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We investigate the renormalization group (RG) structure of the gradient flow. Instead of using
the original bare action to generate the flow, we propose to use the effective action at each flow
time. We write down the basic equation for scalar field theory that determines the evolution of
the action, and argue that the equation can be regarded as an RG equation if one makes a field-
variable transformation at every step such that the kinetic term is kept in the canonical form. We
consider a local potential approximation (LPA) to our equation, and show that the result has a
natural interpretation with Feynman diagrams. We make an ε expansion of the LPA and show
that it reproduces the eigenvalues of the linearized RG transformation around both the Gaussian
and the Wilson–Fisher fixed points to the order of ε.
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1. Introduction

In recent years the gradient flow has attracted much attention for practical and conceptual reasons
[1–7]. Practically, as shown by Lüscher and Weisz [2,3], the gradient flow in non-Abelian gauge
theory does not induce extra UV divergences in the bulk, so that the bulk theory is finite once the
boundary theory is properly renormalized. Hence the ultralocal products of bulk operators automat-
ically give renormalized composite operators, and this fact yields a lot of applications, including a
construction of the energy–momentum tensor on the lattice [5,6].

On the other hand, there has been an expectation that the gradient flow may be interpreted as a
renormalization group (RG) flow (see, e.g., Refs. [8–12]). This expectation is based on the observation
made in Ref. [2]. To see this, let us consider a Euclidean scalar field theory in d dimensions with the
bare action S0[φ]. We assume that the theory is implemented with some UV cutoff �0. The gradient
flow is then given by

∂τφτ (x) = − δS0

δφ(x)
[φτ ], φτ=0(x) = φ0(x). (1.1)

If the field is canonically normalized as
∫

x[(1/2)(∂μφ)2 + · · · ], then the flow equation gives a heat
equation with perturbation:

∂τφτ (x) = ∂2
μφτ (x) + · · · , (1.2)

which can be solved as1

φτ (x) =
∫

y
Kτ (x − y) φ0(y) + · · · , (1.3)

1 In this paper we only consider scalar field theory, but our discussion should be easily extended to other
field theories. We use a standard polymorphic notation;

∫
x represents

∫
ddx when x are spacetime coordinates

while
∫

p stands for
∫

ddp/(2π)d when p are momenta. We often denote φ(x) by φx.
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where Kτ (x − y) is the heat kernel:

Kτ (x − y) =
∫

p
eip(x−y)−τ p2 = 1

(4πτ)d/2
e−(x−y)2/4πτ . (1.4)

Thus, φτ (x) can be interpreted as an effective field that is coarse-grained from φ0(y) within the radius
r ∝ √

τ .
However, this interpretation is not perfectly matched with the philosophy of the renormalization

group. In fact, if we denote the solution to Eq. (1.1) by φτ (φ0) = (
φτ (x; φ0)

)
so as to specify its

initial value, the distribution function of φ at time τ will be given by

pτ [φ] = 1

Z0

∫
[dφ0] δ[φ − φτ (φ0)] e−S0[φ0]

(
Z0 ≡

∫
[dφ0] e−S0[φ0]

)
. (1.5)

The flow equation gives the field φ a tendency to approach the classical solution of the original bare
action S0[φ], and thus pτ [φ] will take a sharp, δ-function-like peak at the classical solution in the
large-τ limit, but this is not what we expect in the renormalization group; φτ at large τ should be
regarded as a low-energy effective field, which can be well treated as the classical solution to the
low-energy effective action at scale � = 1/

√
τ , not to the bare action, which itself can be regarded

as giving an effective theory at the original cutoff �0 (� �).
In this paper, we propose a novel gradient flow that gives the field a tendency to approach the

classical solution of the effective action at scale � = 1/
√

τ when the derivative is taken:

∂τφτ (x) = − δSτ

δφ(x)
[φτ ], φτ=0(x) = φ0(x). (1.6)

Assuming that the initial value φ0(x) is distributed according to the distribution function e−S0[φ0]/Z0,
we impose the self-consistency condition that the classical solution φτ (x) be distributed with
e−Sτ [φ]/Zτ :2

e−Sτ [φ] ≡
∫

[dφ0] δ[φ − φτ (φ0)] e−S0[φ0], (1.7)

where φ(x) should have only coarse-grained degrees of freedom. We investigate the consequences of
this requirement, and argue that the obtained equation for Sτ [φ] may be regarded as an RG equation
if one makes a field-variable transformation at every step such that the kinetic term is kept in the
canonical form.

This paper is organized as follows. In Sect. 2 we write down the basic equation that determines
the evolution of Sτ [φ]. In Sect. 3 we consider a local potential approximation (LPA) to our equation,
and show that the result has a nice interpretation with Feynman diagrams. In Sect. 4 we make an ε

expansion of the LPA and show that it reproduces the eigenvalues of the linearized RG transformation
around both the Gaussian and the Wilson–Fisher fixed points to the order of ε. Section 5 is devoted
to the conclusion and outlook.

2 Note that the partition function is constant in time: Zτ ≡ ∫ [dφ] e−Sτ [φ] = Z0.
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2. Formulation

We first rewrite the consistency condition (1.7) in a differential form:3

∂τ e−Sτ [φτ ] =
∫

[dφ0]
∫

x

( δ

δφ(x)
δ
[
φ − φτ (φ0)

]) (−∂τφτ (x)
)
e−S0[φ0]

=
∫

[dφ0]
∫

x

( δ

δφ(x)
δ
[
φ − φτ (φ0)

]) δSτ

δφ(x)
[φτ ] e−S0[φ0]

=
∫

x

δ

δφ(x)

[δSτ [φ]
δφ(x)

e−Sτ [φ]], (2.1)

which in turn gives the following differential equation for Sτ [φ]:

∂τ Sτ [φ] =
∫

x

[
− δ2Sτ [φ]

δφ(x)2 + δSτ [φ]
δφ(x)

δSτ [φ]
δφ(x)

]
. (2.2)

However, one can easily see that UV divergences arise from the second-order functional derivative
at the same point, δ2S/δφ(x)2. The reason why such UV divergences appear in the effective theory
is that we have not taken into account the fact that φ(x) should have only coarse-grained degrees of
freedom with cutoff � = 1

√
τ .

To see how to incorporate this fact, it is helpful to consider a sharp cutoff for a while, instead of
the smooth smearing with the heat kernel Kτ (x − y). Namely, we assume that the flowed field is cut
off as φτ (x) = ∫

|p|≤1/
√

τ
eipx φτ ,p, and accordingly that the action Sτ [φ] depends only on the lower

modes φp (|p| ≤ 1/
√

τ) of the scalar field φ(x) = ∫
p eipx φp. Then, the calculation in Eq. (2.1) will

be modified as

∂τ e−Sτ [φ] =
∫

[dφ0]
∫

|p|≤1/
√

τ

( δ

δφp
δ[φ − φτ (φ0)]

) (−∂τφτ ,p
)
e−S0[φ0]

=
∫

[dφ0]
∫

|p|≤1/
√

τ

( δ

δφp
δ[φ − φτ (φ0)]

) δSτ

δφ−p
[φτ ] e−S0[φ0]

=
∫

|p≤1/
√

τ

δ

δφp

[δSτ [φ]
δφ−p

e−Sτ [φ]]. (2.3)

Returning to the smooth cutoff with the heat kernel, Eq. (2.3) will be expressed as

∂τ e−Sτ [φ] =
∫

x,y
Kτ (x − y)

δ

δφ(x)

[δSτ [φ]
δφ(y)

e−Sτ [φ]], (2.4)

which is equivalent to the equation

∂τ Sτ [φ] =
∫

x,y
Kτ (x − y)

[δSτ [φ]
δφ(x)

δSτ [φ]
δφ(y)

− δ2Sτ [φ]
δφ(x)δφ(y)

]
. (2.5)

We see that there no longer exist divergences of the aforementioned type. For the rest of this paper,
we treat Eq. (2.5) as the equation that defines the flow of Sτ (φ).

3 In this paper, in order to simplify discussions, we do not seriously take into account the anomalous
dimension γ = η/2, which may be incorporated by adding a term (γ /2τ) φτ (x) to the right-hand side of the
first equation in Eq. (1.6).

3/9
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We here make an important comment that Eq. (2.4) can be rewritten in the form of a Fokker–Planck
equation:

∂τ e−Sτ [φ] =
∫

x,y
Kτ (x − y)

[ δ2S[φ]
δφ(x)δφ(y)

− δSτ [φ]
δφ(x)

δSτ [φ]
δφ(y)

]
e−Sτ [φ]

=
∫

x,y

δ

δφ(x)
Kτ (x − y)

[ δ

δφ(y)
+ 2

δSτ [φ]
δφ(y)

]
e−Sτ [φ], (2.6)

which corresponds to the Langevin equation

∂τφτ (x) = ντ (x) − 2
∫

y
Kτ (x − y)

δSτ [φ]
δφ(y)

(2.7)

with the Gaussian white noise ντ (x) normalized as

〈ντ (x)ντ ′(y)〉ν = 2 δ(τ − τ ′) Kτ (x − y). (2.8)

The solution φτ (x) to the Langevin equation now depends on the noise ντ (x) as well as the initial
value φ0(x):

φτ (x) = φτ (x; φ0, ν). (2.9)

Then, denoting the Gaussian measure of ν by [dρ(ν)], the distribution function e−Sτ [φ]/Zτ (see
Eq. (1.7)) can also be written as

e−Sτ [φ] =
∫

[dφ0]
〈
δ[φ − φτ (φ0, ν)]〉

ν
e−S0[φ0]

=
∫

[dφ0][dρ(ν)] δ[φ − φτ (φ0, ν)] e−S0[φ0]. (2.10)

The Langevin equation (2.7) shows that the field φτ (x) makes a random walk due to the noise term,
but at the same time it tries to approach the classical solution to Sτ [φ]. We thus find mathematical
equivalence between two expressions (1.7) and (2.10) that have different meanings; the former is
purely deterministic in the course of evolution while the latter is stochastic. This observation may
support the idea that a seemingly deterministic evolution is actually accompanied by an integration
over some fluctuating degrees of freedom.

3. Local potential approximation

In order to investigate how Eq. (2.5) works as an RG equation, we make a local potential
approximation [13–15]:

Sτ [φ] =
∫

x

[
Vτ (φx) + 1

2
(∂μφx)

2
]
. (3.1)

The canonical form of the kinetic term is particularly important for our purpose to interpret the
gradient flow as an RG flow (see discussions around Eq. (1.2)). However, even when we normalize
the field φx in this way at time τ , the action may no longer take a canonical form at τ +ε. In order for
the interpretation � = 1/

√
τ to hold also at time τ + ε (i.e., � − δ� = 1/

√
τ + ε = (τ eε/τ )−1/2),

we then need to make a field-variable transformation at τ +ε to retain the kinetic term in the canonical
form.

4/9
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To make the necessary calculations, it is convenient to start from the local potential approximation
of the second order:

Iτ [ϕ] ≡
∫

x

[
Uτ (ϕx) + 1

2
Wτ (ϕx) (∂μϕx)

2
]

(3.2)

and to investigate the evolution of Uτ (ϕ) and Wτ (ϕ) from τ to τ + ε with the initial values Uτ (ϕ) =
Vτ (ϕ) and Wτ (ϕ) = 1. One can easily derive the following combined equations:4

∂τ Uτ (ϕ) = U ′
τ (ϕ)2 − 1

(4πτ)d/2
U ′′

τ (ϕ) − d

2τ

1

(4πτ)d/2
W (ϕ), (3.3)

∂τ Wτ (ϕ) = 2 U ′
τ (ϕ) W ′

τ (ϕ) + 4 U ′′
τ (ϕ) Wτ (ϕ) − 2 τ U ′′

τ (ϕ)2 − 1

(4πτ)d/2
W ′′

τ (ϕ). (3.4)

From these, we find that the coefficient of (1/2)(∂μϕx)
2 changes from the normalized value

Wτ (ϕ) ≡ 1 to

Wτ+ε(ϕ) = 1 + ε ∂τ Wτ (ϕ) = 1 + ε
[
4 U ′′

τ (ϕ) − 2τ U ′′
τ (ϕ)2]

≡ 1 + 2ε ρ′
τ (ϕ). (3.5)

Thus, the canonically normalized field φ at τ + ε is given by integrating the equation dφ/dϕ =√
Wτ+ε(ϕ) = 1 + ε ρ′

τ (ϕ), and we find the following relation to the order of ε:

ϕ = φ − ε ρτ (φ) = φ − ε

∫ φ

0
dφ

[
2 U ′′

τ (φ) − τ U ′′
τ (φ)2]. (3.6)

The Jacobian5 Det′ (δϕ/δφ) = eTr′ log (δϕ/δφ) is calculated with

Tr′ log(δϕ/δφ) =
∫

x,y
Kτ (x − y) log

[
1 − ε ρ′

τ (φx)
]
δd(x − y) = − ε

∫
x

1

(4πτ)d/2
ρ′

τ (φx). (3.7)

By putting everything together, the change of the local potential for the canonically normalized
field φ is given as follows (recall the initial condition Uτ (φ) = Vτ (φ)):

Vτ+ε(φ) = [
Uτ (ϕ) + ε ∂τ Uτ (ϕ)

]∣∣
ϕ=φ−ε ρτ (φ)

+ ε
1

(4πτ)d/2
ρ′

τ (φ)

= Vτ (φ) + ε
[
−V ′

τ (φ)2 + 1

(4πτ)d/2
V ′′

τ (φ) + τ V ′
τ (φ)

∫ φ

0
dφ V ′′

τ (φ)2

− τ

(4πτ)d/2
V ′′

τ (φ)2 − d

2 τ(4πτ)d/2

]
. (3.8)

4 Among the formulas that may be useful in deriving the equations are

∂2
x Kτ (x − y) = ∂τ Kτ (x − y),

∫
x−y

Kτ (x − y) (x − y)μ(x − y)ν = 2 τ δμν ,

∫
x,y

Kτ (x − y) f (φx) g(φy) =
∫

x

[
f (φx) g(φx) − τ (∂μφx)

2 f ′(φx) g′(φx) + O(τ 2)
]
.

5 The prime means that the determinant or the trace should be taken on the partial functional space under
the projection of Kτ (x − y).

5/9
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ττ ∂ • • •==== • • •

Fig. 1. A Feynman diagrammatic interpretation of Eq. (3.13). The shaded circle represents minus the potential,
−Vτ (φ).

Note that the terms V ′
τ (φ)2 and V ′′

τ (φ) appear in Eq. (3.8) as − V ′
τ (φ)2 + const. V ′′

τ (φ), which have
the same signs as those in the Polchinski equation [17], although the signs of the terms U ′

τ (φ)2 and
U ′′

τ (φ) are opposite in Eq. (3.3).
To get dimensionless expressions, we use the cutoff � = 1/

√
τ = τ−1/2 at time τ as

xμ = τ 1/2 x̄μ, ∂μ = τ−1/2 ∂̄μ, φx = τ−(d−2)/4 φ̄x̄, (3.9)

which gives the relation

Vτ (φ) = τ−d/2 V̄τ (φ̄) with φ = τ−(d−2)/4 φ̄. (3.10)

Here we have placed bars on quantities to indicate that they are dimensionless. On the other hand,
we use the cutoff � − δ� = 1/

√
τ + ε = (τ eε/τ )−1/2 at time τ + ε as

xμ = (τ eε/τ )1/2 x̄μ, ∂μ = (τ eε/τ )−1/2 ∂̄μ, φx = (τ eε/τ )−(d−2)/4 φ̄x̄, (3.11)

which leads to the relation

Vτ+ε(φ) = (τ eε/τ )−d/2 V̄τ+ε

(
φ̄
)

with φ = (τ eε/τ )−(d−2)/4 φ̄. (3.12)

Substituting Eqs. (3.10) and (3.12) into Eq. (3.8), we finally obtain the following equation for the
dimensionless local potential (we remove the bars from the expression for notational simplicity):

τ ∂τ Vτ (φ) = d

2
Vτ (φ) − d − 2

4
φ V ′

τ (φ) − V ′
τ (φ)2 + Bd V ′′

τ (φ) − Bd V ′′
τ (φ)2

+ V ′
τ (φ)

∫ φ

0
dφ V ′′

τ (φ)2 − d

2
Bd

(
Bd ≡ 1

(4π)d/2

)
. (3.13)

Note that the first two terms in Eq. (3.13) reflect the simple rescalings of the potential and the field
variable. The next three terms have a natural interpretation with Feynman diagrams (see Fig. 1). In
fact, the third term in Eq. (3.13) represents the contraction of a propagator in a one-particle reducible
diagram, while the fourth term stands for that of a propagator in a one-particle irreducible diagram.
The fifth term represents the contraction of propagators in a two-particle reducible diagram.

4. ε expansion

Equation (3.13) can be solved iteratively in dimension d = 4 − ε with 0 < ε � 1. Expanding the
potential as

V (φ) = v0 + v2

2! φ2 + v4

4! φ4 + · · · , (4.1)

the first few terms in Eq. (3.13) are given by

τ ∂τ v2 = v2 − 2 v2
2 + 2 v3

2 + Bd v4 − 2 Bd v2v4, (4.2)

6/9
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τ ∂τ v4 = ε

2
v4 − 8 v2v4 + 12 v2

2v4 − 6 Bdv2
4 − 2 Bd v2v6 + Bdv6, (4.3)

τ ∂τ v6 = (−1 + ε) v6 − 20 v2
4 + 76 v2v2

4 − 12 v2v6 + 18 v2
2v6

− 30 Bd v4v6 + Bd v8 − 2 Bd v2v8, (4.4)

τ ∂τ v8 =
(
−2 + 3ε

2

)
v8 − 16 v2v8 − 112 v4v6 + 24 v2

2v8 + 336 v3
4

+ 464 v2v4v6 − 56 Bdv4v8 − 70 Bdv2
6. (4.5)

In addition to the Gaussian fixed point (v∗
n = 0), a nontrivial fixed point v∗

n can be found with the
ansatz v∗

2 = O(ε), v∗
4 = O(ε), v∗

6 = O(ε2), and v∗
n = O(ε3) (n ≥ 8):

v∗
2 = − 1

36
ε + O(ε2), v∗

4 = 1

36B4
ε + O(ε2), v∗

6 = − 20

(36B4)2 ε2 + O(ε3), v∗
8 = O(ε3).

(4.6)

By linearizing Eqs. (4.2)–(4.5) around these values, the first two eigenvalues are found to be 1 −
ε/6 + O(ε2) and −ε/2 + O(ε2), which agree with those of the linearized RG transformation at the
Wilson–Fisher fixed point (note that −� ∂� = 2 τ ∂τ ).

5. Conclusion and outlook

In this paper, we have investigated the RG structure of the gradient flow. To generate the flow,
instead of using the original bare action, we proposed to use the action Sτ [φ] at flow time τ . We
wrote down the basic equation that determines the evolution of the action and considered an LPA to
our equation, and showed that the result has a nice interpretation with Feynman diagrams. We also
made an ε expansion of the LPA and showed that it reproduces the eigenvalues of the linearized RG
transformation around both the Gaussian and the Wilson–Fisher fixed points to the order of ε.

In order to simplify the argument, we have not seriously taken into account the anomalous dimen-
sion, which actually could be neglected to the order of the approximation that we made in the ε

expansion. A careful treatment of the anomalous dimension will be given in a forthcoming paper. In
addition to higher-order calculations of ε expansion, it should be interesting to investigate the LPA
of the O(N ) vector model.

It is tempting to regard Eq. (2.5) as a sort of exact renormalization group [13,16–18] (see Refs.
[19–21] for a nice review on this subject). However, one must be careful in establishing this rela-
tionship, because the RG interpretation of Eq. (2.5) is possible only when we make a field-variable
transformation at every step such that the kinetic term is kept in the canonical form (see discussions
below Eq. (3.1)). It thus should be interesting to write down an equation that incorporates the effect
of the change of variable in a form of differential equation.

In developing the present work further, it will be important to investigate whether the gradient flow
of the present paper (Eq. (1.6)) also has a nice property in the renormalization of the flowed fields and
their composite operators. In fact, a prominent feature of the conventional gradient flow (1.1) is, as
was mentioned in the introduction, that there appear no extra divergences in the (d +1)-dimensional
bulk theory. For example, let us consider the expectation value of an operator constructed from the
flowed field, O[φτ ]:

〈O[φτ ]
〉
S0

≡ 1

Z0

∫
[dφ0] e−S0[φ0] O[φτ (φ0)], (5.1)

7/9
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where φτ (φ0) is the solution to Eq. (1.1). This gives a finite quantity once a proper regularization is
implemented at the initial cutoff �0, and this absence of extra divergences is attributed to the fact that
φτ (x; φ0) takes the form φτ (x; φ0) = ∫

y Kτ (x − y) φ0(y) + · · · . Now let us consider the expectation
value of the same operator O[φ] with respect to our effective action Sτ [φ]:

〈O[φ]〉Sτ
≡ 1

Zτ

∫
[dφ] e−Sτ [φ] O[φ]

= 1

Zτ

∫
[dφ][dφ0] e−S0[φ0] δ[φ − φτ (φ0)] O(φ)

= 1

Zτ

∫
[dφ0] e−S0[φ0] O[φτ (φ0)], (5.2)

where φτ (x; φ0) is now the solution to our flow equation (1.6). Note that this solution also has the
form φτ (x; φ0) = ∫

y Kτ (x − y) φ0(y) + · · · because we make a field-variable transformation at

every step such that Sτ [φ] takes the canonical form, Sτ [φ] = ∫
x

[
(1/2) (∂μφ(x))2 + · · · ]. We thus

expect that the two expectation values (5.1) and (5.2) share the same properties for finiteness at short
distances. We leave the confirmation of this expectation for future work.

Although the present paper only discusses scalar field theory, the extension to other field theories
should be straightforward. The generalization to field theories in curved spacetime will also be
interesting.

A study along these lines is now in progress and will be reported elsewhere.
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