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Abstract

We introduce a graph-theoretic approach to extract clusters and hierarchies in complex data-sets in an unsupervised and
deterministic manner, without the use of any prior information. This is achieved by building topologically embedded
networks containing the subset of most significant links and analyzing the network structure. For a planar embedding, this
method provides both the intra-cluster hierarchy, which describes the way clusters are composed, and the inter-cluster
hierarchy which describes how clusters gather together. We discuss performance, robustness and reliability of this method
by first investigating several artificial data-sets, finding that it can outperform significantly other established approaches.
Then we show that our method can successfully differentiate meaningful clusters and hierarchies in a variety of real data-
sets. In particular, we find that the application to gene expression patterns of lymphoma samples uncovers biologically
significant groups of genes which play key-roles in diagnosis, prognosis and treatment of some of the most relevant human
lymphoid malignancies.
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Introduction

Filtering information out of complex datasets is becoming a

central issue and a crucial bottleneck in any scientific endeavor.

Indeed, the continuous increase in the capability of automatic data

acquisition and storage is providing an unprecedented potential

for science. However, the ready accessibility of these technologies

is posing new challenges concerning the necessity to reduce data-

dimensionality by filtering out the most relevant and meaningful

information with the aid of automated systems. In complex

datasets information is often hidden by a large degree of

redundancy and grouping the data into clusters of elements with

similar features is essential in order to reduce complexity [1].

However, many clustering methods require some a priori

information and must be performed under expert supervision.

The requirement of any prior information is a potential problem

because often the filtering is one of the preliminary processing on

the data and therefore it is performed at a stage where very little

information about the system is available. Another difficulty may

arise from the fact that, in some cases, the reduction of the system

into a set of separated local communities may hide properties

associated with the global organization. For instance, in complex

systems, relevant features are typically both local and global and

different levels of organization emerge at different scales in a way

that is intrinsically not reducible. We are therefore facing the

problem of catching simultaneously two complementary aspects:

on one side there is the need to reduce the complexity and the

dimensionality of the data by identifying clusters which are

associated with local features; but, on the other side, there is a need

of keeping the information about the emerging global organization

that is responsible for cross-scale activity. It is therefore essential to

detect clusters together with the different hierarchical gatherings

above and below the cluster levels. In the literature there exist

several methods which can be used to extract clusters and

hierarchies [1–3] and the application to biology and gene

expression data has attracted a great attention in recent years

[4–7]. However, in these established approaches, to extract

discrete clusters, one must input some a priori information about

their number or define a thresholding value. This introduces other

potential difficulties because complex phenomena are often

associated with multi-scaling signals which cannot be trivially

thresholded. In this paper, we propose an alternative method that

overcomes these limitations providing both clustering subdivision

and hierarchical organization without the need of any prior

information, without demanding supervision and without requir-

ing thresholding.

In recent years, several network based approaches have been

proposed to describe complex data-sets and applied to several

fields from biology [8,9] to social and financial systems [10,11].

Indeed, networks naturally reflect in their set of vertices the variety

of elements in the system, they reflect in their edges the plurality of

the interrelations between elements and they encode in their

dynamics the complex evolution and adaptation of the system [12–

16]. In this paper we apply the network paradigm to the study of

complex data-structures. In our approach a graph with con-

strained complexity is built by means of a deterministic

construction inserting recursively the most relevant links. In this

construction, complexity is constrained by embedding the graph

on an hyperbolic surface of genus g (where the genus is the

number of handles of the surface) [17,18]. The Ringel-Youngs
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theorem ensures that for n vertices the complete graph, Kn, can be

always embedded on a surface with large enough genus (g^O(n2))
[19]. Any graph is a sub-graph of Kn and therefore any graph can

be embedded on a surface. In this paper we are interested in the

limit where graphs are sparse and they are embedded on simple

surfaces. The simplest case is g~0 and the resulting graph is called

Planar Maximally Filtered Graph (PMFG) and it is a triangulation

of a topological sphere. Topologically embedded graphs on planar

surfaces (g~0) have a relatively small number of edges (O(n)) but

they have high-clustering coefficients, they can display various

kinds of degree distributions, from exponential to power-law

tailed, and they can be used as a platform for modeling other

systems [17,20–23]. It has been shown that PMFG graphs are

efficient filtering tools having topological properties associated to

the properties of the underlying system [18,24]. This makes the

PMFG a desirable tool to extract clusters and hierarchies from

complex data-sets.

Methods

The general idea at the basis of our method is to use the

topological structure of PMFG graphs to investigate the

properties of the data-sets. The PMFG is a weighted graph

where edges uv have weights wu,v which, in general, are similarity

measures (a larger weight wu,v of edge uv corresponds to a

stronger similarity between u and v). Furthermore, a distance du,v,

or more generally, a non-negative dissimilarity measure is also

associated to the edges. Specifically, the PMFG is a graph

G(V ,E,W ,D) where V is the vertex set, E the edge set, W the

edge-weight set and D the edge-distance set. A hierarchy in G can

be built from a simple consequence of planarity which imposes

that any cycle (a closed simple path with the same starting and

ending vertex) must be either separating or non-separating [25].

If we detach from the graph the vertices belonging to a separating

cycle then two disjoint and non-empty subgraphs are produced.

The simplest cycle is the 3-clique which is a key structural

element in PMFGs. An example of PMFG is shown in Fig. 1

where the separating 3-cliques are highlighted. By definition,

each separating 3-clique, kp, divides the graph G into two

disconnected parts, the interior Gin
p and the exterior Gex

p , that are

joined by the clique itself. The union of one of these two parts

and the separating clique is also a maximally planar graph. Such

a presence of cliques within cliques provides naturally a

hierarchy. The subdivision process can be carried on until all

separating 3-cliques in G have been considered. The result is a set

of planar graphs, that we call ‘‘bubbles’’, which are connected to

each other via separating 3-cliques, forming a tree [26]. In

Fig. 1(iv) the ‘‘bubble tree’’, denoted hereafter Hb, and its

construction are shown. In the bubble tree vertices bi represent

bubbles and edges bibj represent the separating 3-clique, kp,

which is connecting the two bubbles. A direction can be

associated to each edge in Hb by comparing the sums over the

weights of the edges in the PMFG connecting the 3-clique kp with

the two bubbles. Specifically, a direction can be associated to the

edge bibj by comparing the connections of kp with the interior

sub-graph Gin
p and the exterior sub-graph Gex

p and considering

the two weights

W in=ex
p ~

X

v[kp,u[G
in=ex
p

AG(v,u) ð1Þ

where AG(v,u)~wvu is the adjacency matrix of G. The direction

is given toward the side with largest weight obtaining Hb
�!

. (In the

case of equal weights in the two directions, the two bubbles are

joined into a single larger bubble.) In Hb
�!

there are three different

kinds of bubbles: (1) converging bubbles where the connected edges

are all incoming to the bubble; (2) diverging bubbles where the

connected edges are all outgoing from the bubble; (3) passage

bubbles where there are both inwards and outwards connected

edges. An example is provided in Fig. 2 where we have two

converging bubbles (b1 and b4), one diverging bubble (b3) and

one passage bubble (b2). Converging bubbles are special being the

end points of a directional path that follows the strongest

connections and we consider them as the centers of clusters. Any

bubble bi connected by a directed path in Hb
�!

to a converging

bubble ba belongs to cluster a. By construction, bubbles in cluster

a form a subtree ha
!

which has only one converging bubble ba and

all edges are directed toward ba. This is a non-discrete clustering

of bubbles because there can be multiple directed paths between

bi and two or more converging bubbles ba, bb,… . In Fig. 2(ii) the

two subtrees converging toward ba~b1 and bb~b4 are

highlighted, it is clear that in this example bubbles b2 and b3

are shared by the two subtrees. A non-discrete clustering of the

vertex set V (G) can now be obtained by assigning to each vertex

v the cluster memberships of the bubbles that contain it. In order

to obtain a discrete clustering for V (G), we uniquely assign each

vertex to the converging bubble which is at the smallest shortest

path distance (see Fig. 2 for a schematic overview). This is

achieved in two steps. First, we consider the vertices in the

converging bubbles. Some vertices belong to only one converging

bubble and, in this case, they are assigned to it (e.g. in Fig. 2

vertices v1 and v2 are assigned to ba~b1 and vertices v6, v8 are

assigned to bb~b4). Other vertices instead belong to more than

one converging bubble (e.g. vertices v3 and v4 in Fig. 2) and in

this case we look at the ‘strength’ of attachment

x(v,ba)~

P
u[V (ba)

AG(v,u)

3(jV (ba)j{2)
, ð2Þ

and assign each vertex to the bubble with largest strength. (The

notation jV (ba)j in Eq.2 indicates the number of vertices in the

vertex set of ba and 3(jV (ba)j{2) is the number of edges in the

bubble.) After this assignment, each converging bubble a has a

unique set of vertices V0(a). (There can be converging bubbles

with an empty set of vertices and, in this case, there will be no

clusters associated to them.) Second, we consider all the other

remaining vertices (e.g. vertices v5, v7 and v9 in Fig. 2). A vertex v

may belong to more than one subtree ha
!

, hb
!

… and, in this case, it

is assigned to the converging bubble that has the minimum mean

average shortest path distance

�LL(v,a)~meanfl(v,u)ju[V0(a) ^ v[V (ha
!

)g ð3Þ

with respect to all other converging bubbles. Here l(v,u) is the

shortest path distance on G from v to u (the smallest sum of

distances dr,s over any path between v and u). We have now

obtained a discrete partition of the vertex set V (G) into a number

of sub-sets V (a), V (b),… each respectively associated to the

converging bubbles ba, bb,… .

Once a unique partition of the vertex set into discrete clusters has

been obtained, we can investigate how each of these clusters is

internally structured and how different clusters gather together into

larger aggregate structures. This can be achieved with a specifically

tailored linkage procedure that builds the hierarchy at three levels.

Hierarchical Information Clustering
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1. Intra-bubble hierarchy: we first assign each vertex v[V (a) to a

bubble bi in the subtree ha
!

. Vertices in the converging bubbles

have been already assigned to the sets V0(a). For all remaining

vertices, the ones belonging to only one bubble are assigned to

such bubble (e.g. vertices v7 and v9 in Fig. 2). Whereas, vertices

that belong to more than one bubble (e.g. vertex v5 in Fig. 2)

are assigned to the bubble that maximizes the strength x(v,bi)
(Eq.2). In this way for every cluster a and for each bubble bi in

ha
!

we have a unique vertex set Va(bi) on which we can now

perform a complete linkage procedure [27] by using the

shortest path distances l(u,v) as distance matrix.

2. Intra-cluster hierarchy: we perform a complete linkage procedure

between the bubbles in ha
!

by using the distance matrix

dI
a (bi,bj)~maxfl(u,v)ju[Va(bi) ^ v[Va(bj)g: ð4Þ

3. Inter-cluster hierarchy: we perform a complete linkage procedure

between the clusters by using the distance matrix

dII (a,b)~maxfl(u,v)ju[V (a) ^ v[V (b)g: ð5Þ

With this procedure we obtain a novel linkage that starts from

the discrete clusters and at higher level joins the clusters into super-

clusters and, instead, at lower level splits the clusters into a

hierarchy of bubbles and splits the bubbles into a hierarchy of

elements. For brevity, in the rest of the paper, we will refer to our

clustering and linkage method as the DBHT technique.

The computational complexity of this method is smaller than

O(jV j3) (with jV j the number of vertices, which is equal to the

number of variables in the dataset) and it is dominated by the

construction of PMFG. Indeed, the Boyer-Myvold algorithm to

check planarity [28] runs in O(jV j) and it might have to be run for

each couple of vertices (i.e. V (V{1)=2 times). However, typically,

the algorithm terminates before the exhaustive scanning of all

edges. From empirical tests, performed on various datasets, we

Figure 1. A schematic overview of the construction of the bubble tree. (i) An example of PMFG graph made of nine vertices
V (G)~fv1,v2,v3,v4, v5,v6,v7,v8,v9g and containing three separating 3-cliques: k1, k2 and k3 . (ii) The separating 3-cliques have vertex sets:
V (k1)~fv2,v3,v4g, V (k2)~fv2,v4,v5g, and V (k3)~fv3,v4,v6g. (iii) The separating 3-cliques identify four planar sub-graphs called ‘‘bubbles’’: b1 , b2 , b3

and b4 with vertex sets V (b1)~fv1,v2,v3,v4g, V (b2)~fv2,v3,v4,v5,v6,v9g, V (b3)~fv2,v4,v5,v7g and V (b4)~fv3,v4,v6,v8g. (iv) The graph can be viewed
as a ‘‘bubble tree’’ made of four bubbles connected through three separating 3-cliques.
doi:10.1371/journal.pone.0031929.g001
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measured an overall runtime of O(jV ja) with a*2:7. (See

Supporting Information S1 and S2.)

Results

In this section, we apply the DBHT technique to various data

sets ranging from artificial data with known clustering and

hierarchical structures to real gene expression data. Comparisons

are made between the results retrieved by the DBHT technique

and some of state-of-the-art cluster analysis techniques such as k-

means++[29], Spectral clustering via Normalized cut on k-nearest

neighbor graph (kNN-Spectral) [30,31], Self Organizing Map

(SOM) [32] and Q-cut [33]. Let us here stress that all these

techniques –except DBHT– are non-deterministic and require

some a priori information in order to setup the initial parameters.

To compare with the DBHT technique, we run the other

techniques for a broad range of parameters and pick the set of

parameters that are best performing in average. This is an

important negative bias against the DBHT technique that

however, as we shall see shortly, can still outperform consistently

the state-of-the-art counterparts. We also tested the capability of

DBHT technique to correctly detect the hierarchical organization

by applying it to known synthetic datasets and comparing the

results with the outcomes from average and complete linkage

techniques. Furthermore, we explored the meaningfulness of the

hierarchical gathering of clusters and the significance of their

subdivision in sub-clusters by looking at the functional properties

of these gatherings and splittings in real datasets.

Tests DBHT clustering on synthetic data
We have evaluated performance of the clustering techniques by

comparing their outcomes with the known artificial clustering

structure by using a popular external validity index: the adjusted

Rand index [34] which returns 1 for a perfect match and in average

0 for a random guess. Specifically, we have generated correlated

data-series by using a multivariate Gaussian generator (MVG) [35]

that produces N stochastic time series yi(t) of length T~10|N

with zero mean and Pearson’s cross-correlation matrix R that

approximates an input correlation structure R� which is a block-

diagonal matrix where the blocks represent the clusters and may

have different sizes. The matrix R� has all ones on the diagonal, it

has zero correlations outside the blocks (rou�~0) and it has a

correlation value rin� inside the blocks. Furthermore, we have

added a number Nran of random correlations unrelated to the

cluster structure. We have also generated multivariate Log-Normal

distributions by taking the exponential of MVG series generated by

using reference correlation R�log which is devised to retrieve the

correct approximation of R� with log-normal statistics [36]. To

these correlated series we have added a noise gi(t) obtaining

yi’(t)~yi(t)zcsigi(t), where si is the standard deviation of yi(t)
and c is a constant that can be used to tune the relative amplitude of

Figure 2. Illustration of the DBHT technique. (i) Construction of the directed bubble tree where directions are given to the 3-cliques k1 , k2 and
k3 (from Fig. 1) accordingly with the largest weight W in

p and W out
p (see Eq.1). In this example we have two converging bubbles: ba~b1 and bb~b4 . A

unique set of vertices can be associated to each of the two converging bubbles ba and bb where vertices shared by both the converging bubbles (i.e.
the vertices v3 and v4) are assigned accordingly with the largest strength x (Eq.2). (ii) All the other non-assigned vertices (i.e. v5 , v9 and v7) are
associated to the cluster with minimum average shortest path length �LL (Eq.3). (iii) The vertex set is uniquely divided into two clusters respectively
associated to the two converging bubbles: V (a)~fv1,v2,v3,v5g and V (b)~fv4,v6,v7,v8,v9g. (iv) The hierarchical organization and the clustering
structure can be represented with a dendrogram.
doi:10.1371/journal.pone.0031929.g002
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noise. We have tested normally distributed (p(g)!exp({g2=2)),
log-normally distributed (p(g)!exp({log(g)2=2)) or power-law

distributed (p(g)!1=gaz1) noises. We have used different values for

the relative amplitude of noise c and, in the case of power-law

distributed noise, we have also varied the exponent a. By increasing

the effect of noise and/or the number of random elements, the

Pearson’s cross-correlation matrix R passes from a very well defined

structure similar to R� to a less defined structure where the

difference between the average measured intra- and inter-cluster

correlations in R, vrin
w{vrou

w, becomes negligible.

Figure 3 compares the performance of the DBHT technique

with k-means++, SOM, kNN-Spectral and Q-cut for correlated

synthetic datasets consisting of 129 data series generated both with

normal and log-normal statistics, with normal or power law noise

with rin�~0:9, rou�~0 and Nran~25. This example refers to a

rather extreme case where the clusters have highly dis-homoge-

neous sizes with one large cluster with 64 elements and eight

clusters with 5 elements each. As one can see from Fig. 3 in this

case the DBHT technique is strongly outperforming the other

methods. In the Supporting Information S1, we report on a large

number of cases where we demonstrate that consistently the

DBHT technique is better, or at least equivalent, to the best

performing counterparts for a very broad range of combinations of

different kinds of artificial data. Let us here note that stochastic

techniques such as k-means++ and SOM are particularly sensitive

to noise distributions and tend to perform poorly with fat-tailed

distributed noise. On the other hand, the Qcut technique carries

an inherent resolution limit that over-shadows small clusters [37].

The DBHT technique instead is less affected by these factors and it

consistently delivers good performances across the range of

parameters.

Tests DBHT hierarchy on synthetic data
We have tested the capability of the DBHT technique to detect

hierarchies by simulating data with hierarchical structure such that

smaller clusters are embedded inside larger clusters making a

nested structure with different intra-cluster correlations. An

example is shown in Fig. 4(a) where we report an input correlation

R� which is a nested block-diagonal matrix with zero inter-cluster

correlation and with a structure of 4 ‘large’ clusters (64 elements

each) with intra-cluster correlation of rin�
1 ~0:7. Each of the large

clusters contains inside two ‘medium’ clusters (8 in total with 32

elements each) with rin�
2 ~0:8 that contain inside two ‘small’

clusters (16 in total with 16 elements each) with rin�
3 ~0:95. We

have simulated 30 different sets of data series of length T~10|N
by using MVG from R� with added power law noise with a~1:5
and c~0:1. We have tested the efficiency of the DBHT technique

by moving through the hierarchical levels varying the number of

clusters from only one at the top hierarchy to the number of

elements at the lowest hierarchy. Fig. 4(b) shows the dendrogram

retrieved with the DBHT technique. By following the hierarchy

from top to bottom, one can see that a structure with 4 main

clusters rapidly emerges and its partition coincides exactly with the

‘true’ partition in R�. Then these clusters correctly split into two

parts each making 8 clusters in total scoring a value of 0.97 for the

adjusted Rand index with respect to the ‘true’ partition at this

level. Finally, these 8 clusters split again producing a partition that

has an adjusted Rand index of 0.94 with respect to the ‘true’

partition at this level. The partition into discrete clusters identified

by the DBHT is almost identical with this last one having 17

clusters instead of the 16 ‘true’ clusters and achieving also an

adjusted Rand index of 0.94 (see Supporting Information S1). One

can see from Fig. 4(c,d) that, instead, the complete and average

linkages give a less clear hierarchical structure. Several other

examples are reported in the Supporting Information S1. The

better performance of the DBHT technique over linkage methods

can be explained by the fact that linkage techniques suffer from the

greedy nature of the algorithm, where a misclassification of an

element in an early stage of clustering can never be remedied

[1,3]. The rate of misclassification depends on the type of linkage

distance, with the average linkage optimized for isotropic clusters,

and complete linkage optimized for compact and well-defined

clusters. On the other hand, DBHT hierarchy is based on a

combination of linkage distance and topological constraints at

multiple hierarchical levels: bubbles, clusters, bubble tree. This

reduces the error rate with respect to the complete linkage

distance.

Figure 3. Demonstration that the DBHT technique can outperform other state-of-the-art clustering techniques, namely: k-
means++[29], Spectral clustering via Normalized cut on k-nearest neighbor graph (kNN-Spectral) [30,31], Self Organizing Map
(SOM) [32], and Q-cut [33]. The figures report the adjusted Rand indexes [34] for the comparison between the the ‘true’ partition embedded in the
artificially generated data and the partition retrieved by the clustering methods. In these examples we have eight clusters of size 5 elements and one
cluster of size 64 elements with rin�~0:9, rou�~0 and Nran~25. The plots report average values over a set of the 30 trials. The horizontal-axis reports
the gap between average intra- and inter-cluster correlations dR~vrin

w{vrou
w that becomes smaller when the noise c increases. (a) Normally

distributed correlated datasets with added Normal noise with c varying from 0 to 4. (b) Log-Normally distributed correlated datasets with added
power law noise with a~1:5 and c varying from 0 to 0.1.
doi:10.1371/journal.pone.0031929.g003
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Application of DBHT technique to Fisher’s Iris Data
One of the typical benchmark referred in clustering analysis

literature is the iris flower data set from Fisher [38]. Briefly, the

data set contains the measure of four features (i) sepal length; (ii)

sepal width; (iii) petal length; (iv) petal width, for 50 iris plants from

three different types of iris, namely (1) Iris Setosa; (2) Iris

Versicolour; (3) Iris Virginica. The data set is available from UCI

Machine Learning Repository website [39]. It is known that, the

clustering structure of the data set linearly separates one type of

Iris from the other two. The remaining two types are instead not

linearly separable and their subdivision is a classical challenge for

any clustering technique [39]. Here, in order to compute

clustering and hierarchies we have used the pair-wise Eucli-

dean distance Deuc(i,j)~Exi{xjE as dissimilarity matrix and

Reuc(i,j)~exp({
Exi{xjE2

2s2
) as similarity matrix [31], where s is

the standard deviation of Deuc(i,j) for all pairs of (i,j). From these

measures, we directly computed clustering and hierarchies via

DBHT technique obtaining the graph structure shown in Fig. 5(a)

where one can see that all the three iris types are rather well

separated occupying different parts of the graph. By extracting

three clusters from the DBHT hierarchy we observe that the first

flower type (Iris Setosa) is fully separated and the other two are

rather well divided with only a few misplacements. The DBHT

results are compared with other two graph-based techniques,

Qcut and kNN-Spectral techniques computed using Reuc for a

range of kNN~2, . . . ,(N{1). These methods are non deter-

ministic and we retained only the best partitions which give the

highest adjusted Rand score which are shown in Fig. 5(b,c). We

can observe that Qcut and kNN-Spectral techniques provide a

poorer separation of the last two flower types (Iris Versicolour

and Iris Virginica). This is quantified by the adjusted Rand index

computed by comparing with the true partition that gives 0.89 for

DBHT and 0.85 for both Qcut and kNN-Spectral. Indeed, these

last two techniques both misplace 8 elements of the two groups

whereas DBHT misplaces only six. Other two clustering

techniques, k-means++ and SOM, have been run over 30

iterations with an input number of clusters k~3, yielding to

poorer partitions with the largest adjusted Rand indexes

respectively of 0.73 and 0.80 which are well below the score

achieved by the DBHT technique. The iris flower data set and

the codes to reproduce the result in Fig. 5(a) are provided in the

Supporting Information S2.

Figure 4. Demonstration that the DBHT technique can detect clusters at different hierarchical levels outperforming other
established linkage methods. The synthetic data are generated via a multivariate Gaussian generator with added power law noise with exponent
a~1:5 and c~0:1. (a) Input correlation R� for a synthetic data structure with nested hierarchical clustering with 4 ‘large’ clusters, containing 8
‘medium’ clusters, containing 16 ‘small’ clusters. (b) Dendrogram associated with the DBHT hierarchical structure. (c) Dendrogram associated with the
Average linkage. (d) Dendrogram associated with the Complete linkage.
doi:10.1371/journal.pone.0031929.g004
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Application of DBHT technique to a benchmark gene
expression dataset

In order to validate the applicability of DBHT technique on gene

expression data, we have used a benchmark dataset collected by de

Souto et al [40] which contains 21 Affymetrix and 14 cDNA gene

expression patterns from different cancer types. For this dataset we

have compared clusters computed via DBHT technique with

clusters computed with k-means++, kNN-Spectral, and Qcut

evaluating the respective performances by using the Adjusted Rand

index [34]. Differently from DBHT that requires no prior

parameters, k-means++ and kNN-Spectral require instead infor-

mation on the number of clusters, and we therefore tested two cases:

(i) clustering with benchmark number of clusters given a priori; (ii)

clustering with an internal validity measure to estimate the optimal

number of clusters (namely: Dunn index [41], Davies-Bouldin [42]

and Silhouette width [43], see Ref. [43]). Another requirement for

kNN-Spectral is the number of nearest neighbors kNN. We have

used kNN[½2,8� (as indicated in Ref. [31]) and picked the case with

best mean performance. Also Qcut requires to choose the value of

kNN. In this case, we have used kNN[½3,5� (as suggested by Ref.

[33]) and selected the value which yields to the best Q.

The results are shown in Fig. 6. We can see that DBHT and

Qcut achieve the best average performances when the number of

clusters is not given as input. Instead, when the benchmark

number of clusters is supplied, then kNN-Spectral shows the best

mean performances, followed by DBHT and Qcut that perform

similarly, and finally k-means++. Let us stress that the true number

of clusters is an important piece of information that is not available

in most practical cases and therefore an high performance in this

case may not be of practical relevance. However, we note that,

even in this unfavorable case, the DBHT can perform extremely

well. Indeed, if we look at the performances for each sample (see

Fig. 7) we see that DBHT can achieve the best performance for

many cDNA data and for some Affymetrix data.

Let us remark that, the ‘golden standard’ clusters provided by de

Souto et al do not necessarily represent the true and meaningful

underlying structure of the gene expression data. For example, in

Fig. 8, we have analyzed in details the special case of Yeoh-v1

Affymetrix data which gives outstanding performance for kNN-

Spectral technique and poorer performance for the DBHT

technique (see Fig. 7). Fig. 8(a) shows the correlation structure R

of the data set visualized according to the known golden standard

Figure 5. Comparison between the clustering obtained via: (a) DBHT technique, (b) best Qcut and (c) best kNN-Spectral on iris
flower data set from Fisher [38]. The labels inside the symbols correspond to the three different types of flowers: (s) Iris Setosa; (v) Iris Versicolour;
(g) Iris Virginica. The shapes of the symbols correspond to the clusters retrieved by the different clustering techniques.
doi:10.1371/journal.pone.0031929.g005

Figure 6. Average Adjusted Rand index to compare performances of clustering algorithms: k-means++, Qcut, kNN-Spectral and
DBHT for the benchmark data sets collected by de Souto et al [40] (k++ indicates k-means++). The relatively high performing ‘‘Parameter
given’’ results refer to cases when the true number of cluster is given to the algorithm as input. In all the other cases the number of cluster is
computed by using internal validity measures. (a) Affymetrix data; (b) cDNA data.
doi:10.1371/journal.pone.0031929.g006
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cluster structure. One can see that, beside the golden standard

clusters, there is also a finer meaningful structure that is not

detected by kNN-Spectral but it affects instead the DBHT

clustering. In this case, the high performance of the kNN-Spectral

is a consequence of a coarse-grained picture which is not

necessarily best reflecting all the features of the dataset. In general,

in practical cases, the real clustering structure is often ambiguous

and the availability of clustering methods based on different

criteria is a key ingredient to properly explore these structures.

Often, the subdivision into distinct clusters is not well defined and

the information provided by the DBHT thechnique, concerning

the hierarchical way in which clusters split into sub-parts and in

which they merge into larger aggregates, can become essential.

Application of DBHT technique to gene expression data
set from human cancer samples

We have applied the DBHT technique to analyze gene

expression data sets collected by Alizadeh et al [44] concerning

96 malignant and normal lymphocyte samples belonging to the

three most relevant adult lymphoid malignancies, namely: Diffuse

Large B-Cell Lymphoma (DLBCL); Follicular Lymphoma (FL);

Chronic Lymphocytic leukemia (CLL); together with other 13

kinds of samples from normal human tonsil, lymph node,

Transformed Cell Line, Germinal Centre B, Activated Blood B,

and Resting Blood B. This data set has already served as a

benchmark to evaluate performance of clustering techniques on

gene expression data [33,45] and this is why we have chosen to test

our method on this referential dataset. Patients with DLBCL

cancer type have variable clinical courses and different survival

rates and there are strong indications that DLBCL classification

includes more than one disease entity [44]. The challenge for a

clustering algorithm is therefore to analyze the DLBCL genetic

profiles and individuate different subtypes of DLBCL to be

associated with different clinical courses. Indeed, various studies

have attempted to highlight genetically significant genes that can

be of clinical significance to improve the DLBCL patients’

diagnosis and clinical treatments [44,46–51]. In particular, it is

understood that DLBCL is a very heterogeneous type of

Lymphoma and there are at least three distinct subtypes which

differ in treatment methods for improved survival of the patients

[44,46,52].

We have first applied the DBHT technique on the gene

expression data by using Pearson’s correlation as similarity

measure, and correlation distance as the dissimilarity measure.

Figure 7. Adjusted Rand indexes for each sample in the de Souto et al [40] datasets. (Top) Performances for each dataset when the true
number of cluster is given as input. (Bottom) Performances for each dataset when the true number of cluster is computed by using internal validity
measures. (Left) Affymetrix data; (Right) cDNA data.
doi:10.1371/journal.pone.0031929.g007
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The DBHT clustering yielded to 11 sample-clusters, which are

shown in Fig. 9. One can immediately note that all FL samples are

gathered together in one cluster that also contains the DLCL-0009

sample, which has been associated to FL in other studies on the

same data [33,44]. Transformation of FL to DLBCL is common

[53], and this cluster suggests that DLCL-0009 may have derived

from FL, sharing therefore common gene expression patterns. We

also observe in Fig. 9 that all, except one, the CLL samples occupy

a single cluster. The missing CLL sample is attached to this cluster

and it is included in a cluster containing Resting Blood B samples

which have indeed similar expressions patterns and clinical

similarity to CLL and are often merged together by other

clustering techniques [33]. DLBCL cancer types appear in four

different sample-clusters which are however lying together in a

branch of the PMFG graph. Significantly, these clusters also

include some other GCB-like samples. Remarkably, if we look at

the patient survival rates (Table 1), we see that these four sample-

clusters are extracting DLBCL cancer subtypes with very different

clinical courses. Indeed, if we consider separately the patients with

DLBCL type of Lymphoma accordingly with the subdivision into

the four sample-clusters ‘1’, ‘5’, ‘7’ and ‘9’ (from bottom to top of

the Fig. 9), they respectively have survival rates 100%, 56%, 15%

and 29% (see Table 1 for details). In the work of Alizadeh et al [44]

survival rate differentiation in DLBCL patients was associated with

two main cancer subtypes, namely GCB-like and ABC-like, with

the latter considered more fatal than the former. We can note that,

in our clustering, sample-cluster ‘1’ contains GCB-like DLBCL,

and it also includes other GCB samples such as tonsil GCB, tonsil

GC fibroblast, and high survival rates are common in GCB-like

cancer types (see Supporting Information S1). Cluster ‘5’ is also

characterized by GCB-like DLBCL samples, however its proxim-

ity to ABC-like clusters (see Supporting Information S1), may be

the clue to relatively low survival rate in comparison to cluster ‘1’.

Cluster ‘9’ is characterized by a majority of ABC-like DLBCL to

which we may attribute its relatively low survival rate [44]. On the

other hand, cluster ‘7’, which shows a surprisingly low survival

Figure 8. Comparison between the clusters obtained with the DBHT method and the clusters obtained from kNN graph with Qcut
results for optimal Q for the dataset Yeoh-v1 Affymetrix [40]. (a) Correlation matrix structure R, which are ordered accordingly with the
‘known’ clustering structure of Yeoh-v1 data. (b, c, d) Insets: correlation matrices R ordered accordingly with the Qcut, kNN-Spectral and DBHT
respectively. The clusters are indicated on the bottom with color bars. (b, c, d) Main plots: results for Qcut, kNN-Spectral and DBHT respectively where
the ‘golden standard’ clusters for Yeoh-v1 data (as by de Souto et al [40]) are depicted in vertices of different shapes: square or circle. The computed
clusters are instead depicted in different colors, shown both in the graphs and in the color bars on the bottom of the Correlation matrix. One can
note that, despite kNN-Spectral technique gives a very good agreement with the ‘golden standard’ provided by de Souto et al, the structure
extracted by the DBHT method gives a very clean clustering partition that is clearly revealed in the visualization of the relative correlation matrix in
the inset of (d).
doi:10.1371/journal.pone.0031929.g008
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rate, has instead a significant number of GCB-like DLBCL

samples, this might signal the existence of another relevant

DLBCL subtype. The gene expression data and the codes to

reproduce the result in Fig. 6 are provided in the Supporting

Information S2.

In order to functionally validate these sample-clusters, we have

analyzed the expression profiles for 6 groups of genetic clones with

known physiological roles, namely: GCB- Germinal Center B cell

(111 clones), LyN- Lymph Node (136 clones), PBC- Pan B Cell (81

clones), Pr- Proliferation (312 clones), TC- T Cell (111 clones) and

ABC- Activated B Cell (86 clones) [44]. The significance of

regulation patterns has been evaluated by one-tailed T tests with

cut-off p-value of 0.01. The number of up-/down-regulated

profiles for each group of clones is shown in Table 2. Significant

up-/down-regulation patterns of the expression profiles in the

sample-clusters reflect the biological relevance the group of gene-

clones in each sample-cluster. We first observe that sample-clusters

containing DLBCL cancer types (e.g. cluster ‘1’, ‘5’, ‘7’ and ‘9’)

distinguish from other samples by up-regulating more clones from

Pr, hence reflecting higher proliferative index. Sample clusters

associated to DLBCL are also differentiating among themselves,

for instance, sample-clusters ‘1’ and ‘5’ both up-regulate GCB

clones but they differ significantly in the up-regulation of LyN

clones, supporting the subdivision of GCB-like DLBCL by these

sample clusters. Similarly, sample-cluster ‘7’ shows a unique

expression signature that highlights a strong up-regulation of LyN

clones in comparison to other clones. Given that this sample-

cluster is a mixture of ABC-like and GCB-like DLBCLs, and it

shows distinctively low survival rate, this again suggests that

sample-cluster ‘7’ is a different subtype of DLBCL outside of

GCB-/ABC-like classification. Overall, these results indicate that

DBHT clustering technique is able to reveal a meaningful

Figure 9. Sample-cluster structure for 96 malignant and normal lymphocyte samples from Alizadeh et al 2000 [44], the labels inside
the symbols correspond to the different sample types as listed in the legend. The DBHT technique retrieves 11 sample-clusters here
represented with different symbols (see legend). The underlying network is the PMFG from which the clustering has been computed.
doi:10.1371/journal.pone.0031929.g009

Table 1. Survival rates of cancer patients with DLBCL type of Lymphoma. The patients are divided in four groups corresponding to
the four sample-clusters containing DLBCL obtained with DBHT technique (see Fig. 6).

Sample Cluster ‘1’ Sample Cluster ‘5’ Sample Cluster ‘7’ Sample Cluster ‘9’

Cluster Size 7 9 7 20

# of DLBCL 4 9 7 17

# Survived over 5 yrs 3 (100%) 5 (56%) 1 (14%) 5 (29%)

# Died in 5 yrs 0 4 6 12

doi:10.1371/journal.pone.0031929.t001
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classification of biologically significant DLBCL subtypes which is

richer than what proposed in the original study by Alizadeh et al

[44].

Let us now move a step further and use the DBHT technique to

identify significant groups of genes that are of relevance for particular

cancer samples. Indeed, an accurate identification of significant

genes is crucial in treating the tumor cells as there are a large

number of different genetic mechanisms from which these tumor

cells originate, hence they require different treatments [54,55]. We

have therefore performed a two-way clustering: on the samples and

genes simultaneously. In this way, we can cross-tabulate the samples

against genes obtaining a simple and effective picture of significant

gene expression patterns. Let us note that with conventional

clustering techniques, the two-way clustering adds another dimen-

sion of complexity. Indeed, samples and gene expression profiles

have different dimensions and scales and therefore it is necessary to

tune the clustering parameters separately for each clustering way.

On the other hand, the DBHT technique has no adjustable

parameters and it is deterministic providing therefore a unique cross

classification without any increase in complexity. The DBHT

technique identifies 180 gene-clusters from which we have extracted

6 clusters which are significantly differentiating for sample-clusters

associated to FL, CLL and DLBCL, accordingly with a p-value

threshold of 0.01 with Bonferroni correction. The expression profiles

of these significant gene-clusters are reported in Fig. 10. We have

then validated functional significance of these gene-clusters by

performing a gene-ontology (GO) analysis to identify significant GO

terms for biological processes [56]. (See Supporting Information S1

for the statistical analysis methods and GO results.) Let us here

report on some relevant genes, from each of the 6 significant gene-

clusters, selected by choosing the most frequently appearing genes in

the GO terms. Interestingly, these genes reveal some of biologically

significant mechanisms that regulate growth of tumor cells, and that

affect survival of respective lymphoma malignancy. In particular:

N Gene cluster ‘44’ (significant for sample-cluster ‘1’): This gene-

cluster is up-regulated for sample-cluster ‘1’ in comparison to

the expressions in other sample-clusters associated to lympho-

ma. Significantly, one of its key genes is CDK1, which is a key

player in cell cycle. It has been indicated that over-expression

of CDK1 is common in DLBCL cancer types, and it is

therefore a potential therapeutic target [57].

N Gene cluster ‘4’ (significant for sample-cluster ‘4’): This gene-

cluster particularly expresses for sample-cluster ‘4’, which

consists mostly of FL samples. Among the genes in this gene-

cluster there is SYK which -indeed- has been indicated as a

promising target gene for antitumor therapy for treating FL,

where inhibition of SYK expression increases the chance of

survival [58].

N Gene cluster ‘1’ (significant for sample-cluster ‘5’): Gene cluster

1 is particularly down-regulated for sample-cluster ‘5’. This

gene-cluster contains TGF-B1 which is a well-known tran-

scription factor to regulate proliferation, in particular a

negative regulator of B-cell lymphoma which induces apoptosis

of the tumor cells via NF-kB/Rel activity [59]. This suggests

that suppression of the tumor cells by TGF-B1 would be

lessened in sample-cluster ‘5’ due to the down-regulation, and

this may contribute to the decreased chance of survival

observed in sample-cluster ‘5’ in comparison to that of sample-

cluster ‘1’.

N Gene cluster ‘4’ (significant for sample-cluster ‘7’): This gene-

cluster is slightly down-regulated for sample-cluster ‘7’, and GO

analysis extracts two genes, CDKN1B/p27Kip1 and CDKN2D/

p19, which are key tumor suppressor genes for aggresive

neoplasms [60,61]. The inhibited tumor suppressive role of

these genes might have led to aggressive growth of tumor cells

suggesting a plausible explanation for the poorest survival rate,

observed for sample-cluster ‘7’, with respect to the other

DLBCL sample-clusters (see Table 1). Indeed, it has been

suggested that p27 is associated to lymphomagenesis through

Skp2 [61] and Skp2 has been indicated as an independent

marker to predict survival outcome in DLBCL [61,62].

N Gene cluster ‘125’ (significant for sample-cluster ‘9’): This

gene-cluster shows distinct up-regulation pattern for sample

cluster ‘9’, and it includes an interesting gene ‘IL-6’. IL-6 is

known to be a central target gene in a synergistic crosstalk

between NF-kB and JAK/STAT pathway, which is a unique

feature for some DLBCL [55]. It is suggested that, these have

implications for targeted therapies by blocking STAT3

expression, a gene that is activated by IL-6 [55,63].

N Gene cluster ‘102’ (significant for sample-cluster ‘11’): This

gene-cluster particularly down-regulates the CLL sample-

cluster among all lymphoma-related clusters. Though it does

not indicate a particularly significant GO term (see Supporting

Information S1), it includes a number of genes related to

regulating tumor cell growth for CLL (see Supporting

Information S1 for the list of genes). Among these genes, let

us note IRF1, which is a well-known mediator for cell fate by

facilitating apoptosis, and it is also a tumor suppressor [64]. As

the expression of IRF1 is slightly down-regulated, we suspect

that this may contribute to the growth of CLL tumor cells.

In conclusion let us stress that these results strongly indicate that

the DBHT technique can detect relevant differentiations and

aggregations in both cancer-samples and gene-clones revealing

important relations that can be used for diagnosis, for prognosis

and for treatment of these human cancers.

Discussion

In summary, we have introduced a novel approach, the DBHT

technique, to extract cluster structure and to detect hierarchical

Table 2. Number of up-regulated (on the left) and/down-
regulated (on the right) expression profiles for each group of
clones with known physiological roles as reported in Ref. [44].

GCB LyN PBC Pr TC ABC

Sample Cluster ‘1’ 61/0 0/2 27/0 115/0 1/15 4/12

Sample Cluster ‘2’ 2/0 0/2 0/2 7/3 0/1 0/3

Sample Cluster ‘3’ 0/35 2/37 0/15 259/0 0/38 4/3

Sample Cluster ‘4’ 83/0 0/97 48/0 1/193 3/12 0/37

Sample Cluster ‘5’ 21/2 97/0 7/3 119/0 2/4 0/11

Sample Cluster ‘6’ 7/27 1/47 0/61 6/126 86/0 32/0

Sample Cluster ‘7’ 4/6 111/0 0/24 17/4 14/3 13/1

Sample Cluster ‘8’ 0/2 0/41 17/1 0/199 6/4 2/7

Sample Cluster ‘9’ 1/13 133/0 7/1 70/0 14/4 24/2

Sample Cluster ‘10’ 0/37 3/48 1/14 44/68 1/20 61/0

Sample Cluster ‘11’ 20/43 0/110 27/12 0/303 20/16 1/56

The sample-clusters are obtained by DBHT technique and labels are as in Fig. 9.
Some significant up-/down-regulation patterns, commented in the text, are
highlighted by boldface font.
doi:10.1371/journal.pone.0031929.t002
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organization in complex data-sets. This approach is based on the

study of the properties of topologically embedded graphs built from

a similarity measure. The DBHT technique is deterministic, it

requires no a-priori parameters and it does not need any expert

supervision. We have shown that the DBHT technique can

successfully retrieve the clustering and hierarchical structure both

from artificial data-sets and from different kinds of real data-sets

outperforming in several cases other established methods. The

application of the DBHT technique to a referential gene-expression

dataset [44] shows that this method can be successfully used in

differentiating patients with different cancer subtypes from gene-

expression data. In particular, we have correctly retrieved the

differentiation into distinct clusters associated with cancer subtypes

(FL, CL and DLBCL) along with a meaningful hierarchical

structure. The DBHT technique provides a meaningful differenti-

ation of the DLBCL cancer samples into four distinct clusters which

turn out to correspond to different survival rates. The application of

the DHBT clustering technique over the gene-clones identifies new

groups of genes that play a relevant role in the differentiation of the

cancer subtypes, and possibly in relevant genetic pathways which

control survival/proliferation of the tumor cells. Differently from

[44] which indicates GCB- and ABC-like DLBCL classification

under thorough supervision with biological expertise, we have found

instead, in a completely un-supervised manner, four subtypes of

DLBCL with different expression signatures that differentiate

significantly in their genetic mechanisms and biological features

resulting in well distinct survival rates, hence providing a new

perspective. It should be stressed that the DBHT technique is

addressing the problem of data clustering and hierarchical study

from a different perspective with respect to other approaches

commonly used in the literature. It therefore provides an important

alternative support in a field where the sensitivity of the results to the

kind of approach is often crucial. The DBHT technique can be

extended to more complex measures of dependency which may be

also asymmetric. In our graph theoretic approach this can be

handled by constructing topologically embedded directed graphs.

Another extension may concern the use of graph-embedding on

surfaces of genus larger than zero that will provide more complex

networks and a richer data filtering [17].

Supporting Information

Supporting Information S1 The file PaperSupporting_-

ver230112_PLoSOne.pdf contains additional information to the

Figure 10. Expression profiles for six significant gene-clusters obtained by the DHBT method. Left: Heat map of gene expression profiles
for the clusters of genes. Each row represents the expression profile from a clone, and each column represents a sample. The samples are organized
according to the DBHT hierarchy as shown on the dendrogram on the top. Significant gene-clusters are highlighted with different colors as follows
(from top to bottom, colours online): Red - gene-cluster ‘44’ (significant for sample-cluster ‘1’); Green - gene-cluster ‘109’ (significant for sample-
cluster ‘4’); Blue - gene-cluster ‘1’ (significant for sample-cluster ‘5’); Black - gene-cluster ‘4’ (significant for sample-cluster ‘7’); Magenta - gene-cluster
‘125’ (significant sample-cluster ‘9’); Yellow - gene-cluster ‘102’ (significant for sample-cluster ‘11’). The same color scheme is used on the bottom of
the heat-map to denote the corresponding sample-clusters. Right: Mean expression profile for each gene-cluster together with the expression profiles
of note-worthy gene for each sample-cluster. The x-axes report the gene clusters. The boundaries of the relevant sample-cluster for each gene-cluster
are indicated with the vertical dashed lines.
doi:10.1371/journal.pone.0031929.g010
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manuscript explaining methods, procedures and results in further

details. It consists of 16 pages, 3 tables and 11 figures.

(PDF)

Supporting Information S2 The file DHBT_codesAndData.zip is

a compressed achieve file containing the matlab code DBHT.m to

compute the DBHT clusters and hierarchies, this code calls 8

other functions: BubbleCluster8.m, CliqHierarchyTree2.m, BubbleClus-

ter8.m, clique3.m, cRand1.m, DirectHb.m, doPMFG.m, DrawPMFG.m.

The achieve also contains the code iris_demo.m and the data

matlab_iris_demo.mat which can be used to reproduce Fig. 5(a).

Demo code and dataset to reproduce Fig. 9 are instead:

ymphoma_demo.m, matlab_DLBCL_demo.mat. The ReadMe.tex file

explains code usage and installation.

(ZIP)
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