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Summary 

A fundamental challenge of biology is to understand the vast heterogeneity of cells, particularly how 

cellular composition, structure, and morphology are linked to cellular physiology. Unfortunately, 

conventional technologies are limited in uncovering these relations. We present a machine-intelligence 

technology based on a radically different architecture that realizes real-time image-based intelligent cell 

sorting at an unprecedented rate. This technology, which we refer to as intelligent image-activated cell 

sorting, integrates high-throughput cell microscopy, focusing, and sorting on a hybrid software-hardware 

data-management infrastructure, enabling real-time automated operation for data acquisition, data 

processing, decision-making, and actuation. We use it to demonstrate real-time sorting of microalgal and 

blood cells based on intracellular protein localization and cell-cell interaction from large heterogeneous 

populations for studying photosynthesis and atherothrombosis, respectively. The technology is highly 

versatile and expected to enable machine-based scientific discovery in biological, pharmaceutical, and 

medical sciences. 

 

Introduction 
A fundamental challenge of biology is to study the vast differences that exist between cells, even 

those with identical genomes (Altschuler and Wu, 2010; Stubbington et al., 2017). The differences in 

composition, structure, and morphology of cells are connected to their physiological functions and are 

an important aspect of cell identity (Hao et al., 2013; von Erlach et al., 2018; Moor et al., 2017; Zenker 

et al., 2017; Boutros et al., 2015; Caicedo et al., 2017; Pernas et al., 2018; Mackinder et al., 2017). For 

example, localization of transcription factors to the nucleus or cytoplasm leads to dramatic differences in 

cellular behavior (Hao et al., 2013), while cellular geometry (e.g., size, shape) affects intracellular 

signaling and regulates cell growth and differentiation (von Erlach et al., 2018). A range of other 

morphological features such as nuclear shape, nucleus-to-cytoplasm ratio, cytoskeleton structure, 

chromosome abnormality, cell-cell interaction, RNA localization, and lipid droplet distribution are likely 

also linked to unique cellular function (Moor et al., 2017; Zenker et al., 2017; Boutros et al., 2015; Caicedo 

et al., 2017; Pernas et al., 2018; Mackinder et al., 2017). To understand such cell-to-cell differences, new 

approaches are needed to rapidly search through and sort out cells with unique chemical and 

morphological features from large heterogeneous populations (Altschuler and Wu, 2010; Chattopadhyay 

et al., 2014), as conventional technologies have been limited in uncovering these relations. We anticipate 

that a technology to sort cells based on their images at high rates will be foundational to uncovering new 

subpopulations and rare features of cells and accelerating progress toward an era of precision medicine 



(Jiang et al., 2017), cell therapy (von Erlach et al., 2018), drug discovery (Boutros et al., 2015; Caicedo 

et al., 2017), metabolic engineering (Nielsen and Keasling, 2016; Wakisaka et al., 2016), and protein 

engineering (Piatkevich et al., 2018). 

Unfortunately, realization of such a technology is significantly challenging due to the trade-off 

between the volume and complexity of image data (which is correlated to accuracy) and the data transfer 

and image-processing speed (which is correlated to response time). In fact, conventional high-throughput 

cell-sorting technologies such as fluorescence-activated cell sorting (FACS) (Tung et al., 2007) can only 

handle low-resolution data (e.g., ∼20 light scattering and fluorescence signals without spatial information) 

for real-time data processing and actuation (i.e., sorting). On the other hand, digital analysis of high-

resolution data (i.e., images) in image-based high-content screening (Boutros et al., 2015; Caicedo et al., 

2017; Brasko et al., 2018) and imaging flow cytometry (George et al., 2006; Caicedo et al., 2017; Basiji 

et al., 2007; Lee et al., 2018), where machine learning is effective by virtue of the availability of the high-

dimensional data (Eulenberg et al., 2017), is too slow to perform real-time actuation due to the limited 

speed of data transfer and image processing. A typical strategy for increasing the data-processing 

throughput is to process the data in parallel by using multiple computers, but this is generally limited 

to “offline” operation, resulting in a long turnaround time (more than several seconds), and does not 

allow real-time actuation. Previous efforts to achieve real-time analysis and sorting have employed unique 

electrical (Fabbri et al., 2013), chemical (Sun et al., 2014), microfluidic (Girault et al., 2017), optical (Ota 

et al., 2018), and mechanical (Brasko et al., 2018) approaches, but these approaches lack high-throughput 

or imaging capabilities. Presently, there is no high-throughput image-based cell-sorting technology that is 

validated and available. 

In this Resource, we present a real-time machine-intelligence technology that overcomes the 

trade-off between accuracy and speed by employing a radically different data-management infrastructure 

and hence realizes real-time “online” image-based intelligent cell search and sorting at an unprecedented 

rate. The technology, which we refer to as the intelligent image-activated cell sorter (IACS), integrates 

high-throughput cell microscopy (Mikami et al., 2018), focusing, and sorting (Sakuma et al., 2017) on a 

hybrid software-hardware data-management infrastructure that runs a telecom-grade 10-Gbps all-Internet-

protocol (IP) architecture (Figure 1) (Hiraki et al., 2016). This optical-microfluidic-electrical-

computational-mechanical system enables high flexibility, high scalability, and automated operation for 

data acquisition, data processing, decision-making, and actuation, all within 32 ms even with deep-

learning algorithms. In a sense, the intelligent IACS is an imaging version of FACS, which offers many 

more capabilities in both technological and applicational aspects. To show the power and broad utility of 

the intelligent IACS (e.g., for microbiology, hematology), we demonstrate real-time sorting of microalgal 



and blood cells based on intracellular protein localization and cell-cell interaction from large 

heterogeneous populations for studying photosynthesis and atherothrombosis, respectively. 

 



Figure 1 Schematic and Functionality of the Intelligent IACSSuspended cells in a sample injected into 

the intelligent IACS are focused by the hydrodynamic focuser into a single stream, imaged by the FDM 

microscope, analyzed by the real-time intelligent image processor, maintained in a single stream by the 

acoustic focuser during the computation, and sorted by the dual-membrane push-pull cell sorter triggered 

by decisions made by the image processor. The entire process is operated in a fully automated and real-

time manner. Video S1 shows the full functionality of the intelligent IACS. OI1-OI4, optical 

interrogation points for the FDM microscope and speed meter; BF, bright field; FL1, FL2, fluorescence 

in different color bands. Also, see Figures S1A–S1D, S2, S3A–S3H, and S4A–S4F. 

 

Results 

Schematic and Functionality 
The intelligent IACS is schematically shown in Figure 1 (Figures S1A–S1D and S2; STAR 

Methods). It is a seamless integration of (1) a two-step three-dimensional (3D) on-chip hydrodynamic cell 

focuser (Figures S1A and S3A–S3D); (2) a frequency-division-multiplexed (FDM) microscope (Mikami 

et al., 2018) for continuous, high-speed, blur-free, sensitive, bright-field, and two-color fluorescence 

image acquisition of cells flowing at 1 m/s (Figures S1C, S1D, and S3E–S3H), which is required to 

achieve a high throughput of ∼100 events per second (eps) as described below; (3) a speed meter for 

measuring the flow speed of cells and predicting their arrival time at the sort point (Figures S1D and S4A–

S4D); (4) a real-time intelligent image processor composed of a field-programmable gate array (FPGA), 

three central processing units (CPUs), a graphics processing unit (GPU), and a network switch, all on a 

10-Gbps all-IP network for high-speed digital image processing and decision-making (Figure S2); (5) a 

3D on-chip acoustic cell focuser for maintaining a focused cell stream for a long distance (>3 cm) 

(Figure S1A; STAR Methods); and (6) an on-chip dual-membrane push-pull cell sorter for rapidly 

isolating target cells from the cell stream (Sakuma et al., 2017) (Figures S1A, S1B, and S1D). As shown 

in Video S1, suspended cells in a sample injected into the intelligent IACS are focused by the 

hydrodynamic focuser into a single stream, imaged by the FDM microscope, analyzed by the real-time 

intelligent image processor, maintained in the single stream by the acoustic focuser during the computation, 

and sorted by the dual-membrane push-pull cell sorter triggered by decisions made by the image processor. 

The entire process is operated in a fully automated and real-time manner. 



The functionality of each critical element (1)–(6) is described as follows. First, the two-step 3D 

on-chip hydrodynamic focuser uses a sheath flow to confine flowing cells in the horizontal direction, 

followed by another sheath flow to confine them in the vertical direction, in order to produce a highly 

stable 3D focused cell flow at 1 m/s for blur-free image acquisition with the FDM microscope. A flow 

controller that consists of pressure vessels, electro-pneumatic regulators, and liquid flow meters is used to 

provide the optimum flow rate ratio between the sample, horizontal sheath, and vertical sheath flows 

(Figures S3A and S3B). Second, the FDM microscope images every single cell in the high-speed flow by 

employing the FDM image acquisition technique (Mikami et al., 2018). Specifically, it employs a linear 

array of multiple intensity-modulated excitation beams with distinct modulation frequencies. The beam 

array is focused across the microchannel to produce a linear array of focal spots in the direction 

perpendicular to the flow. Each flowing cell is scanned in the flow direction by the beam array to acquire 

a sequence of one-dimensional (1D) bright-field and fluorescence spatial profiles of the cell with single-

pixel photodetectors. Two-dimensional (2D) bright-field and fluorescence images of the cell are 

constructed by stacking the 1D spatial profiles after demodulating the detected transmission and 

fluorescence signals at the modulation frequencies (Figures S3E–S3H). Third, the speed meter measures 

forward-scattered light from each flowing cell at the FDM microscope to predict the optimum sort timing 

(i.e., the sort latency at the sort point). The speed measurement is important in the intelligent IACS (not 

commonly conducted in FACS) because while in FACS it typically takes only a few hundred microseconds 

for a cell to flow from the optical interrogation point to the sort point, the sort latency of the intelligent 

IACS needs to be >100 times longer than that of FACS due to its requirement for analyzing the much 

larger amount of data (images) on the real-time intelligent image processor. Precise prediction of the sort 

latency is, hence, required for high-purity sorting (Figures S4A–S4D). Fourth, during the computation of 

the real-time intelligent image processor, the 3D on-chip acoustic cell focuser keeps flowing cells at the 

center of the microchannel all the way from the FDM microscope to the sort point (∼3.2 cm) by exciting 

both horizontal and vertical acoustic resonance modes of the square-shaped cross section of the 

microchannel with piezoelectric transducers. It serves to avoid unwanted position shifts of flowing cells 

due to inertial lift and gravitational forces that would otherwise introduce cell-morphology-dependent 

fluctuations in the latency (Figures S3C and S3D). Fifth, the on-chip dual-membrane push-pull cell sorter 

rapidly controls local flow at the sort point to isolate target cells from the central stream with 

piezoelectrically actuated dual glass-membrane pumps (Sakuma et al., 2017). Deforming each glass 

membrane with the corresponding piezoelectric actuator produces high-speed local flow that crosses the 

central microchannel at the sort point. In the absence of the pump actuation, cells flow into the central 



branch of the three-branch microchannel junction, whereas with the pump actuation at the right timing, 

cells flow into either the upper or lower branch. 

The brain of the intelligent IACS (the final element that connects all the other elements) is the 

hybrid FPGA-CPU-GPU infrastructure on the 10-Gbps all-IP network (Hiraki et al., 2016) that enables 

high flexibility, high scalability, and real-time automated operation for intelligent image processing and 

decision-making (Figures 1 and S2; STAR Methods). An IP network is a communication network that 

uses the Internet protocol to send and receive signals between multiple computers, multiple sensors, and 

multiple actuators and is an essential element of the Internet of Things. This communication network acts 

as a platform for the FPGA, CPUs, and GPU to digitally process different types of data (three avalanche 

photodetector signals from the FDM microscope and three photodiode signals from the speed meter) and 

communicate among each other at a high speed of 10 Gbps. The CPUs and GPU perform image 

construction of one or more cells (events) based on the three-color image acquisition (represented by the 

IC node in Figure 1) and image analysis of the events (represented by the IA nodes in Figure 1), which 

includes multidimensional feature extraction, classification, and sort-decision-making, whereas the FPGA 

(represented by the TM node in Figure 1) precisely determines the optimum sort timing based on signals 

from the speed meter, predicts the latency at the sorter with a high precision of 200 µs (Figure S4D; STAR 

Methods), and generates a trigger signal for the sort driver (another FPGA located outside the network) 

followed by amplifiers and piezoelectric transducers for the dual-membrane pumps if a target event is 

identified. In contrast to FACS, which only uses FPGA-based hardware for real-time signal processing, 

the combination of the FPGA-based hardware and the CPU-GPU-based software in the intelligent IACS 

offers much higher flexibility and scalability to scale and deploy on-demand network functions based on 

complex digital algorithms for image analysis, machine learning, and cell sorting as described in our 

experimental demonstrations below. Selection of digital algorithms is highly flexible within the range of 

the specified processing time, thereby rendering previously developed image-processing algorithms 

(including machine learning) for microscopy and imaging flow cytometry platforms (Caicedo et al., 2017; 

Basiji et al., 2007; Lee et al., 2018; Schindelin et al., 2012; Grys et al., 2017) readily available to the 

intelligent IACS. For the real-time automated operation, all the above functions (i.e., image construction, 

image analysis, data transfer) are conducted only within a total of 32 ms for both a classical algorithm 

(Figure 2A) and a deep convolutional neural network (CNN) on which deep learning is implemented 

(Figure 2B). Moreover, the sequence of these functions is processed in parallel for consecutive events by 

pipeline processing (i.e., pipelined like a bucket brigade), allowing for the unprecedented throughput 

of ∼100 eps (Figures 1, S2, S4E, and S4F). 



 



Figure 2 Basic Performance of the Intelligent IACS(A and B) Processing time of the image construction 

and data transfer combined (dark blue) and the image analysis (light blue) for each event using 6-µm 

particles, based on the classical algorithm and the deep CNN on which deep learning is implemented. 

The measured events are rank-ordered in the total processing time.(C) Trajectories of a 6-µm particle 

(unsorted) and 3-µm particles (sorted) flowing at 1 m/s, recorded by a high-speed CMOS camera at 

20,000 frames/s.(D) Sort region to sort 3-µm particles with the classical algorithm.(E) Deep CNN in a 

six-layer structure with four convolution layers and two fully connected layers for two training classes: 

3-µm particles and 6-µm particles.(F and G) Enrichment of 3-µm particles from a 1:1 mixture of 3-µm 

and 6-µm particles with the classical algorithm and the deep CNN. 3-µm and 6-µm particles are shown 

in purple and green, respectively. In both demonstrations, a high throughput of ∼100 eps and a high 

purity of ∼99% were achieved. 

 

Basic Performance 
The basic performance of the intelligent IACS was validated as follows. First, we evaluated high-

purity enrichment of fluorescent particles with a classical image analysis algorithm and a six-layer CNN 

on one of the IA nodes (Figures 1 and S2). Figure 2C shows the typical particle-sorting process of the 

intelligent IACS recorded by a high-speed CMOS image sensor. A 1:1 mixture of 3-µm and 6-µm particles 

was tested as a sample to demonstrate sorting of 3-µm particles based on the classical image analysis 

algorithm (Figure 2D) and the CNN (Figure 2E). An average throughput of ∼100 eps was achieved 

continuously, while sorted and unsorted particles were simultaneously collected. Our microscopic 

enumeration of the sorted and unsorted particles clearly indicates the enrichment of the smaller particles 

with a high purity of 98.6% and 99.1% based on the classical algorithm (Figure 2F) and the CNN 

(Figure 2G), respectively. In addition, to evaluate the performance of the intelligent IACS in a biologically 

relevant situation, we tested a 1:19 mixture of 3-µm and 6-µm particles and sorted 3-µm particles from the 

mixture with the classical image analysis algorithm with a high throughput, yield, and purity of 106.4 eps, 

67.7%, and 96.2%, respectively. In these experiments, we optimized the settings of the intelligent IACS 

to obtain high purity in favor of yield. However, the yield can also be improved in favor of the purity or 

throughput. Second, to show the broad utility of the intelligent IACS from microbiology to hematology, 

we evaluated its imaging capability with diverse cell types. Figures 3A–3E show bright-field and two-

color fluorescence images of various microalgal and human cells we tested. The intelligent IACS is also 

able to directly detect a highly rare EpCAM-positive circulating cell in blood from a patient with 



pancreatic cancer (Figure 3E). The high quality of the images indicates that the intelligent IACS is capable 

of identifying the intracellular molecular distribution and morphological features of various cell types 

ranging from 3 µm to 30 µm in cell diameter. Among these cell types, below we used a model 

photosynthetic eukaryote, Chlamydomonas reinhardtii, and human platelets to show practical applications 

of the intelligent IACS, which are impossible to perform by FACS or would be extremely labor intensive 

or time consuming if they were conducted by microscopy with manual pipetting or even with a robotic 

arm. 

 
Figure 3 Various Types of Cells Imaged by the Intelligent IACSThe flow speed of all the cells is 1 m/s 

(required to achieve ∼100 eps). The high quality of the images indicates that the intelligent IACS is 

capable of identifying the intracellular chemical distribution and morphological features of various cell 

types ranging from 3 µm to 30 µm in cell diameter. Processing of the raw images was performed using 

ImageJ (STAR Methods). BF, bright field; DF, dark field; Chl, chlorophyll. Scale bars, 

10 µm.(A) Chlorella sorokiniana, Chlamydomonas reinhardtii, Haematococcus lacustris, 

and Gloeomonas anomalipyrenoides stained with SYTO16.(B) Euglena gracilis stained with 

BODIPY505/515.(C) Single human platelets, small human platelet aggregates, and large human platelet 



aggregates stained with anti-CD61 PE.(D) H1975 (adenocarcinoma) cells stained with SYTO16 and 

anti-EpCAM PE.(E) Erythrocytes, leukocytes, and a rare EpCAM-positive circulating cell found in fixed 

human blood, stained with SYTO16 and anti-EpCAM PE. 

 

Application to High-Content Sorting of Chlamydomonas 

reinhardtii 
Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a key enzyme of the Calvin-

Benson cycle for photosynthetic CO2 fixation. To overcome Rubisco’s low level of catalytic affinity 

against CO2 and 10,000-fold lower diffusion rate of CO2 in aquatic conditions, most aquatic photosynthetic 

organisms possess a biophysical carbon-concentrating mechanism (CCM). In C. reinhardtii, the CCM is 

operated by active bicarbonate (HCO3–) uptake regulated by a calcium-binding protein CAS (Wang et al., 

2016), conversion of HCO3– to CO2 by carbonic anhydrases, and a non-membrane-bound sub-organelle 

called a pyrenoid (Freeman Rosenzweig et al., 2017; Mackinder et al., 2017), in which the 

CO2 concentration elevates around the Rubisco. In addition to these CCM-related components, a low-

CO2 inducible protein B (LCIB), which is highly conserved in algae with the CCM, plays a key role in the 

CCM operation. In response to reduced CO2 concentrations, LCIB normally changes its localization from 

dispersion in the chloroplast to a ring-like structure in the vicinity of the pyrenoid when the CCM is fully 

induced (Yamano et al., 2014). Although the algal CCM is the primary target of engineering 

photosynthesis in synthetic microalgae to increase their photosynthetic efficiency and yield, a full 

understanding of the CCM remains challenging. 

We used the intelligent IACS to sort C. reinhardtii mutants with aberrant LCIB localization 

under low-CO2 conditions (Figure 4A). Specifically, we used C. reinhardtii strain BC-9 (a transgenic line 

expressing LCIB fused to fluorescent protein Clover) as a sample (STAR Methods). To distinguish 

between LCIB localization patterns of dispersion in the chloroplast and aggregation in the vicinity of the 

pyrenoid, a coefficient of variation (CV) of the LCIB-Clover fluorescence signal within the cell boundary 

was quantified on each FDM image. As shown in Figure 4B, cells with high CV values clearly show the 

localization of the LCIB-Clover protein around the pyrenoid, whereas other cells with low CV values 

show a dispersed distribution of the protein. The intelligent IACS detected 221,947 events and sorted 

2,021 low-CV cells (less than 1% of the cell population) (Figure 4C). We then placed a portion of the 

sorted cells (60 cells/2,021 sorted cells) onto a culture plate and obtained 44 clones (Figure 4D), out of 



which 31 (70%) were recognized to possess dispersed LCIB-Clover in the chloroplast under a differential 

interference contrast (DIC) and confocal fluorescence microscope. Figure 4E shows the DIC and confocal 

fluorescence images of three such cells. A further molecular analysis of the sorted cells may lead to the 

identification of genes and regulatory pathways responsible for the CCM. 



 



Figure 4 Enrichment and Cloning of Chlamydomonas reinhardtii Mutants(A) Experimental procedure. 

Strain BC-9 was transformed by random insertional mutagenesis with a paromomycin resistance marker 

and cultured in acetate containing TAP medium to mimic high-CO2 conditions where the CCM was 

inactive. Then, BC-9 cells were transferred to carbon-free TP medium to induce the CCM, followed by 

enrichment with the intelligent IACS.(B) Scatterplot of the cells under high-CO2 (blue) and low-

CO2 (green) conditions in the LCIB-Clover intensity and CV together with images of the cells within the 

marked regions (1)–(4) in the scatterplot.(C) Scatterplot of the total population and sorted mutants.(D) 

Colonies of the sorted mutants in TAP agar medium containing hygromycin and paromomycin.(E) DIC 

and confocal fluorescence images of BC-9 and three representative mutants cultured in carbon-free TP 

medium. Chl, chlorophyll. Scale bars, 5 µm. 

 

Application to High-Content Sorting of Human Platelets 
Platelet activation in circulating blood is involved in atherothrombosis including acute coronary 

syndromes and acute ischemic stroke (Davì and Patrono, 2007). The disorder is initiated by disruption of 

atherosclerotic plaques, followed by further platelet activation, resulting in local occlusion or distal 

embolism by resultant platelet aggregates (Libby, 2001). Evaluation of activated platelets in peripheral 

blood is, therefore, useful for predicting and assessing disease state. Recent findings suggest that 

immunothrombosis, initiated by the innate immune system, consists of neutrophils, monocytes, and 

platelets and contributes to arterial and/or venous thrombosis (Engelmann and Massberg, 2013). Whole-

blood flow cytometry with platelet-activation marker antibodies fails to detect activated platelets 

accurately since platelets are sensitive to chemical and mechanical stimulation and are, hence, prone to be 

spontaneously activated in vitro, resulting in increased background noise. Fixation of blood cells is useful 

for minimizing the detrimental effect although it inhibits the platelet-activation marker antibodies from 

binding to the activated platelets. The ability to detect and isolate activated platelets (e.g., platelet 

aggregates) in fixed blood without staining has great potential for clinical applications, including, but not 

limited to, accurate diagnosis of atherothrombosis and monitoring of anti-platelet therapy. 

We used the intelligent IACS to sort platelet aggregates from human blood using an eight-layer 

deep CNN (Figure 5A; STAR Methods). Specifically, the CNN was used to calculate the probability of 

identifying an object in each bright-field image as a leukocyte, single platelet, or platelet aggregate in fixed 

and hemolysed human blood (Figure 5B), showing the CNN’s ability to differentiate even between a single 

platelet and a doublet. Applying progressive gating to the probabilities (Figure 5C) yielded high specificity 



and sensitivity of 99.0% and 82.0%, respectively, in detecting platelet aggregates (Figure 5D). All the 

events were processed on the real-time intelligent image processor within 32 ms of latency (Figure 5E). 

As shown in Figure 5F, the intelligent IACS based on the gating strategy identified and sorted 23.1% of 

the cell population in a blood sample from a health donor as platelet aggregates after stimulating the sample 

with a thrombin receptor activator peptide (TRAP) as an agonist to activate platelets (Figure S5A; STAR 

Methods). Our microscopic enumeration of the sorted events verified a high sort purity of 79.5% for 

platelet aggregates. This high purity indicates the CNN’s superior ability to enrich platelet aggregates, 

which is not possible with FACS or classical image analysis on the intelligent IACS, whose inability is 

manifested as a strong overlap between the platelet aggregates and other cells as shown in Figures S5B 

and S5C. As opposed to the classical image analysis, the CNN was able to identify and sort 4.28% of the 

events in an unstimulated blood sample (without TRAP), which simulates the in vivo state, out of which 

51.5% were recognized as platelet aggregates by microscopic enumeration (Figures 5G and 5H). A further 

investigation of the sorted platelets via transcriptomic, proteomic, and metabolomic analyses may identify 

key factors that determine the sensitivity of platelet activation and lead to the development of a new class 

of anti-platelet drugs, which have been long awaited for anti-platelet therapy. 



 



Figure 5 Isolation and Analysis of Platelet Aggregates in Human Blood(A) CNN model architecture 

composed of six convolutional layers and two fully connected layers, accompanied with max-pooling 

and dropout connections. The final layer yields a set of probability values based on three training classes 

(platelet aggregate, leukocyte, and single platelet) for making sort/unsort decisions.(B) Probability 

distributions of representative platelet aggregate, leukocyte, and single platelet images.(C) Progressive 

gating strategy employed on the deep CNN to obtain platelet aggregates.(D) Correlation matrix between 

the ground truth and the sort decision.(E and G) Processing time of the image construction and data 

transfer combined and the image analysis for each event for TRAP-stimulated and unstimulated blood 

samples.(F and H) Histogram of gated events for TRAP-stimulated and unstimulated blood samples in 

the platelet-aggregate class probability with the sorting statistics.See also Figure S5. 

 

Discussion 
We see many applications of the intelligent IACS beyond the analysis and isolation of single-cell 

suspensions and cell clusters we have conducted here. Although the flow channels and optical system used 

in the current intelligent IACS are optimized for analyzing individual cells, changing the flow channels 

and optical system could enable image-based sorting of larger biological objects such as cell spheroids, 

organoids, tissue fragments, and perhaps whole organisms (e.g., Drosophila embryos, zebrafish, etc.) 

without changing the fundamental operation of the intelligent IACS. Moreover, according to a recent 

report, adherent single cells can also be a subject of imaging flow cytometry experiments by growing the 

cells on hydrogel microcarriers (Wu et al., 2018). Importantly, these carriers possess shear-stress shelter 

features that prevent adherent cells from being damaged when flowing through a microchannel, suggesting 

compatibility for adherent-cell-based sorting. The intelligent IACS holds promise for analyzing these 

types of cell and tissue samples. 

By virtue of the high flexibility, high scalability, and real-time automated operation of the 

intelligent IACS, its capabilities can further be enhanced in various directions. First, 

more/different imaging methods (e.g., Raman imaging, quantitative phase imaging, photoacoustic 

imaging), sensors, and/or CPUs/FPGAs/GPUs can simply be added as modules to the intelligent IACS for 

increased specificity, speed, and/or computational power without making any modifications to the 

intelligent IACS platform. Second, the intelligent IACS can be integrated with high-throughput single-cell 

-omic analysis tools in a seamless manner to streamline the identification of molecular underpinnings 

correlated to morphometric phenotypes. Third, the images of sorted cells can be used to further train the 



deep CNN for enhanced intelligence, refine sort decisions, and optimize the accuracy of identifying 

extremely rare cells (e.g., circulating tumor cells, antigen-specific T cells, cancer stem cells). With these 

additional capabilities, potential applications of the intelligent IACS are enormous and expected to enable 

machine-based scientific discovery in biological, pharmaceutical, and medical sciences. 

An open innovation platform is available to external researchers interested in using the intelligent 

IACS to test their ideas and samples. Go to the following website for more information of the open 

innovation platform: http://www.goda.chem.s.u-tokyo.ac.jp/intelligentIACS. 
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Key Resources Table 
REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Mouse monoclonal anti-CD61, PE conjugated Beckman 
Coulter 

Cat#IM3605 

Mouse monoclonal anti-EpCAM (clone VU-1D9) GeneTex Cat#GTX28667 

Rat monoclonal anti-mouse IgG1 (clone A85-1), PE 
conjugated 

BD 
Biosciences 

Cat#550083 

Chemicals, Peptides, and Recombinant Proteins 

RPMI medium 1640 Thermo 
Fisher 
Scientific 
(GIBCO) 

Cat#11875093 

Fetal bovine serum Thermo 
Fisher 
Scientific 
(GIBCO) 

Cat#10270−106 

SYTO16 Thermo 
Fisher 
Scientific 
(Invitrogen) 

Cat#S7578 

Glutaraldehyde (25% solution) Nacalai 
tesque, 
Kyoto, 
Japan 

Cat#17003-92 

TRAP-6 amide trifluoroacetate salt BACHEM Cat#H-2936.0005 



REAGENT or RESOURCE SOURCE IDENTIFIER 

Hygromycin Wako Cat#085-06153 

Paromomycin Wako Cat#161-23603 

Bovine serum albumin solution Sigma Cat#A9576 

Critical Commercial Assays 

EasyComp fluorescent particle kit (Blank, FITC, PE & 
PE-Cy5), 4 vials 

Spherotech Cat#ECFP-K1 

Rainbow fluorescent particles, 6.0-6.4 µm Spherotech Cat#RFP-60-5 

Rainbow calibration particles, 6 peaks Spherotech Cat#RCP-30-5 (6 peaks) 

Polystyrene particle size standard kit, flow cytometry 
grade 

Spherotech Cat#PPS-6K 

Lysing buffer (10X concentrated), BD pharm lyse BD 
Biosciences 

Cat#555899 

OptiLyse C Beckman 
Coulter 

Cat#A11895 

PrimeSTAR GXL DNA polymerase Takara Bio Cat#R050A 

In-Fusion HD cloning kit Takara Bio Cat#639648 

MAX efficiency transformation reagent for algae Thermo 
Fisher 
Scientific 
(Invitrogen) 

Cat#A24229 

Experimental Models: Cell Lines 

Human adenocarcinoma: H1975 cells ATCC Cat#CRL-5908 

Experimental Models: Organisms/Strains 

Euglena gracilis Microbial 
Culture 
Collection 
at NIES 

Cat#NIES-48 



REAGENT or RESOURCE SOURCE IDENTIFIER 

Chlorella sorokiniana Tsuruoka, 
Keio, Algae 
Collection 

Cat#TKAC1027 

Chlamydomonas reinhardtii Tsuruoka, 
Keio, Algae 
Collection 

Cat#TKAC1017 

Chlamydomonas reinhardtii C-9 Microbial 
Culture 
Collection 
at NIES 

Cat#NIES-2235 

Chlamydomonas reinhardtii BC-9 This paper N/A 

Haematococcus lacustris Microbial 
Culture 
Collection 
at NIES 

Cat#NIES-4141 

Gloeomonas anomalipyrenoides Microbial 
Culture 
Collection 
at NIES 

Cat#NIES-3640 

Oligonucleotides 

Primer: LCIB-N-fusion-F (forward): 
TTTGCAGGATGCATATGTTCGCTCTGTCTTCGCGC 

This paper N/A 

Primer: LCIB-N-fusion-R (reverse): 
CGATGACGTCAGATCTGTTCTTGGGGGCCTCGAA 

This paper N/A 

Primer: aph-F1 (forward): 
GCTTATCGATACCGTCGACCT 

This paper N/A 

Primer: aph-R3 (reverse): 
AACACCATCAGGTCCCTCAG 

This paper N/A 

Recombinant DNA 



REAGENT or RESOURCE SOURCE IDENTIFIER 

pOpt_Clover_Hyg vector Lauersen 
et al., 2015; 
GenBank 

Cat#KM061067.2 

LCIB-Cloverexpression plasmid This paper N/A 

pGenD-aphVIII Nakazawa 
et al., 2007, 
personally 
provided 

N/A 

Software and Algorithms 

ImageJ NIH https://imagej.nih.gov/ij 

TensorFlow Abadi 
et al., 2016 

https://arxiv.org/abs/1603.04467 

Keras Chollet, 
2015 

https://github.com/keras-
team/keras 

R R Core 
Team, 2016 

https://www.R-project.org/ 

OpenCV Bradski, 
2000 

https://opencv.org/ 

LabVIEW National 
Instruments 

http://www.ni.com/labview/ 

Contact for Reagent and Resource Sharing 

Further information and requests for reagents and resources should be directed to and will be 

fulfilled by the Lead Contact, Keisuke Goda (goda@chem.s.u-tokyo.ac.jp). 
Experiemntal Model and Subject Details 
Calibration particles 

To evaluate the sorting performance of the intelligent IACS, a 1:1 mixture and a 1:19 mixture of 

3-µm particles (3.0-3.4 µm PE-Cy5 particles included in EasyComp fluorescent particle kit, Spherotech 

Inc., IL, USA) and 6-µm particles (Rainbow fluorescent particles, 6.0-6.4 µm, Spherotech Inc., IL, USA) 

were injected from the sample inlet into the microfluidic chip. To evaluate the imaging performance of 



the FDM microscope, standard 6-peak particles (Rainbow calibration particles, 6 peaks, RCP-30-5, 

Spherotech Inc.), a standard compensation particle kit (EasyComp fluorescent particle kit, Spherotech, 

Inc.), and a size standard particle kit (Polystyrene particle size standard kit, flow cytometry grade, PPS-

6K, Spherotech Inc.) were employed. The concentration of the particles was tuned to be 

1 × 106 particles/mL, which corresponds to ∼100 eps in the intelligent IACS. 
Cultured cells 

Fresh water and marine microalgae which express diverse cell size and 

morphology, E. gracilis NIES-48, C. sorokiniana TKAC1027, C. reinhardtii TKAC1017 (NIES-

2463), G. anomalipyrenoides NIES-3640, and H. lacustris NIES-4141 were provided by Microbial 

Culture Collection at the National Institute for Environmental Studies (NIES) (http://mcc.nies.go.jp/) and 

Tsuruoka, Keio, Algae Collection (TKAC) of T. Nakada at Institute for Advanced Biosciences, Keio 

University. The cultures were grown in culture flasks (working volume: 20 ml) under 14:10 light:dark 

cycle with illumination at 120-140 µmol photons/m2/s at 25°C. The culture of each algal strain was grown 

in AF-6 medium (Kasai et al., 2004). A human cell line H1975 (adenocarcinoma, female) was obtained 

from ATCC and maintained in RPMI medium 1640 (Thermo Fisher Scientific) with 10% fetal bovine 

serum (Thermo Fisher Scientific) in a humidified atmosphere of 5% CO2 at 37°C. The H1975 cells were 

collected using 0.01% EDTA and 0.1% trypsin, followed by washing with PBS and labeling using 

SYTO16 and anti-EpCAM antibody labeled with PE-conjugated second antibody as described above. 
Blood samples for detection of EpCAM-positive circulating cells 

We collected blood samples from healthy volunteers and patients seen at the Cancer Institute 

Hospital of the Japanese Foundation for Cancer Research (JFCR). A whole-blood sample (5 ml) was 

collected from a patient with pancreatic cancer. Blood samples were filtered using a size-selective 

microfilter (10-µm pore V-type, Optnics Precision Co. Ltd., Ashikaga, Japan). The cells trapped on the 

filter were washed with 10 mL of PBS containing 2 mM EDTA (PBS-E), treated with 10x-diluted lysing 

buffer BD pharm lyse (BD Biosciences, San Jose, CA), washed with 10 mL of PBS-E, and mechanically 

recovered from the filter with 600 µL of PBS-E. The nuclei of the collected cells were stained by adding 

0.6 µL of SYTO16 (Thermo Fisher Scientific, Waltham, MA) for 10 min at ambient temperature and fixed 

with 0.25% of glutaraldehyde (Nacalai tesque, Kyoto, Japan) for 10 min at ambient temperature, followed 

by washing with 5 mL of PBS-E. The fixed cells were collected by centrifuging 600 g for 5 min (5500, 

Kubota, Tokyo, Japan) and resuspended with 1 mL of PBS-E containing 10 µL of anti-EpCAM antibody 

(VU-1D9, GeneTex, Irvine, CA). After 30 min of incubation at ambient temperature, the cells were 

washed with 1 mL of PBS-E twice and reacted with 2.5 µL of PE-conjugated rat anti-mouse IgG1 (A85-



1, BD Bioscience) for 20 min at ambient temperature, followed by washing with 1 mL of PBS-E twice. 

The resultant stained cells were resuspended in 1 mL of PBS containing 0.05% Tween-20 and stored at 

4°C with light blocking until used. The patient was 71-year-old male with histologically confirmed 

pancreatic adenocarcinoma. This study was approved by the Institutional Ethics Committee of the 

Japanese Foundation for Cancer Research (No. 2017-1096), which was conducted according to the 

Declaration of Helsinki. All healthy volunteers and patients provided written informed consent. 
Blood samples for detection of platelet aggregates 

We prepared blood samples from four healthy volunteers (23-year-old male, 38-year-old male, 

39-year-old male, and 50-year-old male) for training and validating the convolutional neural network 

(CNN) and from a 69-year-old healthy female for the sorting experiments. The blood samples were 

collected via a 21-gauge butterfly needle into 4.5-mL vacuum plasma separator tubes with 0.5-mL of 3.2% 

sodium citrate after filling the tube with blood. Next, 100 µL of citrated blood was gently added to a tube 

in which 20 µL of CD61-PE was added in advance in absence of light, followed by adding 1 µL of 1 µM 

TRAP-6 amide trifluoroacetate salt (TRAP; BACHEM) or PBS (without TRAP) and mixing thoroughly. 

Finally, 500 µL of OptiLyse C (Beckman Coulter), a hemolyzing and fixing solution containing 1.5% 

formaldehyde, was added and mixed gently and slowly by inversion. After standing for 10 min, PBS (-) 

was added and mixed likewise. Each blood sample was diluted with PBS to maintain a cell concentration 

of 107 cells/mL and tested with the intelligent IACS within 5 hours after the sample preparation to ensure 

the platelet aggregates. This procedure was performed at room temperature (18 – 25°C). This study was 

approved by the Institutional Ethics Committee of Faculty of Medicine, the University of Tokyo (No. 

11049-5) and conducted according to the Declaration of Helsinki. All volunteers provided written 

informed consent. 
Method Details 
Principles of the FDM microscope 

We employed FDM imaging for continuous high-speed blur-free bright-field and two-color 

fluorescence image acquisition of flowing cells at 1 m/s. The configuration of the microscope is a modified 

version of the FDM microscope described in a previous report (Mikami et al., 2018). The principles of the 

microscope are described as follows. A pair of acousto-optic deflectors (AODs) driven by multitone 

electrical signals are used to convert a 488-nm continuous-wave laser beam into multiple intensity-

modulated excitation beams with distinct modulation frequencies and propagation directions. By focusing 

these beams with an objective lens (Leica, HC PL APO CS2, 20x, NA = 0.75), a linear array of focal spots 

is formed in the microfluidic channel. The microfluidic chip is aligned to the microscope so that cells flow 



at a fixed speed along the direction orthogonal to the linear beam array. The beam spots scan the cells in 

the flow direction to acquire one-dimensional (1D) spatial profiles of the transmitted excitation beams and 

the fluorescence signals from each cell. The transmitted excitation beams and two-color fluorescence 

signals [508 – 580 nm (FL1) and > 580 nm (FL2)] are separately detected by single-pixel photodetectors. 

The frequency range of the excitation beam array is 4 – 200 MHz. The signal waveform of each 

photodetector is digitized by a digitizer at a sampling rate of 1 GS/s (Spectrum M4i.2212-x8) embedded 

in the IC node. The 1D spatial profiles contained in the digitized signal waveforms are separated by taking 

their Fourier transform in the frequency domain since each beam spot has the distinct modulation 

frequency as mentioned above. Finally, three-color images of each cell are obtained by stacking the 1D 

spatial profiles in the flow direction. Consequently, the FDM microscope can obtain blur-free bright-field 

and fluorescence images of flowing cells at 1 m/s with a pixel size of 0.25 µm (in the flow 

direction) × 0.84 µm (in the spot array direction) and the 1D field of view of 42 µm in the spot array 

direction. The total signal processing time for individual events differs, depending on the cell-cell interval 

in the flow. The software in the IC node is coded with LabVIEW (National Instruments). 
Evaluation of the FDM microscope 

The imaging performance of the FDM microscope was evaluated with fluorescent particles. First, 

the detection sensitivity, dynamic range, and linearity of the FDM microscope were characterized by using 

standard 6-peak particles as shown in Figures S3E and S3F, indicating its ability to distinguish fluorescent 

particles with different fluorescence intensities with a sensitivity of 1,106 and 996 molecules of equivalent 

soluble fluorochrome (MESF) in FL1 and FL2, respectively, a dynamic range of ∼100, and a linearity of 

> 0.99. Second, the spectral resolution to distinguish different fluorescence wavelengths was evaluated 

with FITC, PE, PE-Cy5, and Blank fluorescent calibration particles. As shown in Figure S3G, a population 

of particles of each species is plotted at different locations in the FL1 versus FL2 plot as expected. Finally, 

the spatial resolution was evaluated with size standard particles, showing a good correlation between the 

particle diameter squared and the calculated cross-sectional area of the particle from 2.0 µm to 10.1 µm 

(Figure S3H). These results demonstrate the FDM microscope is capable of generating images adaptable 

for quantitative image analysis on the intelligent IACS. 
Architecture of the real-time intelligent image processor 

As shown in Figures 1 and S2, the real-time intelligent image processor consists of four key 

components: (i) the TM node which controls the timing of the image acquisition and sorting, (ii) the IC 

node which decodes the incoming FDM signals, (iii) the two IA nodes which analyze the images to make 

a sort/unsort decision for every event, and (iv) the all-IP network to combine all the components via the 



network switch to operate in real time. Details of each component are as follows. The TM node is on an 

FPGA board (Xilinx KC705) equipped with a 1-Gbps Ethernet port. It manages the timing of the entire 

process including the cell detection, FDM image acquisition, and sorting based on the speed meter signals 

(the details of which are described below). The IC node is equipped with two multi-core CPUs, 10-Gbps 

Ethernet ports, and a 4-ch high-speed digitizer (Spectrum M4i.2212-x8) operating at a sampling rate of 1 

GS/s, which are connected by a PCI-express bus. The outputs of the photodiodes in the FDM microscope 

are connected to Ch. 0 – Ch. 2 of the digitizer, while the serial digital signal from the TM node is connected 

to Ch. 3. In the IC node, cell images are constructed, encapsulated in UDP packets, and sent to one of the 

IA nodes. The digitizer is triggered by the electrical signal from the TM node while the image processing 

is implemented as software coded with LabVIEW (National Instruments). IA node 1 is equipped with a 

multi-core CPU (Intel Core i7-990X) while IA node 2 is equipped with a multi-core CPU (Core i7-8700K) 

and a GPU (NVIDIA GTX-1050Ti). Both of the IA nodes have two SSD storages and 10-Gbps Ethernet 

ports. One of the IA nodes makes a sort/unsort decision based on the results of the image analysis. In 

parallel, the IA node stores all the information of the processed cell images on the SSDs. The image 

analysis at the IA nodes is implemented as software, allowing us to employ complex algorithms including 

the deep CNN with highly parallel processing on the GPU. The all-IP network is a general-purpose 

interconnection of a 10-Gbps Ethernet and a 1-Gbps Ethernet. We used an off-the-shelf Ethernet switch 

(NETGEAR XS716T-100AJS) which can accommodate Ethernet connections at various bit rates. The all-

IP network makes it easy to change the system configuration with high scalability simply by arranging the 

computing resources such as the number of CPUs on the IC/IA nodes, depending on the required 

processing load such as the event rate of the intelligent IACS. It is important to note that the infrastructure 

allows us to expand the system with high flexibility by connecting additional/other imaging methods 

and/or sensors to the all-IP network. 
Signal processing in the real-time intelligent image processor 

In the real-time intelligent image processor (Figures 1 and S2), the TM/IC/IA nodes conduct 

various types of signal processing including time management, FDM image construction, image analysis, 

and sort/unsort decision making. Details of the signal processing flow are described as follows. When a 

cell passes through the optical interrogation points OI1 and OI3, the corresponding photodiode generates 

an electrical pulse whose waveform is digitized and analyzed by the TM node. Specifically, when the OI1 

signal exceeds a specified threshold value, the TM node recognizes an event, assigns a cell ID number to 

the event, and gives a time stamp as a passage time. After a predetermined duration (typically 160 µs), the 

cell ID signal and the trigger signal are sent to the IC node as two-channel electrical serial signals. After 



the OI3 signal is detected, the TM node calculates the speed and estimates the sort time. All the calculated 

information about each event is temporarily stored in a memory on the FPGA until the corresponding sort 

time. In parallel, the cell ID and the speed value are sent to one of the IA nodes via the UDP communication. 

When the digitizer in the IC node receives the trigger signal, the IC node begins the acquisition of the 

FDM signals. According to the algorithm described above, three-channel FDM images are produced with 

a typical field of view of 42 µm × 26.25 µm and an image size of 50 pixels × 105 pixels with 16-bit depth. 

The number of the 1D spatial profiles in the flow direction varies, depending on the type of cells. The cell 

ID is received by the Ch. 3 of the digitizer. The image data and the cell ID are encapsulated in UDP packets 

and sent to one of the IA nodes. The IA node begins image analysis when it receives all the UDP packets 

of the images and cell ID from the IC node and those of the speed information from the TM node. If some 

packets are not delivered within a specified time, the event is aborted. The image analysis algorithm is 

coded with OpenCV on C++. First, the pixel size is normalized to a square, and consequently, the image 

size becomes 168 pixels × 105 pixels. A sort decision is made based on the classical image analysis or the 

deep CNN. The classical image analysis is used for the decision in sorting particles, C. reinhardtii cells, 

and platelets, whereas the deep CNN is used for the decision in sorting particles and platelets, the details 

of which are described below. It is also possible to implement other image analysis algorithms as long as 

the total signal processing time fits within the sort latency. Finally, the sort/unsort decision signal is sent 

from the IA node to the TM node with the cell ID via the UDP communication. When the TM node 

receives a sort decision, a sort trigger signal is transmitted to the sort driver at the sort time of the 

corresponding ID. In the sort driver, a predetermined signal waveform is generated and sent through a 

DAC to actuate the dual-membrane push-pull cell sorter. While similar to conventional imaging flow 

cytometers (George et al., 2006; Caicedo et al., 2017; Basiji et al., 2007; Lee et al., 2018; George et al., 

2004; Henery et al., 2008), most of the raw parameters extracted through the image analysis (e.g., 

circularity, perimeter, nucleus-to-cytoplasm ratio) are not easy to interpret in a biological context. To 

handle such highly multidimensional data, various machine learning algorithms (Caicedo et al., 2017; 

Grys et al., 2017; Hennig et al., 2017) have been adopted, including support vector machines for platelet 

detection (Jiang et al., 2017) and drug screening (Kobayashi et al., 2017) and deep learning for cell cycle 

analysis (Eulenberg et al., 2017) and cancer cell classification (Chen et al., 2016). The flexible software-

based real-time machine learning approach is an ideal architecture to apply these algorithms to real-time 

sorting operation. 
Design and fabrication of the microfluidic chip 



The microfluidic chip plays the following important roles in the intelligent IACS: (i) continuously 

introducing cells to the FDM microscope, (ii) delivering them from the FDM microscope to the sort point 

with a predictable latency, (iii) guiding the sorted/unsorted cells to the collection/waste outlets. To meet 

these requirements, we designed the microfluidic chip as shown in Figures 1 and S1A. The microfluidic 

chip was fabricated using micro-electromechanical systems (MEMS) techniques (Sakuma et al., 2017; 

Burg et al., 2007; Godin et al., 2010; Hung et al., 2005). Since the length of the microfluidic chip is as 

large as a silicon wafer, we fabricated the microfluidic chip with a modified fabrication protocol to the 

protocol described in a previous report (Sakuma et al., 2017). As shown in Figure S1A, the microfluidic 

chip has three layers: a base layer, a microchannel layer, and a cover layer. To form rigid microchannels 

that avoid potential instability due to flow-induced deformation of microchannels in the chip, we employed 

200-µm-thick borosilicate glass substrates for the base and cover layers and a 200-µm-thick silicon 

substrate for the microchannel layer. The use of such thin glass substrates is important to avoid physical 

interference with a pair of high-NA objective lenses. The microchannels including the inlets, outlets, and 

on-chip dual membrane pumps were patterned using deep reactive ion etching (DRIE). The cross-sectional 

dimensions of the central microchannel including the four optical interrogation points (OI1 – OI4) and the 

sort point are 200 µm × 200 µm. The details of the fabrication process are described in a previous report 

(Sakuma et al., 2017). First, to reduce the local stress concentration in the bonding process, we formed a 

grating pattern on the borosilicate glass surface of the base and cover layers by using the dry etching 

technique. Second, to obtain the masks for the wet etching process of the cover and base layers, we 

patterned the sputtered chromium (Cr) and gold (Au) layers and the spin-coated positive photoresist OFPR 

(Nihon Kayaku Co., Ltd., Japan). Third, we patterned microchannels on the base and cover layers using a 

wet-etching process with a depth and width of 100 µm and 400 µm, respectively. The etching masks were 

then removed. Fourth, the patterned base layer and a silicon (Si) substrate were bonded by anodic bonding. 

Fifth, the Si layer was etched by the DRIE process. Sixth, the etching mask for the sandblasting process 

of the cover layer was patterned by applying SCM250 (Nikko-Materials Co., Ltd., Japan) to the back side 

of the wet etched surface. Seventh, the inlets and outlets were formed by sandblasting the cover layer 

through the etching mask. Finally, the microfluidic chip was obtained by packaging the microchannel and 

the cover layer using the anodic bonding. 
Optics-microfluidics integration unit 

To precisely position the central microchannel for the FDM microscope and speed meter, we 

developed an optics-microfluidics integration unit. It consists mainly of three objective lenses and the 

microfluidic chip integrated with a chip holder as shown in Figure S1C. Two objective lenses A1 and A2 



are aligned to image the cells flowing at the center of the microchannel while the other objective lens B is 

used for monitoring the sorting process with the high-speed CMOS camera. The three detection spots of 

the speed meter (OI1, OI3, OI4) also share these objective lenses with the FDM microscope. The 

microfluidic chip was sandwiched between two holding plates of the chip holder with tube connectors and 

piezoelectric actuators and then inserted into a slot in the integration unit (Figure S1D). Details of the 

installation and optical interrogation (OI1 – OI4) are shown in Figure S1D. 
Principles of the on-chip dual-membrane push-pull cell sorter 

The microfluidic chip contains dual membrane pumps for the fast push-pull sorting actuation. 

The cell sorter is based on rapidly controlling local flow at the sort point and isolating target cells from 

the central stream with piezoelectrically actuated dual membrane pumps. The configuration of the cell 

sorter is a modified version of the previously reported cell sorter (Sakuma et al., 2017). Each external 

piezoelectric actuator was set on the corresponding glass membrane fabricated as a part of the microfluidic 

chip shown in Figure S1A. Since the glass membrane is deformed by the motion of the piezoelectric 

actuator, the local flow can be produced in the direction perpendicular to the cell flow. When the dual 

membrane pumps are actuated out of phase, high-speed local-flow crossing the main microchannel is 

produced at the sort point as shown in Figure S1B. When the pump is turned off, cells flow into the central 

branch of the three-branch microchannel junction, whereas when the pump is turned on at the right timing, 

cells flow into either the upper or lower branch (Figure S1B). The upper and lower channels are connected 

at the downstream and share one outlet. Therefore, sorted cells are collected from the outlet regardless of 

the direction of the local flow. This configuration is useful for high-throughput sorting because the 

initialization of the dual membrane pumps is not necessary. For sorting, we applied a ramp voltage signal 

with an amplitude of 80 V and a rise time of 200 µs. The time-resolved sorting performance is shown 

in Figure 2C. 
Hydrodynamic focusing 

The microfluidic chip is based on a two-step 3D hydrodynamic focusing technique (Sakuma et al., 

2017; Chen et al., 2013) to align cells at the center of the microchannel before the FDM microscope 

(Figures 1 and S1A). Since the flow speed distribution in the microchannel has a parabolic profile (i.e., 

the speed is maximum at the center), the position of cells in the cross section of the microchannel greatly 

affects not only the yield of image detection, but also the recovery of sorting. To obtain a reproducible and 

stable flow speed for cells, an ideal approach is to tightly focus the cells at the center of the microchannel. 

The two-step 3D hydrodynamic focuser meets this purpose. As shown in Figure S1A, the two-step 3D 

hydrodynamic focuser uses a sheath flow to confine flowing cells in the horizontal direction, followed by 



another sheath flow to confine them in the vertical direction. One of the major features of this focuser is 

that it can be embedded inside a thin microfluidic chip. Because the precise control of the flow rate ratio 

is essentially important for stable hydrodynamic focusing, we developed a flow control system which 

consists of pressure vessels, electro-pneumatic regulators, and liquid flow meters (Sensirion AG 

Switzerland). The regulators are controlled in real time based on a flow sensor measurement. With the 

flow control system, we experimentally evaluated the focusing performance using 6-µm particles by 

analyzing images obtained with the high-speed CMOS camera V1211 (Vision Research Inc., NJ, USA). 

We measured the position and speed of the flowing particles, as well as the latency from the FDM 

microscope interrogation point to the sort point as shown in Figures S3A–S3D. The particles were tightly 

focused to the center of the microchannel under the condition of a flow rate ratio of 

sample:sheath1:sheath2 = 1:16:40. Moreover, the tight focusing served to minimize the effect of the 

parabolic flow speed distribution, ensuring a predictable sort latency. 
Acoustic focusing 

In addition to hydrodynamic focusing, 3D acoustic focusing can optionally be used to keep 

flowing cells at the center of the microchannel all the way from the optical interrogation region of the 

FDM microscope to the sort point (Figures 1 and S1A) when needed, especially for large cells. In other 

words, acoustic focusing serves to avoid unwanted position shifts of flowing cells due to inertial lift and 

gravitational forces which would otherwise introduce cell-morphology-dependent fluctuations in the 

latency which is more evident for large cells. A pair of piezoelectric transducers (Fuji Ceramics 

Corporation, 3.66Z20∗20S-SYX) and a 0.57-mm thick 20 mm x 20 mm element were glued on both glass 

substrates of the microfluidic chip with an epoxy resin (7004, 3M Japan Limited, Tokyo, JAPAN). 

Acoustic focusing was accomplished by exciting both vertical and horizontal resonance modes of the 

200 µm × 200 µm cross section of the microchannel by actuating the piezoelectric transducers with a 

sinusoidal driving signal at 3.66 MHz and 142 Vpp provided by a function generator (NF Corporation, 

WF1974) via a high-voltage amplifier (NF Corporation, HSA4101). We evaluated the performance of the 

acoustic focusing using E. gracilis cells at the sort point using the high-speed CMOS camera under the 

condition of hydrodynamic focusing with flow ratios of sample:sheath1:sheath2 = 1:16:40. Without the 

acoustic focusing, the E. gracilis cells were widely distributed in the microchannel (Figure S3C). With the 

acoustic focusing, the cells were tightly focused at the center of the microchannel, showing a well-focused 

speed profile (Figure S3D). 
Precise sort timing control 



An important element of the intelligent IACS is the precise control of the sort timing to accurately 

isolate target cells from a single continuous stream of cells with a cell speed meter (Figure 1). While in 

FACS it typically takes only a few hundred microseconds for a cell to flow from the optical interrogation 

point to the sort point, the sort latency of the intelligent IACS needs to be > 100 times longer than that of 

FACS due to its requirement for analyzing the much larger amount of data (images) on the FPGA-CPU-

GPU system (Lee et al., 2018; Meng et al., 2016) in real time. To achieve the optimum sort timing, the 

intelligent IACS uses a speed meter to measure the flow speed of each cell at the FDM microscope 

(Figure 1) and hence to predict the latency at the sorter with a high precision of 200 µs (Figures S4C and 

S4D). As illustrated in Figure S4A, to cope with residual speed fluctuations of cells, the intelligent IACS 

has two optical interrogation spots (OI1 and OI3) adjacent to the FDM microscope (OI2) and one beam 

spot slightly upstream of the sorter (OI4). Every optical interrogation spot has a size of approximately 

6 µm × 80 µm in the flow direction and its perpendicular direction, respectively. When cells pass through 

each optical interrogation spot, forward scattering (FSC) occurs and is detected by a 

photodetector. Figure S4B shows an example of the FSC signals detected at OI1, OI3, and OI4. The FSC 

signals at these spots are digitized and sent to the TM node to calculate the speed as described above. 

When the signal intensity at the OI1 spot exceeds a predetermined threshold, the TM node generates a 

trigger signal for the FDM microscope to initiate bright-field and fluorescence imaging as well as for the 

TM node internally to initiate the speed meter function to predict the sort latency. The predicted latency 

is recorded in the TM node along with a unique ID number for the event. The ID number is transferred to 

the IC node with the trigger signal and then transferred to the IA node along with the bright-field and 

fluorescence images of each event. After the images are analyzed and a sort/unsort decision is made, the 

ID number is transferred back to the TM node. The TM node uses the received ID number to find the 

latency prediction of each event and then sends a sort trigger signal to the sort driver at a calculated timing. 
Plasmid construction and isolation of transgenic lines expressing LCIB-Clover 

The genomic sequence of LCIB was amplified by PCR with PrimeSTAR GXL DNA polymerase 

(Takara Bio) using genomic DNA extracted from C. reinhardtii strain C-9 (photosynthetically wild-type 

strain available from National Institute for Environmental Studies (NIES) as strain NIES-2235) as a 

template with forward primer LCIB-N-fusion-F (5′-

TTTGCAGGATGCATATGTTCGCTCTGTCTTCGCGC-3′) and reverse primer LCIB-N-fusion-R (5′-

CGATGACGTCAGATCTGTTCTTGGGGGCCTCGAA-3′). The PCR products were purified and 

cloned into pOpt_Clover_Hyg vector (Lauersen et al., 2015) digesting with restriction enzymes NdeI and 

BglII using an In-Fusion HD cloning kit (Takara Bio). This expression plasmid of LCIB-Clover was 



transformed into the C-9 cells by electroporation using a NEPA-21 electroporator (NEPAGENE), as 

described in a previous report (Yamano et al., 2013). The transformants were incubated at 25°C for 24 h 

with gentle shaking and illumination at 1.5 µmol photons/m2/s and spread over Tris-acetate-phosphate 

(TAP) medium (TAP medium, https://www.chlamycollection.org/methods/media-recipes/tap-and-tris-

minimal/) agar plates containing 30 µg/mL hygromycin. Among 288 hygromycin resistant transformants, 

21 lines designated as BC-1 through BC-21 showing fluorescence derived from LCIB-Clover in the 

vicinity of the pyrenoid were screened. Strain BC-9 showing the strongest fluorescence signal was selected 

for further experiments. 
Random insertional mutagenesis of strain BC-9 and preparation for cell sorting 

A 1,534-bp DNA fragment containing the aminoglycoside 3′-phosphotransferase (aphVIII, 

paromomycin-resistance gene) driven by a HSP70A-RBCS2 tandem promoter (Lodha et al., 2008) was 

amplified by PCR from plasmid pGenD-aphVIII (Nakazawa et al., 2007) using PrimeSTAR GXL DNA 

Polymerase with forward primer aph-F1 (5′-GCTTATCGATACCGTCGACCT-3′) and reverse primer 

aph-R3 (5′-AACACCATCAGGTCCCTCAG-3′). The PCR product was purified and the concentration 

was adjusted to 100 ng/µL. This PCR product of aphVIII was randomly inserted into the genome of strain 

BC-9 as a DNA marker by electroporation as described in a previous report (Yamano et al., 2013) with a 

slight modification. In brief, BC-9 cells were cultured at 25°C until the cell density reached 1–

2 × 106 cells/mL. The cultured cells were collected and resuspended in a MAX efficiency transformation 

reagent for algae (Thermo Fisher Scientific) to a final density of 1 × 108 cells/mL. Then, 3 µL of 

100 ng/µL aphVIII PCR product was added to 117 µL of the cell suspension. The cell suspension was 

placed into an electroporation cuvette with a 2-mm gap (NEPAGENE) and transformed by electroporation 

using a NEPA21 electroporator. Parameters of two pore-forming pulses were set at 300 V with a pulse 

width, interval, and decay rate of 8 ms, 50 ms, and 10%, respectively, while those of the transfer pulses 

were set at one polarity-exchanged pulse of 20 V with a pulse width of 50 ms. The transformants were 

incubated at 25°C for 24 h with gentle shaking in TAP medium containing 40 mM sucrose. After 24-h 

recovery culture, the cell suspensions were collected, resuspended in fresh TAP medium, and stored under 

dark conditions until cell sorting experiments. The stored cell suspension was diluted in fresh TAP medium 

with 10 µM Paromomycin (Wako) and was incubated in culture flasks (working volume: 20 mL) under 

14h:10h light:dark cycle with illumination at 120-140 µmol photons/m2/s at 25°C for 5 days. After 3-day 

pre-culture in TAP medium without Paromomycin, the cells were transferred to TAP medium to simulate 

the high-CO2 condition where the LCIB-Clover was diffused in the chloroplast. One day later, the sorting 

experiments were performed with the intelligent IACS. In a separate experiment, we also prepared 



cells cultured in Tris-phosphate (TP) medium (Tris-minimal 

medium, https://www.chlamycollection.org/methods/media-recipes/tap-and-tris-minimal/) to simulate 

the low-CO2 condition, where the LCIB-Clover was localized around the pyrenoid. 
Microscopic evaluation of the sorted mutants 

Digital fluorescence and transmission images of BC-9 and sorted mutant cells were acquired with 

an oil immersion objective lens (HC PL APO 63 × /1.40, Leica) using an inverted laser-scanning confocal 

fluorescence microscope TCS SP8 (Leica) equipped with a sensitive hybrid detector (HyD). LCIB-Clover 

was excited at 488 nm and the emission was detected in a wavelength range of 500 - 520 nm. Image 

scanning was performed with a pinhole size of 0.8 Airy units, at a pixel size of 25 nm, and with a line scan 

speed of 400 Hz. Contrast adjustment was applied equally to the entire image using LAS X software 

(Leica). 
Sorting experiments 

As preparatory steps, we checked and tuned the conditions of the intelligent IACS before sorting 

experiments. First, to check the hydrodynamic focusing and sorting performance, we visualized the sample 

stream by flowing highly concentrated 1-µm particles (∼1x109 particles/mL). While flowing the particles, 

we activated the sorter with 1,000 pulses/s constantly and recorded movies with the high-speed CMOS 

camera. The position of the sample stream, the diameter of the sample stream, and the width of the sort 

window were at the center of the microchannel, 20 µm, and ∼400 µs, respectively. Second, to check the 

stability of the flow in the microchannel, we measured 6-µm particles at the OI1, OI3, and OI4 optical 

interrogation spots (n > 2,000). The slope of the linear regression line for the OI1-OI3 latency versus the 

OI1-OI4 latency was used to predict the sort latency. To validate the latency settings, we observed the 

trajectory of flowing 6-µm sorted particles using the high-speed CMOS camera. After these preparatory 

steps, we started sorting experiments. The sorting procedure of the intelligent IACS consists of event rate 

tuning, sorting, and cell/particle collection. After setting the prepared samples to the sample inlet, we 

injected the sample into the microfluidic chip under a boost mode (sample:sheath1:sheath2 = 3:16:40) for 

2 min, followed by a fine focusing mode (1:16:40). Then, we activated the entire intelligent IACS to start 

sorting. After disposing the initial 1.5-min sample to avoid unwanted carryovers, we started collecting 

sorted and unsorted cells. The cell-collecting duration depends on the experiment. 
Evaluation of the purity and yield 

To evaluate the intelligent IACS’s sorting yield and purity of sorted cells, we constructed a 

centrifugation-based cell counting device. A sample sorted with the intelligent IACS was loaded into a 

custom glass bottom chamber with a volume of 1 mL and a viewing area of 7 mm in diameter fabricated 



by bonding a glass substrate (Matsunami, thickness No.1 0.12-0.17 mm, 25 mm diameter) and a 

cylindrical structure made of PDMS (Dow Corning, polydimethylsiloxane, Sylgard 184), and centrifuged 

at 300 g for 10 min to collect cells on the glass substrate. To avoid non-specific binding of cells to PDMS, 

the chamber was incubated with PBS containing with 1% BSA (Bovine serum albumin solution, A9576, 

sigma) before loading the sample. After the centrifugation, we scanned the whole viewing area with a 

commercially available fluorescence microscope (Nikon instruments, Ti2) equipped with a digital CMOS 

camera (Hamamatsu Photonics, ORCA Flash 4.0 V3) and a 20x objective lens (S Plan Fluor ELWD 20x 

DIC N1) and performed image analysis to count cells with NIS-Elements AR (Nikon instruments). For 

the polystyrene particle sorting experiment shown in Figures 2F and 2G, 19x19 fields of vision were 

scanned for each of the collection and waste fluids. The 6-µm and 3-µm particles were detected in the GFP 

and Cy5 channels and colored in green and magenta, respectively, and then counted with the measurement 

tool in NIS-elements with a threshold (50-4095 for the GFP channel, 200-4095 for the Cy5 channel) to 

obtain the number of the sorted and unsorted particles in the collection fluid (N3-µm, collection and N6-µm, collection) 

and in the waste fluid (N3-µm, waste and N6-µm, waste), respectively. From the enumeration results, the sort yield 

and the purity of the sorted particles were calculated as the ratio of N3-µm, collection to the sum of N3-µm, 

collection and N3-µm, waste, and the ratio of N3-µm, collection to the sum of N3-µm, collection and N6-µm, collection, respectively. 

For demonstration purposes, we further constructed and optimized large images showing the whole 

viewing area to visualize individual beads with enhanced contrast and smoothing functions in ImageJ. 
Quantification and Statistical Analysis 
Deep convolutional neural network 

The deep CNN used for sorting particles and blood cells is one type of a deep neural network 

which is a flexible and powerful machine learning method with large datasets (LeCun et al., 2015; LeCun 

et al., 1989). Since the deep CNN requires a significant amount of computation, it has been considered 

unsuitable for real-time processing. In order to achieve both high accuracy and real-time operation, we 

designed a six-layer CNN to classify 3-µm particles from 6-µm particles, which is composed of four 

convolution layers and two fully connected layers accompanied by two max-pooling and three dropout 

connections (Figure 2E). We also designed an eight-layer CNN to classify platelet aggregates from single 

platelets and leukocytes (Figure 5A). The deep CNNs were constructed using TensorFlow (Abadi et al., 

2016) and Keras software frameworks and accelerated with the GPU. For training and validating both the 

deep CNNs, we prepared 8,890 images of 3-µm particles and 9,246 images of 6-µm particles for the six-

layer CNN, and 2,106 images of platelet aggregates, 2,073 images of single platelets, and 331 images of 

leukocytes for the eight-layer CNN, all taken by the FDM microscope and manually classified to construct 



class labels as the ground truths, some of which were used for training while the others were used for 

validation. To validate the reproducibility of the CNN training, we repeated the training with a training 

dataset in the platelet study four times and achieved an accuracy level of > 94% in all the four cases. To 

implement CNN classifiers for other applications, preparation of the class-labeled grand truth data as well 

as coding on the TensorFlow and Keras software frameworks are required. We obtained the probability of 

the image being classified as each of the classes to make a sort decision based on the probabilities. The 

sum of all the probabilities in each deep CNN is 100%. Figure 5B shows examples of the probabilities in 

the platelet experiment. We sorted events when the leukocyte-class probability is lower than 1% and the 

platelet aggregate-class probability is greater than 80% as shown in Figures 5C and 5D indicate the 

validation results after the training, showing high specificity and sensitivity of 99.0% and 82.0% for the 

CNN. The trained CNNs were implemented on the IA node. Figures 5E and 5G show the processing time 

of the image analysis using the deep CNNs, combined with data transfer and the image construction for 

each event. 
Classical image analysis 

For each event, a binary image mask is created from its bright-field image, followed by the 

extraction of various image features from the bright-field and fluorescence images. Specifically, after 

applying a median filter to the images to remove noise, Canny edge detection is performed on the bright-

field image for detecting the edge of the event (e.g., particle, cell, cell cluster) from the background, and 

then contours are obtained as a binary image. Based on the extracted contours, the binary image mask of 

the cell is obtained after morphological operations such as erosion and dilation. The mask is used to extract 

morphological features of the event including area and shape, as well as intensity information including 

the average and standard deviation of the bright-field and fluorescence signals. The intelligent IACS can 

accept any image features such as perimeter, circularity, protein localization, and nucleus-to-cytoplasm 

ratio as long as the total signal processing time fits within the sort latency. In the C. reinhardtii sorting 

experiment, a CV of the fluorescence signal is calculated as a ratio of the standard deviation to the average 

of the fluorescence signal intensity. The sort decision is made based on the gating regions shown 

in Figure 4B. 
Image processing 

Processing of the raw images obtained by the FDM microscope is performed in ImageJ. First, 2D 

mean filtering and 2D minimum filtering are performed for bright-field and fluorescence images, 

respectively. Then, for the fluorescence images, linear contrast enhancement with histogram stretching is 



performed. Finally, a square region around each target cell is cropped for all images. To prepare an overlay 

image, fluorescence images from FL1 and FL2 are added to a bright-field image. 
Data processing 

The scatterplots, histograms, and processing time plots are drawn using R. The scatterplots are 

presented as a combination of the contour plots to present a high-density region and dot plots to show the 

remaining minor events. The processing time plots present events in horizontal axis and processing time 

in vertical axis, where the measured events are rank-ordered in the total processing time, that is, the event 

with the minimum total processing time is plotted on the left, followed by all other events in ascending 

order. 
Data and Software Availability 

The raw data obtained and the custom codes for image analysis and sort/unsort decision making 

are available from the corresponding author upon request or from the following 

webpage: http://www.goda.chem.s.u-tokyo.ac.jp/intelligentIACS/software.zip. 
Supplementary Figures 



 
Figure S1 Details of the Microfluidic Chip and Optics-Microfluidic Integration, Related to Figure 1(A) 

Schematic of the microfluidic chip.(B) Concept of continuous sorting with the on-chip dual-membrane 

push-pull sorter.(C) Schematic of the optics-microfluidics integration unit.(D) Installation of the 

integration unit with details of the optical interrogation (OI1 – OI4) and high-speed CMOS monitoring. 



 



Figure S2 Real-Time Intelligent Image Processor on the All-IP Network, Related to Figure 1IC: Image 

construction; IA: Image analysis; TM: Time management; ADC: analog-to-digital converter; DAC: 

digital-to-analog converter; FPGA: field-programmable gate array; CPU: central processing unit; GPU: 

graphics processing unit; DRAM: dynamic random-access memory; SSD: solid state drive; HDD: hard 

disk drive; SM: speed meter; PD: photodetector; CID: cell identifier. 

 

 
Figure S3 Characterization of the Microfluidic Chip and FDM Microscope, Related to Figure 1(A) 

Experimental results of the horizontal position distribution of flowing 6-µm particles (x axis) and the 

flow speed (y axis) under three different hydrodynamic focusing conditions 

(sample:sheath1:sheath2).(B) Experimental results of the flow speed and sort latency fluctuations of 

individual particles under three focusing conditions: sample:sheath1:sheath2 = 1:16:40 (blue), 2:16:40 

(magenta), and 4:16:40 (green).(C and D) Experimental results of the horizontal position distribution of 

flowing E. gracilis cells (x axis) and the flow speed under sample:sheath1:sheath2 = 1:16:40, with (D) 



and without (C) acoustic focusing.(E and F) Evaluation of the sensitivity, dynamic range, and linearity 

of the fluorescence detection by FL1 (E) and FL2 (F) using standard 6-peak fluorescent calibration 

particles. In both panels, each histogram shows a distribution of the signal intensities of the particles 

with different fluorescence intensities (left axis), whereas the blue dots indicate the average signal 

intensities and MESF values of the populations (right axis), with a regression line and a fit function 

shown in blue.(G) Evaluation of the fluorochrome separation using standard compensation particles for 

FITC, PE, and PE-Cy5, as well as blank particles.(H) Evaluation of the spatial resolution and calibration 

using size standard particles. The measured size distributions of the 2.0-2.4 µm (purple), 3.0-3.4 µm 

(blue), 5.0-5.9 µm (green), 7.0-7.9 µm (orange), and 8.0-12.9 µm (red) are shown (left axis) with a 

regression line and a fit function shown in blue (right axis). In (E), (F), (G), and (H), debris and 

unfocused images were excluded by applying gating to the area and the bright-field intensity data. 



 
Figure S4 Characterization of the Speed Meter and Throughput, Related to Figure 1(A) Schematic of 

the speed meter. OI1 and OI3 are located adjacent to OI2 while OI4 is located slightly upstream of the 

sorter.(B) Time-course plots of signals from the photodetectors at OI1 (magenta), OI3 (green), and OI4 

(blue). Each pulse corresponds to the passage of a particle. The top, middle, and bottom plots show 

detected particles within a time range of 0 to 200 ms, 50 to 100 ms, and 56.5 to 60.5 ms, respectively. 

The three sequential peaks highlighted in the middle plot indicate that the latency between OI1 and OI4 

is about 33 ms. The OI1 and OI3 peaks are enlarged in the bottom plot, indicating that the latency 

between OI1 and OI3 is about 0.36 ms.(C) Latency between the OI1 and OI3 points versus the latency 



between the OI1 and OI4 points with a linear regression using 6-µm particles.(D) Histogram of events in 

regression residual.(E) Histograms of events in the event-interval time with 169.6 eps with (red) and 

without (gray) using the digital circuit that aborts events with an interval shorter than a specified 

duration.(F) Event rate, actual throughput, and abort rate evaluated with the 169.6-eps condition under 

different event internal threshold values. As the threshold value is increased, the error rate is reduced, 

whereas the event rate is decreased. Consequently, the actual throughput, which is the product of the 

event rate and the abort rate, has a peak value at a threshold value of about 1 ms. 

 

 

Figure S5 Classical Image Analysis for Detecting Platelet Aggregates, Related to Figure 5(A) 

Scatterplots of events for blood samples with and without TRAP stimulation in CD61-PE intensity and 

area. The gating region indicated in green was set to separate TRAP-induced changes.(B) Scatterplot of 

a test set constructed from multiple measurements combined, with red dots showing platelet aggregates 

(ground truths).(C) Correlation matrix between the ground truth and the sort decision based on the 

classical image analysis with the gating region. Due to its poor detection capability, the classical image 

analysis was not able to identify platelet aggregates with high sensitivity (only 20.2%) for high 

specificity or vice versa. 


