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Abstract. Stress relaxation is the phenomenon where stress of materials decreases under 

constant strain. In several previous studies, it was found that the stress relaxation makes uniform 
elongation larger, showing a possibility that this phenomenon can be utilized to increase the 

forming limit in combination with the flexible slide motion of a servo press. However, the stress 

relaxation phenomenon has not yet been sufficiently clarified. Authors previously investigated 

the stress relaxation behavior by applying several models where stress relaxation was described 

as an elasto-viscoplasticity behavior. However, a unified and quantitative description of strain 

rate sensitivity of flow stress and stress relaxation has not been sufficiently studied. In this study, 

we investigated the influence of strain, strain rate and relaxation time on stress relaxation 

phenomena of high strength steel sheets. Strain rate sensitivity of flow stress was modelled with 

m-power law. Stress relaxation behavior was also successfully approximated by a model derived 

from the m-power law with the parameters obtained by strain rate sensitivity tests, which 

suggests that both the strain rate sensitivity and the stress relaxation were based on a unified 

elasto-viscoplasticity. The mechanisms of stress relaxation was also discussed through numerical 
analyses. 

1.  Introduction 

High strength steel sheets are increasingly used in automotive body parts with the aim of weight 
reduction, but their use urgently requires further improvement in sheet forming technology to overcome 

difficulties such as poor formability, dimensional inaccuracy, etc. On the other hand, servo press 

facilities are becoming increasingly used in industry and many attempts are being made to bring out 
their characteristic features for enhancing the formability of high strength steel sheets. Although some 

of these attempts have been successful in finding the advantages of servo presses for improving 

formability, the mechanisms of such improvements have yet to be clarified in conjunction with the 

mechanical properties of the materials used. 
Stress relaxation is the phenomenon where stress of materials decreases under constant strain. In 

several previous studies, it was found that the stress relaxation makes uniform elongation larger [1], 
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showing a possibility that this phenomenon can be utilized to increase the forming limit in combination 

with the flexible slide motion of a servo press. However, the stress relaxation phenomenon has not yet 

been sufficiently clarified, i.e., very few studies have been carried out with detailed material tests and 

investigations with various material models. 
Authors previously investigated the stress relaxation behavior by applying Krempl model where 

stress relaxation was described as an elasto-viscoplasticity behavior [2]. However, a unified and 

quantitative description of strain rate sensitivity of flow stress and stress relaxation has not been 
sufficiently studied. 

In this study, we investigated the influence of strain, strain rate and relaxation time on stress 

relaxation phenomena of high strength steel sheets. Strain rate sensitivity of flow stress was modelled 

with m-power law. Stress relaxation behavior was also successfully approximated by a model derived 
from the m-power law with the parameters obtained by strain rate sensitivity tests, which suggests that 

both the strain rate sensitivity and the stress relaxation were based on a unified elasto-viscoplasticity. 

The macroscopic mechanisms of stress relaxation was also discussed through numerical analyses by 
introducing the m-power law into a finite-element code. 

2.  Experimental conditions 

A 590-MPa class hot-rolled steel sheet with the thickness of 3.2 mm was used in the experiments. The 
specimens for uniaxial tensile tests and crosshead holding tests with the dimensions shown in Figure 1 

(ISO 6892-1:2016 Test piece type 3) were prepared by machining. Markers for non-contact digital video 

extensometer (DVE-101, Shimadzu Corp.) were attached with the gauge length of 50 mm. Strain was 

also measured by high-elongation foil strain gauges KFEM-5-120-C1L3M2R (KYOWA) attached on 
the center of the specimens. 

Experimental conditions are shown in Table 1. Four levels of strain rate were applied in the tensile 

tests. In the crosshead holding tests, where stress relaxation characteristics were obtained, were carried 

out followed by the tensile tests with given strain rate  𝜀 ̇  up to the nominal strain of 0.05. Tensile testing 

machine (AG-I 250 kN, Shimadzu Corp.) was used in these tests. 

 

 

Figure 1. Dimensions of the specimen (Unit : mm) 

 

Table 1. Experimental conditions  

 

 Strain rate 𝜀̇ s-1 Holding time tH s 

Tensile test 

8.3×10-5 - 

8.3×10-4 - 

8.3×10-3 - 

8.3×10-2 - 

Crosshead 
 holding test 

8.3×10-5 30 

8.3×10-4 30 

8.3×10-3 30 
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3.  Results and discussions 

3.1.  Results of tensile tests and crosshead holding tests 

Figure 2 shows the true stress – true strain curves obtained in the tensile tests. Strain rate sensitivity can 

be observed i.e. the flow stress becomes larger as the strain rate increases. 
Figure 3 shows the stress relaxation behavior in true stress – true strain relation obtained in the 

crosshead holding test following the tensile test with the strain rate of 8.3×10-4 s-1. Reduction in stress 

during the crosshead holding test can be observed, which corresponds to the stress relaxation 

phenomenon. 

 

 

 

 

Figure 2. True stress-strain curves during tensile 
test 

 Figure 3. True stress-strain curve 
during crosshead holding test 

 

3.2.  Modeling of stress relaxation behavior  
We assume that the flow stress during elasto-viscoplastic deformation can be described as the sum of 

internal (athermal) stress i and effective (thermal) stress t, as shown in Figure 4. In this study, we also 
apply the m-power law for the effective stress. Thus the following equation is assumed:  

        
m

vp vp

i t i A             (1) 

where A and m are material constants. σ and εvp are flow stress and viscoplastic strain, respectively. 

 

 

Figure 4. Elasto-viscoplasticity model 

 
By using Eq. (1), stress relaxation model can be derived as the relation between time and stress as 

follows 

  
1 1 1

0

1
m

m m
m m

H i i

m
E A t

m
   

  
    

 
 (2) 

Here, tH and σ0 are the holding time and the stress at tH=0, respectively. E’ is the apparent Young’s 

modulus given by the following equation: 
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where, E and M are Young’s modulus of the material and the testing machine, respectively. M can be 

estimated to be 55.7 GPa from the slope of the stress relaxation region in stress-strain curve shown in 

Fig. 3. 
A and m can be identified by using the tensile tests with various strain rates shown in Fig. 2. Since A 

and m are dependent on i, we assume i to be 500 MPa at ε = 0.049, which gives an accurate 

approximation by Eq. (3) of the stress relaxation behavior. Based on this assumption, A and m are 

determined through linear regression between log10 𝜀̇  𝑎𝑛𝑑 log10(𝜎 − 𝜎𝑖), thus we obtained A = 125 

MPa・sm and m = 0.060. 

Comparisons between stress relaxation behavior measured in the crosshead holding tests and 

approximation obtained by Eq. (3) based on m-power law with A and m obtained through above 

mentioned procedures are shown in Figure 5. Good correlations can be observed, i.e., discrepancies 

between the experimental results and the m-power law approximation are within the range of scattering 
in the flow stress among the test samples. These results suggest that both the strain rate sensitivity and 

the stress relaxation are based on a unified elasto-viscoplasticity and can be described by one numerical 

model. 
 

 

Figure 5. Relationship between holding time and true stress for various strain rate 

3.3.  Finite-element analysis of stress relaxation  
Finite-element (FE) analyses were performed to simulate the stress relaxation processes and to analyse 

the behavior of stress and strain distribution in the test piece, which could never be measured in the 

material tests. The m-power law was introduced into the static-explicit FE code “STAMP3D” [3]. In 

this code, the updated Lagrangian rate formulation is employed to describe the finite deformation 
problem. Von Mises yield criterion and the associated flow rule are used. A static-explicit approach is 

applied in conjunction with the “r-min” method proposed by Yamada et al. [4] to define the size of the 

time step. 
An elasto-viscoplastic model based on Fig. 4 was implemented in the code by assuming that the 

strain increment can be decomposed into elastic and viscoplastic components: 

 e vp

ij ij ij         (4) 
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where, ij , e

ij  and vp

ij  are increments of strain, elastic strain and viscoplastic strain tensor, 

respectively. 
Stress increment can be written as: 

 
e vp

ij ijkl kl klC           (5) 

where, e

ijklC  is the elastic constitutive tensor. 
Assuming the flow rule for the effective stress described in Eq. (1), we obtain the constitutive 

equation for the viscoplastic part: 

 
 

1

3

2

m
tvp

ij ij

A
 


   (6) 

where,  , 
t  and ij   are equivalent stress, equivalent thermal (effective) stress and deviatoric stress 

tensor, respectively. 
 

 

Figure 6. Distribution of von Mises stress obtained by FE simulations 

 

Figure 7. Distribution of equivalent 

plastic strain at the beginning of 

crosshead holding 
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FE simulations of the uniaxial tensile and crosshead holding tests were performed. 8-node hexahedral 

elements were used to model the test piece shown in Fig. 1. Totally 18,000 elements with five layers of 

elements through the thickness direction were used. A = 125 MPa・sm and m = 0.060 were used for the 

entire process. i was set to be 500 MPa in the crosshead holding process. The uniformity of the stress 
distribution was not assured even in the tensile process with this geometry of specimen, which would 

rather have a possibility to give information on the deformation mechanisms of a forming process. 

Figure 6 shows distribution of equivalent (von Mises) stress obtained by the FE simulations at the 

beginning of the crosshead holding and at 5 sec after the crosshead holding starts, assuming that the 

strain rate in tensile process is 8.3 × 10-1 s-1. Level of the stress decreases during the crosshead holding 

process similarly to the experimental results shown in Fig. 3, showing the validity of above formulations. 
Figure 6 also shows that the stress distribution becomes uniform after 5 sec of stress relaxation time, 

suggesting that the stress relaxation has an effect of improving the uniformity in the region subjected to 

plastic elongation. Figure 7 shows the distribution of equivalent plastic strain at the beginning of 

crosshead holding. Region A in Fig. 7 indicates the region where relatively larger equivalent plastic 
strain can be observed, which corresponds to the region with relatively larger equivalent stress in Fig. 6. 

This implies that the region with larger strain and larger stress shows larger stress reduction due to more 

significant stress relaxation, resulting in the elimination of non-uniformity in the stress distribution. 

4.  Conclusions 

Uniaxial tensile tests and crosshead holding tests with a variety of strain rates were performed by using 

590-MPa class hot-rolled steel sheets. Numerical model with m-power law for strain-rate sensitivity was 
applied to the stress relaxation behavior. FE analyses were performed by introducing m-power law into 

the static-explicit code. From these tests and analyses, the following conclusions were obtained. 

Both the strain rate sensitivity and the stress relaxation were based on a unified elasto-viscoplasticity 

and can be described by one numerical model. 
Numerical results by FE simulations suggest that the stress relaxation has an effect of improving the 

uniformity in the region subjected to plastic elongation. FE simulations with m-power law can be a 

useful tool to analyse the macroscopic stress relaxation phenomena by clarifying the stress and strain 
distributions which cannot be measured by material tests, showing a possibility to enable us to perform 

stamping simulations in industrial use to analyse the effect of forming speed in conjunction with stress 

relaxation phenomenon taken into account. 
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