |= ΣR. But, by
definition, h = grR ΣR and, from the first item, it follows that both
h = grR Σ and sR, h |= Σ as well. �

Definition 4.3. Given a spatial clause C ≡ Γ→ ∆,Σ, a relation
R is said to force the spatial atom Σ, denotedR,C Σ, ifR is not

a model of the pure part of the clause, i.e. R∗ 6|' Γ→∆. Similarly,
for a clause C ≡ Γ,Σ→∆, we writeR,C ¬Σ ifR∗ 6|' Γ→∆.

Intuitively, if R,C Σ (resp. ¬Σ) then the model induced by
R forces the spatial atom Σ to be true (resp. false) in order to
satisfy the clause C. The following three lemmas are at the core
of our main result, as they explicate the role of normalization, well-
formedness and unfolding inference rules in the SI proof system.

Lemma 4.2 (Normalization). Let S∗ be a set of pure clauses
saturated with respect to I, let R = Gen(S∗), and let C be a
spatial clause. If R,C Σ (resp. ¬Σ) then there is a clause C′

such that S∗, C `N C′ and R,C′ ΣR (resp. ¬ΣR).

Proof. More generally let 〈R, g〉 = Gen(S∗) be the generated
relation and its selection function. By definition, if R,C Σ for
a clause C ≡ Γ→ ∆,Σ, then the relation R 6|' Γ→ ∆. Now,
if there is a constant symbol x occurring in Σ such that x 6≡ xR,
there should be a rule x⇒R y for some y and, from Lemma 3.1,
a clause D ≡ g(x ⇒R y) = Γ′ → x ' y,∆′ ∈ S∗ such that
R∗ 6|' Γ′ → ∆′. An application of the normalization rule N1
between C and D yields a clause C1 such that S∗, C `N C1,
also R,C1 Σ[y/x] and the spatial atom is closer to its normal
form. Iterating this process all constant symbols are rewritten to
their normal form. Finally, trivial atoms are removed with the rule
N2 to yield a clause C′ such that S,C `N C′ and R,C′ ΣR.

An analogous argument using normalization rules N3 and N4
shows that if R,C ¬Σ then a clause C′ is derived such that
S,C `N C′ and R,C′ ¬ΣR. �

As a result of this lemma, for a spatial clause C we allow our-
selves to write Norm(〈R, g〉; C) to denote any such clause C′

where the spatial atom Σ has been normalized to ΣR. Furthermore,
from the proof it follows that given the relation R and the clause
selection function g, it is possible to compute a normalized C′ in a
straightforward way without requiring any search.

The following lemma deals with rules for well-formedness, and
shows how they ensure that a normalized atom ΣR is indeed well-
formed. To simplify the notation, we use PCnsX (S) as a shorthand
for the set Pure(CnsX (S)) of pure clauses that are derived from
S with inferences in X .

Lemma 4.3 (Well-formedness). Let S∗ be a set of pure clauses
saturated with respect to I, let R = Gen(S∗), and let C be a
spatial clause such that R,C ΣR. If PCnsW({C}) ⊆ S∗ and
2 /∈ S∗ then ΣR is well-formed.

Proof. Since R,C ΣR, the clause C is of the form Γ→∆,ΣR
and R∗ 6|' Γ→∆. Moreover, since 2 /∈ S∗, by Theorem 3.1 the
relation R∗ |' S∗ and, by hypothesis, R∗ |' PCnsW({C}).

Now, if ΣR were not well-formed then one of the inference
rules inW would apply—either W1 or W2 if there is a nil address
in ΣR, or one of W3, W4 or W5 if there are two basic spatial
atoms with the same address—to derive a pure clause D such that
C `W D but R∗ 6|' D, and thus contradicting the fact that the
relation R∗ |' PCnsW({C}).

For example, if there is a basic atom lseg(nil, y) occurring in ΣR
then nil 6≡ y, because the atom is not trivial, and by Lemma 4.1 it
follows that R∗ 6|' nil ' y. Applying the rule W2 to C, a pure
clause is derived such that R∗ 6|' Γ→ nil' y,∆. �

Observe that there is no search involved in the computation of
PCnsW({C}), as it is enough to match C against the premises
of rules in W to immediately compute its consequences. Finally,
the last of these lemmas formalzes the application of unfolding
inferences in the proof system SI.

Lemma 4.4 (Unfolding). Let S∗ be a set of pure clauses satu-
rated with respect to I, let R = Gen(S∗), and let C, C′ be spa-
tial clauses such that R,C ΣR and R,C′ ¬Σ′R. If the set
PCnsU ({C,C′}) ⊆ S∗, 2 /∈ S∗, and ΣR is well-formed, then
there is an h such that sR, h 6|= Σ→ Σ′.

Proof. Since the atom ΣR is well-formed, from Lemma 4.1, it
follows that sR, h |= ΣR where h = grR ΣR. Now, if sR, h 6|= Σ′R
we are done, as our h satisfies the conditions of the lemma.

Assume that otherwise, sR, h |= Σ′R. Now, take the normalized
atom Σ′R ≡ S′1 ∗ · · · ∗ S′n with no trivial basic atoms, it follows
that the graph h = grR ΣR = h′1 ∗ · · · ∗ h′n for some non-empty
heaps h′i such that sR, h′i |= S′i. In particular, since grR ΣR is
the separated union of graphs for basic atoms in ΣR, for each h′i
there is an atom Ti occurring in ΣR for which h′i = grR Ti and,
moreover, the spatial atom ΣR ≡ T1 ∗ · · · ∗ Tn.

We now show that either: (a) unfolding inference rules are able
to derive from {C,C′} a clause C′′ such that R,C′′ ¬ΣR by
‘rewriting’each atom S′i in Σ′R into the corresponding Ti in ΣR or
(b) h can be fixed to satisfy the statement of the theorem. Proceed
for each S′i as follows:

• S′i ≡ next(x, y). Then the graph grR Ti : x̂⇒ ŷ is an edge and
the spatial atom Ti ≡ f(x, y). If the symbol f ≡ next then,
since S′i ≡ Ti, the atom Si has been rewritten into Ti. For
the alternative, f ≡ lseg, the case (b) holds since then the pair
(sR, h[x̂⇒ w;w⇒ ŷ]), where w /∈ domh, would be a model
of Σ but not of Σ′.

• S′i ≡ lseg(x, z). Then the graph grR Ti : x̂⇒∗ ẑ is a simple
path and the spatial atom Ti ≡ f1(x1, x2) ∗ · · · ∗ fk(xk, z)
where x1 ≡ x. For each 1 ≤ j ≤ k, let

Ti,j = f1(x1, x2) ∗ · · · ∗ fj−1(xj−1, xj) ∗ lseg(xj , z) ,

i.e. the first j − 1 basic spatial atoms from Ti followed by the
atom lseg(xj , z). Note that Ti,1 ≡ S′i, while Ti,k is identical to
Ti except possibly for fk. For each 1 ≤ j < k we will prove that
if {C,C′} `U Cj for a clause such thatR,Cj ¬ΣR[Ti,j/S

′
i];

then a clause Cj+1 such that R,Cj+1 ¬ΣR[Ti,j+1/S
′
i] can

be derived by unfolding S′i and ‘walking’ over Ti according to
the following two cases:

fj ≡ next. Since xj 6≡ z because the graph of Ti is a simple
path,R∗ 6|' xj'z and the rule U2 rewrites Ti,j into Ti,j+1.
fj ≡ lseg. If z 6≡ nil then the inference rule U3 does the
rewrite, and if z is the address of an atom in ΣR then either
U4 or U5 should apply. In the remaining case—when the
symbol y 6≡ nil, z is not the address of any basic atom in
ΣR and therefore ẑ /∈ domh—again (b) holds since then
the interpretation (sR, h[ŷk1⇒ ẑ; ẑ⇒ ŷk]) is a model of Σ
and not of Σ′.

So we have shown that it is possible to rewrite S′i into Ti,k,
which is identical to Ti except if fk ≡ next. But in such case,
since xk 6≡ z, the unfolding rule U1 rewrites Ti,k into Ti.

From the previous argument if (b) is proved then again we are
done, otherwise the rewrite in (a) is successful and we derive a
clause C′′ such that R,C′′ ¬ΣR. But from hypothesis we also
had R,C ΣR and an application of the spatial resolution rule
SR derives a pure clause D such that R∗ 6|' D. However this is a
contradiction, since by construction D ∈ PCnsU ({C,C′}) ⊆ S∗,
and the relation R was supposed to be a model of D. �

One more time, from the argument of the proof it follows that
there is no search required in order to compute the clauses, if
any, in the set PCnsU ({C,C′}). This is a key property of our
proof system: since R,C ΣR and ΣR is normalized, the basic
atoms in ΣR guide the application of unfolding inferences in a

1: function prove(Π ∧ Σ→Π′ ∧ Σ′)
2: S := Pure(cnf(Π ∧ Σ→Π′ ∧ Σ′))
3: do
4: repeat
5: S∗ := CnsI(S)
6: if 2 ∈ S∗ return valid
7: 〈R, g〉 := Gen(S∗)
8: C := Norm(〈R, g〉; ∅→ Σ)
9: S := S∗ ∪ PCnsW({C})

10: until S = S∗
11: if R 6|' Π′ return c-example(S∗, C)
12: C′ := Norm(〈R, g〉; Π′+,Σ′→Π′−)
13: S := S∗ ∪ PCnsU ({C,C′})
14: if S = S∗ return c-example(S∗, C, C′)
15: loop

Figure 3. Algorithm for entailment checking

deterministic manner; thus eliminating the nondeterminism due
to the associativity-commutativity of the separating conjunction.
After having finished the proofs of these lemmas, we are ready to
show the completeness of our proof system SI.

Theorem 4.2 (Completeness). Let E ≡ Π ∧ Σ→ Π′ ∧ Σ′ be an
entailment, and let S∗ = CnsSI(cnf(E)). If 2 /∈ S∗ then the
entailment is not valid (i.e. there is a counterexample).

Proof. Let S∗' = Pure(S∗) be the subset of the pure clauses in
the saturated set S∗. Since 2 /∈ S∗ then neither 2 /∈ S∗' and, by
Theorem 3.1, the relation R is a model of S∗'. Moreover, from the
definition of cnf(E), the relation R∗ |' Π.

Since the clause C ≡ ∅ → Σ ∈ cnf(E), and R∗ 6|' 2 we
have that R,C Σ. From Lemma 4.2, it follows that there is a
spatial clause Cn, derived by normalization inferences, such that
R,Cn ΣR. Furthermore, since 2 /∈ S∗' and S∗ is already
saturated with respect to W rules, by Lemma 4.3 it follows that
the spatial atom ΣR is well-formed. Then, from Lemma 4.1, there
is a heap h such that sR, h |= Σ. Also, since R∗ |' Π, from
Theorem 3.2 we get that sR, h |= Π. Indeed the pair (sR, h) is
a model of Π ∧ Σ.

Now, if R∗ 6|' Π′ we are done since, also from Theorem 3.2,
sR, h 6|= Π′ and we have found a counterexample. Otherwise, if
R∗ |' Π′ then, equivalently,R∗ 6|' Π′+→Π′− and, since the clause
C′ ≡ Π′+,Σ→Π′− ∈ cnf(E), we have thatR,C′ ¬Σ. Again by
Lemma 4.2 there is a clause C′n derived from C′ by normalization
rules such that R,C′n ¬Σ′R. In this case all the assumptions of
Lemma 4.4 are satisfied and a suitable h′ such that the pair (sR, h

′)
invalidates the entailment should therefore exist. �

5. Algorithm for entailment checking
In the previous section we established the soundness and complete-
ness of our proof system for the fragment of separation logic under
consideration. We now turn our attention to use the insight gained
in the construction of such a proof, in order to build an efficient
algorithm for proving the validity of entailments.

Along the lines of the proof of completeness, the algorithm for
checking an entailment E ≡ Π ∧ Σ→ Π′ ∧ Σ′, which is given
as pseudocode in Figure 3, emerges from a careful interleaving of
inferences using: superposition reasoning for pure clauses (line 5),
normalization inferences (lines 8 and 12), well-formedness infer-
ences (line 9), and unfolding inferences (line 13).

The algorithm works by incrementally building a set S with all
the pure clauses that are derived from cnf(E). Initially S is set

1
:∅
→

lseg
(a
,b)∗

lseg
(a
,c)
∗
n
ext(c,d

)∗
lseg

(d
,e)

W
5

2
:∅
→

c'
a
,b'

a
1

N
1

3
:∅
→
b'

a
,lseg

(a
,b)∗

lseg
(a
,a

)
∗
n
ext(a

,d
)∗

lseg
(d
,e)

N
2

4
:∅
→
b'

a
,
lseg

(a
,b)∗

n
ext(a

,d
)
∗
lseg

(d
,e)

W
4

5
:∅
→

b'
a

1
N
1

6
:∅
→

lseg
(a
,a

)
∗
lseg

(a
,c)∗

n
ext(c,d

)∗
lseg

(d
,e)

N
2

7
:∅
→

lseg
(a
,c)∗

n
ext(c,d

)∗
lseg

(d
,e)

...5
8

:
lseg

(
b
,c)∗

lseg
(c,e)→

∅
N
3

9
:
lseg

(a
,c)∗

lseg
(c,e)

→
∅

U
2

1
0

:
lseg

(a
,c)∗

n
ext(c,d

)∗
lseg

(c,e)
→
c'

e

...7
S
R

1
1

:∅
→

e
'
c

1
2

:
c'

e
→
∅

I
1
3

:
2

Figure
4.

Prooftree
forthe

entailm
ent:

c6'
e
∧
lseg

(a
,b)∗

lseg
(a
,c)∗

n
ext(c,d

)∗
lseg

(d
,e)→

lseg
(b,c)∗

lseg
(c,e)

to the subset of pure clauses in the clausal embedding of E, i.e.
S := {∅→A | A ∈ Π+} ∪ {A→∅ | A ∈ Π−}.

The inner loop in lines 4–10 will first saturate the set S with
superposition inferences using the proof system I and, if the empty
clause is derived in such process, the entailment is proved as valid.
Otherwise the algorithm continues using the pair 〈R, g〉 generated
from the saturated set S∗ to normalize the clause ∅→Σ ∈ cnf(E)
into a clause of the form C := Γ→ ΣR,∆. Finally S is updated
with the set of pure clauses that are derived from C using well-
formedness inference rules inW . The loop repeats until either the
entailment is proved valid, or a fixpoint is reached when S = S∗.
Moreover, in the later case, we know that the spatial atom ΣR in C
must be well-formed.

If we exit the inner loop, the clause Π′+,Σ′ → Π′− ∈ cnf(E)
is then normalized to a clause of the form C′ := Γ′,Σ′R → ∆′,
and pure clauses derived from {C,C′} using unfolding inference
rules in U are added to S. If no new clauses are derived, then
from Lemma 4.4 it is possible to build a counterexample for the
entailment. Otherwise a new pure clause has been discovered and
the main loop of the function iterates.

Theorem 5.1. The function prove(E) in Figure 3 terminates, is
sound and complete.

Proof. Soundness of the algorithm immediately follows from the
soundness of the SI proof system. And the algorithm terminates
since the growing set S is bounded by PCnsSI(E), which is itself
bounded by the finite number of distinct pure clauses which can be
written with the constant symbols occurring in E.

Completeness follows from the following invariants: The nor-
malized clause C computed in line 8 satisfies R,C ΣR (c.f.
Lemma 4.2); after exiting the inner loop in line 10 alsoR,C ΣR
and ΣR is well-formed (c.f. Lemma 4.3). In particular, upon exiting
the loop, it is proved that Π∧Σ is satisfiable by a model (sR, h); if
at this point R∗ 6|' Π′ we have found a counterexample. Otherwise
the C′ computed in line 12 satisfies R,C Σ′R (c.f. Lemma 4.2);
and if after line 13 a fix-point is detected, we have also found a
counterexample (c.f. Lemma 4.4). �

In order to get a more concrete feeling of how the algorithm
works, let us run again through the example from Section 2 to
establish the validity of the entailment E given by

c 6' e ∧ lseg(a, b) ∗ lseg(a, c) ∗ next(c, d) ∗ lseg(d, e)

→ lseg(b, c) ∗ lseg(c, e) .

The algorithm begins with S = {D1}, whereD1 ≡ c'e→∅ is the
only pure clause in cnf(E). Then S∗ = CnsI(S) = S is trivially
computed. No clauses are selected since R = Gen(S∗) = ∅ is a
model of S∗; and normalization leaves the clause C := ∅ → Σ,
where Σ ≡ lseg(a, b) ∗ lseg(a, c) ∗ next(c, d) ∗ lseg(d, e), intact.

Now the well-formedness rule W5 derives from C a new pure
clause D2 ≡ ∅ → a ' b, a ' c. The inner loop iterates and the
saturated set S∗ := CnsI({D1, D2}) is computed. Assume an
order a ≺ b ≺ c and thus, D2 is selected to generate the relation
R = Gen(S∗) = {c⇒ a}. Now normalization rewrites the input
clause ∅ → Σ into C := ∅ → a ' b,ΣR, where the spatial atom
ΣR ≡ lseg(a, b) ∗ next(a, d) ∗ lseg(d, e).

This time, the inference rule W4 derives from C a third pure
clause D3 ≡ ∅ → a ' b. Another iteration of the inner loop
now updates S∗ := CnsI({D1, D2, D3}), which are satisfied by
selecting D3 and producing R = Gen(S∗) = {b⇒ a}; while
normalization rewrites the input clause ∅ → Σ into C := ∅ → ΣR
where ΣR ≡ lseg(a, c) ∗ next(c, d) ∗ lseg(d, e).

At this point no more well-formedness rules in W apply, we
have reached a fixpoint. Note that, indeed, ΣR is finally a well-
formed atom. We exit the inner loop and proceed to normalize the

Time (secs.)

Vars. Plseg P 6' % Valid jStar Smallfoot SLP

10 0.10 0.20 54 300.08 13.46 1.02
11 0.09 0.15 50 (16%) 27.02 1.06
12 0.09 0.11 54 (3%) 86.75 1.46
13 0.08 0.11 55 (1%) 119.66 1.48
14 0.07 0.11 53 (10%) 153.93 1.74
15 0.06 0.12 52 (8%) 155.72 1.73
16 0.05 0.17 50 (9%) 140.95 1.59
17 0.05 0.13 54 (3%) 258.31 2.15
18 0.04 0.20 49 (11%) 176.46 1.88
19 0.04 0.15 50 (5%) 383.26 2.15
20 0.04 0.11 52 (0%) (90%) 2.65

Table 1. Benchmarking 1000 random instances of F →⊥.

Time (secs.)

Vars. Pnext % Valid jStar Smallfoot SLP

10 0.70 53 (10%) 28.50 1.29
11 0.69 53 (3%) 56.72 1.24
12 0.69 53 (1%) 106.69 1.49
13 0.70 53 (1%) 166.53 1.82
14 0.69 53 (0%) 271.48 2.19
15 0.69 52 (0%) 404.61 2.49
16 0.69 49 (0%) (80%) 2.68
17 0.71 53 (0%) (79%) 3.06
18 0.70 49 (0%) (49%) 3.60
19 0.70 53 (0%) (30%) 3.65
20 0.70 49 (0%) (19%) 3.87

Table 2. Benchmarking 1000 random instances of F →G.

clause lseg(b, c) ∗ lseg(c, e)→∅ ∈ cnf(E) into the corresponding
clause C′ := Σ′R → ∅ where Σ′R ≡ lseg(a, c) ∗ lseg(c, e). Then
the application of unfolding is successful since, from C and C′, we
derive the new pure clause D4 ≡ ∅→ e ' c, add it to S, and start
a new iteration of the main loop.

However now the set S∗ = CnsI(S) is inconsistent, since the
clauses D1, D4 ∈ S are contradictory and therefore 2 ∈ S∗. This
proves that the original entailment E is indeed valid. Furthermore,
from the run of this algorithm it is possible to reconstruct a proof
for the unsatisfiability of cnf(E), which is shown in Figure 4. The
figure shows how the empty clause 2 is derived from the set of
input clauses cnf(E) using the appropriate inference rules from
the SI proof system. Each derived clause is numbered, and vertical
dots are used to denote the reuse of a clause previously derived in
the tree. The ‘active’ part of each clause, on which the respective
inference operates, is also highlighted with a frame box.

6. Experimental evaluation
In order to empirically evaluate of the algorithm that we described
in the previous section, we implemented a theorem proving tool
for separation logic entailments that we call SLP. The tool is
implemented in Prolog and consists of about a hundred lines of
code to encode the logic of the algorithm in Figure 3 together
with a declarative specification of the inference rules of the SI
proof system. The pure model finder is implemented in about fifty
lines of code, and an additional four hundred lines are for reading
the program input, encoding into and manipulating internal data
structures, as well as pretty printing.

Time (secs.)

Copies jStar Smallfoot SLP

1 0.30 0.01 0.11
2 0.37 0.07 0.06
3 0.89 1.03 0.08
4 2.65 9.53 0.13
5 9.44 55.85 0.38
6 38.09 245.69 2.37
7 166.86 (64%) 20.83
8 (30%) (15%) 212.17

Table 3. Benchmarking ‘clones’ of Smallfoot examples.

In a series of benchmarks, we compare the performance of
our tool with two other available state-of-the-art verification tools:
Smallfoot [6], and jStar [16]. Both of these tools take as input an-
notated functions with pre- and post-conditions (respectively in C
or in Java) and, through a process of symbolic execution, generate
a number of verification conditions that have to be discharged in
order to prove the validity of the program specifications.

Each of this verifications conditions corresponds to an entail-
ment check which could be alternatively discharged by our tool.
Note that, currently, SLP does not perform verification or sym-
bolic execution or programs. Indeed, what we want to compare is
only the performance of SLP against the entailment checkers im-
plemented in Smallfoot and jStar. This is easily done with jStar,
which provides a command run_logic with direct access to the
prover; while, in the case of Smallfoot, queries to the entailment
checker can be faked with minimal overhead by asking it to verify
no-op functions of the form

fun(vars) [F] { } [G]

which are valid if, and only if, the entailment F →G holds.
In order to benchmark these separation logic provers on a

wide class of formulas with increasing complexity, we first gener-
ated some synthetic entailments according to two different random
distributions. The first of these distributions generates entailment
checks of the form Π∧Σ→⊥, with n program variables from the
set Var = {x1, . . . , xn}, as follows:

• if i 6= j, with probability Plseg include lseg(xi, xj) in Σ;
• if i < j, with probability P 6' include xi 6' xj in Π.

Note that lseg edges, as well as pure inequalities, are chosen at ran-
dom independently of each other. Furthermore, this kind of entail-
ments can be proved (or refuted) by superposition, normalization
and well-formedness rules only (i.e. the inner loop in the algorithm
of Figure 3). Specifically: if these rules are able to prove that Π∧Σ
is inconsistent, then the entailment is valid; conversely if these rules
are enough to build a model for Π ∧ Σ, then the entailment has a
counterexample.

Moreover, note that for fixed values of n and Plseg, we can use
the parameter P 6' to tune the proportion of generated entailments
that turn out to be valid. When P 6' = 0, then Π is empty, there
is a trivial model for Σ—the one which makes all variables equal
to nil—and the entailment is invalid. Conversely, if P 6' is high
enough, adding inequalities between pairs of variables constrains
the space of models for Π ∧ Σ to the point where, with high
probability, it becomes empty and renders the entailment valid. We
use this feature to calibrate the model so that, roughly, about half
of the generated entailments are valid.

Each row in Table 1 shows the time spent by each of the
provers—jStar, Smallfoot, and SLP—to check 1000 randomly
generated entailments with parameters ranging from 10 to 20 vari-

ables. Each time the provers were run with a single input file con-
taining all the entailments to check, so that we don’t have to pay
the time of starting up the process a thousand times. When a prover
timed out after 10 minutes of execution, we show in parenthesis the
percentage of the instances that were successfully solved before
hitting the time limit. SLP outperforms the other proves by several
orders of magnitude, solving thousands of instances not in minutes
but in a few seconds.

Our second random distribution stresses the role of unfolding
inferences in the entailment checks. Again we assume a fixed set
of n program variables Var = {x1, . . . , xn}, and we let π be
a random permutation of the indices of these variables such that
π(i) 6= i. Then the spatial atom

Σ = f(x1, xπ(1)) ∗ · · · ∗ f(xn, xπ(n))

where each f is randomly selected as either next, with probability
pnext, or lseg, with probability 1 − pnext. Note that in this case, by
construction, Σ is already well-formed. Now Σ′ starts as a copy
of Σ, and then we randomly ‘fold’ some paths in Σ′. For this we
randomly pick a variable xi and, if it appears as the address of a
basic atom that has not been folded yet, the longest path stating
from xi by yet unfolded atoms is completely folded into an atom
lseg(xi, x

∗
i), where x∗i is the last variable reached through this path.

This operation is repeated until all basic atoms have been folded.
Finally we ask to provers to check the validity of Σ→ Σ′.

In this case the parameter pnext can be used to tune the propor-
tion of valid and invalid entailments. Table 2 shows the time spent
by the provers checking 1000 randomly generated entailments with
parameters ranging from 10 to 20 variables. Again SLP outper-
forms the other provers, which have trouble figuring out the correct
unfolding required to prove/disprove each of these entailments.

Our last set of benchmarks comes from the examples included
in the Smallfoot distribution. This includes some 18 ‘real-life’ list
manipulating programs, along with some specifications to prove.
Note that these also include some examples with arbitrary data
fields (other than a next pointer) which our implementation can
already handle. This involves slight modifications to the SI rules,
not shown for brevity. For the verification of all of these programs,
Smallfoot generates about 209 verification conditions that have to
be discharged. These are actually some rather simple entailments
to check, as all the three separation logic provers are able to tackle
them all in under a second.1 In order to create more challenging
benchmarks, which still have some resemblance with those arising
from real-life applications, we make use of a simple ‘cloning’ tech-
nique. For each verification condition Π ∧Σ→Π′ ∧Σ′ generated
by Smallfoot, we generate the equivalent but more challenging

Π1 ∧ · · · ∧Πn ∧ Σ1 ∗ · · · ∗ Σn

→Π′1 ∧ · · · ∧Π′n ∧ Σ′1 ∗ · · · ∗ Σ′n

where each Πi, Σi, Π′i, and Σ′i, is a copy of the formulas in the
original entailment with their variables renamed appart.

Table 3 shows the running time spent by the provers trying to
prove or refute these 209 entailments. In this case, jStar seems to
fare better than Smallfoot, however recall that jStar is incomplete
and fails to prove 59 of the entailments which are actually valid.
Nevertheless, SLP, which is both sound and complete, outperforms
the other two provers in all of the cases.

1 With the caveat that the logic rules provided with jStar are incomplete for
the fragment of separation logic under consideration (personal communica-
tion with D. Distefano) and, therefore, unable to prove the validity of 59 of
these entailments.

7. Conclusions
In this paper we developed a proof system SI for proving the va-
lidity of separation logic entailments with list predicates. A key
result from this development is a separation from the reasoning re-
quired to deal with pure equality predicates, and the reasoning re-
quired to manipulate the spatial information of such formulas. This
enabled the design of an efficient, sound, and complete algorithm
for this kind of entailments, which leverages techniques that have
been developed in the theorem proving community from the past
three to four decades. The effectiveness of our proposed algorithm
is demonstrated by the implementation of a tool, SLP, which indi-
cates speedups of orders of magnitudes with respect to the avail-
able state-of-the-art. We expect these ideas to prove fruitful in the
further development and automation of program analysis and veri-
fication techniques for heap manipulating programs.

References
[1] T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani. Automatic

predicate abstraction of c programs. In PLDI, pages 203–213, 2001.

[2] C. Barrett and C. Tinelli. CVC3. In CAV, pages 298–302, 2007.

[3] P. Baumgartner and U. Waldmann. Superposition and model evolution
combined. In CADE, pages 17–34, 2009.

[4] J. Berdine, C. Calcagno, and P. W. O’Hearn. A decidable fragment of
separation logic. In FSTTCS, number 3328 in LNCS, pages 97–109,
2004.

[5] J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic execution with
separation logic. In APLAS, pages 52–68, 2005.

[6] J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular
automatic assertion checking with separation logic. In FMCO, 2006.

[7] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. W. O’Hearn,
T. Wies, and H. Yang. Shape analysis for composite data structures.
In CAV, pages 178–192, 2007.

[8] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. A static analyzer for large safety-critical
software. In PLDI, pages 196–207, 2003.

[9] C. Bouillaguet, V. Kuncak, T. Wies, K. Zee, and M. C. Rinard. Using
first-order theorem provers in the Jahob data structure verification
system. In VMCAI, pages 74–88, 2007.

[10] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani.
The MathSAT 4SMT solver. In CAV, pages 299–303, 2008.

[11] C. Calcagno, M. Parkinson, and V. Vafeiadis. SmallfootRG. In SAS,
pages 233–238, 2007.

[12] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional
shape analysis by means of bi-abduction. In POPL, pages 289–300,
2009.

[13] B.-Y. E. Chang and X. Rival. Relational inductive shape analysis. In
POPL, pages 247–260, 2008.

[14] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In
TACAS, 2008.

[15] L. M. de Moura and N. Bjørner. Tapas theory combinations and
practical applications. In FORMATS, 2009.

[16] D. Distefano and M. Parkinson. jStar: Towards practical verification
for Java. In OOPSLA, pages 213–226, 2008.

[17] D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis
based on separation logic. In TACAS, pages 287–302, 2006.

[18] R. Dockins, A. Hobor, and A. W. Appel. A fresh look at separation
algebras and share accounting. In APLAS, pages 161–177, 2009.

[19] B. Dutertre and L. D. Moura. The Yices SMT solver. Technical report,
Computer Science Laboratory, SRI International, 2006.

[20] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata. Extended static checking for Java. In PLDI, pages 234–245,
2002.

[21] D. Gay and A. Aiken. Memory management with explicit regions. In
PLDI, pages 313–323, 1998.

[22] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstrac-
tion. In POPL, pages 58–70, 2002.

[23] B. Jacobs and F. Piessens. The VeriFast program verifier. Technical
Report CW-520, Katholieke Universiteit Leuven, Belgium, 2008.

[24] K. Korovin and A. Voronkov. Integrating linear arithmetic into su-
perposition calculus. In Computer Science Logic (CSL’07), volume
4646 of Lecture Notes in Computer Science, pages 223–237. Springer,
2007.

[25] N. Marti and R. Affeldt. A certified verifier for a fragment of separa-
tion logic. Computer Software, 25(3):135–147, 2008.

[26] M. Méndez-Lojo and M. V. Hermenegildo. Precise set sharing analysis
for Java-style programs. In VMCAI, pages 172–187, 2008.

[27] A. Møller and M. I. Schwartzbach. The pointer assertion logic engine.
In PLDI, pages 221–231, 2001.

[28] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal.
Ynot: Dependent types for imperative programs. In ICFP, pages 229–
240, 2008.

[29] H. H. Nguyen, V. Kuncak, and W.-N. Chin. Runtime checking for
separation logic. In VMCAI, pages 203–217, 2008.

[30] R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem prov-
ing. In J. A. Robinson and A. Voronkov, editors, Handbook of Auto-
mated Reasoning, volume I, chapter 7, pages 371–443. Elsevier, 2001.

[31] A. Podelski and T. Wies. Boolean heaps. In SAS, pages 268–283,
2005.

[32] A. Podelski and T. Wies. Counterexample-guided focus. In POPL,
pages 249–260, 2010.

[33] J. Reynolds. Separation logic: A logic for shared mutable data struc-
tures. In LICS, pages 55–74, 2002.

[34] M. C. Rinard. Integrated reasoning and proof choice point selection
in the Jahob system — mechanisms for program survival. In CADE,
pages 1–16, 2009.

[35] S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape analysis via
3-valued logic. ACM Trans. Program. Lang. Syst., 24(3):217–298,
2002.

[36] J. Villard, É. Lozes, and C. Calcagno. Tracking heaps that hop with
Heap-Hop. In TACAS, pages 275–279, 2010.

[37] H. Yang. An example of local reasoning in bi pointer logic: the schorr-
waite graph marking algorithm. In SPACE workshop, 2001.

[38] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and
P. W. O’Hearn. Scalable shape analysis for systems code. In CAV,
pages 385–398, 2008.

