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Introduction

Graphene is a single layer of graphite, one atom thick. This sheet of carbon
atoms is completely flat, i.e. it is two-dimensional. Graphene was the first of
these two-dimensional crystals to be isolated and characterized, in a famous
study in  [, ] leading to a Nobel prize in Physics in . Graphene has
many properties that make it interesting for technological applications, such as
being extraordinarily strong and flexible, and having a high conductivity.

Since the discovery of graphene, many other two-dimensional crystals have
been manufactured and studied []. This new group of materials is interesting
due to a range of intrinsic characteristics, different from those of ordinary three-
dimensional materials. Also, the two-dimensional crystals themselves are often
very pure and well-defined; having only two dimensions leaves less space for
crystal defects and impurities which are the main source of losses in three-
dimensional crystals.

For applications, graphene and other two-dimensional crystals can be used
as building blocks, by stacking sheets with different properties, adding up to any
kind of features one wishes to have. In this way, building with two-dimensional
materials offers precise, near atomic level control of the structure. Using two-
dimensional crystals in applications also provides the possibility to control the
environment of essentially every atom in the material. This can be achieved by
placing the crystal sheet e.g. next to another material or in an electric field.
By contrast, working with standard three-dimensional materials, the different
environments for atoms at the surface and in the bulk of the material have to
be taken into account.

For using graphene in electronic applications, a solid understanding of the
electrons of graphene is crucial. From a theoretical point of view, the behavior of
electrons in graphene is also interesting in itself. The electrons being confined to
move in a two-dimensional plane makes the system fundamentally different from
electron behavior in three-dimensional materials. The confinement to the plane
causes strong interactions between the electrons, and a provides the possibility
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to study a range of effects commonly unavailable. The system having only two
degrees of freedom instead of three also makes larger systems more feasible for
numerical simulations.

In this thesis, the electrons in graphene are studied using theoretical and
numerical methods. The studies are done mainly through investigations related
to the so-called band structure of the material; meaning, how the energy of an
electron in the material depends on its momentum.

Typically, an electron in free space or in a semiconductor has an energy
proportional to the square of its momentum. This is how a particle behaves
when it has a mass. For graphene, it has been shown that the energy is a linear
function of the momentum — this is a consequence of the hexagonal structure
of the lattice. A linear energy is also characteristic of a massless particle moving
at the speed of light. In effect, in graphene we have electrons moving as if they
have no mass — a fascinating concept for physicists. Because of this linear energy
relation, the electrons absorb light evenly at a whole range of frequencies; it is
as easy to add energy to the electron at low momentum as at high momentum.
The “masslessness” of the electrons in the material is also why graphene conducts
electricity so well.

The usefulness of semiconductors in technology, for example as transistors,
is based on the gap in energy between the valence band and the conduction
band. This band gap is the minimum energy needed to make a dormant electron
free to conduct electricity, and this effect is the functionality of a transistor, a
laser, a solar cell, and any other technology based on semiconducting materials.
The linear energy in graphene, while good for the conductivity, also comes with
a problem — there is no gap between the bands. This makes graphene less
than ideal as a replacement for silicon as the standard material for electronic
technology.

In this thesis and the papers it is based on, we investigate the possibility
of interactions between the electrons themselves, under given circumstances,
causing a gap to open in the band structure of graphene. I discuss the work
done to apply an electronic many-body approach to graphene. The techniques
presented here are based on time dynamics of quantum mechanical expectation
values, defining the system of interacting electrons in the graphene sheet.

This approach is well known from the theory of electrons in three-dimensional
crystalline semiconductors, and has successfully been applied to numerous calcu-
lations of transport and optical properties of such systems []. In the studies pre-
sented in this work, we modify the methods to account for the two-dimensional
nature and the massless electrons of graphene.





Introduction

Typical band structure calculations neglect the interaction between elec-
trons, accounting only for how a single electron interacts with the lattice of ions
that make up the static part of the material. The assumption is that the band
structure of the material is not influenced by interaction among the electrons.
In theoretical calculations, it is possible to break this assumption, by artificially
cranking up the strength of the interaction between the electrons.

Once the electron–electron interaction is made strong enough, there will be a
spontaneous symmetry breaking in the electronic system. This comes with cor-
responding distortion of the band structure, similar to the formation of Cooper
pairs in a superconductor. The transition happens when the binding energy of
an electron–hole pair exceeds the band gap []. For an insulator or a semicon-
ductor, it would require an unrealistically large Coulomb interaction for this to
happen. For an ungapped system such as graphene, however, the possibility of
a strong enough coupling is a relevant issue.

Before going into the issues related to the strong Coulomb coupling regime
in graphene, I present the standard building blocks for creating an electronic
many-body model in chapter . In chapters  and , the building blocks are
used to construct a model many-body Hamiltonian for electrons in graphene,
interacting with each other and with external light fields.

In chapters  and , the many-body model is used for constructing equations
describing the dynamics of the electronic system. In chapter  and Paper I, the
equations are used for studying the dynamics of electrons and their interaction
with light in a semiconducting graphene-like system; a carbon nanotube. In this
system, a band gap is created by the geometrical restriction imposed on the
graphene lattice by rolling it into a tube.

In chapter  and Paper II we investigate the possibility for a strong-coupling
regime, where the interaction between electrons is strong enough to alter the
ground state. Parts of the many-body theory are used to study an electron–hole
pair in graphene, and its binding energy. Since the bands have no energy gap, any
pair with a nonzero binding energy is a mark of the onset of the strong-coupling
phase. What is needed to treat the electron dynamics in the strong-coupling
phase correctly are the techniques discussed in chapter  and Paper III, where
the many-body theory is used to set up equations for the true strong-coupling
ground state. Once the many-body ground state is known, the theory is used
in a more traditional way in chapter  and Paper IV; for studying the simplest
excitations of the gapped strong-coupling ground state.

In chapter  and Paper V essentially the same steps are shown, shortly, for
bilayer graphene; setting up the many-body model in terms of band structure
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and electron–electron interaction, as well as equations governing the strong-
coupling regime. Finally, in chapter  and Paper V, we present how to self-
consistently solve the interconnected effects of electronic screening and strong-
coupling ground state. We use a treatment of the electron–electron interaction
which self-limits the strength of the interaction and its influence on the band
structure reconfiguration, and apply this technique to single layer and bilayer
graphene.
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Chapter 

Background — carbon atoms in a plane

Our goal is to establish equations that describe the system of electrons in gra-
phene and how it develops over time. In crystalline solids, the active electrons
are delocalized over the atomic lattice and the electronic state is constructed by
means of a wavefunction. This wavefunction contains contributions from elec-
trons at each atomic lattice site; adding up these single-electron pieces gives us
our many-body model.

The time development of the electronic state, and hence the system, is gov-
erned by an operator called the Hamiltonian. The Hamiltonian measures the
system energy, essentially by counting how many electrons are in each possible
state and how much each state contributes to the total energy.

How the electrons sit around their ions is described by a well-known the-
ory, the so-called tight-binding approach. The tight-binding description is a
single-particle theory, and provides a single-particle basis in which to express
the many-body wavefunction. Using the tight-binding wavefunctions, one can
derive an expression for the single-particle energy, as well as a Hamiltonian for
the electronic system.

The basic theory of electrons in a graphite sheet was introduced by P. R.
Wallace in  [] where he set up the tight-binding approach to graphene.
Wallace calculated the basic consequences of the hexagonal geometry of the
graphene lattice shown in figure ., such as the appearance of a cone-like part
of the energy structure. An overview of this general derivation is given, for
example, in [].
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Figure . Carbon atoms in a hexagonal lattice.

. The carbon atom in a lattice

The graphene sheet consists of carbon atoms, arranged in a two-dimensional
hexagonal lattice. The hexagonal structure is a consequence of the electron or-
bitals in carbon.

A carbon atom has six electrons; the inner two form a filled shell and the
outer four form a half-filled shell. In diamond (three-dimensional crystalline
carbon) the outer electrons of each carbon atom form four identical bonds with
the four neighboring carbon atoms, in a tetrahedral shape. In graphene (a two-
dimensional carbon sheet) three of the four outer electrons form single bonds
(strong and inactive) with the neighbors. The characteristic hexagons of the
graphene lattice are formed by each atom having three neighbors, shown in
figure ..

The fourth outer electron is in a pz orbital, out of the graphene plane. The
electrons in the pz orbitals are the ones responsible for the electrical and optical
properties of graphite and graphene. Such an orbital can be written as

φ(x) =
1√

2πd3
|x|
4d
e−|x|/2d cosϕ (.)

with a length parameter d, which determines the spatial extension of the orbital.
The cosϕ part gives the orbital its shape and orientation, as shown in figure ..





. Background — carbon atoms in a plane
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Figure . The graphene lattice with pz orbitals (.) out of the plane at the
atomic sites.

Comparing (.) with the same orbital in hydrogen, the parameter d takes the
place of the Bohr radius divided by an effective charge.

The fact that the outer shell of the carbon atom is half-filled makes carbon a
candidate for a semiconductor, since the Fermi level is right between the valence
and the conduction band. Carbon is electronically similar to silicon, which is
a semiconductor, and it is known that diamond also is a semiconductor. For
graphene this is a different matter. It is generally held that graphene is a so-
called semimetal, that is to say, the valence and conduction bands touch at a
single point at the Fermi level, so that there is no band gap.

. Geometry of the graphene lattice

To formulate a solid state theory for graphene, the first thing to note is that the
hexagonal lattice contains two groups of carbon atoms (labeled A and B in figure
.) which each have different surroundings — there is an empty space to the
right of the A atoms, and to the left of the B atoms. Consequently, the unit cell
needs to contain two atoms, one each from the A and B sublattices. The unit cell
can be chosen, for example, as a hexagon or a rhombus, as shown with dotted
lines in figure .. In this way, the hexagonal lattice is said to consist of an A
and a B sublattice. These sublattices are in themselves complete Bravais lattices,
which is the essential property for forming the reciprocal (i.e. momentum) space,
in which all crystalline solid state calculations are performed.


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Figure . The carbon atoms in a sheet of graphene, forming hexagons. The
carbon atoms in sublattice A are shown as lighter spheres, and the sublattice B
as darker spheres.

Much of the gist of the calculations in the following are based on the division
into an A and a B sublattice. I frequently refer to the vectors from an atom in
sublattice A to its three nearest neighbors, which are in sublattice B.

b1 = b
(
cos

π

3
êx + sin

π

3
êy
)

=
b

2
êx +

√
3b

2
êy

b2 = b
(
cos

π

3
êx − sin

π

3
êy
)

=
b

2
êx −

√
3b

2
êy

b3 = −bêx .

(.)

These are chosen as in []. The positions of the atoms are denoted byRA andRB ,
and the positions of the B atoms around an A atom are given by RB = RA+bi

for i = 1, 2, 3.

. The tight-binding approach to graphene

The tight-binding approach assumes that the relevant outer electrons are con-
fined to the local potentials at each atomic site. Whether this is a valid assump-
tion for a given material can be tested e.g. by density-functional calculations,
which for the case of graphene give reasonable agreement. Using a tight-binding
ansatz gives a simple analytical expression for the single-particle energy (i.e.,
the band structure) which still displays interesting physics.





. Background — carbon atoms in a plane

When calculating the band structure in this manner, one leaves out the inter-
action between electrons. This is a valid approximation only when the Coulomb
interaction is weak enough, in what we will refer to as the weak-coupling regime.

To calculate the system Hamiltonian, we need an expression for the so-called
field operators. The field operator is here expanded in a momentum space basis,

ψ̂(x) =
∑

λk

Ψλk(x) âλk

where the sum λ is over the conduction and valence bands, and the sum k is over
momenta in the first Brillouin zone. The operator âλk annihilates an electron in
band λ with momentum ~k.

When using a tight-binding ansatz, the unit-cell periodic parts of the wave-
function Ψλk(x) are taken as the orbitals of the outer electrons, in this case
the pz orbitals φ(x) (.). Furthermore, to account for the two non-equivalent
atomic sites in the unit cell, the wavefunction is set up as a linear combination of
Bloch functions for each of the two sublattices. On sublattice A the wavefunction
is

1√
N

∑

RA

eikR
A

φ(x−RA)

where N is the number of unit cells, and similarly for the B sublattice. The total
wavefunction takes the form

Ψλk(x) =
CAλk√
N

∑

RA

eikR
A

φ(x−RA) +
CBλk√
N

∑

RB

eikR
B

φ(x−RB) (.)

where the functions CA,Bλk are the coefficients for the linear combination, which
are to be determined in the following.

Demanding that the wavefunction Ψλk(x) is an eigenfunction of the single-
particle Hamiltonian (consisting of the kinetic energy of the electrons and the
potential energy of the electrons in the periodic lattice of ions) gives expressions
for the coefficients CA,Bλk . This condition, which is a Schrödinger equation

[−i~2∇2

2m
+
∑

R

Vion(x−R)
]
Ψλk(x) = EλkΨλk(x) (.)

is then projected onto each of the sublattice wavefunctions
∑
R e

ikRφ(x−R)

respectively, yielding expressions that contain overlaps of the type
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∫
dx φ(x−Ri)

[−i~2∇2

2m
+
∑

R

Vion(x−R)
]
φ(x−Rj).

When the sites Ri and Rj are equal, this overlap gives a constant E , the eigen-
energy of the orbital φ(x). When the two sites are nearest neighbors, the overlap
integral gives the constant

γ ≡
∫

dx φ(x)
[−i~2∇2

2m
+
∑

R

Vion(x−R)
]
φ(x−bi), (.)

which is the hopping energy between sublattices A and B. The second orbital is
shifted by any of the three neighbor vectors bi, and which one is used does not
affect the value of γ. The contributions from overlaps with more distant orbital
pairs are neglected in this work. The plane-wave parts of the wavefunctions in
the sums of all sites in (.) reduce to a sum over the three nearest neighbors,
giving a factor

gk ≡
3∑

n=1

eikbn (.)

in the nearest-neighbor terms. This function will come to play an important role
in the following.

. The tight-binding band structure

The two projections of (.) gives a matrix equation that the coefficients CA,Bλk

must fulfill,



E − Eλk γgk

γg∗k E − Eλk






CAλk

CBλk


 = 0 . (.)

The matrix equation has nonzero solutions only when the determinant is zero;
this condition gives us an expression for the band dispersions Eλk. Since the
orbital eigenenergy E causes a shift of both the conduction and the valence
band, it has no physical consequences, and can be put to zero. As a solution, we
get the tight-binding energy dispersion in graphene,

Eλk = ±γ|gk|, (.)





. Background — carbon atoms in a plane

where the + sign is for the conduction band and − for the valence band.
These bands are shown in figure ., with a few symmetry points marked.

At the Γ point the bands are furthest apart, and at the M point the dispersion
has saddle points. At the K+ and K− points the conduction and the valence
band touch; there is no band gap. This is what makes graphene a semimetal —
the density of states at the Fermi energy vanishes, which makes it difficult for
electrons to move to higher energies, in spite of there being no band gap.

Close to theK+ andK− points, the bands rise and fall linearly as functions of
k, forming a cone. This conical dispersion resembles the dispersion relation of a
massless relativistic particle, which is why the K± points are often referred to as
the Dirac points. The geometry of graphene in momentum space is for clarity
shown separately in figure .. It exhibits the same honeycomb structure as
graphene in real space, rotated by ninety degrees. In the middle of the Brillouin
zone is the Γ point, and in the corners are the K± points.

The solution of the matrix equation (.) is CAλk = ±CBλkgk/ |gk|, and a
choice for the coefficients which satisfies the normalization conditions is

CAλk = ± 1√
2

and CBλk =
1√
2

g∗k
|gk|

(.)

which specifies the tight-binding wavefunction (.) completely. The wavefunc-
tion will be useful later on, to construct the matrix elements of the light–matter
and electron–electron Hamiltonians.

. The sublattice basis

Apart from the band basis, another convenient choice is the sublattice basis,
which is well-defined at the present level of approximation, where overlaps be-
tween neighboring orbitals are neglected. In the sublattice basis the field operator
is expanded as

ψ̂(x) =
∑

k

ΨA
k (x)Âk + ΨB

k (x)B̂k (.)

where the operators Âk and B̂k annihilate an electron with momentum k in
sublattice A or B. The sublattice wavefunctions ΨA

k (x) are the ones used to form
the linear combination in the band-basis wavefunction (.). The transformation
between the two bases is given by the coefficients CA,Bλk ,
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Figure . Above, the valence and conduction bands of graphene (.). Below,
a planar representation of the energy difference between the bands. A large value
is shown as a light color (around the Γ points) and a small value as a dark color,
with the darkest areas around the Dirac points K±.
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Figure . Momentum space of graphene, showing hexagonal Brillouin zones
and positions of some of the symmetry points. The length scale is given in terms
of the nearest-neighbor distance b.



Âk

B̂k


 =

1√
2




1 gk
|gk|

gk
|gk| −1






âck

âvk


 .

The single-particle Hamiltonian is expressed as

Ĥ0 = Ĥkin + Ĥe–ion =

∫
dx ψ̂(x)†

[−i~2∇2

2m
+
∑

R

Vion(x−R)
]
ψ̂(x)

=
∑

k

γ|gk|
(
â†ckâck − â†vkâvk

)
in the band picture

=
∑

k

(
γgkÂ

†
kB̂k + γg∗kB̂

†
kÂk

)
in the sublattice picture.

(.)

. The linear approximation close to the Dirac points

The function gk (.) keeps appearing in the graphene tight-binding calculations;
it is in the band basis expansion of the wavefunctions (.), in the single-particle
energies (.), as well as in the matrix elements of the many-body Hamiltonian,
which is discussed in the following two chapters.

The phase of gk is plotted in figure .. The complex phase is visualized as
hue in the figure, with cyan as zero phase. Around the K+ points, the phase
increases in the positive (counter-clockwise) rotational direction and around the
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Figure . The complex phase of the neighbor vector sum gk (.).

K− points in the other direction. Interestingly, the phases in adjacent Brillouin
zones differ by ±2π/3.

For many applications, only the low-energy band structure in the vicinity of
the Dirac points is important. In this region, the neighbor vector sum gk can
be linearized, which leads to a simpler treatment of the theory, and clarifies
the celebrated connection with massless relativistic particles. To this end, the
function gk is Taylor expanded around either Dirac point. Keeping only the first
term, and calculating the gradient of gk at the Dirac points, one can approximate

gk ≈ (k−K±)·
[
∇k

3∑

n=1

eikbn
]
k=K±

=
3b

2
e−iπ/3(k−K±)·(êx ± iêy) . (.)

For the dispersion (.) we need only its absolute value,

Ek = γ|gk| ≈
3bγ

2
|k −K±|

where b is the distance between two neighboring carbon atoms. We see that the
energy dispersions are indeed approximately linear in k, as also shown in figure
..
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Figure . The band structure of graphene (.) with the valence and conduc-
tion bands. Where the two bands touch, the band structure forms a cone (.).

This Dirac cone is the single most interesting feature of graphene. For mass-
less relativistic particles we have the relation E(k) = ~c|k|, c being the speed
of light in vacuum. In graphene, the dispersion relation E(k) = 3bγ|k|/2 can be
expressed as

Ek = ~vF |k| (.)

with a velocity constant vF = 3bγ/2~. This is the so-called Fermi velocity in
graphene which is approximately  times smaller than the speed of light in
vacuum.

Later on, when dealing with other electrons and light, the linear approxima-
tion will be needed also for the phase of gk. Close to the Dirac points, the phase
can be approximated as the angle of the coordinate vector, as shown in the inset
of figure ..

gk
|gk|

=

∑3
n=1 e

ikbn
∣∣∣
∑3
n=1 e

ikbn

∣∣∣
≈ e±i(θ+ 5π

6 ) where θ = arg(k −K±)

where + and − in the phase correspond to the two Dirac points K±. The
constant in the phase (5π/6 for these particular Dirac points) depends on which
Dirac point one is looking at, but is in itself of no consequence for the actual
calculations in the present work.
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Figure . Subbands in a semiconducting carbon nanotube, formed as the real-
space periodicity of the lattice confines allowed momentum values to discrete lines.

. Tight-binding for graphene in lower dimensions —
carbon nanotubes

In Paper I we look at electron dynamics in a special form of graphene — a
carbon nanotube. A carbon nanotube is a rolled-up sheet of graphene in which
the electrons move primarily along the tube axis. For us, this was a convenient
test case for our graphene equations of motion. Due to their one-dimensional
nature and the presence of a band gap in certain forms of carbon nanotubes,
they are a natural first choice for applying the semiconductor-like many-body
approach to a graphene-like system.

Rolling up the graphene sheet and connecting the edges makes the system
periodic along the tube circumference. For the electrons, as a consequence, only
certain discrete momentum values are allowed in that direction. The other com-
ponent of the in-plane momentum, along the tube axis, is still unrestricted and
can be taken as continuous for a long enough tube.

Thus, the allowed k states form discrete lines in momentum space. The energy
dispersion is consequently restricted to slashes in the band structure, as shown
in figure .. These slashes are called subbands. The electron in a subband
can easily be transferred between k states within a subband, whereas moving
the electron between subbands requires a larger transfer of momentum. A one-
dimensional system is easy to solve numerically, but the existence of the different
subbands in carbon nanotubes gives some additional structure to the equations.
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There are a number of different possibilities for rolling up the graphene sheet;
the tube can have different diameters, and the sheet can be rolled at different
angles. Depending on how the tube is rolled up, the subbands appear at different
angles and periodicities in the dispersion. If a subband happens to cross the
Dirac point, that subband will have a zero energy gap, and the nanotube will
be metallic. If none of the slashes cross a Dirac point, as is the case in figure
., the nanotube is a semiconductor. If the dynamics are restricted to one or a
few subbands, the electronic system of the carbon nanotube will resemble that
of a one-dimensional semiconductor. Such is the system of Paper I.

. Parameters in the model

Name Value Relation

Nearest neighbor distance b 1.42·10−10 m (.)

Effective sheet thickness d 1.76·10−11 m (.), (.)

Intersite energy γ 2.8 eV overlap (.)

Fermi velocity vF 9.07·105 m/s [] γ = 2~vF/b

Energy scale E0 33.8 eV ~vF/d

Coulomb strength α 2.4 e2/4πεε0~vF (.)

Bilayer graphene

Distance between layers L 3.5·10−10 m (.)

Interlayer energy γ′ 400 meV overlap (.)

The extension of the pz orbital is determined by its overall scale, the parameter
d in (.). In this way, the parameter d acts as an effective thickness of the
graphene sheet, as discussed further in section .. The parameter d sets a
length scale, and determines the energy scale ~vF/d, together with the Fermi
velocity vF . In the tight-binding calculations, d is a free parameter. With density
functional calculations, it is possible to calculate the actual shape of the electron
distribution. This has been done for graphene by John Sipe et al []. The
distribution showed a reasonable pz orbital character, with the length parameter
d ≈ 1.76·10−11 m.

It is worth noting that the nearest-neighbor distance b is not the same as the
lattice constant of graphene (

√
3b = 2.461 ·10−10m, the distance between unit

cells) which some authors use as their length scale in the literature.
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Chapter 

Modeling the
electron–electron interaction

In the tight-binding calculations in the previous chapter, only the interaction
between electrons and the atomic lattice was considered. To build a many-body
theory, we need to account also for the interaction between electrons. This is
especially the case when studying the strong-coupling phase in chapter , which
as a phenomenon is based completely on this interaction. In this chapter, I
discuss including the electron–electron interaction in the form of a new term in
the Hamiltonian, expressed in the tight-binding basis from the previous chapter.

. Deriving the tight-binding Coulomb Hamiltonian

The Coulomb energy of two electrons at positions x and x′ is

V (|x− x′|) =
1

4πεε0|x− x′|
.

Since the strength of the Coulomb interaction is going to be crucial for our
calculations, it is worth noting the dielectric constant ε ≥ 1 in the denominator,
making the Coulomb interaction weaker in the material than it would be in
vacuum.

The Coulomb Hamiltonian, illustrated in figure ., has the form

Ĥcoul =
1

2

∑

1234

V1234 â
†
1â
†
2â3â4 , 1 = {λ1 k1} , (.)

where the general Coulomb matrix element V1234 is defined as
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Figure . Two electrons interacting. The figure shows the processes in the
Coulomb Hamiltonian (.) where the momentum ~q is transferred between two
electrons, with a weight given by the Coulomb potential Vkpq.

V1234 ≡
∫
dx
∫
dx′ Ψ∗1(x)Ψ∗2(x′)V (|x− x′|)Ψ3(x′)Ψ4(x). (.)

In order to calculate V1234, we introduce the Fourier transform V 3D
q of the

Coulomb potential,

V (|x− x′|) =
∑

q

V 3D
q eiq(x−x

′), where V 3D
q =

e2

εε0LA|q|2
.

The constants L and A are the quantization length and area, which measure the
real-space volume of the system. Using the Fourier transform V 3D

q , we can split
the matrix element V1234 into two similar integrals:

V1234 =
∑

q

V 3D
q

∫
dx Ψ∗1(x)eiqxΨ4(x)

︸ ︷︷ ︸
≡ Iλ1λ4

k1k4q

∫
dx′Ψ∗2(x′)e−iqx

′
Ψ3(x′)

︸ ︷︷ ︸
= Iλ2λ3∗

k2k3q

. (.)

To evaluate the integrals and obtain the tight-binding Coulomb matrix element,
we insert the tight-binding expansion (.) for the wavefunctions Ψλk(x). This
gives double sums over carbon atom sites, containing the electron tight-binding
orbitals φ(x) (.). In the sums, we discard all but same-site terms, due to the
overlap between neighboring sites being significantly smaller. For the integrals,
this gives a term each for the sublattices A and B, each containing a sum over
all sites in the sublattice, giving momentum conservation in the plane.

Iλλ
′

kk′q = (CA∗λkC
A
λ′k′ + CB∗λkC

B
λ′k′)

1

N

∑

R

e−i(k−k
′−q)R

︸ ︷︷ ︸
= δk′,k−q‖

∫
dxφ(x)∗eiqxφ(x)

︸ ︷︷ ︸
≡ G(q)


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Both terms contain a Fourier transform of electron orbitals φ(x) (.) which we
denote by G(q). Using these results for the integrals Iλλ

′
kk′q and the expressions

(.) for the functions CA,Bλk , we obtain the Coulomb matrix element as

V1234 =
1

4

∑

q‖

δk4,k1−q‖δk3,k2+q‖



gk1

g∗k1−q‖∣∣∣gk1gk1−q‖

∣∣∣
± 1





gk2

g∗k2+q‖∣∣∣gk2gk2+q‖

∣∣∣
± 1




×
∑

qz

V 3D
q |G(q)|2

︸ ︷︷ ︸
≡W (q‖)

where ‘+’ in the first parenthesis is chosen when λ1 = λ4, and ‘−’ when λ1 6= λ4,
and correspondingly for λ2 and λ3 in the second parenthesis. The Coulomb ma-
trix element has three parts: momentum conservation in the plane expressed
by the delta functions, graphene lattice geometry contained in the gk functions
(.) and the function W (q‖) which acts as a weight for the exchanged momen-
tum. It can be noted that W (q‖) is independent of the lattice geometry, and
contains only the shape of the carbon orbitals.

. Tight-binding Coulomb matrix elements

Inserting the Coulomb matrix element V1234 derived above in the Coulomb
Hamiltonian (.), one of the momentum sums can be performed due to momen-
tum conservation. Grouping the terms by the types of band transitions involved,
the Coulomb Hamiltonian acquires the form

Ĥcoul =
1

2

∑

kpq

V +
kpq

[
â†ckâ

†
cpâcp+qâck−q + â†vkâ

†
vpâvp+qâvk−q

+ â†ckâ
†
vpâvp+qâck−q + â†vkâ

†
cpâcp+qâvk−q

]

+
1

2

∑

kpq

V −kpq

[
â†ckâ

†
cpâvp+qâvk−q + â†vkâ

†
vpâcp+qâck−q

+ â†ckâ
†
vpâcp+qâvk−q + â†vkâ

†
cpâvp+qâck−q

]

+
∑

kpq

V A
kpq

[
â†ckâ

†
cpâvp+qâck−q + â†vkâ

†
vpâcp+qâvk−q

+ â†ckâ
†
vpâcp+qâck−q + â†vkâ

†
cpâvp+qâvk−q

]
(.)

where the matrix elements now are expressed as
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a) V c) V     

b) V

Figure . The processes governed by the different terms in (.). In a) the
electrons stay in their respective bands, in b) both electrons change bands, and
in c) an Auger process.

V +
kpq ≡

1

4
W (q)

(
gkg
∗
k−q

|gkgk−q|
+ 1

)(
gpg
∗
p+q

|gpgp+q|
+ 1

)

V −kpq ≡
1

4
W (q)

(
gkg
∗
k−q

|gkgk−q|
− 1

)(
gpg
∗
p+q

|gpgp+q|
− 1

)

V A
kpq ≡

1

4
W (q)

(
gkg
∗
k−q

|gkgk−q|
+ 1

)(
gpg
∗
p+q

|gpgp+q|
− 1

)
(.)

with the radially symmetric part, the function W (q) defined in section .. The
matrix elements for these processes are denoted V + and V − for the signs in the
expressions in (.) and V A for Auger processes.

We see that the Coulomb Hamiltonian in graphene has three different types of
terms, which account for whether the interacting electrons stay in their original
bands or not. These different types have different Coulomb matrix elements.
The terms with V + describe processes where both electrons stay in their original
bands, in the V − terms both electrons change band, and in the V A terms, one
electron changes band while the other one stays. This third process does not
conserve the number of particles in a band — this is called an Auger process.
These three types of processes are illustrated in figure ..

. Consequences of the finite sheet thickness

The Coulomb interaction takes place in three dimensions, while we have two
coordinates in the graphene plane. The electrons in the material are confined
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Figure . The form function F (qd) (.) plotted as a thick solid line. On the
right, the form function and its asymptotes are plotted in a double-logarithmic
scale, in which power laws show up as straight lines.

to the orbitals of figure ., which have a certain extension out of the plane, in
the z direction. With the function W (q) in (.) we have created an effectively
two-dimensional Coulomb interaction, which accounts for how the electrons are
localized in their orbitals.

The extension of the orbitals is accounted for by averaging the interaction
over the direction perpendicular to the graphene sheet. The weight function in
the Coulomb matrix elements (.) appears as a modification of a pure three-
dimensional Coulomb potential, e2/εε0LA|q|2. The three-dimensional potential
is averaged in the z direction, weighted with a Fourier transform of two pz
orbitals,

W (q‖) =
e2

εε0LA
∑

qz

1

|q|2
∣∣∣∣
∫

dxeiqx|φ(x)|2
∣∣∣∣
2

.

In the expression above, the momentum q is three-dimensional, and q‖ is the
in-plane momentum. The integral over x can be calculated analytically, using
Fourier transforms of hydrogen orbitals []. It is then possible to perform the
qz-integration using Mathematica [, ] to arrive at expression (.).

Our quasi-D potential can be conveniently expressed as a modification of a
strict D potential,

W (q) =
e2

2εε0A
F (qd)

|q| (.)
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where the modification is the form function F (qd). The form function has the
expression

F (X) =
(
1 + 6X2

)2 − X Ξ(X)

512
√

1 +X2
11 (.)

with

Ξ(X) = 2475 + 25410X2 + 112728X4 + 261360X6

+ 344960X8 + 262400X10 + 107520X12 + 18432X14, (.)

shown in figure ..
F (qd) is smaller than one, except at q = 0. The length parameter d can be

seen as an effective thickness of the graphene sheet. The Coulomb interaction
between electrons in the pz orbitals is much weaker than it would be between
electrons strictly confined to the plane, since the electrons in the orbitals are
further apart. At very large in-plane distances (corresponding to q = 0) however,
the extension of the orbitals is negligible, and the Coulomb interaction looks like
the one for a strictly two-dimensional case, which is reflected in F (qd = 0) = 1.

For numerical calculations, it can be noted that for large q values, the func-
tion can be difficult to evaluate; the two terms of (.) both have large positive
values, which cancel to a small positive number.

For large values of q, the form function decays as a power law of q,

F (qd) ∼ 1155

8192

1

(qd)12
q large.

For small values of q, F (qd) ∼ 1, and the Coulomb potential behaves like the
potential for an infinitely thin, strictly two-dimensional quantum well,

W (q) ∼ e2

2εε0A
1

q
q small.

In the right panel if figure ., the large-q asymptote is a thin solid line, and the
small-q asymptote is the dotted line at 1.

The decay of the form function can be approximated reasonably well with
an exponential drop-off exp(−5qd) plotted as a grey dashed line in figure ..
A potential of this type is known as an Ohno potential, and is commonly used
to describe an effectively two- or one-dimensional situation. The Ohno potential
is the momentum-space version of a real-space potential between two charges
which cannot get arbitrarily close to each other, V (x) ∝ [x2 + y2 + (5d)2]−1/2.
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. The coupling strength

By scaling the Hamiltonian into a unitless form, one observes some important
consequences of the linear dispersion. Suppressing the band index and other
details for a moment, the Hamiltonian for the electrons is

Ĥ =
∑

k

Ek︸︷︷︸
~vFk

â†kâk +
∑

q

W (q)︸ ︷︷ ︸
e2F (qd)

2εε0Aq

× (geometry)× â†â†â â .

Judging from the first term, to convert the Hamiltonian into a dimensionless
form, we have to divide by ~vF and multiply by a length. Choosing the layer
thickness d as the length gives the simplest expression for the form function in the
Coulomb term. The inverse of the length will act as a scale for all wavenumbers,
and the energy ~vF/d as a scale for all quantities with the dimension of energy.
Writing the scaled wavenumbers as X and Y , we get

Ĥ

~vF/d
=
∑

X

Xâ†X âX +
e2

4πεε0~vF
2π

A/d2
∑

Y

F (Y )

Y
× . . . (.)

As a prefactor to the Coulomb term, we are left with a dimensionless quantity,
the coupling strength

α ≡ e2

4πεε0~vF
(in SI units). (.)

The coupling strength can be seen as a measure of the Coulomb energy of two
electrons on neighboring sites, e2/4πεε0b, versus the hopping energy between
two such sites, ~vF/b. The appearance of the coupling strength in this form
is independent of the choice of d as a length scale. In fact, without the form
function, the choice would not show up at all, and the energy scale would be
completely arbitrary.

It can be noted at this point that for a quadratic dispersion, Ek = ~2k2/2m,
one would scale the Hamiltonian with ~2/2ma2 (a a yet unchosen length) which
would give a prefactor

e2m

εε0~2
1

qA/a2
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in the Coulomb term. Choosing the length a as the hydrogen Bohr radius
4πεε0~2/e2m eliminates all natural constants from the Hamiltonian, leaving the
quadratic-dispersion system completely scaled and parameter-free.

The strength of all Coulomb phenomena are determined by the coupling
strength. For a graphene sheet on its own, in air or in vacuum, the Coulomb inter-
action is at its maximal strength. If the sheet is placed on some other material, it
weakens the electric fields. How much the field is weakened is determined by the
permittivity ε of the material. The net field weakening experienced by charges in
the graphene sheet is usually taken as an average of the permittivities of the ma-
terials above and below the graphene sheet, εgraphene = (εabove + εbelow)/2, with
the reasoning that most of the three-dimensional electric field passes through
either one of the encasing materials.

For electrons and photons in vacuum, the coupling strength is the fine-
structure constant e2/4πεε0~c. It has a value of approximately /, which
is much smaller that . In quantum electrodynamics, the fine-structure constant
is used as a small expansion parameter. In graphene, c is replaced by vF , and
the corresponding parameter combination is  times larger, approximately
2.4. This creates a great interest in graphene, since this large coupling strength
could create very strong quantum electrodynamical effects.
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Chapter 

Interaction between electrons and light

In this chapter, I discuss how the electronic system in graphene interacts with an
external electric field. In order to model this interaction process, light–matter
terms are included in the Hamiltonian. The light causes transitions between
the electronic states, and is typically the source of dynamics in the electronic
system. These are the dynamics one wishes to study with the present type
of many-body theory, as will be discussed in chapters  and . Some of the
techniques introduced in this chapter will also be of use when looking for the
strong-coupling phase in chapter .

The processes involved are the following. Light is shone on the graphene
sheet, photons are absorbed by the material, and the graphene electrons gain
the energy and momentum carried by the photons. The energy gain corresponds
to a transition in the material, like those shown in figure .. The electrons can
absorb photons by either moving higher in energy within the same band, in an
intraband process, or by moving to a higher band, in an interband process.

In a standard semiconductor, where there is a significant band gap, it is
usually a reasonable approximation to treat inter- and intraband processes sep-
arately, since they are caused by absorbing photons with energies of different
orders of magnitude. The interband processes are driven by visible light, and
intraband processes by light with terahertz frequencies. In contrast, close to the
Dirac point in graphene, the relevant low frequencies will drive both inter- and
intraband processes equally strongly.
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Figure . Electronic transitions in graphene caused by absorption of photons
from an external electric field.

. Derivation of the electron–light interaction
Hamiltonian

In the presence of an external field A, the kinetic energy of an electron is (p̂−
eA)2/2m. Expanding the parenthesis, the first term is the kinetic energy of
the electron in absence of a field, which gave us the band structure part of the
Hamiltonian (.). There is also a term linear in the external field, and one term
proportional to A2. The expression for the linear term in graphene is treated
in this chapter. The field squared term is of relevance for describing the light
consistently, as discussed e.g. in Paper IV and [], but is not considered further
in this chapter.

Hence, the relevant electron–light Hamiltonian (in the so-called dipole ap-
proximation []) is of the form

Ĥe–light =
∑

λλ′kk′

∫
dx Ψ∗λk(x)

[
− e

m
p̂·A(t)

]
Ψλ′k′(x) â†λkâλ′k′ (.)

where the sums over bands λ and λ′ run over the conduction and valence bands,
and the momentum sum is over the first Brillouin zone. The field A(t) causes a
transition from band λ′ to band λ, with a coupling strength given by the optical
matrix element pλλ

′
k . The transition will here be assumed to happen at a fixed

momentum k. This is an approximation, which contains the assumption that
the photon momentum is small enough to be neglected. This is equivalent to
assuming that the field is spatially constant over the relevant region of space.
A situation where this approximation does not hold is studied in Paper I and
chapter .
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With a negligible photon momentum, the Hamiltonian for interaction with
light is of the form

Ĥe–light = − e

m

∑

λλ′k

A(t)·pλλ′k â†λkâλ′k. (.)

To evaluate this Hamiltonian for the case of electrons in graphene, the matrix
element pλλ

′
k of the canonical momentum operator p̂ = −i~∇ is calculated

using the tight-binding expansion (.) in a similar way as the Coulomb matrix
elements in the previous chapter. The derivation here follows the same outline
as in [].

pλλ
′

k ≡
∫
dx Ψ∗λk(x) p̂ Ψλ′k(x)

≈ CA∗λkCBλ′k
∑

bn

eikbn
∫
dxφ(x)p̂φ(x−bn)

︸ ︷︷ ︸
≡ −ipbn/b

+CB∗λkC
A
λ′k

∑

bn

e−ikbnipbn/b. (.)

We obtain a site-based matrix element, 〈site|p̂|site′〉. It can be seen that the
same-site terms give zero, so the lowest-order approximation is to use only the
nearest-neighbor transitions, 〈site|p̂|site + bn〉, bn being the neighbor vectors
(.). The integral here, the nearest-neighbor orbital matrix element of the op-
erator p̂, can by symmetry be shown to lie along the neighbor vector bn. We
write it as proportional to the positive constant p ≡ ~

∫
φ(x) d

dxφ(x − bêx)dx.
The remaining sums are identified as gradients of gk (.). Inserting the expres-
sions for the C functions (.) we arrive at

pcck = −pvvk = −p
b
Re
[g∗k∇gk
|gk|

]

pcvk = −pvck = −ip
b
Im
[g∗k∇gk
|gk|

]
.

(.)

The real and imaginary parts, and x and y components of the function g∗∇g/|g|
are plotted in figure .. The matrix elements contain the gradient of the neigh-
bor vector phase sum gk (.) which is non-varying in the vicinity of the Γ

points, so the optical matrix element is zero in that region.
Close to the Dirac points, the optical matrix elements can be approximated

as

pcc(k) ≈ −p
[
cos θk êx + sin θk êy

]

pcv(k) ≈ ±ip
[
sin θk êx − cos θk êy

] (.)
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Figure . Optical matrix elements (.) in the band basis. Yellow and red
represents positive values, white zero, and blue negative values.
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Figure . Incoming photons absorbed by electrons, causing the electrons to
hop between nearest-neighbor sites, as described by the Hamiltonian (.).

where the ± signs correspond to the K+ and K− points. It is worth noting that
all of these matrix elements are a sine or a cosine of the coordinate angle, that
is, they all have a p-like symmetry. Since the bands (.) are isotropic (s-like)
close to the Dirac points, the light will create p-like excitation in the bands.

. Light–matter interaction in the sublattice basis

Some interesting properties of the light–matter interaction in graphene can be
seen more clearly by switching to the sublattice basis (.).

Ĥe–light =
ep

m

∑

k

A(t)·
(
∇gk Â†kB̂k +∇g∗k B̂†kÂk

)
(.)

The components of the optical matrix element in the sublattice basis are plotted
in figure .. Interestingly, the light interaction is completely off-diagonal in
this basis, which means that the light causes electronic transitions only from
one sublattice to the other, as shown in figure .. This was also seen in the
derivation of the light–matter matrix element (.); same-site terms were zero,
and the largest contributions were from nearest-neighbor overlaps.

Another interesting point is that circularly polarized light causes transitions
from sublattice A to sublattice B at one Dirac point, and back at the other.
This is a consequence of the chirality of the optical matrix element ∇gk. A
circularly polarized light beam, traveling perpendicularly to the graphene sheet,
can be written as A(t) = (êx ± iêy) exp(iωt) with the ± signs referring to
either circularly polarized direction, at the position of the sheet. The position
dependence of the optical matrix element, close to the Dirac points, can be
approximated as (êx ± iêy), see (.), where the ± signs refer to either Dirac
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Figure . Optical matrix element ∇gk in the sublattice basis (.). Upper
panels, phase of matrix element projected along vector indicated in figure. Lower
panels, phase shown as color on surface given by magnitude of different compo-
nents of the matrix element.
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Figure . Incoming light causing a current in the material.

point. As a consequence, since (êx + iêy)·(êx − iêy) = 0, either the first or the
second term of the light–matter Hamiltonian (.) is always zero at a particular
Dirac point, and hence only one type of transition occurs there.

. Calculating the absorption

One of the advantages of using our semiconductor-type many-body theory is
the possibility to calculate the response to an external electric field, and obtain
estimates for experimentally observable optical features of the system using only
low-order approximations.

When light enters the material, it causes the charges in the material to move
around. The moving charges constitute a current. If the electric field is weak, the
strength of the current is approximately proportional to the strength of the field.
The current influences the electric field that is transmitted out of the material,
which can be observed. These processes are illustrated in figure ..

Our system is assumed to be in its ground state, and is then excited by a
pulse of light A(t). We follow the time development of the excitation until the
system has returned to its ground state. In the simplest approximation, the light
pulse is considered short and weak. We can consequently use the amplitude of
the light as an expansion parameter, and discard all terms which contain high
powers of the field amplitude.

The absorption spectrum in graphene can be calculated with an approach
similar to that of semiconductor theory, but has to be treated with care, as
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large-gap approximations are not valid. The first order of excited current under
these weak-light circumstances, i.e. the linear current, is given by

j =

〈
δĤe–light

δA

〉
=

e

m

∑

λλ′k

pλλ
′

k 〈â†λkâλ′k〉. (.)

In this model, the current is calculated by solving the dynamics of the expec-
tation values 〈â†λkâλ′k〉 under the influence of the electric field. These dynamics
will be discussed further in chapter . The time evolution of the current is cal-
culated, Fourier transformed to obtain the frequency information, and divided
by the incoming electric field. This gives the absorption coefficient

2

ω

Im
[
j(ω)·êA

]

|A(ω)| ,

which relates the outgoing and the incoming electric fields. The quantity we plot
is the linear susceptibility Im

[
j(ω)/ωA(ω)

]
.

Any system in its ground state can only absorb energy from the incoming
light, and the transmitted light is always weaker than the incident light. The
absorption spectrum for such a case is positive. If the system was in an excited
state to begin with, however, the incoming light might pick up some energy from
the system. The transmitted light would then be stronger, and the absorption
spectrum negative for the frequencies involved. This will be relevant in chapter
, where we discuss the consequences of a strong Coulomb interaction in the
gapless band structure.

In a standard semiconductor with a band gap, the linear spectrum typically
shows a more or less featureless nonzero absorption above the band edge. If
Coulomb interaction is included, the spectrum also shows several strong and
sharp excitonic absorption peaks below the band gap. Graphene, being gapless,
was an interesting system to apply this technique to — how and where in the
spectrum would excitons show up?
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Chapter 

Equations of motion

In the previous two chapters, the single-particle and interaction parts of the
electronic system Hamiltonian in graphene were determined. In this chapter,
the many-body theory will be put to use for determining the dynamics of the
electronic system. Once the Hamiltonian is known, we can in principle find
out anything about our system. I will start by defining the basic microscopic
quantities, which describe the detailed electronic state of the system. The many-
body Hamiltonian is then used to derive equations for the time evolution of these
microscopic quantities. In later chapters, these so-called equations of motion will
be solved numerically.

The type of approach described here has been used successfully for a great
number of applications in the field of semiconductor theory [, ]. In semicon-
ductors, the ground state consists of a full valence band and an empty conduction
band. An external perturbation, for example light, excites a small and control-
lable number of electrons to the conduction band. In semiconductor theory, it is
therefore useful to define the small conduction band electron population as the
dynamical quantity of interest.

In a metal, the same approach is of less use, since any low-temperature
ground state is continuously excited by arbitrarily weak perturbations; no band
can be said to have a small, or controllable, population. Graphene, in the non-
interacting picture of chapter , is a gapless system, but would behave mostly
like a semiconductor in this respect, since the bands touch only at isolated points
in momentum space.

The equations used for semiconductors, however, contain the assumption of
a large band gap, which allows certain simplifications to be made. In gapless
systems, the absence of these simplifications give the graphene equations of mo-
tion some additional structure, as I will discuss in this chapter. A semiconductor
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theory-like approach to graphene, similar to the one described here, can be found
e.g. in [].

. Quantities

In the present approach, the main quantities of interest are the single-particle
expectation values in the band picture. These quantities are the distribution
of electrons in the conduction band 〈â†ckâck〉, the distribution of holes in the
valence band 1− 〈â†vkâvk〉, and the microscopic interband polarization

Pk ≡ 〈â†vkâck〉. (.)

The excitations we will be considering will always create electrons and holes
at the same k values. As a consequence, the distribution of electrons in the
conduction band is always equal to the distribution of holes in the valence band.
I use the symbol fk to denote this joint electron-and-hole distribution, and I
will refer to it simply as the population.

fk ≡ 〈â†ckâck〉 = 1− 〈â†vkâvk〉 (.)

The population fk is a real-valued number between one and zero, measuring the
band filling in the material.

. Time evolution from the Hamiltonian

In the Heisenberg picture, the time dependence of any observable is given by
the Heisenberg equation of motion

i~
d
dt
Ô =

[
Ô, Ĥ

]
.

The time evolution of our quantities is obtained by commutating the electron
operators through the system Hamiltonian,

i~
d
dt
〈â†kâk〉 = 〈

[
â†kâk, Ĥ

]
〉 .

Our quantities are the population (.) and the polarization (.), and the
system Hamiltonian consists of the light–matter Hamiltonian (.) and the
Coulomb Hamiltonian (.). One can expand commutators containing several
operators according to the pattern
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[
â†kâk, â

†
pâp′

]
= â†k

[
âk, â

†
pâp′

]
+
[
â†k, â

†
pâp′

]
âk

= â†k
{
âk, â

†
p

}
âp′ − â†p

{
âk, â

†
p′
}
âk

reducing them to anti-commutators containing only one pair of fermion opera-
tors. The anti-commutators can be evaluated with the standard fermion anti-
commutation rules. Commutating a four-operator Coulomb Hamiltonian with
the two-operator expectation values is known to lead to an infinite hierarchy of
equations []. In the present studies, we will always truncate this hierarchy at
the Hartree–Fock, or mean-field level,

〈â†1â†2â3â4〉 ≈ 〈â†1â4〉〈â†2â3〉 − 〈â†1â3〉〈â†2â4〉 . (.)

. Hartree–Fock equations of motion for the
population and the polarization

Evaluating the commutations and performing the truncation leads to equations
of motion for the population fk and the polarization Pk,

~
d
dt
fk = −2 Im

[
P ∗kΩk

]

i~
d
dt
Pk = 2ΣkPk −

(
1− 2fk

)
Ωk.

(.)

In the expressions above, we have used an internal field Ωk and a renormalized
energy Σk defined as

Σk ≡ Ek −
∑

k′

[
(V +

kk′ − V −kk′)fk′ + V Akk′(Pk′ − P ∗k′)
]
− e

m
A·pcck

Ωk ≡
∑

k′

[
V +
kk′Pk′ + V −kk′P

∗
k′ + 2V Akk′fk′

]
+

e

m
A·pcvk .

(.)

Here we have used the dispersion Ek (.) the optical matrix elements pk (.)
and the Coulomb matrix elements (.) in the linear approxiamtion. The renor-
malized energy Σk is a real-valued quantity, since the Auger Coulomb matrix
element V Akk′ is purely imaginary. The internal field Ωk is complex-valued.

The equations have the same outward form as the familiar Semiconductor
Bloch Equations (SBEs) for a standard semiconductor [, ], but with several
important differences. Most notably, the internal field Ωk depends not only on
the polarization Pk (as is the case for semiconductors) but also on its conjugate
P ∗k , as well as on the population fk. The presence of the populations in the
internal field is due to the Auger parts V A of the Coulomb interaction.
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The Auger terms are in principle present also in the SBEs, but they are
commonly neglected since they are strongly off-resonant and therefore weak
in a gapped system. In graphene with its zero-gap band structure, the Auger
terms are as resonant as the common terms. The internal field Ωk additionally
contains a contribution from the external electric field A. This term is due to
the interband part of the light–matter interaction, which is present also in the
SBEs.

The renormalized energy Σk is generalized in a similar fashion. It has familiar
contributions, proportional to the population fk, as well as Auger terms. The
Auger terms in Σk are proportional to Pk and its conjugate, and again, they are
not present in Σk in the SBEs.

The renormalized energy Σk contains a contribution from the external fieldA
as well; this in its turn comes from the intraband part of the light–matter inter-
action. This intraband term in Σk is sometimes included in the SBEs, provided
that the exciting light is in a frequency range low enough to make these con-
tributions resonant. In graphene, inter- and intraband contributions are equally
important, due again to the zero band gap.

. Renormalization in the equations of motion

When deriving the equation of motion for Pk, terms appear that group together
with the definition of Σk, and are non-vanishing even when the valence band is
full and the conduction band is empty, fk = Pk = 0. This is the so-called static
renormalization of the bands, which arises due to Coulomb interactions from the
valence band electrons.

Σk = E0
k −

∑

k′

(V +
kk′ − V −kk′)/2

︸ ︷︷ ︸
≡ Ek

+ . . . fk′ + . . . Pk′ (.)

The static renormalization is taken as being included in the dispersion Ek, mod-
ifying an unknown “bare” dispersion E0

k. Close to the Dirac points, the static
renormalization is a linear function of k. As the dispersion Ek is also linear, it
is reasonable to take the renormalization as a modifier to a bare Fermi velocity.
From an experimental point of view, the bare Fermi velocity is not observable.
If the dispersion is measured in an experiment, all renormalization effects are
included. The study of renormalization and its effects on parameters and natural
constants, in graphene and otherwise, is a wide theoretical field in itself [–].
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. The coupling strength in the Coulomb sums

As shown in chapter , the strength of the Coulomb interaction in graphene is
determined by a coupling constant α, which emerges when writing the Hamilto-
nian in terms of unitless variables. This coupling strength appears in a similar
fashion in the equations of motion as well.

The equations of motion (.) have the dimension of energy, as that is the
dimension of Σk and Ωk. To cast the equations of motion into a dimensionless
form, we divide them by the energy parameter ~vF/d. Inserting the expression
for the Coulomb potential (.) and taking the limit of an infinite system in real
space

∑
k → A

∫
dk/4π2, the Coulomb terms in the equations of motion acquire

the following form:

∑
k′W (k − k′)[· · · ]

~vF/d
=

e2d

8π2εε0~vF

∫
dk′

F (|k − k′|d)[· · · ]
|k − k′|

=
α

2π

∫
dη′

F (|η − η′|)[· · · ]
|η − η′| with η = kd (.)

and the only parameter left in the equations of motion is the coupling strength
α. As will be shown in later chapters, the behavior of the equations of motion
depends critically on the value of the coupling strength.

. Electronic screening and the coupling strength

Truncating the hierarchy of expectation values when deriving the equations of
motion entails neglecting certain effects. One of those is electronic screening,
which is expected to play an important role in graphene [–]. Screening is
the phenomenon in which an electron cloud reacts to an electric field, by recon-
figuring itself to weaken the field. This includes the fields created by the electrons
themselves. In effect, the screening makes the Coulomb interaction weaker.

In an electronic system with a band gap, there is no screening in the ground
state, since the electrons in a full band cannot move in response to an electric
field. The reason for having any screening at all in an unexcited graphene system
is that the electrons in the valence band, close to the Dirac points, can move to
the conduction band while spending an infinitesimal amount of energy, and so
screening occurs somewhat like in a metal.

Screening is a complicated many-body effect, involving all orders of the hi-
erarchy of expectation values in the equations of motion. There are, however,
ways to approximate these effects, and to include the screening as a calculable
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Figure . The quantities relevant for the screening in the unpopulated tight-
binding ground state in graphene. A linear polarization function (.) gives an
approximately constant dielectric function (.) which weakens the Coulomb in-
teraction (.) by a constant factor.

weakening of the Coulomb potential in the truncated equations of motion. The
screening effects are taken into account by using a screened Coulomb potential

W scr(q) =
W (q)

ε(q)
(.)

which is related to the unscreened potential W (q) (.) through a dielectric
screening function ε(q) ≥ 1, weakening the effective Coulomb potential. The
dielectric screening function can be stated in terms of a polarization function
Π(q) related to the dielectric screening via

ε(q) = 1−W (q)Π(q). (.)

For an unpopulated state (the tight-binding ground state with fk = Pk = 0)
close to the Dirac points where the dispersion is linear, the polarization function
is evaluated as

Π(q) = −4
∑

k

1− cos(θk − θk−q)

Ek−q + Ek
. (.)

With the linear dispersion Ek, this ground state polarization function is isotropic
and proportional to q, as plotted on the left in figure .. With a linear polariza-
tion function, the dielectric function (.) is approximately a constant, since the
q dependence of the bare Coulomb potential is F (qd)/q, and the form function
gives only a slow additional drop-off for q.
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A constant dielectric screening function can be incorporated in the back-
ground dielectric constant, which in turn forms a part of the coupling strength
α. These standard screening results give an effective background dielectric con-
stant of approximately . for the unexcited system. For the coupling strength α,
this gives a value of approximately ., significantly lower than the unscreened
value of .. A full treatment of the screening is deferred to chapter . Until
then, the coupling strength is taken simply as an input parameter.
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Chapter 

Inhomogeneous excitation and
wavepacket dynamics

In the previous chapters, the electric field was assumed to be constant over the
whole material. For example, the equations of motion of chapter  contain the
assumption that the distribution of electrons is uniform in the material. In this
chapter, I discuss a situation where the light intensity varies in space, and hence
excites an electron distribution which also varies in space. One can follow the
spatial movement of these electrons by solving a set of generalized equations of
motion.

Analyzing the movement of the electrons gives information about the state
the electrons are in. A localized packet of electrons, for example, moves according
to the momentum contents of that particular wavepacket. In particular, electrons
and holes in a bound state, called an exciton, move differently from unbound
electrons and holes. These two types of excitation (bound and unbound pairs)
move in manners that can be clearly distinguished by solving the inhomogeneous
equations of motion.

Equations of motion for such locally excited electrons have been set up and
solved for semiconductors in []. In Paper I, we set up similar equations of
motion for electrons in a carbon nanotube, using the graphene many-body theory
outlined in the first three chapters of this thesis.

In Paper I, the carbon nanotube is first exposed to a light pulse. The light
is chosen to have an unequal strength at different positions along the tube, in
order to make the motion of the created excitations visible. After the light pulse
is turned off, the motion of the excitations is studied, by numerically solving our
spatially inhomogeneous graphene equations of motion.
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Figure . Light causing an electronic transition in graphene.

. Using a spatially varying light field

To derive spatially inhomogeneous equations of motion, we need a spatially
inhomogeneous model of the light, in the form of a Hamiltonian. The graphene
light–matter Hamiltonian in chapter  was derived under the assumption that
the light field vector potential A(t) is independent of the spatial coordinate in
the graphene plane. In this chapter, we will instead be using a light field A(x, t)

that varies slowly over the material, on a length scale of at least several unit
cells.

To include the spatial dependence of the light field in the light–matter Hamil-
tonian, one needs to account for it when performing the integration over space,
at the stage of (.). Using the assumption of a field varying only on the scale
of several unit cells of the material, basically setting A(x, t) ≈ A(R, t), one is
able to separate the length scales involved in the spatial integration into a sum
over unit cells and an integral over a single unit cell.

Performing a derivation similar to the one in chapter , except for main-
taining the slow spatial variance in A(x, t), we arrive at the Hamiltonian for
electrons interacting with an inhomogeneous light,

Ĥe–light = − e

m

∑

λλ′kk′

pλλ
′

kk′ ·A(k − k′, t) â†λkâλ′k′ (.)

with the momentum matrix elements

pcvkk′ =
p

2b

(
gk∇g∗k
|gk|

− g∗k′∇gk′
|gk′|

)

pcckk′ = − p

2b

(
gk∇g∗k
|gk|

+
g∗k′∇gk′
|gk′|

)
.
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Figure . A standing wave, as an example of an inhomogeneous light field.

In this Hamiltonian, like before, λλ′ are indices for the conduction and valence
bands, and k is the in-plane momentum of the electrons in the bands. The
light field A(k − k′, t) appears in a Fourier transformed form, with A(k, t) =∑

R e
ikRA(R, t). The field profile in momentum space represents the photon

momentum contents of the light field. The electron created and the electron
annihilated by the light Hamiltonian differ in momenta by k−k′. This difference
is the momentum Q of the photon absorbed (or created) in the process, as
shown in figure .. The electron absorbs a photon, and the photon energy and
momentum is transferred to the electron. In a spatially homogeneous situation,
the photon momentum is usually without consequence and hence neglected.

A simple example of a spatially varying field is a one-dimensional standing
wave, shown in figure .. This is the field we are using in Paper I to create a
spatially varying distribution of electrons along a carbon nanotube. A standing
wave is formed when a simple single-frequency cosine wave is reflected and re-
reflected between two mirrors,

A(x, t) = A0(eiQx + e−iQx)eiωt + c.c.

The photons all have the same frequency and since they travel in both directions
between the mirrors, they have the momenta ~Q and −~Q along the standing
wave. The light intensity profile is a simple periodic function cos2(Qx) with a
periodicity of π/Q, half the photon wavelength.
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. Inhomogeneous excitation

When the system is excited with a light with a spatial profile, the excitations
created in the material are also position-dependent. Initially, the excitation has
the same spatial profile as the field that created it. To solve the dynamics from
that point on, one needs equations of motion for position-dependent electron
densities. What we are interested in is the real-space density of electrons, which
is given by the expectation value 〈ψ̂†(x) ψ̂(x)〉. In order to apply our graphene
many-body theory, we need to relate this real-space expectation value to mo-
mentum space quantities. To that end, the field operators ψ̂(x) are expanded in
a momentum basis, using the graphene tight-binding expansion (.). Further,
we will assume that the spatial variance of the electronic density is slow, on the
scale of several unit cells of the material. The same assumption was made with
the slowly-varying light profile in the previous section. The real-space electronic
density becomes

〈ψ̂(x)†ψ̂(x)〉 =
1

N

∑

R

|φ(x−R)|2

︸ ︷︷ ︸
density within unit cell

∑

λλ′kk′

e−i(k−k
′)R〈â†λkâλ′k′〉

︸ ︷︷ ︸
envelope ρ(R) ≈ ρ(x‖)

. (.)

One finds the familiar separation of length scales; the total electron density
is a product of the three-dimensional density of electrons within a unit cell,
and a two-dimensional envelope density ρ(x‖). The unit cell density is a simple
repeating function over the lattice, and the envelope part depends only on the
large-scale in-plane position x‖. In this chapter, we will be using the envelope
part only.

In the sums over bands in (.) filled bands do not contribute, as the filled-
band terms add up to zero under their k sums. Hence the envelope density
contains only contributions from non-filled bands, in our case the excited electron
and hole densities in the conduction and valence bands. These populations in
non-filled bands are the only ones free to move and have the possibility of forming
a spatially varying envelope.

For the length-scale separated density (.) one can see that in order to
have non-constant envelope function ρ(x‖), one needs a two-indexed form of
the microscopic quantities 〈â†kâk′〉. For the homogeneous system discussed in
the previous chapter, only one momentum index was needed. For our present
studies, where one valence and one conduction band are considered, the relevant
inhomogeneous quantities are
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Figure . A carbon nanotube in a standing wave light field. The tube axis
is perpendicular to the light polarization, and as a consequence, the light causes
transitions between subbands in momentum space.

electron population f ekk′ ≡ 〈â†ckâck′〉 ,
hole population fhkk′ ≡ δkk′ − 〈â†vkâvk′〉 , and

microscopic polarization Pkk′ ≡ 〈â†vkâck′〉 .
(.)

. Inhomogeneous excitation of a semiconducting
carbon nanotube

To put our theory for spatially variant excitation to use in graphene, it is conve-
nient to use a lower dimensional system, as the additional momentum variable
adds a degree of freedom. A carbon nanotube is therefore a useful application.

Unlike flat graphene with its semimetal characteristics, certain types of car-
bon nanotubes have large band gaps, making them semiconductors, as was dis-
cussed in section .. If the excitation with light is chosen to activate transitions
near the band gap, only a limited number of subbands will be activated. In such
situations, carbon nanotubes can be conveniently modeled as one-dimensional
semiconductors. Exciting a carbon nanotube with a spatially variant light there-
fore provides an opportunity use many-body theory of graphene to study move-
ments of excitations.

In Paper I, this spatially inhomogeneous field is a standing wave, as was
discussed in section .. We chose to have the standing wave along the tube, in
order for the light momentum to interact with the continuous (along-tube) com-





Strong Coulomb Coupling in Graphene

ponent of the electron momentum. As a consequence, the light field is polarized
in a direction perpendicular to the carbon nanotube axis. In a situation with a
perpendicular polarization, the light-induced transitions are between states with
subband indices differing by one, as explained in Paper I.

For an unexcited system, the energetically lowest allowed transition is there-
fore from the valence subband closest to the K point to the conduction subband
second-closest to the K point, in the manner illustrated in figure .. Also, at
the same energetical level vice versa; from the valence subband second-closest to
the K point to the conduction subband closest to the K point. We label these
subbands with µ closest to the K point, and µ + 1 for the second closest. The
transitions driven by the light are thereby (v, µ)↔ (c, µ+1) and (v, µ+1)↔ (c,
µ), independently and with equal strength. In the numerical study of Paper I, it
was therefore possible to limit to studying the dynamics of these two subbands,
µ and µ+ 1.

The presence of a band gap in semiconducting carbon nanotubes provides us
with a system in which excitons appear, like they do in a standard semiconductor
[]. By using different frequency ranges for the light that provides the initial
excitation of the system, we can choose which kind of excitation will be present.
When the frequency of the light is above the band gap, the light will excite
unbound electrons and holes. On the other hand, if the system is excited with
frequencies below the band gap, the light will create bound electron–hole pairs,
that is, excitons.

These two types of excitation exist in semiconducting carbon nanotubes, as
well as in standard semiconductors. Their dynamics in a semiconductor quantum
well system is studied in []. Based on that study and on general knowledge
of bound systems, the two different types of excitation are expected to show
distinctly different types of behavior as the system evolves in time. We use our
approach, with a spatially varying light, to create a setup where the dynamics
of both types of excitation can be observed.

. Equations of motion for inhomogeneous electron
densities

In order to calculate the dynamics of our spatially resolved system, we need
spatially resolved equations of motion. To this end, we set up equations of motion
for the inhomogeneous quantities (.). The equations of motion are derived
in the same way as in chapter , apart from the quantities now having two
independent momentum indices, k and k′.
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The time derivative of each quantity is obtained through commutation with
the system Hamiltonian. Like in (.) we then factorize the four-operator expec-
tation values into the possible combinations of two-operator expectation values,
which closes our set of equations. The factorization of four-operator expectation
values is valid only under the assumption that the excitation is small, which
is true for cases where the light pulse is weak and short enough. This kind of
inhomogeneous time dynamics is also set up and discussed in [] and [] for a
typical semiconductor system.

As Hamiltonian we use the tight-binding single-particle Hamiltonian Ĥ0

(.) and the Coulomb interaction Hamiltonian Ĥcoul (.). For the interaction
with light, we use the spatially resolved Ĥe–light (.). We are writing the quan-
tities in a matrix form, with H denoting a Hermitian conjugate of the matrix,
PH(k,k′) ≡ P ∗k′,k. The equations of motion for the inhomogeneous quantities
(.) can be written as

i~
d
dt
f e = f eΣeH − Σef e + ΩHP − PHΩ

i~
d
dt
fh = Σvfh − fhΣvH + PΩH − ΩPH

i~
d
dt
P = ΣvP − PΣeH − (1−fh)Ω + Ωf e . (.)

We are here also using the two-indexed generalizations of the renormalized en-
ergy Σk and internal field Ωk (.). The matrix nature of the dynamic quantities
(.) modifies the equations of motion, compared to the spatially homogeneous
equations of motion. Specifically, there is one more sum in each Coulomb term.
Every such sum here takes the form of a matrix multiplication.

In anticipation of the band gap in a semiconducting carbon nanotube, we
will be using the standard large-gap approximations discussed in section ..
Hence, we will here include only the terms which contribute significantly in that
situation, and not the full graphene contributions. It is possible to extend these
definitions to be valid for graphene in general, too, by lifting the assumption of
a large band gap, and consequently including the V A and V − type terms in the
Coulomb interaction as well as the intraband terms in the light–matter interac-
tion. Under these assumptions, the expressions for the renormalized energy and
the internal field are

Σc
kk′≡ Eckδkk′−

∑

q 6=0

V +
k+q,k′,q f

e
k+q,k′+q (.)
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Σv
kk′≡ Ẽvkδkk′+

∑

q 6=0

V +
k+q,k′,q f

h
k+q,k′+q ; Ẽvk = Evk−

∑

q 6=0

V +
k+q,k,q (.)

Ωkk′≡
e

m
pcvk′k ·A(k′− k, t) +

∑

q 6=0

V +
k+q,k′,q Pk+q,k′+q . (.)

In the renormalized energy for the valence band Σv
kk′ (.) we are using a renor-

malization for the single particle band Ẽv
k. Nominally, this Coulomb correction

is due the influence of the electrons in the full valence band. As explained in
Paper I, this is a somewhat simplistic way of dealing with the binding energy
of the exciton exceeding the band gap. For the present task of studying the
excitation dynamics, however, using this simple approach makes no qualitative
difference. As will be seen in the next chapter, the situation gets more compli-
cated in case one wants a more accurate description of the Coulomb effects on
the band structure.

. Wavepacket dynamics in a semiconducting carbon
nanotube

To solve the equations of motion, we set the system to an initial state and use
time-stepping algorithms to obtain numerical solutions of the time evolution of
the system. The initial state is the unexcited ground state of the system, that
is, the valence band is full and the conduction band is empty. In terms of our
quantities, this is to say that f ekk′ f

h
kk′ and Pkk′ start at zero.

The system is then excited with light, and electrons start transitioning from
the valence band to the conduction band. Under the influence of the light, the
polarization P becomes nonzero due to the source term in (.) which in turn
creates nonzero f e and fh. The light pulse is kept short enough not to start filling
the bands (which would invalidate our approximations) but long enough to have
a narrow enough frequency profile. The narrow frequency range is useful for
creating excitation at specific transition energies, which gives us the possibility
to study how the dynamics depend on the excitation energy.

In the numerical analysis in Paper I, a carbon nanotube is exposed to a light
field in the form of a standing wave. The standing wave creates excitation at
its antinodes, so the three quantities are initially nonzero at periodic intervals
over the length of the carbon nanotube. When the light is turned off, no more
excitation is created, and the wavepackets at the antinodes are allowed to spread
out in space.
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The excitation in the carbon nanotube consists of (valence band) electrons
and (conduction band) holes. This excitation can be of two different types;
unbound electron–hole pairs, and electron–hole pairs forming bound states (ex-
citons).

When the excitation is of the first type, unbound electrons and holes, the
wavepackets will move linearly away from the point in space where they were
created. They move with a velocity corresponding to the momentum k at which
they were created, and with a mass given by the band curvature at that point.
One can witness the phenomenon shown in Paper I; each initial wavepacket
splitting up in two parts, and criss-crossing with packets from other parts of the
nanotube before slowly dissipating away.

An exciton, on the other hand, moves with the center-of-mass momentum
of the created electron–hole pair. Hence, their center-of-mass momentum is the
photon momentum Q, which is typically much smaller than the band momenta
of the electron and the hole. Consequently, the exciton moves much slower than
the unbound electron and hole.

It is also possible to turn off the boundness of the electron–hole pairs by
killing the polarization matrix P with a dephasing term in its equation of motion.
When the polarization dies away, the electron and hole are freed, and the initially
almost immobile excitonic wavepacket spreads out as it gradually is converted
to free particles. In the figures presented in Paper I, the excitonic and free-
electron movement can be clearly distinguished. From the data, it is clear that
excitonic wavepackets exist in gapped graphene systems, as well as in standard
semiconductors, and that they behave in fundamentally the same way.
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Chapter 

The Wannier equation and the
onset of a strong-coupling phase

In chapter , the tight-binding band structure in graphene was introduced. The
tight-binding derivation is done without accounting for the Coulomb interac-
tion between the electrons themselves. Close to the Dirac points, however, this
assumption becomes somewhat hazy.

Starting from the tight-binding ground state of the system, an electron in
the valence band could transition to the conduction band. This transition would
require a very small amount of energy, if the electron is close to the Dirac
point. This electron could form a bound state with the hole it leaves behind. If
the binding energy of this electron–hole pair is larger than the energy that was
required to induce the transition, the state with an electron–hole pair has in fact
a lower energy than the state we started with. This in turn would imply that
the tight-binding ground state is not the same as the true many-body ground
state of the electronic system.

A systematic way for testing under which conditions this pair-forming occurs
is the subject of Paper II. In this chapter, I present an overview of the techniques
used there and the results obtained. The main idea is to set up an equation
describing the binding energy of an electron–hole pair in the tight-binding bands.
This equation is the Wannier equation, familiar from semiconductor theory [].
Using various other methods, the criticality of the two-body problem in graphene
has been studied extensively in the literature [–].

. The Wannier equation in graphene

Physically, an exciton is an electrically bound electron–hole pair. Mathemati-
cally, an exciton appears as an eigenstate of the microscopic polarization Pk
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(.). In order to look for eigenstates of the polarization, one takes a Fourier
transform from time to frequency of the equation of motion for Pk (.) and
arrives at a linear eigenvalue problem. This is the Wannier equation. In our
present case, we set the populations fk to zero, since the topic is the potential
instability of the system in its ground state, without electron or hole popula-
tions. The external field is also set to zero. These assumptions give the Wannier
equation in the form

2~vF |k|φλ(k)−
∑

p

W (k−p)φλ(p) = Eλ φλ(k) (.)

with the Coulomb potential W (q) (.). The index λ enumerates the set of solu-
tions to the eigenvalue problem, and φλ(k) is the eigenfunction for the exciton.

Since we are interested in studying the onset of excitonic solutions, some
simplifications have been done before arriving at the equation above. If the pair-
forming is considered likely only in regions close to the Dirac points, the linear
approximation can be used for the dispersion and the Coulomb matrix elements.
This simplifies the problem by making the system rotationally symmetric. For
isotropic systems, the lowest-lying states are also isotropic. Hence, we will only
look for s-like electron–hole wavefunctions. The angle dependencies in the two-
dimensional momentum can be integrated out, giving a one-dimensional problem
to solve.

An electron–hole pair has two momentum variables, which can be taken as
the center-of-mass and the relative momentum. The Schrödinger equation for
the exciton contains both of these momenta. With a quadratic dispersion, the
Schrödinger equation separates into two independent equations, one for each
degree of freedom. With a linear dispersion, however, the two degrees of free-
dom do not separate []. To study the full two-body problem in graphene, one
would consequently have to solve for the two degrees of freedom simultaneously.
This could be done by solving inhomogeneous equations of motion like those in
chapter . In the present situation, however, we can limit our investigations to
stationary excitons, and we can therefore eliminate the center-of-mass degree of
freedom.

. Interpretation of bound states in a gapless system

In standard semiconductor models, with parabolic bands and nonzero band gaps,
the Wannier equation is a hydrogen-like Schrödinger equation. The binding en-
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Figure . Bound and unbound states with and without band gaps.

ergy of the lowest-lying excitons are a few meVs, which is a small fraction of a
typical eV band gap.

For bound states in gapped systems, the eigenenergy of the Wannier equation
Eλ is the band gap Egap minus the binding energy of the electron–hole pair Eb.
As Eb is much smaller than Egap, the state energy is a positive quantity. This
situation is illustrated in the first panel of figure .. Typically, the energy of
the bound state is significantly above the energy of the ground state, which is
zero. Hence, bound-state Wannier solutions in a gapped system have a natural
interpretation as excited states of the system.

In case there is a solution where the binding energy is larger than the band
gap, this interpretation breaks down. We were assuming that the empty con-
duction and filled valence band, i.e., the system empty of electron and hole
populations, was the ground state of the system. However, since the exciton has
an energy below the energy of the state empty of populations, this assumption
was false. In such a situation, an exciton-like solution to the Wannier equation
is a sign that the unpopulated electron and hole bands are not the true ground
state.

In graphene, the ground state is assumed to be the unpopulated tight-binding
electron and hole bands. Since the band gap is zero, any bound-state Wannier
solution, if it exists, has an energy below that assumed ground state. The Wan-
nier equation can therefore be used to look for where the tight-binding ground
state assumption breaks down.

To study the onset of bound states, we compare the kinetic energy and
Coulomb energy of the Wannier eigenstates. These two energies can be calculated
by multiplying the Wannier equation by the wavefunction φλ(k)∗ and integrating
over momentum space, giving

2~vF
∫ ∑

k

|k|φλ(k)2 −
∑

pk

W (k − p)φλ(p)φλ(k) = Eλ . (.)
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When the Coulomb energy (the second term) is larger than the kinetic energy
(the first term) the state energy Eλ is negative and the electron–hole pair is in
a bound state.

. The coupling strength in the Wannier equation

In order to study the intrinsic properties of the Wannier equation, we rewrite
(.) in a dimensionless form. Using the layer thickness d as a length scale,
and the energy E0 = ~vF/d as an energy scale gives us unitless versions of the
momentum η = kd and the energy Eλ/E0, respectively. The wavefunction is
also rescaled, since it should be normalized under the condition

∫
dk|φ(k)|2 =∫

dη|ψ(η)|2 = 1. This gives the scaled wavefunction ψ(η) = φ(k)/d. The di-
mensionless form of the Wannier equation is

2|η|ψλ(η)− α

2π

∫
dη′

F (|η − η′|)
|η − η′| ψλ(η′) =

Eλ
E0

ψλ(η) . (.)

The function F (η) is the geometrical modulation of the Coulomb interaction,
described in section .. As all the quantities now are dimensionless, the only
free parameter is the coupling strength

α =
e2

4πεε0~vF
.

The coupling strength α determines the relative strength of the Coulomb in-
teraction, and thereby the behavior of the Wannier equation in graphene. This
was also the case for the system Hamiltonian in scaled units (.) and for the
equations of motion in scaled units (.).

. Solving the Wannier equation for different coupling
strengths

We are using the existence of bound-state solutions of the Wannier equation as
a criterion for the onset of a strong-coupling phase in graphene. The clearest
indication of a bound state is the solution with the largest binding energy. Of
the range of eigenfunctions λ, the 1s solution is the strongest bound, and is
therefore the clearest indication of a possible bound state. We can therefore limit
our investigation to s-like solutions of the Wannier equation, that is, solutions
where the wavefunction is independent of the momentum angle. This reduces the
two-dimensional problem to a one-dimensional one. Linear eigenvalue problems
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Figure . The eigenenergy Eλ of the strongest bound (λ = 1s) solution of the
Wannier equation, as a function of the coupling strength.

such as this zero-population Wannier equation can be solved numerically, by
discretizing momentum space into N intervals or points. Discretizing momentum
turns the Coulomb integral into a sum, and the left-hand side can be written as
a matrixM times an eigenvector ψλ. The Wannier equation turns into a matrix
eigenvalue problem, of the form

Mψλ = Eλψλ .

The N by N matrixM has N eigenvalues. Solving the eigenproblem numerically
gives us N values for the eigenenergy Eλ, as well as N eigenfunctions ψλ. Of the
eigenvalues, some may have a negative value for the energy, and the rest positive
values. The negative energies correspond to bound states and positive ones to
unbound states, where the electron and hole are at some position in the band,
above the band gap, and not bound to each other by Coulomb interaction.

Significantly for the numerics, the wavefunctions for bound states have a
nonzero width in momentum space. For a reliable estimate for the energy of a
given bound state, one needs enough momentum grid points to resolve the wave-
function of that particular state. The 1s state, having the strongest Coulomb
binding, has the widest wavefunction and is therefore the easiest to resolve —
provided that it exists. Depending on how fine we make the momentum grid, we
can resolve more and more bound states in addition to the 1s state.

To study the onset of bound-state solutions, we solve the Wannier equation
numerically for a range of different values of the coupling strength α. The 1s en-
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Figure . The wavefunctions of the strongest bound solutions of the Wannier
equation, for different values of the coupling strength α. Left panel in k space and
right panel in real space.

ergy is shown in figure . as a function of coupling strength. For larger coupling
strengths, there are bound state solutions; the larger the coupling strength, the
larger the binding energy. Significantly, there are no bound states at all for cou-
pling strengths below approximately .. Coupling strengths larger than this
critical value puts the system in the strong-coupling phase, where the unpopu-
lated tight-binding bands are no longer the ground state of the system.

In figure . are shown wavefunctions for a selection of α values. Solutions for
large coupling strengths have wavefunctions that are nonzero over a large area
in momentum space. Conversely, their wavefunction in real space is localized to
a small area, as that pair has a large Coulomb attraction and a relatively small
kinetic energy. Solutions for lower coupling strengths are narrower in momentum
space, and increasingly delocalized in real space.

As the wavefunction becomes narrower near the switch point, the bound
state solutions are increasingly challenging to resolve numerically. To see the
switch more clearly, we calculate the ratio of Coulomb to kinetic energy for the
solutions, shown in the second panel of figure .. These are the first and second
term of (.). As long as the ratio is above one, the solution is a bound state.
This behavior of the Wannier equation shows that the tight-binding description
of the ground state is not valid when α is above the switching point. We can
see that the energy ratio in figure . forms an approximately linear function of
α. There is also a clear ‘kink’ at the switch point where the ratio crosses one,
indicating the transition between the tight-binding phase and strong-coupling
phase.
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Chapter 

Finding the ground state
— the gap equations

In the previous chapter, we established that the tight-binding description of
the ground state of graphene is inadequate in the presence of a strong enough
Coulomb interaction between the electrons. In this chapter, we proceed to find
a more suitable ground state description. This is also the topic of section  of
Paper III and section  of Paper IV.

We find the ground state by minimizing the energy of the electronic state,
in terms of our dynamical quantities from chapter ; the population and the
polarization. The external field is zero in this chapter, as we are studying the
inherent properties of the unexcited system.

As it turns out, the new ground state has an energy gap in the band structure.
The size of the gap depends on the strength of the Coulomb interaction, similarly
to the binding energy of the Wannier exciton from the previous chapter. The
band gap in our study opens because of Coulomb interaction, but the effect is in
other ways similar to the band gap opening in superconductivity [, ] with
pairing of the electrons and transformation of the quasiparticles.

. Band gaps in graphene

The tight-binding band structure is a consequence of the hexagonal symmetry of
the atomic lattice. The linear energy cone at the Dirac point exists only as long
as the hexagonal symmetry is preserved. Any kind of deviation from the perfect
lattice breaks the symmetry between the A and B sublattices in the graphene
sheet, and will give rise to an energy gap at the Dirac point.

What we study in this thesis is a spontaneous opening of a band gap, where
the symmetry breaking is due to interaction among the electrons. A band gap
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can also be achieved by other means, such as limiting system size, to form
nanoribbons or nanoflakes, or by periodicity, like for carbon nanotubes. A band
gap can also be created by introducing impurities or disorder in or around the
lattice. Since a band gap is crucial for using graphene as a transistor, large
amounts of work has been directed at investigating these kinds of circumstances
[, ]. The strong-coupling ground state in graphene and its influence on band
structure has been studied with various methods for example in [–].

. Minimizing the energy of the electronic state

The electronic ground state of the system is the state with the lowest energy
expectation value 〈E〉. We want to find the state that minimizes this energy.
At the level of the mean-field approximation, the electronic state of graphene is
defined by the polarization Pk and by fk, which is the population of electrons
in the conduction band as well as the population of holes in the valence band.
The mean-field level of approximation was the same we used when truncating
the equations of motion at the Hartree–Fock level (.). The minimum energy
can be found by varying the energy with respect to the population and the
polarization.

To find the ground state, we first construct an expression for the energy
expectation value of a general state, given in terms of the population and the
polarization. The expectation value of the energy of a state, 〈E〉, is calculated
as the expectation value of the Hamiltonian, 〈Ĥ0 + Ĥcoul〉. The Coulomb energy
〈Ĥcoul〉 of the state contains four-operator expectation values, which we reduce
to two-operator expectation values using Hartree–Fock factorization, 〈â†1â†2â3â4〉
≈ 〈â†1â4〉〈â†2â3〉 − 〈â†1â3〉〈â†2â4〉. This way, we obtain also the Coulomb energy in
terms of the population fk and the polarization Pk, which are the two-operator
expectation values;

〈E〉 =
∑

k

2~vF |k|fk −
∑

kk′

W (k−k′)
[
cos(θk−θk′) fkfk′ + PkPk′

]
. (.)

The first term is the kinetic energy, and the second term is the Coulomb energy
of the state. We have assumed that fk and Pk depend only on |k| and not on
the momentum angle, and that Pk is real.

To proceed, we minimize the energy of the state with respect to the functions
fk and Pk. In Paper III, we perform the steps of the functional variation. During
the calculations, the quantities Σk and Ωk appear in the equations. Like in the
equations of motion, they are related to fk and Pk through
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Σk = ~vF |k|−
∑

k′

W (k−k′) cos(θk−θk′)fk′ and Ωk =
∑

k′

W (k−k′)Pk′ . (.)

Minimizing the state energy gives the following conditions,

2P̄k =
Ω̄k√

Σ̄2
k + Ω̄2

k

and 1− 2f̄k =
Σ̄k√

Σ̄2
k + Ω̄2

k

. (.)

The state that fulfills the minimizing conditions (.) is the ground state of the
system. We denote the ground state quantities with a bar,

f̄k, P̄k, Σ̄k, and Ω̄k.

We could now use equations (.) and (.) to eliminate either fk and Pk, or Σk

and Ωk from the calculations. It is convenient to state the minimizing conditions
(.) completely in terms of Σk and Ωk, eliminating fk and Pk; as the quantities
Σk and Ωk have a more direct connection to the quasiparticle transformation
discussed in section ..

. The gap equations

Minimizing the energy of the state (.) and eliminating f̄k and P̄k using (.)
leaves us with integral equations for Σ̄k and Ω̄k,

Σ̄k = ~vF |k| −
∑

k′

W (k−k′) cos(θ−θ′) 1

2


1− Σ̄k′√

Σ̄2
k′ + Ω̄2

k′


 (.)

Ω̄k =
∑

k′

W (k−k′)1

2

Ω̄k′√
Σ̄2

k′ + Ω̄2
k′

. (.)

These equations we refer to as the gap equations. Solving the gap equations
gives us the energies Σ̄k and Ω̄k, which define the electronic ground state of the
system. Additionally, we can use relation (.) to calculate the populations f̄k
and P̄k of the ground state.

The gap equations (.) and (.) are integral equations, which can be solved
by iteration. We start with some approximations for Σ̄k and Ω̄k, and input
the approximations on the right-hand side. Performing the integration over k
on the right-hand side gives a new approximation for Σ̄k and Ω̄k. This new
approximation is used as the next input on the right-hand side, and so on. If
the equations are well-behaved, as they are in the present case, the successive
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Figure . The iterative process of solving the gap equations.

approximations converge towards a stable solution of the equations. An example
of the steps of the iteration process are shown in figure .. The thick gray line
is the starting approximation, and the thick black line is the solution after ten
iterations, shown as thinner lines. The iteration procedure, in this case, converges
well.

In figure . is shown a gap equation solution for Σ̄k and Ω̄k. The resulting
strong-coupling dispersion EMF

k (.) is shown for comparison. There is a clear
region around k = 0 where the gap equation solution is non-trivial, in other
words, where Ω̄k > 0, and Σ̄k is below the linear dispersion ~vF |k|. Also shown
in figure . are the corresponding populations f̄k and P̄k, which are given by
(.). In the region in k where the gap equation solution is non-trivial, f̄k and
P̄k are larger than zero. Both f̄k and P̄k are 1/2 at k = 0.

The gap equations always have the trivial solution where the Coulomb sums
are zero; Σ̄k = ~vF |k| and Ω̄k = 0. The trivial solution corresponds to f̄k =

P̄k = 0, which is the tight-binding ground state. In the present context, we are
interested in circumstances under which the gap equations have non-trivial solu-
tions, which would correspond to a strong-coupling ground state of the system.

To write the gap equations in scaled units, we follow the same procedure as
for the equations of motion, and as for the Wannier equation: by scaling the
energies with E0 = ~vF/d, and the momentum as kd. Performing these steps
in (.) and (.), the only free parameter left is the coupling strength α =

e2/4πεε0~vF , as a factor determining the strength of the Coulomb interaction.
This is the role α played in the previous contexts, as well.
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Figure . The solution of the gap equations for graphene in vacuum, α = 2.4.

Solving the gap equations for different coupling strengths, we find results
which support the conclusions obtained from solving the Wannier equation in
the previous chapter. That is to say, the gap equations have a non-trivial solution
whenever the coupling constant α is large enough — in the strong-coupling
regime, α > 0.46. The strong-coupling regime coincides with the α range where
the Wannier equation has bound-state solutions.

The results for a few different values of α are show in figure .. For higher
values of α, the solution for the internal field Ω̄k has a higher maximum, and
is nonzero over a larger region around k = 0. For the single-particle energy Σ̄k,
the behavior is dominated by the static linear part, still a higher α creates a
stronger deviation from the linear dependence.

For the corresponding population f̄k and polarization P̄k, shown in the lower
pane of figure ., a higher α creates a larger k area where the solution is
nonzero, like it does for Ω̄k. In contrast to Ω̄k though, both the population and
the polarization stay at 0.5 at the Dirac point for all values of α in the strong-
coupling regime. For α below the critical value, all strong-coupling solutions
disappear, and only the trivial solution remains.

. The strong-coupling ground state and band
structure

When the Coulomb coupling α is large enough, the ground state is no longer
the unpopulated tight-binding bands derived in chapter . Instead, there is a
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Figure . The strong-coupling band structure EMF
k (.).

new strong-coupling ground state with nonzero populations on the tight-binding
bands. These populations are the f̄k and P̄k that we found as solutions of the gap
equations. The populated strong-coupling ground state can also be expressed as
an unpopulated state, by forming a new quasiparticle basis, i.e. by creating new
definitions for the electron and hole. These new quasiparticles are created by
forming a linear combination of the old (weak-coupling) electron and hole. We
want the new quasiparticles to be defined in such a way that their populations
are zero in the ground state, like the weak-coupling quasiparticle populations
are zero in the ground state when α is small enough.

Finding the quasiparticles for which the ground state is empty, is equivalent
to finding the quasiparticle operators for which the Hamiltonian is diagonal. As
we work at the mean-field level, we are interested in diagonalizing the mean-field
level Hamiltonian. While we in the previous chapters performed the Hartree-
Fock factorization in the equations of motion, we here need to do it one step
earlier, in the Hamiltonian. For the Hamiltonian we use (.) and (.), Ĥ0 +

Ĥcoul. In Ĥcoul, we perform a factorization in the four-operator terms,

∑

kpq

Vkpqâ
†
kâ
†
pâp+qâk−q ≈ −

∑

kp

Vk,p,k−p(〈â†pâp〉â†kâk + 〈â†kâk〉â†pâp) .

This gives the mean-field Hamiltonian ĤMF. Analyzing the sums in ĤMF it can
be seen that the gap equation solutions Σ̄k and Ω̄k reappear.
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Ĥ0 + Ĥcoul ≈ ĤMF =
∑

k

Σ̄k(â†ckâck− â†vkâvk)− Ω̄k(â†ckâvk + â†vkâck) (.)

Diagonalizing the Hamiltonian ĤMF, we arrive at a representation that features
a new band structure EMF

k ,

ĤMF =
∑

k

EMF
k Ĉ†kĈk − EMF

k V̂ †k V̂k . (.)

The new strong-coupling band structure is a combination of the gap equation
solutions,

EMF
k =

√
Σ̄2

k + Ω̄2
k . (.)

These new bands are shown in figure . for graphene in vacuum, α = 2.4. The
original tight-binding band structure is indicated by dotted lines.

The diagonal Hamiltonian (.) also features the new quasiparticle operators
Ĉk Ĉ

†
k V̂k V̂

†
k , which annihilate or create an electron in the new bands EMF

k . The
strong-coupling ground state has a filled valence band and an empty conduction
band in terms of these new quasiparticles; that is to say, it is empty of electron
and hole populations. The new quasiparticle operators are linear combinations
of the old tight-binding quasiparticle operators, given by the diagonalization
transformation of ĤMF,



Ĉk

V̂k


 =

1√
2EMF

k




√
EMF

k + Σ̄k

√
EMF

k − Σ̄k

−
√
EMF

k − Σ̄k

√
EMF

k + Σ̄k






âck

âvk


 . (.)

The strong-coupling band structure is shown in figure ., for a few values of
the coupling strength α. As can be seen, there is a gap between the valence and
conduction band opening up for large enough values of α. The band gap Egap

(the distance in energy between the lowest point of the conduction band and the
highest point of the valence band) is shown as a function of α in the left panel
of figure .. The band gap grows rapidly with increasing α.

The bands corresponding to the highlighted values of α are shown in the right
panel of the figure. They follow the same patterns as the gap equation solutions of
figure ., as can be expected, given relation (.). For larger coupling strengths,
the deviation from the tight-binding bands is more evident. Close to the Dirac
point k = 0, the Ω̄ part of the band (.) is dominant, as Σ̄ tends to zero. For
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Figure . Band gap and band structure EMF
k of the strong-coupling ground

state as function of the coupling strength α.

larger values of k, Ω̄ goes to zero, and the weak-coupling, linear part of Σ̄ in
(.) takes over.
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Chapter 

Exciting the strong-coupling
ground state

Once we have established the strong-coupling ground state of graphene, we wish
to see how our system behaves when it is taken out of this ground state. We
achieve this by exciting the system with an external electric field — by applying
a source of light. This is the topic of section  of Paper III and section  of Paper
IV.

In this chapter, we modify the equations of motion from chapter  to ex-
plicitly account for the properties of the strong-coupling ground state from the
previous chapter. Based on the equations of motion, we calculate spectra for the
absorption of light of different frequencies in the system. The absorption spectra
show signatures of a semiconductor-like system, with a band gap and excitonic
resonances.

. The ground state as initial condition

The time development of the system is obtained by solving the equations of
motion. As initial state we use the strong-coupling ground state calculated in
chapter .

There are two equivalent ways to account for the strong-coupling ground
state. One possibility is to transform the quasiparticle operators to the new
strong-coupling basis (.). In this case, the bands are the strong-coupling ones
(.) with a gap in the band structure. The system would start off in the ground
state, which in this basis is empty of electrons and holes. An applied exter-
nal light would create electron and hole populations, which would be time-
dependent.
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Figure . Two equivalent approaches for accounting for the strong-coupling
ground state.

The other possibility is to stay in the tight-binding quasiparticle basis, and
consequently, to keep the tight-binding bands (.). The initial condition of
the system is the tight-binding bands, with electron and hole populations given
by the gap equation solutions. The applied light would create modifications to
the ground state populations, and these modifications would be time-dependent.
These two options are illustrated in figure ., with the strong-coupling bands
as well as tight-binding bands, and the respective electron and hole populations
shown as shaded areas.

In this study, we choose the second option, to stay in the tight-binding basis.
Doing so allows us to keep using the same Hamiltonian operators and the matrix
elements we already derived for the interaction with light and the interaction
between electrons. If we were to use the strong-coupling basis, we would have a
basis dependent on the Coulomb strength.

In the following, we will split the populations fk and Pk into a ground
state part which is static and an excited part which is time-dependent. This
separation simplifies the equations of motion as the static part obeys the gap
equations, which leads to cancellations of terms in the equations. Splitting the
quantities also allows for clearer analysis of the geometry of the time dynamics,
as the static part is isotropic and the dynamic part can have, in principle, any
angular dependence. Additionally, we will later want to simplify the dynamics by
assuming that the excited populations are small; for this purpose the separation





. Exciting the strong-coupling ground state

is necessary. We write the splitting as

fk(t) = f̄k + ∆fk(t)

Pk(t) = P̄k + ∆Pk(t).
(.)

The barred quantities are the time-independent distributions in the ground state,
which we obtained in the previous chapter by solving the gap equations. The
∆ parts of fk and Pk are the excited, time-dependent parts, which are created
by the external light. With this splitting of fk and Pk, the internal field Ωk

and the renormalized energy Σk will also split into a ground state part and
an excited part, Ωk(t) = Ω̄k + ∆Ωk(t) and Σk(t) = Σ̄k + ∆Σk(t). The static
parts contain the ground state populations, and the dynamical parts contain
the excited populations. As we will see, the dynamical parts of Ωk and Σk also
contain the external light field itself.

. Equations of motion

As we are still working in the tight-binding basis, the time evolution of the
populations is still described by the equations of motion (.) given in chapter
. We here wish to express the equations in a form that explicitly includes our
ground state, in order to discuss the consequences of the strong-coupling phase
for the dynamics. We therefore introduce the separation (.) into a static and
a dynamic part, in the equations of motion (.) for the quantities fk, Pk, Σk,
and Ωk.

The time derivative of the static parts being zero, we need to consider the
time evolution only for the dynamic parts of our quantities. The equations of
motion for fk(t) and Pk(t) become equations of motion for their dynamical parts
∆fk(t) and ∆Pk(t). The resulting equations are

~
d
dt

∆fk = −2 Im
[
∆P ∗k Ω̄k + P̄k∆Ωk + ∆P ∗k∆Ωk

]

i~
d
dt

∆Pk = 2Σ̄k∆Pk + 2∆ΣkP̄k + 2∆Σk∆Pk

−
(
1− 2f̄k

)
∆Ωk + 2∆fkΩ̄k + 2∆fk∆Ωk, with

∆Σk(t) = −
∑

k′

[(
V +
kk′ − V −kk′

)
∆fk′(t) + 2i V Akk′ Im∆Pk′(t)

]
− e

m
A(t)pcck

∆Ωk(t) =
∑

k′

[
V +
kk′ ∆Pk′(t) + V −kk′ ∆P

∗
k′(t) + 2V Akk′ ∆fk′(t)

]
+

e

m
A(t)pcvk .

(.)
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Figure . The light creates p-like states on the s-like ground state.

In the equation for ∆Pk above, we have used the staticness of the ground state
quantities, by canceling terms using the relation

(
1− 2f̄k

)
Ω̄k = 2Σ̄kP̄k.

. Influence of light on the dynamics

To study the dynamics of the system in the strong-coupling phase, we need
to bring the system out of its ground state. We take our description of the
system dynamics, which are the equations of motion (.). Excitation is created
by applying an external electromagnetic field. In the equations of motion, this
is achieved by letting the terms with the external field A(t) be nonzero. The
system is then allowed to evolve freely in time, under the influence of the field.
Initially, the external field will gradually create more excitation in the system.

Some of the initial dynamics can be understood by inspecting the form of
the equations of motion. At the start of the run, all ∆ quantities are zero. When
the light A(t) is turned on, the quantities ∆Σk and ∆Ωk acquire a nonzero
contribution, proportional to A(t). Due to those, the time derivatives of ∆fk

and ∆Pk also have nonzero contributions;

~
d
dt

∆fk = −2 Im
[
P̄k∆Ωk

]

i~
d
dt

∆Pk = 2∆ΣkP̄k −
(
1− 2f̄k

)
∆Ωk .

Through their nonzero time derivatives, the populations ∆fk and ∆Pk them-
selves gradually become nonzero. This in turn leads to more terms in the equa-
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tions of motion becoming nonzero, and eventually all of them contribute to the
dynamics.

The initial distribution of fk is shown on the left in figure .. This is the
radially symmetric ground state population fk = f̄k, as was also shown in figure
., here plotted over a two-dimensional momentum space. On the right in figure
. is shown a snapshot of the dynamical population fk = f̄k+∆fk, after exciting
the system with a short pulse of light. Areas where ∆fk is negative are shown
in blue, and positive in red.

We can observe that the light has created p-like states, that is, states with a
sine or cosine dependence on the angle of the momentum, antisymmetric under
half a rotation. This is due to the angular dependence of the optical matrix
elements pk (.) and the polarization of the field A(t); the light terms in the
equations of motion make their “stamp mark” on the dynamical quantities.

. Absorption spectra in the strong-coupling phase

We calculate the absorption of the system the same way as in section .; with
the current j(t) from (.). In the present case, with the population split into
ground state and excited parts, the current is expressed with ∆fk(t) and ∆Pk(t).
The expression for the current takes the form

j(t) =
ep

m

∑

k

[
cos θk ∆fk(t)− sin θk Im∆Pk(t)

]
êx

+
[
sin θk ∆fk(t) + cos θk Im∆Pk(t)

]
êy .

(.)

The optical matrix elements (.) have contributed with a sine or a cosine of
the momentum angle in each term of the expression above. Any parts of ∆f

and ∆P which are an even function of the angle will therefore give zero for the
integration

∑
k over the angle. Hence, only antisymmetric parts of ∆f and ∆P

contribute to the current.
First off, we calculate the absorption of the simplest version of the system;

the single-particle approximation. We therefore neglect Coulomb interaction be-
tween electrons in the equations of motion (.). It can be noted that we keep
the strong-coupling ground state, and that the Coulomb interaction we neglect
is just the one between the strong-coupling quasi-electrons. This is equivalent
to neglecting terms containing explicit Coulomb potentials in the equations of
motion, i.e. the terms with Vkk′ in the expressions for ∆Σk and ∆Ωk in (.).
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Figure . Absorption spectrum for graphene in the strong-coupling phase.

The resulting spectrum is shown with a dashed line in figure .. The profile
of a gapped band structure can be seen, with a clear band edge, indicated by
the arrows in the figure. Above the band edge, we see the shape of the den-
sity of states in the strong-coupling bands. Below the band edge, the spectrum
shows zero absorption, as expected in a gapped system without electron–electron
interaction.

. Coulomb interaction and excitons in the spectra

To show the effect of Coulomb interaction between the electrons in the simplest
form, we solve the equations to linear order in the external field. This comes
down to discarding the terms which contain products of ∆ quantities in the
equations of motion (.).

The resulting linear absorption spectrum is shown as a solid line in figure
.. We can see a series of resonances below the band edge. These resonances
show the existence of excitons in the strong-coupling bands. These exciton peaks
are situated below the band edge, but above the energy of the strong-coupling
ground state, which is zero. These are proper excitonic states of the system in
the strong-coupling phase, in contrast to the excitonic-like states with an eigen-
energy below the presumed ground state in chapter , which were the solutions
of the Wannier equation in the tight-binding bands.

The exciton peaks in the spectrum are higher and more separated towards
lower energies. Towards the band edge the peaks become lower and closer to-
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Figure . Spectra for different values of the Coulomb strength α.

gether, and eventually blend into the continuum of unbound states above the
band edge. In the sequence of peaks we can also see a peculiar doubling rhythm.
This phenomenon comes from a degeneracy lifting due to Auger terms in the
Coulomb interaction, which is studied further in Paper IV. All the bright exci-
tons are p-like — they have sine-type angle dependence. If we were to include
higher orders of the external field in our solution, the light would create s and
d excitons from the p excitons, and from there on all orders of excitons.

To study the influence of the Coulomb coupling strength α, we perform
several runs of the time evolution under a pulse of light, for different values of α
above the strong-coupling threshold. The value of α influences the ground state
in the form of the populations f̄k and P̄k. It also influences explicit Coulomb
interaction in the form of potentials Vkk′ in equations of motion (.).

The resulting linear spectra are shown in figure .. The spectra shown here
are calculated with a higher and more realistic dephasing rate γ than in the
previous picture, hence the peaks are more diffuse, and only the most prominent
peak is clear in each spectrum. The curve marked ‘band edge’ is the same as
Egap versus α in figure .. The spectra for different α all have qualitatively
the same features, at different energies. Essentially, they all have exciton peaks.
For higher values of α, the most prominent exciton is relatively more strongly
bound, as in distance from the band edge, but is situated at a higher energy
in the spectrum, since the band gap is also larger for higher α. The exciton
peaks are also higher for higher α. Towards lower α, and the transition to weak
coupling at α ≈ 0.46, the band gap and the exciton peaks scale down evenly.
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Chapter 

Strong Coulomb coupling
in bilayer graphene

In addition to carbon nanotubes and single graphene layers, there are other
low-dimensional possibilities for arranging the carbon atoms. One arrangement,
which turns out to be particularly interesting with respect to the strong-coupling
phase is bilayer graphene, specifically in a particular configuration referred to
as Bernal stacking [–].

The methods we developed for single layer graphene, using many-body equa-
tions of motion based on the tight-binding matrix elements, are almost directly
applicable also for bilayer graphene. The matrix elements for bilayer graphene
are also calculated using the tight-binding approach, accounting for atomic sites
in two separate but connected layers.

In this chapter, we calculate the band structure and Coulomb matrix ele-
ments of bilayer graphene, as well as set up the equations of motion and gap
equations. Applying our methods to bilayer graphene in this way is also part of
the contents of Papers V and VI.

We also set up and solve the Wannier equation, in the same way we did for
single layer graphene in chapter , in order to look for exciton states energet-
ically below the single-particle ground state. Like in the single-layer case, the
presence of such states shows that the tight-binding description of the ground
state is insufficient. By analyzing the numerical solutions of the bilayer Wannier
equation, we find that Bernal-stacked bilayer graphene is always in a strong-
coupling phase, independent of the strength of the Coulomb interaction between
electrons.
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Figure . Bilayer graphene in the Bernal stacking.

. Atomic configuration of Bernal-stacked bilayer
graphene

Bilayer graphene consists of two graphene layers stacked on top of each other,
close enough for the electrons in the two sheets to form a coupled many-body sys-
tem. For our purposes, the most useful configuration is so-called Bernal stacked
graphene, which is illustrated in figure .. In this variant of bilayer graphene,
the two layers are stacked so that a B atom in the upper sheet is above an A
atom in the lower sheet, and an A atom in the upper sheet is above an empty
site.

In the combined system, there are four different types of atomic sites. We
label them A1 B1 A2 B2, depending on the layer they are in and if they are in
an A or B type position within their individual sheets. The positions of these
different sites are given by

RB1 = RA1 + bn with n = 1, 2, 3, as in single layer,

RB2 = RA1 + Lêz

RA2 = RB2 − bn = RA1 − bn + Lêz .

(.)

We use L to denote the distance between the two layers of graphene. The overlap
integral between two orbitals centered on atomic sites directly above each other,
on separate layers, we denote γ′,
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γ′ ≡
∫
φ(x) Ĥ0 φ(x− Lêz) dx . (.)

This relation also specifies the relation between L and γ′ — a larger interlayer
distance leads to a smaller interlayer hopping matrix element.

. Tight-binding for bilayer graphene

We derive a system Hamiltonian for bilayer graphene, using the tight-binding
approach in the same way we did for single-layer graphene in section .. We
derive a transformation from the sublattice picture to a band picture. At the
same time, this gives us expressions for the band dispersions themselves, and for
the transformation between electron creation and annihilation operators in the
two bases. We present here an outline of the tight-binding derivation, together
with the most important results and some details on how to perform the cal-
culations. A more general and comprehensive presentation is given in section 
and appendix B of Paper V.

We use the same sublattice wavefunction expansion (.) as in the single-
layer tight-binding derivation, as well as the same pz orbitals (.) for the elec-
trons around the atomic sites. The difference is that there are now four sublattice
operators. Accounting for the strongest couplings in the lattice gives a Hamil-
tonian in the form

Ĥ0 =




Â1k

B̂1k

Â2k

B̂2k




†


0 γg∗k 0 γ′

γgk 0 0 0

0 0 0 γg∗k

γ′ 0 γgk 0







Â1k

B̂1k

Â2k

B̂2k




. (.)

The sublattice Hamiltonian matrix contains two 2 × 2 block matrices on the
diagonal. These represent the two sheets of graphene individually, by describing
hopping between sitesA1 andB1 and betweenA2 andB2. The intralayer nearest-
neighbor hopping is given by γgk, as was derived in section .. The coupling
between the sheets is the off-diagonal components γ′, which describe hopping
between sites B2 and A1, which in the Bernal stacking are neighbors in the z
direction.

Diagonalizing this matrix gives us the Hamiltonian in the band picture, as
well as the transformation between the sublattice and the band picture. As we
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Figure . The tight-binding band structure of Bernal-stacked bilayer gra-
phene. The valence and conduction band of single-layer graphene have each been
split into two bands.

have a 4× 4 matrix, diagonalization will give us 4 bands. We label these c, c′, v
and v′.

Ĥ0 =
1

2




ĉ′k

ĉk

v̂k

v̂′k




†


√
+ γ′ 0 0 0

0
√ − γ′ 0 0

0 0 −√ + γ′ 0

0 0 0 −√ − γ′







ĉ′k

ĉk

v̂k

v̂′k




(.)

with
√ ≡

√
4γ2|gk|2 + γ′2. The expressions on the diagonal are the dispersion

of the four bands, shown in figure ..
Each graphene layer, on its own, naturally has the dispersion of single layer

graphene. Through the interlayer coupling, these two dispersions are shifted
away from each other in energy, as shown in figure .. The combination of two
sets of linear dispersion becomes four bands, which at the Dirac point acquire a
quadratic component due to mixing of the contributions from the two layers.

Anticipating that our calculations will take place at low energies in the vicin-
ity of the Dirac points, we use only the two energetically lower bands, c and v of
figure ., and neglect the c′ and v′ bands. This is a valid approximation for ener-
gies smaller than γ′. In the vicinity of the Dirac points, the linear approximation
of gk is also valid, with the expressions presented in section ..
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Figure . In the left pane, the four bands of bilayer graphene near the Dirac
point. In the right pane, the influence of the interlayer coupling on c and v.

In the linear approximation, the dispersion of the bands c and v in bilayer
graphene is

Ek = ±
(√

(~vFk)2 +
γ′2

4
− γ′

2

)
. (.)

As can be seen from the expression and from figure ., the bilayer dispersion
has a quadratic dependence on k close to the Dirac point, and goes to the linear
~vFk dependence further away from the Dirac point.

The influence of the interlayer coupling γ′ is also shown in figure .. For all
values of γ′, the bands c and v meet in the middle, with a zero band gap. For
larger values of γ′, the range of influence for the quadratic-like contribution is
larger. For smaller values of γ′, the dispersion goes towards that of single layer
graphene, the γ′ = 0 case, with a linear dispersion.

The transformation between the sublattice basis and the band basis also
comes from the diagonalization of the Hamiltonian (.). The transformation
matrix is the analogue of the functions CA,Bλk which we used in chapter , and
will be used for calculating matrix elements for the bilayer Coulomb interaction.
Close to the Dirac points where |gk| � γ′, the transformation to the c and v
bands is given by
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

ĉk

v̂k


 =

1√
2




−|gk| −γ′
g∗k
|gk|

γ′
gk
|gk|

|gk|

|gk| −γ′
g∗k
|gk|

−γ′ gk|gk|
|gk|







Â1k

B̂1k

Â2k

B̂2k




. (.)

As |gk| is small, we can observe that the leading terms are the middle two
columns of the matrix. A more detailed and more general presentation of the
transformation is given in appendix B of Paper V.

. Coulomb interaction in bilayer graphene

The tight-binding wavefunctions give us the Hamiltonian for Coulomb interac-
tion between electrons, in the same manner as in chapter . We start with a
Coulomb Hamiltonian Ĥcoul like (.), stated in terms of a general Coulomb
matrix element V1234 like (.).

In the corresponding derivation for the single layer case, we derived the
matrix element V1234 directly in the band basis. For the bilayer case here, in
order to keep the expressions simpler, we will start by deriving the expression
for V1234 in the sublattice basis, and transform to the band basis afterwards.
In the sublattice basis, the indices 1 . . . 4 in V1234 refer to the combination of
sublattice index and k, and the general electron operators are the sublattice
operators, âi =

{
Â1k B̂1k Â2k B̂2k

}
.

Like we did for single-layer graphene in (.), we split the matrix element
V1234 into two similar integrals, using the Fourier transformed Coulomb poten-
tial V 3D

q . The integrals, denoted IXk,Xk′(q) with X as a sublattice index, are
evaluated by inserting the tight-binding (sublattice) wavefunctions (.). For a
given sublattice, the sums over lattice sites are evaluated as

IXk,Xk′(q) =
1

N

∑

RX

e−i(k−k
′−q)RX

︸ ︷︷ ︸
= δk′,k−q‖e

iLqz

∫
dxφ(x)∗eiqxφ(x)

︸ ︷︷ ︸
= G(q)

X in layer 2.

When sublattice X in the integral I is in layer 1, the result is the same as in
single-layer graphene. When sublattice X is in layer 2, there is an additional
factor eiLqz from the sum over all lattice sites RX .
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For the Coulomb matrix element V1234, the consequence is an additional
factor e±iLqz under the sum over qz whenever sublattices 1 and 2 are on different
layers, as the contributions here accounted for are when sublattice 1 = 4 and
2 = 3.

V1234 =
∑

q‖

δk4,k1−q‖δk3,k2+q‖





∑

qz

V 3D
q |G(q)|2

︸ ︷︷ ︸
= W (|q‖|)

1, 2 same layer

∑

qz

V 3D
q e±iLqz |G(q)|2

︸ ︷︷ ︸
≡W ′(|q‖|)

1, 2 different layers.

(.)

Having dealt with the z direction by means of the sum over qz, the variable q
will from here on refer to the in-plane momentum, and q to its absolute value.

The first factor in V1234 expresses momentum conservation in the plane,
and the second factor defines a weight for the Coulomb interaction, denoted by
W ′(q). Like the single layer Coulomb weight W (q), the function W ′(q) can be
expressed as a product of the bare two-dimensional Coulomb potential V (q) =

e2/2εε0Aq and a dimensionless form function, which we call F ′(qd):

W ′(q) = F ′(q)V (q).

The interlayer form function F ′(qd) is analogous to the sheet thickness (in-
tralayer) form function F (qd) in section .. The interlayer form function con-
tains the sheet thickness d as well as the layer separation L as parameters. The
integral definingW ′(q) in (.) can be evaluated analytically using Mathematica,
giving us an analytic expression for the form function;

F ′(x, y) = πe−xy(1 + 6x2)2 − πe−y
√
1+x2 x

53760
√

1 + x2
11×

×
(

3y7
√

1 + x2
7

+ 14y6
√

1 + x2
6
(3x2 + 4)

+ 280y4
√

1 + x2
6
(18x4 + 33x2 + 14) + 14y5

√
1 + x2

5
(36x4 + 75x2 + 40)

+ 35y3
√

1 + x2 Ξ1(x) + 210y2 Ξ2(x) + 105y
√

1 + x2 Ξ3(x) + 105 Ξ(x)
)

(.)

with the polynomials
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Ξ1(x) ≡ 1152x10 + 5280x8 + 9512x6 + 8368x4 + 3575x2 + 591

Ξ2(x) ≡ 1152x12 + 144x10 + 13400x8 + 15208x6 + 9399x4 + 2982x2 + 383

Ξ3(x) ≡ 9216x12+ 46848x10+ 96640x8+ 102640x6+ 58456x4+ 16706x2+ 1963

(.)

and the polynomial Ξ(x) as in (.). In the expression above, the variables are
written as x = qd and y = L/d to save some space. The expression (.) itself
is not particularly practical for manual work. Still, having the expression is
valuable for understanding the behavior at small and large parameter values, as
well as useful for numerical evaluations, since it eliminates one step of numerical
approximations, the accuracy of which would need to be controlled.

Once we have V1234 in the sublattice basis (.), we can use (.) to trans-
form the Coulomb Hamiltonian to the band basis. Collecting all the terms and
performing the linear approximation (.), we obtain Coulomb matrix elements
containing geometric factors in the form of a sine or cosine of the double angle
of the momentum k.

The Coulomb matrix elements are of the same three types as in the single-
layer case, shown in figure ., depending on whether they describe transitions
in the bands, between bands, or Auger-type transitions. In bilayer graphene, the
matrix elements for these three types have the form

V ±kk′ =
1

2
V (k−k′)

[
F
(
(k−k′)d

)
± cos 2(θk−θk′)F ′

(
(k−k′)d, L/d

)]

V A
kk′ =

i

2
V (k−k′) sin 2(θk−θk′)F ′

(
(k−k′)d, L/d

) (.)

with V (q) = e2/2εε0Aq. These matrix elements contain both the intralayer form
function F (qd) (.) and the interlayer form function F ′(qd, L/d) (.).

Screening of the Coulomb interaction is at this point still treated as a con-
stant, in the form of a background dielectric constant ε in the Coulomb poten-
tial V (q) in the matrix elements (.). The dielectric constant goes into the
Coulomb coupling strength α = e2/4πεε0~vF which plays the same role here as
in single layer graphene.

. Quantities, equations of motion, and gap equations

Knowing the dispersion and the Coulomb matrix elements, we have what we need
for deriving equations of motion for our microscopic many-body quantities. The
quantities fk and Pk are defined in the same way as for single-layer graphene,
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(.) and (.). Since the bilayer Hamiltonian has the same terms as the single-
layer graphene Hamiltonian, the equations of motion are also the same, (.)
and (.), this time for the bilayer quantities. The difference is in the matrix
elements; the dispersion Ek (.) and the Coulomb matrix elements V ± and V A

(.).
The gap equations also follow in the same way from the equations of motion;

in bilayer graphene they have the form

Ωk =
∑

k′

W (k−k′)1

2

Ωk′√
Ω2

k′ + Σ2
k′

Σk = Ek −
∑

k′

V (k−k′)F ′
(
(k−k′)d

)
cos 2(θk−θk′)

Σk′√
Ω2

k′ + Σ2
k′

.

(.)

. The Wannier equation and the strong-coupling
regime

Like in the case of single-layer graphene, since the system has no band gap, the
existence of bound-state solutions of the Wannier equation is a marker for a
breakdown of the tight-binding description, and the onset of a strong-coupling
phase.

The Wannier equation for bilayer graphene can be derived the same way as
for the single-layer case. The equation of motion for the polarization Pk(t) is
Fourier transformed into the frequency domain, and then we look for eigenfunc-
tions φ(k) and their eigenenergies E of that equation. The Wannier equation in
bilayer graphene is

Ek φ(k) +
∑

q

W (qd)φ(k+q) = E φ(k) (.)

with the wavefunction φ(k) for the relative momentum coordinate of an electron–
hole pair, the weighted two-dimensional Coulomb function W (qd), and the ei-
genenergy E. This is the same expression we had for the single layer case (.)
except that the dispersion Ek here is the bilayer dispersion (.).

The eigenenergies of the Wannier equation are solved the same way as in
the single layer case, by discretizing k space and using numerical linear algebra
methods for eigenvalues. When a bound state solution exists, the eigenfunction
of that state has a nonzero width around the band minimum. When the k space
discretization has a sufficient number of grid points for a description of that
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Figure . Eigenenergies of the bilayer Wannier equation.

eigenfunction, the value of the corresponding eigenenergy E has converged, that
is to say, the value of E is unchanging when adding more grid points.

We solve the bilayer Wannier equation for different values of the Coulomb
coupling strength α. The results for the lowest eigenenergy E1s are shown in the
left pane of figure ., together with corresponding results for the single layer
case. The eigenenergy E1s as a function of α shows visually similar behavior for
both the single layer and bilayer case — bound states with binding energies in
the range of several eV for the nominal vacuum coupling strength α = 2.4, and
several orders of magnitude smaller for coupling strengths around 0.5.

There is still a clear difference in behavior between the single layer and
bilayer Wannier solutions, which becomes more visible by looking at the ratio
of Coulomb energy to kinetic energy for the eigenfunction for the energetically
lowest state, shown in the right pane of figure .. Since there is no band gap,
the Wannier solution is a bound state whenever the Coulomb energy exceeds
the kinetic energy, that is, when the ratio is larger than one. For the single-
layer Wannier equation solution, the ratio is approximately linear with a clear
crossover into the region of a ratio below one at α ≈ 0.46. The ratio for bilayer
graphene behaves similarly for large α, but instead of crossing over, the ratio has
a minimum at α ≈ 1, and then curves away towards larger values again when
going towards smaller values of α. This implies that for any nonzero strength
of the Coulomb interaction, our bilayer system is always in the strong-coupling
regime.
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Figure . Solutions of the Wannier equation (.) for a bilayer graphene-like
system with a varying interlayer coupling.

The situation can be compared to that in traditional semiconductors, with
quadratic bands and a band gap. In those systems, excitonic solutions of the
Wannier equation always exist. The exciton binding energy is much smaller
than the band gap, though, and the strong-coupling regime would not start until
the binding energy is larger than the gap. In bilayer graphene, the bands are
also approximately quadratic which would correspond to existence of Wannier
exciton solutions, but the band gap being zero means that the existence of those
solutions puts the system in the strong-coupling regime.

As a theoretical investigation, we can also study the Wannier equation for
a model system where we can vary the coupling between the two layers of gra-
phene. In the dispersion Ek (.) a weaker interlayer coupling γ′ reduces the
second term under the square root and the dispersion gradually goes to the lin-
ear dispersion of single-layer graphene. The solutions of the Wannier equation
for different γ′ are shown in figure .. This investigation recovers, as it should,
the result for single-layer graphene for γ′ = 0 and the result for bilayer graphene
for γ′ = 400 meV.

The solutions for the eigenenergy E1s for different γ′ show a similar behavior
as a function of α as the two border cases, γ′ = 0 and γ′ = 400 meV. However,
the ratio of Coulomb to kinetic energy numerically obtained in this study shows
that all nonzero values of the interlayer coupling γ′ makes the system behave
qualitatively like the bilayer case; in other words, we see no crossovers to the
regime without bound states in any of the cases except for γ′ = 0. Based on





Strong Coulomb Coupling in Graphene

our numerical findings, it appears that for any nonzero interlayer coupling, the
system has a bound state solution for all values of α, and is hence always in the
strong-coupling regime.
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Chapter 

Solving the screened gap equations

In a realistic model of a material, the strength of the Coulomb interaction be-
tween electrons is determined by a phenomenon called screening, where the
electric field produced by one electron is attenuated by the cloud of electrons
around it. The electron cloud reshapes itself by responding to that electric field,
in a way that weakens the effect of the field at larger distances from the electron
of origin.

In previous chapters, we have established that when the Coulomb interaction
is strong enough, the single-particle, or tight-binding, description of the ground
state is no longer sufficient. There is a transition into a strong-coupling state,
where the bands are populated in the ground state, or alternatively phrased,
there is a new ground state with a band gap in the dispersion. How much
population there is in the ground state, depends on the strength of the Coulomb
interaction.

The strong-coupling ground state populations, on the other hand, will dra-
matically influence the screening. At the same time, they are themselves deter-
mined by the strength of the Coulomb interaction. For a reasonably realistic
estimate for the size of the strong-coupling effects, and ultimately for the band
gap, the size of the populations and the strength of the screening should be
calculated together, in a way that accounts for the influence they have on each
other. Solving the screening self-consistently together with the gap equations,
for bilayer graphene specifically, is the topic of Papers V and VI. The interplay
of screening and strong Coulomb coupling is also studied for example in [–].
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. Calculating the screening

In this work, screening, or weakening of the bare Coulomb interaction, has so
far been treated only in the form of dielectric screening from the material sur-
rounding the graphene sheet, or the material it is placed on top of. This kind of
background dielectric screening is included in the dielectric constant ε, which in
turn is included in the general Coulomb coupling strength α.

In this chapter, we include screening by calculating how the electron plasma
responds to itself. This is done by introducing a polarization function Π(q)

describing the dominant contributions of the response of the plasma to its own
Coulomb interaction. The effect can be included in the setup by using a screened
Coulomb potential W scr(q). Its relation to the bare potential W (q) in terms of
the polarization function Π(q) via the dielectric function ε(q), is given by (.)
and (.). For a textbook description, see for example section  of [].

The polarization function can be calculated for a given system with a band
structure. In this work, and in Papers V and VI, we follow a procedure similar to
the semiconductor derivation in section . of [], to calculate the polarization
function in graphene. The difference from semiconductors is, once again, that the
Coulomb interaction in graphene has more types of terms due to the zero band
gap in the tight-binding picture. The main steps in deriving the polarization
function are the following; we set up an equation of motion for a so-called density
fluctuation

∑
k〈â†k+qâk〉 under an effective Coulomb interaction. The effective

Coulomb interaction is taken as the original, unscreened Coulomb interaction
times a polarization function Π(q). The response of the system is given in terms
of the polarization function. This yields an expression for the effective Coulomb
interaction, and in turn an expression for the polarization function itself.

For practical purposes, in the numerical investigations of this work, the
screened Coulomb potential replaces the bare Coulomb potential in all places
we have used it so far; in the equations of motion, the Wannier equation, and
the gap equations.

. Expressions for the polarization function

In appendix A of Paper V, we derive expressions for the polarization function
in bilayer graphene. For single layer graphene, the same method can be used,
with the appropriate dispersion and matrix elements for the Coulomb interac-
tion. In both these systems, the electronic state is expressed as a solution of the
gap equations. The expression for the polarization function is therefore given in
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terms of the populations and the rest of the gap equation quantities. This way
of calculating the polarization function is commonly referred to as the Lind-
hard formula []. In the following expressions, Σk and Ωk are the gap equation
solutions, EMF

k is the gapped dispersion (.) resulting from solving the gap
equations in the strong-coupling phase, and fk and Pk are the populations. The
polarization function for single-layer graphene, in a populated state, is given by

Π(q) = 4
∑

k

[
1 + cos(θk − θk−q)

] (Σk−q + Σk)(fk−q − fk)

E2
MFk−q − E2

MFk

+
[
1− cos(θk − θk−q)

] (Σk−q − Σk)(fk−q + fk − 1)

E2
MFk−q − E2

MFk

−2
(Ωk−q + Ωk)(Pk−q − Pk)

E2
MFk−q − E2

MFk
.

(.)

For the bilayer case, the polarization function has the form of a two-by-two
matrix. The Coulomb strength in either layer is modified, partly by screening in
the own layer and partly by screening in the other layer. This can be simplified
by an approximation — by treating the graphene sheets as if they were not
separated in the z direction. This simplification gives the full screening as a sum
over the screening in each sheet;

Π(q) = 4
∑

k

[
1 + cos 2(θk − θk−q)

] (Σk−q + Σk)(fk−q − fk)

E2
MFk−q − E2

MFk

+
[
1− 2 cos(θk − θk−q)

] (Σk−q − Σk)(fk−q + fk − 1)

E2
MFk−q − E2

MFk

−2
(Ωk−q + Ωk)(Pk−q − Pk)

E2
MFk−q − E2

MFk
.

(.)

The bilayer expression is in form similar to the single-layer one, apart from
factors of two in the geometrical parts, which have their origin in the differences
in the Coulomb matrix elements of the two systems.

Although not obvious from the expressions (.) and (.), a gap in the
dispersion will weaken the screening. This is related to the fact that the electrons
cannot easily move in the ground state of a system with a band gap, and hence
will be less efficient in weakening electric fields. This in turn means that the
Coulomb interaction is screened only for smaller distances between the electrons
(larger q) and maintains its unscreened strength at larger distances (smaller q).


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Figure . The screening in the unpopulated tight-binding ground state in
single-layer and bilayer graphene.

. Screening in the tight-binding ground state

When there is no population in the tight-binding bands, the system is in the
tight-binding ground state. We obtain the polarization function for the tight-
binding ground state by putting fk, Pk and Ωk = 0, and Σk and EMF

k equal to
the tight-binding dispersion Ek in the expressions for the polarization function
(.) and (.). In the tight-binding ground state of single-layer graphene, the
polarization function (.) acquires the form (.). For bilayer graphene, the
polarization function in the tight-binding ground state is

Π(q) = −4
∑

k

1− 2 cos(θk − θk−q)

Ek−q − Ek
. (.)

The bilayer polarization function without populations is a constant around q =

0, then curves away towards a linear dependence for larger values of q. Screening
in the tight-binding ground state in single layer and bilayer graphene (with no
populations) is shown in figure . in the form of the polarization function Π(q)

and the corresponding dielectric function ε(q).
In the literature, the dispersion of bilayer graphene is often approximated as

a quadratic function of k. With the quadratic approximation for the dispersion,
the integration over k in Π(q) can be performed analytically, with a resulting
polarization function that is constant for all q []. In figure ., this approxi-
mation is shown with a dotted line. As we can see, this is a valid approximation
only for small values of q.
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Figure . Overview of the process of calculating the gap equations and the
screening self-consistently.

. Accounting for screening self-consistently

The Coulomb interaction between the electrons is present in the gap equations,
giving rise to the strong-coupling effects that are the main reason for solving
gap equations. As the Coulomb interaction is influenced by the screening phe-
nomenon, the gap equations are, too. Conversely, the strong-coupling effects
arising as a solution the gap equations creates a population of electrons in the
tight-binding bands, which in turn affects the screening.

Connecting these two; the gap equations influenced by screening and the
screening influenced by the gap equation solutions, we come full circle. The
system of equations should be solved self-consistently in order to account for
both effects. We provide self-consistency by solving the gap equations and the
screening successively, and iterating the steps until both solutions have converged
at a stable result. The background-screened gap equations in chapter  were
solved by iterating candidates for the solution. For the screened gap equations,
we include the polarization function (.) in the iteration process. The steps
and the quantities involved in the iteration are visualized in figure ..

We start in the upper left corner, taking any gap equation quantities Σk

and Ωk with non-trivial values, and insert these in the statically screened gap
equations. The gap equations in this setup are iterated, but it is not important to
achieve a high accuracy for the convergence at this point, as the overall solution
will still influence the gap equation on subsequent rounds of iteration.





Strong Coulomb Coupling in Graphene

0

0

kd qd

1 2 3
1

2

3

4

5

0

iterate, 
gap increases

iterate, 
screening 
decreases

x10-5
0.5 1-0.51

x10-5

0.1

0.2

-0.1

-0.2

E
 (

m
eV

)

²(
q)

Figure . Solving the screened gap equations in single layer graphene by
iteration.

From the Σk and Ωk that we get as an intermediate gap equation solution,
we calculate a population fk and polarization Pk. We also calculate a strong-
coupling dispersion, EMF

k . These Σk, Ωk, fk, Pk, and EMF
k are inserted into the

Lindhard formula (.) to calculate a first approximation for the polarization
function Π(q). The polarization function is used to evaluate an ε(q) which is
used to modify the Coulomb interaction potential V (q). This screened Coulomb
interaction is in turn inserted into the gap equations. These can then be solved
using the modified Coulomb potential, starting from the previous result for Σk

and Ωk.
In this way, the iteration can proceed as many steps as necessary to achieve

desired accuracy. For the cases we studied in practice, there were typically a few
tens of iterations necessary for convergence. In the figures in the next section, a
selection of these iterations are shown. The procedure in this form can be used
for both single-layer and bilayer graphene.

. Solving screened gap equations in single layer and
bilayer graphene

We solve the self-consistently screened gap equations in single layer graphene,
using the procedure described in the previous section; by iterating the gap equa-
tions (., .) and the Lindhard formula (.) for the screening. At each step
of the iteration, we keep track of the strong-coupling dispersion EMF

k as well as
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Figure . Solving the screened gap equations in bilayer graphene.

the dielectric function ε(q). Results for the dispersion and the dielectric function
are shown in figure ..

For the gap equation input, we start from some non-trivial expressions for the
gap equation quantities. For the screening, we start from the dielectric function
of the tight-binding ground state, shown as a dotted line in the right pane
of figure .. The gap equation solution from the initial step is the gapped
dispersion shown in a lighter gray. The gapped dispersion leads to the dielectric
function going from metal-like to unscreened at q = 0. In the next iteration step,
this small region of unscreened Coulomb interaction leads to a bigger gap in the
strong-coupling dispersion. In turn, this increases the region around q = 0 where
the dielectric function is small.

The iteration stabilizes after a few tens of steps, after which the functions no
longer change in value. As it turns out, however, the iteration process for single-
layer graphene stabilizes at a dispersion with a band gap which in experimental
terms is negligible, around 0.4 meV. It is also uncertain whether the background
coupling strength used, α = 2.4, corresponds to a realistic experimental situ-
ation. For smaller values of the coupling strength, the resulting values for the
band gap would be even smaller. The conclusion we can draw at this point is
that, for practical purposes, single-layer graphene is not in a strong-coupling
state due to internal screening among the electrons. Hence, the tight-binding
description of the ground state is sufficient.

For bilayer graphene, we get more interesting results. Using the same it-
eration procedure, this time for the bilayer versions of the gap and screening
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Figure . Solutions of the self-consistently screened gap equations in bilayer
graphene, for different values of the background Coulomb strength α.

equations, gives the iteration steps shown in figure .. In the right pane of
figure ., the polarization function Π(q) is shown instead of the dielectric
function.

We observe essentially the same phenomena as in the single-layer case; a
band gap reduces the screening, which in turn increases the band gap. Gradually,
the two quantities stabilize. For bilayer graphene with a background Coulomb
strength α = 2.4, we find a band gap of approximately 14 meV, which is large
enough to be experimentally observable.

The influence of the background Coulomb strength α is straightforward to
calculate with the same numerical setup. The results for the band gap of the
resulting dispersion are shown in figure .; the band gap is a smoothly increas-
ing function of α. This shows that Bernal-stacked bilayer graphene is always in
a measurable strong-coupling state, to a degree which depends on the dielectric
surroundings of the material.
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Summary and outlook

In this thesis, we have investigated the possibility of a strong Coulomb coupling
state in graphene. This is a state where interaction between active electrons
is strong enough to change the electronic ground state. A well-known single-
particle description of electrons in the hexagonal lattice gives a linear, cone-like
band structure with no band gap, whereas we show that strong interaction effects
in a many-body model can open a band gap in the dispersion.

We present a framework for theoretically and numerically studying the elec-
tronic and optical properties of graphene, as well as the real-time dynamics of
the electronic system through an equations-of-motion approach adapted from
semiconductor theory. Also presented is a technique for solving the many-body
ground state in the regime of strong Coulomb coupling, as well as the dependence
of the resulting strong-coupling ground state on external or internal screening
of the Coulomb interaction.

For single-layer graphene our studies show that there most likely is not a
strong-coupling ground state; even in vacuum and at zero temperature, due to
internal screening among the electrons. For bilayer graphene we find a strong-
coupling band gap of around  meV in vacuum. This excitonic band gap can be
tuned by varying the dielectric environment. The band gap in bilayer graphene
is also strongly enhanced in the presence of a bias in the form of an electric field
from one layer to the other.

In the studies presented in this thesis, the onset of the strong Coulomb cou-
pling regime initially appears as excitonic solutions of the Wannier equation
in graphene in chapter ; the existence of these solutions sets a limit to the
validity of a single-particle picture of the ground state. Going further, the elec-
tronic ground state in the strong-coupling regime is solved with so-called gap
equations in chapter . These equations also provide us with the band structure
and the size of the resulting band gap as a function of environmental dielec-
tric properties. Electronic screening can be included in a self-consistent fashion
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when solving the ground state, by iterating the gap equations with a generalized
Lindhard formula for the screening as is done in chapter .

Our methods also provide the opportunity for numerically studying several
phenomena familiar from the field of semiconductors, such as calculating the
optical spectrum as a frequency dependence of the response of the system to a
pulse of light. This is presented for graphene-like systems generally in chapter ,
for graphene in the strong-coupling phase in chapter , and for semiconducting
carbon nanotubes in chapter . Additionally, in chapter , the real-space motion
of a group of electrons under the evolution of time is simulated. Special cases of
graphene-like materials, such as semiconducting carbon nanotubes in chapter ,
and bilayer graphene in chapter , can be examined with minor adaptations of
the general framework.

Our studies show that the strong Coulomb coupling regime is characterized
by a band gap opening up in the dispersion. Apart from being technologically
useful in its own right as a switching mechanism, the presence of a band gap gives
rise to excitons. The excitonic peaks in the optical spectrum are a convenient
way to experimentally determine the presence of the strong-coupling state.

With modifications concerning the geometry of the atomic configuration and
adapting hopping parameters, our approach can be applied also to other ma-
terials than graphene, such as the new range of two-dimensional crystals with
a semiconducting or semimetallic nature. Applying our method would give the
possibility to calculate whether the electronic ground state in these new mate-
rials is sufficiently characterized by a single-electron picture, and under which
circumstances there could instead be a strong-coupling ground state, as well as
the effects this would have on the band structure and optical spectrum.

Specifically for transition metal dichalcogenides which are semiconducting
and hexagonal, where there are more types of atoms on top of each other in a
unit cell, but the arrangement of unit cells is still graphene-like, our method has
been used recently for investigating strong Coulomb coupling and the resulting
optical spectrum with excitons [].

Other interesting possibilities for future uses of our methods include two-
dimensional systems where the hexagonal lattice is formed by means other than
the primary ionic grid, such as twisted bilayer graphene with Moiré pattern
hexagons on a significantly larger scale [, ] or graphene superlattices formed
by growing graphene on other materials [], as well as a wide range of other arti-
ficial two-dimensional hexagonal lattices [, ] referred to as graphene analogs
or quantum simulators, in which the role of electrons can be played by “optical
photons, microwave photons, plasmons, microcavity polaritons or even atoms”
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and the hexagonal lattice can be formed by “a photonic crystal, an array of
metallic rods, metallic nanoparticles, a lattice of coupled microcavities or an
optical lattice” [].
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Svensk resumé

I denna avhandling beskriver jag våra studier av elektroner i materialet grafen,
som är ett tvådimensionellt plan av kolatomer. Grafen har blivit enormt pop-
ulärt inom vetenskap och industri det senaste årtiondet på grund av ett antal
uppseendeväckande egenskaper: ett lager grafen är starkt, flexibelt och genom-
skinligt, och har en mycket hög elektrisk ledningsförmåga.

Våra studier av grafen baserar sig på kvantmekaniska ekvationer för elek-
tronernas rörelse i materialet. Ekvationer av den här typen har tidigare använts
i halvledare för att beräkna systemets optiska och elektroniska egenskaper.

Elektroniskt sett är grafen mycket speciellt. Den atomära strukturen kan
visas leda till en linjär energirelation; elektronernas energinivåer ligger så att
de precis rör varandra i en punkt. Vi studerar under vilka omständigheter väx-
elverkan mellan elektronerna i materialet kunde leda till en förändring i energi-
nivåerna; specifikt, om det är möjligt att växelverkan är så stark att grafen
spontant kunde övergå i ett halvledande tillstånd. I ett sådant tillstånd är energi-
nivåerna åskilda av ett bandgap, vilket har dramatiska konsekvenser och skulle
vara användbart inom grafenelektronik. Det halvledande tillståndet skulle vara
ett s.k. starkt kopplat mångpartikeltillstånd, som påminner om tillståndet i en
supraledare.

Vi har utvecklat en metod för att lösa det starkt kopplade tillståndet i grafen
med ett ekvationssystem för kvantmekaniska väntevärden. Med hjälp av våra
kvantmekaniska metoder kan vi också räkna ut hur elektronerna beter sig i
de två olika tillstånden, t.ex. hur det optiska spektret ser ut. Ekvationerna för
elektroner i planärt grafen kan också tillämpas för elektroner i andra former
av grafen. Jag beskriver också våra undersökningar av elektroner i kolnanorör
och i tvålagergrafen. Våra resultat visar att grafen i det starkt kopplade till-
ståndet skulle ha tydliga excitontoppar i sitt spektrum. Excitontopparna är
ett behändigt sätt att experimentellt detektera det starkt kopplade tillståndets
eventuella närvaro.
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