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Efficient communication dynamics 
on macro-connectome, and the 
propagation speed
Masanori Shimono1,2 & Naomichi Hatano   3

Global communication dynamics in the brain can be captured using fMRI, MEG, or electrocorticography 
(ECoG), and the global slow dynamics often represent anatomical constraints. Complementary single-/
multi-unit recordings have described local fast temporal dynamics. However, global fast temporal 
dynamics remain incompletely understood with considering of anatomical constraints. Therefore, 
we compared temporal aspects of cross-area propagations of single-unit recordings and ECoG, and 
investigated their anatomical bases. First, we demonstrated how both evoked and spontaneous ECoGs 
can accurately predict latencies of single-unit recordings. Next, we estimated the propagation velocity 
(1.0–1.5 m/s) from brain-wide data and found that it was fairly stable among different conscious levels. 
We also found that the shortest paths in anatomical topology strongly predicted the latencies. Finally, 
we demonstrated that Communicability, a novel graph-theoretic measure, is able to quantify that more 
than 90% of paths should use shortest paths and the remaining are non-shortest walks. These results 
revealed that macro-connectome is efficiently wired for detailed communication dynamics in the brain.

The brain can be thought of as both a biological and a physical system, in which electrical signals propagate 
along axonal or dendritic wiring. The propagation pattern eventually emerges as various cognitive functions and 
internal thoughts. Propagations along underlining connectivity or wiring can be ubiquitously observed in biolog-
ical networks1, the spread of infections2, and the organization of the internet3. To understand such propagation 
phenomena, quantitative evaluations that consider the constraints caused by underlying structural networks are 
critically important. Quantitative evaluations and interpretations have been supported by graph-theory-based 
approaches4,5. For instance, the comprehensive network (connectomics) approach is essential for studying brain 
wiring6, and graph-theoretic analyses have been used to study a range of relevant topics, such as the Small-World 
property, which can explain why spatially distant brain regions are able to communicate easily7, hubs and rich 
club organization, which can be used to extract a collection of highly-connected nodes8, and community architec-
ture, which can characterize global groups of nodes9. The basic concepts of these approaches to network analysis 
have been previously summarized in textbooks on graph theory10,11.

Preceding graph-theoretic evaluations of detailed topologies, the extent to which structural networks are sim-
ilar to functional or effective networks12, which can be reconstructed from recordings of long-term neuronal 
activity, is a fundamental question13. This issue is also essential for studying microscopic neuronal networks14–17. 
Recently, connectomics studies have been made possible due to the massive efforts of collaborating teams, and 
the quality and resolution of data have gradually improved18–20. The main focus of these studies is often struc-
tural networks or spatial patterns of relatively stable neuronal activities21. While characterizing relatively stable 
architecture, studies have gradually emphasized the importance of the dynamics of functional network architec-
tures22–24. However, very few studies have satisfied the following criteria: (1) millisecond temporal resolution, (2) 
treating the whole-brain as one system, (3) inclusion of structural constraints, and (4) exclusion of computational 
demands of electrical current source estimates like E/MEG.

To address these criteria, we gathered multiple data sets recorded via three modalities: The first modality, 
ECoG, is a promising technique for capturing the propagation of electrical signals in a large cortical region25 or 
whole cortex26. We expected that combining ECoG data with neuronal spike signals would provide a neuronal or 
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microscopic scheme of macroscopic brain signals27. As mentioned, we also included structural network data to 
express the anatomical fiber pathways28–30.

When theoretically testing electrical propagations along a set of pathways, it is possible to simply consider 
the contributions of the shortest paths. However, a recent study demonstrated the importance of considering the 
non-shortest paths18. A graph-theoretic measure, termed Communicability, provides a systematic framework for 
assessing the relative contributions of shortest and non-shortest paths (walks)31,32. However, Communicability 
has not yet been used to test the relationships among different neural propagations, which can spread throughout 
the whole brain within milliseconds.

In the present study, we asked four basic questions regarding the time taken for electrical signals to propagate 
through the brain: First, focusing on propagations of evoked electrical signals in the primate cortex, we asked how 
well the global transmissions of electrical signals recorded with ECoG could predict the onset timings of neuronal 
spikes. Second, to check the robustness of this predictive ability, we evaluated how well time delays in ECoG data 
could predict time delays in spontaneous neuronal spikes in the absence of a clear stimulus onset. Third, as a 
simple but fundamental question, we estimated the propagation velocity of globally propagating electrical signals. 
Fourth, we examined the possibility of creating fundamental graph-theoretic descriptions of propagation using 
Communicability.

Results
Comparison of evoked activities between ECoG and neuronal spikes.  In past studies, the time 
delays necessary for information processes in visual pass way were known33.

As a double check of past studies, we tested how well macroscopically recorded neuronal activities, i.e., ECoG 
evoked signals, could also predict microscopically recorded activities, i.e., spikes in a visual-task condition. In 
the ECoG data, the transmission delays are given as the time delays of the primary peak in the individual time 
series of evoked activities that occurred at the target region within 100 ms of stimulus onset via the primary visual 
region (Fig. 1A). This is because past studies have mentioned 100 ms is enough to reach visual information from 
occipital primary region to frontal pole in macaque brains33.

Next, we evaluated the sharpness of the averaged waveforms using a variable named Peak Index (Fig. 1B) 
because we could expect that responses in brain regions directly connected through anatomical pathways would 
be sharper than responses in indirectly connected brain regions. The upper small panels in Fig. 2A are contour 
maps of averaged voltages, which were measured ECoG sensors locating on various brain regions (Table 1). The 
diagonal pattern of three contour maps confirm the presence of a clear flow of electrical activity expanding to 
whole brain regions, and indicate that the flow is stable against changes in the size of the time window used to 
search for peak points. However, if the time window is too long, it is possible to erroneously select indirect or 
separated pairs of brain regions. Equally, if the time window is too short, long connections, which have long prop-
agation times, may be ignored. Therefore, the relative confidence of reconstructed electrical flows, quantified by 
the averaged Peak Index, should depend on the size of the time window. As shown in the main panel in Fig. 2A, 
the averaged Peak Index was maximized when we searched for peaks in a time window that was 70 ms or shorter.

As shown in the upper panels in figure A, when we select 0–70 ms as the time window, we could visually 
observe a relatively sharper and clearer uni-directionally propagating wave of cortex. Because this result infers 
that this time window is optimal for detecting the clearest flow of electrical activity through the macaque cortex, 
we determined the time delays for individual pairs of brain regions in the time window 0–70 ms.

Figure 2B shows the scatter plot of time delays in neuronal spikes (y axis), which are defined as mode values of 
firing rates locked to the visual stimulation, and predicted delays of spikes from evoked ECoGs (x-axis) according 
to a linear regression model (y = ax + b). In the regression model, the gradient value was close to 1, indicating that 

Figure 1.  The definition of transmission delays in evoked experiments. (A) Schematic illustration showing 
prominent visually-evoked electrical activity transmitted via an “origin” brain region, such as the primary 
visual area (V1), to other “target” brain regions. (B) The transmission delays were simply determined as gaps 
of latencies of primary peaks of evoked activities between different brain regions. To evaluate the sharpness of 
evoked responses, we defined a variable named Peak Index using the equation shown in panel B. Finally, we used 
the averaged Peak Index for all “target” regions to optimize the size of the time window in which we searched for 
peak points of evoked activities.
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we selected an appropriate time window. Therefore, we searched for activity peaks at 35 (40–75) ms, starting from 
the primary visual area: A time delay of 40 ms was previously estimated as the time required for visual informa-
tion to travel from the retina to the primary visual region33.

Comparison between neuronal spikes and ECoG in the task-free condition.  So far, we have related 
visually evoked ECoG dynamics to spike-based latencies evoked by visual stimuli. Next, we sought to determine 
how well the ECoG signal flow during the Anesthetized and Awake Task-Free conditions, which had no clear 
visual stimulus onset, could reproduce the time delays recorded as electrical spikes (see subsection 1 in Materials 
and Methods). The relationship between evoked and spontaneous activity is a fundamental issue in neurosci-
ence34,35. Even in non-stimulated conditions, our brains are always working to process various cognitive informa-
tion including visual and motor information internally36,37.

In the Anesthetized and Awake Task-Free conditions, we estimated the time delays in three steps (Fig. 6, sub-
section 4 in Materials and Methods): First, we adopted the peak delays of cross-correlations between two time 
series at two brain regions (see subsection 3 in Materials and Methods) as the time delays for signal transmission 
on a direct pathway connecting the two brain regions. Second, we summed the delays necessary for all individual 
path steps along the pathway. The example in Fig. 7 shows pathways connecting region I to region J. Third, we 
calculated the weighted average of all delays for all pathways based on the three different weight models.

The three “Walk Ensemble Models” (Fig. 3A or Fig. 7B), which determine how to add individual time delays 
along selected chains of edges in three different ways, lead to completely different trends. The chain of edges 
referred to as a Walk, a graph-theoretic concept, is a set of nodes connected successively by links such that con-
necting back to the same node is allowed. Interestingly, time delays predicted from the Shortest Path (SP) Model 
showed a clear positive correlation with spike timings, while the Mean Walk (MW) Model showed a clear negative 
correlation. The SP Model gives excessively high weights to walk ensembles holding the shortest paths. Inversely, 
the MW Model gives excessively high weights to ensembles holding relatively longer Walks because the number 
of samples holding relatively longer Walks is exponentially larger than the number of samples holding relatively 
shorter Walks. Therefore, we designed an intermediate model, the Decay Walk (DW) model, using weights that 
decay exponentially depending on the increase in Walk n. For example, if the transmission probability decreases 
by α (0 < α < 1) per one walk step, the multiplied transmission probability for n steps of Walk would be expressed 
as cn = Prob(α,n) = αn(0 < α < 1). This corresponds with the natural probability expressing how often individual 
walks will be used in a random walk process. Depending on the index α, the DW model gradually changes from 
behaviour similar to the SP model to that similar to the MW model. If α = 1, the DW model corresponds with the 
MW model, and for the limit α → 0, we expect the result to approach that of the SP model.

Interestingly, we found that at an intermediate α in the DW model, the correlation between the spike delays 
and the delays estimated from spontaneous ECoG under the constraint of structural connectivity, reversed from 
a strong positive to a strong negative value (Fig. 3B). The scatter plots between the original spike delays and esti-
mated delays show natural diagonal distributions at strongly correlated regions (Fig. 3C). At the intermediate 
phase (10−2–10−1), the correlation gradually changed between these positive and negative values. This result 
indicates that the first electrical signals (<100 ms) to reach their destinations in brain networks use ensembles of 

Figure 2.  Comparison of delays between neuronal spikes and ECoG within stimulus-driven activities. The 
bottom section of panel A shows the relationship between the length of the time window used to select peak 
points of cross correlations (the x-axis) and the averaged Peak Index of the waveforms of all electrodes (y-axis). 
In order to visually observe the traveling waves of visually evoked ECoG signals, we also show the upper panels 
in panel A. Here, the x-axes indicate the size of the time windows and the y-axis is the index of brain regions 
expressed in terms of ECoG sensors. The values on the y-axis were sorted according to the time delay of the 
peak point. These three panels correspond with three different time windows, 0–50, 0–70 and 0–90 ms. Panel B 
shows the results of the main predictions of delays of visually evoked electrical spikes (y-axis) by fitting a linear 
model to the ECoG signals (x-axis).
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ECoG channels Su Georg Kin2 Chibi

1 NONE 2 NONE 7b

2 NONE 7b NONE 7b

3 NONE 7op NONE 7op

4 NONE Toc (PA) 9 7a

5 NONE 12 M2 (6 M) 46p

6 9 6Vb M2 (6 M) 45

7 9 6Vb M2 (6 M) 6Val

8 M2 (6 M) 6Vb 6Dc 4c

9 NONE 2 NONE 1

10 NONE 7b NONE 2

11 NONE 7b 6Ds 7a

12 46p 7op 6DR (6D) 7a

13 6Ds 7a 6DR (6D) V4

14 6Ds 12 6Dc NONE

15 6DR (6D) 46p 4 46p

16 6Dc 45 4 6Ds

17 12 6Val 12 4

18 NONE 2 NONE 4

19 46 v 5 v 6Ds 1

20 46p 5 v 6Ds 2

21 6Ds 7b 6DR (6D) 5D

22 6Ds 7a 6Dc 7a

23 4c 12 6Dc NONE

24 4 NONE 4 12

25 2 NONE 4 NONE

26 12 46p 46p 46p

27 46p 46p 46p 6DR (6D)

28 45 6Ds 6Ds 4

29 6Val 4c 4c 4

30 4c 2 4 1

31 2 2 4 1

32 2 5 v 2 5D

33 2 7a 2 5D

34 5 v NONE 7a NONE

35 5D NONE 7a NONE

36 6Vb 46p 46 v NONE

37 6Vb 6Ds 46p 6Ds

38 6Val 6DR (6D) 6Ds 6DR (6D)

39 6Val 6DR (6D) 4c 6Dc

40 2 6Dc 4 4

41 5 v 4 4 4

42 5 v 2 5 v 1

43 7b 5D 5 v 1

44 7a 5D 7a 5D

45 7a NONE 7a NONE

46 DP NONE V4 NONE

47 6Vb NONE 46p NONE

48 6Vb 9 45 9

49 6Vb 9 6Val 9

50 6Vb M2 (6 M) 6Val M2 (6 M)

51 2 M2 (6 M) 2 M2 (6 M)

52 5 v M2 (6 M) 2 M2 (6 M)

53 7b M2 (6 M) 5 v M2 (6 M)

54 7op 6DC 7b 6DC

55 7a 4 7a 4

56 PrCO NONE 12 NONE

Continued
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ECoG channels Su Georg Kin2 Chibi

57 PrCO NONE 6Vam NONE

58 6Vb NONE 6Val 12

59 S2 24b 6Val 24a

60 S2 24d 2 24d

61 7op 24d 2 NONE

62 Toc (PA) 23 7b 3a

63 V4 10 m 7b NONE

64 V4 10 m 7op 10 m

65 6Vb NONE 7a NONE

66 PrCO 12 6Vb NONE

67 PrCO PrCO 6Vb NONE

68 S2 TS (ST) 6Vb NONE

69 TS (ST) TS (ST) 6Vb TS (ST)

70 Tpt TAa 7b TS (ST)

71 V4 TE1–3 7op Taa

72 V4 TE1–3 Toc (PA) TE1–3

73 V1 Vot 7a Vot

74 TS (ST) V4 6Vb V4

75 TS (ST) VP 6Vb V2v

76 TS (ST) V1 6Vb V1

77 TAa V1 S2 V1

78 TAa V1 S2 V1

79 Vot V1 Tpt V1

80 Vot PrCO Tpt NONE

81 V4 PrCO V4 TS (ST)

82 V1 TS (ST) V4 TS (ST)

83 V4 TAa V4 TS (ST)

84 V2d Vot V4 Taa

85 V2d V4 V4 Vot

86 V2d V4 V2d V4

87 V1 V2v V4 V2v

88 V1 V1 V2d V1

89 V1 V1 V2d V1

90 V1 V1 V2d V1

91 V1 V1 V1 V1

92 V1 NONE V1 6Vb

93 V1 NONE V1 6Vb

94 V1 TS (ST) V1 6Vb

95 TS (ST) TS (ST) PrCO 2

96 TAa TS (ST) PrCO S2

97 TAa V4 TS (ST) Tpt

98 TE1–3 V4 TS (ST) Tpt

99 Vot V4 TAa V4

100 V4 V1 V4 V4

101 V4 V1 V4 V1

102 VP V1 V1 V1

103 V1 V1 V1 V1

104 V1 V1 V1 V1

105 V1 6Vb V1 6Vb

106 V1 6Vb V1 6Vb

107 NONE 6Vb 12 6Vb

108 NONE S2 6Vb 2

109 TS (ST) TPOc PrCO TPOc

110 Taa V1 TS (ST) V4

111 TE1–3d V1 TS (ST) V4

112 TEa V1 TAa V1

Continued
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shorter paths more often than ensembles of longer paths. It seems that the exponent n must be sufficiently smaller 
than 10−1 in the weight αn. In subsection 4, we will address what may have determined the transition point.

Time delay for spatial spreading and conduction velocity.  So far, we have not observed spatial 
dimensions. Because brain regions are embodied in space, the spatial coordinates should also reflect the tem-
poral dynamics of propagating electrical signals. Therefore, we examined the relationships between the spatial 
distances summed along the walk steps from the “Origin” to the “Target” brain regions, and the necessary delays 
for electrical propagations through these walks (Fig. 4). Refer the detailed analysis scheme to Fig. 7. From this 
relationship between distances and delays, we can estimate conduction velocity of electrical brain signals in the 
brain. Although the conduction velocity of electrical brain signals is a fundamental question in neuroscience, it 
has not yet been possible to estimate the velocity from brain-wide observations due to limitations in past technol-
ogy or existing data. Here, we successfully estimated the velocities for three conscious or arousal levels as ranging 
from 1.0–1.5 m/s. Interestingly, the estimated velocity was fairly close to the conduction velocity estimated from 
the perspective of optimally synchronous brain states in a computational simulation study38. We also found that 
the velocities were only slightly different (not significant) among the different conscious levels (p > 0.3, panels 
B–D in Fig. 4).

Walk ensemble models and Communicability.  In section 2, we reported that the time delays in firing 
spikes could be successfully estimated from ECoG data when we considered the cases in which shorter Walks 
(with structural constraints) are used more frequently than longer Walks. The relative frequency of use between 
shorter and longer Walks seems to be characterized by α in the Delay Walk (DW) model. Thus, our final topic in 
this report involved determining the transition point according to α.

The DW model has exactly the same form as a class of novel measure: the Communicability between two 
nodes of a network. This was introduced in a series of studies of complex networks31 [see also equation (15) in 
ref.32]. Importantly, Communicability can systematically quantify how non-shortest paths/walks contribute to the 
spread of information in many systems, including the brain. Let A denote the adjacency binary matrix of the net-
work; each element Aij is one if a node i is linked to a node j, and is zero if not. In order to remove influence of 
self-loop connections, we set all diagonal components to zeros. The Communicability between nodes p and q can 
be defined as the (p, q) element of the matrix = ∑ =

∞G c An n
n

0 . The (p, q) element of the summand (An)pq is equal to 
the number of Walks that connect nodes p and q in n steps. The Communicability Gpq therefore takes account of 
each n-step Walk with the weight cn. The weight can be cn = αn with a small parameter α, for which G = (I − αA)−1, 
or = βcn n !

n
, for which G = eβ.A. To more systematically understand the given results for our neurophysiological 

data, we also calculated Communicability as a function of the decay factor α. Figure 5B is the correlation between 
Communicability between a pair of brain regions and the necessary delays required to transmit neuronal spikes 
between them. We could observe a phase change for the correlations of spike delays with Communicability 
around the similar region of α ∼ 0.07. For reference, 5-A reproduces Fig. 3B, which showed the correlation 
between the necessary delays and the Delay Walk Model. The light grey region (α ≲ 0.07) in Fig. 5A correspond 
with the region where positive correlations were observed, and negative correlations were observed at the white 

ECoG channels Su Georg Kin2 Chibi

113 Tea V1 TE1-3 V1

114 Vot V1 TE1-3 V1

115 V4 V1 Vot V4

116 V4 V1 V4 V2d

117 VP V1 V4 V1

118 V2v V1 V1 V1

119 V1 V1 V1 V2d

120 V1 V1 V1 V2d

121 V1 V1 V1 PIP

122 NONE V2v NONE PIP

123 NONE V1 NONE PIP

124 TAa V2v NONE NONE

125 TE1-3d V2d TAa 5D

126 TE1-3d V2d NONE 31

127 TE1-3 V2d NONE 2

128 NONE V2d NONE 2

Table 1.  Summary of brain region labels in four monkeys. From left to right, the first column shows ECoG 
channels from the Neurochyco database. The second–fifth columns contain indexes of parcelled structural brain 
regions located under the ECoG sensors28. We compared the locations of ECoG channels and parcelled regions 
using Caret software88. Because the locations of the ECoG sensors were different among individual monkeys, 
the structural regions vary among them. (OrbFr: Orbital prefrontal cortex, PreM: Pre-Motor Cortex, M1: 
Primary Motor Cortex, SEF: Supplementary eye field, 5: Area 5, 8 A: Prefrontal area 8 A, 7ip: Parietal area 7ip, 
TA: Temporal anterior region, TAa: Area TAa, TPO: Temporal parietal occipital, V4: Visual area 4, V2: Visual 
area 2, V1: Primary visual area).
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bottom region (α ≥ 0.07). We can find that the phase change happened around a similar region α ∼ 0.07. The 
original Communicability is also shown as Fig. 5C. At the region where correlations were stable, Communicability 
also held a stable value. So, these phase changes of correlations seem to be captured by the modulation of “Skelton” 
structural network itself, and by the well-organized measure Communicability. Besides, the phase change of cor-
relations between spike delays and Communicability was found in all cases when we limited the maximum num-
ber of Walk steps to 3–5, although the trend changed when we limited the maximum Walk steps to 2 (Fig. 5B). 
This result indicates that at least 3 steps of Walk should be considered to properly characterize the relative fre-
quencies of use between the shorter and longer paths.

Discussion
Main findings.  This study produced four main findings: First, we demonstrated that ECoG signals can be 
used to predict the timing of evoked electrical neuronal spikes elicited by visual and auditory stimuli. Second, we 
confirmed that spontaneous ECoG under a blindfold condition (without stimuli triggers), can predict the timing 
of visually evoked neuronal spikes. The prediction performance from the blindfold data was efficiently supported 
by structural constraints. Third, we estimated the propagation velocity (conductance velocity) as 1.0–1.5 m/s 
using connectomic data, and found that the velocity does not depend on conscious level. Fourth, we demon-
strated that Communicability can be used to systematically characterize the contributions of the shortest paths 
and non-shortest paths in the general pattern of transmission delay.

Multi-scale neuronal recording technologies.  We demonstrated predictions of the time delays of vis-
ually evoked spikes from ECoG data recorded in the blindfold condition because spikes are primarily important 
for information processing of the brain (Fig. 6). Surprisingly, the slope for the regression plot between ECoG and 
electrical spikes was 1. This result indicates that latency is a robust feature between these completely different 
two recording modalities. Previous studies have successfully predicted spatial patterns of functional spontane-
ous activities observed from fMRI using spatial patterns of structural networks from diffusion tensor/spectral 
Imaging13,39,40. The temporal resolution of fMRI is longer than one second. To contrast this, we aimed to show 
how high structural constraints could influence the determination of temporal dynamics of neuronal spikes using 
a higher temporal resolution signal, i.e., ECoG, which is less than a millisecond.

Because the spatial scale recorded in ECoG, 1 cm, is over 100 times the spatial scale recoded in LFP, 1 mm, and 
many complex spatial patterns can be generated in the spatial map, the success of prediction using ECoG signals 
is a non-trivial result. Additionally, past predictions using LFP tested limited brain regions, while the data set used 
in our study included whole cortical networks. With knowing gaps between SUA and LFP, the positive correla-
tion between pre-synaptic effects and post-synaptic effects is a presumable physiological phenomenon because 
if electrical signal at pre-synaptic neuron increases, spikes of post-synaptic neurons will also tend to increase. 
In fact, several studies have reported high prediction performance of spike timings from Local Field potentials 
(LFPs)41–43. Therefore, the main non-trivial results of the present study would be given insight into the integration 
among different spatial scales at millisecond-order temporal dynamics44.

Subcortical contributions.  When simultaneously observing many brain regions, it is important to consider 
the important roles that subcortical regions play in mediating electrical interactions between cortical regions45,46. 
Indeed, how cortico-subcortico-cortical connections and subcortical pathways influence global dynamics within 
the cortex is an interesting question for future research47,48. Collaborative studies involving simultaneous record-
ings from many subcortical and cortical regions will improve our current understanding of neuronal signal 
transmission49.

Transmission delay and Communicability.  From comparison among the Shortest Path, Decay Walk, and 
Mean Walk Models, the Shortest Path Model provided high prediction performance of spike data although the 
relatively simpler expression than the Decay Walk Model. In other words, the Shortest Path Model seemed to be 
approximately a good model of communication dynamics in the brain. Besides, from results when increasing α 
in Delay Walk model, we could also estimate how much non-shortest paths, or non-direct paths, can contribute 
to the communication dynamics in the brain. In fact, the correlation between neurophysiological delays and 
estimated delays was inverted from positive to negative aroundα~0.01–0.05. Furthermore, Communicability 
significantly increased with the increase of α around the same region (Fig. 5C). Because Communicability is an 
excellent measure quantitatively evaluating the contributions of non-direct paths, we would be possible to say the 
relative percentage of contribution of shortest path is 95–99%. In general cases, we also need to notice carefully 
that slow components, such as P30044,50, because they may reflect activities where the non-shortest paths are more 
frequently selected. Here, although we could not completely check the mechanism why the negative correlation 
happened because of high computational demands, we estimate the negative correlation may have happened 
because of the cut off of path lengths in the Decay Walk model.

Communicability has been previously applied to weighted brain data collected via diffusion tensor imaging51. 
Furthermore, Communicability has been found to be a sensitive measure for quantifying changes in brain regions 
remote from Stroke foci in both an experimental study52 and a computational simulation53. The removal of nodes 
with high Communicability, as well as the removal of rich-club nodes, can severely impact global communication 
in the brain54. In the near future, these knowledges will be continuously connected together.

Estimation of transmission velocity.  We also estimated propagation velocity. With respect to past stud-
ies, our main novel contribution is that we evaluated the propagation velocity on a global brain scale. Indeed, 
past studies estimated propagation velocity of neuronal spikes within limited brain regions55–58. In a previous 
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computational modelling study, propagation velocity was estimated in terms of the optimality of synchronous 
activations between brain regions54. In our study, the propagation velocity was fairly stable, even at different 
Conscious levels. Note that the variance or higher statistical moments of the velocity could potentially describe 
the differences between the Conscious levels (Fig. 4). In general, what is a characteristic of conscious level is an 
interesting scientific question59–61. Meanwhile, we could use more causal measures, such as Transfer Entropy, 
instead of non-causal measures, such as cross correlations. People may expect that Transfer Entropy can improve 
the current functional connectivity results better than Cross Correlation, as it will also clarify the relationships 
between functional connectivity and structural connectivity17,62. However, notice, the problems of causality are 
not so serious issue in this study because we also directly included structural constraints into the analyses process.

The estimated velocity contained clear variability, and the general form of the histogram of the propagation 
velocity followed a gamma distribution63. A physiological interpretation of the histogram form is a potential 
topic for future studies. Anatomical connectivity also contains variability in terms of connection strength, and 
recent studies have reported that there are more weak connections than previously presumed64. Physiologically, 
axonal conduction delays can vary widely depending on myelination or demyelination5, axon diameters65, and 
the density of sodium channels66, and also depend on the forms of dendritic branches and cell types. Notice that 
the globally most influential or typical velocity is very important even a wide variety of velocities exist. Future 
work evaluating the variety of propagations67 in brain-wide distributions7,68, and considering the detailed synap-
tic52,67,69,70 and informatic8 topologies of neurons will contribute greatly to this field.

Final remarks.  This study focused on the time-delay in cortical communication dynamics. Using 
Communicability and the index α, we quantitatively evaluated how a relative frequency of use between shorter 
and longer paths influences the information flow in the unified theoretical framework. How the human brain 
evolved such an efficient network organization with the selective use of shorter paths remains an interesting 
essential question. Shorter paths reduce wiring cost, while some long paths are unavoidably necessary for the 
integration of information. Therefore, it is important to consider both the optimality and efficiency of the brain 

Figure 3.  Predictions of time delays of electrical spikes from ECoG data under the no-task condition. Panel 
A shows histograms of the weights used to prepare the three Walk Ensemble Models. From top to bottom, the 
histograms show the weights for the Shortest Path (SP) Model, the Decay Walk (DW) Model, and the Mean 
Walk (MW) Model. Please notice the length of shortest paths are not always 1. Panel B shows the correlations 
between delays of neuronal spikes and delays predicted using the three models. The top and bottom bars 
are correlations for the SP and MW model, respectively. In the MW Model, the mean Walks were calculated 
from samples included in the one-sigma window (mean value ± one standard variation). The intermediate 
line on the y axis between the two models corresponds to the correlations for the DW model, determined as a 
function of exponent α in the equation cn = αn. In panel C, the upper three scatter plots show the results for data 
processed with structural constraints based on the SP model, and the lower three panels are scatter plots for the 
MW model. In both cases, the biggest panels are the results under the awake task-free condition, and the two 
small panels show the results for the two anesthetized conditions. The four different markers indicate the four 
different individual monkeys.
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structure. We believe that our results represent an important step in generating increasingly realistic predictions 
of brain dynamics.

Methods
Data acquisition.  Using a neuroinformatic approach, we combined three data sets acquired using different 
modalities by independent research groups: (1) spike-based visual responses in single-unit recordings, (2) brain-
wide field dynamics recorded with ECoG, and (3) anatomical connectivity network data among cortical regions 
from tracer injection studies. The ECoG data provides the electrically propagating signals, the anatomical con-
nectivity data provides constraints of propagating pathways, and spike data is used to compare with ECoG data. 
All data were collected from the macaque cortex, and processed using the following methods:

First, we obtained macroscopic functional data, specifically ECoG data from four macaque monkeys, from the 
Neurochyco database26,51,71. The excellence of this data is that the ECoG sensors cover almost all cortical surface. 
This allows us to characterize the global electrical propagations. The data set includes data recorded continuously 
from monkeys that were blindfolded and not engaged in any specific tasks, i.e., the “Awake Task-Free condition”. 
ECoG recordings from anesthetized monkeys are referred to as those collected in the “Anesthetized condition”. 
The data set also included a visual stimulation experiment. In the visual experiment, a grating stimulus was pre-
sented around a fixation cross with one of eight randomly selected grating orientations. The stimuli were shown 
for 2 second in every trial. Refer to the web page (http://wiki.neurotycho.org/Anesthesia_Task_Details) for more 
detailed information about the ECoG experimental procedure.

Figure 4.  Estimating conduction velocities on the cortical connectome at three conscious levels. Panel A 
contains a scatter plot showing distances between pairs of brain regions vs necessary delays to transmit neuronal 
spiking activities between them. Panels B–D show three dense scatter plots of the relationships between distance 
and necessary delays, estimated from the ECoG data. The three panels B-D reflect data for different cognitive 
states (awake state, light/deep anesthetized states). In the three panels, the downwards-pointing triangle 
markers indicate the results for directly connected paths (Steps of Walks n = 1), circles denote the results for 
samples with n = 2, and upwards-pointing triangle markers correspond to samples with n = 3. The inserted 
equations in the individual panels are equations for fit lines (d: distance, τ: delay). The two dotted lines in each 
panel are fit lines for samples with Walks that contain less than 4 steps. When the distance between two brain 
regions is longer (y-axis), the transmission requires more time (x-axis). In all states, the conduction velocity (the 
slope of the fit line) was ~1.0–1.5 m/s.

http://wiki.neurotycho.org/Anesthesia_Task_Details
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Second, to optimally model the transmission pathways of electrical signals between brain regions, we consid-
ered the constraints of underlying structural networks. We prepared the structural networks of the monkey brain 
based on the data given in Lewis and Van Essen (2000)72. In their model, the networks also cover entire cortical 
regions, and include the strengths of connections, discretized into seven levels. This atlas is shared publicly in the 
CoCoMac database73–75. This database has contributed to many investigations, including a comparison between 
monkey and human brains76, assessment of the relationship between structure and function77, and relationship 
between network architecture and cognition78. Currently, this database is continuously maintained as the Scalable 
Brain Atlas79.

Third, we prepared a summary of responding peak latencies of neuronal spikes from past neurophysiological 
studies in order to support the neuronal basis of macroscopic ECoG signals. We assessed neuronal spike timings 
associated with visual information processes for not only occipital visual areas, including V1 (primary visual) and 
V2 areas80, but also temporal areas such as TPO and TAa81, parietal areas including area 7ip82, frontal areas such 
as areas 8a, 4682,83, and the orbitofrontal region84. Several previous articles have reviewed trends in the time delays 
of visual evoked activities33,85. The peak latencies of neuronal spikes were represented by the mode values of firing 
pattern histograms. Note that, although many other studies have recorded evoked firing activities, we selectively 
used the data sets to those that recorded from the cortical gyri. This is because the ECoG data, which will be com-
pared later, was recorded only from gyri. Additionally, if we could not extract mode values (peak points) from 
figures given in past reports, we excluded that data from our analysis.

Integration of data.  To transform the original structural network data into a network with the spatial 
resolution of the ECoG sensors, we labelled groups of ECoG sensors according to individual brain regions by 
co-registering given sensor positions of ECoG sensors provided in the Neurochyco database onto a spatial parcel-
lation scheme of the monkey cortex72 using Caret software86 [Fig. 6c,d]. Then, ECoG sensors and spike electrodes 
are also separately co-registered with the parcellation map [Fig. 6b,d]. Table 1 shows the list of sets of 128 ECoG 
sensors’ indexes and the names72 in the structural segmentation for individual monkeys. Because the locations of 
the ECoG sensors were different among monkeys, the corresponding structural brain regions also varied (Right 
four columns in Table 1). Here, the cortical regions at the sulci or on the longitudinal fissure were eliminated 
because the ECoG sensors were not indwelled at those regions. The names of the structural brain regions corre-
sponding with the indexes are separately summarized in Table 2. The similar comparison process was used in our 
previous study87. Because several regions were eliminated in this process, we regarded pairs of nodes, connected 

Figure 5.  Predictions of time delays of electrical spikes from Communicability. Panel A is the same figure 
from panel B in Fig. 3. The correlation between time delays recorded by electrical spikes and the estimated 
time delays from the ECoG data is described as a function of the decay factor α. Panel B shows the correlations 
between Communicability and the delays of the electrical spikes. The four lines correspond to cases in which 
the maximum Walk steps were limited to 2, 3, 4, and 5 steps. Panel C shows the original Communicability as a 
function of α. The four lines have the same meaning as those shown in panel B.
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through one intermediate node, as connected. This pre-processing improved the prediction performance of spike 
timings of neurons35.

Estimation of time delays of neuronal spikes from visual stimulus-evoked ECoG activitis.  In 
the visual stimulation experiment, we estimated the transmission delay based on the time of the primary big 
sharp peak of evoked potential after visual stimulation. Notice that the structural networks were not necessary to 
determine delays for evoked activities, and that they were used only to estimate delays for spontaneous activities. 
As a pre-processing, we averaged the 210 trial data points after subtracting the 50 Hz component using a notch 
(band cut) filter with a 5 Hz standard deviation to eliminate power supply noise. Then, we selected the largest peak 
point between 0–Tms (T <100 ms) after the stimulus onset (Fig. 5B), and used the time delay of that peak point as 
the delay of the ECoG evoked data. We explain how the time delays for the anesthetized conditions were extracted 
in subsection 3 in this method section. Then, we evaluated the sharpness of the averaged waveforms using a var-
iable named Peak Index (Fig. 1B) to extract the most optimal time window. The Peak Index was mathematically 
defined by the following equation:

i i iPeak Index ((ECoG ( ) EoG ( ))/ ( ))(i: index of ECoG sensors) (1)max min δ= −

Here, ECoGmax (i) and ECoGmin (i) are the maximum and minimum values, respectively, of the ECoG signal 
recorded by sensor i, and δ(i) is the standard deviation when we fit the data to a Gaussian function around the 
primary peak point. Therefore, this index evaluates the average of amplitudes at the ECoG peaks for all sensors 
with sigma δ(i) as the unit. This value was averaged for all sensors involved in individual brain regions to get an 
averaged Peak Index representing interactions between brain regions.

Estimation of time delays from non-time locked ECoG activities along structural paths.  Here, 
we explain how we estimated time delays in the absence of a clear stimulus onset, such as in the “Awake Task-Free 
condition” or the “Anesthetized condition”. This process had three steps: First, instead of evoked activity, we cal-
culated Cross Correlations between all pairs of brain regions with de-noising of the time series, and also defined 
the time delays from the peak forms embedded in de-noised Cross-Correlations. Second, we identified all pos-
sible pairs of ECoG sensors located in the Origin and Target regions (Fig. 7A), and also estimated the delays 

Figure 6.  Spatial maps of anatomical percolation, neuronal spike data, ECoG sensors. (a) We selected the 
scheme defined in Lewis, Essen (2000)72 as the parcellation map of cortex here, and visualized the maps using 
Caret software88. (b) This spatial map shows the distribution of recording spots of spike data listed in the 
Table 2. (c) Distributions of ECoG sensors adopted in Neurotycho data set. (d) We separately performed two 
co-registrations between ECoG sensors and the anatomical parcellation map as listed in Table 1, and between 
recording spots as spike data and the anatomical parcellation map as listed in Table 2.
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for all possible pairs of ECoG sensors located in anatomically connected brain regions based on structural net-
works. Third, we obtained the weighted averages of the estimated the delays based on three path ensemble modes 
(Fig. 7B). Notice that structural networks play the essential role to estimate the propagating web, and that Cross 
Correlations are used for quantitative estimations of delays on directly connected individual steps. Now, let us 
explain more detail:

In the first step, we calculated Cross-Correlations after subtracting the 50 Hz components using the same 
notch filter as that used for evoked activities. Additionally, we subtracted cross correlations of smoothed compo-
nents by the following equation:

= −XC XC XC (2)corrected real smoothed

XCsmoothed was calculated by smoothing individual waveforms using a uniform 50 ms time window. From the 
amplitude of the corrected cross correlations, we detected the primary peak for each pair of Origin and Target 
regions, within 0–30 ms. We used the time delay at the primary peak point to characterize the transmission delay 
of propagation on the individual step (Fig. 7A, step). This delay will be expressed as τqp in the equation 3 later.

In the second step, we searched all pathways connecting all combinations of ECoG sensors between the Origin 
and Target regions. For example, as shown Fig. 7A, we selected all ECoG sensors included in regions I and J. We 
call these i1, i2, i3, …, in and j1, j2, j3, …, jm, respectively. If a pathway from region i2 to region j3 passes through 
regions k and l, then we summed the time delays for the three paths: from i1 to k, from k to l, and from l to j3 
(Fig. 7A, stepII).

Figure 7.  Predictions of time delays of electrical spikes from ECoG data in the Task-Free condition. (A) Our 
scheme involves calculating the time delays from a starting region I to a goal region J using spontaneous 
activities and structural pathways. In the present study, we used a cortical parcellation scheme according to 
Lewis and Van Essen (2000)72. Regions I and J represent one of the pairs of 98 cortical regions included in the 
parcellation scheme. There are several ECoG sensors on both regions I and J. Here, we simply consider only two 
sensors, i1 and i2 (j1 and j2), to exist in each region I (J). In this example, the pathways from region I to region J 
involve all four combinations of paths from sensors on the region I, i1 or i2, to sensors on the region J, j1 or j2. 
Each combination of the starting and goal points may involve many paths (Steps of Walk n ≤ 4). Each delay τij at 
a step j on a path i was given as the peak delay within 100 ms (stepI). In this panel A, for example, if the activity 
is transmitted using the most dorsal pathway, the total delay is τ= ∑ =T p p1 1

4
1 , and if the activity is transmitted on 

the most ventral pathway, the total delay is τ= ∑ =T p p2 1
3

2 . (B) Now, in general, we have time delay τ∑ =p
n

qp1
q  for 

every possible structural pathway (step II). Here, τqp is a delay necessary to transmit electrical activities on a pth 
step on a qth pathway. Therefore, the total step on the qth pathway is nq. Notice that we now do not care about the 
difference of adjacent ECoG sensors if they are involved in the same cortical region. We then prepared three 
models to calculate the weighted averages of time delays τ∑ ∑

∑ = =
=

( )Cq
N

q p
n

qp
1

C 1 1
q
N

q

q

1

 given from many N pathways 

connecting region I to region J. Cq indicates the relative weight given for the qth pathway. Essentially, how the 
weights depend on Walk steps is expressed using three models: The three bar graphs in the top-right show the 
relative weights for individual Walks for the three models. From left to right, the bar graphs correspond to the 
Shortest Path (SP) model, Decay Walk (DW) model, and Mean Walk (MW) model. The individual model 
provided a different histogram of the sample number of net time delays for the individual related pathway (step 
III), as shown at the bottom figure in panel B, and the averaged time delays were compared with the time delays 
given from neuronal spikes data (step IV).
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Finally, in the third step, we calculated the weighted average of time delays for all detected pathways connect-
ing regions I and J (Walk < 4). We defined the weighted average of time delays by the following equation:

∑ ∑τ τ=
∑










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q
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q
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Here, q is the index of the pathway connecting region I to region J, p is the number of Walk steps for a pathway q, 
and nq is the maximum number of Walk steps. Therefore, the difference between the weights included in three 
Walk Ensemble models is reflected in Cq (Fig. 7B, stepIII). The Shortest Path (SP) model considers only the time 

delays for the shortest paths: =








=

>

if n n
if n n

C
1 min( )
0 min( )q

q

q
 (n: number of Walks). The Mean Walk (MW) model con-

siders all Walks equally, so that Cq = 1 for any n. The Decay Walk (DW) model assigns higher weights to shorter 
vs longer pathways using the exponentially decaying function Cq = αn, where the decay of the exponent of α 
reflects the expectation that longer paths may be used to transmit activities less frequently than shorter paths. 
When α = 1 corresponds with the MW model, and α decreases toward 0, the result gradually approaches that 
obtained using the SP model.

Using these weighted averages (eq. 3), we obtained the representative delays given by the ECoG data under 
structural constraints. We compared the delays obtained from the ECoG data with the neuronal spike data 
reported in previous neurophysiological studies (Fig. 7B, step IV). Notice that the ECoG data had four variations 
related to arousal level in the Awake condition, and the light/deep Anesthetized conditions. All analyses were 
performed using Matlab software (The Mathworks Inc).
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