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ARTICLE

AIP1 and cofilin ensure a resistance to tissue
tension and promote directional cell rearrangement
Keisuke Ikawa1 & Kaoru Sugimura 1,2

In order to understand how tissue mechanics shapes animal body, it is critical to clarify how

cells respond to and resist tissue stress when undergoing morphogenetic processes, such as

cell rearrangement. Here, we address the question in the Drosophila wing epithelium, where

anisotropic tissue tension orients cell rearrangements. We found that anisotropic tissue

tension localizes actin interacting protein 1 (AIP1), a cofactor of cofilin, on the remodeling

junction via cooperative binding of cofilin to F-actin. AIP1 and cofilin promote actin turnover

and locally regulate the Canoe-mediated linkage between actomyosin and the junction. This

mechanism is essential for cells to resist the mechanical load imposed on the remodeling

junction perpendicular to the direction of tissue stretching. Thus, the present study delineates

how AIP1 and cofilin achieve an optimal balance between resistance to tissue tension and

morphogenesis.
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The global patterns of forces in a tissue (e.g., tissue tension/
compression) control many aspects of development
including cell proliferation, cell rearrangement, and cell

polarity1–10. Such control relies on the ability of cells to sense the
distribution of forces and tune morphogenetic signaling pathways
in response to the mechanical inputs. Moreover, cells must resist
or release tension/compression when deforming, proliferating,
and moving during development2,11–13. While an understanding
of molecular mechanisms for stress generation has evolved in the
past decade, much less is known on how cells respond to and
resist such stresses at the molecular level during morphogenesis.

The actin cytoskeleton is capable of sensing and resisting
applied forces both at the network and filament levels14,15. For
example, mechanical strain on the actin network alters the
structure of filamin A, which crosslinks the orthogonal filaments,
thus inhibiting the binding between filamin A and a downstream
signaling molecule16. Single actin filaments decrease their helical
pitch when mechanically relaxed, and such structural changes are
amplified through positive feedback between F-actin twisting and
cofilin binding15,17–19. The actin network increases its elasticity or
reorients the stress direction to resist applied forces by changing
filament dynamics and/or network architecture14,20,21. Whether
and how these force-responsive properties of the actin cytoske-
leton and actin-binding proteins (ABPs) are involved in the
development of multi-cellular tissue is largely unknown.

During morphogenesis, cells change their relative positions
along the tissue axis by remodeling cell contact surfaces. This
process, called directional cell rearrangement, shapes a tissue and
develops its multi-cellular pattern22–25. The Drosophila pupal
wing epithelium provides an excellent model system to study the
mechanism through which tissue tension controls directional cell
rearrangement. Starting ~15 h after puparium formation (h APF),
forces generated in the hinge stretch the wing along the proximal-
distal (PD) axis (Supplementary Figure 1a-d)6. The resulting
anisotropic tissue tension acts as a mechanical cue to specify the
axis of cell rearrangement6–8,26. Wing cells relocalize myosin-II
(myo-II) at the adherens junction (AJ) that runs along the PD
axis (PD junction) to resist tissue tension, and the balance
between extrinsic stretching force and intrinsic cell junction
tension favors PD cell rearrangement, thereby accelerating
relaxation into a hexagonal cell pattern (hereafter called hex-
agonal cell packing; Supplementary Figure 1c, d)7. This relaxation
may be primarily driven through interface mechanics, consistent
with the observation of shear-induced reconnection of interfaces
and hexagonal lattice formation in foam, non-biological soft
matter27,28. However, in biological tissues such as the wing epi-
thelium, interface mechanics must be orchestrated with molecular
regulators of cytoskeleton and cell adhesion (e.g., force-responsive
ABPs) responsible for responding to and resisting tissue tension.
Answering the question in the wing should provide a general
mechanism of epithelial development, as all cell rearrangements
are associated with sensation and resistance to forces from the
surrounding cells.

Here, we show that actin regulation mediated through actin
interacting protein 1 (AIP1) and cofilin is responsible for sup-
porting tissue tension-driven cell rearrangement and hexagonal
cell packing in the Drosophila pupal wing. AIP1 is evolutionarily
conserved from yeast to humans. In vitro studies have shown that
AIP1 binds cofilin and F-actin and promotes F-actin severing via
cofilin29–32. In vivo, AIP1 and cofilin control F-actin disassembly
and remodeling during development33–38. We show that AIP1 is
localized on the remodeling anterior–posterior (AP) junctions of
wing cells, and tissue stretch is necessary for the biased dis-
tribution of AIP1. Inhibition of actin turnover by AIP1 or cofilin
loss-of-function (l-o-f) results in the detachment of myo-II from
the AP junctions, which hampers the stabilization of newly

formed PD junctions. Interestingly, the disorder of junctional
actomyosin is rescued by releasing tissue tension. Together, our
data illustrate that actin turnover ensures a resistance to aniso-
tropic tissue tension and promotes directional cell rearrangement
by reinforcing the structural stability of remodeling junctions.
This proposed mechanism is likely to be relevant to development
of other epithelial tissues in which tissue tension coordinates with
morphogenetic signaling pathways in individual cells.

Results
AIP1 is localized on remodeling AP junctions. To investigate
the molecular mechanisms through which cells respond to and
resist tissue tension during directional cell rearrangements in the
Drosophila wing, we screened candidate ABPs (Supplementary
Methods). First, we examined the subcellular distribution of 19
ABPs at 24 h APF. ABPs demonstrating interesting localization
patterns were assayed for l-o-f phenotypes. Since the polygonal
distribution of cells is much easier to measure than the dynamics
of cell rearrangement, we used the fraction of hexagonal cells at
32 h APF, when the hexagonal cell packing process involving
directional cell rearrangement is nearly complete, as a proxy for
cell rearrangement defects. As described below, screening iden-
tified AIP1, which promotes F-actin severing via cofilin29–32, as a
potential key regulator of cell rearrangement in the wing.

During the screening process, we detected a strong signal for
GFP-tagged endogenous AIP1 along a subset of AP junctions at
24 h APF (Fig. 1a, b, Supplementary Figure 1e; see Supplementary
Note 1 and Supplementary Figure 2a, c for characterization of
flare (flr) (Drosophila aip1 gene) protein trap line36,39). The
directional bias in the AIP1 distribution became weaker at 28 h
APF, when tissue tension is thought to contribute less to
directional cell rearrangement (Supplementary Figure 1f, g)7.
Time-lapse analysis confirmed that AIP1 accumulated on AP
junctions during junctional remodeling, and AIP1 gradually
disappeared from newly formed PD junctions (Fig. 1e,f;
Supplementary Movie 1). In contrast, AIP1-GFP signal intensity
remains low at stable AP junctions (Fig. 1g,h; Supplementary
Movie 2), indicating that AIP1 specifically localizes to remodeling
AP junctions. Fluorescence recovery after photobleaching (FRAP)
of utrABD-GFP showed a smaller fraction of stable F-actin at the
AP junctions than at the PD junction, which is in agreement with
the AIP1 subcellular localization (Fig. 1i–l; Welch’s t-test, P <
0.01). Next, we examined the localization of AIP1 and its cofactor
cofilin along the apico-basal axis. We confirmed that AIP1 is
enriched at the AJ plane, whereas cofilin is diffusely distributed,
as has been reported in the eye disc36 (Fig. 1c, d and
Supplementary Figure 3f-h; see Supplementary Note 1 and
Supplementary Figure 2b, c for characterization of twinstar (tsr)
(Drosophila cofilin gene) protein trap line40). In the flr RNAi
wing, hexagonal cell packing was disrupted, consistent with a
defect in directional cell rearrangement (Fig. 2a, b, d; Welch’s t-
test, P < 0.001). These results prompted us to further investigate a
role for AIP1 in tissue tension-driven cell rearrangement.

Tissue tension-dependent localization of AIP1. To characterize
the mechanism by which tissue tension acts on AIP1, we exam-
ined whether tissue tension is required to bias the subcellular
distribution of AIP1. To this end, we relaxed the tissue stretch by
detaching the wing from the hinge6,7. AIP1 was more evenly
distributed along junctions in the mechanically relaxed wing
(Fig. 3a–d). WT wing cells accumulate F-actin along the PD
rather than AP junctions, and such F-actin localization becomes
non-polarized by relaxing the tissue stretch (Fig. 3e, f). Therefore,
our data argue against the possibility that the loss of accumulation
of AIP1 along the AP junctions in Fig. 3c, d is simply a result of
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the change in F-actin localization. For comparison, the same
experiment was performed with another ABP, Enabled (Ena),
which promotes the elongation of actin filaments41. As shown in
Fig. 3g, h, Ena retained its localization at junctions and vertices in
the absence of an extrinsic stretching force. Thus, tissue tension-

dependent subcellular localization is specific to a subset of ABPs,
including AIP1 and myo-II7,42.

In addition to mechanical anisotropy, the wing develops a
planar cell polarity (PCP) along the in-plane axis of the
epithelium43, which may bias AIP1 localization. However, AIP1
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localized at AP junctions following the l-o-f of two core PCP
components, prickle (pk)44 and flamingo/starry night (fmi/stan)
45,46 (Fig. 3i–m), indicating that PCP is not required for correct
localization of AIP1.

AIP1-cofilin are required for efficient cell rearrangement. Next,
we examined whether and how the depletion of AIP1 affects
directional cell rearrangement. We expressed dsRNA against flr
using the Gal4-UAS system combined with a temperature shift
(Supplementary Note 2). Under experimental conditions, GFP-
tagged endogenous AIP1 was not detected in flr RNAi cells
(Supplementary Figure 2d-f). We also confirmed that flr RNAi
did not alter tissue stress anisotropy per se (Supplementary Fig-
ure 4; Dunnett’s test, P > 0.9)47. The angles of new junctions
generated by cell rearrangement were measured in time-lapse
movies obtained at 24–27 h APF. When junctions underwent
multiple rounds of remodeling, final and preceding rounds of

junctional remodeling were considered separately for analysis
(θfinal and θall, and Nseq and Nall in Fig. 2e; METHODS). This is
because the former affects the steady alignment of hexagonal cells
along the PD axis that accelerates the formation of a hexagonal
pattern (Supplementary Figure 1d), whereas the latter is an
intermediate process of searching for an efficient relaxation
pathway7,24. flr RNAi did not lower the frequency of cell rear-
rangement (Supplementary Figure 5; Dunnett’s test, P > 0.05 for
Nseq/Ncell and P > 0.05 for Nall/Ncell). Both θfinal and θall became
less biased toward the PD axis following flr RNAi, and the dif-
ference between WT and flr RNAi was larger for θfinal than for θall
(Fig. 2f–h; Dunnett’s test, P < 0.001 for Rθfinal and P < 0.01 for
Rθall; semicircle in Fig. 2f shows angle classification). Contraction-
elongation was affected by flr RNAi as expected from disoriented
cell rearrangement (Supplementary Figure 6a, b).

As AIP1 is a cofactor of cofilin, we examined whether cofilin is
involved in regulating AIP1 localization and PD cell rearrange-
ment. In in vitro studies, the binding affinity of AIP1 for F-actin

Fig. 1 AIP1 localizes to remodeling AP junctions in the Drosophila pupal wing. a AIP1-GFP (left) and an AJ marker, Dα-cat-TagRFP (right) in the WT wing at
24 h APF. Blue arrowheads indicate AP junctions. b Directional bias of AIP1-GFP signal intensity (left) and Dα-cat-TagRFP signal intensity (right) along the
junctions. Each junction is divided into twelve bins according to its angle relative to the PD axis, and the average signal intensity in each bin is plotted. Blue
arrows indicate the length Rs and orientation Θ of an angular mean vector (Methods and Supplementary Figure 1e)7. c, d Top-view (c) and side-view (d) of
cells expressing AIP1-GFP (left) and Dα-cat-TagRFP (right) at 24 h APF. The vertical section along the dashed arrow in panel c is shown in d. Alphabets
indicate corresponding coordinates in different views. e, g Selected snapshots from movies of AIP1-GFP (gray in top panels, green in bottom panels) and
Dα-cat-TagRFP (red in bottom panels). Blue arrowheads indicate remodeling (e) and stable (g) junctions. f, h Plot of AIP1-GFP signal intensity (green, left
y-axis) and length (blue, right y-axis) of AP junctions undergoing cell rearrangement (f) or not (h). In f, t= 0 indicates the time point when the junction was
reconnected. Data shown in h indicate that bleaching was negligible. i Snapshots of utrABD-GFP before and after photobleaching (square indicates ROI).
t= 0 indicates the time point when photobleaching was conducted. j, k utrABD-GFP in ROIs examined before and after photobleaching along the AP
(j) and PD (k) junctions. Color maps are shown in the upper right. l The stable fraction of utrABD-GFP. Welch’s t-test: AP vs. PD, P < 0.01. The number of
junctions examined is indicated (b, f, h, l). Data are presented as the mean ± s.e.m. (b) and as the mean ± s.d. (f, h, l). Scale bars: 5 µm (a, e, g), 2 µm
(c, d, i), and 0.5 µm (j)
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is much weaker in the absence of cofilin30, and cofilin binds to
actin filaments for a longer period of time when F-actin severing
is suppressed through the loss of cofactor proteins, including
AIP131. In S. cerevisiae, cofilin hypomorph mutation leads to the
diffusive distribution of AIP1 in the cytosol, whereas aip1 null
mutation moderately alters the subcellular localization of
cofilin35. We determined whether these phenomena were also
observed in the Drosophila pupal wing. In tsr dsRNA-expressing

cells, in which GFP-tagged endogenous cofilin fluorescence was
not detected (Supplementary Figure 2j), AIP1 was diffusely
distributed in the AJ plane, with little accumulation at the AJ
plane along the apico-basal axis (Supplementary Figure 3b-e). flr
dsRNA-expressing cells exhibited abnormal aggregates of cofilin
in the cytosol (Supplementary Figure. 3f-k). The enrichment of
cofilin at the junction is more evident along the plane of AJ,
presumably because cofilin remained in actin cables along the AJ
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plane for a longer period of time. Collectively, AIP1 and cofilin
are mutually dependent for their localization, and phenotype
quality and strength were conserved between fly and yeast. Next,
we addressed the requirement for cofilin in directional cell
rearrangement. tsr RNAi, without changing the inferred tissue
stress anisotropy (Supplementary Figure 4; Dunnett’s test, P >
0.9), caused defects in hexagonal cell packing (Fig. 2c, d; Welch’s
t-test, P < 0.001), directional cell rearrangement (Fig. 2f–h;
Dunnett’s test, P < 0.001 for Rθfinal and P < 0.01 for Rθall), and
contraction-elongation (Supplementary Figure 6c), similar to that
caused by flr RNAi.

The acute delocalization of AIP1 impairs cell rearrangement.
We also pharmacologically inhibited the functions of AIP1/cofilin
using the F-actin stabilization drug Jasplakinolide (Jasp). Jasp
stabilizes F-actin by competitively inhibiting cofilin binding to F-
actin and decreasing the monomer off rate at filament ends48,49.
As expected from the uniform distribution of AIP1 in tsr RNAi
cells (Supplementary Figure 3c), the biased distribution of AIP1
was lost in wings incubated with Jasp for 4 h (Fig. 4a–c). In
contrast, the average signal intensity of AIP1-GFP along junctions
was not significantly affected (Fig. 4d; Welch’s t-test, P > 0.2).
Under these conditions, the directionality of cell rearrangement

was weakened (Fig. 4e–g; Welch’s t-test, P < 0.01 for Rθfinal and P
< 0.05 for Rθall), and the overall extent of contraction-elongation
was decreased (Supplementary Figure 6d, e). In summary, the
acute delocalization of AIP1 resulted in disoriented cell rearran-
gement, highlighting the importance of the subcellular localiza-
tion of AIP1 in regulating directional cell rearrangement and
suggesting that flr l-o-f phenotypes are unlikely to reflect early
developmental defects.

Thus far, we showed that tissue tension specifies AIP1
localization in a cell, and AIP1 and its cofactor cofilin are
required for efficient directional cell rearrangement. Thus, we
next undertook experiments to answer three questions. First, how
do AIP1 and cofilin promote directional cell rearrangement?
Second, whether and how do AIP1 and cofilin facilitate a
resistance to tissue tension during directional cell rearrangement?
Third, how are AIP1 localization and function related to tissue
tension?

Fmi and Dsh polarities are largely normal in flr RNAi cells.
Previous studies reported that hexagonal cell packing is regulated
through the PCP pathway via cadherin trafficking in the
Drosophila pupal wing, and AIP1 is required for PCP
establishment34,37,50. Thus, AIP1 potentially controls cell

Fig. 3 AIP1 localizes to AP junctions in a tissue stretch-dependent manner. a, b Low magnification images of DE-cad-GFP of the WT (a) and mechanically
relaxed (b) wings at 24 h APF. The wing blade is shaded magenta. c AIP1-GFP (left) and Dα-cat-TagRFP (right) in the mechanically relaxed wing at 24 h
APF. d Directional bias of AIP1-GFP signal intensity (left) and Dα-cat-TagRFP signal intensity (right) in the mechanically relaxed wing was quantified as
described for Fig. 1b. e, f F-actin distribution in WT (e) and mechanically relaxed (f) wings at 24 h APF. Phalloidin (left) and DE-cad (right). Yellow and blue
arrowheads indicate PD and AP junctions, respectively. g, h GFP-Ena in WT (g) and mechanically relaxed (h) wings at 24 h APF. Magenta arrowheads
indicate the accumulation of GFP-Ena on cell vertices. i AIP1-GFP (left) in a pk1 wing at 24 h APF. Cell contours are depicted (right). Blue arrowheads
indicate AP junctions. j Directional bias of AIP1-GFP signal intensity in a pk1 wing. k Left: Schematics of the wing. The expression domain of ptc-Gal4 was
shaded gray. A square indicates the region shown in right. Right: The Fmi antibody signal in a fmi RNAi wing at 24 h APF. l AIP1-GFP (left) and Dα-cat-
TagRFP (right) in a fmi RNAi wing at 24 h APF. Blue arrowheads indicate AP junctions. The animal was carrying one copy of AIP1-GFP, and the brightness-
contrast was adjusted using different parameters compared to those used in other homozygous samples. m Directional bias of AIP1-GFP signal intensity
(left) and Dα-cat-TagRFP signal intensity (right) in a fmi RNAi wing. The number of junctions examined is indicated (d, j, m). Data are presented as the
mean ± s.e.m. (d, j, m). Scale bars: 100 µm (a), 5 µm (c, e, g, i, l), and 20 µm (k)
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rearrangement via the PCP pathway in the wing. However, we
observed the enrichment of Fmi and Disheveled (Dsh)51 at AP
(vertical) junctions in flr RNAi cells, similar to WT cells (Sup-
plementary Figure 7b, d, f, h). To quantitatively evaluate these
observations, we measured the orientation of Fmi and Dsh
polarities in each cell using PCP nematics (Supplementary Fig-
ure 7a)6. According to this analysis, an off-axis fraction was
detected for the Fmi polarity of flr RNAi cells (Supplementary
Figure 7c, e; Watson’s test, P < 0.001), and Dsh polarity dis-
tribution was indistinguishable between WT and flr RNAi
(Supplementary Figure 7g, i; Watson’s test, P > 0.4). The dis-
crepancy with previous studies may result from different l-o-f
conditions employed (see Supplementary Note 2 for details).

To address how the Fmi polarity map affects cell rearrange-
ment, we transiently overexpressed fmi-GFP, which has been
shown to be a functional allele52, and measured the orientation of
cell rearrangement in such tissues. fmi-GFP overexpression
abolished Fmi polarity (Supplementary Figure 8a, b; Watson’s
test, P < 0.001), whereas the directionality of cell rearrangement
was only mildly affected compared with that of flr RNAi cells
(Supplementary Figure 8c-e; Welch’s t-test, P > 0.2 for Rθfinal and
P < 0.01 for Rθall). From these results, we concluded that cell
rearrangement defects observed in the flr RNAi wing is unlikely
to reflect PCP signaling dysfunction.

The detachment of myosin cables along remodeling junctions.
We next focused on myo-II, a well-established regulator of
cytoskeletal dynamics during junctional remodeling22–25. Pre-
viously, we showed that myo-II is localized on PD junctions in
response to tissue stretching7. This global myo-II polarization
pattern was not affected by flr RNAi (Fig. 5). However, a local
structural change in junctional actomyosin was observed during
cell rearrangement. myo-II formed a small ring-like structure,
accompanied by D-α-catenin (D-α-cat) signal loss, in the short
junctions of WT cells (Fig. 6a; hereafter called the myo-II ring),
and much larger myo-II rings were detected in flr or tsr RNAi
cells (Fig. 6b, c, j; Steel test, WT vs. flr RNAi, P < 0.001, WT vs. tsr
RNAi, P < 0.001). The septate junction (SJ) protein Discs large
(Dlg) was present along short junctions (Fig. 6d–f), indicating
that the myo-II ring structure did not represent cell extrusion;
instead, it is generated by the detachment of myosin cables

around the cell vertex (a similar subcellular structure was
reported in ref.53), and the larger myo-II ring may represent its
precocious formation. Time-lapse analysis showed that the myo-
II ring was only transiently formed immediately prior to the
reconnection of cell contact surfaces in WT cells. In contrast, the
myo-II ring was present for a longer duration in flr RNAi cells
and occasionally failed to convert into stable junctions, potentially
resulting in disoriented cell rearrangement (Fig. 6l–n).

Mechanical rescue of myo-II ring enlargement. Interestingly,
myo-II ring enlargement in flr RNAi cells was partially rescued by
relaxing tissue stretch beginning at 15 h APF, when the extrinsic
force begins to stretch the wing (Fig. 7a, b; Steel–Dwass test, WT
vs. flr RNAi, P < 0.001, WT vs. flr RNAi + hinge cut, P > 0.4, flr
RNAi vs. flr RNAi + hinge cut, P < 0.001). This result suggests
that AIP1 prevents the detachment of junctional actomyosin,
which runs perpendicular to the direction in which the wing is
stretched, by anisotropic tissue tension (Fig. 7c).

Actin turnover ensures mechanoresitance of junctions. To
characterize the molecular mechanism by which AIP1 and cofilin
regulate the reorganization of junctional actomyosin, we searched
for molecules that connect actomyosin to the AJ in an AIP1/
cofilin-dependent manner. Canoe (Cno) (Drosophila Afadin),
which maintains the linkage between the actin cytoskeleton and
the AJ in epithelial cells12,53,54, is one such candidate. We
observed the specific loss of Cno in short junctions following flr
or tsr RNAi (Fig. 6g–i). Moreover, cno RNAi induced the
detachment of junctional actomyosin in wing cells (Fig. 6k).
Together, these data indicate that disruption of the Cno-mediated
linkage between actomyosin and the AJ leads to precocious for-
mation of the myo-II ring.

This observation is similar to that of a previous study in which
the inhibition of actin turnover destabilized the attachment of the
actomyosin network to AJs during apical cell constriction55,56.
FRAP analysis consistently showed that AIP1 and cofilin were
required for efficient actin turnover along AP junctions (Fig. 8a–
e; Steel test, WT vs. flr RNAi, P < 0.01, WT vs. tsr RNAi, P <
0.001). In addition, ectopic F-actin accumulation, which may
potentially reflect sites of impaired actin turnover, was detected in
RNAi cells (Supplementary Figure 9). Application of the F-actin
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stabilization drug Jasp from 15 to 24 h APF induced myo-II ring
enlargement and the loss of Cno from the short AP junctions
(Fig. 8f, g, i–k). Furthermore, myo-II ring size returned to normal
values following tissue stretch relaxation (Fig. 8h, i; Steel–Dwass
test, DMSO vs. Jasp, P < 0.001, DMSO vs. Jasp + hinge cut, P >
0.8, Jasp vs. Jasp + hinge cut, P < 0.001). Collectively, these data
show that AIP1 and cofilin promote actin turnover to regulate the
Cno-dependent reorganization of junctional actomyosin in a
specific region and at the appropriate time during cell rearrange-
ment. This mechanism is essential for cells to resist the
mechanical load imposed on the remodeling AP junction in a
process of complete directional cell rearrangement.

Cooperative cofilin binding links tissue tension and AIP1.
Finally, we addressed how tissue tension is related to AIP1
localization and function (Fig. 9). Actin filaments alter their
helical pitch in response to applied forces, and these structural

changes are amplified by positive feedback between cofilin
binding and F-actin twisting (Fig. 10a)15,17–19. This suggests that
in the pupal wing, F-actin along the PD axis, which is under
tension, adopts a less twisted configuration, leading to the pre-
ferential binding of cofilin and AIP1 to more twisted F-actin
along the AP axis via positive feedback between cofilin binding
and F-actin twisting. To examine this hypothesis, we took
advantage of an actin mutant that inhibits cooperative cofilin
binding to F-actin (yeast actinG146V)57. Following misexpression
of the corresponding mutant Drosophila actin5C (act5C) gene,
AIP1-GFP did not accumulate at AP junctions (Fig. 9a, b). In
contrast, the global polarity of myo-II distribution was not sig-
nificantly affected, although myo-II-GFP signals became diffuse
along the junction (Fig. 9c, d). Moreover, the misexpression of
mutant act5C caused the detachment of junctional actomyosin
and the AJ (Fig. 9e, f; Wilcoxon rank sum test, P < 0.001),
resulting in impaired hexagonal cell packing (Fig. 9g–i; Welch’s
t-test, P < 0.001). These developmental defects were specifically
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induced by the mutant Actin but not its wild-type counterpart
(Supplementary Figure 10). Thus, our data support the hypoth-
esis that the cooperative binding of cofilin to twisted, mechani-
cally relaxed F-actin links anisotropic tissue tension and AIP1
localization and function (Fig. 10b).

Discussion
In addition to global patterning determined by signaling mole-
cules, global mechanical patterning represents another strategy
for facilitating the long-range coordination of tissue development.
This concept raises the questions as to how tissue-scale forces
regulate biochemical signaling within or between cells and how
cells subjected to tissue-scale forces maintain structural integrity
when undergoing morphogenetic processes. The results of the
present study highlight that actin regulation mediated through
AIP1 and cofilin achieves an optimal balance between resistance
to anisotropic tissue tension and morphogenesis.

The current working hypothesis (Fig. 10b) is that cells respond
to anisotropy in tissue tension via the cooperative binding of
cofilin to twisted F-actin, leading to AIP1 accumulation along

remodeling AP junctions. AIP1 and cofilin facilitate a resistance
to anisotropic tissue tension and maintain junction stability,
thereby supporting PD cell rearrangement. Our observation that
the misexpression of mutant act5C induced the delocalization of
AIP1 and phenocopied flr RNAi is consistent with the current
working hypothesis that postulates the positive feedback between
cofilin binding and F-actin twisting. Future development of a
biophysical method to visualize the helical pitch of actin filaments
inside a cell will enable a more direct test.

We speculate that the myo-II ring is required to reconnect cell
contact surfaces at four-way junctions. AIP1 and cofilin likely
protect this temporally loosened junctional structure from ani-
sotropic tissue tension by promoting actin turnover and
strengthening the linkage between actomyosin and AJ via Cno,
the Drosophila Afadin protein. Detailed molecular mechanisms
that link actin turnover, junctional actomyosin, and E-cad/α-cat/
Afadin remain elusive. Rapid actin turnover can prevent the
aggregation of a contractile actin network and thereby maintain
its uniform network structure56,58, which may be required for
stable binding of F-actin to E-cad/α-cat/Afadin. AIP1-mediated
actin turnover can also activate biochemical signaling that
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controls linker proteins, including α-cat and Afadin. In addition,
it may potentially speed up lateral mobility of E-cad clusters to
promote junctional remodeling36,59. Notably, candidate
mechanisms mentioned above are not mutually exclusive. In the
future, it would be necessary to address how different mechan-
isms act in concert to realize mechanoresistance of remodeling
junctions.

This study uncovered a link between the biased distribution of
AIP1 along the planar axis of a tissue and its function, a concept
that was not addressed in previous studies investigating the role
of AIP1 in tissue development33,34,36–38. Our data clearly indicate
that tissue stretching is necessary for the AP-biased localization of
AIP1; however, this observation also implies the existence of
other factors because AIP1 accumulates specifically at remodeling
AP junctions. Given that F-actin dynamically changes its dis-
tribution during development according to tissue tension pat-
terns (Fig. 3e, f and our unpublished data), a more integrated
understanding of actin dynamics and various ABPs is required
to fully elucidate the regulatory mechanism underlying AIP1
localization.

In conclusion, the present study suggests two overlapping
general strategies for the mechanical control of tissue develop-
ment. First, tissue tension acts as a mechanical cue to bias protein
localization and morphogenetic cell processes, thereby strength-
ening adjustability and flexibility to regulate development. The
conversion of tissue tension into structural changes in the actin
filament/network via ABP interactions may be a conserved
strategy for mechanotransduction60,61, although conclusive,
direct evidence in vivo is required. Second, global mechanical
patterning must be reconciled to maintain the structural integrity
of the cell/tissue. Future studies should explore whether the
molecular mechanisms identified in the present study potentially
function in other developmental contexts, such as cell prolifera-
tion and apoptosis, and/or in other epithelial tissues.

Methods
Generation of transgenic flies. To construct pUAST-attB-act5CWT, pUAST-attB-
act5CG147V, and pUAST-act5CG147V, act5C was PCR-amplified from a cDNA clone
(Drosophila Genomics Resource Center #LD18090). The G147V mutation was
introduced using the GeneArt® Site-Directed Mutagenesis System (Thermo Fisher
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Scientific) with the following primer: 5′-GCTTTCTCTCTACGCCTCCGTCCGT
ACCACAGGTATCGTG-3′. Subsequently, act5CWT or act5CG147V was cloned into
pUAST-attB or pUAST cut with EcoRI and NotI. The generated pUAST-attB and
pUAST plasmids were injected into flies carrying 22A or 86Fa attP landing sites62,
or yw, respectively, to produce transgenic flies.

Inverse PCR. To determine an insertion site for the P-element containing an
artificial exon encoding GFP in the tsr-GFP line (#ZCL0613)40, we followed pro-
tocols by BDGP (http://www.fruitfly.org/about/methods/inverse.pcr.html) and by
Hoskins and Evans–Holm (http://flypush.imgen.bcm.tmc.edu/pscreen/files/
GDP_iPCRProtocol_051611.pdf). Briefly, genomic DNA of the tsr-GFP line was
extracted and subjected to restriction digestion using Sau3AI or HhaI, and the
resultant DNA fragment was self-ligated. Then, the 3ʹ end of P-element and its
flanking genomic DNA was amplified by using EY3.F and EY3.R primers for
sequencing. The insertion site was determined using BLAST from FlyBase (http://
flybase.org/).

Western blotting. Pupae of yw, flareGFP, or tsrGFP at 24–28 h APF were lysed in
Laemmili’s sample buffer (62.5 mM Tris (pH 6.8), 2% SDS, 10% glycerol, 0.001%
bromophenol blue, and 713 mM β-mercaptoethanol). The lysates were boiled for
20 min and these samples were loaded into a 10% poly-acrylamide gel. After SDS-
PAGE, samples were transferred to a PDMS membrane (Bio-Rad), blocked with
3% BSA-TBS (20 mM Tris (pH 7.2), 150 mM NaCl) and incubated with anti-GFP
(1/1000, SantaCruz sc-9996) or anti-α-tubulin (1/2000, MBL PM054) diluted in 3%
BSA-TBS overnight at 4 °C. The membrane was washed with TBS-0.05% tween20
and incubated with HRP-conjugated secondary antibodies (ThermoFisher) diluted
in 3% BSA-TBS for at least 1 h at room temperature. Blots were developed using
ECL Western Blotting Detection Reagents (GE healthcare) and imaged using LAS-
4000 IR multi color (FUJIFILM). An original scan of the western blot is shown in
Supplementary Figure 11.

Drosophila genetics. Fly strains and a list of genotypes are summarized in Sup-
plementary Methods.
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Fig. 9 Cooperative binding of cofilin to F-actin is required for the biased distribution of AIP1, the integrity of junctional actomyosin, and hexagonal cell
packing. a AIP1-GFP (left) and the AJ marker Dα-cat-TagRFP (right) in an act5CG147V misexpressed wing at 20.5 h APF at 29 °C, which corresponds to ~24
h APF at 25 °C. b Directional bias of AIP1-GFP signal intensity (left) and Dα-cat-TagRFP signal intensity (right) along junctions in act5CG147V misexpressed
cells was quantified as described for Fig. 1b. cmyo-II-GFP (left) and the AJ marker Dα-cat-TagRFP (right) in an act5CG147V misexpressed wing at 20.5 h APF
at 29 °C. Yellow and blue arrowheads indicate PD and AP junctions, respectively. d Directional bias of myo-II-GFP signal intensity (left) and Dα-cat-TagRFP
signal intensity (right) along junctions in an act5CG147V misexpressed wing. e Images of myo-II-GFP (gray in a left panel, green in a right panel) and Dα-cat-
TagRFP (gray in a middle panel, red in a right panel) in an act5CG147V misexpressed wing. Blue arrowhead indicates myo-II ring. fmyo-II ring area. Wilcoxon
rank sum test: WT vs. act5CG147V, P < 0.001. g, h Images of DE-cad-GFP with the indicated genotypes at 28 h APF at 29 °C, which corresponds to ~32 h APF
at 25 °C (g, WT; h, act5CG147V misexpression). Cells are colored according to the number of junctions. i Table listing the fractions of hexagonal cells for
each genotype. Welch’s t-test: WT vs. act5CG147V, P < 0.001. The number of junctions examined (b, d), the number of ROI examined (f), and the number of
pupae (i) are indicated. Data are presented as the mean ± s.e.m. (b, d) and as the mean ± s.d. (f, i). Scale bars: 5 µm (a, c), 2 µm (e), and 20 µm (g)
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Immunohistochemistry and phalloidin staining. Anti-Cno (1/400)63, anti-Dlg (1/
500)64, anti-Dsh (1/1000)65, and anti-Fmi (1/10)45 antibodies were used. Pupae at
appropriate ages were dissected, and wings were fixed at room temperature for
30 min in PBS containing 4% paraformaldehyde. After washing with PBS con-
taining 0.1% Triton X-100, these preparations were incubated overnight at 4 °C
with the indicated antibodies.

To visualize F-actin in wing cells, dissected wings were incubated overnight at
4 °C with Alexa Fluor 546 Phalloidin (1/1000, invitrogen A22283). The condition
of dissecting and fixing pupae was same as above.

Image collection. To prepare the Drosophila pupal wing samples for image col-
lection, pupae at appropriate ages were fixed to double-sided tape and the pupal
case above the left wing was removed. The pupae were then placed on a small drop
of water or Immersol W 2010 (Zeiss 444969-0000-000) in a glass bottom dish with
the left side facing downward6,7,46,66. The fixed time-point images other than
Fig. 3a, b and time-lapse images shown in Fig. 6l, m were acquired using an
inverted confocal microscope (A1R; Nikon) equipped with a ×60/NA1.2 Plan
Apochromat water-immersion objective at 25 °C. Other images were acquired
using an inverted confocal spinning disk microscope (Olympus IX83 combined
with Yokogawa CSU-W1) equipped with an iXon3 888 EMCCD camera (Andor),
an Olympus ×60/NA1.2 SplanApo water-immersion objective, and a temperature
control chamber (TOKAI HIT), using IQ 2.9.1 (Andor)66. After imaging, we
confirmed that the pupae survived to at least the pharate stage.

Surgical manipulation to relax the tissue stretch. Wings were detached from the
hinges using forceps6,7. Hinges were severed at 23.5–24 h APF to analyze the effects
of tissue tension on AIP1 localization (Fig. 3) or at 15 h APF for rescue experiments
(Figs. 7, 8).

Jasplakinolide treatment. A small drop of Jasplakinolide (Jasp) (Invitrogen J7473)
solution, which was diluted to 100 µM or 200 μM in 10% or 20% dimethyl sulfoxide
(DMSO; Nacalai #13408-64), was placed on a glass bottom dish. After removing
the pupal case above the left wing, the pupae were placed in Jasp solution with the
left side facing downward. Ten percent or 20% DMSO solution was used as the
control. Filter papers soaked in DMSO or Jasp solution were placed along the
pupae to prevent drying. For the acute treatment shown in Fig. 4, the pupae were
incubated with 200 μM Jasp solution starting at 20 h APF and observed at 24 h
APF. For the experiments shown in Fig. 8, the pupae were incubated with 100 μM
Jasp solution starting at 15 h APF, when the extrinsic stretching force starts to act
on the wing, and observed at 24 h APF. Note that previous study has required two
to three orders of magnitude higher concentrations of drugs in experiments using
the pupal wing, likely reflecting the fact that the drug solution must pass through
the cuticle (Tadashi Uemura, personal communication)46. Therefore, the con-
centration of Jasp in wing cells was ~0.1–1 µM, which is within the range of values
reported in other cells/tissues48,49.

FRAP. sqhp-utrABD-GFP pupae at appropriate ages were mounted on an inverted
confocal microscope (TCS SP8; Leica) equipped with a Leica HCX PL Apo ×63/
NA1.2 water-immersion objective. To photobleach utrABD-GFP along the AP
junction, the region of the interest (ROI; 0.54 μm× 0.54 μm) was irradiated for 0.1 s
using a two-photon laser tuned to an 880-nm wavelength (Chameleon; Coherent).
Images were collected at 0.437-sec intervals. Fluorescence intensities (FIs) of ROIs
were measured using ImageJ. FIs were normalized as the average FI at three
subsequent time points immediately prior to photobleaching and subtracted the
residual value immediately after photobleaching. A FRAP recovery curve was
constructed by fitting the normalized FI to FI(t)= A(1-exp(-τ−1t)) using
MATLAB, from which the stable fraction of utrABD-GFP was calculated.

Image analysis
Subcellular distribution of proteins. To characterize directional bias in the sub-
cellular distribution of AIP1-GFP, myo-II-GFP, and the AJ marker Dα-cat-
TagRFP, fluorescent signals along the AJ plane were extracted from a snapshot of
live cells (0.094 µm/pixel). Subsequently, the following procedure was applied. First,
the background signal was subtracted using the “subtract background” command
(r= 100) in ImageJ. Second, to avoid counting the signals at the vertices for all
associated junctions, we omitted the signals for 2 pixels at the ends of the junctions
when calculating the mean signal intensity along each junction. Each junction was
divided into twelve bins according to its angle relative to the PD axis, and the
average signal intensity in each bin was plotted. In addition, we calculated the
magnitude Rs and the orientation Θs of the polarity, defined as Rs〈s〉ei2Θ= 〈sei2θ〉
− 〈s〉〈ei2θ〉 from a data set {sij,θij}, where sij and θij (0 ≤ θij < π) are the fluorescent
signal intensity and the angle of the contact surface between the ith and jth cells,
respectively7,47. Larger values of Rs indicate the stronger bias toward a particular
axis.

When analyzing time-lapse images (0.215 µm/pixel), we set r= 20 to subtract
the background command. We omitted 1 pixel at the ends for junctions 6–8 pixels
in length and 2 pixels at the ends for junctions longer than 8 pixels. The signal
intensity along each junction was normalized to its temporal average.

In Fig. 3l, Fig. 9a, and Supplementary Figure 2e, f, the animal was carrying one
copy of AIP1-GFP, and the brightness-contrast was adjusted using different
parameters compared to those used for other homozygous samples.

PCP polarity. We followed a protocol described in a previous study6 to measure the
orientation of Fmi, Fmi-GFP, Dsh, and DE-cad polarities. Briefly, each pixel in an
ROI was grouped into bins according to its angle relative to a cell center (Nbin= 36;
the size of bin is π/Nbin), and the average signal intensity in each bin {si,θi} (j= 1,
2,..., Nbin) was measured. Subsequently, the mean polarity angle Θs was calculated
as cos 2Θs ¼ Q1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2
1 þ Q2

2

p

, where Q1 ¼
PNbin

i¼1 si cos 2θi and

Q2 ¼
PNbin

i¼1 si sin 2θi , respectively.

Hexagonal cell packing. DE-cad-GFP images were skeletonized using ImageJ. From
the skeletonized images, the position and connectivity of vertices were extracted,
and the polygonal distribution of cells was measured in OpenCV. If the distance
between the centers of the end pixels of an edge was smaller than 3 pixels in length,
the edge was regarded as a four-way vertex7.

Quantification of cell rearrangement process. Cell rearrangement was manually
detected from time-lapse movies captured at 1-min intervals starting from 24 h
APF at 25 °C (WT, flr RNAi, DMSO, Japs) or at 20 h 30 min at 29 °C (tsr RNAi).
Subsequently, remodeling at each junction was automatically detected and
manually assessed when necessary. By repeating this automatic detection and
manual correction process, we estimated that >90% of cell rearrangement in a
filmed region were counted in this analysis. θfinal and θall represent the sets of angles
from the final round and all rounds of cell rearrangement, respectively. The
magnitudes Rθfinal and Rθall (one minus circular variance) and the mean orientation
of θ are given as Rθei2Θ= 〈ei2θ〉 (0 ≤ θj < π). Larger values of Rθ indicate the
stronger directional bias. Nseq and Nall indicate the numbers of remodeled junctions
and cell rearrangements in each movie, respectively. The frequency of cell rear-
rangement was calculated by dividing Nseq and Nall by Ncell, which is defined as the
average value of the number of cells at the first and last time points of a movie.

Stress inference. Bayesian force/stress inference solves an inverse problem
between forces (i.e., cell junction tension and cell pressure) and epithelial cell shape
(i.e., position and connectivity of vertices that appear in an image)47 and provides
relative values for cell junction tensions and cell pressures, allowing the global
stress tensor to be calculated by integrating tensions and pressures47,67. The
accuracy and robustness of force/stress inference have been rigorously tested both
in silico and in vivo47,68,69. In this study, we quantified the normal stress difference
σA ≡ (σxx – σyy)/2 as a measure for the anisotropy of tissue stress from images of
DE-cad-GFP.

Statistics. Data are presented as the mean ± s.e.m. in plots of the signal intensity of
AIP1-GFP, myo-II-GFP, and Dα-cat-TagRFP in each angular bin and as the mean
± s.d. in the other plots. P-values were calculated in R based on Welch’s t-test
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AIP1/cofilin
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Fig. 10 Summary and working hypothesis. a Schematic showing tension on
actin filaments and their twisting, which have been reported by previous
studies using in vitro reconstituted actin filaments15, 17–19. Actin filaments
(red) alter their helical pitch in response to applied forces (blue arrows).
cofilin (magenta) preferentially binds to twisted, mechanically relaxed actin
filaments. b Summary of the working hypothesis. See the main text for
details. Upper and bottom dashed arrows indicate an unidentified pathway
regulating directional cell rearrangement downstream to AIP1/cofilin or
actin turnover, which may potentially function via E-cad transport36
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(Figs. 1l, 2d, 4d, f, g, 9i, Supplementary Figure 5c, d, Supplementary Figure 8d, e),
the Wilcoxon rank sum test (Fig. 9f), Dunnett’s test (Fig. 2g, h, Supplementary
Figure 4, Supplementary Figure 5a, b), the Steel test (Fig. 6j, Fig. 8e), the
Steel–Dwass test (Figs. 7b, 8i, Supplementary Figure 10c, f), and a randomized
version of Watson’s test (Supplementary Figure 7c, e, g, i, Supplementary Fig-
ure 8b). Parametric tests were selected when the number of samples in each group
was less than six and/or data follow the normal distribution. The Dunnett or Steel
test was performed when analyzing multiple comparisons between the WT and
other groups (the Steel test is a non-parametric equivalent of Dunnett’s test). The
Steel–Dwass test was performed when comparing every pair in all groups.

Data availability. The authors declare that the data supporting the findings of this
study are available within the paper and its Supplementary files, and available from
the corresponding author upon reasonable request. Plasmids and fly stocks gen-
erated in this study are available from the corresponding author.
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