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Abstract 

The acoustic second-harmonic generation behavior in a multilayered structure with nonlinear 
spring-type interlayer interfaces is analyzed theoretically to investigate the frequency dependence of 
second-harmonic amplitudes in the reflected and transmitted fields when the structure is subjected to 
the normal incidence of a monochromatic longitudinal wave. The multilayered structure consists of 
identical linear elastic layers and is embedded between two identical linear elastic semi-infinite media. 
The layers are bonded to each other by spring-type interfaces possessing identical linear stiffness but 
different quadratic nonlinear parameters. By combining a perturbation analysis with the 
transfer-matrix method, analytical expressions are derived for the second-harmonic amplitudes of the 
reflected and transmitted waves. The second-harmonic amplitudes due to a single nonlinear interface 
are shown to vary remarkably with the fundamental frequency, reflecting the pass and stop band 
characteristics of the Bloch wave in the corresponding infinitely extended layered structure. By 
calculating the spatial distribution of second-harmonic amplitude inside the multilayered structure, the 
influence of the position of the nonlinear interface as well as the number of layers on the frequency 
dependence of second-harmonic amplitudes of the reflected and transmitted waves is elucidated. When 
all interlayer interfaces possess the identical nonlinearity, the second-harmonic amplitudes on both 
sides of the structure are shown to increase monotonically with the number of layers in the frequency 
ranges where both fundamental and double frequencies are within the pass bands of Bloch wave. The 
influence of two non-dimensional parameters, i.e., the relative linear compliance of the interlayer 
interfaces and the acoustic impedance ratio between the layer and the surrounding semi-infinite 
medium, on the second-harmonic amplitudes is elucidated. 
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1. Introduction 

Multilayered structures are found in various technological products and in nature such as 

advanced fiber-reinforced composite laminates in aerospace engineering, glued laminated timbers 

called glulam in architectural engineering, laminated rubber bearings for the seismic isolation in civil 

engineering, and stratified rocks in the Earth’s crust. In such structures, many different types of 

imperfections can occur at the interfaces between neighboring layers: thin interphase layers, kissing 

bonds, closed cracks and delaminations, fractures, and so on. Understanding the influence of these 

imperfections on the wave propagation characteristics is essential from the viewpoints of the 

ultrasonic nondestructive testing in engineering practice, the seismic survey in oil and gas exploration, 

and the risk assessment of earthquake. 

Foregoing studies have revealed that the elastic wave interaction with such imperfect interfaces 

can be analyzed by modeling them as spring-type interfaces [1]-[7]: the stresses are continuous while 

the displacements are allowed to be discontinuous across the interface, and the resulting jumps of 

displacements are related to the stresses by the proportional constants called interfacial stiffnesses. 

Spring-type interface models have been utilized extensively to characterize a contacting interface 

between rough surfaces of solid bodies [8]-[13], a partially closed crack [14], [15], concentration of 

microcracks [16]-[18], a fracture in rock mass [19]-[23], adhesion at double interfaces between an 

adhesive layer and two adherents [24]-[28], multiple interlayer thin resin-rich zones of polymer-based 

composite laminates [29]-[33], and multiple rock joints [34], [35]. 

On the other hand, when these imperfect interfaces are insonified by waves with sufficiently 

high amplitude, they can be a source of nonlinear acoustic phenomena. Among others, the 

higher-harmonic generation has been studied theoretically as well as experimentally in the field of 

ultrasonic nondestructive testing for more sensitive characterization of the interface quality than the 

conventional techniques based on the linear wave propagation characteristics [36]-[41]. According to 

the foregoing studies [42]-[48], the generation behavior of the second- or higher-order harmonics at a 
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solid-solid contacting interface can be reasonably described by the nonlinear spring-type interface 

model. Using this model, Yan et al. [49], [50] studied the second-harmonic generation at a kissing 

bond on one of the double interfaces between an adhesive layer and two aluminum blocks. The wave 

interaction with double nonlinear spring-type interfaces was also analyzed by Junca and Lombard [51]. 

For the more general case of multiple interfaces, Biwa and Ishii [52] analyzed the propagation 

characteristics of the Bloch wave in infinitely layered structures with spring-type interlayer interfaces 

possessing a weak quadratic nonlinearity. They elucidated the frequency dependence of the 

second-harmonic generation in the structures based on their pass and stop band characteristics. For 

finite layered structures with nonlinear spring-type interlayer interfaces, Ishii and Biwa [53] showed 

some preliminary numerical results of the frequency dependence of second-harmonic amplitudes of 

the reflected and transmitted waves by combining a perturbation approach with the transfer-matrix 

method [54], [55], while they left out the details of the corresponding mathematical expressions. 

Better understanding of this issue is important from fundamental and practical points of view to 

characterize the imperfect interlayer interfaces of multilayered structures by using nonlinear acoustic 

methods. 

In this paper, the formulations omitted in Ref. [53] is fully described and the second-harmonic 

generation behavior in multilayered structures is analyzed in a more precise manner. Namely, the 

present analysis deals with the second-harmonic generation in a finite layered structure with nonlinear 

spring-type interlayer interfaces when it is subjected to the normal incidence of a monochromatic 

longitudinal wave, and elucidate the frequency dependence of second-harmonic amplitudes in the 

reflected and transmitted fields. Following the perturbation analysis for a weak quadratic nonlinearity 

of interfaces carried out in Ref. [52], the governing equations for the propagation of fundamental wave 

and its second-harmonic component in the structure embedded between two linear elastic semi-infinite 

media are presented in the frequency domain in Section 2. The solution to the fundamental wave 

propagation, i.e., the amplitude reflection and transmission coefficients as well as the displacement 
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jumps at the interlayer interfaces, is obtained using the transfer-matrix method in Section 3. The 

explicit expressions for the second-harmonic amplitudes of the reflected and transmitted waves are 

derived in Section 4. The resulting frequency dependence of the second-harmonic amplitude due to a 

single as well as multiple nonlinear interlayer interfaces is discussed in Section 5. 

 

 

2. Formulation 

The one-dimensional longitudinal wave propagation in the layering direction of a multilayered 

structure is considered. The position is denoted by x. The structure consists of N identical linear elastic 

layers (density ρ, wave velocity c, and thickness h) and is embedded between two identical linear 

elastic semi-infinite media (density ρ0 and wave velocity c0) with the perfect bonding at x = X0 and x = 

XN as shown in Fig. 1. Using the displacement ,  where t is the time, the stress	 ,  is given 

by 

 
, , ,	 (1)

in the layer and 

 , , ,	 (2)

in the semi-infinite medium. 

The layers are bonded to each other by spring-type interfaces at x = Xm = X0 + mh (m = 1, 2, 3…, 

N-1), where the stress is continuous while the discontinuity is allowed in the displacement. When the 

spring-type interfaces possess weak quadratic nonlinearity [43], the boundary conditions for the mth 

interface are given by [52], [53] 

 
, , 1 ,  (3)
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where the subscripts “+” and “–” denote the limit of a field variable when x approaches the 

corresponding coordinate from the positive and negative sides, respectively. In Eq. (3), KS is the linear 

interfacial stiffness, which is assumed to be the same for all interfaces, βm is a positive parameter 

representing the nonlinearity of the mth interface, and  is the gap distance at x = Xm defined by 

 
≡ , , .  (4)

     The present study analyzes the amplitudes of the nonlinearly generated second-harmonic 

component in the reflected and transmitted waves for x < X0 and x > XN, respectively, when a 

monochromatic longitudinal wave with angular frequency ω0 and amplitude AI impinges 

perpendicularly on the multilayered structure from x < X0. Assuming that Max  is sufficiently 

small, and that the time dependence term is given by exp(-iωt) where i2 = –1 and ω is the angular 

frequency, the governing equations and the boundary conditions for the fundamental wave (ω = ω0) 

and its second-harmonic component (ω = 2ω0) are written by performing the perturbation analysis 

[52] as 

For ω = ω0; 

 d
d

0, 	and , (5)

 d
d

0, , 1,2, … , , (6)

 d
d

d
d

, 1,2, … , 1, (7)

 , 0, , (8)

 d
d

d
d

,
d
d

d
d

, (9)

For ω = 2ω0; 

 d
d

2
0, and , (10)
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 d
d

2
0, , 1,2, … , , (11)

 d
d

d
d

1
2

, 1,2, … , 1, (12)

 , 0, , (13)

 d
d

d
d

,
d
d

d
d

, (14)

where U1 and U2 (Y1m and Y2m) are the complex-valued time-harmonic displacements (gap distances of 

interlayer interfaces) of the fundamental wave and its second-harmonic component, respectively. 

 

 

3. Analysis of fundamental wave propagation 

The fundamental wave propagation governed by Eqs. (5)-(9) is first analyzed here by using the 

transfer-matrix method [54], [55] to obtain the amplitude reflection and transmission coefficients of 

the fundamental wave as well as the gap distances of the interlayer interfaces Y1m which are required to 

calculate the second-harmonic generation at the nonlinear interfaces in Eq. (12). 

 

3.1. Calculation of the amplitude reflection and transmission coefficients 

     As a solution to Eqs. (5) and (6), the forward- and backward-propagating waves denoted by 

U1F(x) and U1B(x) are considered, respectively. The displacement vector is then defined as U1(x) ≡ 

(U1F(x), U1B(x))T, where the superscript “T” denotes the transpose. 

The displacement vectors on the left (x = X0-) and the right (x = XN+) sides of the multilayered 

structure are written as 

 exp i

exp i
,  (15)

 exp i
0

,  (16)

where ≡ /  and ≡ / 	(q = 0, N) represent the normalized angular frequency and 
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the normalized positions of the boundaries between the structure and the surrounding semi-infinite 

media, respectively. In Eqs. (15) and (16),  and  denote the complex-valued amplitude 

reflection and transmission coefficients, respectively. These are calculated by applying the 

transfer-matrix method [54], [55] to Eqs. (5)-(9) as, 

 
exp 2i , (17)

 exp i . (18)

In the above expressions,  (I, J = 1, 2) are the elements of the global transfer matrix given by 

[29]-[32] 

 

, 

(19)

where 

 
1 i i
i 1 i

, (20)

 exp i 0
0 exp i

, (21)

 ≡
1 i exp i i exp i
i exp i 1 i exp i

, (22)

 1
2

1 1
1 1 , (23)

 1
2
1 1
1 1 , (24)

where  is the scattering matrix of the interlayer interface,  is the propagator matrix in the 

layer, and  and  are the scattering matrices of the perfectly bonded interfaces at x = X0 and x 
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= XN, respectively. In the above expressions, the non-dimensional parameters 

 ≡
2

, (25)

 ≡ , (26)

represent the relative linear compliance of the interlayer interfaces and the acoustic impedance ratio 

between the layer and the semi-infinite medium, respectively. 

By introducing the Bloch wavenumber  for the infinitely extended layered structure 

whose unit-cell consists of one layer and one linearized spring-type interface given by [31], [52] 

 
exp i i 1 , (27)

 ≡ cos sin , (28)

 in Eq. (19) can be written as 

sin
sin

sin 1
sin

, / , 0,

1
sinh
sinh

1
sinh 1

sinh
, / , 0,

1 1 1 , / , 0,

(29a)

(29b)

(29c)

where I is the 2 × 2 identity matrix, n is an integer, and  and  are the real and imaginary 

parts of the Bloch wavenumber, respectively, i.e., ≡ i	 . For the derivation of Eq. 

(29a), refer to Ref. [56]. Equation (29b) can be obtained from Eq. (29a) with the relation sin

i i 1 sinh , and then Eq. (29c) is given by applying L’Hôpital’s rule to Eq. (29b). 

Equations (29a)-(29c) correspond to the pass bands, stop bands, and boundaries between the pass and 

stop bands of the infinitely periodic structure, respectively. 

     From Eqs. (19)-(24) and (29) with the property that det 1, Eqs. (17) and (18) can be 

rewritten explicitly as, 



9 
 

 

i
exp 2i , (30)

 i
i

exp i , (31)

where Dk (k = 1, 2, 3, 4) are real numbers given by 

 
2 sin 1 1 sin sin , (32a)

 2 sin cos sin 1 , (32b)

 2 sin 1 1 sin sin , (32c)

 2 sin , (32d)

when /  and 0,  

 
2 sinh 1 1 1 sinh sin , (33a)

 2 1 sinh cos sinh 1 , (33b)

 2 sinh 1 1 1 sinh sin , (33c)

 2 1 sinh , (33d)

when /  and 0, and 

 
2 1 1 1 sin , (34a)

 2 1 1 sin , (34b)

 2 1 1 1 sin , (34c)

 2 1 , (34d)

when /  and 0. 

 

3.2. Calculation of the gap distance at the interlayer interfaces 

    The gap distance at the mth interlayer interface (m = 1, 2, …, N-1) due to the fundamental wave 
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propagation can be written by using , , 

, and  as 

 

2i 	

2i 	

2i 	 , 

(35)

where g = (1, –1). Using Eqs. (16), (22), (23), and (29) with the so-obtained amplitude transmission 

coefficient from Eq. (31), the above equation is reduced to 

 2i
exp i , (36)

where 

 
i , (37)

and  and  are real functions defined by 

≡

sin cos sin 1
sin

, / , 0,

1 sinh cos sinh 1
1 sinh

, / , 0,

1 1 1 sin , / , 0,

 

(38a)

(38b)

(38c)

≡

sin sin
sin

, / , 0,

1 sinh sin
sinh

, / , 0,

1 sin , / , 0.

 

(39a)

(39b)

(39c)
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4. Calculation of the second-harmonic amplitudes of the reflected and transmitted waves 

4.1. Transfer matrix formulation 

     As in the case of the fundamental wave propagation in Section 3, the displacement components 

of the forward- and backward-propagating second-harmonics which satisfy Eqs. (10) and (11) are 

denoted by U2F(x) and U2B(x), respectively, and the vector with these elements by U2(x) ≡ (U2F(x), 

U2B(x))T. 

Using Eq. (12) with the fundamental component of interfacial gap opening given in Eq. (36), the 

second-harmonic displacements on both sides of the mth interlayer interface (m = 1, 2, …, N–1) are 

related by [52] 

 

2
4

, (40)

where e = (1, 1)T. In addition, the displacements at x = X(p-1)+ and x = Xp– (p = 1, 2, …, N) are 

connected as 

 
2 . (41)

Furthermore, the perfect bonding conditions for the interfaces between the multilayered structure and 

the semi-infinite media in Eqs. (13) and (14) give 

 
, (42)

 . (43)

 

4.2. Multilayered structure with a single nonlinear interface 

Let us consider here the situation where only the interlayer interface located at x = Xs (1 ≤ s ≤ N 

– 1) possesses the non-zero nonlinearity, i.e., βm > 0 when m = s and βm = 0 when 1 ≤ m ≤ s – 1 or s + 1 

≤ m ≤ N – 1. Using Eqs. (40)-(43), the second-harmonic components at the right and left of the 
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structure are related by 

 
2 , (44)

where 

 
≡

1
4

2 2 . (45)

On the other hand, Eqs. (44) and (45) can be also written as 

 
2 , (46)

where 

 
≡

1
4

2 . (47)

From the physical reasoning that the generated second-harmonic component should propagate away 

from the multilayered structure, its displacement vectors at x = X0- and x = XN+ become 

 0
exp 2i ,  (48)

 exp 2i
0

,  (49)

where  and  denote the second-harmonic amplitudes of the reflected and transmitted waves, 

respectively. These are given by substituting Eqs. (48) and (49) into Eqs. (44) and (46), and carrying 

out the straightforward calculation as 

 

2
exp 2i

1
4

2 2 exp 2i , 
(50)
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2

exp 2i

1
4

2 2 exp 2i . 

(51)

Equations (50) and (51) indicate that different factors influence the second-harmonic amplitudes of the 

reflected and transmitted waves. First, the second-harmonic generation at the sth nonlinear interface is 

governed by the nonlinearity parameter  and the interfacial gap opening . After being 

generated, the second-harmonic propagates in the multilayered structure with linearized interlayer 

interfaces. Its propagation efficiency is governed by the transmission coefficient at the double 

frequency 2 , with the compensation for the position of the nonlinear interface in the structure 

2  and 2  for the reflected and transmitted waves, respectively. 

 

4.3. Multilayered structure with multiple nonlinear interfaces 

Since the governing equations for the second harmonics in Eqs. (10)–(14) are linear, the 

second-harmonic amplitudes on both sides of the multilayered structure in the more general case of 

multiple nonlinear interfaces at x = Xm (m = 1, 2, …, N–1) are now given by superposing the solution 

of the above single nonlinear interface problem in Eqs. (50) and (51) for different s as 

 
1
4

2 exp 2i 2 , (52)

 1
4

2 exp 2i 2 . (53)
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5. Results and discussions 

5.1. Factors governing the second-harmonic amplitudes 

It has been shown in Section 4 that the second-harmonic amplitudes of the reflected and 

transmitted waves are governed by several factors. As an example, these factors are depicted as 

functions of the normalized angular frequency in Fig. 2 when N = 4, Λ = 0.2, and ζ = 3. 

As mentioned earlier, the second-harmonic generation at the sth nonlinear interface is influenced 

by the interfacial gap opening | | shown in Fig. 2(a). This quantity depends on, from Eq. (36), 

the amplitude transmission coefficient of the fundamental wave | | shown in Fig. 2(b) as well as 

the distance from the sth interface to the right end of the structure which is given by the factor 

| |  shown in Fig. 2(c), both of which are related to the Bloch wavenumber of the 

corresponding infinitely extended layered structure at the fundamental frequency  and  

shown in Fig. 2(d). It is noted that the dispersion relation is depicted only for the forward-propagating 

Bloch wave in Fig. 2(d). From Eqs. (38c) and (39c), | | in Fig. 2(c) becomes unity regardless of 

s when . Namely, the gap opening is the same for all interlayer interfaces at the beginning of 

each pass band of the Bloch wave as can be seen in Fig. 2(a). In addition, when the frequency lies in 

the stop bands of Bloch wave, i.e., 0, | | becomes relatively large and its peaks 

exhibit monotonic growth with s due to the hyperbolic nature in Eqs. (38b) and (39b). The resulting 

gap opening in Fig. 2(a), however, becomes relatively small in these frequency ranges since | | 

drops to low levels therein in Fig. 2(b). 

The second-harmonic component generated at the sth interface is then influenced by the layered 

structure before being observed outside the structure as the reflected or transmitted wave. This effect is 

represented by the amplitude transmission coefficient at the double frequency | 2 | shown in Fig. 

2(b) and the factor | 2 | shown in Fig. 2(e), both of which depend on the propagation behavior of 

Bloch wave at the double frequency 2  and 2  shown in Fig. 2(d). 
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5.2. Second-harmonic generation by a single nonlinear interface 

5.2.1. Frequency dependence of the second-harmonic amplitudes of the reflected and 

transmitted waves 

When the interlayer interface located at x = Xs solely possesses the non-zero nonlinearity of βs = 

β where β is a positive constant, the second-harmonic amplitudes of the reflected and transmitted 

waves are calculated by Eqs. (50) and (51) for three cases where s = 1, N/2, and N-1. The results for 

different N with fixed Λ = 0.2 and ζ = 3 are shown as functions of the normalized fundamental 

frequency in Fig. 3(a) and 3(b) for N = 4, in Fig. 3(c) and 3(d) for N = 10, and in Fig. 3(e) and 3(f) for 

N = 20. 

In Fig. 3, the second-harmonic amplitudes are significantly influenced not only by the frequency 

but also by the number of layers as well as the position of the nonlinear interface. There exist some 

frequency ranges in which the second-harmonic amplitude falls to vanishingly low levels, and such 

regions become clearer as the number of layers increases. These frequency ranges are formed at 

around Ω/π = 0.9 and Ω/π = 1.8 in a similar manner irrespective of the location of the nonlinear 

interface, and agree well with those in the case of infinitely layered structure in Ref. [52]. On the other 

hand, the second-harmonic amplitudes at around Ω/π = 1.3 and 2.3 are remarkably influenced by the 

position of the nonlinear interface and oscillate against the frequency due to the finite thickness of the 

layered structure. Clearly from Eqs. (50) and (51), the reflected and transmitted waves have the 

identical second-harmonic amplitude when s = N/2, i.e., the nonlinear interface is located exactly at 

the center of the layered structure. 

 

5.2.2. Spatial distribution of the second-harmonic amplitude inside the multilayered structure 

In order to ease the interpretation of the results shown in Fig. 3, the second-harmonic amplitude 

inside the multilayered structure, given as ≡ , is calculated 

according to the following equations: 
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 2 2 , , (54a)

for p = 1, 2, …, s, and 

 2 2 , ,	 (54b)

for p = s + 1, s + 2, …, N. 

The spatial distribution of the second-harmonic amplitude corresponding to Fig. 3 is illustrated 

in Fig. 4, where the positions of the single nonlinear interface and the boundaries between the structure 

and the semi-infinite media are indicated by arrows and vertical dashed lines, respectively. The 

imaginary parts of Bloch wavenumber shown in Fig. 2(d) are also depicted at the right in Fig. 4 to 

compare the frequency dependence of second-harmonic amplitudes with the pass and stop band 

structure of the corresponding infinitely extended layered structure. 

It is seen in Fig. 4 that the generation as well as propagation characteristics of the 

second-harmonic component in the finite layered structures reflect the band structure of Bloch wave. 

First, when both fundamental and double frequencies lie in the stop bands of Bloch wave such as at 

around Ω/π = 0.9, 1.8, and 2.5, the interfacial gap opening | | becomes small at the leftmost 

interlayer interface and it further decreases for the rightward nonlinear interfaces as seen in Fig. 2(a) in 

the case of N = 4. This is because the propagation of the fundamental wave is strongly prohibited. In 

addition, the generated second-harmonic component is also prohibited from propagating through the 

multilayered structure as represented by the small value of | 2 |, and such an effect becomes 

significant for larger N. As a result, both the second-harmonic amplitudes of the reflected and 

transmitted waves fall to low levels for any positions of the nonlinear interface in these frequency 

ranges. When s = 1 in Fig. 3, a slight amount of the second-harmonic amplitude can be observed in the 

reflected wave, since the wave generated at the leftmost nonlinear interface can reach the observation 

point without being influenced by the layered structure as can be seen in Fig. 4(a), 4(d), and 4(g). 
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Second, when the fundamental and double frequencies are within one of the pass and stop bands 

of Bloch wave, respectively, such as at around Ω/π = 0.4, 1.3, and 2.3, the second-harmonic 

component is generated at any positions of the nonlinear interface, while the generated 

second-harmonic decays significantly as it propagates in the structure as seen in Fig. 4. Hence, the 

second-harmonic amplitudes in Fig. 3 remain observable on the left and right sides of the structure 

only when the leftmost (s = 1) and rightmost (s = N – 1) interlayer interfaces possess the nonlinearity, 

respectively. 

Third, in the opposite case of the second one where only the fundamental frequency belongs to 

one of the stop bands such as at around Ω/π = 1.6, relatively high second-harmonic amplitudes are 

seen for both reflected and transmitted fields only when s = 1 in Fig. 3. This is because of the larger 

second-harmonic generation at the leftward nonlinear interfaces compared to the rightward ones and 

the high propagation efficiency of the second-harmonic component in the structure. 

Finally, when the frequency is at around Ω/π = 0.6, Ω/π = 1.1, and Ω/π = 2.05 where both 

fundamental and double frequencies are within the pass bands, the second-harmonic amplitudes of the 

reflected and transmitted waves become relatively high regardless of the position of the nonlinear 

interface due to the unhampered generation as well as propagation efficiency of the second-harmonic 

component. 

 

5.3. Second-harmonic generation by multiple nonlinear interfaces 

When all interlayer interfaces possess the same nonlinearity of βm = β (m = 1, 2, …, N–1), the 

second-harmonic amplitudes on both sides of the multilayered structure are calculated by Eqs. (52) 

and (53). Their variation with the normalized fundamental frequency is shown in Fig. 5 for N = 4, 10, 

and 20 with fixed Λ = 0.2 and ζ = 3. 

In Fig. 5, the second-harmonic amplitudes of the reflected and transmitted waves exhibit the 

frequency dependence which combines the features seen above in the case of single nonlinear 
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interface. In particular, the second-harmonic amplitudes due to the multiple nonlinear interfaces grow 

almost monotonically with N when the frequency is at around Ω/π = 1 and Ω/π = 2 in the pass bands of 

Bloch wave. This is in agreement with the results in Ref. [52] that the second-harmonic generation in 

infinitely layered structures exhibits a cumulative growth with the number of consecutive nonlinear 

interfaces at around Ω/π = k (k = 0, 1, 2, …), where the phase matching is nearly met for the Bloch 

waves at the fundamental and double frequencies. 

 

5.4. Influence of non-dimensional parameters on the second-harmonic generation 

5.4.1. Relative linear compliance of the interlayer interfaces Λ 

     In order to examine the influence of the non-dimensional parameter Λ given by Eq. (25) on the 

second-harmonic generation, the variation of the second-harmonic amplitudes of the 10-layered 

structure shown in Fig. 5, i.e., N = 10, ζ = 3, and βm = β (m = 1, 2, …, N–1), with Λ is depicted in Fig. 

6(a) and 6(b), respectively. The pass and stop bands of Bloch wave in the corresponding infinitely 

extended layered structure at the fundamental and double frequencies are also shown in Fig. 6(c). 

In Fig. 6(c), the frequency ranges in which both fundamental and double frequencies belong to 

the stop bands become wider as Λ increases from the small value of 10-2 where the interlayer interfaces 

are close to the perfect bonding condition. Such stop band behavior appears clearly in the transmission 

spectrum in Fig. 6(b). On the other hand, the reflected field in Fig. 6(a) has a relatively high amplitude 

even when the frequency lies in the white zones in Fig. 6(c). This is because, as discussed above, the 

second-harmonic component generated at the leftward interlayer interfaces can reach the left side of 

the multilayered structure even when both fundamental wave and its second-harmonic component are 

prohibited from propagating in the structure. 

 

5.4.2. Acoustic impedance ratio between the layer and the outside medium ζ 

    The variation of the second-harmonic amplitude spectra with the non-dimensional parameter ζ 
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given by Eq. (26) is depicted in Fig. 7 for N = 10, Λ = 0.2, and βm = β (m = 1, 2, …, N–1). Note that 

unlike Fig. 6, the band structure of Bloch waves is not shown in Fig. 7 since it is independent of ζ as 

can be seen from Eqs. (27) and (28). The dispersion relation of Bloch wave corresponding to Fig. 7 is 

shown in Fig. 2(d). 

     In Fig. 7, the magnitudes of second-harmonic amplitude in the reflected and transmitted fields 

are influenced by ζ, while their oscillatory nature against the frequency does not depend on ζ very 

much. This is because this parameter governs the frequency-independent scattering at the perfect 

bonding interfaces between the multilayered structure and the surrounding semi-infinite media: the 

amplitude transmission coefficient of the longitudinal wave across the interface is given by TSL = 2/(1 

+ ζ) and TLS = 2ζ/(1 + ζ) when the wave impinges from the semi-infinite medium and the layer, 

respectively. 

When ζ becomes large, say, ζ = 103, the second-harmonic component is hardly generated at the 

interlayer interfaces because of the low transmission of incident wave through the interface at x = X0. 

As a consequence, the second-harmonic amplitudes of the reflected and transmitted waves become 

vanishingly small except the several sharp peaks caused by the resonance frequencies of the 

multilayered structure. As ζ decreases therefrom, the second-harmonic generation at the interlayer 

interfaces becomes larger due to the associated increase of TSL. Further decrease of  is, however, 

accompanied with the decrease of TLS. Therefore, the second-harmonic amplitudes on both sides of the 

structure increase as ζ goes down from 103, while they begin to decrease at around ζ = 100 where TSL = 

TLS = 1. 

 

 

6. Conclusion 

     The acoustic second-harmonic generation behavior in a multilayered structure with nonlinear 

spring-type interlayer interfaces has been analyzed theoretically to investigate the frequency 
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dependence of second-harmonic amplitudes in the reflected and transmitted fields resulting from the 

normal incidence of a monochromatic longitudinal wave to the structure. Analytical expressions have 

been derived for the second-harmonic amplitudes of the reflected and transmitted waves by a 

perturbation analysis combined with the transfer-matrix method. The frequency dependence of the 

second-harmonic amplitudes due to a single nonlinear interface has been shown to reflect the band 

structure of the Bloch wave for the corresponding infinitely extended layered structure and to depend 

remarkably on the position of the nonlinear interface as well as the number of layers. When all 

interlayer interfaces possess the identical nonlinearity, the second-harmonic amplitudes on both sides 

of the structure have been found to increase almost monotonically with the number of layers in the 

frequency ranges where both fundamental and double frequencies lie in the pass bands of Bloch wave. 

The bandwidth of the frequency ranges in which the second-harmonic amplitude drops to relatively 

low levels has been shown to be profoundly influenced by the relative linear compliance of the 

interlayer interfaces, while the acoustic impedance ratio between the layer and the surrounding 

medium has been shown to have an effect to mainly vary the magnitude of second-harmonic 

amplitudes. The results obtained in the present analysis can be helpful when characterizing the 

imperfect interlayer interfaces of multilayered structures by using nonlinear acoustic methods. 
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Figure captions 

Fig. 1  A multilayered structure consisting of N linear elastic layers and N-1 spring-type interlayer 

interfaces embedded between two linear elastic semi-infinite media. 

Fig. 2  Frequency dependence of (a) the interfacial gap opening, (b) the amplitude transmission 

coefficient of fundamental wave, (c) the factor |Es(Ω)|, (d) the dispersion relation of 

forward-propagating Bloch wave in the corresponding infinitely extended layered structure, and (e) 

the factor |Es(2Ω)| when N = 4, Λ = 0.2, and ζ = 3.  

Fig. 3  Frequency dependence of the second-harmonic amplitudes of the reflected and transmitted 

waves due to a single nonlinear interface located at x = X1, x = XN/2, and x = XN-1 when (a) and (b) N = 

4, (c) and (d) N = 10, and (e) and (f) N = 20, for Λ = 0.2 and ζ = 3. 

Fig. 4  Spatial distrtibution of the second-harmonic amplitude of Fig. 3. The arrows and vertical 

dashed lines represent the positions of nonlinear interface and both ends of the multilayered structure, 

respectively. The imaginary parts of Bloch wavenumber in Fig. 2(d) are also shown at the right.  

Fig. 5  Frequency dependence of the second-harmonic amplitudes of the (a) reflected and (b) 

transmitted waves due to multiple nonlinear interfaces when N = 4, 10, and 20, for Λ = 0.2 and ζ = 3. 

Fig. 6  Variation of the frequency dependence of second-harmonic amplitudes of the (a) reflected and 

(b) transmitted waves due to multiple nonlinear interfaces with Λ when N = 10 and ζ = 3. (c) Band 

structures of Bloch wave in the corresponding infinitely extended layered structures at the 

fundamental and double frequencies.  

Fig. 7  Variation of the frequency dependence of second-harmonic amplitudes of the (a) reflected and 

(b) transmitted waves due to multiple nonlinear interfaces with ζ when N = 10 and Λ = 0.2. 
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