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Abstract 13 

Multivariate descriptions of ocean parameters are quite important for the design and risk assessment of 14 

offshore engineering applications. A reliable and realistic statistical multivariate model is essential to 15 

produce a representative estimate of the sea state for understanding the ocean conditions. Therefore, an 16 

advanced modeling of ocean parameters helps towards improving ocean and coastal engineering practices. 17 

In this paper, we introduce the concepts of asymmetric copulas for the modeling of multivariate ocean data. 18 

In contrast to extensive previous research on the modeling of symmetric ocean data, this study is focused 19 

on capturing asymmetric dependencies among the environmental parameters, which are critical for a 20 

realistic description of ocean conditions. This involves particular attention to both nonlinear and 21 

asymmetrically dependent variates, which are quite common for the ocean variables. Several asymmetric 22 

copula functions, capable of modeling both linear and nonlinear asymmetric dependence structures, are 23 

examined in detail. Information on tail dependencies and measures of asymmetric dependencies are 24 
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exploited. To demonstrate the advantages of asymmetric copulas, the asymmetric copula concept is 25 

compared with the traditional copula approaches from the literature using actual environmental data. Each 26 

of the introduced copula models is fitted to a set of ocean data collected from a buoy at the US coast. The 27 

performance of these asymmetric copulas is discussed and compared based on data fitting and tail 28 

dependency characterizations. The accuracy of asymmetric copulas in predicting the extreme value contours 29 

is discussed.   30 

Keywords: ocean engineering, joint distribution, multivariate analysis, asymmetric copula 31 

 32 

1. Introduction 33 

Offshore and coastal structures facilitate the exploitation of the vast ocean resource, which contributes 34 

significantly to technological and economic development. Compared with normal structures on land, 35 

offshore structures are bulky, expensive and in most cases constructed in a complex marine environment. 36 

The marine environment for offshore structures can be severe, adverse, varying and uncertain. It covers a 37 

broad area of climatic factors, which generally include tide, current, wind, waves, ice and other sometimes 38 

devastating events such as hurricanes. When addressing different environmental risks for the offshore 39 

engineering applications designers are usually required to estimate the environmental conditions at the 40 

ocean site, and usually a multivariate analysis is performed (Zhang and Cheng, 2016). For example, the 41 

environmental contour method developed by Winterstein et al. (1993) is popular for this purpose. As a basis 42 

to produce realistic results it requires a reliable multivariate environmental model for finding the maximum 43 

system response associated with a given exceedance probability. In this context the interaction among 44 

various environmental influences plays an important role. In practical applications, offshore and coastal 45 

structures can suffer from severe damages because of the occurrence of critical combinations of the ocean 46 

environmental variables which coexist in extreme weather events such as sea storms (Zhang and Lam, 2014; 47 

2015). In turn, deficiencies in modeling their joint statistics may severely overestimate the safety and 48 

effectiveness of coastal and offshore structures, hence lead to unsafe design and consequently lead to 49 

expensive and unexpected catastrophes (Bitner-Gregersen, 2015; Zhang et al. 2017a,b). Particularly, the 50 
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modeling of the joint distribution of wave height and wave period is normally a must in marine engineering 51 

applications since the sea state at a specific location primarily depends on these two ocean parameters 52 

simultaneously (DNV, 2014). However, the ocean climate system is an extremely complex system that 53 

contains many more natural factors from both the ocean and the atmosphere. There are various sources of 54 

uncertainties and potential biases that influence the ocean conditions (Zhang and Cao, 2015). Specifically, 55 

the uncertainties related to the parameter dependencies are one of the most influencing factors. It was 56 

recognized that the understanding of the nonlinear dependency between ocean parameters remains one of 57 

the most difficult tasks, and the statistical modeling of the multivariate ocean data remains challenging due 58 

to their complicated relationships (Ewans and Jonathan, 2014).  59 

Lots of attempts to cope with multivariate statistical analysis can be found in the literature, involving 60 

the use of a conditional distribution model (Lucas and Guedes Soares, 2015), a bivariate logistic model 61 

(Morton and Bowers, 1996), a Pareto distribution model (Muraleedharan et al., 2015) and so on. Clearly, 62 

the traditional conditional joint distribution model is only applicable to the multivariate problem to a certain 63 

extent. If the variables contain slightly more complex relationships such as non-constant correlation between 64 

pairs of random variables (e.g. the correlation coefficient value may change at extremes), the traditional 65 

joint statistical model is not appropriate any more. Therefore, many more advanced techniques have been 66 

employed in the multivariate analysis. Among all the developments, the application of copulas has been 67 

increasingly popular in recent years. Many initial studies have illustrated that application of copula theory 68 

can produce more realistic joint models for the ocean multivariate data. De Michele et al. (2007) have 69 

utilized copulas to characterize sea storms in terms of significant wave height, sea storm duration, sea storm 70 

inter-arrival (waiting) time, and sea storm direction. Antào and Guedes Soares (2014) have established 71 

copula based bivariate models for individual wave steepness and wave height. A similar copula model for 72 

description of water levels and waves are also presented by Masina et al. (2015). Montes-Iturrizaga and 73 

Heredia-Zavoni (2015) have proposed a formulation for expressing the environmental contours as functions 74 

of copulas and show that the dependence structure of sea state parameters can be well presented in this 75 

manner. Until recently, Jane et al. (2016) have employed the copula model to predict the wave height at a 76 
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given location by considering the spatial dependence of the wave height at nearby locations. In contrast to 77 

the traditional joint model, a copula approach has the advantage that the dependency structure between the 78 

variables can be defined independently of the choice of the marginal distribution. This flexibility is highly 79 

desirable in modeling the environmental parameters as the natural factors often exhibit non-obvious 80 

dependencies. Moreover, it was also found that the copula model can save numerical effort when it is utilized 81 

to characterize the environmental loading in the offshore structural analysis. For instance, Zhang et al. (2015) 82 

have demonstrated an approach of using a copula model to characterize the sea load for the reliability 83 

analysis of a real jacket structure, which reduces the numerical effort by a factor of five. A practical guideline 84 

for using a copula in the design of coastal and offshore engineering applications can be found in Salvadori 85 

et al. (2014). Thorough guidelines involving the use of copulas in a structural approach are given in 86 

Salvadori et al. (2015). In general, from the recent advances in coastal engineering, it is now widely 87 

recognized that a copula approach is very efficient and powerful to model the statistical behavior of ocean 88 

dependent variables.  89 

As exciting as the copula approach is, there are some obvious issues, which need to be addressed 90 

for a successful application. In former studies it was criticized that most families of parametric copulas can 91 

only model data having symmetric dependency (Genest and Favre, 2007). For example, the well established 92 

Archimedean copula families are all symmetric. If the data dependencies exhibit asymmetric behavior, the 93 

traditional copula model may no longer be adequate. Asymmetric Archimedean copulas are discussed in 94 

Grimaldi and Serinaldi (2006). Unfortunately, ocean data, fall into this category; they have been found as 95 

asymmetrically dependent in various previous studies. This is especially obvious for the sea state parameters, 96 

which are important for in engineering design (deWaal and van Gelder, 2005). Ignoring the asymmetric 97 

effects in the modeling of ocean data can be quite critical as it affects the estimates of the response statistics 98 

and eventually compromises the quality of the structural reliability assessment. A reason explaining the 99 

frequent (possibly unjustified) usage of symmetric (Archimedean) copulas might be that these are the ones 100 

provided by the Matlab package, the one traditionally used by maritime engineers. However,, asymmetric 101 

copulas can remedy this problem. Asymmetric copulas can be constructed based on the families of 102 
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symmetric copulas. This compounded procedure can significantly improve the fit (Jondeau, 2016). The 103 

modeling of the ocean data utilizing the asymmetric copulas has received much attention recently (Vanem, 104 

2016). The well known Khoudraji-Liebscher family, introduced in (Durante and Salvadori, 2010; Salvadori 105 

and De Michele, 2010), gives the possibility to construct asymmetric copulas. The application of this family 106 

in a maritime context has been mentioned in Salvadori et al. (2014, 2015).  De Michele et al. (2013) have 107 

also used it for the modeling of drought. Besides, the conditional mixture construction (Vine copulas), first 108 

introduced in maritime engineering by De Michele et al. (2007), also provides the possibility to construct 109 

asymmetric copulas starting from symmetric ones. However, the theoretical concepts and procedures of 110 

constructing an asymmetric copula have not yet been studied in detail. Despite this, it is recognized that 111 

there are many candidate asymmetric copulas in theory. These choices provide potent features and practical 112 

meaning in ocean and coastal engineering applications. This potential can readily be utilized once the 113 

applicability of asymmetric copulas for the modeling of ocean data has been verified and demonstrated. We 114 

aim to contribute to this development with the present real case study for demonstrating and highlighting 115 

the features, merits as well as limitations associated with asymmetric copulas.  116 

The remainder of this paper is organized as follows. Section 2 presents a general literature review 117 

of the existing techniques in modeling multivariate ocean data. Section 3 presents the fundamental 118 

knowledge of copula theory and the basic dependence measure concepts. Basic concepts of asymmetry 119 

measure as well as the procedures of constructing asymmetric copula models are explained in detail in 120 

Section 4. Specific asymmetric copula models for ocean data are developed in Section 5 and compared 121 

against traditional parametric copula models based on collected, preconditioned ocean data. To understand 122 

the features of using asymmetric copulas in the ocean data modeling, a comparative study between 123 

symmetric and asymmetric copula models is presented in Section 6. The concluding remarks of this paper 124 

form Section 7. 125 

2．Joint statistical models for ocean data 126 

Among the probabilistic models available in the literature, the most commonly recommended model 127 

adopted in offshore engineering design codes is the conditional joint distribution model, which is widely 128 
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applied to various kinds of ocean data (Burton et al. 2001; Jonathan and Ewns et al. 2011; Ernst and Seume 129 

2012). The most pertinent joint distribution model that is applied in ocean engineering is for the significant 130 

wave height and peak period, which characterize the spectrum of a sea state. For instance, Guedes Soares 131 

et al. (1988) and Bitner-Gregersen and Haver (1989) have demonstrated the use of a joint environmental 132 

model, which was constructed based on the combination of the marginal distribution of wave height and 133 

conditional distribution of the wave period. Later on, Ochi (1992) introduced a bivariate log-normal 134 

distribution in the modeling of the significant wave height and peak period.  Generally, these conditional 135 

bivariate distribution models assume significant wave height follows a Weibull distribution while wave peak 136 

period follows a log-normal distribution whose model parameters are conditional on significant wave height. 137 

The primary reason for using such conditional distribution model is generally that the significant wave 138 

height is the most important parameter, which affects design conditions of ocean structures whereas other 139 

parameters have less influence. This also agrees well with the practice design code (DNV 2010), which 140 

utilizes a bivariate conditional model for the wave height and wave period. This concept of conditional 141 

distribution models can also be extended to modeling other ocean parameters.  142 

Beyond these fundamental developments, many of the current studies demonstrate that the joint 143 

models could be further developed. Prince-Wright (1995) showed that a multivariate model using the Box 144 

and Cox transformation can model the collected ocean data well, especially under the presence of non-145 

stationarities. This has been proven through a comparative study done by Bitner-Gregersen et al. (1998), in 146 

which the analysis has been applied to a dataset containing both wave and wind. Repko et al. (2004) 147 

developed a bivariate model of significant wave height and peak period based on a given independent value 148 

of wave steepness. A comparison of several of these approaches with maximum entropy principle, including 149 

clarifying the differences and performance in estimating a return value, by utilizing a specific data set can 150 

also be found in (Dong et al. 2013). Ewans and Jonathan (2014) have incorporated the offshore structural 151 

response properties in the multivariate sea state parameter modeling and utilized the reliability concepts to 152 

derive the response based environment contours. The conditional multivariate extreme models for ocean 153 

parameters considering covariate effects in directionalities are also discussed in Jones et al. (2016). An 154 
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overview of different methods for multivariate modeling of ocean data such as the conditional modeling 155 

approach can be found from Ferreira and Guedes Soares (2002) and Jonathan et al. (2010). Although the 156 

use of a conditional joint distribution model is quite convenient, its drawback is also very obvious. That is, 157 

the marginal distributions and the dependence structure are both defined within one bivariate model, which 158 

reduces the degree of freedom of the model. In fact, it should be noticed that conditional models are simple 159 

special cases of copula models. As explained later via the Sklar’s Theorem representation (see Section 3.1 160 

and Eq. (3)), the bivariate joint density fXY is simply given by 161 

( ) ( )( ) ( ) ( )( , ) ,XY XY X Y X Yf x y c F x F y f x f y= ⋅ ⋅ ,   (1) 162 

where cXY (.) is the copula density, FX, FY are the univariate distribution functions, and fX, fY are the univariate 163 

marginal densities. In turn, the conditional density used in conditional bivariate models is a function of the 164 

copula at play, i.e. 165 

( ) ( ) ( )( ) ( )|
( , )( | ) ,XY

X Y XY X Y X
Y

f x yf x y c F x F y f x
f y

= = ⋅ .  (2) 166 

Here, the point is that, in general, it is easier to identify/construct a bivariate copula model than a conditional 167 

model, especially when the sample size is scarce. In addition, changing the marginals in a copula model is 168 

easy, whereas it may be awkward in a conditional model. This point has also been mentioned by many other 169 

studies, which also suggested further development of the conditional bivariate models. 170 

Besides the traditional joint models, some researchers have dedicated their efforts to the study of 171 

establishing multivariate models using transformation approaches. Quite popular is the Nataf transformation 172 

approach to construct joint probability models in offshore engineering applications (Nataf, 1962). Wist et 173 

al. (2004) have applied a Nataf model to capture successive wave heights and found that they can be well 174 

approximated by this joint bivariate model. A more complicated methodology has been presented by Sagrilo 175 

et al. (2011) for creating a Nataf model which includes the wave, wind and water current parameters. It is 176 

also applied in a structural reliability analysis where an environmental contour is estimated from the Nataf 177 

model (Silva-González et al. 2013). More recently, the maximum entropy distributions, which are developed 178 

based on Nataf transformation, have been utilized in the modeling of wave height and wind speed (Dong et 179 
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al. 2015). The features of the approximation for the distribution of the physical variables depend on whether 180 

the vector of the transformed standard normal variables is close to being multi-normal. Otherwise, it is 181 

criticized that certain transformation procedures might not be necessary (Huseby et al., 2013). For 182 

comparison, a 4-dimensional model was easily constructed in De Michele et al. (2007) via conditional 183 

mixtures of copulas (now generalized by the so-called Vine copulas). 184 

Generally, under certain conditions each of the provided models has its own advantages. Quite a 185 

few of these models are flexible enough to provide a realistic characterization of ocean parameter 186 

dependencies under various conditions. With the aim of advancing the field of offshore reliability 187 

engineering, there is a strong need for establishing a multivariate model that can handle nonlinear 188 

dependencies. We found that only little attention has been devoted to the research of non-symmetric 189 

multivariate models for ocean parameters. Studies in this direction with greater depth seem useful in order 190 

to improve the modeling of dependencies in ocean data.  191 

 192 

3．Copula theory and dependence measures 193 

An alternative modeling approach to the multivariate ocean data is to use copulas for constructing 194 

multivariate data. Copulas provide a powerful tool for modeling multivariate data, and are widely used in 195 

Finance and Economics (see, e.g., Cherubini et al. 2004; McNeil et al. 2005), as well as in Hydrology and 196 

Environmental Sciences. In this latter instance, as seminal references, the following ones provide a thorough 197 

survey: for a theoretical introduction see Nelsen (2006); Joe (2014); Durante and Sempi (2015), for a 198 

practical engineering approach see Genest and Favre (2007); Salvadori et al. (2007); Salvadori and De 199 

Michele (2007). 200 

3.1 Definition and basic properties 201 
 202 
Copula is a model, which “couples” univariate marginal distributions to form a multivariate distribution.  In 203 

theory, a copula model is constructed by combining the marginal distributions of variables and a specific 204 

dependence structure. The formal definition of a copula as a multivariate distribution with specified 205 

marginal distributions is originally introduced in Sklar’s theorem (Sklar, 1959): 206 
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Sklar’s Theorem: Let F be an n-dimensional distribution function with marginal distributions F1, …, Fn.  207 

There exists an n-dimensional copula C such that for all x ∈ Rn  208 

  ( ) ( ) ( )( )1 1 1, , , ,n n nF x x C F x F x=K K    (3) 209 

If F1, …, Fn are all continuous, then C is unique. Conversely, if C is a copula and F1, …, Fn are distribution 210 

functions, then the function defined in Eq. (3) is a multivariate distribution function with marginal 211 

distributions F1, …, Fn. 212 

On account of Sklar’s theorem, it is easy to see that the copula model does not need to consider the 213 

characteristics of the individual random variables in the multivariate problem. This results from the 214 

probability integral transform which states that the random variables Ui=Fi(Xi) are uniformly distributed on 215 

[0, 1]. Note that the probability integral transform works for continuous random variables, since Fi should 216 

be invertible. In other words, the copula model is a multivariate model for all the variables after their 217 

transformation through the cumulative distribution function. Copula is a multivariate cumulative 218 

distribution function with uniform marginals. Hence, the domain and the range values for an n-dimensional 219 

copula function are     220 

 [ ] [ ]: 0,1 0,1nC → .      221 

Compared to the other joint distribution models, the copula approach has the advantage that the 222 

dependency structure between the variables can be defined independently of the choice of the marginal 223 

distributions. The freedom of selecting any marginal distributions for the variables in a copula makes this 224 

approach quite flexible in characterizing individual variable’s behaviors. This flexibility is highly desirable 225 

in the modeling of ocean parameters as the environmental factors often show non-obvious dependencies. 226 

Various kinds of parametric copula families and classes can be found in the literature, see e.g. (Hutchinson 227 

and Lai 1990; Nelsen 2006; Salvadori et al. 2007; Joe 2014). Each family or class of copulas can characterize 228 

a certain kind of dependence in multivariate data. Most of these copulas are used for bivariate data. However, 229 

they can be expanded to a multivariate model through straightforward transformations. Examples of copulas, 230 

like Archimedean copulas, are presented in Appendix B. 231 
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  232 
3.2 Dependence measures 233 
 234 
 235 
To highlight the significance of the copula approach in offshore engineering applications, a detailed 236 

interpretation of dependence concepts is provided herein. The dependence structure is generally the most 237 

important characteristic in a copula model. The most common and convenient way for measuring the data 238 

dependence is using the Pearson’s correlation coefficient ρ. It is widely applied in many statistical 239 

approaches because of its simplicity and ease of handling. However, the weakness of ρ is also obvious as it 240 

can only represent linear dependencies. Therefore, other concepts of dependencies such as Kendall’s τk and 241 

Spearman’s ρs were introduced in the literature (Joe, 2014). Compared to Pearson’s coefficients, these two 242 

dependency measure concepts are much more robust. Kendall’s τk measures the possible excess of 243 

concordance/discordance in the sample, while Spearman’s ρs is a measure of the “distance” (in the L1 244 

integral sense) between the chosen copula and the one modeling independent variables (see Salvadori et al. 245 

(2007)). Pearson coefficient requires the existence of the second order moments, and may depend on the 246 

marginals, whereas Kendall and Spearman ones are nonparametric measures of association and do always 247 

exist. Furthermore, the influence of unequal variances, outliers and non-linearity, which could cause 248 

distortions in Pearson’s correlation coefficient, are greatly minimized in Kendall’s τk and Spearman’s ρs. In 249 

other words, from engineering point of view, Kendall’s and Spearman’s dependencies are more focusing on 250 

the concordance of the ranking whereas Pearson’s dependence is focusing on the value. Copula model can 251 

describe various kinds of dependencies which include association concepts such as concordance, linear 252 

correlation and other related measures. A copula is thus much more flexible than traditional concepts for 253 

characterizing dependencies and includes these concepts. However, there are a few issues associated with 254 

traditional copulas (e.g. Archimedean copulas) when they are applied to ocean data. A key drawback is that 255 

some copulas are symmetric while most ocean data display non-symmetric dependencies. The reason for 256 

these asymmetric dependencies can be summarized as follows:  257 
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• Different ocean variables respond differently to the same environment conditions. For example, when 258 

there is a hurricane, the wind speed is the most directly affected variable. A sudden increase of wind 259 

speed is expected to be observed. The value of wind speed has a very quick response to the hurricane. 260 

However, this effect may not be reflected in the wave height values instantaneously.  There is normally 261 

a delay in the observed wave height due to the change of wind speed. Such a delay causes some 262 

deviations in the co-movement of wave height and wind speed time series data. Thus, a nonlinear 263 

dependency is observed in the data and asymmetric dependencies evolve. This effect can be illustrated 264 

by means of scatter plots as shown in Fig. 1. 265 

 266 

Figure 1 Asymmetric dependency of ocean data caused by delay. 267 

 268 

• The feasible domain of parameters restricted by the physical phenomenon is another significant reason 269 

for asymmetric dependencies. For example, a large value of wave height is unlikely to be accompanied 270 

by a small wave period because of the breaking wave limit. In other words, the observation of some 271 

variable combinations is physically impossible. This effect is illustrated in Fig. 2. As can be seen, there 272 

is no observation in the right-lower region (marked with a cross), while observations can be seen in the 273 

left-upper region (marked with a tick). That is, implicit physical phenomena can limit the possibility of 274 

occurrence for some data combinations. The feasible domain is therefore reduced and becomes 275 
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asymmetric. Implementing such physical feature in the copula model is not straightforward and is still 276 

in its infancy stage of development. 277 

 278 
Figure 2 Asymmetric domain of wave data caused by physical phenomenon. 279 

These effects can be commonly observed in most collected ocean datasets. The ignorance of such 280 

asymmetric dependencies would lead to unreliable multivariate models and associated estimates, for 281 

example, of long term return values. However, the traditional copula approach is not capable of handling 282 

these effects efficiently. A more advanced statistical approach is therefore required.  283 

4．Asymmetric copulas 284 

In general, as discussed in the above, the most commonly used copulas cannot meet the current needs for 285 

modeling ocean data. An accurate modeling of the asymmetric dependencies is highly demanded. To remedy 286 

this problem, we introduce several groups of asymmetric copulas as well as the basic concepts in measuring 287 

the asymmetry of a copula.  288 

4.1 Measure of asymmetry and tail dependency 289 
 290 
First of all, it is necessary to introduce the basic definition of symmetry for the copula model. For a given 291 

copula 𝐶𝐶(𝑢𝑢1, … ,𝑢𝑢𝑛𝑛), if      292 
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  ( )1 1,..., ,..., ,..., ( ,..., ,..., ,..., )i j n j i nC u u u u C u u u u=  is true for any pair 𝑢𝑢𝑖𝑖,𝑢𝑢𝑗𝑗 ∈ 𝐈𝐈, 293 

then ui and uj are said to be exchangeable and the copula 𝐶𝐶(𝑢𝑢1, … ,𝑢𝑢𝑛𝑛) is said to be symmetric (Genest and 294 

Nešlehová, 2013). On the other hand, if a copula function does not satisfy the above condition, it is 295 

considered to be asymmetric. Based on this idea, a measure of asymmetry in a copula was developed by 296 

Klement and Mesiar (2006). 297 

For instance, a natural measure of asymmetry for a 2-dimensional copula can be calculated by the 298 

following equation Klement and Mesiar (2006)  299 

( ) ( ) ( ){ }1/1 1

1 2 2 1 1 20 0
, ,

p
p

p C C u u C u u du duη = −∫ ∫    (4) 300 

where p can be set at any value that is greater than or equal to 1, 𝑝𝑝 ≥ 1. In other words, the measure of 301 

asymmetry is represented as the distance between C and its transpose CT, like the norm. Moreover, it is 302 

usually more convenient to compute the value when p approaches infinity, which leads to  303 

( )
( ) [ ]

( ) ( )
2

1 2

1 2 2 1
, 0,1
sup , ,

u u
C C u u C u uη∞

∈

= − .   (5) 304 

Thus, when this measure goes up to a certain value, the copula is considered as non-exchangeable and is 305 

understood to be asymmetric. In the observation of bivariate ocean data, the measure of asymmetry as 306 

calculated by Eq. (5) could serve as a measure of exchangeability for the data.  An extension of Eq. (4) and 307 

Eq. (5) for measuring the asymmetry of two variables in high dimensional copula can also be derived as 308 

following 309 

( )
( ) [ ]

( ) ( )
, 0,1
sup

n
C C C

π

πη∞
∈

= −
u u

u u ,   (6) 310 

where u=(u1,…,un) and uπ=(uπ(1),…,uπ(n)), 𝜋𝜋 ∈ 𝑆𝑆𝑛𝑛 is a permutation of {1,…,n}. Generally, it calculates the 311 

maximal distance between a copula and a version of it where the arguments are permuted (Harder and 312 

Stadtmüller, 2013).  313 

Besides the measure of asymmetry, the asymmetric characteristics can also be observed from the 314 

differences in the tail dependencies. According to the coefficient of tail dependence proposed by Joe (2014), 315 
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there are four coefficients that can be used to describe the tail dependence for bivariate data, namely, lower-316 

lower, lower-upper, upper-lower, upper-upper tail dependence coefficients. For example, if an n-317 

dimensional copula 𝐶𝐶(𝑢𝑢1, … ,𝑢𝑢𝑛𝑛) is given, these tail coefficients can be calculated as follows: 318 

( ) ( ) ( ) ( ) ( )( ), 1 1 1 1
| 1 10

lim ,..., ,..., |l l
i j i i n n j ju

C P x F u x F u x F u x F uλ − − − −

→ +
= ≤ ≤ ≤ ≤ , (7) 319 

( ) ( ) ( ) ( ) ( )( ), 1 1 1 1
| 1 10

lim ,..., 1 ,..., |l u
i j i i n n j ju

C P x F u x F u x F u x F uλ − − − −

→ +
= ≤ ≥ − ≤ ≤ , (8) 320 

( ) ( ) ( ) ( ) ( )( ), 1 1 1 1
| 1 10

lim ,..., ,..., | 1u l
i j i i n n j ju

C P x F u x F u x F u x F uλ − − − −

→ +
= ≤ ≤ ≤ ≥ − , (9) 321 

( ) ( ) ( ) ( ) ( )( ), 1 1 1 1
| 1 10

lim ,..., 1 ,..., | 1u u
i j i i n n j ju

C P x F u x F u x F u x F uλ − − − −

→ +
= ≤ ≥ − ≤ ≥ − ,(10) 322 

where 𝐹𝐹1−1(. ),…, 𝐹𝐹𝑛𝑛−1(. ) are inverse marginal distribution functions for the variables x1,…,xn. Therefore, 323 

these four equations provide measures of the dependence in four different tails of two variables in a 324 

multivariate setting. More commonly, if a bivariate copula 𝐶𝐶(𝑢𝑢1,𝑢𝑢2) is analyzed, the tail dependence can 325 

be derived as (Nelsen (2006)) 326 

( ) ( ) ( )( ) ( ), 1 1
1|2 1 1 2 20 0

,
lim | liml l

u u

C u u
C P x F u x F u

u
λ − −

→ + → +
= ≤ ≤ = ,   (11) 327 

( ) ( ) ( )( ) ( ), 1 1
1|2 1 1 2 20 0

,1
lim 1 | 1 liml u

u u

C u u
C P x F u x F u

u
λ − −

→ + → +

−
= ≥ − ≤ = − ,  (12) 328 

( ) ( ) ( )( ) ( ), 1 1
1|2 1 1 2 20 0

1 ,
lim | 1 1 limu l

u u

C u u
C P x F u x F u

u
λ − −

→ + → +

−
= ≤ ≥ − = − ,  (13) 329 

( ) ( ) ( )( ) ( ), 1 1
1|2 1 1 2 20 0

1 1 ,1
lim 1 | 1 2 limu u

u u

C u u
C P x F u x F u

u
λ − −

→ + → +

− − −
= ≥ − ≥ − = − . (14) 330 

The value range of these four coefficients is [0, 1], i.e.  𝜆𝜆𝑙𝑙,𝑙𝑙 , 𝜆𝜆𝑙𝑙,𝑢𝑢,𝜆𝜆𝑢𝑢,𝑙𝑙 , 𝜆𝜆𝑢𝑢,𝑢𝑢 ∈ [0,1]  where a value of 0 331 

indicates asymptotical independence. Equations (11) and (14) are also known as coefficients of upper and 332 

lower tail dependence. For multivariate case, if the copula function is known, Eqs. (7) to (10) can be further 333 

expressed as follows 334 

( ) ( ),
| 0

,...,
liml l

i j u

C u u
C

u
λ

→ +
= ,    (15) 335 
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( ) ( ),
| 0

,...,
lim il u

i j u

C u u
C

u
λ

→ +
=



,    (16) 336 

( ) ( ),
| 0

,...,
lim ju l

i j u

C u u
C

u
λ

→ +
=



,    (17) 337 

( ) ( ),,
| 0

,...,
lim j iu u

i j u

C u u
C

u
λ

→ +
=



,    (18) 338 

where 𝐶̆𝐶𝑖𝑖(. ) and 𝐶̆𝐶𝑗𝑗(. ) are copulas modified from the base copula 𝐶𝐶(. ) which can be shown by the following 339 

relationship 340 

   ( ) ( ) ( )1 1 1 1 1 1 1,..., ,..., ,1, ,..., ,..., ,1 , ,...,k n k k n k k k nC u u C u u u u C u u u u u− + − += − −


, (19) 341 

and 𝐶̆𝐶𝑗𝑗,𝑖𝑖(. ) can be expressed by 342 

( ) ( ) ( ), 1 1 1 1 1 1 1,..., ,..., ,1, ,..., ,..., ,1 , ,...,j i n j i i n j i i i nC u u C u u u u C u u u u u− + − += − −
  

. (20) 343 

Tail dependencies can help to understand differences in the dependence structure for different tails. 344 

This provides useful information about the properties of extreme values from the intrinsic dependencies. In 345 

other words, tail dependencies provide a measure for relating one margin exceeding a certain quantile 346 

threshold while the other has already exceeded that quantile threshold. When assessing the asymmetry of a 347 

copula, the lower-upper and upper-lower tail coefficients can be utilized. The special case of a symmetric 348 

copula is included in this model. A symmetric copula can have its variables exchanged, the copula function 349 

values 𝐶𝐶(𝑢𝑢, 1 − 𝑢𝑢) in Eq. (12) and 𝐶𝐶(1 − 𝑢𝑢,𝑢𝑢) in Eq. (13) are identical. Further, for the symmetric case, 350 

the value of the lower-upper tail coefficient equals the upper-lower tail coefficient. If these coefficients are 351 

different, the copula is asymmetric. However, it should be noticed that the number of coefficients will grow 352 

exponentially as the dimension increases, and the interpretation of each coefficient becomes more difficult 353 

and indeterminate/vague. More detailed explanations are required when tail dependences are calculated for 354 

high dimensional data.    355 

4.2 Asymmetric copulas constructed by products 356 
 357 
The construction of asymmetric copulas can be pursued in various ways. In recent years, many methods 358 

have been developed in this direction (Grimaldi and Serinaldi, 2006; Mesiar and Najjari, 2014; Mazo et al., 359 
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2015). These include plenty of techniques that are utilized to capture the asymmetric dependencies in the 360 

multivariate data (Patton, 2006). However, not all of the asymmetric copulas can be practically applied. The 361 

application of some asymmetric copulas may need extra functions to characterize the complex dependencies. 362 

For instance, the well known Archimax copula, which is proposed by Capéraà et al. (2014), needs to have 363 

the Pickands dependence function for its construction. The construction of Pickands dependence is quite 364 

difficult and sometimes required complex statistical derivations (Pickands, 1981). Therefore, from a 365 

practical point of view, the most popular and practical alternatives among these asymmetric copulas are 366 

reviewed in this study. We choose to focus on the asymmetric copula families that can be easily constructed 367 

from various base copulas, e.g. Archimedean copulas. Asymmetric copulas with a very complicated way of 368 

construction are not explored in the present study. 369 

One popular construction principle for asymmetric copulas is to formulate a product of copulas (see 370 

Liebscher, (2008)). A general form to obtain an asymmetric copula is 371 

( ) ( ) ( )( )1 1 1
1

,..., ,...,
k

product n i i in n
i

C u u C f u f u
=

=∏ ,   (21) 372 

where 𝐶𝐶1, … ,𝐶𝐶𝑘𝑘: [0,1]𝑑𝑑 → [0,1] are all n-dimensional copulas,  𝑓𝑓𝑖𝑖𝑖𝑖: [0,1] → [0,1] for i=1,…,k, j=1,…,n are 373 

functions that are strictly increasing or identically equal to 1. To ensure this product of copulas is also a 374 

copula, the functions 𝑓𝑓𝑖𝑖𝑖𝑖 have to satisfy the following additional properties: 375 

1. 𝑓𝑓𝑖𝑖𝑖𝑖(1) = 1 and 𝑓𝑓𝑖𝑖𝑖𝑖(0) = 0, 376 

2. 𝑓𝑓𝑖𝑖𝑖𝑖 is continuous on (0,1], 377 

3. If there are at least two functions 𝑓𝑓𝑖𝑖1𝑗𝑗 ,𝑓𝑓𝑖𝑖2𝑗𝑗 with 1 ≤ 𝑖𝑖1, 𝑖𝑖2 ≤ 𝑘𝑘 which are not identically equal to 1, then 378 

𝑓𝑓𝑖𝑖𝑖𝑖(𝑥𝑥) > 𝑥𝑥 holds for 𝑥𝑥 ∈ (0,1), i=1,…,k. 379 

From the above it is easy to see that the constructed copula is generally an asymmetric copula. The 380 

properties of these asymmetric copulas are derived from the fundamental properties of copula model. All 381 

the functions 𝑓𝑓𝑖𝑖𝑖𝑖  play a role in the asymmetric dependence modeling. This technique is also known as an 382 
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extension of Khoudraji’s device (1995). For example, by utilizing type I individual function (see Table 1) 383 

and set k, n=2, Eq. (21) becomes exactly the Khoudraji copula. The n-dimensional copulas 𝐶𝐶1, … ,𝐶𝐶𝑘𝑘 can be 384 

selected from various groups of parametric copulas, e.g. the Gumbel, the Clayton, the Frank, the Gaussian and 385 

etc. It is also possible to use independent or Fréchet-Hoeffding bounds for the individual copulas. As for the 386 

individual functions 𝑓𝑓𝑖𝑖𝑖𝑖, Liebscher (2008) has provided a list of candidate functions which are suitable for the 387 

application. The most applicable individual functions are presented in Table 1. This flexibility can allow this 388 

asymmetric copula to be extended to much more complex multivariate models. However, even with these 389 

individual functions provided, the number and type of individual copulas are still unknown and need to be decided. 390 

Moreover, more advanced numerical methods are required for the simulation and use of this type of copula. 391 

Fortunately, certain simulation techniques have already been developed and utilized in the statistical analysis 392 

software. For example, the simulation of Khoudraji copula can be easily done by using a package named “copula” 393 

in R (Hofert et al., 2016). The use of Khoudraji-Liebscher copulas has already been very popular in the 394 

hydrology community, for example, both in terrestrial hydrology (e.g., Durante and Salvadori (2010); De 395 

Michele et al. (2013)) and in maritime hydrology (e.g., Salvadori et al. (2013, 2014, 2015)). 396 

Table 1 Examples of individual functions 397 
Individual function Parameters Value range 

I. ( ) ij
ijf u uθ=  

1
1

k
iji
θ

=
=∑  [ ]0,1ijθ ∈  

II. ( ) ( )1ij iju
ijf u u eθ α−=  1

1
k

iji
θ

=
=∑ , 

1
0

k
iji

α
=

=∑  

( )0,1ijθ ∈ , ( ),1ijα ∈ −∞ , 

0ij ijθ α+ ≥  

III. * ( ) ( )2
1 exp lnj j jf u uθ θ= − + , 

( ) 2
2 exp( ln )j j jf u u uθ θ= − + +  

{ }1,...,j for j nθ ∈  1
2jθ ≥  

*Note: type III individual functions can only be used for the asymmetric copula having two individual copulas 398 
(e.g. k=2). 399 
 400 

4.3 Asymmetric copulas constructed by linear convex combinations 401 
 402 
Another way of an algebraic construction of an asymmetric copula is by linear convex combinations of 403 

copulas. However, the direct linear convex combination of copulas is not suitable to create asymmetric 404 

copulas. Since most fundamental copulas are symmetric, the linear convex combination of these copulas 405 

✓I I 
-

✓I I 
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would also only produce symmetric copulas. Wu (2014) has proposed a way to modify the fundamental 406 

copulas in order to account for asymmetric properties. In his theorem, a new kind of copula is proposed as 407 

( ) ( ) ( )1 1 1 1 1 1 1,..., ,..., ,1, ,..., ,..., ,1 , ,...,h n h h n h h h nC u u C u u u u C u u u u u− + − += − −


 (22) 408 

where C(.) is the original n-dimensional base copula. It can be seen that the variable uh is not exchangeable 409 

with other variables in the developed copula. This type of copula is also known as flipped copula as specified 410 

by Salvadori et al. (2007). Such copulas which have flipped dependence structures are already available in 411 

the R package “copula” (e.g. rotCopula()). 412 

Therefore, with such amendment, 𝐶̆𝐶ℎ(. ) can be used to fit data exhibiting unequal tail dependencies 413 

along the hth variable. Furthermore, in order to model asymmetric properties in multiple variables, one may 414 

use the following equation to construct the copulas: 415 

     ( ) ( )1 10
,..., ,...,

n
addition n h h nh

C u u p C u u
=

=∑


   (23) 416 

where 𝑝𝑝ℎ  is a weighting factor  satisfying the conditions 0 ≤ 𝑝𝑝ℎ ≤ 1  and ∑ 𝑝𝑝ℎ𝑛𝑛
ℎ=0 = 1 . When h=0, 417 

𝐶̆𝐶0(𝑢𝑢1, … ,𝑢𝑢𝑛𝑛) = 𝐶𝐶(𝑢𝑢1, … ,𝑢𝑢𝑛𝑛). That is, an asymmetric copula is obtained by linear convex combinations of 418 

copulas. The compound copula is now a combination of various base copulas with different individual tail 419 

dependencies. As in the approach in Section 4.2, a large group of copula families can be selected for the 420 

base copula 𝐶𝐶(𝑢𝑢1, … ,𝑢𝑢𝑛𝑛). For the case of a bivariate copula 𝐶𝐶(𝑢𝑢1,𝑢𝑢2), Eq. (22) can be further expressed as 421 

( ) ( )1 1 2 2 1 2, 1 ,C u u u C u u= − −


,     (24) 422 

( ) ( )2 1 2 1 1 2, ,1C u u u C u u= − −


,    (25) 423 

which can also be called the horizontal- and vertical-flipped copulas (Salvadori et al. 2007). Therefore, the 424 

constructed asymmetric copula can be generally written as 425 

( ) ( ) ( ) ( )1 2 0 1 2 1 1 1 2 2 2 1 2, , , ,additionC u u p C u u p C u u p C u u= + +
 

  (26) 426 

where 𝑝𝑝0,𝑝𝑝1,𝑝𝑝2 ≥ 0 and 𝑝𝑝0 + 𝑝𝑝1 + 𝑝𝑝2 = 1. Using this formula, we can easily adjust the values of weight 427 

factors assigned to each base copula in order to characterize the asymmetry properties of bivariate data along 428 

different variables. In other words, the individual copula 𝐶̆𝐶1(𝑢𝑢1,𝑢𝑢2)  or 𝐶̆𝐶2(𝑢𝑢1,𝑢𝑢2)  can only capture the 429 



19 
 

asymmetry in one variable. As such, we can also point out the differences between the current construction 430 

method and Liebscher’s method. That is, the current method constructs asymmetric copulas that present the 431 

asymmetric property in one variable each at a time, whereas Liebscher’s method constructs the copulas for 432 

variables having asymmetric properties all at a time.  433 

4.4 Skewed copula 434 
 435 

Besides the algebraic construction methods, another way of modeling asymmetrically dependent data is 436 

utilizing skewed copulas. This approach originated from skewed multivariate distributions and generalizes 437 

the original distribution to allow non-zero skewness. The idea is to transform a multivariate distribution to 438 

an asymmetric one by introducing a parameter, which can regulate the skewness (Koll et al., 2013). However, 439 

there are only few skewed copulas available in the literature. The most popular one is the skew Gaussian 440 

copula. 441 

Before introducing the skew Gaussian copula, we recall some basics about the Gaussian copula. An 442 

n-dimensional Gaussian copula is defined by 443 

( ) ( ) ( )( )1 1
1 1,..., ,..., ;Gaussian n n nC u u u u− −= Φ Φ Φ Σ   (27) 444 

where Φ-1(.) denotes the inverse of the standard normal distribution function, Φn(.) represents the n-445 

dimensional normal distribution function, and ∑ stands for the covariance matrix. The Gaussian copula is a 446 

member of the elliptical copula family. The function is very like a multivariate normal distribution function 447 

and therefore can only be used to model variables having symmetric dependencies. To overcome this 448 

limitation, the basic formula is modified to account for asymmetries based on skew Gaussian distribution 449 

functions. A general n-dimensional skew Gaussian copula is given by   450 

( ) ( ) ( )( )1, 1,
1 1

1 , 1 1 1,..., ; , , ; ,1, ,..., ; ,1, ; , ,skew skewskew Gaussian n n skew n n nC u u F F u F uµ β µ β µ β µ− −
− Σ = Σ β  (28) 451 

where 𝐹𝐹1,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
−1 (. ) is the inverse of the univariare skew normal distribution SN(μi, 1, βi), 𝐹𝐹𝑛𝑛,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(. ) is the n-452 

dimensional skew normal distribution with mean parameter μ, shape parameters β and covariance matrix ∑. 453 

The density function of a multivariate skew normal distribution for n-dimensional random variables 454 
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X(x1,…,xn) is given by 455 

( ) ( ) ( ); , 2 ; , ; ,T
n n nf X X Xµ β φ µ µΣ, = Σ Φ Σβ    (29) 456 

where 𝜙𝜙𝑛𝑛(∙;𝜇𝜇,∑)  and 𝛷𝛷𝑛𝑛(∙;𝜇𝜇,∑)  represent the probability density function and cumulative distribution 457 

function of n-dimensional normal distribution with mean μ and covariance ∑ (Azzalini and Dalla Valle, 458 

1996). Usually, for the ease of modeling, the mean values are all set at zero. The asymmetric property thus 459 

only results from the shape parameters. When β=0, the copula becomes the standard Gaussian copula with 460 

no skewness. If β increases, the skewness of the distribution increases. Once β changes its sign, the skewness 461 

is reflected in the opposite side of the axis. The asymmetric properties can be characterized by the shape 462 

parameters either for the marginals or for the multivariate distribution.  463 

From the comparison between Eq. (28) and Eq. (21), it can be seen that the skew copula is in fact a 464 

special case of the constructed copulas as given in Section 4.2. Compared to the general form, the skew 465 

copula has only one individual copula (k=1) and this individual copula (Ci) and the individual function (fij) 466 

are coming from the same family (skew Gaussian distribution). However, it is still interesting to discuss the 467 

use of skew copulas since no previous work has been done on its application in the modeling of ocean data.  468 

5．Data analysis 469 

To demonstrate the advantages of asymmetric copulas over the other models in a real case application, a 470 

comparative study is performed based on ocean data from the National Data Buoy Center, US (NDBC, 471 

2016). The data were collected at a site in the Aleutian Trench, off the south coast of Alaska (52.785˚N 472 

155.047˚W Buoy No. 46066) which has a water depth of 4545 m. The hourly recorded ocean data from the 473 

years 2014 and 2015 are extracted for the investigation (2014/1/1 01:00-2015/12/31 23:00). We choose to 474 

study three ocean parameters: significant wave height (Hw), average wave period (Ta) and wind speed (Vw). 475 

The unit of the measured wave height is in meters, while the units of wave periods and wind speed are 476 

second and meter per second, respectively. Here, only non-braked waves are recorded. The record of the 477 

ocean data shows a clear seasonal variation as depicted in Fig. 3. The data indicate more severe conditions 478 

in winter compared to summer. 479 
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As the time varying feature of the data record is very obvious, it is not reasonable to consider a 480 

simple statistical analysis to all the multivariate data at one time. A data partitioning is necessary to separate 481 

different groups of data for the analysis. To simplify the problem, we analyze a specific period of data which 482 

are critical and short. On this basis we can assume that all ocean data are quasi stationary for the statistical 483 

analysis. In this study, the ocean data covering the most severe period from November to February are 484 

chosen for the investigation. Figure 3 shows the variations of the mean and standard deviation of Hw, Ta and 485 

Vw over this period. However, the statistical testes are required to check whether the data are significantly 486 

different from each other in different months. Here, t-tests are applied to test whether the data of Hw, Ta and 487 

Vw are significantly different in different months. The highest p-values for Hw, Ta and Vw are 0.324, 0.187 488 

and 0.443 which imply that the hypothesis of data from different months show statistically different means 489 

is rejected. Therefore, it is believed that the data within the period from November to February may 490 

approximately be represented by the same statistical model. Although the data within this period might not 491 

be perfectly homogeneous, the time varying effects associated with Hw, Vw and Ta can be neglected. 492 

Therefore, the data set (Hw, Vw, Ta) from the four months winter season in 2014 and 2015 are used for the 493 

subsequent statistical analysis. However, it should be pointed out the ocean data at this ocean site for the 494 

whole period is not completely collected. It has an amount of missing data in the hourly record. Only 3910 495 

out of 5952 observations are collected. The detailed information and a general statistical summary of Hw, 496 

Vw and Ta is provided in Table 2. The differences in statistical properties between different ocean data are 497 

large. Individual characteristics of the ocean parameters Hw, Vw and Ta have to be investigated separately. 498 

 499 
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 500 
 501 
Figure 3 Monthly box plot of Hw, Vw and Ta over one year 502 
 503 
Table 2 Basic statistics of Hw, Vw and Ta. 504 

Dataset Number of data Mean  Std. Deviation Skewness Kurtosis 
Hw 3910 3.509 1.276 1.041 1.802 
Vw 3910 7.687 3.726 0.324 -0.318 
Ta 3910 7.814 1.073 0.277 0.248 

 505 

Another issue that needs to be considered before the statistical modeling is the serial correlation. To 506 

observe the serial dependence, the autocorrelation functions for Hw, Vw and Ta are plotted in Fig. 4. The 507 

figure shows the autocorrelation function values of the time series are not very strong when time lag is about 508 

3 hours. In fact, the dependence between the observation and the one 3 hours later can be negligible (e.g. 509 

autocorrelation function value is within the rejection region for test of individual autocorrelations, see Fig. 510 

4). Therefore, in this study, we generally assume the serial dependence is weak and the collected data can 511 

be directly used for statistical analysis. However, it should be realized the time series data need to be pre-512 

processed when serial correlation is very strong. The current analysis only adopts a relaxed assumption in 513 

this data pre-processing. Typical steps about how to remove the serial correlations contained in time series 514 

data can be found in Vanem (2016). 515 
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516 

 517 

Figure 4 Autocorrelation function of Hw, Vw and Ta for the selected period 518 

As a first step, like in all the copula approaches, marginal distributions are determined for the 519 

variables to put up an asymmetric copula. In order to make a fair judgment, a group of distributions are 520 

utilized to fit the individual ocean data. These include Weibull, Normal, Lognormal, Rayleigh, Extreme 521 

value, Exponential and Gamma distributions. Maximum likelihood method is used to estimate the model 522 

parameters for each variable. The Akaike Information Criterion (AIC) is used to select the best models. 523 

Table 3 summarizes the calculated statistics for each model. It indicates the best models are Lognormal 524 

distribution for Hw, Weibull distribution for Vw and Gamma distribution for Ta. The goodness of fitting of 525 

these models to the variables can be seen from Fig. 5. The 95% bounds of the empirical cumulative 526 
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distribution function are also included. The p-value in the Kolmogorov-Smirnov test shows that the fitted 527 

model is a valid option at a significant level of 1% for each of the ocean variables. 528 

 529 

 530 
 531 
Figure 5 Distribution fitting to the collected ocean data 532 
 533 
Table 3 Calculated AIC statistics for the marginal distribution model fitting 534 

 Weibull Normal Lognormal Rayleigh Extreme 
value 

Exponential Gamma 

Hw 125814 128922 119792* 127976 149104 156506 121004 
Vw 139494* 151950 151300 187970 162430 228980 151000 
Ta 186032 187578 188190 189672 198086 218644 186006* 

*The lowest AIC value indicates the best model. 535 
 536 

Despite the differences in the individual characteristics, the multivariate statistical properties in 537 

between the ocean variables are studied. The dependence measure concepts including Kendall’s tau, 538 

Spearman’s rho and correlation coefficient are calculated for each pair of the dataset as summarized in Table 539 
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4. Furthermore, the measure of the asymmetry is computed for the paired data and presented in the table. 540 

Here, the calculation of the measure of asymmetry adopts an infinity value for p as following Eq. (5). As 541 

can be seen from this table, the dependence measure concepts show similar values. The dependence in (Hw, 542 

Vw) and (Hw, Ta) is relatively stronger than that in (Vw, Ta) (as indicated by the value and independence tests). 543 

On the other hand, the results of asymmetric measures for (Hw, Ta) and (Vw, Ta) are slightly higher than (Hw, 544 

Vw). A test of exchangeability is also conducted for the bivariate data based on pseudo observations. The 545 

calculated p-values for (Hw, Ta), (Vw, Ta) and (Hw, Vw) are 0.001, 0.003 and 0.008 according to the method 546 

given by Genest et al. (2012). This indicates all the bivariate data show obvious asymmetric dependency. A 547 

general feeling of these complicated dependencies can be developed using the scatter plot in Fig. 6. It can 548 

be seen that all the dependencies between the ocean variables are not perfectly linear. For example, (Hw, Ta) 549 

data points are only available in the left upper domain in the scatter plot. Moreover, it should be noticed that 550 

the tail dependency of these bivariate data is quite different. (Hw, Ta) data has a very strong tail dependency 551 

in the maxima extremes whereas (Hw, Vw) data has a weak tail dependency in the maxima extremes (can be 552 

seen as the linearity). The characteristics of tail dependency must also be accounted for in the multivariate 553 

data modeling. 554 

 555 
Table 4 Summary of the ocean bivariate data (p-values of the independence tests are provided in the bracket) 556 

Data Number of 
data 

Kendall’s tau Spearman’s rho Correlation 
coefficient 

Measure of 
asymmetry 
η∞ 

Hw, Vw 3910 0.342 
(< 2.2∙10-16) 

0.492 
(< 2.2∙10-16) 

0.545 
(< 2.2∙10-16) 

0.005 

Hw, Ta 3910 0.483 
(< 2.2∙10-16) 

0.666 
(< 2.2∙10-16) 

0.652 
(< 2.2∙10-16) 

0.028 

Vw, Ta 3910 -0.070 
(0.7029) 

-0.105 
(0.6732) 

-0.095 
(0.7112) 

0.023 
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 557 
Figure 6 Scatter plot of Hw, Ta and Vw 558 
 559 

For the dataset (Vw, Ta), all the dependence measure values are close to zero implying a nearly 560 

independent relationship between the variables. From a statistical point of view, for such a weak dependency, 561 

a multivariate modeling is not necessary. Therefore, the subsequent study is limited to the datasets (Hw, Ta) 562 

and (Hw, Vw) for the copula modeling. Based on the selected marginal distribution models, the multivariate 563 

ocean data are transformed to the copula domain. A scatter plot of (Hw, Ta) and (Hw, Vw) in the copula domain 564 

is presented in Fig. 7. The pseudo-observations show clear asymmetric dependence structures. Compared 565 

to (Hw, Ta), the bivariate data (Hw, Vw) are distributed over a broader region in the copula domain. From the 566 

scatter plot it can be observed that the data (Hw, Ta) centralize at both the minimum and the maximum 567 

extremes, while the data (Hw, Vw) only centralize at maximum extremes. This can be seen even clearer from 568 

the probability density plot. As shown in Fig. 8, the peak density values appear at both extremes in (Hw, Ta) 569 

but only at the maximum extremes for (Hw, Vw). 570 
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571 
Figure 7 Scatter plot of (Hw, Ta) and (Hw, Vw) in the copula domain 572 
 573 

 574 
Figure 8 Empirical probability density of (Hw, Ta) and (Hw, Vw) in the copula domain 575 
 576 

To better understand tail dependencies of (Hw, Ta) and (Hw, Vw), the four tail dependence measure 577 

concepts as discussed in Section 4.1 are applied to the two data sets. For varying quantile values, the tail 578 

dependence coefficient values are plotted in Figs. 9 and 10. It can be seen that the upper-upper (λu,u) and the 579 

lower-lower (λl,l) tail dependence coefficients show similar values with respect to each other for both (Hw, 580 

Ta) and (Hw, Vw). However, the value of the upper-lower (λu,l) and the lower-upper tail (λl,u) dependence 581 

coefficients show large differences when the quantile values change. This is especially obvious for the high 582 

quantile tail extremes (e.g. u → 0). Compared to (Hw, Ta), the data of (Hw, Vw) do not show too much 583 

difference in the value of the upper-lower and the lower-upper tail dependence coefficients. Generally, the 584 

results show that the dependence between Hw and Ta is asymmetric and nonlinear whereas the dependence 585 
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between Hw and Vw is almost symmetric and linear. These tail dependence characteristics are considered  in the 586 

subsequent evaluation of the copula approaches. 587 

 588 
Figure 9 Estimated empirical tail dependences for the data (Hw, Ta) 589 
 590 

 591 
Figure 10 Estimated empirical tail dependences for the data (Hw, Vw) 592 
 593 

Before proceeding with the multivariate analysis, it is important to address the problem of repeated 594 

observations in the data sample (Genest et al. 2011; Bücher and Kojadinovic,  2016). In particular, when a 595 

copula is chosen and fitted on a set of collected data, it is believed that the considered variables originate 596 

from a continuous joint distribution. However, due to the limitations of measurement equipment, the 597 
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collected data of Hw, Ta and Vw are rounded to a numeric number having two decimal places in the current case. 598 

A summary of the quantity of tied data among the collected ocean data is provided in Table 5. It can be seen the 599 

amount of repeated observations are quite large. Such discretized version of the actual measurement may cause 600 

some errors in the statistical analysis. In fact, if the marginals are discontinuous, the data might contain ties 601 

(repeated observations) and perhaps the probabilistic model associated with the underlying random vectors 602 

cannot be uniquely determined, see the exact survey by Genest and Neslehova (2007) and also the simulation 603 

study by Pappadà et al. (2016). Therefore, herein, a reasonable procedure to test how much the randomization 604 

of the data may affect the statistical analysis is carried out in advance to the multivariate modeling. 605 

Table 5 Summary of the quantity of tied data. 606 
 Hw Vw Ta (Hw, Vw) (Hw, Ta) 
Percentage of 
repeated 
observations 

84.78% 86.32% 91.12% 81.46% 76.11% 

 607 

An easy and practical way to tackle this issue is to add random components to each of the 608 

observations (De Michele et al. 2013; Salvadori et al. 2014). Here, the multivariate ocean data are modified 609 

to contain a random term by the following formulas  610 

i iw w V iV V α= + ∆ , 
i iw w H iH H β= + ∆   and  

i ia a T iT T γ= + ∆ , 1,...,i n= , (30) 611 

where n is the sample size, ΔV, ΔH and ΔT are the data resolutions for Hw, Ta and Vw and α, β and γ are random 612 

samples drawn from the standard uniform distribution between 0 and 1. For the collected data, the 613 

resolutions are ΔV =0.01m/s, ΔH =0.01m and ΔT =0.01s. Therefore, through such procedures, the original 614 

data becomes randomized. 𝑉𝑉𝑤𝑤�, 𝐻𝐻𝑤𝑤�  and 𝑇𝑇𝑎𝑎� are now continuous and could represent the continuous original 615 

variables wrongly recorded as discrete ones.  616 

As discussed in the above, it is necessary to show how significant the tie effects are. In other words, 617 

we need to test whether the randomization procedure affects the statistical analysis. Generally, this can be 618 

seen from the comparison between the original data and the randomized data. In this work, we test both the 619 

univariate marginals and the joint behavior of the bivariate data. Figure 11 shows the CDF plot of original 620 

and randomized data for Hw, Vw and Ta respectively. The adopted parametric models as given in Table 3 are 621 
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also plotted in the figure. The differences between CDFs of the original data and of the randomized data are 622 

quite small. The adopted models fit well in both cases. The model parameters of the marginal distribution 623 

are estimated for the randomized data and compared with the original data as shown in Table 6. The 624 

calculated p-values show that the randomized data can be well fitted by the adopted marginal distributions. 625 

Furthermore, the scatter plots of (Hw, Vw) and (Hw, Ta) are also presented in Fig. 12. It is observed that the 626 

randomized data almost overlaps the original data when they are plotted in the same figure. Finally, the KS 627 

test is performed in all these comparisons. All the statistics results indicate the randomized data and the 628 

original data show nearly the same characteristics. The fitted parametric models are also accepted since the 629 

calculated p-values are all larger than 5%. As a result, in all cases, the randomized data do not show any 630 

significant differences with respect to the original data. In other words, the randomization procedure does 631 

not significantly spoil the statistical analysis of the data. As a consequence, from a practical point of view, 632 

we believe that the collected data could represent the continuous random variables and thus can be used for 633 

performing the further analysis.  634 

 635 

 636 

 827 

Figure 11 CDF plots of original and randomized data for Hw, Vw and Ta 828 
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 829 

Figure 12 Scatter plots of original and randomized data for (Hw, Vw) and (Hw, Ta) 830 

Table 6 Comparison of the estimated model parameters between original and randomized data (p-values of the 831 
KS tests between the simulated data and the fitted model for the original data are provided in the bracket) 832 

 Hw Vw Ta 
Original data μ=1.1924, σ=0.3561 a=8.6267, b=2.1107 k=53.0181, θ=0.1474 
Simulated data μ=1.1940, σ=0.3555 

(p-value=0.271) 
a=8.6379, b=2.1197 
(p-value=0.167) 

k=53.0824, θ=0.1473 
(p-value=0.165) 

 833 

The asymmetric copulas discussed in Section 4 are used to model the bivariate data. In order to make 834 

a comparison between asymmetric copulas and the traditional ones, the commonly applied symmetric 835 

copulas are also considered. Nevertheless, it is still difficult to choose the candidate copula models as many 836 

parametric copula families and combination rules are available in the literature. To simplify the problem, 837 

this work is limited to the use of Archimedean copulas. That is, the Gumbel, Clayton and Frank copulas, 838 

which feature different tail dependencies, are used to construct the asymmetric copulas. The asymmetric 839 

copulas are formed according to the options discussed for combining the three selected copula models. 840 

Specifically, based on different rules, the following four categories of copula models are considered: 841 

I. One parameter copula: The first group considers the traditional symmetric copulas from the 842 

Archimedean family. These are Gumbel, Clayton and Frank copulas. 843 

II. Asymmetric copulas constructed by products: The second group of copulas is constructed by the 844 

product of copulas which are following the rules given in Section 4.2. The model combines two base 845 
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copulas from the selected Archimedean copulas. These include three combinations, namely, Gumbel-846 

Clayton, Gumbel-Frank and Clayton-Frank. To see the influence of individual functions in Eq. (21), 847 

all the three types of individual functions in Table 1 are considered in the construction. 848 

III. Asymmetric copulas constructed by linear convex combinations: The third group of copulas is 849 

constructed based on linear convex combination of copulas as presented in Section 4.3. The selected 850 

Gumbel, Clayton and Frank copulas are considered as the base copulas in Eq. (23). 851 

IV. Skewed copula: The fourth group of copula is the skewed Gaussian copula, which was introduced in 852 

Section 4.4. Since this copula does not need any base copulas, there is only one model in this category. 853 

To make a fair comparison amongst all the candidate models, the corrected Akaike Information 854 

Criterion (AICc) is used. This is given by 855 

( ) ( )( )2 1 2
AICc 2 2

2
p p

l p p
n p
+ +

= − + +
− −

    (31) 856 

where n is the sample size, p is the number of parameters used in each model, and l(p) is the maximum log-857 

likelihood for the model. The AIC measures the relative quality of statistical models for a given set of data 858 

whereas AICc gives a correction for finite sample sizes. A smaller AIC value indicates a better model. Note 859 

there are several other ways to judge the quality of a multivariate model. For example, the Bayesian 860 

information criterion and the cross-validation criterion can be found in (Grønneberg and Hjort, 2014). A 861 

discussion on the performances of these criterions is also provided by Jordanger and Tjøstheim (2014). 862 

6．Comparison of symmetric and asymmetric copulas 863 

The parameter estimates, log-likelihood and AICc statistics values for each of the models are presented in 864 

Table 7 and Table 8. The values of the model parameters are estimated based on the minimization of Cramer-865 

von Mises statistic, which is explained in Appendix A. The best models in each of the four categories 866 

including different types of individual functions are highlighted in the tables.  867 

 868 

Table 7 Comparison of parameter estimates and AICc values for the data of (Hw, Ta) 869 
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Copula type Parameter estimate Total log-
likelihood 

No. of 
parameters 

AICc 

I.  One parameter 
copula 

Gumbel γ=1.744 -10973 5 21956 
Clayton  γ=1.253 -10950 5 21910 
Frank γ=5.291 -10856 5 21722* 

II. Asymmetric copulas 
constructed by 
products 

Gumbel-Clayton Type1 γ1=3.766, γ2=3.917, 
θ11=0.616, θ12=0.287,  
θ21=0.384, θ22=0.713 

-10700 10 21420* 

Gumbel-Frank Type1 γ1=4.417, γ2=6.019, 
θ11=0.517, θ12=0.238,  
θ21=0.483, θ22=0.762 

-10735 10 21490 

Frank-Clayton Type1 γ1=6.053, γ2=5.021, 
θ11=0.548, θ12=0.818,  
θ21=0.452, θ22=0.182 

-10873 10 21766 

Gumbel-Clayton Type2 γ1=2.876, γ2=8.743, 
θ11=0.785, θ12=0.739,  
θ21=0.215, θ22=0.261, 
α11=-0.061, α12=-0.538, 
α21=0.061, α22=0.538 

-10636 14 21300 

Gumbel-Frank Type2 γ1=3.025, γ2=10.468, 
θ11=0.722, θ12=0.663,  
θ21=0.278, θ22=0.337, 
α11=-0.014, α12=-0.467, 
α21=0.014, α22=0.467 

-10627 14 21282* 

Frank-Clayton Type2 γ1=6.302, γ2=16.588, 
θ11=0.741, θ12=0.831,  
θ21=0.259, θ22=0.169, 
α11=-0.655, α12=-0.275, 
α21=0.655, α22=0.275 

-10684 14 21396 

Gumbel-Clayton Type3 γ1=2.017, γ2=2.454, 
θ1=0.899, θ2=0.835 

-10868 8 21752 

Gumbel-Frank Type3 γ1=1.879, γ2=6.091, 
θ1=1.024, θ2=0.987 

-10837 8 21690* 

Frank-Clayton Type3 γ1=-0.976, γ2=4.296, 
θ1=1.912, θ2=1.479 

-11098 8 22212 

III. Asymmetric 
copulas constructed by 
linear convex 
combinations (LCC) 

Gumbel-LCC γ=2.122, p0=0.968,  
p1=0.031, p2=0.001 

-11336 8 22688 
 

Clayton-LCC γ=3.460, p0=0.891,  
p1=3.79·10-9, p2=0.108 

-11398 8 22812 

Frank-LCC γ=5.961, p0=0.964,  
p1=0.015, p2=0.020 

-11132 8 22280* 

IV. Skewed copula Skew-Gaussian β1=-0.418, β2=0.964, 
β=[-3.002, 3.884] 

-9661 8 19338* 

*Minimum AICc value indicates the best model in each type. 870 
 871 
 872 
 873 
 874 
 875 
 876 
Table 8 Comparison of parameter estimates and AICc values for the data of (Hw, Vw) 877 

Copula type Parameter estimate Total log-
likelihood 

No. of 
parameters 

AICc 

I. One parameter 
copula 

Gumbel γ=1.507 -16108 5 32226* 
Clayton  γ=0.461 -16571 5 33152 
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Frank γ=3.397 -16240 5 32490 
II. Asymmetric copulas 
constructed by 
products 

Gumbel-Clayton Type1 γ1=1.898, γ2=10, 
θ11=0.590, θ12=0.958,  
θ21=0.410, θ22=0.042 

-16155 10 32330 
 

Gumbel-Frank Type1 γ1=1.718, γ2=5.373, 
θ11=0.820, θ12=0.999,  
θ21=0.180, θ22=0.001 

-16128 10 32276* 

Frank-Clayton Type1 γ1=3.574, γ2=5.202, 
θ11=0.999, θ12=0.999,  
θ21=0.001, θ22=0.001 

-16241 10 32502 
 

Gumbel-Clayton Type2 γ1=1.606, γ2=16.797, 
θ11=0.999, θ12=0.001,  
θ21=0.001, θ22=0.999, 
α11=-0.237, α12=0.723, 
α21=0.237, α22=-0.723 

-16060 14 32148* 

Gumbel-Frank Type2 γ1=1.001, γ2=6.160, 
θ11=0.999, θ12=0.001,  
θ21=0.001, θ22=0.999, 
α11=-0.001, α12=1.001, 
α21=0.001, α22=-1.001 

-16136 14 32300 

Frank-Clayton Type2 γ1=5.111, γ2=4.987, 
θ11=0.999, θ12=0.001,  
θ21=0.001, θ22=0.999, 
α11=0.001, α12=0.999, 
α21=-0.001, α22=-0.999 

-16163 14 32354 
 
 

Gumbel-Clayton Type3 γ1=1.676, γ2=1.001, 
θ1=0.537, θ2=0.500 

-16177 8 32370* 

Gumbel-Frank Type3 γ1=3.130, γ2=0.435 
θ1=0.957, θ2=0.841 

-16262 8 32540 

Frank-Clayton Type3 γ1=-9.589, γ2=6.129, 
θ1=1.372, θ2=1.052 

-16359 8 32734 
 

III. Asymmetric 
copulas constructed by 
linear convex 
combinations (LCC) 

Gumbel-LCC γ=1.586, p0=0.998,  
p1=1.225·10-9, p2=0.001 

-16116 8 32248* 
 

Clayton-LCC γ=0.501, p0=0.981,  
p1=0.003, p2=0.016 

-16723 8 33462 
 

Frank-LCC γ=3.767, p0=0.979,  
p1=0.020, p2=0.001 

-16420 8 32856 

IV. Skewed copula Skew-Gaussian β1=-0.877, β2=0.081, 
β=[-1.416, 0.593] 

-16722 8 33460* 

*Minimum AICc value indicates the best model in each type. 878 
 879 

Again, in order to see the influence of “ties” to the multivariate data, a randomization study is 880 

conducted. Following the same procedures provided in Section 5, the randomized multivariate data are 881 

generated by adding the random component. The dependency measures including the Kendall’s τk, 882 

Spearman’s ρs and correlation coefficient for the randomized data are estimated and compared with the 883 

original data in Table 9. It can be seen the differences in the values of dependency measures are really small 884 

(around 1%) indicating the influence of ties is minimal in the degree of dependencies for multivariate data. 885 
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A further comparison is also done for the copula parameter estimates. The parameter estimates for the best 886 

copula model for both the original data and randomized data are also provided in Table 9. The estimates are 887 

based on the average value over 1000 randomized data set. The uncertainties of the associated parameters 888 

are quite small. This can be seen from the box plot for showing the uncertainties of parameter estimates 889 

from the randomized data samples, see Fig. 13. The differences between the parameter estimates are very 890 

small. The calculated p-value also implies the randomized data can be well fitted by the adopted copula 891 

model. Therefore, it is believed that the ties of data will not largely affect the statistical properties of the 892 

multivariate data and thus the data can be analyzed by the copula model. 893 

Table 9 Comparison of the estimated model parameters between original and randomized data (p-values of the 894 
KS tests between the randomized data and the fitted model for the original data are provided in the bracket) 895 

 Kendall’s τk Spearman’s ρs Correlation 
coefficient ρ 

Best copula model 
parameter 

(Hw, Ta)     
Original data 0.483 0.666 0.652 β1=-0.418, β2=0.964, 
Randomized data 0.478 0.661 0.644 β1=-0.416, β2=0.965, 

(p-value=0.106) 
(Hw, Vw)     
Original data 0.342 0.492 0.545 γ1=1.606, γ2=16.797, 

θ11=0.999, θ12=0.001,  
θ21=0.001, θ22=0.999, 
α11=-0.237, α12=0.723, 
α21=0.237, α22=-0.723 

Randomized data 0.347 0.498 0.552 γ1=1.611, γ2=16.820, 
θ11=0.999, θ12=0.001,  
θ21=0.001, θ22=0.999, 
α11=-0.242, α12=0.758, 
α21=0.249, α22=-0.751 
(p-value=0.213) 

 896 

 897 

 898 

 899 
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 900 

Figure 13 Estimates of the parameters from randomized data sets  901 

 902 

For the data (Hw, Ta), the result shows that the best model is the skewed Gaussian copula. Compared to the 903 

symmetric copula, nearly all the best asymmetric copula models show an AICc value lower than the 904 

symmetric copula. However, this does not imply the all the asymmetric copulas are better choices. The 905 

quality of an asymmetric copula model can be significantly affected by the selection of base copulas. For 906 

example, when the asymmetric copula is constructed by products of copulas, the combination of Clayton 907 

and Frank copulas is not a good choice. If the base copulas are Clayton and Frank, the AICc value becomes 908 

quite large compared to other combinations no matter which individual functions are applied, as can be seen 909 

in the tables. This indicates that the combination of Clayton and Frank cannot characterize the dependency 910 

among the data very well. Besides the selection of the base copulas, the construction rules are also a 911 

dominant factor in the construction of asymmetric copulas. From the comparison, it can be seen that a 912 

skewed copula and an asymmetric copula constructed by products of copulas show a better performance 913 

than the other two categories of copulas. This results from the fact that these two kinds of copulas are not 914 

only good for modeling asymmetric dependencies but also capable of for capturing the nonlinear 915 

dependencies. Apparently, the samples investigated in this work suggest that copulas constructed by linear 916 

convex combinations may suffer from a potential weakness.  917 

The situation changes quite a lot for the other data set. For the data (Hw, Vw), the Gumbel-Clayton 918 

product copula with Type 2 individual function outperforms all the other copula models. Compared to the 919 
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data (Hw, Ta), the asymmetric copula does not show very significant advantages over the symmetric copula 920 

in modeling (Hw, Vw). In fact, the Gumbel copula is even a better choice than most constructed asymmetric 921 

copulas. For the asymmetric copulas constructed by products, all the candidate models yield similar results. 922 

This indicates that the selection of base copulas and individual functions is not critical in this case. The 923 

asymmetric copulas constructed by linear convex combinations are still showing poor performance for the 924 

bivariate data. Additionally, the skewed copula does not show a good performance in this modeling. It 925 

actually produces the largest AICc value amongst all choices. The major reason for such a big difference is 926 

the only very weak asymmetry of the bivariate data (Hw, Vw) compared to (Hw, Ta). Clearly, quasi symmetric 927 

data do not require an asymmetric modeling. In such cases, the use of asymmetric copulas is even 928 

disadvantageous.. Since most asymmetric copulas are utilizing quite a number of parameters, the model can 929 

somehow tend to be over parameterized. Some of the degrees of freedom created by the parameters are 930 

therefore not necessarily to be added. Therefore, the symmetric model would be the better choice.   931 

Another reason why symmetric and asymmetric copulas perform so differently in modeling 932 

bivariate data sets is the link to physical phenomena. As for (Hw, Ta), the breaking wave limit is causing 933 

asymmetry in the bivariate data. This physical feature can be implemented by the asymmetric copula while 934 

the traditional copula cannot capture this feature. However, as for (Hw, Vw), there is no such limit. The 935 

asymmetric copula would, thus, lose its advantage in the modeling.  936 

  In the final part of this study, a short reference is made to the comparison between symmetric 937 

and asymmetric copula models for the prediction of extreme values. This can be achieved through a 938 

comparison of simulated data from the established models with the empirical data. The simulated data 939 

for (Hw, Ta) and (Hw, Vw) are plotted in Figs. 14 and 15, respectively. It can be seen that the nonlinear 940 

dependencies are well displayed in the simulated data for (Hw, Ta). The asymmetric dependency is also 941 

obvious in the scatter plot, especially for the skewed copula model. This agrees well with the AICc result, 942 

which indicates that the skewed copula is the best choice for modeling (Hw, Ta). Moreover, compared to 943 

the symmetric model (Frank copula), the data simulated from the skewed copula are closer to reality. For 944 

example, there are no data beyond the breaking wave limit in the data simulated from the skewed copula. 945 
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This physical phenomenon is well captured by the skewed copula. In fact, all the asymmetric copulas 946 

show a better performance in capturing the breaking wave limit while the symmetric copula cannot 947 

capture this phenomenon, see Fig. 14. On the other hand, the simulated data for (Hw, Vw) do not have this 948 

problem. As can be seen in Fig. 15, there are no clear nonlinear dependencies in the simulated data. The 949 

simulated data for (Hw, Vw) are scattered over the whole copula domain without any limits. Some even 950 

clearer view can be obtained from the contour plots of the simulated data in the original domain of ocean 951 

parameters as shown in Figs. 16 and 17. The contour lines are obtained based on the procedures provided 952 

in Montes-Iturrizaga and Heredia-Zavoni (2015). The inverting Rosenblatt transformation is used to 953 

derive the contour points corresponding to a certain exceeding probability (sometimes is referring to a 954 

reliability index in the first order reliability method) whereas the copula model provides the conditional 955 

joint distribution. Five levels of the probability density function values are plotted in the figures. The 956 

plots indicate that the quality of model fitting to the empirical data is decreasing with the decrease of 957 

contour level values. In fact, the low value contour lines are representing extremes in different directional 958 

tails. Therefore, a good quality of fitting to the low value contour lines indicates a good characterization 959 

of tail values. From the comparison of all these plots it can be observed that the asymmetric copulas 960 

either constructed by products or by linear convex combinations do not lead to a good prediction of 961 

lower-upper tail extremes in the domain of (Hw, Ta). And symmetric copula cannot predict the upper-962 

lower tail extremes very well for (Hw, Ta). As for the data (Hw, Vw), the skewed copula shows a bad fitting 963 

at both the upper-lower and the lower-upper tails. These models cannot predict all the extremes with 964 

sufficient quality. The selection of the most appropriate model for predicting the extreme values has to 965 

be made based on the tail fitting capabilities. Nevertheless, the comparative studies do tell that the 966 

asymmetric copulas are very applicable to ocean data where asymmetric dependencies are obvious. 967 
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968 
Figure 14 Scatterplots of simulated data from the best asymmetric copulas in different types for (Hw, Ta). 969 

970 
Figure 15 Scatterplots of simulated data from the best asymmetric copulas in different types for (Hw, Vw). 971 

(a) Frank (b) Gumbel-Clayton Type1 (c) Gumbel-Frank Type2 

(d) Gumbel-Frank Type3 (e) Frank-LCC (f) Skew-Gaussian 

(a)  Gumbel (b) Gumbel-Frank Type1 (c) Gumbel-Clayton Type2 

(d) Gumbel-Clayton Type3 (e) Gumbel-LCC (f) Skew-Gaussian 
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 972 
Figure 16 Comparison of contour plot between original data and best fitted copula models for (Hw, Ta) 973 
(black line indicates the empirical data; red dash line indicates the fitted model). 974 

 975 
Figure 17 Comparison of contour plot between original data and best fitted copula models for (Hw, Vw) 976 
(black line indicates the empirical data; red dash line indicates the fitted model). 977 

(d) Gumbel-Frank Type3 (e) Frank-LCC (f) Skew-Gaussian 

(a) Frank (b) Gumbel-Clayton Type1 (c) Gumbel-Frank Type2 

(d) Gumbel-Clayton Type3 (e) Gumbel-LCC (f) Skew-Gaussian 

(a)  Gumbel (b) Gumbel-Frank Type1 (c) Gumbel-Clayton Type2 
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 978 
It is noted that the results derived in the current study need to be interpreted separately for different 979 

kinds of ocean multivariate data. Asymmetric copulas are suitable for modeling asymmetrically dependent 980 

variables. In this context, the bivariate data (Hw, Ta) can be well modeled by the asymmetric copula. The 981 

results can only be explained specifically for the studied data set for the filtered time period. This analysis 982 

of ocean data is only valid for the investigated specific ocean location. Another important limitation of 983 

present study is the simplified data pre-processing. It should be realized the pre-processing of the data is 984 

very arbitrary. The analyzed ocean data in the current analysis is influenced by many environmental factors 985 

which may need to be removed before the statistical analysis. Also, the serial correlation is not removed in 986 

the present work. If the collected time series data show very strong serial correlation, this simplification is 987 

not allowed. A more accurate data pre-processing is required. However, the results can be used to explain 988 

significant features of using asymmetric copulas for modeling ocean data in general. The modeling of 989 

asymmetric dependencies can produce more reliable and realistic statistical joint models. Physical 990 

phenomena can be well handled in this manner. Additionally, it should also be noted that asymmetric copula 991 

models are much more flexible compared to the traditional copula models. A large number of base copulas 992 

and combination rules can be implemented for constructing an asymmetric copula. This provides great 993 

flexibility and needs to be considered in the application of asymmetric copulas and in the interpretation of 994 

the results. 995 

 Finally, the findings of the present study may help design engineers, marine exploiters or ship 996 

owners who are working in the open sea. Offshore engineering practitioners may be empowered to make 997 

better decisions based on more insight into the dependencies between the ocean variables. This can support 998 

the design of more robust offshore structures to resist the environmental loading when considering the ocean 999 

dependencies. It can also help to identify which environmental factors are the most dominant ones that affect 1000 

other factors in the ocean. Moreover, the empirical results from this study may help researchers to exploit 1001 

features of asymmetric copulas in a targeted manner. 1002 

 1003 



42 
 

7．Conclusions 1004 

In this research, asymmetric copulas were utilized to model ocean parameters in a multivariate setting. The 1005 

fundamentals associated with asymmetric copulas including the measures of asymmetric dependencies and 1006 

tail dependencies have been reviewed in detail in the context of ocean data modeling. Three different ways 1007 

of constructing an asymmetric copula were introduced. The asymmetric copulas were compared with the 1008 

traditional copula, specifically on the modeling of bivariate data (Hw, Ta) and (Hw, Vw) collected from an 1009 

ocean site in the south coast of Alaska in an example study. The copula models were constructed for the 1010 

ocean data after preconditioning to obtain quasi stationary data records. It was found that the asymmetric 1011 

copula models can be more realistic in describing ocean data with asymmetric dependencies. The results 1012 

suggest that one may utilize the asymmetric copula models when the observed data show an asymmetric 1013 

dependence structure as inferred by the scatter plot of the pseudo-observations. However, the construction 1014 

of a robust asymmetric copula model largely depends on the selection of the base copulas and combination 1015 

rules. The study also shows that asymmetric copula models are more powerful than the symmetric copulas 1016 

in capturing extreme contours for the present analyzed ocean data. Thus, it is expected that asymmetric 1017 

copulas have great advantages in risk assessment of marine and coastal structures due to extreme ocean 1018 

environment. Future work seems necessary to investigate the significance of this approach, including 1019 

uncertainties, on the offshore engineering practical designs and operation of coastal structures.  1020 
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 1027 

Appendix A Fundamental knowledge of asymmetric copulas 1028 

We briefly introduce the fundamentals of parameter estimation and simulation for using asymmetric copulas. 1029 
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All the related theoretical proofs and mathematical justifications can be found in Nelson (2006) and Joe 1030 

(2014). Some discussions of these methods are simplified to a bivariate problem. However, the same concept 1031 

can be generalized to higher dimensional problems. 1032 

The estimation of the parameters of asymmetric copulas can be realized in various ways. The most 1033 

widely applied approach is the maximum likelihood estimation. In general, the maximum likelihood 1034 

estimation method selects that set of values of the model parameters, which maximizes the likelihood 1035 

function. This concepts is very convenient for estimating copula parameters especially for one parameter 1036 

copulas. However, the major difficulty in applying this approach for asymmetric copula models is the 1037 

maximization of the likelihood function. Since most asymmetric copulas contain multiple parameters, such 1038 

maximization requires a very robust and efficient optimization algorithm in searching the optimum solution 1039 

from the parameter domain. The computational effort can become tremendous when the number of 1040 

estimated parameters increases.   1041 

Alternatively, the parameters can be determined through a distance based estimation method. For 1042 

seeking the most appropriate model parameters 𝚯𝚯 = {𝜃𝜃1, … ,𝜃𝜃𝑛𝑛}  of the copula, the Cramer-von Mises 1043 

statistic S can be employed. The Cramer-von Mises statistic S calculates the distances between the 1044 

theoretical copula distribution function and the empirical copula distribution function. The estimates for the 1045 

copula parameters are determined in such a way that they minimize this statistic. For a bivariate copula, this 1046 

parameter estimation method can be formulated as 1047 

( ) ( ){ }
1 1

2

,..., ,..., 1

arg min arg min , ,
n n

N

empirical i i i i
i

S C u v C u v
θ θ θ θ

Θ
=

Θ = = −∑   (A.1) 1048 

where Cempirical stands or the empirical copula function, CΘ represents the candidate parametric copula and 1049 

Θ is the set of copula parameters which need to be determined. Therefore, the distance between the 1050 

theoretical copula and empirical copula is evaluated for each of the observed data points (ui, vi). One should 1051 

note this “distance based method” is same as the Least Square estimation. However, the dimension of the 1052 

parameters’ space does not change, and, in general, there is no guarantee that this approach performs better 1053 

than the traditional maximum likelihood method. Meanwhile, it should be pointed out this method is just a 1054 
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numerical interpolation method, not a “statistical” one. 1055 

The simulation from asymmetric copulas can be performed using the same algorithm as for 1056 

traditional copulas. The most general approach is based on a sequence of conditional distributions derived 1057 

from the copula function. For example, the conditional approach developed in Devroye (1986) has utilized 1058 

the Rosenblatt transform to simulate the random vector. Other similar concepts regarding the simulation of 1059 

random vectors from asymmetric copulas can be found in Mai and Scherer (2012). However, it should be 1060 

pointed out that the random generation requires a root finding procedure. A robust and efficient method is needed 1061 

for this purpose to achieve reasonable computational efficiency.  1062 

 1063 

Appendix B Examples of copulas 1064 

Many copula families and classes have been developed in the literature. Each one has its own advantages 1065 

which could characterize certain types of data.  1066 

 1067 

Archimedean copulas 1068 

 1069 
In practice, the Archimedean copulas are most frequently applied. The family of Archimedean copulas 1070 

consists of a wide range of parametric copula groups. They have been applied widely in data modeling 1071 

utilizing their feature to be constructed easily. Generally, an n-dimensional Archimedean copula can be 1072 

constructed based on an algebraic method using a generating function φ(.): 1073 

( ) ( ) ( )( )[ 1]
1 1,..., ; ; ... ; ;Archimedean n nC u u u uθ ϕ ϕ θ ϕ θ θ−= + +   (B.1)  1074 

where φ: [0, 1]×ϴ→[0,∞) is a completely monotone function with φ(1)=0. θ is a parameter with the domain 1075 

ϴ.  φ[-1] is the pseudo-inverse of φ defined by 1076 

( ) ( ) ( )
( )

1
[ 1] ; 0 0;

;
0 0;

t if t
t

if t
ϕ θ ϕ θ

ϕ θ
ϕ θ

−
−  ≤ ≤= 

≤ ≤ ∞
.   (B.2) 1077 

Therefore, the construction of a multivariate copula model depends on the generating functions used in Eq. 1078 

(B.2). Many well known copula families are Archimedean, as widely studied in the literature (Embrechts, 1079 
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2009). The generating functions of the most popular single parameter Archimedean copulas such as Gumbel, 1080 

Frank and Clayton are presented in Table B.1. 1081 

Table B.1 Examples of Archimedean copulas 1082 
Copula Bivariate Formula Cγ(u, v) Generating Function φγ(t)        γ ∈  

Gumbel 
( ) ( )

1

exp ln lnu vγ γ γ
   − − + −    

 
( )ln t γ−  [1,+∞) 

Frank ( )( )1 11 ln 1
1

u ve e

e

γ γ

γγ

 − −
 +
 − 

 
1ln
1

te
e

γ

γ
−
−

 
(-∞, +∞) 

Clayton 
( )

1

1u vγ γ γ
−− −+ −  

1t γ− −  (1, +∞) 

 1083 

 1084 

Figure B.1 Comparison of different bivariate copulas for correlation coefficient equals to 0.7. 1085 

An illustration of these Archimedean copulas is provided by means of scatter plots shown in Fig. 1086 

B.1. Each generating function in an Archimedean copula characterizes a special tail dependency.  For 1087 

example, the Gumbel copula is an appropriate candidate model for data having stronger dependencies at 1088 

high values (less spread) compared to low values, whereas the Clayton copula can characterize data 1089 

exhibiting strong low value dependencies. On the other hand, the Frank copula is deemed quite appropriate 1090 

for data having relatively weak dependencies at both tails. For the coastal engineering practice, in some 1091 

ocean data sets, stronger dependencies are observed at the extremes. For instance, storms usually induce 1092 

large wave heights associated with high wind speed, and thus one can expect the data to show stronger 1093 

dependencies between wave height and wind speed for large values than for smaller values of wave height 1094 
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and wind speed. Hence, to be suitable, a copula model for this case should capture these characteristics 1095 

observed in the data. 1096 

 1097 
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