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ARTICLE

Integrative genomic analysis of adult mixed
phenotype acute leukemia delineates lineage
associated molecular subtypes
Koichi Takahashi 1,2,3, Feng Wang2, Kiyomi Morita1, Yuanqing Yan4, Peter Hu5, Pei Zhao5,

Abdallah Abou Zhar1, Chang Jiun Wu2, Curtis Gumbs2, Latasha Little2, Samantha Tippen2, Rebecca Thornton2,

Marcus Coyle2, Marisela Mendoza6, Erika Thompson6, Jianhua Zhang2,7, Courtney D. DiNardo1, Nitin Jain1,

Farhad Ravandi1, Jorge E. Cortes1, Guillermo Garcia-Manero1, Steven Kornblau1, Michael Andreeff1,

Elias Jabbour1, Carlos Bueso-Ramos8, Akifumi Takaori-Kondo 3, Marina Konopleva1, Keyur Patel8,

Hagop Kantarjian1 & P. Andrew Futreal2

Mixed phenotype acute leukemia (MPAL) is a rare subtype of acute leukemia characterized

by leukemic blasts presenting myeloid and lymphoid markers. Here we report data from

integrated genomic analysis on 31 MPAL samples and compare molecular profiling with that

from acute myeloid leukemia (AML), B cell acute lymphoblastic leukemia (B-ALL), and T cell

acute lymphoblastic leukemia (T-ALL). Consistent with the mixed immunophenotype, both

AML-type and ALL-type mutations are detected in MPAL. Myeloid-B and myeloid-T MPAL

show distinct mutation and methylation signatures that are associated with differences in

lineage-commitment gene expressions. Genome-wide methylation comparison among

MPAL, AML, B-ALL, and T-ALL sub-classifies MPAL into AML-type and ALL-type MPAL,

which is associated with better clinical response when lineage-matched therapy is given.

These results elucidate the genetic and epigenetic heterogeneity of MPAL and its genetic

distinction from AML, B-ALL, and T-ALL and further provide proof of concept for a mole-

cularly guided precision therapy approach in MPAL.
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Acute leukemia is a clonal hematopoietic malignancy that
is characterized by increased proliferation and dis-
organized differentiation of hematopoietic cells. Although

acute leukemia generally presents with either a myeloid or lym-
phoid lineage, rare cases present with blasts that show immu-
nophenotypes of both myeloid and lymphoid lineages (bi-
phenotypic) or with multiple blasts each having different lineage
of immunophenotypes (bi-lineal). Such types of acute leukemia
are classified as mixed phenotype acute leukemia (MPAL), which
accounts for 1–3% of acute leukemias in adults1. The 2016
World Health Organization (WHO) classification of hemato-
poietic and lymphoid tumors defines five subtypes of MPAL:
MPAL with t(9;22)(q34;q11.2), MPAL with MLL rearrangement,
MPAL B/myeloid not otherwise specified (NOS), MPAL
T/myeloid NOS, and MPAL NOS rare types2. Morphologically,
the blasts of MPAL are indistinguishable from those of acute
myeloid leukemia (AML) or acute lymphoid leukemia (ALL), and
diagnosis relies on immunophenotyping. Because of the rarity of
the disease and the mixed phenotype presentation, standard
therapy for MPAL has not been clearly defined, leading to
inconsistency in treatment choices between AML-directed regi-
mens and ALL-directed regimens3,4. Patients with MPAL often
present with abnormal karyotypes or complex chromosomal
abnormalities, and their long-term prognosis is poor3,5. The
underlying molecular pathophysiology that accounts for the
mixed phenotype and distinct characteristics of MPAL is not
well understood. Here, we performed multimodal molecular
analyses of 31 adult MPAL samples using targeted-capture DNA
sequencing, genome-wide methylation array, and RNA sequen-
cing, with the purpose of delineating the genetic basis of MPAL
and laying the groundwork for a precision therapy approach in
MPAL. The analysis reveals the genetic and epigenetic hetero-
geneity of MPAL and potential link between molecular subtype
and clinical response to therapy.

Results
Clinical characteristics of patients with adult MPAL. The search
of our institution’s patient database identified 69 patients with the
diagnosis of MPAL seen between 2000 and 2015. A total of 55
patients met the WHO diagnostic criteria for MPAL. Among
those, 31 patients were untreated at the time of presentation
and had pretreatment bone marrow samples available for
analysis. The clinical characteristics of these 31 patients are
summarized in Table 1. There was no significant difference in
the characteristics between these 31 patients and 24 patients who
were not eligible for the study because of prior therapy or non-
availability of the samples (Supplementary Table 3). The median
age of the studied cohort was 53 years (interquartile range:
30–61). Thirteen (42%) of the patients had an immunophenotype
consistent with myeloid-B MPAL, while 18 (58%) had an
immunophenotype-consistent myeloid-T MPAL. Karyotypes
were abnormal in 21 of the 31 cases (68%), and 8 (26%) had
complex karyotype abnormalities. Four cases of myeloid-B phe-
notype were positive for Philadelphia chromosome (Ph+)
and one case of myeloid-T phenotype had 11q23 rearrangement
(t[11;19][q23;p13.3]). The myeloid marker, myeloperoxidase
(MPO), was detected in 85% of myeloid-B cases and 89% of
myeloid-T cases. The cases in which MPO were not detected
were positive for other myeloid markers such as non-specific
esterase, CD11c, CD14, CD64, or lysozyme. All myeloid-T cases
were positive for a T cell-specific markers (cytoplasmic CD3
or surface CD3), while all myeloid-B cases were positive for a B
cell-specific marker (CD19). Most of the MPAL cases (87%) were
positive for stem cell marker CD34, which was consistent with
a previous report 3.

Landscape of high-confidence somatic mutations in adult
MPAL. The targeted capture deep sequencing of 295 leukemia-
enriched cancer genes revealed 65 high-confidence somatic
single-nucleotide variants (SNVs) and 35 small insertions and
deletions (indels) in 38 genes in 29 of 31 adult MPAL samples
(94%) (Fig. 1a and Supplementary Table 2). The two cases
with no detectable point mutations were Ph+ cases. The
median number of cancer gene mutations was 2 (range: 0–7) per
sample. The most frequently mutated genes were NOTCH1
in nine samples (29%, all myeloid-T), RUNX1 in eight sam-
ples (26%, six myeloid-B and two myeloid-T), and DNMT3A
and IDH2 in seven samples each (23%, one myeloid-B and
six myeloid-T for both). The myeloid-B and myeloid-T pheno-
types showed distinct patterns of mutations (Fig. 1b), in whi-
ch RUNX1 mutations were significantly enriched in myeloid-B
(P= 0.039, odds ratio test), whereas NOTCH1 mutations
showed significant enrichment in myeloid-T (P= 0.029, odds
ratio test). Assessment of clonality based on the estimated cancer
cell fraction (CCF) of the mutations revealed that RUNX1,
DNMT3A, IDH2, SRSF2, KRAS, and TET2 mutations were fre-
quently clonal, whereas mutations in FLT3, ETV6, TP53, and
other rare genes were often subclonal or minimally subclonal
(Fig. 1c, d).

We then compare the frequency of cancer gene mutations in
MPAL to those of other lineage-committed acute leukemias
(AML, B-ALL, and T-ALL) that were sequenced using the
same platform (Fig. 1e). The number of detected mutations was
similar between MPAL and AML (the median number of
mutations was 2 [range: 0–7] in MPAL vs. 3 [range: 0–7] in
AML, P= 0.79, Mann–Whitney U test) or MPAL and T-ALL

Table 1 Clinical characteristics of 31 patients with MPAL

Myeloid-B Myeloid-T

N= 13 (% or IQR) N= 18 (% or IQR)

Median age, years (IQR) 59 (48–62) 43.5 (30–60)
Female 8 (61) 5 (27)
Median WBC, ×103/µL (IQR) 4.05 (3.3–8.6) 15.35 (2.2–18.4)
Median HGB, g/dL (IQR) 8.95 (8.1–9.8) 10.3 (8.6–11.8)
Median PLT, ×103/µL (IQR) 97 (27–143) 52.5 (31–107)
Median BM blast percentage
(IQR)

66 (57–85) 82 (62–89)

Median PB blast percentage
(IQR)

19 (11–43) 60.5 (26–86)

Median LDH, IU/L (IQR) 979 (598–1533) 1012 (802–1208)
Cytogenetic abnormalities

Normal 3 (23) 7 (39)
Ph+ 4 (31) 0 (0)
11q23 rearrangement 0 (0) 1 (6)
Complex 4 (31) 4 (22)
Other 2 (15) 6 (33)

Immunophenotype profile N/tested N/tested
MPO+a 11/13 16/18
CD3+ 0/11 18/18
CD10+ 4/11 4/16
CD11c+ 2/2 3/3
CD14+ 0/15 1/18
CD19+ 13/13 0/18
CD22+ 11/12 1/13
CD34+ 13/13 14/18
CD79a+ 7/11 3/10

IQR interquartile range, WBC white blood cells, HGB hemoglobin, PLT platelets, BM bone
marrow, PB peripheral blood, LDH lactate dehydrogenase, Ph+ Philadelphia chromosome
positive, MPO myeloperoxidase
aFour cases with negative MPO were positive for more than two myeloid markers (CD11c+,
CD14, non-specific estrase and lysozyme)
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(the median number of mutations 2 [range: 0–7] in MPAL vs. 3
[range: 1–4] in T-ALL, P= 0.92, Mann–Whitney U test), but
MPAL had significantly more mutations than B-ALL (the
median number of mutations 2 [range: 0–7] in MPAL vs..0
[range: 0–4] in B-ALL, P < 0.001, Mann–Whitney U test).
Mutations in TP53, NRAS, and DNMT3A were shared across
all types of acute leukemia, albeit with some difference in
frequency. In contrast, NPM1 mutations were specific to AML
and were not found in MPAL, which was consistent with a
previous study6. Mutations in IL7R, FBXW7, and NOTCH1 were
specific to myeloid-T MPAL and T-ALL, suggesting a strong
functional role of these genes in T cell lineage leukemia. While
myeloid-T MPAL and T-ALL shared a number of mutations
in common, there were also differences. PHF6 and JAK3
mutations, each detected in 21.4% of T-ALL cases, were not
detected in myeloid-T MPAL (Fig. 1e). In contrast, ASXL1
(11.1%) and FLT3 (11.1%) mutations were detected in myeloid-T
MPAL but not in T-ALL. Almost all of the mutations detected
in myeloid-B MPAL were shared with AML, although the
high prevalence of RUNX1 mutations (46.2%) in myeloid-B
MPAL is noteworthy (Fig. 1e). Overall, consistent with the
mixed immunophenotype presentation, both AML-type and
ALL-type mutations were detected in MPAL (Supplementary

Fig. 2). These data suggest that the aberrant immunophenotypes
of MPAL may be partially driven by the mixture of both AML-
and ALL-type mutations.

DNA sequencing of longitudinal samples from MPAL patients.
Since all of the DNMT3A mutations detected in the current
MPAL samples were non-R882 mutations (Supplementary
Table 2) and were clonal in bone marrow (median estimated
CCF= 1.0), we suspected that some MPAL cases are outgrowths
of pre-leukemic clonal hematopoiesis, as clonal hematopoiesis is
often associated with this type of DNMT3A mutations7,8. To
address this question, we analyzed longitudinal bone marrow
samples taken at the time of complete remission (CR) in eight
MPAL cases, of which three had pretreatment DNMT3A muta-
tions. As we expected, persistent DNMT3A mutations were
detected in the CR samples in all three cases while other co-
occurring mutations were cleared (Supplementary Fig. 3). These
data suggest that the DNMT3A mutations detected in the MPAL
cases are likely of pre-leukemic origin. We sequenced relapse
samples available for two of the eight cases with longitudinal
samples. In one of these cases (MDA016, myeloid-B), mutations
in GATA3 and ARID2 were acquired at relapse. Interestingly, this
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Fig. 1 Landscape of somatic mutations in MPAL. a Landscape of high-confidence somatic mutations detected in 31 MPAL cases by sequencing with a 295-
gene panel. Each column represents a case and each raw represents a gene. The top bar graph shows the number of mutations detected in each sample.
The two rows directly underneath that graph show the (upper) immunophenotypes (myeloid-B in dark red and myeloid-T in yellow) and (lower) the
cytogenetic classification. The bar graph at left shows the number of mutations detected overall in that gene. b Forrest plot showing enrichment of the
mutations against the immunophenotypes by logarithmic odds ratio. *P < 0.05. The error bars represent 95% confidence interval of odds ratio. c Dot plot
showing the estimated cancer cell fraction (CCF) of each mutation. Mutations with a CCF <0.2 are considered minimally subclonal (light blue), those
with CCF ≥0.2 and <0.85 are considered subclonal (blue) and those with a CCF ≥0.85 are considered clonal (red). The error bars represent
interquartile range and the center line represents the median. d Bar graph showing the number of detected mutations in each gene with degrees of clonality
based on the estimated CCF. e Table summarizing the distribution of high-confidence somatic mutations detected by the 295-gene panel sequencing in
patients with AML (N= 194), B-ALL (N= 71), myeloid-B MPAL (N= 13), myeloid-T MPAL (N= 18), or T-ALL (N= 14). The patients were classified by
their diagnosis, and the mutations are grouped by the consensus molecular pathways. The frequency of the mutations is represented by different colors
(key at upper right)
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case lost MPO positivity at relapse, although the association
between lineage loss and mutation acquisition is uncertain.

Copy number alterations (CNAs) in MPAL. Using data
from the methylation array, we inferred genome-wide CNAs
in the 31 MPAL samples (Supplementary Fig. 4). Recurrently
detected arm-level CNAs were loss in chromosomes 5q (19%), 7
(6%), and 12p (13%), and gain in chromosome 4 (10%).
Analysis of focal CNAs revealed copy number loss or deletions
in genes that were often affected by loss-of-function mutations:
CDKN2A (6%), IKZF1 (3%), FBXW7 (10%), ETV6 (6%),
and CEBPA (3%).

Fusion transcripts in MPAL. RNA sequencing data were
available for 24 of the 31 patients (77%). Analysis of these
data revealed, in addition to the translocation detected by
karyotyping (BCR-ABL1 [t(9;22)] and MLL rearrangement),
five additional in-frame, non-recurrent fusion genes in three
patients (Fig. 2). Case MDA020 (myeloid-T) had a KMT2A
(MLL)-MLLT4 fusion that was not apparent by karyotyping
(cytogenetics showed normal karyotype), suggesting a cryptic
abnormality. An NSD1-NUP98 fusion was detected in one
case of myeloid-B (MDA022), which has been described as a
cryptic fusion in ~16 and 2% of pediatric and adult AML
cases, respectively9. In addition to these two previously described
leukemic fusions, we detected three additional in-frame
fusions, FOXP1-DNAJC15 and TNKS-LYZ in a myeloid-T case
(MPAL27) and NOP14-PLEC in a myeloid-B case (MDA022).
The pathogenic significance of these fusion transcripts is
not clear. However, FOXP1 translocations have been described
previously in both lymphoid and myeloid leukemias (B-ALL10,11

and myeloproliferative disorder12) with various partner genes
such as ABL1, PAX5, and PDGFR, suggesting a role of this
gene in both myeloid and lymphoid lineage leukemias. In a
pediatric MPAL series, translocation of ZNF384 was detected
in ~40% of myeloid-B phenotype cases (personal communication
with Dr. Charles Mullighan). We did not detect ZNF384
fusion transcripts through our RNA sequencing. We also
screened our cohort for the most common ZNF384 fusions
(ZNF384-EP300, ZNF384-CREBBP, ZNF384-TAF15, and
ZNF384-TCF3) by RT-PCR but the fusions were not detected
(Supplementary Fig. 5).

DNA methylation and gene expression profiles in MPAL. To
further explore the potential molecular distinctions between
the myeloid-T and myeloid-B phenotypes, we analyzed the
genome-wide DNA methylation profile in the 31 MPAL samples.
Consensus k-means clustering of the top 10,000 variably
methylated probes identified two distinct clusters in MPAL
(Fig. 3). These two methylation clusters showed significant cor-
relation with immunophenotype: 73% of cases expressing cluster
1 were myeloid-B, whereas 88% of cases expressing cluster 2 were
myeloid-T (P < 0.001). Overall, the myeloid-T cases had more
hypermethylated CpG probes than the myeloid-B cases (Fig. 4),
which was observed consistently among various CpG locations
(Supplementary Fig. 6). Because IDH1 and IDH2 mutations were
detected frequently in the current MPAL cohort (29%) and they
are known to cause the CpG island hypermethylated phenotype
(CIMP) in AML13, we analyzed methylation differences between
myeloid-T and myeloid-B phenotypes in IDH1/2 wild-type and
mutant cases separately. The methylation difference between the
two phenotypes was still significant in IDH1/2 wild-type cases,
suggesting that this methylation difference is not conditional on
IDH1/2 mutation status (Supplementary Fig. 7).

We next analyzed promoter CpG probes that were differen-
tially methylated between myeloid-T and myeloid-B phenotypes.
Pathway analysis of differentially methylated CpG probes (DMP)
revealed that promoter CpGs in genes associated with T cell
receptor (TCR) signaling (CD3D, PRKCQ, LCK, and CD247) were
hypo-methylated in myeloid-T cases (Fig. 5a). Integrated analysis
of promoter methylation and mRNA expression data also
revealed that TCR signaling genes, such as CD3D, PRKCQ,
CCR9, and CD7, were differentially methylated and expressed
between myeloid-T and myeloid-B cases (Fig. 5b, c). These data
suggest that aberrant expression of CD3 in myeloid-T MPAL is
mediated by promoter hypomethylation. We also performed
motif enrichment analysis of promoter DMPs. This analysis
revealed that IRF8 and IRF4 binding motifs were significantly
hypo-methylated in myeloid-B cases compare to myeloid-T cases
(Fig. 5d). Both IRF8 and IRF4 are transcription factors that play
critical roles in pre-B cell development, differentiation, and
function14. Consistent with the findings, PAX5, CXCR4, RAG1,
and RAG2, downstream targets of IRF4/IRF8 and essential to B
cell development, were significantly upregulated in myeloid-B
cases compare to myeloid-T cases (Fig. 5e). This is likely a
mechanism of CD19 expression in myeloid-B MPAL, because

NSD1 NUP98

N C

TGACACCACAGGCTGAGCTCCCTGAACCAG CTTTGACAGATCCAAATGCTTCTGCTGCCC

Exon 6 Exon 13

NOP14 PLEC

N C

GCGATGCTGAGGATCGAGGAACGTTGTCTG ATGAGCGGGATCGTGTGCAGAAGAAAACCT
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GGAGTCCACAGGATCAGAGTGGACTTTAAG ATTTGGAGTTCCATGGAGTGATGAGATTT

Exon 9 Exon 2

TYK LYZ

N C

CAGATCCTTCAGCAAAAGCTGTCCTTACAG CTTTGCTGCAAGATAACATCGCTGATGCTG
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(myeloid-T)
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Fig. 2 Fusion transcripts in MPAL. Fusion genes detected in MPAL samples by RNA sequencing. In addition to fusions already known (detected by
karyotyping), a total five in-frame fusion candidates were detected in three patient samples
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PAX5 directly regulates the expression of CD1915. Additionally,
gene set enrichment analysis (GSEA) of differentially expressed
genes between the two phenotypes showed that the B cell receptor
(BCR) and NF-κB pathways were upregulated in myeloid-B cases
compare to myeloid-T cases (Fig. 5f). This is in line with the
activation of the IRF4 pathway in the myeloid-B phenotype,
because the BCR-NF-κB axis is an upstream inducer of IRF416.
Altogether, these data suggest that the immunophenotypic
difference between myeloid-T and myeloid-B MPAL is affected
substantially by differential activation of lineage-defining tran-
scription factors and promoter methylation differences.

Methylome comparison among MPAL and other acute leuke-
mias. We then compare the promoter CpG methylation patterns
of AML, B-ALL, and T-ALL with that of MPAL to further explore
differences between lineage-committed and mixed lineage leu-
kemias. Unsupervised hierarchical clustering of the most variable
promoter CpGs from AML, B-ALL, T-ALL, and MPAL cases
differentiated AML, B-ALL, and T-ALL into distinct clusters
(Fig. 6a). Because 18 of the 31 (59%) MPAL cases clustered with
B-ALL or T-ALL and 13 (41%) clustered with AML, we desig-
nated these MPAL cases as ALL-like or AML-like MPAL,
respectively (Fig. 6b). Of the18 myeloid-T MPAL cases, 13 (72%)
clustered with T-ALL, 5 (28%) clustered with AML, and
none clustered with B-ALL. Of the 13 myeloid-B MPAL cases, 8
(62%) clustered with AML, 4 (31%) clustered with B-ALL, and 1
(7%) clustered with T-ALL. This case of myeloid-B MPAL that
clustered with T-ALL had strong CD7 positivity along with
CD19 and MPO positivity, which might explain why it clustered
with T-ALL.

To better understand the difference between methylation-
defined AML-like MPAL and ALL-like MPAL, we compare the
mutation profiles and immunophenotypes of these two subtypes.
Mutations in RUNX1 and SRSF2 were significantly associated
with AML-like MPAL (Fig. 6c). Moreover, strong expression of

CD19 was associated with ALL-like myeloid-B MPAL (Fig. 6d)
and strong association of CD7 with ALL-like myeloid-T MPAL
(Fig. 6e).

Correlation with clinical outcomes in MPAL. Among the 31
MPAL patients analyzed in this study, 29 (94%) received induc-
tion chemotherapy (Supplementary Table 4). Of those, 17 (59%)
received an ALL-directed regimen, 9 (31%) received an AML-
directed regimen, and 3 (10%) received other types of therapy.
Twelve of the 18 (67%) ALL-like MPAL cases were treated with
an ALL-directed regimen, while 6 of 13 (46%) AML-like MPAL
cases received AML-directed therapy. Among the 27 patients with
evaluable response data, 18 received therapy that matched with
their methylation-defined phenotype (i.e., AML-directed therapy
for AML-like MPAL and ALL-directed therapy for ALL-like
MPAL) and 9 patients received un-matched therapy. Notably,
patients who received matched therapy were significantly more
likely to achieve CR than patients who received un-matched
therapy (CR rate: 72% vs. 22%, P= 0.037, Fisher’s exact test,
Fig. 7a). However, this did not translate to a difference in com-
posite CR rate (CR+ CR with insufficient blood recovery, Fig. 7a)
and overall survival (Fig. 7b).

Discussion
In this study, we performed an integrative molecular analysis of
31 adult MPAL samples by using targeted gene sequencing,
methylation array, and RNA sequencing. We also compare pat-
terns of mutations and DNA methylation of MPAL to AML, B-
ALL, and T-ALL to further define the molecular underpinnings of
this unique clinical entity. Our data elucidated the genetic and
epigenetic heterogeneity associated with the distinct myeloid-B
and myeloid-T immunophenotypes of MPAL. While the
myeloid-B and myeloid-T phenotypes shared some cancer gene
mutations in common, the pattern of somatic mutations differed
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between the two phenotypes, with significant differences in the
frequency of NOTCH1 and RUNX1 mutations. Furthermore,
myeloid-B and myeloid-T MPAL cases showed distinct DNA
methylation patterns that were associated with differences in
expression of key genes essential to hematopoietic lineage com-
mitment. In comparison with AML, B-ALL, and T-ALL, the

mutation landscape and methylation pattern were similar
between myeloid-T MPAL and T-ALL although there were some
differences. For example, myeloid-T MPAL lacked JAK3 and
PHF6 mutations which were detected in ~20% of
T-ALL. Additionally, based on the RNA sequencing, we did not
detect oncogenic transcription factor fusions that are often
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characteristic to T-ALL such as but not limited to TAL1, TLX1,
TLX3, NKX2.1, LMO1, and LMO2 fusions. These differences
might represent the unique molecular feature of MPAL.

DNMT3A mutations were frequently detected in myeloid-T
MPAL (33%) and all mutations were nonsense or frameshift
mutations with high VAF leading to loss of function (Supple-
mentary Table 2). This is similar to the mutation characteristics
in adult T-ALL17. Furthermore, loss-of-function DNMT3A
mutations have been shown to cooperate with NOTCH1 activa-
tion in T-ALL mice model18. In fact, in our cohort, four of six
(67%) DNMT3A mutated myeloid-T had co-occurrence of
NOTCH1 mutation, supporting the cooperative mechanism
between these two genes in T cell lineage malignancy. Interest-
ingly, there was a strong co-occurrence of DNMT3A and IDH2
mutations (five of six DNMT3A-mutated cases had IDH2
mutations) in myeloid-T, which is not seen in T-ALL and maybe
unique to myeloid-T MPAL. As a result of this co-occurrence, we
found no difference in global methylation level between
DNMT3A mutated and wild-type myeloid-T cases (Supplemen-
tary Fig. 8), because IDH2 and DNMT3A have been shown to
have epigenetic antagonism19. One of the significant DMPs
between DNMT3A mutated and wild-type myeloid-T cases was
the CpGs in gene body of NOTCH1 (Supplementary Fig. 8) and
these loci overlapped with one of the permissive enhancers
detected in FANTOM project20. Functional consequence of this
hypo-methylated enhancer region is unclear and we did not find
difference in gene expression of NOTCH1 by DNMT3Amutation.

The clonal origin of MPAL and the mechanism underlying its
mixed-phenotype presentation have been debated since the first-
case description of MPAL4,21,22. One theory, “lineage pro-
miscuity”, refers to a mechanism whereby leukemic transforma-
tion occurs at the stage of early hematopoietic stem/progenitor
cells (HSC/HSPC) with multi-lineage potential, allowing pro-
miscuous expression of myeloid and lymphoid lineage markers23.
Another theory, “lineage infidelity”, argues that oncogenic
mutations misconfigure differentiation program of leukemia cells,
leading to the mixed phenotype presentation24. Although our
study was not designed to provide a definitive answer to this
controversy, our data suggest that these two theories may not be
mutually exclusive and that both mechanisms may be in play for
MPAL development. Frequent positivity of early stem cell mar-
kers, CD34 and CD117, and the fact that MPAL is most often
myeloid-T or myeloid-B, not T-B, support the lineage pro-
miscuity concept that MPAL arises from early HSC/HSPCs that
have multi-lineage potential3. At the same time, our mutation
data support the lineage infidelity mechanism, in that oncogenic
mutations in lineage-defining transcription factor genes such as
NOTCH1 and RUNX1 were detected frequently in MPAL.
RUNX1 mutations were previously reported to have significant
association with minimally differentiated AML (M0 by the
French-American-British [FAB] classification), and analysis of
gene expression profiles showed that RUNX1-mutated AML

had significant upregulation of the BCR pathway25–27. This is in
line with our data indicating that myeloid-B MPAL, 40% of which
had RUNX1 mutations, had BCR-NFκB pathway activation,
which likely resulted in IRF4-PAX5 activation and subsequent
CD19 expression. Similarly, activating mutations in NOTCH1
and IL7R in myeloid-T MPAL may explain the aberrant expres-
sion of T cell markers28. Taken together, our results suggest a
model of MPAL development in which HSCs/HSPCs with multi-
lineage potential acquire mutations in lineage-defining tran-
scription factor genes that facilitate expression of the mixed
immunophenotype. The putative candidate cell of origin is the
multi-lymphoid progenitor (MLP) because it has bi-potential
capacity to develop into lymphoid (B and T) and myelomono-
cytic lineages29. It is still unknown whether myeloid-T and
myeloid-B phenotypes arise from the same clonal origin. The
significant differences in methylation signatures between the two
phenotypes, which was independent of IDH mutations, raises the
possibility that the two phenotypes inherited distinct methylation
signatures from different cell types, because cell-specific methy-
lation signatures are generally well preserved during hemato-
poietic differentiation and can be used as a clonal fingerprint30. A
further analysis of the mutation mapping in purified HSC com-
partments from MPAL patients might help in identifying the
precise clonal origin.

Clinically, MPAL often generates diagnostic and therapeutic
challenges4. No standard therapy has been defined for MPAL,
and treatment choice has been inconsistent between AML-type
and ALL-type regimens. Previous retrospective studies of MPAL
suggested that an ALL-type induction regimen produces higher
response and survival rates3,5. This is consistent with our data,
because the majority of the MPAL cases in our cohort were
classified as ALL-like MPAL based on methylation profile, and
thus an ALL-type regimen may render a higher response rate
overall. However, an ALL-type regimen might not be recom-
mended for all MPAL patients, because 40% of MPAL showed a
methylation pattern similar to that of AML. In our retrospective
analysis, patients who received therapy “matched” to their
methylation profile had significantly higher rates of CR to
induction therapy than patients who received “un-matched”
therapy. These data serve as proof of concept for the molecularly
guided precision therapy approach in MPAL. Currently, genome-
wide methylation analysis is not widely implemented in the
clinic, but a recent study showed the potential feasibility and
reproducibility of methylation assays in the clinical setting31.
Future studies in a larger cohort of MPAL patients correlating
clinical profiles and outcomes with molecular analysis, especially
methylation analysis, are needed to confirm our results. Another
clinically relevant finding from this study is that ~50% of MPAL
patients carried at least one clinically actionable mutation
(IDH2 and FLT3). Midostaurin (FLT3 inhibitor) and enasidenib
(IDH2 inhibitor) are clinically effective in AML with FLT3
and IDH2 mutations, respectively32,33. The clinical activity of

Fig. 5 Transcriptomic changes between myeloid-T and myeloid-B. a Pathway analysis of differentially methylated promoter CpG probes (FDR <0.1 and
delta beta value >0.15) between myeloid-B and myeloid-T phenotypes showing significant enrichment of T cell receptor pathways. P value was calculated
by Fisher’s exact test and FDR was calculated by Benjamini–Hochsberg method. b Starburst plot integrating analysis of gene expression and promoter
methylation. Red dots represent promoter CpG probes with significantly differential methylation that are also associated with significant differences in
expression between myeloid-B and myeloid-T. c Log2 fold differences of transcription levels of genes that were significantly different between myeloid-B
and myeloid-T phenotypes and were associated with significant promoter methylation differences. P value was calculated by Wald test and adjusted for
multiple testing by Benjramini–Hochberg method. d Motif enrichment analysis of promoter CpG probes differentially methylated between the two
phenotypes showing significant enrichment of IRF8 and IRF4 recognition motifs. P value was calculated by Wilcoxon rank-sam test. e Log2 fold differences
of transcription levels of key downstream target genes of IRF8 and IRF4 between myeloid-B (My-B) and myeloid-T (My-T) phenotypes. P value was
calculated by Wald test and adjusted for multiple testing by Benjramini–Hochberg method. f Gene set enrichment analysis (GSEA) comparing gene
expression data from RNA sequencing between myeloid-B and myeloid-T phenotypes showing significant enrichment of B cell receptor (BCR) and NFκB
pathways in myeloid-B MPAL. The method of estimating nominal P value and FDR adjustment is described elsewhere 52
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these agents in MPAL is not known, but its important MPAL
cases are screened for these clinically actionable mutations for
potential inclusion of these patients in molecularly targeted
agent trials.

This study has several limitations. First, the sample size is small
and therefore some of the analysis has limited statistical power to
draw a definitive conclusion. For example, DNMT3A, IDH2, and
FLT3 were more frequently mutated in myeloid-T compare to

myeloid-B but the difference was not statistically significant. We
might identify more immunophenotype-specific mutations if the
cohort is large. Given the rarity of the disease, this is a limitation
of a retrospective study from a single center and it highlights the
need of a multi-institutional large study. Second, due to the lack
of normal control, we did not perform whole exome/genome
DNA sequencing and instead performed targeted DNA sequen-
cing. Although our targeted sequencing panel covered 295 genes
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Fig. 6 Methylation comparison among all leukemias. a Unsupervised hierarchical clustering of the top 10,000 variably methylated probes among AML
(N= 194), B-ALL (N= 505), T-ALL (N= 101), and MPAL (N= 31) cases. MPAL cases are indicated by arrows (red arrow, myeloid-T: blue arrow, myeloid-
B). MPAL cases that were clustered within AML cases and B-ALL/T-ALL cases were classified as “AML-like MPAL” and “ALL-like MPAL,” respectively.
b Distribution of AML-like MPAL and ALL-like MPAL defined by methylation cluster in myeloid-T and myeloid-B MPAL. c Forest plot showing enrichment
of mutations against AML-like MPAL and ALL-like MPAL by logarithmic odds ratio. The error bars represent 95% confidence interval of odds ratio.
d, e Box plots showing frequency of CD19-positive and CD7-positive cells in myeloid-B and myeloid-T MPAL, respectively, stratified by ALL-like and
AML-like MPAL. For box plots, center line represents the meidan, box edges represent the 25th and 75th percentiles, upper whisker represent 75th
percentile+ 1.5 times interquartile range, lower whisker represent 25th percentile− 1.5 times interquartile range and the dots represent outliers. Difference
between the two groups was tested by Mann–Whitney U test
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that are recurrently mutated in both myeloid and lymphoid
malignancies, there is a chance that missed novel MPAL genes.
Third, an interpretation of the results on methylation-defined
subtype and its correlation with clinical response/outcome
needs caution because of the small sample size and variability in
post-induction therapy.

In summary, we report data from an integrated molecular
analysis of 31 adult MPAL cases. To the best of our knowledge,
this is the most comprehensive and detailed molecular analysis of
MPAL. Our data delineate distinct genetic and epigenetic bases
for myeloid-T and myeloid-B MPAL phenotypes and suggest
potential molecular mechanisms for the mixed immunopheno-
type presentation.

Methods
Patients. We searched our institution’s medical record database for patients
with acute leukemia evaluated between 2000 and 2015; from that subset, we
identified patients whose disease was diagnosed as MPAL. Because MPAL cases
diagnosed before 2008 were classified as “bi-phenotypic leukemia” according
to the European Group of Immunological Markers for Leukemia (EGIL) criteria34,
we reclassified those diagnoses according to the 2008 WHO criteria35. Also, for the
purpose of this study, we included only MPAL cases with a bi-phenotypic pre-
sentation; bi-lineal cases were excluded because of the presumed biological and
clonal differences of these two diseases. This resulted in 55 patients meeting the
diagnostic criteria of MPAL by 2008 WHO Classification. We then selected
patients whose MPAL was untreated at the time of presentation at MD Anderson
and who had pretreatment bone marrow samples available for analysis. For some
of these MPAL patients, bone marrow samples taken at the time of complete
remission (CR) and/or relapse were available for longitudinal analysis. Mutation
frequencies in these samples were compare with those in samples from patients
with other types of acute leukemia, including previously untreated AML (N= 194),
precursor B cell ALL (pre-B-ALL, N= 71), and T cell ALL (T-ALL, N= 14).
Written informed consent for sample collection and analysis was obtained from
all patients. The study protocols adhered to the Declaration of Helsinki and
were approved by the Institutional Review Board at The University of Texas MD
Anderson Cancer Center.

Targeted gene next-generation sequencing and mutation calling. We used a
SureSelect custom panel of 295 genes (Agilent Technologies, Santa Clara, CA) that
are recurrently mutated in hematologic malignancies (Supplementary Table 1).
This panel was designed to cover a wide range of recurrently mutated genes in both
myeloid and lymphoid malignancies, making it suitable for the analysis of mixed
phenotype leukemia. Details of the sequencing methods have been described
previously36. Briefly, genomic DNA was extracted from diagnostic bone marrow

aspirates, as well as CR and relapse specimens when available, using an Autopure
extractor (QIAGEN/Gentra, Valencia, CA). DNAs were fragmented and bait-
captured in solution according to the manufacturer’s protocols. Captured DNA
libraries were then sequenced using a HiSeq 2000 sequencer (Illumina, San Diego,
CA) with 76 base pair paired-end reads.

Bioinformatics analysis calling high-confidence somatic mutations. The
bioinformatic pipelines calling high-confidence somatic single-nucleotide variants
(SNVs) and indels from targeted capture DNA sequencing were described
previously37. Cancer cell fraction (CCF) of each mutation was estimated by a series
of formulas. Briefly, raw ploidy was calculated from the copy number segmentation
data, adjusted by tumor purity, and rounded to the next integer. The rounded-
adjusted ploidy, along with raw variant allele frequency and tumor purity, were
then used to estimate the CCF. Detailed formulas are listed below. Diploid status
was assumed. Mutations in sex chromosomes were skipped and only adjusted by
tumor purity.

Raw ploidy ¼ 2 ´ 2��cnv log2 ratio

Adjusted ploidy ¼ Raw ploidy � 2þ 2 ´Purityð Þð Þ=Purity

Adjusted_ploidy is rounded to the next integer.

Adjusted VAF ¼ Raw VAF ´ Purity ´ Rounded adjusted ploidy þ 2 ´ ð1� PurityÞð Þ=Purity=2
CCF ¼ Adjusted VAF´ 2

DNA methylation analysis and data processing. DNA methylation analysis was
performed using Illumina’s Infinium MethylationEPIC assay (EPIC), which covers
~850,000 CpG positions in the human genome. Briefly, genomic DNA from bone
marrow samples was treated with sodium bisulfite (Zymo Research, Irvine, CA)
that coverts un-methylated cytosine residues to uracil and then processed by
whole-genome amplification, enzymatic fragmentation, and hybridization to bead
chips at 48 °C for 17 h according to the manufacturer’s protocol. After array
hybridization, specific probes designed to interrogate
bisulfite-converted loci were single-base extended by incorporating DNP or biotin-
labeled ddNTP and stained with a fluorescent reagent to determine the signal
intensity ratio of methylated versus un-methylated residues. After washing and
staining, the bead chips were scanned on iScan (Illumina) to generate IDAT files.
We used the ChAMP algorithm for data processing and normalization following
the program’s default procedures38. The IDAT files were taken as input files and
raw beta values were generated. Following initial filtering and quality check, the
data were normalized using the BMIQ method39. The batch effect was assessed by
using the singular value decomposition (SVD) method and corrected if necessary40.
Differential methylation analysis was performed by using the limma algorithm41.
For comparison of methylation status among AML, B-ALL, T-ALL, and MPAL,
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methylation data from 194 AML samples were downloaded from The Cancer
Genome Atlas Data Portal (https://tcga-data.nci.nih.gov/docs/publications/
laml_2012/) and methylation data from 505 B-ALL and 101 T-ALL samples
analyzed for a previously published study were kindly provided by Drs. Syvanen
and Nordlund from Uppsala University42,43. Raw IDAT files from both data
sources were taken as raw input files and processed and normalized using the same
pipeline already described. Since both of these data sets were generated by Illu-
mina’s previous platform, the Infinium HumanMethylation450 (HM450) array
that covered ~485,000 CpG positions, we analyzed only the CpG probes that
overlapped between EPIC and HM450 (91% of the HM450 probes overlapped with
the EPIC probes, Supplementary Fig. 1).

RNA sequencing and data processing. cDNA was synthesized via Ribo-SPIA
Technology (NuGEN, San Carlos, CA) per the manufacturer’s instructions. The
synthesized cDNA library was sequenced by Illumina’s HiSeq 2000 platform. Raw
sequencing data from the Illumina platform were converted to fastq files and
aligned to the reference genome (hg19) using the Spliced Transcripts Alignment to
a Reference (STAR) algorithm44. HTSeq-count was then utilized to generate the
raw counts for each gene45. Raw counts were then analyzed by DESeq2 for data
processing, normalization, and differential expression analysis according to stan-
dard procedures46. To identify candidate fusion transcripts, we ran three different
structural variation (SV) detection algorithms: TopHat-Fusion47, FusionMap48,
and MapSplice49. SVs that met the following criteria were considered candidate
fusion transcripts: (1) SVs supported consistently by 2 or more algorithms, (2) in-
frame fusion transcripts, (3) reads that were not mapped to different transcripts by
Blat search, (4) supporting seed reads count ≥4, and (5) junction located at the
exon-intron boundaries.

Estimation of copy number alterations (CNAs). Genome-wide CNAs were
estimated from methylation array data using a combination of the Conumee
algorithm (http://bioconductor.org/packages/conumee/) and our in-house seg-
mentation pipeline. Briefly, IDAT files were loaded into Conumee and combined
intensity values were generated and normalized. The raw log2 ratio for each CpG
site was then calculated by comparing against a set of eight normal internal con-
trols. The calculated log2 ratios were subjected to segmentation by the circular
binary segmentation method50. Ploidy value was calculated from the segmentation
log2 ratios and then adjusted by tumor purity that was estimated from bone
marrow blast percentage. The final adjusted ploidy was then plotted by using the
Copynumber R package 51.

Gene set enrichment analysis. Normalized counts data from DESeq2 was taken
as input for Gene Set Enrichment Analysis (GSEA)52. The permutation parameter
was set as the gene set, while the remaining parameters were kept as the defaults.

Motif enrichment analysis. We defined differentially methylated CpG probes
(DMP) with a difference between myeloid-T and myeloid-B phenotypes
corresponding to a false discovery rate (FDR) value <0.1 and a delta beta value
>0.15. The list of DMPs and non-DMPs (as controls) was then mapped to the
genome and the nearest transcription start site (TSS) was identified. Genomic
sequences 2000 bp upstream and downstream of the TSS were extracted using
BEDTools53. Extracted sequences were then taken as input for the motif enrich-
ment analysis using the Analysis of Motif Enrichment (AME) software 54.

Reverse-transcriptase polymerase chain reaction (RT-PCR). Total RNA was
isolated from bone marrow aspiration samples and were reverse transcribed to
generate complementary DNA (cDNA) using iSCript cDNA Synthesis Kit, (Bio-
Rad). We screened for various ZNF384 fusions using the following primer pairs.
EP300-ZNF384: Forward primer TCTAGGGGTGGGTCAACAGT, Reverse pri-
mer CTGTCAGCAAGGTGGGGTAG, TCF3-ZNF384: Forward primer
CAGCCTCATGCACAACCAC Reverse primer CCAGTGTGGATTCGTGTGTG,
CREBBP-ZNF384: Forward primer CTCTCGGACTCCCCTACATGA Reverse
primer TCAGCAAGGTGGGGTAGTGA, TAF15-ZNF284: Forward primer
GGAAGCCAAGGTGGAAGAG Reverse primer ACAGCCCTTCTCTGGCAAC.
To complement the lack of positive control, we used two internal controls. First to
validate the RT-PCR procedure by confirming expression of GAPDH: Forward
primer GAGTCAACGGATTTGGTCGT Reverse primer TTGATTTTGGAGGGA
TCTCG. Second to confirm expression of ZNF384: Forward primer AACCCTT-
CAAGTGCCACAAC Reverse primer GCACCTGTTGCTGAAGATCA.

Statistical analysis. The chi-square or Fisher's exact test was used to assess dif-
ferences in categorical variables, and the Mann–Whitney U test or Student's t test
was used to analyze differences in continuous variables. Survival outcomes were
plotted by the Kaplan–Meier method and the difference in survival was assessed by
the log-rank test. Statistical analyses were performed using SPSS (version 24; IBM
Corporation, Armonk NY) and R (ver. 3.1.3).

Code availability. We used publicly available computer codes to generate results
and all codes are cited in the method.

Data availability. De-identified mutation data and clinical data are available in
the Supplementary Information. The data sets generated from RNA sequencing
and methylation array are available in the Gene Expression Omnibus repository
with the following accession numbers: GSE113601 (RNA sequencing) and
GSE113545 (methylation array).
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