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Abstract Catalytic pyrolysis of cellulose in sulfolane
(tetramethylene sulfone) with sulfuric acid or
polyphosphoric acid gave levoglucosenone, furfural, and
5-hydroxymethyl furfural (5-HMF) up to 42.2%, 26.9%,
and 8.8% (as mol% yield based on the glucose unit),
respectively. Pyrolysis behaviors of the intermediates
indicated the conversion pathways, and the conversion:
levoglucosenone → furfural was found to require water.
The control of the water content in the pyrolysis medium
was quite effective in controlling the product selectivity
between levoglucosenone and furfural: mild vacuum condi-
tions to remove the product water dramatically enhanced
the levoglucosenone yield, while steam distillation condi-
tions increased the furfural and 5-HMF yields.

Key words Cellulose · Catalytic pyrolysis · Acid ·
Levoglucosenone · Furfural

Introduction

Pyrolysis in sulfolane (tetramethylene sulfone), an aprotic
polar solvent, is an effective way to control cellulose pyroly-
sis for the formation of low molecular-weight (MW) prod-
ucts without forming carbonized residues.1 This is achieved
by inhibiting the polymerization of levoglucosan, which is
the important primary pyrolysis product.2 In the swollen
state of cellulose with sulfolane, the pyrolysis reaction is
reported to start from the molecule that is most closely
associated with the solvent in a type of peeling reaction,
while the molecule that cannot associate with sulfolane is
stable even in the noncrystalline region.3 However, the mix-
ture of low MW products obtained from the pyrolysis in
sulfolane was also complex and included levoglucosan,

levoglucosenone, furfural, and 5-hydroxymethyl furfural (5-
HMF) (Fig. 1) due to the variety of pyrolytic reactions.1 The
use of a catalyst is expected to provide effective control of
these pyrolytic reactions.

Following the pioneering works of Tsuchiya and Sumi,4

Wodley,5 and Lipska and McCasland,6 Halpern et al.7

identified levoglucosenone (1,6-anhydro-3,4-dideoxy-b-D-
glycero-hex-3-enopyranose-2-ulose) in the pyrolysis mix-
ture of cellulose with acidic catalysts including ammonium
dihydrogen phosphate, sodium dihydrogen phosphate, and
sodium hydrogen sulfate.7 After that, many researchers in-
vestigated the formation of levoglucosenone8–15 and its ap-
plication as a chiral synthon for the synthesis of various
biologically active compounds.16,17 Fixed 1C4 conformation,
no hydroxyl groups for protection, the sterically hindered b-
D-face, and a reactive a,b-unsaturated carbonyl system are
indicated as advantageous points of levoglucosenone as a
chiral synthon.16

In this article, catalytic pyrolysis of cellulose in sulfolane
with sulfuric acid or polyphosphoric acid is presented and
discussed with the product selectivity.

Experimental

Catalytic pyrolysis in sulfolane

Pyrolysis was conducted in a round flask (30ml) made of
glass with a cooling tube (120mm long and 14mm in diam-
eter) for trapping the volatile products attached with a
nitrogen bag through a three-way tap as shown in the previ-
ous report.2 Cellulose sample (cotton, 200–300 mesh, Toyo
Roshi) (50mg) was suspended in sulfolane (mp 27°C, bp
285°C, Nacalai Tesque) (2.0ml) containing sulfuric acid (0.1
or 1.0wt%) or polyphosphoric acid (0.1, 1.0, or 5.0wt%)
and was heated at 200°–280°C (in an oil bath) after replac-
ing the air in the pyrolysis apparatus with nitrogen. After
immediate cooling with air flow for 30s and subsequently in
cold water for 3min, the flask and cooling tube contents
were extracted with tetrahydrofuran (THF) (2.5ml × 2) and
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the resulting solution was neutralized with solid NaHCO3

(100mg). Sulfolane was contained in the THF-soluble por-
tion. Filtration gave soluble and insoluble portions. The
insoluble portion was washed with water and dried at 105°C
for 24h to determine the residue mass.

The soluble portion was analyzed with high performance
liquid chromatography (HPLC) with p-dibromobenzene
as an internal standard to determine the yields of
levoglucosenone, furfural, and 5-HMF. HPLC analysis was
carried out on Shimadzu LC-10A under the following con-
ditions: column, STR ODS-II; column temperature 40°C;
eluent MeOH/H2O = 20/80 (0 → 5min), 20/80 → 30/70 (5 →
10min), 30/70 → 100/0 (10 → 18min); flow rate, 1.0ml/min;
detection at 220 and 254nm. Yields of levoglucosan and 1,6-
anhydro-b-D-glucofuranose were determined by gas chro-
matography (GC; Shimadzu GC-14B) after acetylation with
acetic anhydride and pyridine at room temperature for 24h.
The GC conditions were: column, CBP-5 (25m × 0.25mm in
diameter); column temperature, 50°C (0 → 1min), 50° →
250°C (1 → 21min), 250°C (21 → 31min); injector tempera-
ture, 250°C; flame ionization detection temperature, 250°C;
carrier gas, He (1.0ml/min). Proton nuclear magnetic reso-
nance (1H-NMR) analysis of the extracts with dimethyl
sulfoxide-d6 (DMSO-d6) including phloroglucinol as an
internal standard was also conducted to quantify the prod-
ucts using a Bruker AC-400 FT-NMR spectrometer
(400MHz) with tetramethylsilane (TMS) as an internal
standard.

Pyrolysis of levoglucosan, levoglucosenone, furfural, or
5-HMF was conducted in a similar way. Pyrolysis of
levoglucosenone in sulfolane (2.0ml) containing distilled
water (0.1ml) was also conducted.

Vacuum pyrolysis and steam pyrolysis with acidic catalyst

Pyrolysis under nitrogen flow (100ml/min) at atmospheric
or reduced pressure was conducted with the apparatus
shown in Fig. 2a. Nitrogen via a mass-flow controller was
directly injected into the reaction mixture through a needle.
Volatile products were recovered in a THF trap cooled in
ice water. The connecting tube between flask and trap was

heated at 190°C with a ribbon heater. Vacuum conditions
were maintained with an aspirator and a vacuum controller
(Okano VCN-500).

Pyrolysis under steam distillation conditions were con-
ducted with a similar apparatus including a steam generator
(Fig. 2b) between the mass-flow controller and the pyrolysis
flask. In this experiment, flow rates of nitrogen and steam
were adjusted to 50 and 60ml/min, respectively. The
connecting tube between the steam generator and the flask
was heated at 100°C with a ribbon heater to prevent
condensation.

Results and discussion

Formation behavior of levoglucosenone, furfural,
and 5-HMF

Catalytic pyrolysis of cellulose in sulfolane containing sulfu-
ric acid or polyphosphoric acid gave levoglucosenone, fur-
fural, and 5-HMF at 200°–280°C. Figure 3 shows examples
of the formation behavior of these products at 240°C with
polyphosphoric acid (1.0wt%) or sulfuric acid (0.1 and
1.0wt%). The pyrolysis time when residual cellulose com-
pletely disappeared is also shown in Fig. 3.

Cellulose suspended in sulfolane was consumed much
faster with acid catalyst than in the noncatalyzed condi-
tion, as indicated by the disappearance times of 60min
(noncatalyzed),1 6min (1.0wt% polyphosphoric acid), 2min
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(0.1wt% sulfuric acid), and 1.5min (1.0wt% sulfuric acid)
at 240°C. These results indicate that acid catalyzes the
depolymerization (transglycosylation) reaction.

Maximum yield of levoglucosenone was obtained at the
pyrolysis time when residual cellulose was completely con-
sumed except for the case of pyrolysis with 1.0wt% sulfuric
acid, while furfural formation was observed after levo-
glucosenone formation and with decreasing levoglucose-
none yield. This indicates that the conversion pathway:
levoglucosenone → furfural exists in this catalytic pyrolysis.
Generally, polyphosphoric acid [pKa 2.15, 7.20 (secondary),
12.38 (tertiary), phosphoric acid],18 a weak acid, formed
levoglucosenone more selectively. On the other hand, with
sulfuric acid [pKa −5.2, 1.99 (secondary)],18 which is a strong
acid, further conversion from levoglucosenone to furfural
occurred substantially, and furfural became a major product
at the higher acid concentration of 1.0wt%. Under all con-
ditions, 5-HMF was a minor product.

Yields at the optimized pyrolysis times under various
acid concentrations and temperatures are summarized in
Table 1. Under the conditions except for 1.0wt% of sulfuric
acid, levoglucosenone was obtained as the main product in
22.3–38.0mol% of the theoretical yield, while treatment
with sulfuric acid (1.0wt%) at 200° and 240°C gave furfural
more selectively in 16.2 and 20.0 mol%, respectively. Such a

high yield of furfural has not been reported in fast pyrolysis
of cellulose impregnated with acidic catalyst.

Degradation pathway

Chromatograms obtained from the pyrolysis of levoglu-
cosan, levoglucosenone, furfural, and 5-HMF are shown in
Fig. 4 compared with that from cellulose. Very similar chro-
matograms were obtained from cellulose and levoglucosan
pyrolysis. Furthermore, a substantial amount of furfural
was formed from levoglucosenone with a small amount of 5-
HMF. These results indicate that the pathway: cellulose →
levoglucosan → levoglucosenone → furfural exists as a deg-
radation pathway in this catalytic conversion.

Figure 5 shows the change in the product composition
for cellulose and levoglucosan pyrolysis. Although ratio
between levoglucosenone, furfural, and 5-HMF is very simi-
lar, the levoglucosenone/levoglucosan ratio is quite differ-
ent between cellulose and levoglucosan pyrolysis. For
example, the molar ratios after 2min of pyrolysis are 4.8 and
1.6 for cellulose and levoglucosan pyrolysis, respectively. If
levoglucosenone is formed only from levoglucosan, the ra-
tio observed in cellulose pyrolysis should be equal to or
even smaller than that in levoglucosan pyrolysis. The ex-

Table 1. Yields of levoglucosenone, furfural, and 5-hydroxymethyl furfural (5-HMF) under optimized conditions

Catalyst Catalyst Pyrolysis Pyrolysis Yield (mol%)
concentration (wt%) temperature (°C) time (min)

Levoglucosenone Furfural 5-HMF

Sulfuric acid 0.1 200 4.0 29.9a ND 2.4
0.1 240 2.0 36.2a 8.2 2.8
0.1 280 1.25 33.4a 9.9 4.4
1.0 200 2.0 4.9 16.2a 3.1
1.0 240 1.5 1.7 20.0a 2.1

Polyphosphoric acid 0.1 240 60.0 25.4a 3.8 2.4
0.1 280 5.0 22.3a 2.5 1.5
1.0 240 6.0 36.2a 2.7 2.5
1.0 280 2.5 38.0a 5.1 3.9
5.0 240 4.0 30.6a 2.2 1.4

ND, Not detected
a Optimized yield
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perimental facts suggest that another pathway also exists in
levoglucosenone formation along with the pathway via
levoglucosan. Details of this pathway and the relative im-
portance between these pathways are unknown at present,
but dehydration prior to levoglucosan formation is also sug-
gested in the pyrolysis of cellulose impregnated with acid
catalyst.8–10,13 Shafizadeh et al.9 reported 1,4:3,6-dianhydro-
a-d-glucopyranose as an intermediate for levoglucosenone
formation. Dobele et al.13 studied the formation behavior of
water and levoglucosenone compared with the retention of
the glucose moiety in the pyrolysis residue, and they con-
cluded that dehydration proceeds in the solid state prior to
depolymerization.

With addition of water (5.0wt%), the conversion of
levoglucosenone to furfural was dramatically enhanced as
shown in Fig. 6. The effect of water can be explained with
the proposed mechanism as shown in Fig. 7, which includes
hydrolysis via ring opening of the C1-O5 bond and elimina-
tion of C6 as formaldehyde before rearrangement into a
five-membered ring. Kato and Komorita19 isolated 3-deoxy-
d-xylosone as an intermediate from d-xylose to furfural and
they proposed a similar formation mechanism in d-xylose
pyrolysis. Houminer and Patai20 reported that C6 is prefer-
entially split off in pyrolytic conversion of glucose to fur-
fural from the experimental facts that furfural formed from
14C-labeled glucose only at C6-position had no radioactivity.

In this mechanism, attack of water to the oxonium ion inter-
mediate is a key reaction from levoglucosenone to furfural.

Acidity changes depending on the medium. Arnett and
Douty21 reported the acidity of sulfuric acid in sulfolane by
investigating the Hammett acidity function, and they con-
cluded that sulfuric acid in sulfolane has greater acidity than
in water. They also reported that a small quantity of water
reduces the acidity. Thus, the acidity of sulfuric acid in
sulfolane would not increase with addition of water. There-
fore, without a nucleophile such as water, the oxonium ion
solvated with sulfolane is considered to be transformed to
levoglucosenone again through inhibiting the intermolecu-
lar reaction such as polymerization. In fast pyrolysis, this
oxonium ion may polymerize instead of forming furfural.
These different behaviors of the oxonium ion are consid-
ered to be the reason why the catalytic pyrolysis in sulfolane
gives substantially higher yield of furfural than the fast py-
rolysis condition. Furthermore, levoglucosenone as well as
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Fig. 4a–e. Chromatograms from high performance liquid chromatog-
raphy (HPLC) of sulfolane-soluble portions obtained from the pyroly-
sis of levoglucosan, levoglucosenone, furfural, 5-HMF, and cellulose in
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furfural and 5-HMF were found to be fairly stable under the
present pyrolysis conditions, as indicated by a small de-
crease (4.5%) in the total yield of levoglucosenone, furfural,
and 5-HMF observed during pyrolysis of cellulose between
4 and 6min, as shown in Fig. 5a.

1,6-Anhydro-b-d-glucofuranose (AF), which is a fura-
nose-type isomer of levoglucosan, was also formed from
levoglucosan as shown in Fig. 5b. Table 2 summarizes the
levoglucosan/AF ratio during pyrolysis of cellulose or
levoglucosan under various acidic conditions at 200°C. Al-
though AF was not formed from levoglucosan under py-
rolysis conditions with no catalyst or with boric acid,
polyphosphoric acid and sulfuric acid catalyzed the AF for-
mation to give an equilibrium mixture of levoglucosan and
AF (ca. 3 :1). A similar equilibrium mixture was also ob-
tained from cellulose. Dry pyrolysis of cellulose is known to
form levoglucosan much more selectively than AF, noting
that Gardiner22 reported the levoglucosan/AF ratio of
25.6 :1 from vacuum pyrolysis of cotton cellulose. Thus,
interconversion between levoglucosan and AF occurs under
polyphosphoric acid and sulfuric acid conditions through
acid-catalyzed ring-opening of the C1-O5 bond.

From these lines of evidence, the degradation pathway
of cellulose during pyrolysis in sulfolane with sulfuric acid
or polyphosphoric acid is proposed as shown in Fig. 8.
Acetal linkages in levoglucosan and levoglucosenone
are cleaved through acid-catalyzed ring-opening, while
levoglucosenone is expected to have much lower reactivity
due to low electron densities of C5- and C6-oxygens through
the electron-withdrawing tendency of the carbonyl group at
the C2 position. These reactivity differences are considered
to work effectively with polyphosphoric acid, a weak acid,
to give levoglucosenone more selectively. On the other
hand, sulfuric acid, a strong acid, has a tendency to mask
these reactivity differences. Formation of 1,6-anhydro-b-d-
glucofuranose from levoglucosan is not desirable for
levoglucosenone formation, although products from AF are
unknown at present.

Vacuum pyrolysis and steam pyrolysis with acidic catalyst

According to the proposed mechanism shown in Figs. 7 and
8, water content is an important factor for determining the
product selectivity between levoglucosenone and furfural.
During normal catalytic pyrolysis in sulfolane, a substantial
amount of water is produced from a dehydration reaction.
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Fig. 6. Effects of water on levoglucosenone pyrolysis in sulfolane with
sulfuric acid (0.1 wt%) at 240°C for 3min. Shaded bars, no added water;
open bars, with water (5 wt%)

Table 2. Effect of pyrolysis conditions on levoglucosan/1,6-anhydro-b-
d-glucofuranose ratio in sulfolane at 200°C

Sample Catalyst Pyrolysis Levoglucosan/
time AF
(min)

Cellulose Sulfuric acid (0.1wt%) 2 75/25
3 72/28
4 72/28
6 72/28

Levoglucosan No catalyst 2 100/0
Boric acid (1.0wt%) 2 100/0
Polyphosphoric acid 2 74/26

(1.0wt%)
Sulfuric acid (0.1wt%) 2 76/24
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Therefore, removal of the product water could enhance the
selectivity of levoglucosenone formation.

Table 3 summarizes the yields of levoglucosenone, fur-
fural, and 5-HMF from cellulose under vacuum and steam
distillation conditions (0.1wt% sulfuric acid/200°C/6min).
The relative yield of levoglucosenone dramatically in-
creased up to 154% and 170% under mild vacuum condi-
tions at 0.16 and 0.12 atm with nitrogen flow with decreasing
total yields of furfural and 5-HMF of 37% and 26%, respec-
tively. Nitrogen flow at atmospheric pressure also increased
the levoglucosenone yield by 22%. Thus, removal of prod-
uct water is quite effective to control the product selectivity
for the formation of levoglucosenone.

Contrary to this, under steam distillation conditions, fur-
fural (26.9%) and 5-HMF (8.8%) were obtained with the
levoglucosenone yield decreasing to 8.5%. The total yield
(35.7%) of furfural and 5-HMF is about threefold that ob-
tained in nitrogen. Under steam distillation conditions,
most furfural (91.4%) was recovered in the cooling trap,
and this also inhibits the further degradation of furfural.
From these results, it appears that product selectivity
between levoglucosenone and furfurals can be easily
controlled through the control of the water content in the
pyrolysis mixture.

Conclusions

Formation behaviors and pathways from cellulose to
levoglucosenone, furfural, and 5-HMF in acid-catalyzed
pyrolysis of cellulose in sulfolane were clarified. Water was
found to be a key factor in the conversion of levogluco-
senone to furfural, and the product selectivity between
these products was effectively controlled by adjusting the
water content in the pyrolysis medium through vacuum or
steam pyrolysis conditions.
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Table 3. Effects of vacuum and steam distillation conditions on the product selectivity between
levoglucosenone and furfurals

Conditionsa Yield (mol%)

Levoglucosenone Furfural 5-HMF Furfural + 5-HMF

In nitrogen 24.8 (100) 8.0 (100) 3.8 (100) 11.8 (100)
Under nitrogen flowb

1atm 30.3 (122) 8.6 (108) 0.8 (21) 9.4 (80)
0.1atm 38.1 (154) 3.8 (48) 0.6 (16) 4.4 (37)
0.1atm 42.2 (170) 2.3 (29) 0.8 (21) 3.1 (26)

Steam distillationc 8.5 (34) 26.9 (336) 8.8 (232) 35.7 (303)

Values in parentheses show relative yield (%) against the yield in nitrogen
a Sulfuric acid 0.1 wt%/200°C/6min
b Flow rate 100ml/min
c Nitrogen (50ml/min) and steam (60 ml/min)
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