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Abstract

Most equity and derivative exchanges around the world are nowadays organised as order-driven markets

where market participants trade against each other without the help of market makers or other interme-

diaries as in quote-driven markets. In these markets, traders have a choice either to execute their trade

immediately at the best available price by submitting market orders or to trade patiently by submitting

limit orders to execute a trade at a more favourable price. Consequently, determining an appropriate

order type and price for a particular trade is a fundamental problem faced everyday by all traders in such

markets. On one hand, traders would prefer to place their orders far away from the current best price

to increase their pay-offs. On the other hand, the farther away from the current best price the lower the

chance that their orders will be executed. As a result, traders need to find a right trade-off between these

two opposite choices to execute their trades effectively. Undoubtedly, one of the most important factors

in valuing such trade-off is a model of execution probability as the expected profit of traders who decide

to trade via limit orders is an increasing function of the execution probability.

Although a model of execution probability is a crucial component for making this decision, the re-

search into how to model this probability is still limited and requires further investigation. The objective

of this research is, hence, to extend this literature by investigating various ways in which the execution

probability can be modelled with the aim to find a suitable model for modelling this probability as well

as a way to utilise these models to make order placement decisions in algorithmic trading systems. To

achieve this, this thesis is separated into four main experiments:

1. The first experiment analyses the behaviour of previously proposed execution probability mod-

els in a controlled environment by using data generated from simulation models of order-driven

markets with the aim to identify the advantage, disadvantage and limitation of each method.

2. The second experiment analyses the relationship between execution probabilities and price fluctua-

tions as well as a method for predicting execution probabilities based on previous price fluctuations

and other related variables.

3. The third experiment investigates a way to estimate the execution probability in the simulation

model utilised in the first experiment without resorting to computer simulation by deriving a model

for describing the dynamic of asset price in this simulation model and utilising the derived model

to estimate the execution probability.
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4. The final experiment assesses the performance of utilising the developed execution probability

models when applying them to make order placement decisions for liquidity traders who must fill

his order before some specific deadline.

The experiments with previous models indicate that survival analysis is the most appropriate method

for modelling the execution probability because of its ability to handle censored observations caused by

unexecuted and cancelled orders. However, standard survival analysis models (i.e. the proportional haz-

ards model and accelerated failure time model) are not flexible enough to model the effect of explanatory

variables such as limit order price and bid-ask spread. Moreover, the amount of the data required to fit

these models at several price levels simultaneously grows linearly with the number of price levels. This

might cause a problem when we want to model the execution probability at all possible price levels. To

amend this problem, the second experiment purposes to model the execution probability during a speci-

fied time horizon from the maximum price fluctuations during the specified period. This model not only

reduces the amount of the data required to fit the model in such situation, but it also provides a natural

way to apply traditional time series analysis techniques to model the execution probability. Additionally,

it also enables us to empirically illustrate that future execution probabilities are strongly correlated to

past execution probabilities. In the third experiment, we propose a framework to model the dynamic of

asset price from the stochastic properties of order arrival and cancellation processes. This establishes

the relationship between microscopic dynamic of the limit order book and a long-term dynamic of the

asset price process. Unlike traditional methods that model asset price dynamic using one-dimensional

stochastic process, the proposed framework models this dynamic using a two dimensional stochastic

process where the additional dimension represents information about the last price change. Finally, the

results from the last experiment indicate that the proposed framework for making order placement deci-

sion based on the developed execution probability model outperform naive order placement strategy and

the best static strategy in most situations.
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Chapter 1

Introduction

The objective of this chapter is to present an overview of this thesis by discussing the mo-

tivation behind the research problem, the objectives and contributions of this study and the

structure of this thesis. The chapter starts by introducing some background information on

order-driven markets and pointing out a reason why execution probability is an important

component for making order placement decisions in such markets. It then briefly reviews

previous methods for modelling this probability and discusses the reason why a new model

is needed. The chapter then concludes with the objectives and contributions of this work

and the thesis structure.

1.1 Motivations from the literature and industry
Most equity and derivative exchanges around the world are nowadays organised as order-driven markets

where traders trade against each other using market and limit orders. Traders who supply liquidity to the

market submit limit orders (i.e. requests to buy a specific quantity at a price not exceeding some specified

maximum, or to sell a specified quantity at a price not less than some specified minimum) to indicate

the terms at which they want to trade. Unless it can be executed against a pre-existing order in the order

book, a new limit order joins the queue in the limit order book and remains there until it is amended,

cancelled, or executed against subsequent orders. On the other hand, traders who take liquidity accept

those terms by submitting market orders (i.e. requests to transact a specified quantity at the best available

price) to execute the trades at the best available price. Market orders are generally executed immediately

and as fully as possible. Any unexecuted part may then be converted to limit orders at the same price

or executed at the next best available price which will result in partial executions at progressively worse

price until the order is fully executed. Liquidity takers can also execute their trades immediately by

submitting marketable limit orders (i.e. limit orders to buy at or above the best available price, or to

sell at or below the best available price). Since both market orders and marketable limit orders result in

immediate execution, we do not make a distinction between them and refer to both of them as market

orders.
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The main difference between market orders and limit orders is the price at which the order is ex-

ecuted and the probability of execution as well as the execution time. When market conditions permit

(i.e. enough liquidity), a market order provides immediate execution but the execution price is not cer-

tain1. On the other hand, a limit order guarantees the execution price, but it may sometimes be executed

only partially or not at all. Although, through the use of limit orders, traders can improve their execu-

tion price relative to market orders, this improvement comes with a risk of non-execution and adverse

selection cost2 inherent in limit orders if they do not monitor the market continuously. Consequently, de-

termining an appropriate order placement strategy for a particular trade is a fundamental problem faced

everyday by all traders participating in such markets, and the solution to this problem is significant not

only to all traders, particularly to institutional investors who frequently trade large volumes of shares

representing a quarter or more of the whole market volume, but also to market microstructure literature

that analyse the rational for, and the profitability of, limit order trading as well as the characteristics and

dynamic behaviours of a limit order market. Additionally, a methodology to solve such problem can also

be utilised as a building block to solve many decision problems in algorithmic trading systems.

The desire to understand order placement strategies of traders in these markets has inspired a wide

range of theoretical and empirical research. On the theoretical side, many order placement models have

been proposed and examined to analyse the rationale for, and the profitability of, limit order trading, as

well as the characteristics and the dynamic behaviour of order-driven markets (e.g. [19, 32, 33, 40, 41,

76]). Empirical approaches, on the other hand, analyse the history of trades and quotes that occur in these

exchanges to achieve the same goals. Although recent empirical studies [8, 9, 17, 37, 38, 39, 62, 67, 82,

91] indicate that traders’ decision about when to submit each order type is significantly influenced by

the state of the order book (e.g. the queue volume, the market depth, and the bid-ask spread) as well as

its dynamic (i.e. recent changes to the order book), there is very little academic research that focuses on

utilising this information to make order placement decisions. Notable exceptions are Nevmyvaka et al.

[72, 73] who propose a quantitative method that allows traders to optimally price their limit orders with

the aim of minimising trading costs based on the state of the order book. While their results indicate

that incorporating market conditions into this decision could greatly reduce trading costs, their works

are loosely related to traditional order placement models as they utilise reinforcement learning to find

the optimal trading policy. As a result, the main drawback of their approach is that, when a trader’s

trading objective changes, new reinforcement learning model has to be constructed and trained to get

an appropriate trading policy. To avoid this inconvenience, it might be more appropriate to incorporate

market conditions into traditional models so that, after the model is calibrated, traders can utilise the

model regardless of their objectives.

1The uncertainty of execution price is usually caused by rapid changes to the limit order book during a period between order
submission and trade execution. In an electronic market, multiple events can happen within a millisecond, and our execution price
may be affected by the submission of market orders from competing traders as well the revision of the price and volume at the best
quote.

2Adverse selection cost, also known as picking-off risk or winner’s curse problem, is associated with the concept that limit
orders are free options to other traders [21] and these options will become mispriced as soon as more information about the price
of the asset is made available. Hence, traders who submit limit orders may expose potentially large losses if they do not constantly
and promptly update their orders to reflect these changes.
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Although traders’ order placement decisions can be explained by several factors, theoretical models

generally view these decisions as a trade-off between the expected profit and the free-trading option. The

expected profit depends on the execution price and the execution probability of a limit order, while the

value of free trading depends on the arrival probability of adverse information which may move the price

through the submitted limit order. Undoubtedly, one of the most important factors in valuing such trade-

offs is a model of limit order execution times and the associated execution probability [2, 19, 32, 40, 48,

76, 86]. The main reason for this is that the expected profit of traders who decide to trade via limit orders

is an increasing function of the execution probability. The larger the execution probability, the shorter

the expected waiting time, and thus the smaller the expected adverse selection cost. In addition, recent

empirical findings indicate that there is a strong relationship between this probability and the state of the

order book. In particular, Omura et al. [74] reports that the probability of execution of limit orders on the

Tokyo Stock Exchange (TSE) is lower when there are open ticks between the bid-ask spread and when

the depth of limit orders at the best price of the same side is high. Conversely, the execution probability

is higher when the depth of the opposite side of the book is high. This is in accordance with Biais et al.

[9] who indicate that, for the Paris Bourse CAC system, order flow is concentrated near the best quotes,

with depth somewhat larger at nearby quotes. When depth at the best quote is large, traders rapidly place

limit orders within the spread, while traders place market orders when the spread is small. All of these

suggest that it is sensible to model the execution probability of limit orders using the state of the order

book and utilise this model to derive the optimal order placement strategy. However, to the best of our

knowledge, no research effort on this topic has been reported in the literature before. Consequently, the

objective of this research is to extend this literature by investigating various ways in which the execution

probability can be modeled with aim to find a suitable model for predicting this probability as well as a

way to utilise these models to make order placement decisions in algorithmic trading system.

1.2 Research objectives
The main objective of this research is to develop a computational model of limit-order executions in an

order driven market that can be utilised to predict the probability that a given limit order will be executed

within a specified period of time. To achieve this, we firstly conduct several experiments to analyse the

behaviour of previously proposed models in a controlled environment by utilising data generated from

simulation models of order driven market with the aim to identify the limitation of these models. We

then proposed two alternative methods for modelling this probability. The first method is an empirical

model for modelling the execution probability given a specified trading horizon from the fluctuation of

asset price during the interested trading period. The second method is a theoretical model linking the

relationship between the order arrival/cancellation process and the asset price dynamic in an order driven

market.

Another focus of this research is on the trade implementation problem faced by traders who want

to trade a financial instrument in an order driven market. Specifically, the problem these traders face is

whether to trade aggressively by submitting a market order or trade patiently by placing a limit order. In

addition, there is the question of how to dynamically update this decision based on the changing market
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condition in order to execute the trade at the best price. Although recent empirical research indicate that

this decision is significantly influenced by the state of the order book and its dynamics, little attention

has been paid to developing an order submission model that utilises this information to optimise trade

execution. To fill the gap in the literature, we are interested in extending traditional order submission

models to utilise this information. Particularly, we want to model the execution probability of limit

orders using this information and utilise this model to make order placement decision in algorithmic

trading systems.

1.3 Major contributions
This thesis focuses on the development of the execution probability model that can be utilised to predict

the probability that a given limit order will be executed within a specified period of time and the way

to utilise the developed models to make order placement decisions in algorithmic trading systems. The

principal contributions of this thesis are as follows:

In the first part of this thesis, we develop software for simulating order flows in an order-driven

market, where the arrival of limit orders, market orders and order cancellations are characterized by in-

dependent Poisson processes, and utilise the software to generate data for comparing the performance of

previously proposed execution probability models in a controlled environment. The result demonstrates

that survival analysis is the most appropriate method for modelling the execution probability because of

its ability to handle censored observations in the form of unexecuted and cancelled orders. However,

standard survival analysis techniques utilised in previous works (i.e. the proportional hazards model and

the accelerated failure time model) are not flexible enough to model the effect of explanatory variables

such as limit order price, bid-ask spread and the number of orders in the order book. Additionally, the

amount of the data required to fit these models at several price levels simultaneously depends linearly on

the number of price levels desired. This is not a desirable property as we generally need the execution

probability at all possible price levels to determine the best price for submitting the orders.

To reduce the amount of data required to fit the model, we propose a new framework for modelling

the execution probability at a specified trading horizon from the distribution of asset price fluctuation

during the interested period. The major advantage of this approach over traditional models is that it

requires only one record per sample while traditional models might require n records per sample to model

the execution probability for n price levels. Moreover, it also provides a natural way to apply traditional

time series analysis techniques to model the execution probability. By applying the proposed approach

to the historical dataset obtained from the Multi Commodity Exchange of India and the New York Stock

Exchange, we can empirically demonstrate that future execution probability is strongly correlated to past

execution probability, and the execution probability also has intraday seasonality patterns whose forms

mainly differ between the individual exchanges and less between the different assets traded in the same

exchange. Furthermore, we also find evidence of asymmetry between the execution probabilities of buy

and sell orders, which suggest that we might need to model them separately.
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To find a suitable method for modelling the execution probability under the new framework, we

investigate several ways in which the unconditional and conditional distributions of asset price fluctu-

ation can be modelled. For the unconditional distribution, we derive the unconditional distribution of

price fluctuation when the asset price is assumed to follow the arithmetic Brownian motion as well as

fit several distributions with non-negative support (i.e. the exponential, Weibull, gamma, generalised

gamma, generalised F and Burr distribution) to the historical dataset. As the empirical distribution of

price fluctuation generally has probability mass at zero and is discrete in nature, we propose estimating

the parameters of these distributions by maximising the likelihood of the discrete distribution implied

by the considered distribution rather than maximising the likelihood of these distributions directly. The

result indicates that the distribution estimated by the proposed method is generally better than the one

estimated by a traditional maximum likelihood estimator, and the generalized F distribution is the best

distribution for modelling the unconditional distribution of asset price fluctuations. For conditional dis-

tributions, we perform an experiment to utilise three major time series analysis techniques (i.e. the

autoregressive moving average model, the generalised autoregressive conditional heteroskedasticity and

the autoregressive conditional duration model) to model the conditional distributions by maximising

both original likelihood functions and the modified likelihood functions that account for the discreteness

and non-negativity properties of the price fluctuation distribution. The result demonstrates that the au-

toregressive conditional duration model estimated by maximising the modified likelihood function is the

best performing model.

Last but not least, we propose a new framework for making order placement decisions based on

the trade-off between the profit gained from a better execution price and the risk of non-execution that

utilises the proposed execution probability model to balance this trade-off. The result obtained from

applying the proposed framework to make order placement decision for liquidity traders who need to

execute their order before the end of the deadline in historical simulation indicates that the proposed

framework has better performance than simple static strategies that execute a trade at the beginning and

the end of the period in all cases. Although the proposed framework can beat the best static strategy only

in eight out of twelve cases, the improvement gained from the proposed framework when it does beat

the best static strategy is significant.

1.4 Thesis outline
The overall structure of this thesis is organised as follows:

Chapter 2 - Background. We briefly present background information on a number of key concepts

in the areas that this research spans to give a reader a clear view of the problems and environments

studied in this thesis. Particularly, information about trading mechanism frequently used in financial

markets is presented with the main emphasis on the limit order book markets which are the markets

studied in this research. The broad area of algorithmic trading is also reviewed to place our work in a

well defined context and to outline a rich picture of business reality for which the extended version of

this research could be considered in future work. The chapter ends with a review of survival analysis

which is the most widely used technique for modelling execution probability.
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Chapter 3 - Simulation model of a pure double auction market. We give an overview of the simu-

lation models employed for studying the behaviour of the execution probability as well as assessing the

prediction performance of the execution probability model studied in the subsequent chapters. The mod-

els employed here are models of agent behaviour in continuous double auction markets that contain two

main types of agents (i.e. impatient agent and patient agent). Impatient agents place market orders ran-

domly according to some predefined stochastic process, while patient agents place limit orders randomly

both in time and in price. Additionally, unexecuted limit orders are assumed to be cancelled according

to some predefined stochastic processes. By controlling the properties of these orders submission and

cancellation processes, several realisations of the order book dynamic that have similar stochastic prop-

erties can be generated. This enables us to evaluate the performance of execution probability models in

a controlled environment before applying them to the data generated from real markets.

Chapter 4 - Execution probability model. We present an in-depth review of execution probability

models together with performance comparison in a controlled environment based on the data generated

from the simulation model of an order-driven market presented in the previous section. The results indi-

cate that among all models considered, the execution time model that utilises techniques from survival

analysis to handle cancelled orders is the best performing methods both form theoretical and empirical

point of views. However, the experiment in applying survival analysis techniques to model the deter-

minants of the execution probability indicates that traditional techniques, which are the proportional

hazards model and the accelerated failure time model, are not flexible enough to model this probability.

Consequently, a new method that does not suffer from this limitation is required to model the execution

probability properly.

Chapter 5 - Execution probability and price fluctuation. We propose a new framework for mod-

elling the execution probability at a specified time period from the distribution of asset price fluctuations

during the interested period. The advantage of this approach over traditional techniques is that it requires

less data to model the execution probability at all price levels as it requires only one record per sample

while traditional models generally require n records per sample to model the execution probability at n

price levels. Additionally, it also provides a natural way to apply traditional time series analysis tech-

niques to model the execution probability. By applying the proposed approach to the historical dataset

obtained from the Multi Commodity Exchange of India and the New York Stock Exchange, we can

empirically demonstrate that future execution probability is strongly correlated to past execution proba-

bility, and the execution probability also has intraday seasonality patterns. To find a suitable method to

model the execution probability under this new framework, we perform several experiments to compare

the performance of applying major probability distributions with non-negative support (e.g. the gener-

alised gamma, the generalised F and the Burr distribution) as well as three major time series analysis

techniques (i.e. the autoregressive moving average model, the generalised autoregressive conditional

heteroskedasticity and the autoregressive conditional duration model) to model the unconditional and

conditional distributions of price fluctuations. The result indicates that the generalised F distribution

is the best distribution for modelling the unconditional distribution of price fluctuations, while the au-
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toregressive conditional duration model is the most appropriate method for modelling the conditional

distribution, and, thus, the best model for modelling the execution probability.

Chapter 6 - Asset price dynamics in continuous double auction market. We propose a stochastic

model of asset prices in an order-driven market whose dynamics are described by the incoming flow of

markets orders, limit orders and order cancellation processes. In particularly, we introduce a framework

to model the dynamics of asset prices given the statistical properties of those processes; thus, establishing

the relation between the microscopic dynamics of the limit order book and the long-term dynamics of the

asset price process. Unlike traditional methods that model asset price dynamics using a one-dimensional

stochastic process, the proposed framework models these dynamics using a two-dimensional stochas-

tic process where the additional dimension represents information about the latest price change. Using

dynamic programming methods, we are able to estimate several interesting properties of the asset price

dynamics (i.e. volatility, occupation probability and first-passage probability), conditioning on the trad-

ing horizon, without resorting to simulation.

Chapter 7 - Order placement strategy.We propose a new framework for making order placement

decision based on the trade-off between the profit gain from the better execution price and the risk

of non-execution that utilise the developed execution probability model to balance this trade-off. The

result obtained from applying the proposed framework to make order placement for liquidity traders

who need to execute their order before the end of the deadline in the historical dataset obtained from the

Multi Commodity of India and the New York Stock Exchange indicates that the proposed framework

has better performance than the best static order placement strategy for all instruments in the Multi

Commodity of India, while it beat the best static strategy only in two out of six cases studied in the New

York Stock Exchange. Although the proposed framework cannot beat the best static strategy in all cases,

the improvement gained from the proposed framework when it can beat the best static strategy is very

significant.

Chapter 8 - Conclusion. We summarise the key points of this work, what guided us in this direction

and what can be learned from our models and experiments. We then review our contributions and

academic achievements, and suggest some direct applications for practitioners.



Chapter 2

Background

This chapter presents background information on a number of key concepts in the areas that

this research spans. Particularly, the information about trading mechanisms frequently used

in financial markets is presented with the main emphasis on the limit order book markets

which is the main market studied in this research. The broad area of algorithmic trading

is also reviewed to place our work in a well defined context and to outline a rich picture

of business reality for which the extended version of this research could be considered in

the future work. The chapter then ends with a review of survival analysis which is the most

widely used technique for modelling the execution probability.

2.1 Market architecture
A financial market is a place where firms and individuals enter into contracts to buy or sell financial

instruments such as stocks, bonds, options and futures. It basically provides a forum where traders meet

to arrange trades according to some predefined rules that govern its trading mechanism. During the last

few decades, financial markets have evolved significantly from traditional floor markets, where traders

come in contact and agree on a price physically on the floor of an exchange, to electronic markets,

where traders submit orders, via a computerised screen-based system, to a central order book, and trades

are created according to a specific matching algorithm. As a result, despite their original mechanisms,

most financial markets nowadays are actually hybrids, involving a limit order book and other trading

mechanisms including dealers, clearing, and auctions. This section briefly describes the main properties

of these trading mechanisms. Note that the detail presented in this section are summarised from [44],

and, thus, more thorough information on the topic can be obtained from there.

2.1.1 Limit order markets

Most financial markets have at least one electronic limit order book. A limit order is an order to buy a

specific quantity of a financial instrument at no more (or sell at no less) than a specific price. In a limit

order market, orders arrive randomly in time. The limit price of a newly arrived order is compared to

the orders that are already stored in the system to determine whether there is a match or not. If there is

a match, the trade will occur at the price set by the order previously stored in the system. The sequence

in which these orders are executed is governed by some specific priority rules specified by the exchange.
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Price normally is the most important rule, and a buy (sell) order with the highest (lowest) limit price will

have the highest trading priority. There is also a time rule, which states that if two orders have the same

limit price, the one which was entered into the system first will have more priority. Other rules related

to an order quantity are also used in some markets (e.g. LIFFE). A list of unexecuted limit orders stored

in the system constitutes a limit order book. Since limit orders can be modified or cancelled at any time,

the order book is dynamic and can sometimes change rapidly especially in active markets.

Instead of using limit orders, a trader may require that an order is executed at the market price, i.e.,

at the best available price. To achieve this, the trader can submit a market order, an unpriced order which

will be executed immediately against the best order, in the market. If the order quantity is larger than the

quantity available at the single best price on the book, the order will either walk the book, resulting in

partial executions at progressively worse prices until the order is fully filled, or be converted to a limit

order at the executed price.

A market might have multiple limit order books, each managed by different broker. Limit order

books might also be used in conjunction with other mechanisms. When all trading occurrs through a

single book, the market is said to be organized as a consolidated limit order book (CLOB) which is used

for actively traded stocks in most Asian and European markets.

2.1.2 Dealers

Dealer markets

A dealer is basically an intermediary who is willing to act as counterparty for the trades of his customers.

A trade in a dealer market, such as the FX market, usually starts with a customer calling a dealer to ask

for their price quotes (i.e. the dealer’s bid and ask price), and, then, the customer may buy at the dealer’s

ask, sell at the dealer’s bid, or do nothing. Unlike limit order markets, where a buyer who thinks the

best price in the book is unreasonable can place his or her own bid, a buyer in dealer markets does not

have the opportunity to do that. Dealer markets are also usually characterised by low transparency since

dealers usually provide quotes only in response to customer inquiries and these are not publicly visible.

In addition to dealer-customer interactions, interdealer trading is also important for conducting

dealer business. Since the incoming buy and sell orders that a particular dealer sees are usually im-

balanced, accommodating these customer needs may leave the dealer with an undesired long or short

position. In such case, the dealer may attempt to sell or buy in the interdealer market to balance its

position. Nowadays, some of these interdealer markets (e.g. FX market) are conducted via a limit order

book, such as Electronic Broking Services (EBS) and Reuters Dealing 3000 Spot Matching (D2).

Dealers in hybrid markets

Dealers can make markets work where they might otherwise fail. For example, a limit order market

where customers directly trade against each other generally has difficulty with small stocks for which

trading interest is insufficient to sustain continuous trading. In such a case, a dealer may make continuous

trading possible by actively supplying bids and offers. Although this may well be occurring in actively

traded securities, the potential dealer’s costs of continuously monitoring bids and offers of low activity
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securities may be too large to recover from the relatively infrequent trades. In these instances, continuous

liquidity requires that a dealer be designated (by the market authority) and provided with additional

incentives. The best-known designated dealer is possibly the NYSE specialist who has many roles and

responsibilities but an important one is to maintain a two-sided market when there is nothing on the limit

order book and no one else on the floor bidding or offering.

With the advent of the electronic order management system, the competitive position of dealers

and other intermediaries has weakened since, nowadays, customers can update and revise their limit

orders rapidly enough to respond to market conditions. Hence, they can quickly supply liquidity when

it is profitable to do so and quickly withdraw their bids and offers when markets are volatile. As a

result, the presence of a dealer to maintain a two-sided market has considerably diminished in most

financial markets. However, dealers today serve another useful function in facilitating large (block)

trades especially in the block market, also called the upstairs market. When an institution contacts a

dealer to fill a large order, the dealer can act as a counterparty, try to locate a counterparty for the full

amount, work the order over time, or some combination of these. The dealer’s advantage here thus lies in

access to capital, knowledge of potential counterparties, and expertise in executing large order overtimes.

2.1.3 Auctions

When multiple buyers and sellers are concentrated in one venue at one time, trades may not need to be

coordinated since agents can contact each other sequentially to strike bilateral bargains. However, the

result obtained from such approaches may not be economically efficient since many participants will

execute their trades at prices worse than the best price realized over the entire set of trades. To avoid

this problem, a single-price clearing, which is generally implemented with a single-price double-sided

auction could be employed. In this mechanism, supply and demand curves are constructed by ranking

bids and offers from all participants, and the clearing price is usually determined by maximising the

feasible trading volume. The double-sided auction is widely used in security markets, especially for

low activity securities. The Euronext markets, for instance, conduct auctions once or twice per day,

depending on the level of interest. Double-sided auctions are also usually used to open continuous

trading sessions (e.g. Euronext, Tokyo Stock Exchange, and NYSE) and, also, at the close of continuous

trading sessions.

Although most auctions in secondary markets are double-sided, single-sided auctions are widely

used in primary markets. These include the U.S. Treasury debt markets, and most U.S. municipal bond

offerings. They are also used, though not as often, for initial issues of equity.

2.1.4 Summary

In summary, financial markets have various architectures. Some of the main characteristics that distin-

guish them are the presence or lack of intermediation and continuous or periodic trading. Intermediated

markets employ market markers, dealers, or specialist, who determine price quotes and act as counterpar-

ties in each trade. Consequently, these markets are usually referred to as quote-driven markets due to the

quote setting function of the dealers. In non-intermediated markets, trading does not involve intermedi-

aries but submitted orders are stored, matched, and executed via the limit order book. These markets are
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usually referred to as order-driven markets since the whole trading process is determined by submitted

orders. The second characteristic determines if trades are executed continuously during a trading session

or only at certain points in time. These two models are called a continuous double auction and a periodic

auction respectively.

2.2 Algorithmic trading
As financial markets become more competitive, financial institutions and investors have started to turn

to automated trading, the computerisation execution of financial instruments following some specified

rules and guidelines, to gain competitive advantage. With the ability to communicate electronically with

exchanges and other electronic trading venues, it is now possible to construct automated trading systems

to analyse the changing market data and place orders when certain criteria are met. These systems can

be customised to execute almost any trading strategy. Some aim to detect fleeting price anomalies and

arbitrage opportunities in order to take a position and make a profit when such situations occur. Others

slice up a large trade into smaller trades to manage market impact and timing risk as well as to mask

intentions and prevent their rivals from squeezing the price. This section presents an overview of this

fast growing area by presenting its definition together with some aspects concerning the development of

such system.

Although different people might utilise algorithmic trading systems to achieve different objectives,

in general, algorithmic trading can be described as trading with some of its processes being performed by

an algorithm running on a computer with little or no human intervention. The trading process could be

roughly separated into three main steps: trading signal generation, trading decision, and trade execution.

The signal generation usually involves the analysis of changing market information to detect the trading

opportunities within the market, and the result is a trading signal indicating when to buy and when to sell

a particular financial instrument. The generated trading signals are then analysed, usually by humans,

to confirm the trading decision in the second step. After the trading decision is finalised, the last step is

to execute the trading decision by sending the corresponding order to financial markets. Although this

simplified description of the trading process does not cover some traders (e.g. the market makers), it

illustrates that the trading process can be divided into different steps, each of which can be separately

programmed and executed by an algorithm running on a computer system. According to this simplified

trading process, algorithmic trading system might be categorised into four main types, as described by

Idvall and Jonsson [50], which are:

• Systems that automate the first step of the trading process, namely the trading signal generation.

Thus, human intervention is required for the last two tasks of the trading process, which are the

trading decision and the execution of the trade.

• Systems that automate the trade execution, which is last step of the trading process. The aim of

the execution algorithm is often focused on placing and managing orders in the market in order

to minimize the trading cost. Using execution algorithms leaves the first two steps to the human

trader.
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• Systems that combine the first two categories but leaving the trade execution to the human trader.

• Fully automated systems, often referred to as black-box trading systems, that automate all steps in

the trading process.

Hence, most algorithmic trading systems consist of two main parts: determining when to trade and how

to trade. Determining when to trade is the analytical part of the strategy which revolves around watching

the changing market data and detecting opportunities within the market. For example, consider a pair

trading strategy that examines pairs of financial instruments that are known to be statistically correlated.

Normally, statistically correlated instruments are likely to move together. When these instruments break

correlation, the trader may buy on and sell the other at premium with the hope to gain profit when both

instruments become correlated again. In this case, the algorithm involves monitoring for any changes

in the price of both instruments and then recalculating various analytics to detect a break in correlation.

Another example is a market making strategy which tries to place a limit order to sell above the current

market price or buy a limit order below the current price in order to benefit from the bid-ask spread. In

addition, any sort of pattern recognition or predictive model can also be used to initiate the trade. Neural

networks and genetic programming have been extensively used to create these models.

Determining how to trade focuses on placing and managing orders in the market. At the lowest

level, this involves determining a suitable choice of order type (i.e. limit and market order) for each

trade. This choice is no simple matter and requires some sophistication since market orders are executed

immediately but incur substantial price impact while limit orders incur no price impact but may not be

executed immediately, if at all. A higher level problem involves breaking up a large order into smaller

orders and placing them into the market over time. The benefit of this is that large orders have a major

impact in moving the market while smaller orders are more likely to flow under the market’s radar, and

subsequently have less impact on the market. In addition, when an instrument is traded in multiple

exchanges, an execution strategy also needs to determine where the order should be submitted to. Since

this research is more related to this issue, more detailed information about it will be discussed in the next

section.

2.3 Trade execution strategies
An investor, or an algorithmic trading system, who wants to buy or sell shares of a particular financial

instrument faces a number of choices. After the trading decision have been finalised (i.e. the financial

instruments for buying and selling have already been picked), the main problem to be solved is trade

execution with constraints on transaction costs and trading duration. To execute the trade, an order has

to be submitted to a trading venue with the choice depending on the selected financial instrument, order

size, hours of operation and other factors. If an order requires a small number of shares, comparing to

the available liquidity, it can be executed by a submission of a single market order. Alternatively, if the

number of shares required is larger than what is available in the market, an order may be broken up into

a sequence of smaller orders which will be submitted to the market over a specific period of time. In

addition, a trader also needs to decide on the preferred order type. If the trader is patient, he may choose
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to submit a limit order to obtain price improvement. On the other hand, an information motivated trader

may choose to submit a market order to achieve an immediate execution. The following sections briefly

discuss these three problems. More detailed information can be found in reference [10].

2.3.1 Choice of trading venue

Some financial instruments may be traded on more than one financial market. To execute a trade for

these instruments, a trader needs to determine the market the order has to be submitted to. Normally,

the trader may want to submit the order to the market whose characteristics suit his requirements most.

Some of the most important characteristics the trader usually considers are liquidity, trading mechanism

and degree of trader’s anonymity.

A financial instrument in a particular market is considered liquid if the volume of trades and orders

of that instrument is large. Liquidity is important because a high liquid market is usually associated with

fast trade execution and low transaction costs. Thus, all other things being equal, the trader would prefer

to submit his orders to the market with the most liquidity.

A trading mechanism employed in the market is also an important characteristic the trader usually

considers before making trade execution decision, since each mechanism has its own advantages and

disadvantages. As discussed in Section 2.1, trades in a continuous double auction market are executed

continuously during a trading session, while trades in a periodic auction are executed only at certain

points in time. As a result, it is more appropriate to trade in a continuous double auction market when

immediacy is required. However, trades in a periodic auction have lower price volatility when compared

to trades in the continuous double auction [25].

In the case of a trader’s order being too large to be executed instantaneously without an unwanted

price impact, the trader’s action will be influenced by his trading motivations. If trading is information

motivated, it might be more appropriate to carry out in a market that offers anonymity. In addition, trader

may also break up the large order into a sequence of smaller orders and submit them to the market over

a period of time with the aim of reducing price impact by hiding from other participants the fact that all

those orders were originated by the same trader. On the other hand, a liquidity-motivated trader whose

motivation is not information related is not necessary to do that and may submit his order to an upstairs

market directly.

2.3.2 Choice of trade schedule

As previously discussed, a price impact of a single market order for a particular financial instrument will

be minimal if the order size does not exceed the volume available at the best quote. However, if the

size of the order is too large to execute without an unwanted price impact, it would be more efficient

to break the order down into several smaller orders which are then submitted into the market over a

period of time. The benefit of this is that large orders have a major impact in moving the market while

smaller orders are more likely to flow under the market’s radar, and subsequently have less impact to the

market. Although smaller orders will have a lower price impact, delayed execution may expose them to

potential adverse price movements as well as an opportunity cost. Thus, the problem of generating an

optimal trade schedule which will achieve a desired balance between price impact and opportunity cost
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is another important problem for traders whose position is usually larger than the depth of the market.

During the last decades, there is a growing interest in developing models to solve such decision

problems (See [3, 16, 54, 4, 5] for example). The optimal trade schedule generated from these models

usually depends on several factors including trader’s objectives, market impact and the dynamics of

future market prices. Typically there are two main steps in specifying the trading objective. The first step

is to define execution cost by defining the specification of transactional cost and choosing the desired

benchmark price (e.g. previous close, opening price, arrival price, VWAP, TWAP, and future close).

The benchmark price is investor specific and depends on investment objectives (e.g. a mutual fund

may desire execution at the closing price to coincide with valuation of the fund while an indexer may

desire execution that achieves VWAP as an indication of fair prices for the day). The second step is to

specify the degree of risk-aversion (i.e. how much we penalise variance relative to expected cost) which

indicates the level of trading aggressiveness or passiveness. Aggressive trading is associated with higher

cost and less risk while passive trading is associated with lower market impact and higher risk. Market

impact, or the degree to which an order affects the market price, consists of permanent impact cost due

to information leakage of the order and temporary impact cost due to the liquidity and immediacy needs

of the investor. These market impacts are usually approximated by fitting some parametric functions

(e.g. linear and power laws function) using historical data. In addition, these functions can be both

time dependent and time independent. To specify the dynamics of future market prices, arithmetic

random walk is the most popular model. Giving specifications of all these factors, an optimal trading

strategy for a specific trading objective may be obtained by solving the corresponding stochastic dynamic

optimisation problem.

2.3.3 Choice of order type

As discussion in Section 2.1.1, there are two main order types that a trader can submit to an order-driven

market which are a market order and a limit order. A market order is an order to buy/sell a pre-specified

quantity of a financial instrument at the best available price placed by previously submitted limit orders

that make up a limit order book. In contrast, a limit order is an order to buy/sell a pre-specified quantity

of a financial instrument at a specific price. Unexecuted limit orders are stored in the limit order book

until they are cancelled or triggered by incoming market orders.

The main differences between market orders and limit orders are the price at which the order is

executed and the probability of execution. When market conditions permit (i.e. enough liquidity), a

market order provides immediate execution but the execution price is not certain1. On the other hand,

a limit order guarantees the execution price, but the order may sometimes be executed only partially,

or not at all. In addition, a trader who submits limit orders may also offset the price by the picking-off

risk2 if he does not monitor the market continuously. Although with limit orders traders can improve

1The uncertainty of execution price is usually caused by rapid changes to the limit order book during a period between order
submission and trade execution. In an electronic market, multiple events can happen within a millisecond, and our execution price
may be affected by the submission of market orders from competing traders as well the revision of the price and volume at the best
quote.

2Picking-off risk, also known as adverse selection cost and winner’s curse problem, is associated with the well-known concept
that limit orders are free options to other traders and these options will become mispriced as soon as the fundamental of the
instrument is changed. Hence, traders who submit limit orders may expose potentially large losses if they do not constantly update
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their execution price relative to market orders, this improvement is offset by the risk of non-execution

and adverse selection cost inherent in limit orders. Thus, to determine an appropriate order submission

strategy, traders have to find the right trade-off between price improvement, execution probability and

adverse selection cost. Note that this decision problem is the main focus of this research and more detail

information about how to model it will be discussed in Chapter 7.

2.4 Survival analysis
Survival analysis is a class of statistical methods for analysing the occurrence and timing of events,

which is usually referred to as survival time or failure time. Examples of survival times include the

lifetimes of machine components in industrial reliability, the duration or period of unemployment in

economics, the survival times of patients in a clinical trial or, in our case, the waiting times until limit

orders are executed. A special difficulty in analysing these data is that failure time information for some

individuals in a dataset may be incomplete, or so-called censored, which generally occurred when some

individuals can not be observed for the full time until the event of interest is happened. For instance, at

the close of the market, not all limit orders may have executed and we will not be able to observe the

time-to-execution of those orders. What makes survival analysis differ from other methods is a unique

and natural approach for accommodating these censored observations by maximally extracting partial

information from censored observations rather than just including or excluding them from the dataset

which generally cause biases in statistical inference. This section presents a brief review of survival

analysis techniques. Readers interested in a more detail exposition should consult Cox and Oakes [22]

and Kalbfleisch and Prentice [52].

2.4.1 Basic definitions

Let T be a nonnegative random variable representing the survival times of individuals in some popula-

tion. Let F (.) denote the cumulative distribution function (c.d.f) of T with the corresponding probability

density function (p.d.f) f(.). Since T ≥ 0 we have

F (t) = Pr{T ≤ t} =

∫ t

0

f(x)dx. (2.1)

The probability that an individual’s survival time will be at least t is given by the survivor function, S(t),

which could be defined by

S(t) = Pr{T ≥ t} = 1− F (t) =

∫ ∞

t

f(x)dx. (2.2)

Note that this function is a monotonic decreasing function with S(0) = 1 and S(∞) = limt→∞ S(t) =

0. Conversely, we can express the p.d.f. as

f(t) = lim
∆t→0+

Pr{t ≤ T < t+∆t}
∆t

=
dF (t)

dt
= −dS(t)

dt
(2.3)

their orders to reflect these changes.
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Additionally, the hazard rate of T at time t which is the instantaneous failure rate of failure at T = t

given that the individual survived up to time t is defined as

h(t) = lim
∆t→0+

Pr{t ≤ T < t+∆t | T ≥ t}
∆t

=
f(t)

S(t)
. (2.4)

When the distribution has an atom fj of probability at time aj , the hazard function h(t) will contain a

component hjδ(t− aj), where

hj = fj/S(aj). (2.5)

Consequently, the hazard function for a purely discrete distribution with atoms {fj} at points {aj} where

a1 < a2 < · · · , is specified by

h(t) =
∑

hjδ(t− aj), (2.6)

where

hj = fj/S(aj)

= fj/(fj + fj+1 + . . .).

For continuous distributions in Equation (2.3) and (2.4) we have

h(t) = −dS(t)/dt
S(t)

= −d log (S(t))
dt

. (2.7)

This indicates that h(t) completely specifies the distribution of T since we can recover the distribution

of S(t), f(t) and F (t) by knowing only h(t). To see this, the above equation can be rearranged into

S(t) = exp

(
−
∫ t

0

h(u)du

)
,

= exp
(
−H(t)

)
, (2.8)

where H(t) =
∫ t
0
h(u)du is the cumulative hazard function. Consequently, the p.d.f of T can be ex-

pressed as

f(t) = h(t) exp

(
−
∫ t

0

h(u)du

)
,

= h(t) exp
(
−H(t)

)
. (2.9)

The above equations illustrate that any one of these four functions (i.e. the p.d.f, the c.d.f, the survivor

function and the hazard function) uniquely determines the other three, and, thus, if one function is known,

the rest can be derived mathematically. Consequently the focus of survival analysis is to estimate one of

these functions from the dataset and the methods for achieving this will be described in Section 2.4.3.
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2.4.2 Censoring

Before discussing the methods for estimating the survival probability, let us firstly describe the concept

of censoring and censored observations. Censoring comes in many forms and occurs for many different

reasons. Fundamentally, censoring occurs when we have some information about the individual survival

time, but the survival time is not exactly known. This can generally be categorised into three main types

which are right censoring, left censoring and interval censoring.

An observation on a variable T is right censored if all we know about T is that it is greater than some

value c. This typically happens when observation is terminated before the event occurs. As an example,

consider the execution time of limit orders submitted to the market. If a given order is cancelled or

expired before execution, then the execution time of this order is considered censored. Although we do

not know the execution time of this order, we know that the execution time of this order is at least as

long as the its cancellation or expiration time.

Conversely, left censoring occurs when all we know about an observation on a variable T is that

it is less than some values. This is most likely to occur when we start to observe a sample at a time

when some of the individuals may have already experienced the event. For example, consider a situation

when we are monitoring the first-passage time that a stock price reaches a particular level in an electronic

market and the network connection is accidentally broken. If after the network is back to live we find out

that the stock price already crosses that level, then this first-passage time will be considered censored.

Although we do not know the exact first-passage time of this order, we know that this first-passage time

must be less than the time we come back to live.

Finally, interval censoring combines both right and left censoring. Particularly, an observation on a

variable T is interval censored if all we know about T is that a < T < b, for some values of a and b. This

type of censoring is likely to occur when observations are made at infrequent intervals and there is no

way to get retrospective information on the exact timing of events. For example, consider the situation

when the execution time of limit order cannot be directly observed. We may estimate the execution time

by the first time that the stock price reaches and crosses the order price. Although we do not know the

exact execution time of this order, we know that the execution time of this order must be greater than

the first time that the stock price reaches the order price while it must be less than the first time that the

stock price crosses the order price.

Since we will consider only right censored data in this research, the rest of this section will discuss

only a technique for right censored data.

2.4.3 Estimation methods

Given a dataset containing information about the lifetime and the censored time of an individual ob-

servation, a survival distribution can be estimated using both parametric and nonparametric methods.

Parametric methods generally assume a specific parametric family for the distribution of failure times

(e.g. exponential distribution, Weibull distribution and gamma distribution) and estimate its parameters

using maximum likelihood estimation. On the other hand, nonparametric methods estimate the survivor

function nonparametrically, without resorting to any parametric assumptions. This section briefly re-
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views concepts behind these methods, with an emphasis on the methods that will be utilised in the rest

of this research.

Let T denote a lifetime with c.d.f. F (t) and survivor function Sf (t) and C denote a random censor

time with c.d.f. G(t), p.d.f. g(t) and survivor function Sg(t). Each individual has a lifetime Ti and a

censor time Ci. Instead of directly observing Ti and Ci, we observe the pair (Yi, δi) where

Yi = min(Ti, Ci), and δi =

1 if Ti ≤ Ci

0 if Ci < Ti

. (2.10)

Under the assumption that times Ti and Ci are independent of each other, the likelihood of censored

observations can be computed from

Pr{Y = y, δ = 0} = Pr{C = y, C < T} = Pr{C = y, y < T}

= Pr{C = y}Pr{y < T} by independence

= g(y)Sf (y), (2.11)

while the likelihood of noncensored observations is

Pr{Y = y, δ = 1} = Pr{T = y, T < C} = Pr{T = y, y < C}

= Pr{T = y}Pr{y < C}

= f(y)Sg(y). (2.12)

Combining these two above equations, the likelihood function for n independent and identically distri-

bution (i.i.d.) random pairs (Yi, δi) is given by

L =

n∏
i=1

(f(yi)Sg(yi))
δi · (g(yi)Sf (yi))1−δi

=

(
n∏
i=1

Sg(yi)
δig(yi)

1−δi

)
·

(
n∏
i=1

f(yi)
δiSf (yi)

1−δi

)
(2.13)

When the distribution of C does not involve any parameters of interest, which is the case in this research,

the first factor in the above equation plays no role in the maximisation process, and, hence, the likelihood

function can be reduced to

L =

n∏
i=1

f(yi)
δiSf (yi)

1−δi

=
∏
U

f(yi)
∏
C

Sf (yi), (2.14)

where U and C denote the indexes of the uncensored and censored observations, respectively. Given

the likelihood function in Equation (2.14), the parameters of the distribution T can be estimated via

maximum likelihood estimation.
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Parametric methods

Let us firstly discuss parametric methods for estimating survival distributions from the dataset containing

n i.i.d. random pairs as discussed above. To achieve this, parametric methods generally assume a

specific parametric family of survival distribution and estimate its parameters from the dataset using the

maximum likelihood estimator. Particularly, parametric methods assume that T1,T2,...,Tn are i.i.d. from

a known distribution with p.d.f. f(t|θ) and survivor function S(t|θ) where θ is a vector of parameters of

the specific distribution which belongs to some parameter space Ω. The likelihood function from n i.i.d.

random pairs in Equation (2.14) is now given by

L(θ) =
n∏
i=1

f(yi|θ)δiS(yi|θ)1−δi =
∏
U

f(yi|θ)
∏
C

S(yi|θ) (2.15)

The maximum likelihood estimator (MLE), denoted by θ̂, is the value of θ in Ω that maximises L(θ) or,

equivalently, maximises the log-likelihood

logL(θ) =
∑
U

log f(yi|θ) +
∑
C

logS(yi|θ) (2.16)

Although any distributions over nonnegative values can be utilised to model the survival time dis-

tribution, we will only focus on six widely used distributions, which are the exponential distribution,

Weibull distribution, standard gamma distribution, generalised gamma distribution, log-normal distribu-

tion and log-logistic distribution. The rest of this section will cover the analytical expressions of these

six distributions in more detail.

Exponential distribution

An exponential distribution with the rate parameter λ > 0 has

f(t|λ) = λe−λt (2.17)

S(t|λ) = e−λt, (2.18)

h(t|λ) = λ. (2.19)

The outstanding simplicity of this model is reflected in its constant hazard rate which reflects the lack of

memory property. Particularly, for any t ≥ 0, the conditional distribution of T > t+ s, given T > s, is

the same as the unconditional distribution of T > t.

Weibull distribution

A Weibull distribution with scale parameter λ > 0 and shape parameter κ > 0 has

f(t|λ, κ) = λκ(λt)κ−1e−(λt)κ , (2.20)

S(t|λ, κ) = e−(λt)κ , (2.21)

h(t|λ, κ) = λκ(λt)κ−1. (2.22)
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Since S(t|λ, κ) = e−λ
κtκ , it follows that Tκ has an exponential distribution with rate parameter λκ.

Note that the Weibull distribution reduces to the exponential distribution when κ = 1. Additionally, the

Weibull hazard function is monotonically increasing when κ > 1 and monotonically decreasing when

κ < 1. Hence, the parameter κ is called the shape parameter, as the shape of the distribution depends on

the value of κ. On the other hand, the λ is called a scale parameter because the effect of different value

of λ is just to change the scale on the horizontal axis, not the basic shape of the distribution.

Standard gamma distribution

A standard gamma distribution with scale parameter λ > 0 and shape parameter κ > 0 has

f(t|λ, κ) =
λ(λt)κ−1e−λt

Γ(κ)
, (2.23)

S(t|λ, κ) = 1− γ(κ, λt)

Γ(κ)
, (2.24)

h(t|λ, κ) =
λ(λt)κ−1e−λt

Γ(κ)− γ(κ, λt)
, (2.25)

where γ(κ, λt) is the lower incomplete gamma function, which is defined by

γ(κ, x) =

∫ x

0

tκ−1e−tdt, (2.26)

and Γ(κ) is a gamma function, which is defined as

Γ(κ) =

∫ ∞

0

tκ−1e−tdt. (2.27)

Like the Weibull distribution, the gamma distribution contains the exponential distribution as a special

case when κ = 1. Its hazard function is monotone increasing from zero when κ > 1 and monotone

decreasing from ∞ if κ < 1. Unlike the Weibull distribution, where the hazard function increases

without limit, the gamma hazard function approaches λ as an upper limit. Similarly, when the decreasing

Weibull hazard approaches zero as a lower limit, the decreasing gamma hazard has a lower limit of λ.

Log-normal distribution

Possible distributions for T can also be obtained by specifying for log(T ) any convenient family of

distributions on the real line. The simplest possibility is to take log(T ) normally distributed with mean

µ and variance σ2, which leads to the log-normal distribution with

f(t|λ, α) = (2π)−
1
2αt−1 exp

(
−α2(log(λt))2

2

)
, (2.28)

S(t|λ, α) = 1− Φ
(
α log(λt)

)
, (2.29)

h(t|λ, α) =
(2π)−

1
2αt−1

1− Φ
(
α log(λt)

) exp(−α2(log(λt))2

2

)
, (2.30)

where µ = − log(λ), σ = α−1 and Φ(.) is the cumulative distribution function of the standard normal

distribution. Unlike the exponential and Weibull distributions, the hazard function associated with log-

normal distribution is non-monotonic. In fact, log-normal hazard function has an inverted U-shape, in
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which the hazard increases from 0 at t = 0 to a maximum at the mean value and then decreases and

approaches zero as t become large.

Log-logistic distribution

Another convenient distributions for log(T ) is the continuous logistic density with location parameter µ

and scale parameter σ which leads to log-logistic distribution with

f(t|λ, α) =
αtα−1λα(
1 + (λt)α

)2 , (2.31)

S(t|λ, α) =
1

1 + (λt)α
, (2.32)

h(t|λ, α) =
αtα−1λα

1 + (λt)α
, (2.33)

where µ = − log(λ) and σ = α−1 as in the case of log-normal distribution. Similar to the log-normal

distribution, the log-logistic hazard function also has an inverted U-shape. Particularly, if α > 1, the

hazard function has a single maximum, while if α < 1 the hazard function is decreasing.

Generalised gamma distribution

A generalised gamma distribution with a scale parameter λ > 0 and two shape parameters κ > 0 and

ρ > 0 has

f(t|λ, κ, ρ) =
ρλ(λt)ρκ−1e−(λt)ρ

Γ(κ)
, (2.34)

S(t|λ, κ, ρ) = 1− γ(κ, (λt)ρ)

Γ(κ)
, (2.35)

h(t|λ, κ, ρ) =
ρλ(λt)ρκ−1e−(λt)ρ

Γ(κ)− γ(κ, (λt)ρ)
. (2.36)

Since the generalised gamma distribution has one more parameter than other distributions, its hazard

function can take on a wide variety of shapes. In fact, the exponential, Weibull, standard gamma, and log-

normal distributions are all special cases of the generalised gamma model. In particular, the generalised

gamma distribution reduces to the exponential distribution when κ = 1 and ρ = 1, reduces to the Weibull

distribution when κ = 1, reduces to standard gamma distribution when ρ = 1 and reduces to log-normal

distribution when κ → ∞. Additionally, the generalised gamma distribution also allows the hazard

function with U or bathtub shapes, in which the hazard declines, reaches a minimum, and then increases.

Non-parametric methods

Unlike parametric methods, non-parametric methods estimate the survivor function without resorting to

any parametric assumptions. This can be achieved by assuming that the possibly improper distribution

for the survival time is discrete, with atom fi at finitely many specified points a1 < a2 < · · · < ag.

Since the distribution obtained from non-parametric methods is purely discrete, this section will firstly

derive the survivor function when the distribution is purely discrete and then discusses the method for

estimating this discrete distribution from the dataset.
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As described in Section 2.4.1, the hazard function for a purely discrete distribution with atoms {fj}

at points {aj} where a1 < a2 < · · · can be specified by

h(t) =
∑

hjδ(t− aj),

where

hj = fj/S(aj)

= fj/(fj + fj+1 + . . .).

Consequently, we have

hj = fj/
(
fj + S(aj+1)

)
, (2.37)

or equivalently,

S(aj+1) =
fj
hj

− fj =
fj
hj

(1− hj) = S(aj)(1− hj) (2.38)

By applying Equation (2.38) recursively or by a direct application of the product law of probabilities, we

have

S(t) =
∏
aj<t

(1− hj) =
∏
(t)

(1− hj), (2.39)

where
∏

(t), and subsequently
∑

(t), denote product and summation over j, aj < t. Consequently, in

terms of hj , the fj may be written in the form

fj = hjS(aj) = hj
∏
k<j

(1− hk). (2.40)

To derive the full likelihood function from a sample of n i.i.d. random pairs, we first collect all informa-

tion related to the atom aj . If there are dj failures among the rj individuals in view at aj , the contribution

to the total likelihood is

h
dj
j (1− hj)

rj−dj . (2.41)

The total log-likelihood is then

L =
∑
j

[dj log hj + (rj − dj) log(1− hj)] . (2.42)

Consequently, a non-parametric estimator of the survivor function can be specified by

ˆS(t) =
∏
(t)

(1− ĥj), (2.43)

where ĥj is the maximum likelihood estimator of the hj , and is the solution of

∂L

∂hj
=
dj
hj

− rj − dj
1− hj

= 0,
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i.e. ĥj = dj/rj . Hence, the corresponding non-parametric estimator of the survivor function, generally

called the Kaplan-Meier or product-limit estimator [53], is then

Ŝ(t) =
∏
(t)

(
1− dj

rj

)
=
∏
(t)

(
rj − dj
rj

)
. (2.44)

Note that any terms in the product which dj = 0 can be omitted without affecting the estimation result.

As a result, the estimate Ŝ(t) is formally independent of the selection of point aj for which the observed

number of failures is zero, and is therefore a function of the data only. Although minus of the logarithm

of the Kaplan-Meier estimator could also be used to estimate the cumulative hazard function, it is more

usual to take

Ĥ(t) =
∑
(t)

hj =
∑
(t)

dj/rj , (2.45)

which often called the Nelson estimators [71].

2.4.4 Dependency on explanatory variables

In the previous section, we review methods for the relatively simple problem involving a single distri-

bution with no explanatory variables. However, in real situations, we are also interested in the effect

that each explanatory variable has on the survival time. For example, we may be interested in the effect

that the limit order size has on the limit order execution time. Although this can be analysed by estimat-

ing survivor functions for each value of explanatory variables separately and then making a qualitative

comparison between the estimated survivor functions. More complicated analysis is best handled by

comprehensive models in which the effects from explanatory variables are represented as parameters in

the model. This section presents two widely used models for modelling the relationship between survival

time and explanatory variables. These models are the accelerated failure time model and the proportional

hazards model.

Accelerated failure time model

One way to extend the analysis from the previous section to handle explanatory variables is to assume

that the difference between two individuals is the rate at which they age. Specifically, let T denote failure

time and X ≡
(
X1, . . . Xn

)
represent a vector of explanatory variables. Accelerated failure time model

assumes that there is a function ψ(X) such that the survival time of each individual is given by

T = T0/ψ(X), (2.46)

where T0 is the baseline survival time which is basically the survival time under standard condition

when ψ(X) = 1. Consequently, T is a scaled transformation of the baseline survival time T0, where the

scaling is determined by the explanatory variables. With this assumption, the survivor function, density
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function and hazard function are, respectively,

S(t|X) = S0

(
tψ(X)

)
,

f(t|X) = f0
(
tψ(X)

)
ψ(X), (2.47)

h(t|X) = h0
(
tψ(X)

)
ψ(X), ,

where S0(.), f0(.) and h0(.) are the survivor function, density function and hazard function of the base-

line survival time T0 respectively. Although the choice of ψ(X) can be any arbitrary function satisfying

ψ(X) > 0, a natural candidate is

ψ(X|β) = eβ
TX , (2.48)

where β is a vector of parameters. Consequently, Equation (2.46) can be rewritten as

T = T0e
−βTX ,

log T = µ0 − βTX + ϵ, (2.49)

where µ0 = E(log T0) and ϵ is a random variable of zero mean, whose distribution does not depend on

X . The above equation is very similar in form to a linear regression model and the main difference is

that the dependent is in a logged form. With a specified parametric form of the baseline distribution, this

parameter vector can be directly incorporated into the likelihood function by substituting Equation (2.47)

into Equation (2.16), and, thus, its values can be directly estimated by maximum likelihood methods as

described in the previous section.

Model checking

The central property of the accelerated failure time model can be re-expressed in various ways that can

be utilised as a basis for testing the adequacy of the model. From Equation (2.49), the distribution of

log T at various values ofX differ only by translation. Consequently, in a two-sample problem where the

value of the explanatory variable can take only two values, we can compare quantiles and utilise quantile-

quantile plot to verify the assumption of the accelerated failure time model. Particularly, let S0(t) and

S1(t) be the survivor function of the two-sample distribution, and define tp0 and tp1 for 0 < p < 1, by

p = S0(t
p
0), tp0 = S−1

0 (p), (2.50)

p = S1(t
p
1), tp1 = S−1

1 (p). (2.51)

Since under Equation (2.46), tp1 must equal to tp0/ψ, i.e. tp1 = tp0/ψ, the plot between tp1 and tp0 must be

a straight lines through the origin and the evidence against this is an indication of the violation of the

accelerated failure time assumption. Alternatively, we can also verify this assumption by plotting log tp1

and log tp2 versus p on the same chart. If the assumption is satisfied, these two curves should be parallel

to each other since they differ only by translation, and thus the evidence against this is also an indication
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of the violation of this assumption.

To assess this assumption quantitatively, we can utilise a method presented by Yang [94] to esti-

mate the timescale factor, ψ̂ from the dataset and then utilise the log-rank test proposed by Mantel and

Haenszel [65] to determine whether S1(t) and S0(ψ̂t) is similar to each other or not. Specifically, the

timescale factor, ψ̂, is defined as a minimum of

D(ψ) =

∫ ∞

0

W (t|ψ)
{
Ĥ0(t)− Ĥ1(ψt)

}
dt, (2.52)

where Ĥ0(t) and Ĥ1 are the corresponding two-sample cumulative hazard functions estimated from the

Nelson estimator, and W (t|ψ) is a data-dependent weight function defined by

W (t|ψ) =
{
1− S(t|ψ)

}ϵ{
S(t|ψ)

}δ
/t, (2.53)

where ϵ > 0 and δ > 0 are arbitrary constants, and S(t|ψ) is the Kaplan-Meier estimator of the combined

dataset construct from T0 and T1/ψ. Because the function D(ψ) is not smooth, the ordinary Newton-

Raphson iteration is not reliable for finding ψ. Consequently, we will utilise the optimisation algorithms

for general non-smooth functions (e.g. grid search, random search and simulated annealing algorithms)

to locate ψ̂. After obtaining an estimate of ψ̂, the log-rank test will be utilised to determine whether

S0(ψt) and S1(t) have the same distribution or not, and any evidence that these two distributions are not

similar is an evidence against the validity of the accelerated failure time assumption. Let a1 < . . . < am

be distinct survival times in the dataset, rkj is the number of individual in view at aj in group k, and dkj

is the number of failures at aj in group k. The log-rank statistic for the null hypothesis that these two

populations come from the same distribution can be written as

∑m
j=1

(
d1j − E1j

)√∑m
j=1 Vj

2

(2.54)

where

E1j =
Djr1j
Rj

, (2.55)

Vj =
Dj

(
r1j/Rj

)(
1− r1j/Rj

)(
Rj −Dj

)
Rj − 1

, (2.56)

Rj = r1j + r2j , (2.57)

Dj = d1j + d2j . (2.58)

Under the null hypothesis, the distribution of the square root of this statistic is approximately standard

normal and hence this statistic is distributed as chi-square with one degree of freedom. This chi-square

distribution is then integrated on the right of the statistic value to obtain the p-value, which is equal

to the probability of getting a statistic equal to or larger than that observed under the null hypothesis.

Consequently, the lower the p-value, the less likely that the null hypothesis is true. One often rejects the
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null hypothesis if the p-value is less than 0.05 or 0.01, corresponding to 5% or 1% chance of observing

an outcome at least that extreme, given the null hypothesis.

Proportional hazards model

Another way to model the relationship between explanatory variables and survival time is to assume that

the hazard of each observation is specified by

h(t|X) = ψ(X)h0(t), (2.59)

where h0(t) is an unspecified baseline hazard function which is free of the explanatory variables. Hence,

in this assumption, the explanatory variables act multiplicatively on the hazard. At two different point

X1 and X2, the proportion
h(t|X1)

h(t|X2)
=
ψ(X1)

ψ(X2)
, (2.60)

called the hazard ratio, is constant with respect to time t. Under this assumption, the survivor function

and density are given by

S(t|X) = S0(t)
ψ(X), (2.61)

f(t|X) = ψ(X)f0(t)S0(t)
ψ(X)−1 (2.62)

Although ψ(X) fulfills the same role as in the accelerated failure time model, it does not have precisely

the same interpretation. Similar to the previous section, ψ(X) can be parameterized as ψ(X|β) and the

most important special case is again

ψ(X|β) = eβ
TX (2.63)

Although we can estimate β by maximizing the likelihood obtained from substituting the likelihood

(2.16) by some specific forms of baseline hazard functions as in the accelerated failure time model,

such choices are unnecessary in the proportional hazards model. To see this, let us firstly consider

the situation when all data are uncensored. Let τ1 < τ2 < . . . < τn denote the order failure times

of the n individuals, ξj denote the label of the individual that fails at τj so that ξj = i only when

ti = τj and R(τj) = {i|ti ≥ τj} denote the risk set just before the j-th ordered failure time. The

conditional probability that ξj = i given the entire history up to the j-th ordered failure time τj (i.e.

Hj = {τ1, τ2, . . . , τj , i1, i2, . . . , ij−1}) is basicially the conditional probability that i fails at τj given

that one individual from the risk set R(τj) fails at τj , which equal to

h(τj |Xi)∑
k∈R(τj

h(τj |Xk)
=

ψ(Xi)h0(τj)∑
k∈R(τj)

ψ(Xk)h0(τj)
=

ψ(Xi)∑
k∈R(τj)

ψ(Xk)
. (2.64)

Note the baseline hazard function h0(τj) cancelling because of the multiplicative assumption in Equa-

tion (2.59). Although Equation (2.64) was derived as the conditional probability that ξj = i given the

entire history Hj , it is functionally independent of τ1, τ2, . . . , τj and depended only on i1, i2, . . . , ij−1.

Consequently, the joint distribution Pr
{
ξ1 = i1, . . . , ξn = in

}
over the set of all possible permutations
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of (1, 2, . . . , n) can be obtained by the usual chain rule of conditional probabilities as

Pr
{
ξ1 = i1, . . . , ξn = in

}
=

n∏
j=1

Pr
{
ξj = ij |ξ1 = i1, . . . , ξj−1 = ij−1

}
,

=

n∏
j=1

ψ(Xij )∑
k∈R(τj)

ψ(Xk)
. (2.65)

In the presence of censoring, a similar argument applies when we assume that censoring can only occur

immediately after failures. Particularly, suppose that there are d observed failures from the sample of

size n, and let the ordered observed failure times be τ1, τ2, . . . , τd. The likelihood of the dataset can be

described by

L =
d∏
j=1

ψ(Xij )∑
k∈R(τj)

ψ(Xk)
,

=
∏
i∈D

ψ(Xi)∑
k∈R(ti)

ψ(Xk)
, (2.66)

where D denotes the set of individuals who fail. The corresponding log-likelihood is then

l =
∑
i∈D

log (ψ(Xi))− log

 ∑
k∈R(ti)

ψ(Xk)

 =
∑
i∈D

li. (2.67)

Consequently, we can estimate the value of β by maximizing this likelihood function instead of Equation

(2.16). Since this function does not depend on baseline hazard function, the relation between explana-

tory variables and the survival time can be estimated without any assumption about the baseline hazard

function, and this is the reason why the proportional hazards model is a semi-parametric model. When

ψ(X) = eβ
TX , this log-likelihood reduces to

l(β) =
∑
i∈D

βTXi − log

 ∑
k∈R(tj)

exp
(
βTXk

) . (2.68)

The derivative of this log-likelihood with respect to the r-th explanatory variable is

∂l

∂βr
=

∑
i∈D

(
Xir −

∑
k∈R(ti)

Xkre
βTXk∑

k∈R(ti)
eβTXk

)
,

=
∑
i∈D

(Xir − Eir(β)) , (2.69)

whereEir(β) =
∑

k∈R(ti)
Xkre

βT Xk∑
k∈R(ti)

eβ
T Xk

is the weighted average of the r-th variables over the risk set at time

ti, i.e. R(ti). Accordingly the maximum likelihood estimator of βr is a solution of ∂l
∂βr

= 0.
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Model checking

Similar to the accelerated failure time model, we can assess the validity of the proportional hazards model

both by graphical and quantitative methods. From Equation (2.61), log (− log (S(t|X))) at various

values of X differ only by translation since

log (− logS (t|X))) = log
(
− log

(
S0(t)

ψ(X)
))

,

= log (−ψ(X) log (S0(t))) ,

= log (ψ(X)) + log (−S0(t)) . (2.70)

Consequently, we can verify this assumption in a two-sample problem by plotting log (− log (S(t)))

versus t for the two sample on the same chart. If the assumption is satisfied, these two curves should be

parallel to each other since they differ only by translation, and thus the evidence against this is also an

indication of the violation of this assumption.

To assess this assumption quantitatively, Grambsch and Therneau [36] developed a test for propor-

tional hazard assumption by considering the time-varying coefficients

β(t) = β + θg(t), (2.71)

where g(t) is a predictable processes. Under the proportional hazards assumption, β(t) should be inde-

pendent of time and, hence, θ should be equal to zero. Consequently, they developed a score test for a

null hypothesis that θ = 0 based on the generalised least squares estimator of θ. In particular, they define

S(r)(β, t) =
∑
i∈R(t)

exp
{
βTXi(t)

}
Xi(t)

⊗r for r = 0, 1, 2 (2.72)

where, for a column vector a, a⊗2 denotes the outer product aaT , a⊗1 denotes the vector a and a⊗0

denotes the scalar 1. Grambsch and Therneau illustrated that the expectation of the Schoenfeld residual

[85], defined as ri(β) = Xi −M(β, t) is characterised by

E{ri(β)} = V (β, ti)G(ti)θ, (2.73)

where G(ti) is a diagonal matrix with kk element equal to gk(ti), and

M(β, t) = S(1)(β, t)/S(0)(β, t),

V (β, t) =
S(2)(β, t)

S(0)(β, t)
−
{
S(1)(β, t)

S(0)(β, t)

}⊗2

.

Consequently, define r∗i (β) = V −1(β, ti)ri(β) as the scaled Schoenfeld residual so that E{r∗i (β)} =

G(ti)θ. Let β̂ be the maximum partial likelihood estimate under the null hypothesis that θ = 0 from the
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likelihood in Equation (2.68), V̂ (t) = V (β̂, t) and r̂i = ri(β̂). Generalized least squares gives

θ̂ = D−1
∑
i∈D

G(ti)r̂i, (2.74)

with

D =
∑
i∈D

G(ti)V̂ (ti)G(ti)
T −

(∑
i∈D

G(ti)V̂ (ti)

)(∑
i∈D

V̂ (ti)

)−1(∑
i∈D

G(ti)V̂ (ti)

)T
. (2.75)

Under the null hypothesis, the asymptotic variance of n−1/2
∑
G(ti)r̂i can be consistently estimated by

n−1D, leading to an asymptotic χ2 test statistic on p degree of freedom:

T (G) =

(∑
i∈D

G(ti)r̂i

)T
D−1

(∑
i∈D

G(ti)r̂i

)
, (2.76)

where p is the number of explanatory variables.

2.5 Summary
This chapter gives an overview of a number of key concepts in the areas that this research will span. In

particular, the chapter starts with a brief review of trading mechanisms utilised in major financial markets

around the world. It then introduces the definition and components of an algorithmic trading system with

emphasis on trading execution, which is the major problem studied in this research. Finally, it introduces

survival analysis as a statistical modelling technique for modelling the execution time of limit orders.



Chapter 3

Simulation model of a pure double auction

market

This chapter gives an overview of the simulation models employed for studying the be-

haviour of the execution probability and assessing the predictive performance of the execu-

tion probability model studied in the subsequence chapters. The models employed here are

models of agent behaviour in continuous double auction markets that contain two main types

of agents (i.e. impatient and patient agent). Impatient agents place market orders randomly

according to some predefined stochastic process, while patient agents place limit orders

randomly both in time and in price. Additionally, unexecuted limit orders are assumed to

be cancelled according to some predefined stochastic processes. By controlling the proper-

ties of these order submission and cancellation processes, several realisations of the order

book dynamic that have similar stochastic properties can be generated. This enables us to

study the properties of the execution probability models in a controlled environment before

applying them to the data generated from real markets.

This chapter is organised as follows. Section 3.1 describes the characteristics of the continuous double

auction mechanism. Previous models of double auction markets are summarised in Section 3.2. Section

3.3 describes a stylised model of the dynamics of a double auction market which can be utilised to

implement several previous models. The implementation of the proposed model is described in Section

3.4, while examples of result obtained from the proposed model is presented and analysed in Section

3.5. Finally, we end the chapter with a conclusion in Section 3.6.

3.1 The continuous double auction
The continuous double auction is the most widely used trading mechanism employed by major financial

markets around the world. This type of market has gained popularity in recent years over quote-driven

markets where liquidity is provided by market makers or designated dealers. Examples of such equity

markets include the Electronic Communication Networks in the United States, the Toronto Stock Ex-

change, the Stockholm Stock Exchange, the Australian Stock Exchange, the Shanghai Stock Exchange

and the Tokyo Stock Exchange. Order-driven markets for derivative instruments have also gained popu-
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Figure 3.1: Example of a limit order book, for the Microsoft Corporation. The best bid and offer are
respectively to buy 12,843 shares at 29.07$ and sell 5,215 shares at 29.08$. Snapshot from Batstrad-
ing.com

larity in recent years over the traditional open-outcry auctions, and many derivative exchanges, including

the Chicago Mercantile Exchange, the International Petroleum Exchange of London, the Sydney Futures

Exchange, and the Hong Kong Futures Exchange, are nowadays organised in this fashion.

Continuous double auction markets are generally characterised by the presence of a limit order

book, where unexecuted and partially executed orders are stored and wait for future execution. The limit

order book normally consists of two queues: the bid side for buy orders and the ask (or offer) side for

sell orders. The highest buy price at a particular time is called the best bid, while the lowest sell price

is called the best ask. The difference between the best ask and the best bid is called the bid-ask spread,

while their average is called the mid price. The quantity of limit orders at the best price is sometimes

called the depth of the market. Orders queued in the book are generally sorted by price, time of arrival,

and volume, with variation from market to market. Limit buy and sell orders are entered into the book

by market participants throughout a trading day, with prices and sizes of their choice. When a new

buy (respectively sell) orders reaches the book, it either triggers a trade if its limit price is higher than

the best ask (respectively lower than the best bid), or stored in the book. A trade in this market also is

triggered when a trader submits a market order, an unpriced order which is executed immediately against

the best order. If the order quantity is larger than the quantity available at the best price in the book, the

order will walk the book, resulting in partial executions at progressively worse prices until the order is

fully executed. On some exchanges, however, market orders are implemented via limit orders priced for

immediate execution, which are known as marketable limit orders.

A real world example of the order book is illustrated in Figure 3.1, for Microsoft Corporation stock,

listed on the BATS Exchange. Notice the two queues utilised as repositories for the outstanding limit

orders. Orders in this market are sorted and aggregated by price level. At each price level, orders are

then sorted by the arrival time, with the oldest orders given priority. Other useful indicators include the

book depth, the last trade executed, with its time and price, the number of the order submitted to the

exchange, and the total volume of orders executed so far during the day.
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3.2 Previous work
With the world wide proliferation of continuous double auction markets, various studies have focused on

modelling the dynamic behaviour in these markets with the aim of providing more insight into price for-

mation and the stochastic properties of price fluctuations. This research can be classified into two main

approaches. The first approach tries to model this dynamic with the interaction between heterogeneous

agents who trade against each other in a continuous double auction market. These agents are normally

assumed to act for their own best interest and place their orders individually, according to some prede-

fined trading strategies which can be ranging from fundamentalist, chartist and noise traders. Although

many studies [34, 18] indicate that such models exhibit similar features to real markets, the parameters

of these models are generally difficult to estimate since they normally contain unobservable parameters

such as the true value of the asset price and the distribution of the traders, i.e. the number of traders in

each category. Examples of research along this line are Parlour [76], Chiarella and Iori [18], Foucault

et al. [33], Ghoulmie et al. [34] and Rosu [83]. Whilst traders participating in the market may make

their decision in an extremely complex environment, the end result of these decisions is reduced to the

simple action of placing and cancelling trading orders. Consequently, instead of attempting to anticipate

how traders will behave, the second approach starts by assuming that their combined effect is to gen-

erate flows of order submission and cancellation with known distributions for limit price and size, and

then determines the quantities of interest based on this assumption. The advantage of this approach is

that all model parameters can be directly estimated from historical data while still be able to generate

several stylized facts observed in the real markets [30, 69]. Example of research along this line includes

Domowitz and Wang [23], Luckock [63], Smith et al. [88], Mike and Farmer [69] and Const et al. [20].

Apart from the above classification, we can also classify these models into discrete-time models and

continuous-time models. In discrete-time model, agents normally make their decision only at discrete

point in time. This includes turn-based models where agents take turns to make their decision (e.g.

Parlour [76] and Foucault [32]) and models where decisions are modelled in event time not calendar

time (e.g. Ghoulmie et al. [34], Preis et al. [79] and Mike and Farmer [69]). On the other hand,

continuous-time models generally involve event-driven models, where agents sleep after performing

actions and then wake up at a predefined time or as a result of certain events (e.g. their orders get filled

or new information is arrival in the market). Examples of such models include Domowitz and Wang

[23], Smith et al. [88], Luckock [63] and Const et al. [20].

Since financial markets operate in continuous time, it is more appropriate to model them in continu-

ous time rather than in discrete time. Consequently, the model utilised in this study will be a continuous-

time aggregated order flow model. More detail about this model will be given in the next section.
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3.3 The model

The simulation model utilised in this study is adapted from limit-order book models of Cont et al. [20],

Preis et al. [79] and Smith et al. [88]. The model consists of a market where limit orders are placed on an

integer price grid p ∈ {1, ..., n} where p represents a multiple of a price tick. Using notations similar to

the one utilised by Const et al. [20], the state of the order book at a particular time t will be represented

by X(t) ≡ (X1(t), ..., Xn(t))t≥0, where |Xp(t)| is the number of unexecuted limit orders at price p,

1 ≤ p ≤ n, and the sign of Xp(t) indicates the side of the orders; particularly, there will be Xp(t) sell

orders at price p when Xp(t) is positive, while there will be −Xp(t) buy orders at price p when Xp(t) is

negative (see Figure 3.2 for example). Using this notation, the best ask price, pA(t), which is the lowest

selling price offered at a particular time t, can be defined by

pA(t) ≡ inf {p = 1, . . . , n | Xp(t) > 0} ∧ (n+ 1). (3.1)

Similarly, the best bid price, pB(t) which is the highest buying price at a particular time t, can be defined

by

pB(t) ≡ sup {p = 1, . . . , n | Xp(t) < 0} ∨ 0. (3.2)

Notice that, when there are no sell orders in the book, the best ask is forced to be n + 1, while the best

bid is forced to be zero when there are no buy orders in the book. From the definition of the best bid and

the best ask, the bid-ask spread, s(t) which measure the gap between the best bid price and the best ask

price can be defined by

s(t) = pA(t)− pB(t). (3.3)

Accordingly, the mid-price, pM (t), which is the average between the best bid price and the best ask price

can be defined by

pM (t) =
pA(t) + pB(t)

2
(3.4)

The dynamics of the order book are assumed to be driven by two different types of agents who place

orders randomly according to independent Poisson processes. Impatient agents place market buy orders

and market sell orders randomly with an independent Poisson rate of µB and µA shares per unit time

respectively. On the other hand, patient agents place limit orders randomly both in time and in price.

Figure 3.2: Example of limit order book together with the corresponding Xp(t) where buy orders are
represented by negative number while sell orders are represented by positive number.
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Parameter Description Dimensions
µB arrival rate of market buy orders shares/time
µA arrival rate of market sell orders shares/time
αB(i) arrival rate of limit buy orders i ticks away from the best ask shares/time
αA(i) arrival rate of limit sell orders i ticks away from the best bid shares/time
δB(i) cancelation rate of buy orders i ticks away from the best ask 1/time
δA(i) cancelation rate of sell orders i ticks away from the best bid 1/time

Table 3.1: The six parameters characterising the proposed simulation model. Market buy and sell orders
arrive at an exponential time with rate of µB and µA respectively. Limit buy (sell) orders at a distance of
i ticks from the opposite best price arrive at an exponential time with rate of αB(i) (αA(i)). Outstanding
buy (sell) orders at a distance of i ticks from the opposite best price are cancelled with rate of δB(i)
(δA(i)).

Limit buy orders are placed in the interval 1 ≤ p < pA(t), and the limit buy orders at the distance of

i = pA(t)− p ticks from the best ask price is assumed to arrive with a Poisson rate of αB(i) shares per

unit time. Similarly, limit sell orders, which must be placed in the interval pB(t) < p ≤ n, at the distance

of i = p− pB(t) ticks from the best bid price are assumed to arrive with a Poisson rate of αA(i) shares

per unit time. Queued limit buy and sell orders are cancelled according to a Poisson process with a rate

of δB(i) and δA(i) per unit time depending on the distance between their limit price and the opposite

best quote i. Assuming that all orders are of unit size, the order book process X(t) is a continuous-time

Markov chain with state space Zn and transition rates given by:

xp → xp − 1 with rate αB(pA(t)− p) for p < pA(t),

xp → xp + 1 with rate αA(p− pB(t)) for p > pB(t),

xpA(t) → xpA(t) − 1 with rate µB

xpB(t) → xpB(t) + 1 with rate µA

xp → xp + 1 with rate δB(pA(t)− p)|xp(t)| for p < pA(t),

xp → xp − 1 with rate δA(p− pB(t))|xp(t)| for p > pB(t),

Consequently, the dynamic behaviour and statistical properties of this Markov chain are completely

specified by the six parameters characterising the model as summarised in Table 3.1. By controlling these

parameters, this order book model can be utilised to implement several previous order book models, such

as those proposed by Smith et al. [88], and Cont et al [20]. The information about these models, together

with parameters for implementing them, will be briefly described in Section 3.5.

3.4 Model implementation
The order book model proposed in the previous section is implemented using a discrete-event simulation

which is based on an event-oriented approach1. This approach generally consists of a main subroutine

and separate subroutines for each event type. The main subroutine is responsible for maintaining an event

list and handling each event in order of increasing time by calling the corresponding subroutines. Since

result of an event may alter the schedule of other events (e.g. the cancellation time of an outstanding

1Although it is tempted to simulate the proposed model directly from a continuous-time Markov chain representation, such
approach will not provide information about each individual order which is one of the main information for investigating the
property of execution probability.
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order needs to be rescheduled when the best price changes), the main subroutine also needs to reschedule

the affected events when necessary.

The pseudo-code for the main subroutine for implementing the proposed order book model is illus-

trated in Figure 3.3. Firstly, the order book is initialised with some arbitrary initial conditions2. Then,

the event list is initialised. This list contains information about event types and event times (the times at

which the events will occur). The events considered are:

• The submission of a market buy order, which arrives at an exponential rate of µB .

• The submission of a market sell order, which arrives at an exponential rate of µA.

• The submission of a limit buy order at i tick below the best ask price, which arrives at an expo-

nential rate of αB(i), for 1 ≤ i ≤ L.

• The submission of a limit sell order at i tick below the best ask price, which arrives at an exponen-

tial rate of αA(i), for 1 ≤ i ≤ L.

• Cancellation of every outstanding limit buy order at an exponential time with a rate of δB(i),

where i is the difference between the best ask price and their limit price.

• Cancellation of every outstanding limit sell order at an exponential time with a rate of δA(i), where

i is the difference between their limit price and the best bid price.

Although impatient agents in real markets can place limit orders at any price they want, it is clearly

impossible to simulate order arrivals at every price level. A reasonable simplification is to consider only

order arrivals and cancellations in a moving band of price levels centred around current best price. This

is confirmed in recent empirical results (e.g. Mike and Farmer [69]) which indicate that most trading

activities occurred around the mid price. Accordingly, we will consider only orders arrivals of up to L

ticks from the opposite best quote (1 ≤ i ≤ L). After the event list is initialised, the main subroutine

then moves on to the main simulation process which will continue until stopping conditions are met.

For example, we may stop the simulation when time reaches or exceeds some certain point, or once

the order book reaches some particular states (e.g. the mid-price move for a certain range). The main

simulation process consists of four main steps: i) collecting statistics from the current order book state, ii)

removing the first event from the event list iii) calling the associated subroutine to handle the event, and

iv) rescheduling the affected events if necessary. The last step is generally involved with the rescheduling

of order cancellation events when the best price changes. In particular, if the best bid price changes at

time t, the cancellation of all outstanding sell orders will be rescheduled to t+ e, with e ∼ Exp(δA(i)),

while the cancellation of all outstanding buy orders will be rescheduled to t + e, with e ∼ Exp(δB(i)),

when the best ask price changes.

Unlike the main subroutine, the role of event subroutines is to update the system state and to sched-

ule new events into the event list. Accordingly, each event subroutine will consists of two main steps,
2The initial state of the book is not important as long as we wait a sufficient length of time. For most of the simulations studied

here we choose the initial book so that there are ten orders on the best bid, and ten orders on the best ask, and ran the simulation
for 100,000 iterations before sampling.
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1 Initialise the order book with some arbitrary orders
2 Initialise the event list
3 While (simulation is not finished)

3.1 Collect statistics from current order book state
3.2 Remove the first event from the event list
3.3 Call the associated subroutine to handle it
3.4 Reschedule the affected events if necessary

Figure 3.3: Overview of the main subroutine for discrete-event simulation whose main responsibility is
to maintain an event list and handling each event in order of increasing time by calling the corresponding
subroutine as well as collect the require statistics from the state of the order book.

which are: i) handling the event and ii) inserting new events into the event list. For example, the event

subroutine for the market buy order submission event at time t will submit a market buy order to the

order book, which will result in the execution at the best ask price, and schedules the next market buy

order submission events at time t + e, with e ∼ Exp(µB). The subroutine for the submission of limit

buy orders at i ticks below the best ask price at time t will firstly submit the limit buy order at i tick

below the best ask price, and then schedules the next limit buy order submission event at time t + e

with e ∼ Exp(αB(i)) as well as scheduling the cancellation event of the submitted order at time t + e

with e ∼ Exp(δB(i)). Unlike other events, the subroutine for order cancellation will only cancel the

associated order from the order book without scheduling any new events. The subroutines for market

and limit sell order submission operate in a manner similar to the corresponding order arrival rate.

3.5 Simulation results
This section illustrates several ways in which the proposed model can be utilised to implement several

previous order book models such as those proposed by Smith et al. [88] and Cont et al. [20]. The

simulation results produced by these models are also analysed to provide more insight into the properties

of each model.

3.5.1 The SFGK model

The simplest model considered here is proposed by Smith, Farmer, Gillemot and Krishnamurthy [88],

hereinafter referred to as the SFGK model. In this model, market orders arrive at a rate of µ shares per

unit time with equal probability to be a buy and sell order; thus, the rate at which buy and sell orders

arrive individually is µ/2. Limit orders at each price level arrive at a rate of α shares per unit price and

per unit time for both buy and sell orders. Queued limit orders are assumed to be removed randomly with

constant probability of δ per unit time. Thus, the model has three parameters which are: the market order

arrival rate, µ, the limit order arrival rate per unit price, α, and the rate of limit order decays, δ. This

model can be easily implemented in our framework by setting µA = µB = µ/2, αA(i) = αB(i) = α

and δA(i) = δB(i) = δ.

As an example, let us analyse a simulation run produced from the SFGK model with parameters

µ = 2, α = 0.5, δ = 0.025 and L = 20. The result reported here is generated by initialising the order
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(a) Number of buy orders submitted
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(b) Number of sell orders submitted

Figure 3.4: The number of buy orders (a) and sell orders (b) submitted to the market as a function of the
distance from the opposite best price during a simulation run of the SFGK model.
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(a) Fill probability of submitted buy orders
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(b) Fill probability of submitted sell orders

Figure 3.5: The fill probability of buy orders (a) and sell orders (b) as a function of the distance from
the opposite best price generated from a simulation run of the SFGK model.

book so that the bid-ask spread is equal to one tick with ten orders at the best bid and ten orders at the best

ask, and running the simulation for 1 × 107 events after a burn-in period of 2 × 106 events. During the

sampling period, a total of 6, 285, 499 orders were sent to the order book. A fraction of fb = 50.007%

were buy orders and a fraction of fs = 49.993% were sell orders. This is inline with the assumption

of the model which assumes that the order arrival and cancellation rate of buy and sell orders are equal.

The number of orders submitted at each price level and the fill probability, or the probability that the

orders are executed before they are cancelled, are also illustrated in Figure 3.4 and 3.5 respectively. As

expected from a constant order arrival rate, the number of limit orders submitted at each price level is

roughly the same both for buy and sell orders. Conversely, the fill probability is a decreasing function of

the distance from the opposite best price with only the first two levels greater than fifty percent and only

the first five levels greater than one percent. This indicates that the orders far away from the opposite
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Figure 3.6: Average book depth as a function of the distance from the opposite best price, for the buy
(a) and sell (b) orders generated from a simulation run of the SFGK model.
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Figure 3.7: The probability mass function of the bid-ask spread generated from a simulation run of the
SFGK model.

best price are generally cancelled before they get executed, and, thus, it may not be appropriate to utilise

them to model the execution probability which requires the execution time of each order. More detail

about this issue will be further analysed in Section 4.4.

The average book depth for buy and sell orders as a function of the distance from the opposite best

price is illustrated in Figure 3.6. Although the limit order arrival rate at each price level is constant, the

average book depth at each price level is not. Actually, the average book depth is an increasing function

of the distance from the opposite best price with the maximum volume converging to a theoretical value

computed from α/δ = 0.5/0.025 = 20. The deviation from this value in the first few ticks from the

opposite best price results from the arrival of market orders that keeps removing the orders near the

opposite best price. It is this interaction that makes the maximum volume far away from the opposite

best price, as observed in real markets.

The distribution of the bid-ask spread, the difference between the best ask price and the best bid
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Figure 3.8: Price trajectory (a) and the corresponding distribution of returns (b) generated from a simu-
lation run of the SFGK model. The distribution of return P (r) plotted against a fitted Gaussian indicates
that the return can well be approximated by a Gaussian distribution with a mean of −1.7512× 10−7 and
a standard deviation of 1.2023× 10−2.
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Figure 3.9: Autocorrelation function of the tick-by-tick returns generated from a simulation run of the
SFGK model. After a few trades corresponding to the bid-ask bounce, successive returns do not exhibit
any correlation.

price, which is a part of the transaction cost the traders will incur when they submit a marketable order,

is illustrated in Figure 3.7. The distribution is extremely skewed, as reported in real markets. This is an

emergent property of the interplay between the order flow and the order book. In particular, the spread

can be affected by the cancellation of orders at the best price, the submission of market orders which

remove the order at the best price and the submission of limit orders inside the spread.

Figure 3.8 displays the tick-by-tick price and the corresponding return distribution. Although the

price trajectory look comparable to the one generally observed in real markets, the return distribution

exhibit no fat tails but can rather well be approximated by a Gaussian distribution. The autocorrelation

function of tick-by-tick returns has negative first-order autocorrelation as can be observed in real markets.
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As illustrated in Figure 3.9, after a few negative values corresponding to the bid-ask bounce, we observe

a quick convergence to the noise level which indicates that the raw returns are memoryless, as expected

from our model.

Although the dynamics generated from this model do not exhibit features observed in real markets

(e.g. the return distribution does not exhibit a fat tails), the fact that the model depended only on three

parameters makes it the best candidate for analysing the relation between the order arrival/cancellation

rate and the execution probability which will be investigated in Section 4.4.

3.5.2 The CST model

Another model considered here is the model of Cont, Stoikov and Talreja (CST) [20]. Similar to the

SFGK model, the CST model is a symmetrical model, where the rate of order arrival and cancelation of

buy and sell orders is the same. In this model, market orders are assumed to arrive at an independent

exponential time with rate µ. Limit orders at a distance of i ticks from the opposite best price arrive at

an independent exponential time with rate λ(i), which is assumed to follow a power law function of the

form

λ(i) =
k

iα

as suggested by Bouchaud et al. [14] and Zovko and Farmer [95]. A queued limit order at a distance of

i ticks from the opposite best price is cancelled at an independent exponential time with rate θ(i) which

does not have a functional form but can be directly estimated from time-stamped sequences of trades and

quotes using the equation

θ̂(i) =
Nc(i)

TQi

Sc
Sl
,

where Nc(i) is the number of times that a quote at distance i decreases in size by cancellation, T is the

length of the sample, Qi is the average number of orders at a distance of i ticks from the opposite best

quote, Sc is the average size of cancelled orders, and Sl the average size of limit order. Thus, the model

has four parameters which are µ, the market order arrival rate; θ(i) order cancellation rate; k and α,

which specifies the limit order arrival rate. One can implement this model in our framework by setting

µA = µB = µ, αA(i) = αB(i) = λ(i) = k
iα , and δA(i) = δB(i) = θ(i).

As an example, let’s consider the price trajectory generated from 4× 107 events of a simulation run

with parameters µ = 0.91, k = 1.92, α = 0.52, L = 20 and θ(i), as illustrated in Table 3.2. Figure

3.10 displays the tick-by-tick price and the corresponding return distribution. The figure illustrates that

the price trajectory and return distribution look comparable to the one generally observed in real market

as it exhibits clear fat tails.

Like the SFGK model, the autocorrelation function of tick-by-tick returns also has negative first-

order autocorrelation as can be observed in real markets as displayed in Figure 3.11. The distributions

i = 1 i = 2 i = 3 i = 4 i ≥ 5
θ(i) 0.71 0.81 0.68 0.56 0.47

Table 3.2: Parameters of θ(i) used in the simulation of the CST model.
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Figure 3.10: Price trajectory (a) and the corresponding distribution of returns (b) generated from 4×107

events of a simulation run of the CST model with parameters µ = 0.91, k = 1.92, α = 0.52, L = 20 and
θ(i) as illustrated in Table 3.2. The distribution of return P (r) plotted against a fitted Gaussian clearly
exhibit the fat tails.
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Figure 3.11: Autocorrelation function of the tick-by-tick returns generated from 4 × 107 events of a
simulation run of the CST model. After a few trades corresponding to the bid-ask bounce, successive
returns do not exhibit any correlation.

of the spread and the average book depth are illustrated in Figure 3.12 and Figure 3.13 respectively.

Compared to the SFGK model, the results obtained from the CST model are more realistic than the

SFGK model.

3.6 Summary

This chapter presents an overview of the simulation models employed for studying the behaviour of the

execution probability as well as assessing the prediction performance of the execution probability studied

in the subsequent chapters. The models employed here are models of agent behaviour in continuous
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Figure 3.12: The probability mass function of the bid-ask spread generated from 4 × 107 events of a
simulation run of the CST model.
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Figure 3.13: Average book depth as a function of the distance from the opposite best price, for the buy
(a) and sell (b) orders generated from 4× 107 events of a simulation run of the CST model.

double auction markets that contain two main types of agents (i.e. impatient agent and patient agent).

Impatient agents place market orders randomly according to some predefined stochastic process, while

patient agents place limit orders randomly both in time and in price. Additionally, unexecuted limit

orders are assumed to be cancelled according to some predefined stochastic processes. By controlling

the properties of these orders submission and cancellation processes, several realisations of the order

book dynamic that have similar stochastic properties can be generated. This enables us to evaluate

the developed model in a controlled environment before applying them to the data generated from real

markets.



Chapter 4

Execution probability model

This chapter presents an in-depth review of execution probability models together with per-

formance comparison in a controlled environment based on the data generated from the

simulation model of an order-driven market presented in the previous section. The results

indicate that among all models considered, the execution time model that utilises techniques

from survival analysis to handle cancelled orders is the best performing methods both form

theoretical and empirical point of views. However, the experiment in applying survival

analysis techniques to model the determinants of the execution probability indicates that

traditional techniques which are the proportional hazards model and accelerated failure

time model are not flexible enough to model this probability.

4.1 Introduction
A model of execution probability that can be utilised to estimate the probability of execution (i.e. a prob-

ability that a given limit order will be executed in a specified period of time) is one of the most important

components for determining an appropriate order type for a trader in an order-driven market since the

expected payoff the trader gets from submitting a limit order is largely depend on this probability. Al-

though several methods have been proposed to model this probability; we believe that they have several

limitations that prevent their use in real situations. This chapter presents a recent review of the methods

for modelling this probability, together with experiments to compare the advantages and disadvantages

of each method in a controlled environment, by utilising the data generated from simulation models of

order-driven markets described in the previous chapter. The limitation of each method is also highlighted

in order to guide the direction for further developments. Additionally, we also investigate the effect of

explanatory variables such as the bid-ask spread, the market depth and the order arrival/cancel trade to

the execution probability.

The rest of this chapter is organised as follows: Section 4.2 gives a basic definition of probability

execution and related variables. Section 4.3 reviews several ways in which execution probability can be

estimated. The experiment comparing the performance of each method in a controlled environment is

analysed in Section 4.4. Section 4.5 analyses the relationship between the execution probability and other

variables, while Section 4.6 investigates the best parametric distribution for modelling the execution
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probability, Finally, the chapter ends with a conclusion in Section 4.7

4.2 Overview of execution probability
After submission, a limit order will stay in the order book until it is cancelled or traded. At each time

instant, each limit order can be in one of three possible states, which are: fully executed, partially

executed and unexecuted. For a fully executed order, the elapsed time between its placement and its

complete execution is called time-to-fill (TTF). Since orders are usually not fully executed by a single

transaction, one can separately define time-to-first-fill (TTFF)1 as the time from order placement to the

first transaction this order participates in. Additionally, for cancelled orders, the time between order

placement and its cancellation can also be defined as time-to-cancel (TTC). Theoretically, a limit order

will be executed only when enough market orders arrive during the remainder of the trading horizon to

execute all preceding orders in the order book; thus, the probability of execution depends on both the

state of the book (e.g. book depths and spread) when traders submit their orders and the future incoming

flow of market and limit orders. Hence, a good execution probability model should incorporate this

information into consideration. To model the probability of execution, one can either directly model

the probability distribution of those three outcomes or model the probability of execution time and then

utilise it to derive the execution probability. Generally, the relationships between the probability of these

outcomes and the execution time distribution can be described by:

PFE(t) = Pr {TTF ≤ t} , (4.1)

PUE(t) = 1− Pr {TTFF ≤ t} , (4.2)

PPE(t) = Pr {TTFF ≤ t} − Pr {TTF ≤ t} , (4.3)

where PFE(t), PPE(t), and PUE(t) represent the probability that the order is fully executed, partially

executed and unexecuted at time t. Equation (4.1) and (4.2) are directly derived from the definition

of fully executed and unexecuted. Equation (4.3) is derived from the fact that the summation of the

probability of these outcomes must equal to one, and, thus, PPE(t) = 1 − PFE(t) − PUE(t). When

time-to-fill and time-to-first-fill are equal2, PPE(t) will always equal to zero and the probability that the

order is unexecuted is reduced to PUE(t) = 1− PFE(t). Hence, knowing only PFE(t), the probability

that the order is fully executed with in a specific time t, is enough to derive other interested quantities,

and, throughout the rest of this study, we will refer to this probability as a probability of execution, unless

stated otherwise.

4.3 Previous work
Previous models for modelling the probability of execution can be categorised into two main categories

which are i) execution probability models, which model the execution probability directly, and ii) exe-

cution time models, which model the execution time and utilise it to calculate the execution probability.

1Note that time-to-first-fill is always smaller or equal to time-to-fill.
2This is usually be the case for small order which can be fully executed in one transaction
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4.3.1 Execution probability model

This section describes methods that model the execution probability directly. These methods can be

classified into two main categories, which are theoretical models and empirical models.

Theoretical models

Since the execution probability depends on future traders’ order submission, an order submission model

that describes traders’ behaviour can be utilised to determine the execution probability. Given the model

of the market together with the distribution of traders and their valuation, the execution probability in

an equilibrium3 can be derived (see [76, 32, 33] for examples). Specifically, assuming that all traders in

the market are rational and use the same optimal order submission strategy, the execution probability of

the limit order can be estimated by calculating the probability that other traders will submit an order to

trigger our limit order.

For example, Foucault [32] studies a market for a single risky asset whose trading day is divided

into discrete time intervals denoted t = 1, 2, ..., T , where T is a random stopping time, and, at each t, the

probability that trading will terminate is (1 − ρ). When the trading terminates, the payoff of the asset,

whose value is constant and equal to v, will be realised. At each time t, a trader who is characterised by

the reservation price, Rt = v + yt, arrives. yt can take two value yh = +L or yl = −L with probability

k and (1 − k), respectively. Thus, in this market, there are two types of traders: the yh type, who only

places buy orders and the yl type, who only places sell orders. Consider a trader of type yh who arrives

at time t. Let B be the bid price this trader chooses if he posts a buy limit order. This order will be

executed only if (i) the game does not stop before the arrival of the next trader (with probability ρ), (ii)

the next trader is type yl (with probability (1− k)), and (iii) the next trader submits a market order. The

probability of the last event is endogenous and depends on the bid price. In particular, if the bid price

is too low, the yl-type trader will be better off posting a sell limit order. However, if the bid price is

greater than the price that yl-type trader is indifferent between market order and a limit order, this buy

limit order will be executed with probability ρ(1 − k). Foucault illustrates that this threshold price is

θh = v − L+ 1−ρ(1−k)
1−ρ2k(1−k) (2L).

Another example is an equilibrium model of Parlour [76]. In her model, there is an asset that is

traded on day 1 and pays off a certain amount V on day 2. On day 1, at each times t = 1, 2, ..., T ,

a randomly drawn agent arrives at the market. Agents are characterised as potential buyers or sellers

with probability πb and πs respectively. A potential buyer has an endowment of cash that can be used

to purchase one share. On the other hand, a potential seller holds one share which can be sold for

cash. Agent t’s preferences are given by a utility function U(C1, C2;βt) = C1 + βtC2, where C1 is

agent’s consumption on day 1, C2 is agent’s consumption on day 2 and βt is a trader’s personal trade-off

between C1 and C2. The parameter βt determines an agent’s willingness to trade and is assumed to

be randomly distributed over an interval (β, β) with some continuous distribution F (.). Normally, a

potential seller with a low value of βt will be eager to sell, while a potential buyer with a low value of βt

will be disinclined to buy. All agents have only one opportunity to submit orders, and, once they submit
3In an equilibrium, optimal order submission strategies are determined based on the execution probability which is computed

by assuming that all traders follow the same strategy
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an order, the order cannot be withdrawn. The market, in this setting, is characterised by the designated

bid and ask price B,A and a limit order book bt. The limit order book is described by the number of

shares on the bid and ask sides, bBt and bAt , immediately prior to the arrival of agent t. The optimal

strategy for each agent in this market can be determined by recursively working backward from time T .

In particular, the agent at time T has the options of trading using a limit order or doing nothing. If the

agent is a potential seller, he will compare the utility of doing nothing (βTV ) with the utility of selling at

the bid (B). If βTV < B, then he will enter a market sell order. Giving a particular distribution for βT ,

the probability that the agent T will enter a market sell order can be computed. A similar computation

can be utilised to compute the probability of a market buy order at time T . For the agent arrive at time

T−1, if he is a buyer and bBT−1 = 0, he can enter a buy limit order which will be executed if agent T enter

a market sell order, the probability of which we just computed. If bBT−1 ≥ 1, agent T − 1’s limit buy

will not be first in the execution queue, and, thus, cannot be executed in the one remaining period. Given

agent T − 1’s direction, the limit order book bT−1, and the limit order execution probability, Parlour

illustrates that there are cutoffs βBuy
Limit

and β
Buy

Limit such that if βT−1 < βBuy
Limit

, agent T − 1 will do

nothing; if βBuy
Limit

< βT−1 < β
Buy

Limit, he enters a limit buy order; and if βT−1 > β
Buy

Limit, he will enter

a market buy order. Given a distribution of βT−1, the probability of these events can be computed and

utilised to define the execution probability for time T − 2, which defines agent T − 2 optimal strategies,

and so on.

Although the results obtained from these analytical studies may not be appropriate for real situations

since they depend on assumptions about the market model which is usually a lot simpler than the real

market, these results provide us with an understanding of the relation between the execution probability

and other related variables.

Empirical models

Apart from using analytical methods, we can also utilise historical data on trades and quotes to estimate

the execution probability. For a specific limit of time, the execution probability can be defined as a

ratio of the number of limit orders that are executed within that time to the total number of limit orders

considered4. Using this definition, the execution probability can be easily estimated from a limit-order

dataset that contains information about time-to-fill of each limit order. Unfortunately, this information

is not available for orders that are cancelled before they get executed. To solve this problem, previous

works (e.g. Smith et al. [88]) usually assume that all cancelled orders are unexecuted order and estimated

the execution probability at time t with the ratio of the number of limit orders that are executed within

time t and the total number of orders in the dataset. Particularly, let the time-to-fill of limit orders in

the dataset containing N orders be TTF1, TTF2, ..., TTFN where TTFi = ∞ for unexecuted and

cancelled orders. The execution probability can be estimated by

PEPL(t) =

∑N
i=1 1(TTFi ≤ t)

N
, (4.4)

4This definition has been utilised by several authors including Omura et al. [74] and Hollifield et al. [48]
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where 1(a) is an indicator function which will equal to 1 when a is true and 0 otherwise. Although this

can solve the problem of cancelled order, the estimated result normally underestimates the real execution

probability since cancelled orders may get executed if they are not removed from the order book.

Another approach to solve the problem is to discard cancelled orders from the estimation (e.g.

Hollifield et al. [48]). However, the fact that a limit order is cancelled after, say, 10 minutes provides a

piece of useful information (the order is unexecuted for at least 10 minutes) and ignoring it would clearly

bias the distribution toward a higher execution probability (since we are discarding the orders that are

not executed from the analysis). Thus, it is better to incorporate them in the estimation by making use

of the information we have up to the time the order is cancelled. Specifically, let the time-to-cancel of

each orders in the dataset be TTC1, TTC2, ..., TTCN where TTCi = ∞ for executed and unexecuted

order. The execution probability is estimated by

PEPU (t) =

∑N
i=1 1(TTFi ≤ t)∑N
i=1 1(TTCi > t)

, (4.5)

where the numerator in the above equation is the number of limit orders in the dataset that are executed

within time t, and the denominator is the number of limit orders whose status at time t is exactly known,

i.e., its cancellation time is greater than t. Although this estimator utilises information from cancelled or-

ders up to the time of cancellation, it still discards the cancelled orders from the analysis when analysing

the execution probability at a trading horizon larger than the cancellation time. As a result, the estimation

result will still overestimate the real execution probability because of the reasons discussed above.

Although these two estimators are biased, they can be utilised as an upper and lower bound of

the execution probability where the lower bound is determined by PEPL(t) while the upper bound is

determined by PEPU (t). Additionally, the main drawback of this approach is that it depends on the

specific time period. If the trading period of the trader changes, the execution probability must be

recalculated.

4.3.2 Execution time models

Instead of directly modelling the probability of execution, we can also model the distribution of execution

time and utilise it to estimate the execution probability. The main advantage of this approach, with

respect to the former one, is that the trading time is the parameter of the model. Thus, if traders’ trading

horizon changes, they do not need to recalculate the model to obtain the execution probability.

Related methods for modelling such distributions can be separated into two main categories which

are first-passage time models and empirical execution time models.

First-passage time models

The execution time of a limit order can be approximated by a first-passage time (FPT), the first time that

the price of an asset reaches or crosses the limit order price. Particularly, let the price of an asset at time

t = 0 be p0. The first-passage time through a prescribed level p0 + ∆ for a fixed distance ∆ > 0 is

defined as the first time t when p(t) ≥ p0 + ∆. Similarly, a first-passage time for a level p0 − ∆ is

defined as the first time t when p(t) ≤ p0 − ∆. Theoretically, the first passage-time can be thought of



4.3. Previous work 64

as a lower bound of time-to-first-fill, and it will equal to actual time-to-first-fill only when the buy (sell)

order is at the top of the queue, at the limit price, or close enough to the top so that it is filled with the

first incoming market sell (buy) order. The first time the asset price falls below (rise above) the limit buy

(sell) price can also be thought of as an upper bound of the time-to-fill since the asset price can cross

the limit price only when all orders at the limit price are executed. Consequently, the relation between

first-passage time, time-to-first-fill, and time-to-fill of a limit sell order at ∆ ticks above the current price

can be summarised as:

FPT+(∆) ≤ TTFF ≤ TTF ≤ FPT+(∆ + ϵ), (4.6)

where ϵ is the tick size of the asset. Consequently, the execution probability at time t can be approximated

from the first-passage time distribution by

PFE(t) = Pr {TTF ≤ t} ≈ Pr {FPT ≤ t} , (4.7)

where x ≈ y means x is approximately equal to y. However, the probability obtained from this esti-

mation usually overestimates the actual execution probability since the estimated first-passage time is

typically lower than the actual time-to-fill5.

The first-passage time distribution can be modelled both by theoretical and empirical approaches.

On the theoretical side, this distribution can be explicitly derived if a stochastic property of the asset

price process is given. For example, if the dynamics of the asset price p(t) are given by an arithmetic

Brownian motion with drift which has the form

dp(t) = αdt+ σdz(t), (4.8)

where z(t) is a standard Brownian motion and α and σ are constants. The probability density function

of the first-passage time to a price level p0 +∆+ and p0 −∆− is given by (see [51] page 353–354 and

chapter 10 of [93] for example)

f(t;∆+) =
∆+

√
2πσ2t3

exp
(
− (∆+ − αt)2

2σ2t

)
, (4.9)

f(t;∆−) =
∆−

√
2πσ2t3

exp
(
− (∆− + αt)2

2σ2t

)
. (4.10)

Using the above equation, the probability that a limit sell order at price p0 +∆+ will be executed

5The reason why the estimated first-passage time is typically lower than the actual time-to-fill is that when the asset price first
reaches the limit price the order will be executed only when it is the first order in the queue. Thus, the time-to-fill is usually longer
than the first-passage time.
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within time t can be approximated by

PFE(t;∆
+) ≈ Pr

{
FPT ≤ t;∆+

}
=

∫ t

0

f(t;∆+)dt (4.11)

= 1− Φ

(
∆+ − αt

σ
√
t

)
+ exp

(
2α∆+

σ2

)
Φ

(
−∆+ − αt

σ
√
t

)
,

where Φ(.) is the standard normal cumulative distribution function. Similarly, the execution probability

of a limit buy order at price p0 −∆− can be approximated by

PFE(t;∆
−) ≈ Pr

{
FPT ≤ t; ∆−}

=

∫ t

0

f(t;∆−)dt (4.12)

= 1− Φ

(
∆− + αt

σ
√
t

)
+ exp

(
2α∆−

σ2

)
Φ

(
−∆− + αt

σ
√
t

)
.

To utilise these approximations, the estimation of parameter α and σ is required. Given historical data,

these parameters can be easily estimated via the maximum likelihood estimator using the equation:

α̂ =
1

Nτ

N∑
i=1

ri, (4.13)

σ̂2 =
1

N

N∑
i=1

(ri − α̂τ)2

τ
, (4.14)

where N is the number of observations in the sample, ri = pi − pi−1 is the return of the asset over a

time interval of τ unit, and τ is a fixed sampling interval.

Although many stochastic processes (e.g. geometric Brownian motion and Markov processes) can

be applied in this context, the estimated result is largely dependent on the asset price model. If this spec-

ification is not appropriate, the estimation error can be incredibly large. For example, if the asset price

exhibits a short-term mean reversion but a geometric Brownian motion is utilised to model the execution

time, the predicted execution time will greatly underestimate the real execution time as reported in [61].

To amend the problem, empirical approaches directly model the first-passage time distribution using his-

torical time series of transactions data (see [6, 41] for example)6. Given a time series of the asset price

p(t), the first-passage time distribution can be estimated by sampling the asset price every τ unit of time

and recording the first time that the asset price increases (decreases) by ∆ ticks. Unfortunately, we may

not be able to evaluate the first-passage time for some observation since the asset price may never reach

the expected level in the sampling period. Eliminating these observations from the analysis would clearly

bias the empirical distribution towards a shorter first-passage time. Fortunately, a well-known method

for handling this observation has been developed by Kaplan and Meier [53], which is a non-parametric

6The primary advantages of the empirical approach to the theoretical approach is that if the stochastic process for the asset prices
exhibits mean revision or more complex forms of temporal dependence and heterogeneity, this will be automatically incorporated
into the empirical model
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method for modelling the survival time distribution as described in Section 2.4.3. Specifically, let the

observed first-passage time of N observations be t1 ≤ t2 ≤ ... ≤ tN , and corresponding to each ti is ni

the number of orders that are still active before time ti, and di the number of order executed at time ti.

The survival probability, S(t), that describes the probability that the lifetime of the order exceeds t can

be estimated with

S(t) =
∏
ti<t

ni − di
ni

(4.15)

Using this equation, the execution probability can be estimated with

PFE(t) ≈ Pr {FPT ≤ t} = 1− S(t) (4.16)

Whilst this empirical approach can solve the model specification problem, the first-passage time

model still suffers from several other important limitations. The most obvious weakness is the assump-

tion that the order is executed when the limit price is first attained; hence, the model can not be easily

modified to handle the variation of limit order sizes as well as the distinction between time-to-first-fill and

time-to-fill. Thus, although the first-passage time model is a natural theoretical framework for modelling

the order executions, it leaves much to be desired from a practical point of view.

Execution time models

To resolve the central weakness of the first-passage time models, it may be more appropriate to construct

models of limit-order execution using the actual execution time, i.e., an elapsed time between the order

placement and its complete execution for time-to-fill, and the time from order placement to the first

transaction this order participate in for time-to-first-fill. To achieve this, we need information about the

time when an order is submitted and when it is executed. In particular, all information about every

action relating to the order during its lifetime must be time-stamped and recorded to make it possible

to calculate the execution time. Thus, more data is required to utilise this approach than to utilise the

first-passage time models that require only historical time series of transactional data.

After obtaining the information about time-to-fill of each executed order, one may directly utilise

this information to model the execution time distribution (see [26] for example). Unfortunately, discard-

ing information about unexecuted orders from the model would clearly bias the empirical distribution

towards shorter execution times because unexecuted orders are usually orders that have to wait for a con-

siderable amount of time for their execution so that they are usually cancelled before they get executed.

Nevertheless, since these orders are not executed, it is not possible to directly calculate the execution

time distribution for these unexecuted orders. To solve this problem Lo et al. [61] utilise survival anal-

ysis, a form of conditional logistic regression analysis that allows censored observations7, to model the

execution time distribution. The advantage of this approach is that information from unexecuted orders

can be easily and correctly accommodated. The idea behind this is that although we can not calculate the

exact execution time of unexecuted orders, we know that if these orders were executed, their execution

time should be at least as long as their lifetime. In addition, survival analysis also enables us to estimate

7In this content, censored observations are unexecuted orders that expire or are cancelled before they are executed.
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the execution time distribution as a function of dependent variables such as information about the order

(e.g. limit price and order size), state of the order book and market conditions as discussed in Section

2.4.4. This property is very important since recent empirical research suggests that the execution proba-

bility is largely dependent on these variables [74], and, without the ability to incorporate these variables

into the model, the result may not be accurate. Although empirical execution time models based on

survival analysis seem to be a good candidate to model the execution probability, as it can solve all the

aforementioned problems, they still have some limitations, as will be pointed out later in this chapter.

4.4 Comparison of previous models
This section illustrates the result of applying the estimation methods discussed in previous sections

with the data generated from the SFGK model described in Section 3.5.1 with the aim of analysing

the advantages and disadvantages of each method as well as to find the most appropriate methods for

modelling the execution probability in the rest of this study.

4.4.1 Execution probability model and execution time model

Let us start by comparing the results from the empirical execution probability model and the empirical

execution time model using the data generated from 1× 107 events of the SFGK model with parameters

µ = 2, α = 0.5 and δ = 0.025 as described in Section 3.5.1. The lifetime information of each limit order

is recorded in order to compute the time-to-fill and the time-to-cancel which are the main components for

estimating the execution probability by empirical models. The models compared here are the execution

probability model assuming all cancelled order are unexecuted, PEPL(t), described in Equation (4.4),

the execution probability model discarding cancel orders from the estimation, PEPU (t), described in

Equation (4.5) and the execution time model utilising the Kaplan-Meier estimator, PTTF (t), described

in Equation (4.15).

Figure 4.1 illustrates the execution probability of limit buy orders at a distance of ∆ = 1, 2, 3 and

4 ticks from the best ask price as estimated from these three methods. The results at all price levels

indicate that these three methods produce similar results for the first few seconds, when the number of

cancelled orders is still small, and they start to produce different results when the time is increased. These

differences are resulted from the different ways in which cancelled orders are handled in each method.

Hence the differences are increased when the number of cancelled orders is increased. Consequently,

these differences are also an increasing function of the distance from the best ask price, since, at the same

time horizon, the larger the distance, the larger the number of cancelled orders as illustrated in Figure

3.5.

The results from all price levels also confirm the bias of execution probability models discussed

in Section 4.3.1. Specifically, the execution probability estimated by assuming that all cancelled orders

are unexecuted is always lower than that obtained from other methods, which indicates the tendency

to underestimate the real execution probability of this approach. Conversely, the execution probability

obtained by discarding all cancelled orders from the estimation is generally higher than the results ob-

tained from other methods, which signifies the tendency to overestimate the real execution probability of
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(a) Execution probability at ∆ = 1
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(b) Execution probability at ∆ = 2
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(c) Execution probability at ∆ = 3
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(d) Execution probability at ∆ = 4

Figure 4.1: Execution probability of a buy order at a distance ∆ = 1, 2, 3 and 4 ticks away from the best
ask as estimated from an execution probability model that assumes all cancelled orders are unexecuted,
PEPL(t), an execution probability model that discards cancel orders from the estimation, PEPU (t) and
an execution time model that utilises Kaplan and Meier estimator, PTTF (t).

this approach. The execution probability obtained from execution time model which handles cancelled

orders using the Kaplan-Meier estimator is nicely lies between the upper bound and lower bound formed

by the above two methods. As a result, among these three estimators, the execution time method seem

to be the best methods for estimating the real execution probability both from theoretical and empirical

point of view.

4.4.2 Execution time model and first-passage time model

The results from the previous section suggest that it is more appropriate to utilise the execution time

model to estimate the execution probability rather than the empirical execution probability model since

the execution time model handles cancelled orders better. This section further compares the two execu-
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tion time models described in Section 4.3.2 - the empirical first-passage time model and the empirical

execution time model - using the data generated from 1 × 107 events of the SFGK model as described

in the previous section. The empirical execution time model is estimated as described in the previous

section. To estimate the empirical first-passage time model, we utilise the difference between the first

time that the asset price reaches or crosses the limit price after each order is submitted and the order

submission time as a proxy for the execution time. This first-passage time is then utilised as an input in

the Kaplan-Meier estimator. Note that a censor observation in this case is the situation when the asset

price never reaches the limit price at the end of the simulation.

The comparison between the execution probability of limit buy orders at a distance of ∆ = 1, 2, 3, 4

and 5 ticks away from the best ask price as estimated from the empirical first-passage time model and the

empirical execution time model is illustrated in Figure 4.2. As discussed in Section 4.3.2, the execution

probability of limit buy orders at a distance of ∆ ticks away from the best ask price estimated from the

empirical execution time model, PTTF (t), is generally bounded by the execution probability estimated

from the empirical first-passage time model, PFPT (t), at a distance of ∆ and ∆+1 ticks away from the

best ask price. This is conformed to theoretical explanation that the first-passage time is a lower bound of

time-to-fill while the first time that the price breaks through the limit price is an upper bound of time-to-

fill. Although some inconsistencies do occur when time is greater than two hundred seconds for ∆ = 2, 4

and 5, these inconsistencies are caused by a large standard error of execution time models when time

is getting larger as shown in Figure 4.3a where dot lines in the figure display 95% confidence interval

of the estimated execution probability. This large standard error results from the lack of observations

when time gets larger which is caused by the fact that the lifetime of limit orders in this simulation

is exponentially distributed with a rate of δ = 0.025 and the expected lifetime of 1/δ = 40 seconds.

Consequently, most of the limit orders will be cancelled before their lifetime has reached the expected

lifetime, and only e−0.025×200 = 0.0067% of limit orders will have a lifetime longer than two hundred
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Figure 4.2: Execution probability of a buy order at a distance ∆ = 1, 2, 3, 4 and 5 ticks away from
the best ask price as estimated from an empirical execution time model, PTTF (t), and an empirical
first-passage time model, PFPT (t).
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(a) Confidence interval of PTTF (t)
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Figure 4.3: Confidence interval of the estimated execution probability from an empirical execution time
model, PTTF (t), and an empirical first-passage time model, PFPT (t).

seconds. In general, most of the limit orders in this simulation will be cancelled before they get executed,

as illustrated by the fill probability displayed in Figure 3.5, and there will be only a few observations left

when we want to analyse the execution probability at the time greater than the expected lifetime. As a

result, it might not be appropriate to utilise the execution time model that requires information about the

lifetime of each limit order to estimate the execution probability when the time that we want to model

is greater than the expected lifetime. A better alternative is to utilise the first-passage time model which

does not suffer from this limitation since it does not require information about the lifetime of each limit

order but estimates the execution time from the first time that the asset price reaches the limit price as

illustrated in Figure 4.3b.

Although it is more appropriate to utilise the first-passage time model to estimate the execution

probability over a long time horizon, the result obtained from this model generally overestimates the

real execution probability and will equal the real execution probability only when the order considered

is the first order in the order book at the limit price. Thus these two models have their own advantages

and disadvantages, and the decision of when to utilise which models is totally dependent on the problem

faced. Specifically, the execution time model provide a better estimation of the execution probability but

the standard error when analysing the execution probability over a long time horizon can be very large.

On the other hand, the first-passage time model has small standard error over all time horizons but the

estimated execution probability generally overestimates the real execution probability.

4.4.3 Empirical and theoretical first-passage time model

This section compares the results from an empirical first-passage time model and a theoretical first-

passage time model when the asset price is assumed to follow the arithmetic first-passage Brownian

motion as discussed in Section 4.3.2. The result from the empirical model is obtained by applying the

Kaplan-Meier estimator to the first-passage time data set obtained from a simulation run of 1 × 107



4.4. Comparison of previous models 71

0 20 40 60 80 100

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

Time [in seconds]

V
ar

ia
ne

 o
f  

r(t
)  

[in
 ti

ck
s2 ]

Figure 4.4: Variance of the returns estimated from several sampling periods. The estimated variance is
not linear in time as expected from the arithmetic Brownian motion.

events as discussed in the previous section, while the result from the theoretical model is obtained by

firstly estimating the time-normalised mean and the time-normalised variance of returns generated from

the same simulation run using Equation (4.13) and (4.14), and, then, utilising Equation (4.12) to estimate

the execution probability.

Figure 4.4 displays the sample variance of the returns estimated from this simulation run at several

sampling periods. The result indicates that the asset price dynamic generated from this simulation does

not follow the arithmetic Brownian motion since the variance is not linear in time as expected from the

Brownian motion. Consequently, this poses a problem in utilising this model to predict the execution

probability as the time-normalised variances computed from different sampling periods are different.

The comparison between the execution probability of limit buy orders at a distance of ∆ = 1, 2, 3, 4

and 5 ticks away from the best ask price as estimated from the empirical first-passage time model and

the theoretical first-passage time model using the time-normalised mean and variance computed at four

different sampling periods (i.e. 1 second, 5 seconds, 10 seconds and 20 seconds) is illustrated in Figure

4.5. Since the time-normalised variance obtained from each sampling period is different, the estimated

execution probability of the theoretical model obtained from each sampling period is also different. Ad-

ditionally, all of these results deviate significantly from the one obtained from the empirical model, which

further confirm that the price dynamic generated from the SFGK model does not follow the arithmetic

Brownian motion. Consequently, this illustrates that the execution probability estimated from theoretical

first-passage time model can be quite different from empirical first-passage time model especially when

the assumption about the asset price dynamic is incorrect, and, thus, it might not be appropriate to utilise

the theoretical model to study the execution probability unless the correct model of asset price dynamic

is known. This problem leads us to study asset price dynamics in this simulation model, which will be

the main topic of Chapter 6.
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(a) 1 second
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(b) 5 seconds
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(c) 10 seconds
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(d) 20 seconds

Figure 4.5: Execution probability of a buy order at a distance of ∆ = 1, 2, 3, 4 and 5 ticks away from
the best ask as estimated from an empirical first-passage time model, PFPT (t), and an theoretical first-
passage time model, PABM (t) using the time-normalised mean and variance computed at four different
sampling periods which are 1, 5, 10 and 20 seconds.

4.4.4 Summary

To sum up, the experiments in this section indicate that the execution probability model and the execution

time model produce similar results when the number of cancelled orders is small, and they start to

produce different results when there are more cancelled orders. Among all models considered, the

execution time model that utilises the Kaplan-Meier estimator to handle cancelled orders seem to be the

best performing methods both from a theoretical and an empirical point of view. The choice between

first-passage time and execution time model depends on the problem faced. Specifically, the execution

time model generally provides better estimation compared to the first-passage time model since the

first-passage time model generally overestimates the real execution probability and will equal the real

execution probability only when the considered order is at the top of the queue. However, the result

obtained from execution time model might have a large standard error when analysing the execution
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probability over a long time horizon, while the result from first-passage time has small standard error over

all time horizons. The experiment with theoretical first-passage time model indicates that the estimated

execution probability can be quite different from empirical first-passage time model when the assumption

about the asset price dynamic is incorrect.

4.5 Parameter of execution probability
To gain more insight into the relationship between the execution probability and other variables, this

section further analyses the effect that each variable has on the execution probability by utilising the data

generated from the SFGK model. The reason why we utilise the data generated from this simulation

model instead of the data obtained from a real market is that the simulation allow us to analyse the effect

of each determinant separately by running the simulation model with different initial conditions which

is not possible when utilising the data generated from the real market. Consequently, the determinants

studied in this section will be variables that affect the execution probability in the SFGK model. These

include the limit price of the order, the state of the order book, which is generally summarised by the bid-

ask spread and the quantity of orders at each price level and the order arrival and cancellation rates, which

are the main parameters of the SFGK model. Note that unlike previous works (e.g. [61] and [74]) whose

aim is to study the effect that each parameter has on the execution probability, the main objective of this

section is to find the most appropriate model for modelling these effects not the effect itself. Since the

results from the previous section suggest that the most appropriate method for analysing the execution

probability is the Kaplan-Meier estimator, which is a non-parametric survival analysis technique, this

section will utilise survival analysis technique as a main tool for investigating this relationship. Specifi-

cally, the Kaplan-Meier estimator will be utilised to estimate the execution probability in each situation

in order to study the basic effect that each determinant has on the execution probability. After that we

will study the suitability of applying the two most popular methods for handling explanatory variables

in survival analysis literature, which are a proportional hazards model and an accelerated failure time

model, with the aim of determining the most appropriate techniques for modelling these effects by util-

ising tests and graphical diagnostics methods discussed in Section 2.4.4. In particular, the plot of log-log

survival curve and the Grambsch and Therneau test [36], hereafter referred to GT test, will be utilised to

test the proportional hazards assumption while the plot of quantiles and the log-rank statistic for testing

the different between two survival curves will be utilised to test the accelerated life time assumption.

4.5.1 Distance from the opposite best price

Let us firstly study the effect of the limit order price, as measured by the distance from the opposite

best price, on the execution probability by analysing the data generated from a simulation of the SFGK

model. To achieve this, we simulate the SFGK model with parameter µ = 2, α = 0.5 and δ = 0.025 for

10, 000 rounds. In each round, the initial bid-ask spread is set to one tick, while the number of orders

at all price levels is set to α/δ = 0.5/0.025 = 20, which is the expected number of the orders at price

level far away from the opposite best price as illustrated in Figure 3.6. The simulation is run until the

simulation time reaches eight hours and the first time that the transactional price reaches or crosses each
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Figure 4.6: Execution probability of limit buy orders at a distance of ∆ = 3, 6, 9 and 12 ticks away from
the best ask price as estimated from the Kaplan-Meier estimator.

price level will be utilised as an estimation of the execution time of a limit buy order at that price level.

The execution probability at a distance of three, six, nine and twenty ticks away from the best ask

price obtained by applying the Kaplan-Meier estimator to the data generated from the above simulation

are displayed in Figure 4.6. These results illustrate that the execution probability is negatively correlated

with the distance from the opposite best price since the execution probability is generally lower when the

distance from the opposite best price is larger. This is because the larger the distance from the opposite

best price, the more time it takes the transactional price to reaches that price level and thus the lower the

execution probability.

To determine whether the proportional hazards model is appropriate for modelling this effect or not,

we plot the log-log survival curves at those four price levels in Figure 4.7a. The result indicates that these

four curves seem to be unparallel to each other, which indicates the violation of the proportional hazards

assumption. To confirm this, we further utilise the GT test to check the proportional hazards assumption

quantitatively. As discussed in Section 2.4.4, this can be achieved by firstly fitting the proportional

hazards model to the data and then computing the Schoenfeld residuals for each non-censored individual

from the fitted model. Since, under the proportional hazards assumption, the Schoenfeld residuals are

independent of time, the slope of the Schoenfeld residuals against a function of time should be zero and

the deviation from this is the evidence against the proportional hazards assumption. To make the analysis

independent from the functional form of the covariate, we will apply the test in two-sample setting so

that the covariate can be represented by a binary variable indicating the category each individual belongs

to. The results from applying the GT test to six combinations of limit order price displayed in Table 4.1

further support the violation of the proportional hazards assumption since the p-value of all combinations

is less than 5% critical value. Consequently, these results indicate that the proportional hazards model

may not be an appropriate model for modelling the effect of limit order price on the execution probability.

To determine whether the accelerated failure time model is appropriate for modelling this effect or
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Figure 4.7: The plot of log-log survival curve and the log quantiles associated with the estimated execu-
tion probability of limit buy orders at a distance of ∆ = 3, 6, 9 and 12 ticks away from the best ask price
estimated from the Kaplan-Meier estimator.

not, we plot the quantiles for a limit buy order at each price level in Figure 4.7b. The result provides

mixed evidence, since the quantiles of a limit buy order when ∆ = 3 is clearly unparallel to other curves

while the quantiles of a limit buy order when ∆ = 6, 9 and 12 are roughly parallel to each other. To

clarify this, we further applying log rank tests for the different between two survival curves to check the

accelerated failure time assumption quantitatively. As discussed in Section 2.4.4, this can be achieved

by firstly estimating the failure time scale parameter ψ of the two samples, and then checking whether

the associated normalised survival curve of the two samples is similar to each other or not using the

log-rank tests. The results reported in Table 4.1 indicates the same results as the graphical diagnostics.

Particularly, all p-values of combinations involving with ∆ = 3 is less than 5% critical value, while

the p-value of other combinations are higher than 5% critical value. This indicates that the accelerated

life time assumption is violated for all combinations involving with ∆ = 3, and is not violated in other

combinations. This suggests that we might be able to divide the effect of limit order price into two

regimes, one of which can be modelled by the accelerated life time model while the other cannot.

To further investigate this, we apply the test to all price levels from one tick to twenty ticks, and the

result displayed in Table 4.2 indicates that all combinations that involve the case when limit order price

is less than five ticks are generally not suitable for accelerated failure time model. The combinations

that involve the case when limit order price is equal to five ticks provide mixed results; most of the

combinations have p-value greater than 5% critical value with only three combinations (i.e. 5-10, 5-11

and 5-12) less than 5%. Additionally, the p-value of all other combinations is well above the 5% critical

value indicating that the accelerated failure time assumption is satisfied for all limit order price greater

than five ticks away from the best ask price. Consequently, these results support our hypothesis that

the effect of limit order price can be divided into two regimes, one of which can be modelled by the
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Group
Propotional hazard model Accelerated life time model
β Chisq p-value ψ Chisq p-value

∆ = 3, 6 -1.23 3472.27 0.00 22.00 216.42 0.00
∆ = 3, 9 -1.68 3245.90 0.00 62.15 96.11 0.00
∆ = 3, 12 -1.97 2787.16 0.00 107.21 18.85 0.00
∆ = 6, 9 -0.56 1095.17 0.00 3.34 0.37 0.54
∆ = 6, 12 -0.91 2050.86 0.00 6.87 0.96 0.33
∆ = 9, 12 -0.38 425.28 0.00 2.08 0.46 0.50

Table 4.1: The estimated parameters of the proportional hazards model and the accelerated life time
model together with the test statistics for the execution probability of limit buy orders at different limit
price.

Group ψ p-value Group ψ p-value Group ψ p-value
∆ = 1, 2 30.16 0.00 ∆ = 1, 3 994.36 0.00 ∆ = 1, 4 2759.67 0.00
∆ = 1, 5 4644.96 0.00 ∆ = 1, 6 6370.65 0.00 ∆ = 1, 7 8602.67 0.48
∆ = 1, 8 10543.55 0.03 ∆ = 1, 9 12448.86 0.00 ∆ = 1, 10 14276.95 0.00
∆ = 1, 11 16477.12 0.00 ∆ = 1, 12 18785.14 0.00 ∆ = 1, 13 21065.24 0.00
∆ = 1, 14 23421.34 0.00 ∆ = 1, 15 26021.00 0.00 ∆ = 1, 16 29233.96 0.00
∆ = 1, 17 32522.13 0.00 ∆ = 1, 18 36316.32 0.00 ∆ = 1, 19 40095.71 0.00
∆ = 2, 3 27.33 0.00 ∆ = 2, 4 86.78 0.00 ∆ = 2, 5 149.66 0.00
∆ = 2, 6 210.38 0.00 ∆ = 2, 7 281.53 0.00 ∆ = 2, 8 342.10 0.00
∆ = 2, 9 399.35 0.00 ∆ = 2, 10 440.17 0.00 ∆ = 2, 11 490.74 0.91
∆ = 2, 12 537.94 0.01 ∆ = 2, 13 570.14 0.00 ∆ = 2, 14 611.87 0.00
∆ = 2, 15 651.18 0.00 ∆ = 2, 16 690.02 0.00 ∆ = 2, 17 727.03 0.00
∆ = 2, 18 761.30 0.00 ∆ = 2, 19 792.93 0.00 - - -
∆ = 3, 4 4.80 0.00 ∆ = 3, 5 11.95 0.00 ∆ = 3, 6 22.00 0.00
∆ = 3, 7 35.12 0.00 ∆ = 3, 8 48.65 0.00 ∆ = 3, 9 62.15 0.00
∆ = 3, 10 76.49 0.00 ∆ = 3, 11 91.16 0.00 ∆ = 3, 12 107.21 0.00
∆ = 3, 13 121.63 0.02 ∆ = 3, 14 135.98 0.68 ∆ = 3, 15 151.47 0.39
∆ = 3, 16 167.14 0.05 ∆ = 3, 17 179.69 0.00 ∆ = 3, 18 193.62 0.00
∆ = 3, 19 206.56 0.00 - - - - - -
∆ = 4, 5 2.38 0.01 ∆ = 4, 6 4.53 0.00 ∆ = 4, 7 7.65 0.00
∆ = 4, 8 11.32 0.00 ∆ = 4, 9 15.40 0.00 ∆ = 4, 10 19.87 0.00
∆ = 4, 11 24.92 0.00 ∆ = 4, 12 30.49 0.00 ∆ = 4, 13 36.04 0.01
∆ = 4, 14 41.69 0.14 ∆ = 4, 15 48.09 0.24 ∆ = 4, 16 55.37 0.24
∆ = 4, 17 61.96 0.62 ∆ = 4, 18 68.48 0.64 ∆ = 4, 19 74.64 0.42
∆ = 5, 6 1.87 0.65 ∆ = 5, 7 3.15 0.11 ∆ = 5, 8 4.66 0.06
∆ = 5, 9 6.32 0.06 ∆ = 5, 10 8.26 0.03 ∆ = 5, 11 10.63 0.02
∆ = 5, 12 13.09 0.04 ∆ = 5, 13 15.81 0.08 ∆ = 5, 14 18.64 0.12
∆ = 5, 15 21.69 0.21 ∆ = 5, 16 25.03 0.36 ∆ = 5, 17 28.15 0.76
∆ = 5, 18 31.44 0.73 ∆ = 5, 19 35.00 0.76 - - -
∆ = 6, 7 1.67 0.56 ∆ = 6, 8 2.46 0.62 ∆ = 6, 9 3.34 0.54
∆ = 6, 10 4.33 0.55 ∆ = 6, 11 5.56 0.49 ∆ = 6, 12 6.87 0.33
∆ = 6, 13 8.39 0.28 ∆ = 6, 14 10.00 0.33 ∆ = 6, 15 11.69 0.35
∆ = 6, 16 13.64 0.58 ∆ = 6, 17 15.63 0.49 ∆ = 6, 18 17.71 0.44
∆ = 6, 19 19.75 0.46 - - - - - -
∆ = 7, 8 1.48 0.83 ∆ = 7, 9 2.02 0.80 ∆ = 7, 10 2.62 0.88
∆ = 7, 11 3.38 0.70 ∆ = 7, 12 4.20 0.52 ∆ = 7, 13 5.10 0.70
∆ = 7, 14 6.09 0.63 ∆ = 7, 15 7.14 0.48 ∆ = 7, 16 8.39 0.47
∆ = 7, 17 9.62 0.48 ∆ = 7, 18 10.97 0.61 ∆ = 7, 19 12.20 0.88
∆ = 8, 10 1.78 0.69 ∆ = 8, 11 2.29 0.61 ∆ = 8, 12 2.84 0.68
∆ = 8, 13 3.45 0.72 ∆ = 8, 14 4.12 0.70 ∆ = 8, 15 4.83 0.63
∆ = 8, 16 5.64 0.69 ∆ = 8, 17 6.46 0.78 ∆ = 8, 18 7.36 0.78
∆ = 8, 19 8.23 0.77 - - - - - -

Table 4.2: The estimated parameters of the accelerated life time model together with the test statistics
for the execution probability of limit buy orders at different limit price.
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Figure 4.8: Execution probability of limit buy orders at a distance of ∆ = 3, 6, 9 and 12 ticks away
from the best ask price when the initial bid-ask spread equals to 1, 2 and 4 ticks as estimated from the
Kaplan-Meier estimator.

accelerated failure time model, and the appropriate threshold for separating this, in this case, is a limit

order price of six ticks away from the best ask price.

Briefly, the execution probability is negatively correlated with the distance from the opposite best

price. Both graphical plots and test statistics suggest that it is more appropriate to utilise the accelerated

failure time model to model the effect of limit order price rather than the proportional hazards model

since the proportional hazards assumption is violated at all price levels, while we can divide the effect

of limit order price into two regimes, one of which satisfies the accelerated failure time assumption and

another does not.

4.5.2 Bid-ask spread

Let us now analyse the effect of the bid-ask spread on the execution probability. To accomplish this, we

simulate the SFGK model as described in the previous section with initial bid-ask spread equal to one,

two and four ticks. The execution probability obtained by applying the Kaplan-Meier estimator to the

data generated from these simulations are illustrated in Figure 4.8. The result shows that the execution

probability is generally higher when the initial bid-ask spread is larger, indicating a positive correlation

between the bid-ask spread and the execution probability.

To determine whether the proportional hazards model is an appropriate candidate for modelling the

effect of the bid-ask spread on the execution probability or not, we plot the log-log survival curve for

each value of initial bid-ask spread at four different price levels in Figure 4.9a. These log-log curves

are clearly not parallel to each other, indicating that the hazards of different bid-ask spreads are not

proportional to each other. This is further confirmed by the GT test reported in Table 4.3, where the

p-value at all price levels is less than the 5% critical value. Consequently, the effect of the bid-ask spread

does not satisfy the proportional hazards assumption and the proportional hazards model should not be

utilised to model this effect.



4.5. Parameter of execution probability 78

0 5000 10000 15000 20000 25000

−
2

0
2

4
6

8

Time [in seconds]

−
ln

(−
ln

) 
S

(t
)

∆ = 3
∆ = 6
∆ = 9
∆ = 12

s(0) = 1
s(0) = 2
s(0) = 4

(a) Log-log survival curve

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4
6

8
10

1−S(t)

ln
 t

∆ = 3
∆ = 6
∆ = 9
∆ = 12

s(0) = 1
s(0) = 2
s(0) = 4

(b) Log quantiles plot

Figure 4.9: The plot of log-log survival curve and the log quantiles associated with the estimated execu-
tion probability of limit buy orders at a distance of ∆ = 3, 6, 9 and 12 ticks away from the best ask price
when the initial bid-ask spread equals to 1, 2 and 4 ticks as estimated from the Kaplan-Meier estimator.

Group
Propotional hazard model Accelerated life time model
β Chisq p-value ψ Chisq p-value

∆ = 3
s(0) = 1, 2 0.69 2354.80 0.00 0.1827 988.34 0.00
s(0) = 1, 4 2.78 1889.08 0.00 0.0043 76.12 0.00
s(0) = 2, 4 2.31 2736.37 0.00 0.0209 109.82 0.00

∆ = 6
s(0) = 1, 2 0.13 122.45 0.00 0.7624 0.01 0.91
s(0) = 1, 4 0.45 1379.42 0.00 0.3562 0.64 0.42
s(0) = 2, 4 0.34 861.38 0.00 0.4677 0.59 0.44

∆ = 9
s(0) = 1, 2 0.08 56.73 0.00 0.8365 0.19 0.67
s(0) = 1, 4 0.26 361.30 0.00 0.5749 0.07 0.79
s(0) = 2, 4 0.18 149.56 0.00 0.6808 0.06 0.81

∆ = 12
s(0) = 1, 2 0.07 23.31 0.00 0.8662 0.28 0.60
s(0) = 1, 4 0.18 153.57 0.00 0.6827 0.53 0.47
s(0) = 2, 4 0.12 63.44 0.00 0.7957 0.01 0.94

Table 4.3: The estimated parameters of the proportional hazards model and the accelerated life time
model together with the test statistics for the execution probability of limit buy orders at a distance of
three, six, nine and twelve ticks away from the best ask price when varying the initial bid-ask spread
between one, two and four.

Group
ψ p-value

Group
ψ p-value

Group
ψ p-value

∆ s(0) ∆ s(0) ∆ s(0)

1 1, 2 0.8394 0.00 2 1, 2 0.0648 0.00 3 1, 2 0.1827 0.00
1 1, 4 0.7589 0.00 2 1, 4 0.0462 0.00 3 1, 4 0.0043 0.00
1 2, 4 0.9107 0.71 2 2, 4 0.7512 0.18 3 2, 4 0.0210 0.00
4 1, 2 0.5153 0.00 5 1, 2 0.6840 0.36 6 1, 2 0.7624 0.92
4 1, 4 0.0047 0.00 5 1, 4 0.1969 0.83 6 1, 4 0.3563 0.42
4 2, 4 0.0090 0.00 5 2, 4 0.2929 0.12 6 2, 4 0.4677 0.44
7 1, 2 0.7901 0.80 8 1, 2 0.8213 0.96 9 1, 2 0.8365 0.67
7 1, 4 0.4531 0.52 8 1, 4 0.5106 0.94 9 1, 4 0.5749 0.79
7 2, 4 0.5750 0.82 8 2, 4 0.6135 0.53 9 2, 4 0.6808 0.81

Table 4.4: The estimated parameters of the accelerated life time model together with the test statistics
for the execution probability of limit buy orders when varying the initial bid-ask spread between one,
two and four.
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The test for the accelerated failure time model provides more positive results. In particular, the

quantiles curve for each value of the initial bid-ask spread at different price levels displayed in Figure

4.9b are somewhat parallel when ∆ = 6, 9 and 13. This suggest a possibility to utilise accelerated

failure time model to model this effect at those price level; however, the clearly unparallel curves when

∆ = 3 suggest that the accelerated failure time assumption does not hold for all price levels and we

may need to divide the effect from the bid-ask spread into two regimes as in the previous section. To

confirm this, we apply the log-rank test to all price levels from one tick to nine ticks, and the result

displayed in Table 4.4 indicates that a suitable criteria for separating the bid-ask spread into two regimes

is a limit order price value of five ticks since all p-value when ∆ is greater or equal to five ticks are well

above the 5% critical value while the p-value when ∆ is less than five ticks are not. The dependency on

the limit order price together with the fact that the estimated time scale factor, ψ, at each price level is

largely different also suggests an interaction effect between the bid-ask spread and the limit order price

on the execution probability, and thus this effect needs to be addressed when developing a full execution

probability model.

In conclusion, the execution probability is positively correlated with the bid-ask spread and it is

more appropriate to utilise the accelerated failure time model to model this effect rather than the pro-

portional hazards model. Unfortunately the accelerated failure time assumption is not valid at all price

levels but is satisfied only when the limit order price is larger than some specified value. The dependency

on limit order price suggests that there is an interaction effect between the bid-ask spread and limit order

price which should be addressed properly when developing a full execution probability model.

4.5.3 Number of orders at each price level

This section investigates the effect of the number of orders at each price level on the execution probabil-

ity. Since the order book has two sides (i.e the bids and the asks), this section will investigate these two

sides separately.

Number of buy orders

Let us now analyse the effect of the number of buy orders on the execution probability of limit buy

orders. Similar to previous sections, we will utilise the data generated from the simulation of the SFGK

model with the same setting as described in Section 4.5.1 but vary the number of buy orders at some

specified levels between one, ten and twenty. The execution probability obtained by applying Kaplan-

Meier estimator to the data generated from the above simulation when varying the number of buy orders

at a distance of one, two, three and four ticks away from the best ask price are illustrated in Figure 4.10.

These results indicates that the execution probability is negatively correlated with the number of buy

orders in the order book since the execution probability is higher when the number of buy orders is lower

in all cases. Additionally, these results also suggest that the number of buy orders at one tick away from

the best ask price has bigger effect on the execution probability than the number of buy orders at other

prices since the difference between the curves at each price level in Figure 4.10a is larger than those

in Figure 4.10b, 4.10c, and 4.10d. Using the same argument, we can conclude that the number of buy

orders at two ticks away from the best ask price has more effect than the number of buy orders at three
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(a) One tick away from the best ask price
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(b) Two ticks away from the best ask price
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(c) Three tick away from the best ask price
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(d) Four ticks away from the best ask price

Figure 4.10: Execution probability of limit buy orders at a distance of ∆ = 3, 6, 9 and 12 ticks away
from the best ask price when the number of buy orders at one, two, three and four ticks away from the
best ask price are varied between one, ten and twenty as estimated from the Kaplan-Meier estimator.

and four ticks away from the best ask price. These indicate that the number of buy orders at a price

level near the best ask price has a bigger effect on the execution probability than the number of orders at

price levels further away, and the number of buy orders at the best bid price has the largest effect on the

execution probability. Consequently the rest of this section will study only the effect of the number of

orders at the best bid price.

To determine whether the effect from the number of buy orders satisfies the proportional hazards

assumption or not, we plot the log-log survival curves obtained by varying the number of buy orders at

the best ask price in Figure 4.11a. The result indicates that the log-log curve for each number of buy

orders at the same price level is clearly not parallel to each other. This suggests that the proportional

hazards assumption might be violated in this situation. To confirm this, we further apply the GT test, and
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Figure 4.11: The plot of log-log survival curve and the log quantiles associated with the estimated
execution probability of limit buy orders at a distance of ∆ = 3, 6, 9 and 12 ticks away from the best ask
price when the number of buy orders at the best bid price is one, ten and twenty as estimated from the
Kaplan-Meier estimator.

Group
Propotional hazard model Accelerated life time model
β Chisq p-value ψ Chisq p-value

∆ = 3
q(−1) = 1, 10 -0.3632 824.17 0.00 2.1937 246.72 0.00
q(−1) = 1, 20 -0.6334 2020.01 0.00 4.7735 831.19 0.00
q(−1) = 10, 20 -0.2879 510.85 0.00 2.1765 282.28 0.00

∆ = 6
q(−1) = 1, 10 -0.0352 19.39 0.00 1.0566 0.50 0.48
q(−1) = 1, 20 -0.0911 85.74 0.00 1.2017 0.36 0.55
q(−1) = 10, 20 -0.0566 24.61 0.00 1.1318 0.01 0.94

∆ = 9
q(−1) = 1, 10 -0.0234 4.77 0.03 1.0558 0.04 0.85
q(−1) = 1, 20 -0.0681 29.41 0.00 1.1680 0.19 0.66
q(−1) = 10, 20 -0.0448 10.78 0.00 1.1066 0.09 0.76

∆ = 12
q(−1) = 1, 10 -0.0184 2.55 0.11 1.0384 0.00 0.98
q(−1) = 1, 20 -0.0584 14.49 0.00 1.1363 0.27 0.61
q(−1) = 10, 20 -0.0399 5.01 0.02 1.0904 0.39 0.53

Table 4.5: The estimated parameters of the proportional hazards model and the accelerated life time
model together with the test statistics for the execution probability of a limit buy order at a distance of
three, six, nine and twelve ticks away from the best ask price when varying the number of buy order at
the best bid price between one, ten and twenty.

the result displayed in Table 4.5 also indicates that proportional hazards assumption is violated in most

of the case with some exceptions when comparing between the cases when the number of buy orders

is one and ten at a limit order price of twelve ticks. The reason why we obtain a positive result in this

situation is that the execution probability in these two situations is nearly identical as displayed in Figure

4.10a. Consequently, the proportional hazards model seems not to be a good candidate for modelling

this effect as in two previous sections.

The plot of quantiles for different value of the number of buy orders at the best bid price, illustrated

in Figure 4.11b, is somewhat parallel to each other when ∆ = 6, 9 and 12 but seem to be unparallel

when ∆ = 3. The p-value obtained from the log-rank test reported in Table 4.6 has a similar result as all
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Group
ψ p-value

Group
ψ p-value

Group
ψ p-value

∆ q(−1) ∆ q(−1) ∆ q(−1)

1 1, 10 0.9959 0.48 2 1, 10 4.0050 0.00 3 1, 10 2.1937 0.00
1 1, 20 1.0111 0.48 2 1, 20 8.3688 0.00 3 1, 20 4.7735 0.00
1 10, 20 1.0135 0.19 2 10, 20 2.0689 0.00 3 10, 20 2.1765 0.00
4 1, 10 1.2788 0.54 5 1, 10 1.1236 0.15 6 1, 10 1.0566 0.48
4 1, 20 1.7394 0.03 5 1, 20 1.3154 0.24 6 1, 20 1.2017 0.55
4 10, 20 1.2875 0.45 5 10, 20 1.1743 0.69 6 10, 20 1.1318 0.94
7 1, 10 1.0557 0.95 8 1, 10 1.0582 0.77 9 1, 10 1.0558 0.85
7 1, 20 1.2245 0.62 8 1, 20 1.1906 0.73 9 1, 20 1.1680 0.66
7 10, 20 1.1530 0.61 8 10, 20 1.1246 0.89 9 10, 20 1.1066 0.76
10 1, 10 1.0683 0.79 11 1, 10 1.0419 0.99 12 1, 10 1.0384 0.98
10 1, 20 1.1512 0.63 11 1, 20 1.1493 0.55 12 1, 20 1.1363 0.61
10 10, 20 1.0802 0.76 11 10, 20 1.1047 0.48 12 10, 20 1.0904 0.53
13 1, 10 1.0430 0.92 14 1, 10 1.0375 0.79 15 1, 10 1.0268 0.89
13 1, 20 1.1293 0.73 14 1, 20 1.1060 0.83 15 1, 20 1.0932 0.76
13 10, 20 1.0793 0.57 14 10, 20 1.0638 0.65 15 10, 20 1.0620 0.65
16 1, 10 1.0253 0.94 17 1, 10 1.0356 0.97 18 1, 10 1.0352 0.90
16 1, 20 1.0945 0.66 17 1, 20 1.0894 0.70 18 1, 20 1.0893 0.84
16 10, 20 1.0675 0.76 17 10, 20 1.0543 0.69 18 10, 20 1.0547 0.69

Table 4.6: The estimated parameters of the accelerated life time model together with the test statistics
for the execution probability of a limit buy order when varying the number of buy order at the best bid
price between one, ten and twenty.

p-values when ∆ = 6, 9 and 12 are higher than 5% critical value while all p-values when ∆ = 3 is less

than 5%. This indicates that the accelerated failure time assumption is not satisfied at all price levels.

However, as discussed in the previous section, we might be able to divide this effect into two regimes,

one of which can be modelled by the accelerated failure time model and the other cannot. To confirm

this, we further apply the log-rank test to all price levels from one tick to eighteen ticks and the results

reported in Table 4.6 indicate that a suitable criterion for separating this effect into two regimes is a limit

order price of five ticks since all p-value when ∆ is greater than or equal to five ticks are all larger than

the 5% critical value. Furthermore, this result also suggests that there is an interaction effect between the

number of buy orders at the best ask price and the limit order price on the execution probability, as the

estimated time scale factor ψ at each price level is largely different. Accordingly, this interaction effect

needs to be properly addressed when developing a full model of the execution probability.

Number of sell orders

Let us now analyse the effect of the number of sell orders on the execution probability of limit buy

orders. Similar to the previous section, we will utilise the data generated by simulating the SFGK model

with the same setting as in Section 4.5.1, but varying the number of sell orders at some specified price

levels between one, ten and twenty. The execution probability obtained by applying the Kaplan-Meier

estimator to the data generated from the above simulation is illustrated in Figure 4.12. These results

indicate that the execution probability of a buy order is positively correlated with the number of sell

orders in the order book since the execution probability is higher when the number of sell orders is

higher in all cases. Additionally the results also suggest that the number of sell orders at one tick away

from the best bid price has a bigger effect on the execution probability than the number of sell orders at

other price levels since the difference between the curves at each price level in Figure 4.12a is larger than
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(a) One tick away from the best ask price
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(b) Two ticks away from the best ask price
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(c) Three tick away from the best ask price
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(d) Four ticks away from the best ask price

Figure 4.12: Execution probability of limit buy orders at a distance of ∆ = 3, 6, 9 and 12 ticks away
from the best ask price when the number of sell orders at one, two, three and four ticks away from the
best bid price are varied between one, ten and twenty as estimated from the Kaplan-Meier estimator.

those in Figure 4.12b, 4.12c, and 4.12d. Using the same argument, we can conclude that the number of

sell orders at two ticks away from the best bid price has more effect than the number of sell orders at

three and four ticks away from the best bid price. As a result, these indicate that the number of sell orders

at a price level near the best bid price has more effect on the execution probability than the number of

orders at price levels further away, and the number of sell orders at the best ask price has the biggest

effect on the execution probability. Consequently, the rest of this section will study only the effect of the

number of sell orders at the best ask price as in the previous section.

To investigate the validity of the proportional hazards assumption, we plot the log-log survival

curves for different values of the number of sell orders at the best ask price in Figure 4.13a. This figure

illustrates that the log-log survival curve for different values of sell orders at the same price level seem
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Figure 4.13: The plot of log-log survival curve and the log quantiles associated with the estimated
execution probability of limit buy orders at a distance of ∆ = 3, 6, 9 and 12 ticks away from the best ask
price when the number of sell orders at the best ask price is one, ten and twenty as estimated from the
Kaplan-Meier estimator.

Group
Propotional hazard model Accelerated life time model
β Chisq p-value ψ Chisq p-value

∆ = 3
q(+1) = 1, 10 0.1624 108.52 0.00 0.6601 21.53 0.00
q(+1) = 1, 20 0.3257 428.46 0.00 0.4270 126.01 0.00
q(+1) = 10, 20 0.1635 107.70 0.00 0.6444 53.37 0.00

∆ = 6
q(+1) = 1, 10 0.0373 9.12 0.00 0.9304 0.14 0.71
q(+1) = 1, 20 0.1046 40.08 0.00 0.7693 1.35 0.255
q(+1) = 10, 20 0.0669 10.25 0.00 0.8374 0.93 0.34

∆ = 9
q(+1) = 1, 10 0.0155 0.10 0.75 0.9778 0.10 0.75
q(+1) = 1, 20 0.0783 13.42 0.00 0.8437 0.19 0.66
q(+1) = 10, 20 0.0628 10.72 0.00 0.8630 0.49 0.48

∆ = 12
q(+1) = 1, 10 0.0140 0.57 0.45 0.9938 0.36 0.55
q(+1) = 1, 20 0.0636 1.14 0.28 0.8905 0.04 0.85
q(+1) = 10, 20 0.0498 3.27 0.07 0.9003 0.36 0.55

Table 4.7: The estimated parameters of the proportional hazards model and the accelerated life time
model together with the test statistics for the execution probability of limit buy orders at a distance of
three, six, nine and twelve ticks away from the best ask price when varying the number of sell order at
the best ask price between one, ten and twenty.

to be unparallel to each other. The p-value obtained from the GT test reported in Table 4.7 indicates that

most of the p-value are less than 5% critical value except when ∆ = 12. Although this suggests that we

might be able to divide the effect of the number of sell orders into two regimes, one of which satisfies

the proportional hazards assumption while the other does not, we decide not to investigate this in more

detail since the proportional hazards model seem not to be a good candidate for modelling the effect of

other determinants as reported in previous sections.

To determine whether the effect of the number of sell orders satisfies the accelerated failure time

assumption or not, we plot the quantiles for different value of the number of sell orders at the best ask

price in Figure 4.13b. The result indicates that the quantile plot when ∆ = 3 is clearly unparallel to each
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Group
ψ p-value

Group
ψ p-value

Group
ψ p-value

∆ q(+1) ∆ q(+1) ∆ q(+1)

1 1, 10 0.6012 0.00 2 1, 10 0.4158 0.00 3 1, 10 0.6601 0.00
1 1, 20 0.5982 0.00 2 1, 20 0.2143 0.00 3 1, 20 0.4270 0.00
1 10, 20 1.0110 0.07 2 10, 20 0.5243 0.00 3 10, 20 0.6444 0.00
4 1, 10 0.8280 0.87 5 1, 10 0.9107 0.56 6 1, 10 0.9304 0.71
4 1, 20 0.6410 0.04 5 1, 20 0.7474 0.53 6 1, 20 0.7693 0.25
4 10, 20 0.7720 0.02 5 10, 20 0.8202 0.27 6 10, 20 0.8374 0.34
7 1, 10 0.9441 0.76 8 1, 10 0.9607 0.70 9 1, 10 0.9778 0.75
7 1, 20 0.8111 0.68 8 1, 20 0.8312 0.94 9 1, 20 0.8437 0.66
7 10, 20 0.8613 0.57 8 10, 20 0.8602 0.58 9 10, 20 0.8630 0.48
10 1, 10 0.9976 0.61 11 1, 10 1.0000 0.58 12 1, 10 0.9938 0.55
10 1, 20 0.8835 0.86 11 1, 20 0.8920 0.95 12 1, 20 0.8905 0.85
10 10, 20 0.8901 0.59 11 10, 20 0.8930 0.67 12 10, 20 0.9003 0.55
13 1, 10 0.9934 0.75 14 1, 10 0.9909 0.62 15 1, 10 0.9945 0.68
13 1, 20 0.9051 0.75 14 1, 20 0.8963 0.89 15 1, 20 0.9169 0.89
13 10, 20 0.9078 0.92 14 10, 20 0.9050 0.62 15 10, 20 0.9212 0.80
16 1, 10 1.0014 0.53 17 1, 10 0.9933 0.60 18 1, 10 0.9927 0.73
16 1, 20 0.9229 0.76 17 1, 20 0.9155 0.87 18 1, 20 0.9257 0.94
16 10, 20 0.9218 0.74 17 10, 20 0.9208 0.69 18 10, 20 0.9294 0.71

Table 4.8: The estimated parameters of the accelerated life time model together with the test statistics
for the execution probability of limit buy orders when varying the number of sell order at the best ask
price between one, ten and twenty.

other while the plot at other price levels seem to be parallel to each other. The p-value obtained from

the log-rank test reported in Table 4.7 suggests a similar result. This indicates the possibility to divide

the effect from the number of sell orders into two regimes as in the previous section. To confirm this,

we further apply the log-rank test to all price level from one tick to eighteen ticks and the result reported

in Table 4.8 suggests that a suitable threshold for separating this effect into two regimes is a limit order

price value of five ticks as all p-value when ∆ ≥ 5 is greater than 5% critical value. Similar to the

previous section, this suggests that there is an interaction effect between the number of sell orders and

the limit order price which should be addressed properly when developing a full execution probability

model.

In summary, the execution probability of limit buy orders is negatively correlated with the number

of buy orders in the order book, while it is positively correlated with the number of sell orders in the order

book. Both graphical plots and test statistics indicates that it is more appropriate to utilise the accelerated

failure time model to model this effect rather than the proportional hazards model. Unfortunately, the

accelerated failure time assumption is not valid at all limit price levels, but is satisfied only when limit

order price is greater than or equal to five ticks. This suggests that there is an interaction effect between

the number of orders and the limit order price which must be properly modelled in the full execution

probability model.

4.5.4 Arrival rate of market orders

This section investigates the effect of market order arrival rate on the execution probability by analysing

the execution probability estimated from the SFGK model with the same parameters as described in

Section 4.5.1 but varies the market order arrival rate between 0.5, 1.0 and 2.0. The execution probability

of a buy order at four different price levels as estimated from the Kaplan-Meier estimator illustrated in
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Figure 4.14: Execution probability of limit buy orders at a distance of ∆ = 3, 6, 9 and 12 ticks away
from the best ask price when the market order arrival rate is 0.5, 1 and 2 as estimated from the Kaplan-
Meier estimator.
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Figure 4.15: The plot of log-log survival curve and the log quantiles associated with the estimated
execution probability of limit buy orders at a distance of ∆ = 3, 6, 9 and 12 ticks away from the best ask
price when the market order arrival rate is 0.5, 1.0 and 2.0 as estimated from the Kaplan-Meier estimator.

Figure 4.14 indicates that the execution probability is positively correlated with the market order arrival

rate since all the execution probabilities displayed in the figure are higher when the market order arrival

rate is larger. This result can be explained if we consider the situation when the limit order arrival rate

and order cancellation rate is fixed. As the market order arrival rate increases, more limit orders are

removed from the book. Consequently the execution probability is also higher.

The log-log survival curves for a limit buy order at different market order arrival rates illustrated

in Figure 4.15a to 4.15d are clearly unparallel to each other, suggesting that the effect of market order

arrival rate does not satisfy the proportional hazards assumption. This is further confirmd by the GT test

summarised in Table 4.9, where the p-values at all price levels are less than 5% critical value. Thus the

effect of the bid-ask spread does not satisfy the proportional hazards assumption and the proportional

hazards model should not be utilised to model this effect.
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Group
Propotional hazard model Accelerated life time model
β Chisq p-value ψ Chisq p-value

∆ = 3
α = 0.5, 1.0 0.8390 1881.29 0.00 0.0891 60.22 0.00
α = 0.5, 2.0 2.4892 1570.23 0.00 0.0037 959.47 0.00
α = 1.0, 2.0 1.5157 1261.20 0.00 0.0212 2257.87 0.00

∆ = 6
α = 0.5, 1.0 0.6249 1407.74 0.00 0.2456 0.37 0.54
α = 0.5, 2.0 1.3198 3275.56 0.00 0.0393 10.33 0.00
α = 1.0, 2.0 0.7563 1957.18 0.00 0.1433 33.67 0.00

∆ = 9
α = 0.5, 1.0 0.6679 1108.37 0.00 0.2835 0.00 0.97
α = 0.5, 2.0 1.2612 2801.02 0.00 0.0652 0.68 0.41
α = 1.0, 2.0 0.6543 1524.72 0.00 0.2264 0.79 0.37

∆ = 12
α = 0.5, 1.0 0.7693 944.42 0.00 0.2927 0.00 1.00
α = 0.5, 2.0 1.3378 2296.56 0.00 0.0799 0.04 0.85
α = 1.0, 2.0 0.6300 1234.50 0.00 0.2748 0.08 0.78

Table 4.9: The estimated parameters of the proportional hazards model and the accelerated life time
model together with the test statistics for the execution probability of limit buy orders at a distance of
three, six, nine and twelve ticks away from the best ask price when varying the market order arrival rate
between 1.0, 2.0 and 4.0.

The test of the accelerated failure time model is more positive. The quantile curves for each value

of market order arrival rate displayed in Figure 4.15e to 4.15h seem to be parallel to each other when

∆ = 9 and 12, while clearly unparallel when ∆ = 3 and 6. This suggests that it might be possible to

divide the effect of market order arrival rate into two regimes as in previous sections. To verify this,

we apply the log-rank test to all price levels from one tick to eighteen ticks, and the result reported in

Table 4.10 indicates that a suitable criteria for separating this effect into two regimes is a limit order

price value of eight ticks since all p-value when ∆ is greater or equal to eight ticks is well above the 5%

critical value while the p-value when ∆ is less than eight ticks are not. Additionally, the dependency on

the limit price together with the fact that the estimated time scale factor, ψ, at each price level is largely

different suggests that there is an interaction effect between the market order arrival rate and the limit

order price on the execution probability.

To sum up, the execution probability is positively correlated with the market order arrival rate, and

it is more appropriate to utilise the accelerated failure time model to model this effect rather than the

proportional hazards model. Though the accelerated failure time assumption is not valid at all price

levels, we can divide this effect into two regimes by the limit order price so that one of these regimes

can be modelled by the accelerated failure time model. The dependency on the limit order price suggests

an interaction effect between the market order arrival rate and the limit order price on the execution

probability.

4.5.5 Arrival rate of limit orders

Let us now study the effect of the limit order arrival rate on the execution probability. To achieve this, we

simulate the SFGK model with the same parameters setting as described in Section 4.5.1 but varying the

limit order arrival rate between 0.25, 0.5 and 1.0. The execution probabilities obtained by applying the

Kaplan-Meier estimator to the data generated from the above simulations are illustrated in Figure 4.16.

The result indicates that the execution probability is lower when the limit order arrival rate is higher,

indicating a negative relation between the execution probability and the limit order arrival rate. This is



4.5. Parameter of execution probability 88

Group
ψ p-value

Group
ψ p-value

Group
ψ p-value

∆ α ∆ α ∆ α

1 0.5, 1.0 0.4776 0.41 2 0.5, 1.0 0.0262 0.00 3 0.5, 1.0 0.0891 0.00
1 0.5, 2.0 0.2415 0.51 2 0.5, 2.0 0.0037 0.00 3 0.5, 2.0 0.0037 0.00
1 1.0, 2.0 0.5056 0.71 2 1.0, 2.0 0.1130 0.00 3 1.0, 2.0 0.0212 0.00
4 0.5, 1.0 0.1690 0.03 5 0.5, 1.0 0.2191 0.31 6 0.5, 1.0 0.2456 0.54
4 0.5, 2.0 0.0109 0.00 5 0.5, 2.0 0.0233 0.00 6 0.5, 2.0 0.0393 0.00
4 1.0, 2.0 0.0456 0.00 5 1.0, 2.0 0.0894 0.00 6 1.0, 2.0 0.1433 0.00
7 0.5, 1.0 0.2696 0.95 8 0.5, 1.0 0.2749 0.97 9 0.5, 1.0 0.2835 0.97
7 0.5, 2.0 0.0507 0.11 8 0.5, 2.0 0.0581 0.16 9 0.5, 2.0 0.0652 0.41
7 1.0, 2.0 0.1783 0.01 8 1.0, 2.0 0.2052 0.11 9 1.0, 2.0 0.2264 0.37

10 0.5, 1.0 0.2912 0.91 11 0.5, 1.0 0.2903 0.82 12 0.5, 1.0 0.2927 1.00
10 0.5, 2.0 0.0727 0.56 11 0.5, 2.0 0.0762 0.69 12 0.5, 2.0 0.0799 0.85
10 1.0, 2.0 0.2485 0.55 11 1.0, 2.0 0.2593 0.69 12 1.0, 2.0 0.2748 0.78
13 0.5, 1.0 0.2988 0.84 14 0.5, 1.0 0.3045 0.92 15 0.5, 1.0 0.3052 0.92
13 0.5, 2.0 0.0840 0.83 14 0.5, 2.0 0.0870 0.80 15 0.5, 2.0 0.0886 0.79
13 1.0, 2.0 0.2782 0.95 14 1.0, 2.0 0.2809 0.82 15 1.0, 2.0 0.2841 0.98
16 0.5, 1.0 0.3067 0.98 17 0.5, 1.0 0.3130 0.90 18 0.5, 1.0 0.3115 0.95
16 0.5, 2.0 0.0909 0.87 17 0.5, 2.0 0.0933 0.96 18 0.5, 2.0 0.0949 0.69
16 1.0, 2.0 0.2883 0.97 17 1.0, 2.0 0.2934 0.99 18 1.0, 2.0 0.3008 0.96

Table 4.10: The estimated parameters of the accelerated life time model together with the test statistics
for the execution probability of limit buy orders when varying the market order arrival rate between 1.0,
2.0 and 4.0.
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Figure 4.16: Execution probability of limit buy orders at a distance of ∆ = 3, 6, 9 and 12 ticks away
from the best ask price when the limit order arrival rate is 0.25, 0.5 and 1 as estimated from the Kaplan-
Meier estimator.

because the larger the limit order arrival rate, the more limit orders are submitted to the order book and

the more market orders are required to move the price. As a result, when the market order arrival rate

and order cancellation rate are fixed, the execution probability will decrease as the limit order arrival rate

increases.

To determine whether the proportional hazards model is an appropriate candidate for modelling the

effect of limit order arrival rate on the execution probability or not, we plot the log-log survival curve for

three values of limit order arrival rate at four different price levels in Figure 4.17a to 4.17d. These log-log

survival curves are clearly unparallel to each other, indicating that the proportional hazards assumption

might be unsatisfied in this case. This is further confirmed by the GT test reported in Table 4.11 where

all p-value reported are less than 5% critical value.

To access the appropriateness of the accelerated failure time model, we plot the quantile curve for

each value of limit order arrival in Figure 4.17e to 4.17h. Although these curves are clearly unparallel
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Figure 4.17: The plot of log-log survival curve and the log quantiles associated with the estimated
execution probability of limit buy orders at a distance of ∆ = 3, 6, 9 and 12 ticks away from the best ask
price when the limit order arrival rate is 0.25, 0.5 and 1.0 as estimated from the Kaplan-Meier estimator.

Group
Propotional hazard model Accelerated life time model
β Chisq p-value ψ Chisq p-value

∆ = 3
α = 0.25, 0.5 -1.1862 146.47 0.00 30.6049 2486.15 0.00
α = 0.25, 1.0 -2.3622 948.88 0.00 191.6476 802.67 0.00
α = 0.5, 1.0 -0.9034 1617.86 0.00 14.5622 63.30 0.00

∆ = 6
α = 0.25, 0.5 -0.8202 2028.45 0.00 8.4352 89.98 0.00
α = 0.25, 1.0 -1.5183 3274.64 0.00 38.3713 21.09 0.00
α = 0.5, 1.0 -0.7743 1770.31 0.00 5.5544 0.03 0.86

∆ = 9
α = 0.25, 0.5 -0.7683 1917.68 0.00 5.9837 7.08 0.01
α = 0.25, 1.0 -1.5316 2869.82 0.00 26.2853 0.02 0.89
α = 0.5, 1.0 -0.8579 1446.49 0.00 4.8651 0.05 0.82

∆ = 12
α = 0.25, 0.5 -0.7682 1705.27 0.00 5.1122 0.97 0.32
α = 0.25, 1.0 -1.6796 2357.44 0.00 22.1503 1.99 0.16
α = 0.5, 1.0 -1.0126 1214.94 0.00 4.6430 0.05 0.82

Table 4.11: The estimated parameters of the proportional hazards model and the accelerated life time
model together with the test statistics for the execution probability of limit buy orders at a distance of
three, six, nine and twelve ticks away from the best ask price when varying the limit order arrival rate
between 0.25, 0.5 and 1.0.

when ∆ = 3, 6 and 9, the curve when ∆ = 12 seem to be parallel to each other. This suggests that it

might be possible to divide the effect of limit order arrival rate into two regimes, one of which can be

modelled by the accelerated failure time model while the other cannot. To further investigate this issue,

we apply the log-rank test to all price levels from one tick to eighteen ticks, and the result displayed in

Table 4.12 indicates that all p-value when limit order price is larger than or equal to ten ticks are always

larger than 5% critical value. This supports our hypothesis that the effect of limit order arrival rate can

be divided into two regimes, and an appropriate threshold for dividing this is a limit order price of ten

ticks. Since the estimated time scale factor, ψ, at each price level is largely different, there must be an
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Group
ψ p-value

Group
ψ p-value

Group
ψ p-value

∆ α ∆ α ∆ α

1 0.25, 0.5 1.03 0.60 2 0.25, 0.5 4.72 0.00 3 0.25, 0.5 30.60 0.00
1 0.25, 1.0 1.05 0.73 2 0.25, 1.0 185.94 0.00 3 0.25, 1.0 191.65 0.00
1 0.5, 1.0 1.02 0.59 2 0.5, 1.0 49.44 0.00 3 0.5, 1.0 14.56 0.00
4 0.25, 0.5 19.64 0.00 5 0.25, 0.5 11.69 0.00 6 0.25, 0.5 8.44 0.00
4 0.25, 1.0 89.83 0.00 5 0.25, 1.0 52.44 0.00 6 0.25, 1.0 38.37 0.00
4 0.5, 1.0 7.84 0.04 5 0.5, 1.0 6.07 0.75 6 0.5, 1.0 5.55 0.86
7 0.25, 0.5 7.23 0.00 8 0.25, 0.5 6.40 0.00 9 0.25, 0.5 5.98 0.01
7 0.25, 1.0 31.81 0.04 8 0.25, 1.0 28.33 0.12 9 0.25, 1.0 26.29 0.89
7 0.5, 1.0 5.16 0.99 8 0.5, 1.0 4.94 0.87 9 0.5, 1.0 4.87 0.82
10 0.25, 0.5 5.60 0.07 11 0.25, 0.5 5.43 0.15 12 0.25, 0.5 5.11 0.32
10 0.25, 1.0 24.46 0.52 11 0.25, 1.0 23.73 0.46 12 0.25, 1.0 22.15 0.16
10 0.5, 1.0 4.75 0.87 11 0.5, 1.0 4.71 0.92 12 0.5, 1.0 4.64 0.82
13 0.25, 0.5 5.05 0.64 14 0.25, 0.5 4.87 0.98 15 0.25, 0.5 4.86 0.94
13 0.25, 1.0 21.50 0.07 14 0.25, 1.0 20.76 0.14 15 0.25, 1.0 20.38 0.20
13 0.5, 1.0 4.57 0.90 14 0.5, 1.0 4.53 0.90 15 0.5, 1.0 4.51 0.88
16 0.25, 0.5 4.82 0.71 17 0.25, 0.5 4.81 0.74 18 0.25, 0.5 4.78 0.95
16 0.25, 1.0 19.85 0.08 17 0.25, 1.0 19.84 0.12 18 0.25, 1.0 19.59 0.08
16 0.5, 1.0 4.48 0.82 17 0.5, 1.0 4.45 0.56 18 0.5, 1.0 4.44 0.74

Table 4.12: The estimated parameters of the accelerated life time model together with the test statistics
for the execution probability of limit buy orders when varying the limit order arrival rate between 0.25,
0.5 and 1.0.
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Figure 4.18: Execution probability of limit buy orders at a distance of ∆ = 3, 6, 9 and 12 ticks away
from the best ask price when the order cancellation rate is 0.125, 0.25 and 0.5 as estimated from the
Kaplan-Meier estimator.

interaction effect between the limit order arrival rate and limit price which should be handled properly

when developing the full model of the execution probability.

In conclusion, the execution probability is negatively correlated with the limit order arrival rate.

This effect can be divided into two regimes by limit order price, one of which can be modelled by

the accelerated failure time model while the other cannot. The dependency on the limit order price

suggests an interaction effect between the limit order arrival rate and the limit order price on the execution

probability.

4.5.6 Cancellation rate of limit orders

This section studies the effect of the limit order cancellation rate on the execution probability by

analysing the data generated from the SFGK model with the same parameters setting as described in

Section 4.5.1 but varies the limit order cancellation rate between 0.125, 0.25 and 0.5. The execution

probabilities obtained by applying the Kaplan-Meier estimator to the data generated from the above sim-
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Figure 4.19: The plot of log-log survival curve and the log quantiles associated with the estimated
execution probability of limit buy orders at a distance of ∆ = 3, 6, 9 and 12 ticks away from the best
ask price when the order cancellation rate is 0.125, 0.25 and 0.5 as estimated from the Kaplan-Meier
estimator.

Group
Propotional hazard model Accelerated life time model
β Chisq p-value ψ Chisq p-value

∆ = 3
δ = 0.125, 0.25 0.2313 18.43 0.00 2.5395 105.44 0.00
δ = 0.125, 0.5 0.5170 240.17 0.00 6.7252 404.12 0.00
δ = 0.25, 0.5 0.2932 148.42 0.00 2.7462 180.42 0.00

∆ = 6
δ = 0.125, 0.25 0.4373 724.12 0.00 2.7282 0.70 0.40
δ = 0.125, 0.5 0.8391 2147.17 0.00 7.5699 2.36 0.12
δ = 0.25, 0.5 0.4230 770.58 0.00 2.8976 4.70 0.03

∆ = 9
δ = 0.125, 0.25 0.5099 726.54 0.00 2.6843 0.05 0.82
δ = 0.125, 0.5 0.9460 2190.16 0.00 7.4257 0.01 0.90
δ = 0.25, 0.5 0.4665 871.41 0.00 2.8329 0.37 0.54

∆ = 12
δ = 0.125, 0.25 0.6057 715.49 0.00 2.6948 0.12 0.73
δ = 0.125, 0.5 1.0735 2038.03 0.00 7.4253 0.12 0.73
δ = 0.25, 0.5 0.5043 854.31 0.00 2.7806 0.07 0.80

Table 4.13: The estimated parameters of the proportional hazards model and the accelerated life time
model together with the test statistics for the execution probability of limit buy orders at a distance of
three, six, nine and twelve ticks away from the best ask price when varying the order cancellation rate
between 0.125, 0.25 and 0.5.

ulations are displayed in Figure 4.18. The result indicates that the execution probability is positively

correlated with the limit order cancellation rate since all the execution probabilities displayed in this fig-

ure are higher when the order cancellation rate is larger. This is because when the order cancellation rate

increases, the number of limit orders in the book decreases, and the number of market orders required

to move the price also decreases. As a result, when market and limit order arrival rates are fixed, the

execution probability will increase as the order cancellation rate increases.

The test of proportional hazards assumption by the plot of log-log survival curve suggest that this

assumption might not be satisfied since the log-log curve at four different limit prices illustrated in
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Group
ψ p-value

Group
ψ p-value

Group
ψ p-value

∆ α ∆ α ∆ α

1 0.125, 0.25 1.04 0.47 2 0.125, 0.25 1.25 0.00 3 0.125, 0.25 2.54 0.00
1 0.125, 0.5 1.04 0.59 2 0.125, 0.5 1.75 0.00 3 0.125, 0.5 6.73 0.00
1 0.25, 0.5 1.00 0.92 2 0.25, 0.5 1.37 0.00 3 0.25, 0.5 2.75 0.00
4 0.125, 0.25 2.89 0.00 5 0.125, 0.25 2.71 0.14 6 0.125, 0.25 2.73 0.40
4 0.125, 0.5 7.48 0.00 5 0.125, 0.5 7.47 0.01 6 0.125, 0.5 7.57 0.12
4 0.25, 0.5 2.68 0.00 5 0.25, 0.5 2.89 0.00 6 0.25, 0.5 2.90 0.03
7 0.125, 0.25 2.70 0.57 8 0.125, 0.25 2.66 0.65 9 0.125, 0.25 2.68 0.82
7 0.125, 0.5 7.58 0.37 8 0.125, 0.5 7.48 0.58 9 0.125, 0.5 7.43 0.90
7 0.25, 0.5 2.91 0.16 8 0.25, 0.5 2.89 0.35 9 0.25, 0.5 2.83 0.54
10 0.125, 0.25 2.65 0.84 11 0.125, 0.25 2.67 0.96 12 0.125, 0.25 2.69 0.73
10 0.125, 0.5 7.44 0.86 11 0.125, 0.5 7.46 0.91 12 0.125, 0.5 7.43 0.73
10 0.25, 0.5 2.83 0.84 11 0.25, 0.5 2.82 0.82 12 0.25, 0.5 2.78 0.80
13 0.125, 0.25 2.65 0.48 14 0.125, 0.25 2.70 0.57 15 0.125, 0.25 2.69 0.58
13 0.125, 0.5 7.40 0.47 14 0.125, 0.5 7.45 0.47 15 0.125, 0.5 7.43 0.40
13 0.25, 0.5 2.83 0.95 14 0.25, 0.5 2.79 1.00 15 0.25, 0.5 2.79 0.82
16 0.125, 0.25 2.68 0.73 17 0.125, 0.25 2.66 0.58 18 0.125, 0.25 2.68 0.54
16 0.125, 0.5 7.42 0.40 17 0.125, 0.5 7.43 0.28 18 0.125, 0.5 7.44 0.38
16 0.25, 0.5 2.79 0.93 17 0.25, 0.5 2.81 0.97 18 0.25, 0.5 2.79 0.82

Table 4.14: The estimated parameters of the accelerated life time model together with the test statistics
for the execution probability of limit buy orders when varying the order cancellation rate between 0.125,
0.25 and 0.5.

Figure 4.19a to Figure 4.19d are clearly unparallel to each other. This is further confirmed by the GT test

reported in Table 4.13 where the p-values at all price levels are less than 5% critical value. Hence, the

effect of order cancellation rate does not satisfy the proportional hazards assumption and the proportional

hazards model should not be utilised to model this effect.

The test of accelerated failure time assumption by the plot of quantiles suggests that this assumption

is valid at some price levels since the quantiles plot at four different price levels displayed in Figure 4.19e

to Figure 4.19h is clearly unparallel when ∆ = 3 and 6 but somewhat parallel when ∆ = 9 and 12. To

further examine this, we apply the log-rank test to all price levels from one tick to eighteen ticks and the

results reported in Table 4.14 indicates that all p-value when limit order price is higher than or equal to

seven ticks are all higher than 5% critical value. This indicates that it might be possible to divide the

effect of order cancellation rate into two regimes, as in previous sections. Additionally, the fact that the

estimated time scale factor, ψ, at each price level is largely different also suggests an interaction effect

between the order cancellation rate and the limit order price on the execution probability, which must be

properly addressed when developing a full model of the execution probability.

In summary, the execution probability is positively correlated with the order cancellation rate and

it is more appropriate to utilise the accelerated failure time model to model this effect rather than the

proportional hazards model. Nevertheless, the accelerated failure time assumption is not satisfied at all

price levels, but we can divide this effect into two regimes by limit order price so that one of which

satisfies the accelerated failure time assumption while the other cannot. The dependency on the limit

order price suggests an interaction effect between the order cancellation rate and the limit order price

on the execution probability, which should be addressed properly when developing a full model of the

execution probability.
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4.6 Distribution of execution probability
Unlike the previous two sections that estimate the execution probability using non-parametric methods,

this section will estimate the execution probability using parametric models with the aim to identify the

most suitable distribution for modelling the execution probability. Since the result in Section 4.4 suggests

that the most appropriate method for analysing the execution probability is the Kaplan-Meier estimator,

which is a non-parametric survival analysis method, this section will utilise parametric survival analysis

methods to model the execution probability.

As described in Section 2.4.3, parametric methods generally assume a specific parametric family of

survival distribution and estimate its parameters from the dataset using maximum likelihood methods.

Although any distribution over nonnegative values can be utilised to model the survival time distribution,

this section will focus only on the four most widely used distributions which are Weibull, log-normal,

log-logistic, and generalised gamma distribution. Among these four distributions, generalised gamma

distribution is the most complicated model which has exponential, Weilbull, log-normal and gamma

distribution as its special cases, and, thus, we expect it to be the most appropriate model for modelling

the execution probability.

Let us now analyse the distribution of the execution probability in the SFGK model. Since the

execution probability depends on several factors, we will analyse this distribution when all determinants

of the execution probability described in the previous section are kept fixed at some particular value so

that the data utilised in this analysis is not depend on any variables. To achieve this, we simulate the

SFGK model with parameter µ = 2, α = 0.5 and δ = 0.025 for 10, 000 rounds as described in Section

4.5.1. Particularly, in each round, the initial bid-ask spread is set to one tick while the number of order

at all price levels is set to 20, and the simulation is run until the simulation time reaches eight hours. The

first time that the transactional price reaches or crosses each price level is then recorded and utilised as

an estimation of the execution time of limit orders at the corresponding price level.

The results obtained from fitting Weibull, log-normal, log-logistic and generalised gamma distri-

butions to the data generated from the above simulations at each price level separately are displayed in

Figure 4.20. As expected, the results indicate that among these four distributions, generalised gamma

distribution is the best distribution for modelling the distribution of the execution probability, since its

curve is the closest to the result from the Kaplan-Meier estimator.

To confirm that the accelerated failure time model is not appropriate for modelling the execution

probability in the SFGK model since the effect of limit price does not satisfy the accelerate failure time

assumption, we further fit the accelerated failure time model with generalised gamma distribution as

a baseline distribution. Since the effect from the limit order price may not be linear, this dependency

is modelled by Chebyshev polynomial degree eight where Chebyshev polynomial degree n, Tn(x), is

defined by

Tn(x) = cosh(n arccosh(x)). (4.17)

Figure 4.21a illustrates the execution probability obtained by fitting the accelerated failure time model

to the execution time of limit buy orders at one to forty ticks away from the best ask price. The result
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(a) Weibull distribution
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(b) Log-normal distribution
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(c) Log-logistic distribution

0 5000 10000 15000 20000 25000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time [in second]

E
xe

cu
tio

n 
P

ro
ba

bi
lit

y

∆ = 3
∆ = 5
∆ = 7
∆ = 9
∆ = 11

Gamma
K−M Estimator

(d) Gamma distribution

Figure 4.20: Comparison between execution probability estimated from the Kaplan-Meier estimator and
the parametric methods assuming Weibull (a), log-normal (b), log-logistic (c) and generalised gamma
distribution.

clearly indicates the inability to fit the data of the accelerated failure time model as discussed in Section

4.5.1. However, the result when fitting the model to the execution time of limit buy orders at six to forty

ticks8 away from the best ask price displayed in Figure 4.21b lies nicely with the one obtained from the

Kaplan-Meier estimator when ∆ ≥ 6. This further confirms the fact that the effect of limit order price

can be divided into two regimes, one of which can be modelled by the accelerated failure time model

and the other cannot.

8We utilised the data from six ticks because the result in Section 4.5.1 indicate that effect of limit order price can be divided
into two regimes one of which satisfies the accelerated failure time assumption and a suitable threshold dividing this a limit order
price of six.
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(a) Using all price levels levels
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(b) Using only price levels greater or equal to six ticks distri-
bution

Figure 4.21: Comparision between the execution probability estimated from the Kaplan Meier estimator
and the accelerated failure time model when fit the model with the execution time data of limit buy orders
at all price levels (a) and all price levels greater than or equal to six ticks away from the best ask price
(b).

4.7 Summary

This chapter presents an in-depth review of previously proposed methods for modelling the execution

probability. The experiment with data generated from the SFGK model in Section 4.4 indicates that

the execution probability model and the execution time model produce similar results when the number

of cancelled orders is small, and they start to produce different results when there are more cancelled

orders. Among all models considered, the execution time model that utilises the Kaplan-Meier estimator

to handle cancelled orders seems to be the best performing method from both theoretical and empirical

points of view. The choice between the first-passage time and the execution time model depends on

the problem faced. Specifically, the execution time model generally provides a better estimation of the

real execution probability comparing to the first-passage time model since the first-passage time model

generally overestimates the real execution probability and will equal to the real execution probability

only when the considered order is at the top of the queue. However, the result obtained from the execution

time model might have a large standard error when analysing the execution probability over a long time

horizon, while the result from first-passage time has a small standard error over all time horizons. The

experiment with theoretical first-passage time model indicates that the estimated execution probability

can be quite different from empirical first-passage time model when the assumption about the asset price

dynamic is incorrect.

Section 4.5 analyses the relationship between the execution probability and other variables in the

SFGK model. The result indicates that the execution probability of a limit buy order is positively cor-

related with bid-ask spread, number of sell orders in the order book, market order arrival rate and order

cancellation rate, while it is negatively correlated with the distance from the opposite best price, the
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number of buy orders in the order book and the limit order arrival rate. Both graphical diagnostics and

test statistics suggest that it is more appropriate to model the effects from these determinants by the ac-

celerated failure time model rather than the proportional hazards model, since these effects do not satisfy

the proportional hazards assumption but satisfy the accelerated failure time assumption. Unfortunately,

the accelerated failure time assumption is not satisfied at all price levels but is satisfied only when the

distance from the opposite best price is higher than a threshold value which varies from effect to effect.

This limitation makes it inappropriate to directly apply the accelerated failure time model to model the

execution probability at all price levels and, hence, other alternatives are required to model the execution

probability at all price levels properly. Additionally, the dependency on the limit order price also suggests

an interaction effect between the limit order price and other determinants on the execution probability.

This suggests that the full model of the execution probability must also needs to handle these interaction

effects properly in order to obtain a good result.

In Section 4.6, we perform the experiment to determine the most appropriate distribution for mod-

elling the execution probability. The result indicates that among the four most widely used distributions

(i.e. Weibull, log-normal, log-logistic and generalised gamma distribution), the generalised gamma dis-

tribution is the most appropriate distribution for modelling the execution probability. We also confirm

the fact that the accelerated failure time assumption is not satisfied at all price levels but satisfied only

when the distance from the opposite best price is higher than a threshold value by fitting the accelerated

failure time model with the execution time at all price levels and the execution time at all price levels

is greater than six ticks. The result clearly indicates that the first model does not fit the data while the

second models fit the data very well especially when the limit order price is larger than six ticks.

In conclusion, the experiments in this section indicate that although survival analysis is the most

appropriate method for modelling the execution probability both from theoretical and empirical point

of view, directly applying traditional survival analysis techniques (i.e. the proportional hazards model

and the accelerated failure time model) to model the execution time data may not be appropriate since

the effect from all determinants does not satisfy the assumptions of those techniques. Consequently, a

new method that does not suffer from this limitation is required to model the execution probability more

properly, and this will be the main subject of the two following chapters.



Chapter 5

Execution probability and price fluctuation

This chapter proposes a new framework for modelling the execution probability at a speci-

fied time period from the distribution of asset price fluctuations during the interested period.

The advantage of this approach over traditional techniques is that it requires less data, as it

requires only one record per sample while traditional models generally require n records per

sample to model the execution probability at n price levels. Additionally, it also provides

a natural way to apply traditional time series analysis techniques to model the execution

probability. By applying the proposed approach to the historical dataset obtained from the

Multi Commodity Exchange of India and the New York Stock Exchange, we can empirically

demonstrate that future execution probability is strongly correlated to past execution proba-

bility, and the execution probability also has intraday seasonality patterns. To find a suitable

method to model the execution probability under this new framework, we perform several

experiments to compare the performance of applying major probability distributions with

non-negative support (e.g. the generalised gamma, the generalised F and the Burr distribu-

tion), as well as three major time series analysis techniques (i.e. the autoregressive moving

average model, the generalise autoregressive conditional heteroskedasticity model and the

autoregressive conditional duration model) to model the unconditional and conditional dis-

tributions of price fluctuations. The result indicates that the generalised F distribution is the

best distribution for modelling the unconditional distribution of price fluctuations, while the

autoregressive conditional duration model is the most appropriate method for modelling the

conditional distribution, and, thus, the best model for modelling the execution probability.

5.1 Introduction
Most equity and derivative exchanges around the world are nowadays organised as order-driven markets

where traders execute their trades by submitting either market orders or limit orders. Consequently, the

decision whether to submit market orders or limit orders to execute a trade is a fundamental problem

faced everyday by a trader in such markets. Although this decision can be modelled from many perspec-

tives, the most natural approach is to view these decisions as a trade-off between the payoffs associated

with limit orders and the risk of non-execution. On one hand, traders would prefer to place their orders
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very far from the best price since this will increase their payoff; on the other hand, the greater the dis-

tance from the best price, the greater the chance that the order will not be executed. Accordingly, traders

have to find the right trade-off between these two opposite choices in order to maximise the expected

profit obtained from the trade. Undoubtedly, one of the most important factors in valuing such trade-off

is a model of execution probability, as the expected profit that traders will get from limit orders is an

increasing function of the execution probability.

Although the execution probability is one of the most important components for valuing such a

trade-off, in our opinion, the research into how to model this probability is still very limited and requires

further investigation. Consequently, this chapter proposes a new method for modelling the probability

that a limit order, at a given price level, will be executed within a specified trading horizon from price

fluctuation during the interested period. The main advantage of this approach over traditional approaches

is that it requires less data to fit the model, especially when we want to model the execution probability

at several price levels simultaneously. Additionally, it also provides a natural way to apply traditional

time series analysis techniques to model the execution probability. Last but not least, it also enables us to

empirically illustrate that future execution probability is strongly correlated to past execution probability

and the execution probability also exhibits intraday seasonality.

To achieve this, the chapter starts by firstly analysing the relationship between price fluctuation

and the probability of execution in Section 5.2. Section 5.3 then further investigates the empirical prop-

erties of price fluctuations using the historical dataset collected from the Multi Commodity Exchange

of India and the New York Stock Exchange. In Section 5.4, we analyse the unconditional distribution

price fluctuations both theoretically and empirically. In particular, we derive the unconditional model of

price fluctuation when the asset price is assumed to follow the arithmetic Brownian motion, and fit the

historical dataset to the derived distribution as well as several well known probability distributions with

non-negative support including the exponential distribution, the Weibull distribution, the Gamma dis-

tribution, the generalised Gamma distribution, the Burr distribution, and the generalised F distribution.

Section 5.5 then compares the performance of applying three major time series analysis techniques (i.e.

the autoregressive moving average model, the generalised autoregressive conditional heteroskedasticity

and the autoregressive conditional duration model) to model the price fluctuation dataset. Since the result

indicates that the most appropriate time series analysis technique for modelling price fluctuation is the

autoregressive conditional duration (ACD) model, Section 5.6 further investigates the performance of

several extensions of the ACD model with the aim of finding the most appropriate model for modelling

the conditional distribution of price fluctuation. Finally, a summary of the result obtained in this chapter

is given in Section 5.7.

5.2 Price fluctuation and execution probability

This section establishes the relationship between price fluctuation and execution probability. Consider a

situation where we want to estimate the probability that a limit buy order submitted at a distance of ∆
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ticks away from the best ask price will be executed within a specified time T , denoted by PE(∆;T )1.

Let the best ask price at time t = 0 be p0. This probability can be estimated from the first-passage time

that the asset price reaches or crosses this limit order price, which equals p0 − ∆. In particular, this

probability can be estimated from:

PE(∆;T ) = Pr
{
inf{t; p(t) ≤ p0 −∆} ≤ T

}
,

= Pr
{
inf{p(t); 0 ≤ t ≤ T} ≤ p0 −∆

}
, (5.1)

= Pr
{
sup{p0 − p(t); 0 ≤ t ≤ T} ≥ ∆

}
,

where p(t) is the asset price at time t. Consequently, we define the price fluctuation during time T ,

denoted by MT , as the difference between the initial price level and the lowest price level reached

during time T , or equivalently

MT = sup{p0 − p(t); 0 ≤ t ≤ T}. (5.2)

Inserting Equation (5.2) into (5.1), we have

PE(∆;T ) = Pr
{
Mt ≥ ∆

}
=

∫ ∞

∆

fMT (p)dp = 1− FMT (∆), (5.3)

where fMT
(.) and FMT

(.) are the probability density function (p.d.f.) and the cumulative distribution

function (c.d.f.) of MT , respectively. Rearranging Equation (5.3), we obtain

FMT
(∆) = 1− PE(∆;T ), (5.4)

and

fMT
(∆) =

d

d∆
FMT

(∆;T ) = − d

d∆
PE(∆;T ). (5.5)

Consequently, Equation (5.3), (5.4) and (5.5) describe the relationship between the execution probability

and the distribution of price fluctuation. It also illustrates that any one of these three functions (i.e. the

execution probability, the p.d.f. and the c.d.f. of price fluctuation) uniquely determines the other two

and thus if one function is known the rest can be derived mathematically. While the focus of execution

probability discussed in previous chapters is to model the execution probability either directly or from

the execution time distribution, this chapter will focus on modelling the distribution of price fluctuation

and utilise these relations to obtain the execution probability.

5.3 Statistical properties of price fluctuation
This section analyses the statistical properties of price fluctuation using the historical dataset obtained

from the Multi Commodity Exchange of India (MCX) and the New York Stock Exchange (NYSE).

Section 5.3.1 starts by giving a detailed description of the dataset utilised in this study. The statistical
1The execution probability of a limit sell order can be estimated in the same manner; hence, this section will only focus on the

execution probability of a limit buy order
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properties of price fluctuation are then empirically analysed in Section 5.3.2, while the dependency

between price fluctuation, return and volatility are empirically analysed in Section 5.3.3.

5.3.1 Price fluctuation databases and data preparation

MCX trading

Commodity futures are one of the most actively traded futures contracts, and the Multi Commodity

Exchange of India (MCX) is one of the major exchanges for such contracts. During 2009, MCX ranked

first in silver, second in gold, copper and natural gas, and third in crude oil in terms of number of futures

contracts traded in the world, as per data compiled from the exchange’s website. The commodity futures

trading at MCX is based on an electronic screen-based trading system. It is a continuous auction system

with automatic electronic order matching where traders can submit either limit orders or market orders

to execute their trades. The regular trading hours at MCX generally start at 10:00 and end at 23:30 from

Monday to Friday and 14:00 on Saturday. The ending time is extended to 23:55 during day light savings

period, which is typically between November and March of the following year.

The data sets utilised in this study contain time stamped records of any change in quantities of limit

orders at the best bid and the best ask price as well as all transactions happening during trading hours,

which were manually recorded from the Reuters 3000 Xtra platform during 11/08/2008 to 03/03/2009.

Accordingly, this database allows us to compute price fluctuations directly from the definition in Equa-

tion (5.2). Particularly, let a(t) be the best ask at time t, b(t) be the best bid at time t and p(t) be the last

transactional price at time t. Bid price fluctuations, denoted by MB
T , and ask price fluctuations, denoted

by MA
T , during time period T compute at time t0 can be computed from

MB
T = a(t0)−min{p(t); t0 ≤ t ≤ t0 + T},

and

MA
T = max{p(t); t0 ≤ t ≤ t0 + T} − b(t0).

Consequently, the price fluctuations data sets utilised in this study are generated from this database by

applying the above equations at time t0 = {10:20, 10:20+T , 10:20+2T , . . . , 23:20−T} when T = 5, 10

and 30 minutes, and the resulting dataset is, thus, a time series of price fluctuations computed at three

different time frames.

NYSE trading

Trading at the New York Stock Exchange (NYSE) is based on the so-called hybrid system, i.e. the

trading mechanism combines a market maker system with an order book system. For each stock, one

market maker (specialist) has to manage the trading and quote process and has to guarantee the provision

of liquidity, when necessary, by taking the other side of the market. Regular trading at NYSE starts at

9:30 and ends at 16:00.

We utilise a historical data set provided by Dukascopy, which contains information about trans-

actional prices (i.e. opening price, closing price, highest price and lowest price) and trading volumes
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sampling at every ten minutes from January 2006 to January 2010. Since this data set consists only of

the transactional price and contain no information about the order book, no best bid or best ask prices are

available. Consequently, the exact price fluctuation cannot be directly observed and need to be estimated

by using the transactional price at the beginning of the period instead of the best bid and the best ask

price. Specifically, let p(t) be the transactional price at time t. The bid price fluctuation and the ask price

fluctuation during time period T compute at time t0 can be estimated from

MB
T = p(t0)−min{p(t); t0 ≤ t ≤ t0 + T},

and

MA
T = max{p(t); t0 ≤ t ≤ t0 + T} − p(t0).

Similar to the previous section, the price fluctuations data sets are then generated by applying the above

equations at time t0 = {9:30, 9:30+T , 9:30+2T , . . . , 16:00−T} when T = 10, 30 and 60 minutes.

Example of price fluctuation series

Before discussing the statistical properties of price fluctuation time series in the next section, this section

illustrates an example of buy and sell price fluctuations computed from the database discussed in the

previous section.
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Figure 5.1: Gold futures prices (a) from 25 August to 27 September 2008 together with the correspond-
ing absolute log-return (b), buy price fluctuations (c), and sell price fluctuations (d). The x-axis denotes
time in five-minute units.
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Figure 5.1 shows nearly 3000 consecutive five-minute gold futures prices, covering a period of

one month from 25 August to 27 September 2008, together with the corresponding return and price

fluctuation series. During this period, the gold futures price begins at about 11,740 Rs, raises to just

under 12,030 Rs during the following six trading days, and then decreases to 11,320 in the next eight

trading days. The futures price then rises steadily to just below 12,000 Rs before rising sharply to 13,150

Rs in one trading day. This price series clearly illustrates that there are large changes in the volatility,

since the gold futures price changes very quickly at the end of the series but changes much slower at

the beginning of the series. Additionally, the time series of absolute log-return displayed in Figure 5.1b

also exhibits a characteristic known as volatility clustering, which indicates that large price changes tend

to be followed by large changes and small changes tend to be followed by small changes. This implies

that future absolute returns are not independent of their history, and the plot of their autocorrelation

function will generally display a positive and significant autocorrelation at several lags ranging from a

few minutes to several weeks. This characteristic generally occurs not only on absolute return series but

also on series of other quantities that can be utilised as a proxy for volatility such as square returns and

the ranges between the highest and the lowest price.

Since the summation of bid price fluctuations and ask price fluctuations is approximately equal to

the ranges between the highest and the lowest price, we expect that the properties of these price fluctua-

tions should somewhat resemble the properties of the volatility mentioned above. In fact, the plot of bid

price fluctuations and ask fluctuations, displayed in Figure 5.1c and Figure 5.1d, provide a good evidence

for supporting this expectation as they clearly indicate that a large fluctuation is generally followed by

large fluctuations and a small fluctuation is generally followed by small fluctuations. However, we do

not expect their properties to be completely similar, as the volatility is not related to the direction of

price changes but this direction seems to be relevant for bid and ask price fluctuations. This is because

the plot of bid and ask price fluctuations suggests that ask price fluctuations tend to be larger than bid

price fluctuations when the price increases as can be observed during the sharp increase at the end of the

period, while bid price fluctuations tend to be larger than ask price fluctuations when the price decreases

as can be seen during the down turn period when the gold futures price decreases from 12,030 Rs to

11,320 Rs. In the next section, we will test these features quantitatively.

5.3.2 Statistical properties of price fluctuation

In this section we present some of the stylised facts about financial price fluctuation time series data. We

focus here on the gold, silver and natural gas futures contracts traded at the MCX and the GE, IBM and

Microsoft stock traded at NYSE.

Table 5.1 shows descriptive statistics of bid and ask price fluctuations for MCX trading and NYSE

trading. The statistics suggest that both bid and ask price fluctuations are generally higher when the

period is larger, indicating that the longer the order stays in the order book, the higher the probability

that it will be executed. The statistics also suggest that the 5%, 25% and 50% quantiles of bid and

ask price fluctuations are roughly equal to each other in all situations, while 75% and 95% quantiles

are somewhat different in some situations. The p-value from the bootstrap Kolmogorov-Smirnov test
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Table 5.1: Descriptive statistics of price fluctuations (number of observations, mean, standard deviation,
maximum, quantiles, Ljung-Box (χ2(20)) statistic), Lo’s rescale R/S statistic and the p-value from the
bootstrap Kolmogorov-Smirnov test based on trading on MCX and NYSE.

Obs Mean S.D. MAX 0.05q 0.25q 0.50q 0.75q 0.95q LB(20) R/S KS
Gold futures price fluctuations, MCX (11/08/2008 to 03/03/2009)

BID,T=5 20097 10.82 13.43 391.00 0.00 3.00 7.00 14.00 34.00 9124 3.767 0.036
ASK,T=5 20097 10.95 13.03 474.00 0.00 3.00 7.00 15.00 34.00 10257 3.456 -
BID,T=10 10123 15.53 18.84 391.00 0.00 4.00 10.00 20.00 49.00 3385 3.137 0.257
ASK,T=10 10123 15.64 18.35 474.00 0.00 4.00 10.00 21.00 49.00 3440 2.712 -

Silver futures price fluctuations, MCX (11/08/2008 to 03/03/2009)
BID,T=5 20083 23.98 29.51 571.00 0.00 5.00 15.00 32.00 77.00 8918 3.952 0.680
ASK,T=5 20083 23.28 26.88 465.00 0.00 5.00 15.00 31.00 74.00 8680 3.579 -
BID,T=10 10116 33.65 39.14 571.00 0.00 9.00 22.00 45.00 101.00 3444 3.307 0.433
ASK,T=10 10116 32.51 35.74 465.00 0.00 9.00 22.00 44.00 101.00 3524 2.820 -

Natural gas futures price fluctuations, MCX (11/08/2008 to 03/03/2009)
BID,T=5 18565 0.57 0.96 22.70 0.00 0.00 0.20 0.70 2.20 5931 3.154 0.026
ASK,T=5 18565 0.52 0.84 16.60 0.00 0.00 0.20 0.70 2.00 6023 2.902 -
BID,T=10 9637 0.80 1.19 23.10 0.00 0.10 0.40 1.00 2.90 2732 2.363 0.016
ASK,T=10 9637 0.72 1.00 12.70 0.00 0.10 0.40 1.00 2.60 3501 2.247 -

GE price fluctuations, NYSE (01/01/2006 to 01/01/2010)
BID,T=10 41431 0.05 0.07 3.70 0.00 0.01 0.03 0.06 0.14 38503 11.556 0.041
ASK,T=10 41431 0.04 0.06 2.63 0.00 0.01 0.03 0.06 0.14 50495 10.630 -
BID,T=30 14084 0.07 0.11 3.71 0.00 0.01 0.04 0.09 0.24 16085 8.295 0.150
ASK,T=30 14084 0.07 0.11 2.89 0.00 0.01 0.04 0.09 0.25 17259 7.487 -

IBM price fluctuations, NYSE (01/01/2006 to 01/01/2010)
BID,T=10 42693 0.16 0.22 5.49 0.00 0.04 0.10 0.20 0.51 34888 10.760 0.138
ASK,T=10 42693 0.16 0.22 7.87 0.01 0.04 0.10 0.20 0.50 29764 11.181 -
BID,T=30 14237 0.27 0.37 7.27 0.01 0.06 0.17 0.35 0.90 11206 7.848 0.301
ASK,T=30 14237 0.27 0.36 7.87 0.01 0.06 0.17 0.34 0.87 7993 7.874 -

Microsoft price fluctuations, NYSE (01/01/2006 to 01/01/2010)
BID,T=10 42655 0.05 0.06 3.03 0.00 0.02 0.04 0.06 0.14 14393 10.391 0.378
ASK,T=10 42655 0.05 0.06 3.86 0.00 0.02 0.04 0.06 0.14 12686 10.166 -
BID,T=30 14226 0.08 0.10 3.04 0.01 0.03 0.06 0.11 0.25 4649 7.539 0.987
ASK,T=30 14226 0.08 0.10 3.86 0.01 0.03 0.06 0.10 0.26 3976 7.248 -

[89, 78] can reject the hypothesis that the observed bid and ask price fluctuations are drawn from the

same distribution with 95% confidence only for natural gas futures, gold futures (when T=5) and GE

(when T=10). Consequently, this provides evidence that the distributions of bid and ask price fluctuations

are not necessary symmetrical and we may need to model them separately.

Focusing on distributional aspects of the price fluctuation, we observe that the standard deviation

of price fluctuations series is greater than the mean estimated from the same series in all datasets. This

indicates an overdispersion of the observed distribution relative to an exponential distribution, whose

standard deviation must always be lower than its mean. Consequently, this evidence suggests that the

exponential distribution might not be a good candidate for modelling the price fluctuation distribution.

This overdispersion effect is also reflected in the distributional shape of the price fluctuations. Figure 5.2

and 5.3 show kernel density plots [46] of the price fluctuation for MCX and NYSE trading respectively.

The density depicts a strong right-skewed shape, indicating a high occurrence of relatively low price

fluctuations and a strongly declining proportion of higher price fluctuations. The density also illustrates

that the modes of these distributions are generally higher than zero in most of the situations, which is yet

more evidence against the exponential distribution.

The Ljung-Box (LB) statistics [59] reported in Table 5.1 formally tests the null hypothesis that the

first 20 autocorrelations are zero and are χ2(20) distributed with a critical value of 31.41 at the 5%

significance level. Based on these statistics, the null hypothesis of no autocorrelation is easily rejected
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Figure 5.2: Kernel density plots (Epanechnikov kernel with optimal bandwidth) of price fluctuations of
gold, silver and natural gas futures contracts based on MCX trading.
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Figure 5.3: Kernel density plots (Epanechnikov kernel with optimal bandwidth) of price fluctuations of
GE, IBM and Microsoft based on NYSE trading.

for all price fluctuations studied in the table.

Figure 5.4 and 5.5 show the autocorrelation function (ACF) of bid and ask price fluctuations for

MCX and NYSE trading respectively. In general, we observe that the patterns of the ACF in these two

markets are quite different, while the ACF for instruments traded in the same market are less different.

Price fluctuations on the MCX (see Figure 5.4) have relatively low autocorrelations compared to those

on the NYSE (see Figure 5.5). This indicates that price fluctuations on the NYSE generally have a

stronger clustering of price fluctuations than those on the MCX. In all cases, the autocorrelation functions

have clear seasonality pattern, as the peaks in the autocorrelation functions are associated with time

period that dates back to previous trading days. Additionally, these price fluctuation processes are very

persistent since the autocorrelation functions decay with a slow, hyperbolic rate, which is typical for

long memory processes. Lo’s rescaled R/S statistics [60] in Table 5.1 formally test the null hypothesis

that the process is short-memory, and we can reject this null hypothesis with 95% confidence when

the statistics are outside the interval [0.809, 1.862]. Based on these statistics, the null hypothesis of

short range dependency is easily rejected for all situations. Consequently, these results represent strong

evidence supporting long-memory in price fluctuation processes.

Figure 5.6 and 5.7 show the intraday seasonality patterns of price fluctuations based on cubic spline
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Figure 5.4: Autocorrelation function of price fluctuations for gold futures, silver futures and natural gas
futures contracts based on MCX trading. Dotted line represents 99% confidence interval. The x-axis
denotes the lag.
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Figure 5.5: Autocorrelation function of price fluctuations for GE, IBM and Microsoft based on NYSE
trading. Dotted line represents 99% confidence interval. The x-axis denotes the lag.

regressions. For MCX trading (see Figure 5.6), we find the intraday seasonality of price fluctuations

in the MCX has an inverted U-shaped pattern. Specifically, the market starts with relatively low price

fluctuations and increases steadily throughout the trading day with a peak around 19:00 which corre-

sponding to the opening time of most American exchanges during the daylight saving period. The price

fluctuations then decrease and finish the day with a slightly higher level than at the beginning of the day.

Interestingly, the intraday seasonality pattern of the NYSE trading (see Figure 5.7) presents a completely

different picture. In contrast to trading at the MCX, intraday seasonality pattern in the NYSE exhibits

U-shaped pattern where high price fluctuations are observed after opening and before the closing of the

market with the lowest level around lunch time period.

Summarising from these findings, we can conclude that the form of market seems to have a strong

impact on the dynamics of the resulting price fluctuations, since the strength and persistence of serial

dependency in price fluctuations mainly differ between the individual exchanges and less between the

different assets traded in the same exchange. We also find evidence of asymmetry between bid and ask

price fluctuations which suggest that we might need to model them separately. Additionally, these price

fluctuation processes seem to have long range dependency with clear intraday seasonality patterns.
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Figure 5.6: Cubic spline function of price fluctuations for gold futures, silver futures and natural gas
futures based on MCX trading. The x-axis denotes the local calendar time.
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Figure 5.7: Cubic spline function of price fluctuations for GE, IBM and Microsoft based on NYSE
trading. The x-axis denotes the local calendar time.

5.3.3 Dependency between price fluctuations, returns and volatilities

This section studies the dependency between bid price fluctuation, ask price fluctuation, return and

volatility using the same dataset analysed in the previous section. Particularly, we will focus on the

gold, silver, and natural gas futures contracts traded at the MCX and the GE, IBM and Microsoft stocks

traded at the NYSE.

Table 5.2 shows the correlation between price fluctuations, return and volatility as calculated by the

three correlation measures: Pearson product-moment correlation coefficient, Spearman’s rank correla-

tion coefficient and Kendall tau rank correlation coefficient. The difference between these three measures

is that Pearson’s coefficient detects only linear dependency between two variables while Spearman’s co-

efficient assesses how well the relationship between two variables can be described using a monotonic

function and Kendall’s coefficient measures the similarity of the orderings of the data when ranked by

each quantity. The return in the MCX is calculated from the change of the logarithm of the mid-price,

while the return in the NYSE is calculated from the change of the logarithm of the opening price. Since

the volatility cannot be directly observed from the historical price process, we will utilise the absolute

log-return and the range between the highest and the lowest price as its proxy. The correlation coefficients

obtained from these three methods suggest that there is a strong dependency between price fluctuations,
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Table 5.2: Correlation between bid price fluctuations, ask price fluctuations, return and volatility as
measured by Pearson’s product-moment correlation coefficient, Kendall’s tau rank correlation coefficient
and Spearman’s rank correlation coefficient.

Pearson’s coefficient Spearman’s coefficient Kendall’s coefficient
MB

T MA
T r |r| h− l MB

T MA
T r |r| h− l MB

T MA
T r |r| h− l

Gold futures price fluctuations, MCX (11/08/2008 to 03/03/2009)

T = 5
MB

T - -0.13 -0.64 0.47 0.67 - -0.32 -0.67 0.27 0.51 - -0.23 -0.51 0.20 0.40
MA

T -0.13 - 0.61 0.46 0.65 -0.32 - 0.68 0.29 0.52 -0.23 - 0.52 0.22 0.41

T = 10
MB

T - -0.16 -0.65 0.47 0.66 - -0.36 -0.69 0.25 0.50 - -0.25 -0.53 0.19 0.39
MA

T -0.16 - 0.63 0.46 0.64 -0.36 - 0.69 0.29 0.50 -0.25 - 0.53 0.22 0.39
Silver futures price fluctuations, MCX (11/08/2008 to 03/03/2009)

T = 5
MB

T - -0.10 -0.61 0.46 0.71 - -0.22 -0.61 0.27 0.58 - -0.15 -0.45 0.20 0.44
MA

T -0.10 - 0.58 0.40 0.63 -0.22 - 0.62 0.26 0.56 -0.15 - 0.46 0.19 0.43

T = 10
MB

T - -0.14 -0.64 0.46 0.69 - -0.27 -0.65 0.26 0.55 - -0.19 -0.48 0.19 0.42
MA

T -0.14 - 0.61 0.40 0.62 -0.27 - 0.64 0.26 0.53 -0.19 - 0.48 0.19 0.40
Natural gas futures price fluctuations, MCX (11/08/2008 to 03/03/2009)

T = 5
MB

T - 0.04 -0.49 0.40 0.76 - -0.04 -0.50 0.25 0.65 - -0.03 -0.38 0.19 0.53
MA

T 0.04 - 0.44 0.35 0.67 -0.04 - 0.47 0.23 0.62 -0.03 - 0.35 0.17 0.50

T = 10
MB

T - 0.02 -0.52 0.42 0.77 - -0.05 -0.51 0.28 0.66 - -0.04 -0.38 0.21 0.52
MA

T 0.02 - 0.47 0.34 0.65 -0.05 - 0.49 0.23 0.61 -0.04 - 0.37 0.17 0.48
GE price fluctuations, NYSE (01/01/2006 to 01/01/2010)

T = 10
MB

T - -0.10 -0.66 0.59 0.70 - -0.27 -0.64 0.34 0.53 - -0.20 -0.49 0.26 0.42
MA

T -0.10 - 0.60 0.50 0.64 -0.27 - 0.64 0.32 0.53 -0.20 - 0.49 0.24 0.42

T = 30
MB

T - -0.11 -0.66 0.59 0.69 - -0.23 -0.65 0.37 0.54 - -0.17 -0.50 0.28 0.43
MA

T -0.11 - 0.60 0.49 0.65 -0.23 - 0.63 0.33 0.53 -0.17 - 0.48 0.25 0.42
IBM price fluctuations, NYSE (01/01/2006 to 01/01/2010)

T = 10
MB

T - -0.04 -0.62 0.55 0.69 - -0.12 -0.60 0.39 0.60 - -0.09 -0.46 0.29 0.47
MA

T -0.04 - 0.65 0.60 0.70 -0.12 - 0.61 0.39 0.58 -0.09 - 0.46 0.29 0.46

T = 30
MB

T - -0.05 -0.63 0.55 0.69 - -0.12 -0.61 0.38 0.61 - -0.09 -0.46 0.29 0.48
MA

T -0.05 - 0.65 0.58 0.69 -0.12 - 0.61 0.38 0.57 -0.09 - 0.46 0.28 0.45
Microsoft price fluctuations, NYSE (01/01/2006 to 01/01/2010)

T = 10
MB

T - -0.14 -0.69 0.58 0.66 - -0.32 -0.65 0.30 0.51 - -0.24 -0.51 0.23 0.41
MA

T -0.14 - 0.66 0.53 0.65 -0.32 - 0.66 0.28 0.50 -0.24 - 0.51 0.22 0.40

T = 30
MB

T - -0.14 -0.70 0.58 0.66 - -0.29 -0.67 0.32 0.52 - -0.21 -0.51 0.24 0.41
MA

T -0.14 - 0.66 0.53 0.65 -0.29 - 0.66 0.31 0.51 -0.21 - 0.51 0.23 0.41

return and volatility. Specifically, we found that price fluctuation is highly correlated with return, since

the correlation coefficient between price fluctuation and log-return has a high absolute value, with large

negative value for bid price fluctuation and large positive value for ask price fluctuation. This suggests

that price fluctuation is dependent on the direction of the price change in the sense that bid price fluctu-

ations tend to have small (large) value while ask price fluctuation tend to have large (small) value when

the price increases (decreases) which is consistent with the observation discussed in Section 5.3.1. Since

bid price fluctuation is negatively correlated with return, while ask price fluctuation is positively corre-

lated with return, one might expect bid and ask price fluctuation to be negatively correlated with each

other. However, the result indicates that this correlation is generally weaker than the correlation between

price fluctuation and return, especially in the case of natural gas futures where the correlation coefficient

is near zero. Additionally, the result also suggests that price fluctuation is positively correlated with

volatility, as the correlation coefficient between price fluctuation and absolute log-return as well as the

range between the highest and the lowest price has high positive value in all cases. This indicates that

price fluctuation is generally high when the volatility is high and vice versa.

Although the above result suggests that price fluctuation is highly correlated with return and volatil-

ity during the same time period, this has nothing to do with when we want to forecast next price fluctua-

tion from past return and volatility. To investigate this, we further compute the correlation between price
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Figure 5.8: Correlation between price fluctuations and return at several time lags for gold futures, silver
futures and natural gas futures contracts based on MCX trading. Dotted line represents 99% confidence
interval. The x-axis denotes the lag.
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Figure 5.9: Correlation between price fluctuations and return at several time lags for GE, IBM and
Microsoft based on NYSE trading. Dotted line represents 99% confidence interval. The x-axis denotes
the lag.

fluctuation, return and volatility at several time lags. The correlation between price fluctuation and return

displayed in Figure 5.8 and 5.9 indicates that correlation between price fluctuation and return is signifi-

cant only for the first few lags and has the highest value at zero lag. In most situations, the correlation at

the first lag generally has a different sign than the correlation at the zero lag. This reflects the autocorre-

lation property of return series which generally has negative correlation for the first few lags. However,

the correlation at other lags is typically weak and might not have influence on future price fluctuation

except for the case of natural gas futures contract where the first lag is larger than 0.1. The correlation

between price fluctuation and volatility illustrated in Figure 5.10 and 5.11 is significant at all time lags

considered, and has a clear seasonality pattern since the higher correlation is associated with time period

that dates back to previous trading days. Consequently, this correlation has characteristics similar to the

autocorrelation function of price fluctuations, which further supports the idea that the properties of price

fluctuation are similar to the properties of volatility.

Briefly, the result reported in this section indicates that price fluctuation is heavily dependent on the

direction of return during the same period, in the sense that buy price fluctuation is negatively correlated

with return while sell price fluctuation is positively correlated with return. However, the correlation

between price fluctuation and previous return is typically weak and might not be viable for predicting



5.4. Unconditional distribution of price fluctuation 109

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

Gold future buy price fluctuations, T=5

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

Silver future buy price fluctuations, T=5

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

Natural gas future buy price fluctuations, T=5

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

Gold future sell price fluctuations, T=5

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

Silver future sell price fluctuations, T=5

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

Natural gas future sell price fluctuations, T=5

Figure 5.10: Correlation between price fluctuations and volatility at several time lags for gold futures,
silver futures and natural gas futures contracts based on MCX trading. Dotted line represents 99%
confidence interval. The x-axis denotes the lag.
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Figure 5.11: Correlation between price fluctuations and volatility at several time lags for GE, IBM and
Microsoft based on NYSE trading. Dotted line represents 99% confidence interval. The x-axis denotes
the lag.

future price fluctuation. Moreover, the result indicates that price fluctuation is strongly correlated to

volatility, as estimated by the range between the highest and lowest price, since the correlation between

price fluctuation and volatility has similar properties to the autocorrelation of price fluctuation.

5.4 Unconditional distribution of price fluctuation
Before studying the conditional model of price fluctuations, this section firstly analyses the unconditional

distribution of price fluctuations in order to gain more insight into the method for estimating this distri-

bution from the dataset, as well as identify a suitable distribution for use as a baseline when we estimate

the conditional model in the next section. To achieve this, we firstly derive the unconditional distribution

of price fluctuation when the asset price is assumed to follow the arithmetic Brownian motion, and fit the

derived distribution to the price fluctuation dataset described in Section 5.3.1. The result suggests that

this distribution is not flexible enough to model the price fluctuation dataset and other alternative models

might be required. To search for an alternative model, we perform an experiment to fit the price fluc-

tuation dataset to several continuous distributions with non-negative support including the exponential,

Weibull, gamma, generalised gamma, generalised F, and Burr distribution. However, the result obtained

from these distributions still does not provide satisfactory results and this is caused by the fact that there
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is a lot of probability mass at zero which is not supported by these distributions. To solve this prob-

lem, we propose to model this dataset using a discretised version of the above distributions, which not

only allow a probability mass at zero but also directly account for the discreteness characteristic of the

dataset. The result obtained by fitting this discrete version to the price fluctuation dataset indicates that

these discretised distributions provide better fit than their continuous counterparts.

This section is organised as follows. Section 5.4.1 studies the unconditional distribution of price

fluctuation when the asset price is assumed to follow arithmetic Brownian motion. The experiment to

fit the price fluctuation dataset to several continuous distributions is discussed in Section 5.4.2. Section

5.4.3 proposes a new method to fit this dataset by using a discretized version of the above continuous

distributions. In Section 5.4.4, the goodness-of-fit of the proposed model to the price fluctuation dataset

is investigated, and a comparison is drawn between the continuous distribution and their discretised

version. Finally, there is a brief summary and discussion in Section 5.4.5.

5.4.1 Distribution implied by the arithmetic Brownian motion

This section studies the unconditional distribution of price fluctuations when the asset price is assumed

to follow the arithmetic Brownian motion with drift, which has the form:

dp(t) = σdWt + µdt,

where p(t) is the asset price at time t, Wt is a Wiener process, σ is the constant volatility and µ is the

constant growth rate (or drift). Assuming that the asset price starts at some specified value p0 > 0 at

t = 0, one can derive the probability that the asset price hits a price level p = 0 for the first time at time

t (see [51] page 353–354 and chapter 10 of [93] for example) as

f(t; p0, µ, σ) =
p0√

2πσ2t3
exp

(
− (p0 + µt)2

2σ2t

)
.

Since the probability of price change under this assumption is not dependent on price level, this proba-

bility can be thought of as the probability that a limit buy order submitted at p0 ticks below the current

price will be executed at time t. Consequently, the probability that a limit buy order, submitted at a

distance of ∆ ticks away from the best price, will be executed within time T is given by the cumulative

distribution function of the above probability density function which can be computed from one minus

the probability of the asset price not hitting the desired level. Using Harrison ([43], page 14, equation

11), this gives us:

PE(∆;T, µ, σ) =

∫ T

0

f(t;∆, µ, σ)dt

= 1−
∫ ∞

T

f(t; ∆, µ, σ)dt

= Φ

(
−∆− µT

σ
√
t

)
+ exp

(
−2µ∆

σ2

)
Φ

(
−∆+ µT

σ
√
t

)
, (5.6)
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where Φ(.) is the cumulative distribution function of a standard normal distribution. Inserting Equation

(5.6) into (5.4) and (5.5), we have

FMT
(∆;µ, σ) = 1− Φ

(
−∆− µT

σ
√
T

)
− exp

(
−2µ∆

σ2

)
Φ

(
−∆+ µT

σ
√
T

)
, (5.7)

and

fMT
(∆;µ, σ) =

d

d∆
FMT

(∆),

= ϕ

(
−∆− µT

σ
√
T

)(
1

σ
√
T

)
+ exp

(
−2µ∆

σ2

)
ϕ

(
−∆+ µT

σ
√
T

)(
1

σ
√
T

)
+exp

(
−2µ∆

σ2

)
Φ

(
−∆+ µT

σ
√
T

)(
2µ

σ2

)
, (5.8)

where ϕ(.) is the probability density function of a standard normal distribution. When µ = 0, which is

corresponding to the case of the arithmetic Brownian motion with no drift, the above equations reduce

to

FMT (∆;µ = 0, σ) = 1− Φ

(
−∆

σ
√
t

)
− Φ

(
−∆

σ
√
T

)
= 1− 2Φ

(
−∆

σ
√
T

)
, (5.9)

and

fMT
(∆;µ = 0, σ) = ϕ

(
−∆

σ
√
T

)(
1

σ
√
T

)
+ ϕ

(
−∆

σ
√
T

)(
1

σ
√
T

)
,

=
2

σ
√
T
ϕ

(
−∆

σ
√
T

)
,

=
2√

2πσ2T
exp

(
− ∆2

2σ2T

)
, (5.10)

which is basically a half-normal distribution with zero mean and variance equals to σ2T . Consequently,

the expectation and variance of price fluctuation, in this case, is given by
√

2σ2T/π and σ2T (1− 2/π),

respectively.

To gain more insight into the properties of this distribution, Figure 5.12 plots the probability density

function and the implied execution probability of this distribution in several parameter settings. The

figures in the first column illustrate the distribution when we vary the drift parameter. The result indicates

that more probability mass will move towards zero when the drift parameter increases, while it will move

away from zero when the drift parameter decreases. Consequently, this suggests that the probability of

executing at lower price levels will be low when the drift parameter is high, while this probability will

be high when the drift parameter is low. The figuries in the second column convey a different result for

the volatility parameter, since it indicates that there will be more probability mass near zero when the

volatility parameter is decreasing. This suggests that the probability of executing at lower price levels

will be lower when the volatility parameter is lower. Finally, the figures in the last column illustrate that

the longer the time horizon, the higher chance that the order will be executed.

Although we can estimate the parameters of this model by firstly estimating the parameters µ and σ

of the arithmetic Brownian motion from the asset price dynamics, and then using the estimated param-
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Figure 5.12: The probability density function of price fluctuation (the top row) and the implied execution
probability (the bottom row) when the asset price dynamic is assumed to follow the arithmetic Brownian
motion at several parameter settings.

eters to estimate the distribution of the price fluctuation, it might be better to estimate these parameters

directly from historical price fluctuation dataset. Additionally, the dependency on the time period T of

the distribution in Equation (5.8) is somewhat unpleasant. We can remove this variable from the equation

by reparameterisation with parameters ν and ρ where

ν =
µT

σ
√
T

and ρ =
1

σ
√
T
,

so that the distribution in Equation (5.8) reduces to

fMT (∆; ν, ρ) = ϕ(−ρ∆− ν)ρ+ exp(−2ρν)ϕ(−ρ∆+ ν)ρ+ exp(−2ρν)Φ(−ρ∆+ ν)(2ρν). (5.11)

Accordingly, the maximum likelihood estimator of these two parameters, denoted by ν̂ and ρ̂, given a

sample of price fluctuations ∆ = (∆1, . . . ,∆N ) is given by

(ν̂, ρ̂) = argmax
(ν,ρ)

N∑
i=1

log fMT
(∆i; ν, ρ). (5.12)

For a special case when µ = 0, or equivalently ν = 0, the maximum likelihood estimator of ρ reduces to

ρ̂ = argmax
ρ

N∑
i=1

log (2ρϕ(ρ∆)) = argmax
ρ

N log ρ−
N∑
i=1

(ρ∆)2/2.
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The derivative of this likelihood function with respect to the parameter ρ is

d

dρ

(
N log ρ−

N∑
i=1

(ρ∆)2

2

)
=
N

ρ
− ρ

N∑
i=1

∆2,

which will equal to zero when ρ =
√
N/
∑N
i=1 ∆

2. Consequently, the maximum likelihood estimator

of ρ when ν = 0 is

ρ̂ =

√
N∑N
i=1 ∆

2
. (5.13)

To measure the goodness of fit of the above distributions to the price fluctuation dataset described in

Section 5.3.1, we fit the above distributions to the buy price fluctuations dataset at three different trading

horizons, and measure the goodness of fit using Pearson’s χ2 goodness-of-fit test, which is a statistical

test generally used to measure the departure of the data from the reference model. This test statistic is

constructed from the difference between the observed frequency and the theoretical frequency implied

by the reference model. Particularly, if all possible outcomes are classified into K different categories,

the χ2 goodness of fit statistics can be computed from

X2 =

K∑
k=1

(Ok − Ek)
2

Ek
, (5.14)

where Ok is the observed frequency of the observation belonging to the k-th category and Ek is the

theoretical frequency of the k-th category. In our setting,K is set at one plus the price level that contained

the first 98% of the observations, or equivalently

K = 1 +min
{
k ∈ N | Pr {∆i ≤ δk} < 0.98

}
,

where δ is the tick size of the instrument considered. Accordingly, the observed frequency and theoretical

frequency for the k-th category can be computed from

Ok =
N∑
i=1

I{∆i = δk},

and

Ek = N
[
FMT

(
δ(k + 1)

)
− FMT

(
δk
)]
,

for k = 0, . . . ,K − 1; and

OK =

N∑
i=1

I{∆i ≥ δK},

and

EK = N
[
1− FMT (δK)

]
,

for the last category. The asymptotic distribution of this test statisticX2 is a χ2 distribution withK−p−1

degree of freedom.
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Table 5.3: Maximum log-likelihood estimates of the distribution implied by the arithmetic Brownian
motion both with and without drift for the buy price fluctuation dataset together with the maximum log-
likelihood, Pearson’s χ2 goodness of fit statistic and the associated p-value.

Model T LOGLIK X2 p-value ν ρ
Gold futures buy price fluctuations, MCX

w drift 60 -6955 547.96 0.00 -0.12 0.03
w/o drift 60 -6984 627.83 0.00 - 0.03
w drift 30 -17725 1172.02 0.00 -0.11 0.05

w/o drift 30 -17852 1216.47 0.00 - 0.05
w drift 10 -31884 5358.55 0.00 -0.10 0.07

w/o drift 10 -32180 4689.79 0.00 - 0.07
Silver futures buy price fluctuations, MCX

w drift 30 -7919 493.54 0.00 -0.08 0.02
w/o drift 30 -7976 481.34 0.00 - 0.02
w drift 10 -20837 1610.12 0.00 -0.08 0.03

w/o drift 10 -20966 1616.05 0.00 - 0.03
w drift 5 -38427 5383.03 0.00 -0.08 0.04

w/o drift 5 -38798 4680.62 0.00 - 0.04
Natural gas futures buy price fluctuations, MCX

w drift 30 -1918 117.32 0.00 6.53 0.06
w/o drift 30 -2196 545.11 0.00 - 0.54
w drift 10 -3042 500.63 0.00 6.55 0.11

w/o drift 10 -4201 4624.11 0.00 - 0.86
w drift 5 -2645 2102.01 0.00 6.71 0.15

w/o drift 5 -5772 22545.07 0.00 - 1.12
GE buy price fluctuations, NYSE

w drift 60 5899 173.88 0.00 6.31 0.77
w/o drift 60 5097 1104.82 0.00 - 6.20
w drift 30 13436 618.90 0.00 6.52 0.99

w/o drift 30 11991 2318.46 0.00 - 8.30
w drift 10 52759 4051.63 0.00 6.45 1.62

w/o drift 10 48863 5948.27 0.00 - 13.67
IBM buy price fluctuations, NYSE

w drift 60 -295 898.92 0.00 6.58 0.20
w/o drift 60 -1755 8048.05 0.00 - 1.55
w drift 30 2920 912.99 0.00 6.68 0.26

w/o drift 30 130 10410.09 0.00 - 2.09
w drift 10 27502 2364.12 0.00 6.63 0.46

w/o drift 10 18501 30673.54 0.00 - 3.55
Microsoft buy price fluctuations, NYSE

w drift 60 7068 285.87 0.00 6.45 0.67
w/o drift 60 5879 3018.46 0.00 - 5.38
w drift 30 16505 834.00 0.00 6.70 0.86

w/o drift 30 14336 3541.65 0.00 - 7.25
w drift 10 66675 5203.09 0.00 6.48 1.48

w/o drift 10 60877 10725.49 0.00 - 12.22

Table 5.3 displays the results obtained from fitting the above distributions with the buy price fluctu-

ation dataset using a maximum log-likelihood estimator. The result indicates that the distribution implied

by the arithmetic Brownian motion with drift has higher log-likelihood than the distribution implied by

the arithmetic Brownian motion without drift, and the drift parameter is far away from zero in all situ-

ations. This suggests that it is more appropriate to model this dataset using the model with drift rather

than the model without drift. However, this distribution is still not flexible enough to model the buy

price fluctuation dataset since the p-value obtained from the Pearson χ2 goodness of fit test are zero in

all cases. Consequently, more complicated models are required if we want to model the price fluctuation

dataset correctly. To achieve this, the rest of this section will focuses on finding the best candidate model

for modelling this dataset by trying to fit several popular distributions with non-negative support and

ranking them according to the Pearson χ2 goodness of fit test statistic.
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5.4.2 Continuous distribution for price fluctuation

In the search to find better distributions for modelling the price fluctuation dataset, this section tries

to fit the price fluctuation dataset to several well known continuous distributions, which is generally

utilised to model non-negative random variables. These distributions include the exponential, Weibull,

gamma, generalised gamma, generalised F and Burr distribution. Since we have already discussed the

exponential, Weibull, gamma and generalised gamma distribution in Section 2.4, this section will review

only the generalised F and Burr distributions. We then analyse the results obtained from fitting the price

fluctuation dataset to these distributions.

The generalised F distribution

The generalised F distribution, introduced by Prentice [80], is a four-parameter distribution that gener-

alises the central F distribution with non-integer degrees of freedom (2m1, 2m2) by adding location (µ)

and scale (σ > 0) parameters. Particularly, let W = (ln∆− µ) /σ be a logarithm of a random variable

having the central F distribution with 2m1 and 2m2 degrees of freedom. The random variable ∆ will

have a generalised F distribution with the probability density function specified by

fGF (∆) =
1

∆σ

(m1/m2)
m1 ewm1

B(m1,m2) (1 + (m1/m2) ew)
m1+m2

,

=
(m1/m2)

m1 e−m1µ/σ∆(m1/σ)−1

σB(m1,m2)
(
1 + (m1/m2) (e−µ∆)

1/σ
)m1+m2

, (5.15)

where B(m1,m2) = Γ(m1)Γ(m2)/Γ(m1 + m2) is the beta function evaluated at m1,m2 > 0. The

cumulative distribution function of ∆ is specified by

FGF (∆) =
1

B(m1,m2)
B

(
m1(e

−µ∆)1/σ

m2 +m1(e−µ∆)1/σ
;m1,m2

)
(5.16)

whereB(x; a, b) =
∫ x
0
ua−1(1−u)b−1du is the incomplete beta function. The generalised F distribution

is considered one of the most generalised models for modelling non-negative random variables since it

includes many commonly used distributions as its special cases. Specifically, it reduces to the generalised

log-logistic distribution when m1 = m2 = m and the log-logistic distribution when m1 = m2 = 1.

When m2 → ∞, this distribution reduces to the generalised gamma distribution which further reduces

to the exponential distribution when µ1 = 1 and σ1 = 1, the Weibull distribution when µ1 = 1,

the gamma distribution when σ = 1, and the log-normal distribution when m1 → ∞. Additionally,

it also contains the Burr type III distribution and the Burr type XII distribution when m2 = 1 and

m1 = 1, respectively. To produce a well-behaved likelihood for the limiting case of the generalised

gamma distribution, Prentice [80] proposed an alternative parameterisation by replacing m1 and m2 by

alternative parameters

q =

(
1

m1
− 1

m2

)(
1

m1
+

1

m2

)− 1
2

, and p =
2

m1 +m2
,
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so that −∞ < q <∞ and p > 0, and the original parameters can be reconstructed from

m1 = 2
(
q2 + 2p+ q(q2 + 2p)1/2

)−1

, and m2 = 2
(
q2 + 2p− q(q2 + 2p)1/2

)−1

.

With this new parameterisation, the generalised gamma distribution is given by the limiting case when

p = 0 with q = λ as the shape parameter of the generalised gamma distribution, while the limiting

case when p = q = 0 is the log-normal distribution. The case when q = 0 defines the generalised

log-logistic distribution with m = 1/p, which will further reduce to the log-logistic distribution when

p = 1. Accordingly, the Burr type XII distribution is defined by q = (1 − p)[2/(2 − p)]1/2, while the

Burr type III is defined by q = −(1− p)[2/(2− p)]1/2.

Given a sample of price fluctuations ∆ = (∆1, . . . ,∆N ), the maximum likelihood estimator for

θ = (µ, σ, p, q) can be obtained by maximising the log-likelihood function

lnL(∆; θ) =
N∑
i=1

ln fGF (∆i;µ, σ, p, q)

=
N∑
i=1

− lnσ − lnB(m1,m2) +m1 ln(m1/m2)−
m1µ

σ

+
(m1

σ
− 1
)
ln∆i − (m1 +m2) ln

(
1 +

m1

m2
exp

{
ln∆i − µ

σ

})
.(5.17)

The Burr distribution

Unlike the generalised F distribution, the Burr distribution is a three-parameter function that can be

derived as a gamma mixture of Weibull distributions (see Lancaster [55] for example). This distribution

contains the exponential, Weibull and log-logistic distribution as a special case. The probability density

function of this distribution is specified by

fBurr(∆) =
a

λ

(
∆

λ

)a−1 [
1 + η

(
∆

λ

)a
,

]−(1+η−1)

(5.18)

where λ > 0 is a scale parameter, while a > 0 and η > 0 are the shape parameters. The cumulative

distribution function of the Burr distribution is specified by

FBurr(∆) = 1−
(
1 + ηλ−a∆a

)−1/η
. (5.19)

It is easy to see that this distribution will reduce to the log-logistic distribution when η = 1, while for

η → ∞, this distribution will converge to the Weibull distribution.

Given a sample of price fluctuations ∆ = (∆1, . . . ,∆N ), the maximum likelihood estimator for

θ = (λ, a, η) can be obtained by maximising the log-likelihood function

lnL(∆; θ) =

N∑
i=1

ln fBurr (∆i;λ, a, η)

= ln a− a lnλ+ (a− 1) ln∆− (1 + η−1) ln(1 + ηλ−a∆a). (5.20)
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The results

This section analyses the results obtained from fitting the above distributions to the buy price fluctuation

dataset using a maximum likelihood estimator. Since some of the above distributions may produce

an infinite log-likelihood when the price fluctuation is zero (for example the Weibull distribution will

produces ∞ log-likelihood when the shape parameter is less than one, and it will produce −∞ log-

likelihood when the shape parameter is greater than one), we will replace all observations with zero

price fluctuations by a very small positive number (i.e. 1 × 10−10) so that the log-likelihood is finite in

all situations. In order to rank the model with a different number of parameters, we also report the Akaike

information criterion (AIC) and the Bayesian information criterion (BIC) together with the maximum

log-likelihood. The result reported in Table 5.4 illustrates that the log-likelihood obtained from more

complicated models is generally higher than the less complicated models, i.e. the log-likelihood of the

generalised F distribution and the Burr distribution is typically higher than the models they encompass.

Among all models considered, the generalised F distribution has the highest log-likelihood and lowest

AIC and BIC value in all situations. However, its Pearson’s χ2 goodness of fit test statistic is higher than

that of the exponential distribution in all situations, indicating that the exponential distribution provides

a better fit to the price fluctuations dataset than the generalised F distribution in all cases. In fact, the

exponential distribution, which generally has the lowest log-likelihood, seems to be the best candidate

to model the price fluctuation dataset according to the Pearson’s χ2 test statistics. This indicates that,

in our situations, the distribution with higher log-likelihood does not necessarily provide better fit to the

data than the distribution with lower log-likelihood. Consequently, it might not be appropriate to utilise

the maximum log-likelihood estimator to estimate the parameters of these models when our objective is

to obtained the distribution that provides the best fit to our dataset.

To understand why the distribution with higher log-likelihood does not necessarily mean a better

fit to the dataset, we plot the example of the estimated exponential, Weibull, generalised gamma and

generalised F distributions together with the empirical distribution of the dataset in Figure 5.13. The fig-

ure clearly indicates that the reason why the Weibull, generalised gamma, and generalised F distribution

have higher log-likelihood than the exponential distribution is not because they fit the dataset better than

the exponential distribution, but mainly because they converge to the distribution that has large proba-

bility density at zero. Accordingly, this further confirms the inappropriateness of utilising the maximum

log-likelihood estimator to estimate model parameters from this dataset and requires us to develop a new

criteria for selecting model parameters that can prevent this from happening which will be the main topic

of the next section.

5.4.3 Discrete distribution for price fluctuations

To solve the problem discussed in the previous section, this section presents a new method for fitting

any continuous distribution with non-negative support to the price fluctuation dataset by maximising

the likelihood of the discrete distribution implied by the distribution considered rather than maximising

the likelihood of the distribution directly. The idea behind this approach is that, while the original

distribution might produce undesirable results when the density at zero can be infinite, the probability
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Table 5.4: Maximum log-likelihood estimates of the exponential, Weibull, gamma, generalised gamma,
generalised F and Burr distribution for the buy price fluctuation dataset together with the maximum log-
likelihood, Akaike information criterion, Bayesian information criterion, Pearson’s χ2 goodness of fit
statistic and the associated p-value.

Model T LOGLIK AIC BIC X2 p-value
GE buy price fluctuations, NYSE

Brownian Motion 60 5899 (6) -11795 (6) -11782 (6) 173.88 (2) 0.00
Exponential 60 5889 (7) -11775 (7) -11769 (7) 170.77 (1) 0.00
Weibull 60 6725 (4) -13446 (4) -13433 (4) 1546.57 (5) 0.00
Gamma 60 7243 (3) -14482 (3) -14469 (3) 1706.60 (6) 0.00
Generalised Gamma 60 7416 (2) -14825 (2) -14806 (2) 1475.05 (4) 0.00
Generalised F 60 7597 (1) -15185 (1) -15159 (1) 1254.90 (3) 0.00
Burr 60 6721 (5) -13437 (5) -13417 (5) 1709.20 (7) 0.00
Brownian Motion 30 13436 (6) -26868 (6) -26854 (6) 618.90 (2) 0.00
Exponential 30 13414 (7) -26825 (7) -26818 (7) 614.50 (1) 0.00
Weibull 30 14572 (4) -29141 (4) -29127 (4) 3094.56 (5) 0.00
Gamma 30 15435 (3) -30867 (3) -30853 (3) 3564.03 (7) 0.00
Generalised Gamma 30 15752 (2) -31497 (2) -31476 (2) 3141.56 (6) 0.00
Generalised F 30 16106 (1) -32205 (1) -32177 (1) 2614.01 (3) 0.00
Burr 30 14572 (5) -29139 (5) -29117 (5) 3094.28 (4) 0.00
Brownian Motion 10 52759 (6) -105514 (6) -105498 (6) 4051.63 (2) 0.00
Exponential 10 52705 (7) -105407 (7) -105399 (7) 4041.40 (1) 0.00
Weibull 10 56591 (4) -113179 (4) -113162 (4) 15061.08 (5) 0.00
Gamma 10 59810 (3) -119617 (3) -119600 (3) 16685.64 (7) 0.00
Generalised Gamma 10 61031 (2) -122056 (2) -122031 (2) 14304.91 (4) 0.00
Generalised F 10 62396 (1) -124784 (1) -124751 (1) 11559.40 (3) 0.00
Burr 10 56572 (5) -113138 (5) -113113 (5) 16296.24 (6) 0.00

IBM buy price fluctuations, NYSE
Brownian Motion 60 -295 (7) 593 (7) 607 (7) 898.92 (2) 0.00
Exponential 60 -295 (6) 591 (6) 598 (6) 898.92 (1) 0.00
Weibull 60 1505 (4) -3006 (4) -2992 (4) 1379.65 (5) 0.00
Gamma 60 2141 (3) -4277 (3) -4264 (3) 1440.85 (7) 0.00
Generalised Gamma 60 2269 (2) -4532 (2) -4512 (2) 1388.07 (6) 0.00
Generalised F 60 2389 (1) -4770 (1) -4743 (1) 1229.28 (4) 0.00
Burr 60 1498 (5) -2989 (5) -2969 (5) 1197.87 (3) 0.00
Brownian Motion 30 2920 (6) -5835 (6) -5821 (7) 912.99 (2) 0.00
Exponential 30 2918 (7) -5835 (7) -5827 (6) 906.40 (1) 0.00
Weibull 30 5582 (4) -11160 (4) -11145 (4) 2179.52 (5) 0.00
Gamma 30 6596 (3) -13189 (3) -13174 (3) 2431.99 (7) 0.00
Generalised Gamma 30 6792 (2) -13577 (2) -13555 (2) 2368.36 (6) 0.00
Generalised F 30 7079 (1) -14150 (1) -14120 (1) 1994.37 (3) 0.00
Burr 30 5581 (5) -11156 (5) -11134 (5) 2157.03 (4) 0.00
Brownian Motion 10 27502 (6) -55001 (6) -54984 (6) 2364.12 (2) 0.00
Exponential 10 27482 (7) -54962 (7) -54953 (7) 2309.90 (1) 0.00
Weibull 10 37083 (4) -74161 (4) -74144 (4) 9397.49 (4) 0.00
Gamma 10 40859 (3) -81714 (3) -81697 (3) 10187.83 (7) 0.00
Generalised Gamma 10 41521 (2) -83035 (2) -83010 (2) 9865.25 (6) 0.00
Generalised F 10 42513 (1) -85018 (1) -84985 (1) 8247.30 (3) 0.00
Burr 10 37083 (5) -74159 (5) -74134 (5) 9418.79 (5) 0.00

Microsoft buy price fluctuations, NYSE
Brownian Motion 60 7068 (6) -14132 (7) -14118 (7) 285.87 (2) 0.00
Exponential 60 7067 (7) -14132 (6) -14125 (6) 282.10 (1) 0.00
Weibull 60 8312 (4) -16621 (4) -16607 (4) 1989.14 (5) 0.00
Gamma 60 8988 (3) -17972 (3) -17958 (3) 2208.12 (7) 0.00
Generalised Gamma 60 9174 (2) -18342 (2) -18322 (2) 2031.94 (6) 0.00
Generalised F 60 9379 (1) -18749 (1) -18722 (1) 1715.17 (3) 0.00
Burr 60 8312 (5) -16619 (5) -16598 (5) 1974.03 (4) 0.00
Brownian Motion 30 16505 (6) -33005 (6) -32991 (6) 834.00 (2) 0.00
Exponential 30 16495 (7) -32988 (7) -32981 (7) 831.53 (1) 0.00
Weibull 30 18127 (4) -36250 (4) -36235 (4) 4018.71 (5) 0.00
Gamma 30 19216 (3) -38427 (3) -38413 (3) 4646.12 (7) 0.00
Generalised Gamma 30 19547 (2) -39087 (2) -39065 (2) 4271.36 (6) 0.00
Generalised F 30 20025 (1) -40043 (1) -40013 (1) 3501.38 (3) 0.00
Burr 30 18126 (5) -36247 (5) -36225 (5) 3992.24 (4) 0.00
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Table 5.4 continued: Maximum log-likelihood estimates of the exponential, Weibull, gamma, gener-
alised gamma, generalised F and Burr distribution for the buy price fluctuation dataset together with the
maximum log-likelihood, Akaike information criterion, Bayesian information criterion, Pearson’s χ2

goodness of fit statistic and the associated p-value.
Model T LOGLIK AIC BIC X2 p-value

Microsoft buy price fluctuations, NYSE
Brownian Motion 10 66675 (6) -133347 (6) -133330 (6) 5203.09 (2) 0.00
Exponential 10 66615 (7) -133229 (7) -133220 (7) 5181.42 (1) 0.00
Weibull 10 71113 (4) -142223 (4) -142206 (4) 17531.95 (5) 0.00
Gamma 10 74793 (3) -149582 (3) -149565 (3) 19947.84 (7) 0.00
Generalised Gamma 10 76094 (2) -152182 (2) -152157 (2) 17775.51 (6) 0.00
Generalised F 10 77855 (1) -155702 (1) -155668 (1) 14200.88 (3) 0.00
Burr 10 71113 (5) -142221 (5) -142195 (5) 17524.34 (4) 0.00

Gold futures buy price fluctuations, MCX
Brownian Motion 30 -6955 (7) 13913 (7) 13924 (7) 547.96 (6) 0.00
Exponential 30 -6851 (6) 13705 (6) 13710 (6) 146.29 (1) 0.04
Weibull 30 -6687 (4) 13379 (4) 13389 (4) 477.17 (3) 0.00
Gamma 30 -6545 (3) 13095 (3) 13105 (3) 565.78 (7) 0.00
Generalised Gamma 30 -6459 (2) 12925 (2) 12941 (2) 491.70 (4) 0.00
Generalised F 30 -6427 (1) 12862 (1) 12883 (1) 436.24 (2) 0.00
Burr 30 -6688 (5) 13383 (5) 13399 (5) 520.23 (5) 0.00
Brownian Motion 10 -17725 (7) 35453 (7) 35466 (7) 1172.02 (2) 0.00
Exponential 10 -17327 (6) 34656 (6) 34662 (6) 194.98 (1) 0.00
Weibull 10 -15482 (4) 30969 (4) 30982 (4) 2849.62 (6) 0.00
Gamma 10 -14568 (3) 29140 (3) 29153 (3) 2699.72 (5) 0.00
Generalised Gamma 10 -14244 (2) 28494 (2) 28513 (2) 2190.93 (4) 0.00
Generalised F 10 -14155 (1) 28317 (1) 28343 (1) 1988.02 (3) 0.00
Burr 10 -15486 (5) 30978 (5) 30998 (5) 3094.12 (7) 0.00
Brownian Motion 5 -31884 (7) 63772 (7) 63787 (7) 5358.55 (3) 0.00
Exponential 5 -30995 (6) 61993 (6) 62000 (6) 328.15 (1) 0.00
Weibull 5 -24245 (4) 48494 (4) 48508 (4) 8954.45 (7) 0.00
Gamma 5 -21794 (3) 43593 (3) 43607 (3) 7294.32 (5) 0.00
Generalised Gamma 5 -21101 (2) 42209 (2) 42230 (2) 5876.52 (4) 0.00
Generalised F 5 -20903 (1) 41814 (1) 41843 (1) 5268.73 (2) 0.00
Burr 5 -24245 (5) 48497 (5) 48518 (5) 8877.27 (6) 0.00

Silver futures buy price fluctuations, MCX
Brownian Motion 30 -7919 (7) 15842 (7) 15853 (7) 493.54 (2) 0.00
Exponential 30 -7854 (6) 15710 (6) 15716 (6) 342.26 (1) 0.00
Weibull 30 -7572 (4) 15149 (4) 15159 (4) 904.51 (5) 0.00
Gamma 30 -7353 (3) 14710 (3) 14721 (3) 969.76 (6) 0.00
Generalised Gamma 30 -7244 (2) 14494 (2) 14510 (2) 778.45 (4) 0.00
Generalised F 30 -7188 (1) 14384 (1) 14405 (1) 735.21 (3) 0.00
Burr 30 -7577 (5) 15161 (5) 15177 (5) 1014.17 (7) 0.00
Brownian Motion 10 -20837 (7) 41678 (7) 41690 (7) 1610.12 (2) 0.00
Exponential 10 -20477 (6) 40955 (6) 40962 (6) 550.39 (1) 0.00
Weibull 10 -17569 (4) 35141 (4) 35154 (4) 4088.54 (6) 0.00
Gamma 10 -16401 (3) 32807 (3) 32820 (3) 3435.51 (5) 0.00
Generalised Gamma 10 -16027 (2) 32061 (2) 32080 (2) 2676.24 (4) 0.00
Generalised F 10 -15913 (1) 31834 (1) 31860 (1) 2422.89 (3) 0.00
Burr 10 -17608 (5) 35223 (5) 35242 (5) 4909.12 (7) 0.00
Brownian Motion 5 -38427 (7) 76858 (7) 76872 (7) 5383.03 (2) 0.00
Exponential 5 -37453 (6) 74907 (6) 74914 (6) 1066.38 (1) 0.00
Weibull 5 -26885 (4) 53774 (4) 53788 (4) 11217.17 (7) 0.00
Gamma 5 -24004 (3) 48012 (3) 48026 (3) 8046.08 (5) 0.00
Generalised Gamma 5 -23302 (2) 46610 (2) 46632 (2) 6397.39 (4) 0.00
Generalised F 5 -23094 (1) 46195 (1) 46224 (1) 5884.20 (3) 0.00
Burr 5 -26885 (5) 53776 (5) 53798 (5) 11192.30 (6) 0.00

Natural gas futures buy price fluctuations, MCX
Brownian Motion 30 -1918 (6) 3839 (7) 3850 (7) 117.32 (2) 0.00
Exponential 30 -1918 (7) 3837 (6) 3843 (6) 117.32 (1) 0.00
Weibull 30 -768 (4) 1539 (4) 1550 (4) 1440.50 (6) 0.00
Gamma 30 -372 (3) 747 (3) 758 (3) 1185.71 (5) 0.00
Generalised Gamma 30 -276 (2) 558 (2) 575 (2) 994.09 (4) 0.00
Generalised F 30 -236 (1) 480 (1) 502 (1) 901.80 (3) 0.00
Burr 30 -775 (5) 1555 (5) 1572 (5) 1697.40 (7) 0.00
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Table 5.4 continued: Maximum log-likelihood estimates of the exponential, Weibull, gamma, gener-
alised gamma, generalised F and Burr distribution for the buy price fluctuation dataset together with the
maximum log-likelihood, Akaike information criterion, Bayesian information criterion, Pearson’s χ2

goodness of fit statistic and the associated p-value.
Model T LOGLIK AIC BIC X2 p-value

Natural gas futures buy price fluctuations, MCX
Brownian Motion 10 -3042 (6) 6088 (7) 6101 (7) 500.63 (1) 0.00
Exponential 10 -3042 (7) 6086 (6) 6092 (6) 500.63 (2) 0.00
Weibull 10 6972 (4) -13940 (4) -13927 (4) 8238.05 (6) 0.00
Gamma 10 8549 (3) -17095 (3) -17082 (3) 4949.69 (4) 0.00
Generalised Gamma 10 8822 (2) -17638 (2) -17618 (2) 4179.30 (3) 0.00
Generalised F 10 8906 (1) -17805 (1) -17779 (1) 5467.13 (5) 0.00
Burr 10 6833 (5) -13659 (5) -13640 (5) 8271.63 (7) 0.00
Brownian Motion 5 -2645 (6) 5294 (6) 5309 (7) 2102.01 (2) 0.00
Exponential 5 -2649 (7) 5301 (7) 5308 (6) 2035.08 (1) 0.00
Weibull 5 29503 (4) -59001 (4) -58987 (4) 20360.80 (6) 0.00
Gamma 5 32624 (3) -65244 (3) -65229 (3) 10586.32 (5) 0.00
Generalised Gamma 5 33064 (2) -66121 (2) -66100 (2) 9140.45 (4) 0.00
Generalised F 5 33217 (1) -66426 (1) -66398 (1) 8545.60 (3) 0.00
Burr 5 29503 (5) -58100 (5) -58978 (5) 20360.80 (7) 0.00
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Figure 5.13: Examples of the empirical distribution of buy price fluctuation and the estimated exponen-
tial, Weibull, generalised gamma and generalised F distributions obtained from maximum log-likelihood
estimator.
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mass at zero of the implied discrete distribution will never be larger than one and thus will not suffer from

the same problem as their continuous counterpart. Additionally, modelling the price fluctuations using

discrete distributions might be more appropriate than continuous distributions, since the price fluctuation

dataset is discrete in nature.

To achieve this, we construct a discrete distribution from a specified continuous distribution as

follows: Let δ be a minimum tick size, the smallest increment by which the price of financial instruments

can move, of the instrument that we want to model the price fluctuation distribution, and FC(∆) be the

cumulative distribution function of the selected continuous distribution. The probability mass function

of the implied discrete distribution is defined by

fD(kδ) =

FC
(
δ
)

for k = 0

FC
(
(k + 1)δ

)
− FC(kδ) for k = 1, 2, 3, . . . ,

or equivalently,

fD(∆) =

FC
(
δ) for ∆ = 0

FC
(
∆+ δ)− FC

(
∆
)

otherwise
, (5.21)

where ∆ ∈ {0, δ, 2δ, . . .} is a price fluctuation. Note that this probability has the same form as the proba-

bility utilised to calculate the Pearson’s χ2 goodness of fit statistic in the previous section. Consequently,

the cumulative distribution of the implied discrete distribution at price level ∆ = kδ can be defined by

FD(∆) =
k∑
i=0

fD(iδ)

= FC(δ) +
k∑
i=1

[
FC
(
(i+ 1)δ

)
− FC

(
iδ
)]

= FC(∆ + δ) (5.22)

Given a sample of price fluctuations ∆ = (∆1, . . . ,∆N ), the maximum likelihood estimator for

the parameter θ = (θ1, . . . , θM ) of this distribution can be obtained by maximising the log-likelihood

function

lnL(∆; θ) =
N∑
i=1

ln fD(∆i; θ)

=
N∑
i=1

ln (FC (∆i + δ; θ)− FC(∆i; θ)) . (5.23)

The derivative of this log-likelihood function with respect to the parameter θj can be computed from

∂

∂θj
lnL(∆; θ) =

N∑
i=1

[
1

fD(∆i)

(
∂

∂θj
FC(∆i + δ; θ)− ∂

∂θj
FC(∆i; θ)

)]
.
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5.4.4 Experiment results

To compare the performance of the proposed method for estimating the model parameters from the price

fluctuation dataset and the traditional maximum log-likelihood estimator, this section analyses the result

obtained from fitting the above distributions to the buy price fluctuation dataset using the proposed meth-

ods and compares it with the one obtained in Section 5.4.2. The result reported in Table 5.5 indicates

that the distributions estimated from the proposed method have smaller Pearson’s χ2 goodness of fit test

statistic than the one estimated in the previous section in most of the cases except when we fit the dis-

tribution derived from the arithmetic Brownian motion to Microsoft’s ten minute buy price fluctuation

dataset. The improvement obtained for the exponential distribution and the distribution derived from the

arithmetic Brownian motion is generally lower than the gain obtained from other distributions. This is

because these two distributions do not suffer from the problem discussed in the previous section. Among

all distributions considered, the generalised F distribution seem to be the best performing distribution

since it has the highest log-likelihood and the lowest AIC, BIC and χ2 test statistic in most situations.

The second best performing distribution is generally the Burr distribution, while third place belongs to

the generalised gamma distribution. The result from Pearson’s χ2 goodness of fit test indicates that the

test cannot reject the hypothesis that the empirical and the estimated distribution are similar only in two

situations (i.e. Microsoft’s 60 minute buy price fluctuation and Gold futures 30 minute buy price fluctu-

ation). To see how bad our estimated distributions fit the dataset in the situation when the Pearson’s χ2

test rejected this hypothesis, we plot the estimated generalised F distribution and the empirical distribu-

tion of this dataset in Figure 5.14. The result suggests that whilst the goodness of fit test rejects these

distributions, the plot indicates that the generalised F-distribution provides a reasonable estimation of

the empirical distribution with a large error only at some price levels.

5.4.5 Summary

In this section, we studied several methods for modelling the unconditional distribution of price fluctu-

ations. In particular, we derived the unconditional distribution of price fluctuation when the asset price

is assumed to follow the arithmetic Brownian motion. Additionally, we also fitted several distributions

with non-negative support including the exponential, Weibull, gamma, generalised gamma, generalised

F and Burr distribution to the buy price fluctuation dataset using maximum likelihood estimator. The re-

sult indicated that maximum likelihood estimator is not a good method for estimating model parameters

from this dataset since the estimated distribution converge to the distribution that has large probability

density at zero rather than the distribution that provide a good fit to the dataset. To solve the problem, we

proposed to estimate model parameters by maximising the likelihood of the discrete distribution implied

by the considered distribution rather than maximising the likelihood of the distribution directly. The

experiment results indicated that the distribution estimated by the proposed method does not suffer from

this problem and is able to estimate the empirical distribution reasonably well. Among all considered

models the generalised F distribution was the best performing distribution while the Burr distribution

and the generalised gamma distribution are the second and third best models respectively.
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Table 5.5: Maximum log-likelihood estimates of the implied discrete distributions of the exponential,
Weibull, gamma, generalised gamma, generalised F and Burr distribution for the buy price fluctuation
dataset together with the maximum log-likelihood, Akaike information criterion, Bayesian information
criterion, Pearson’s χ2 goodness of fit statistic and the associated p-value together with the test statistics
obtained from traditional log-likelihood estimator and the improvement gained.

Model T LOGLIK AIC BIC X2
C X2

D p-value X2
C −X2

D
GE buy price fluctuations, NYSE

Brownian Motion 60 -15696 (5) 31396 (6) 31409 (6) 173.88 (2) 143.33 (5) 0.00 30.55
Exponential 60 -15697 (6) 31396 (5) 31402 (5) 170.77 (1) 143.4 (6) 0.00 27.37
Weibull 60 -15692 (4) 31388 (4) 31400 (4) 1546.57 (5) 95.57 (4) 0.00 1451
Gamma 60 -15703 (7) 31409 (7) 31422 (7) 1706.6 (6) 147.3 (7) 0.00 1559.3
Generalised Gamma 60 -15615 (3) 31236 (3) 31255 (3) 1475.05 (4) 49.24 (1) 0.01 1425.81
Generalised F 60 -15608 (1) 31224 (2) 31250 (2) 1254.9 (3) 49.31 (2) 0.01 1205.59
Burr 60 -15609 (2) 31224 (1) 31243 (1) 1709.2 (7) 52.6 (3) 0.00 1656.59
Brownian Motion 30 -26815 (7) 53633 (7) 53648 (7) 618.9 (2) 563.38 (7) 0.00 55.52
Exponential 30 -26815 (6) 53631 (6) 53638 (6) 614.5 (1) 563.27 (6) 0.00 51.23
Weibull 30 -26711 (5) 53426 (5) 53440 (5) 3094.56 (5) 296.06 (5) 0.00 2798.5
Gamma 30 -26628 (4) 53260 (4) 53274 (4) 3564.03 (7) 169.17 (4) 0.00 3394.86
Generalised Gamma 30 -26453 (3) 52912 (3) 52933 (3) 3141.56 (6) 35.83 (2) 0.02 3105.73
Generalised F 30 -26444 (1) 52895 (1) 52923 (1) 2614.01 (3) 33.5 (1) 0.02 2580.5
Burr 30 -26452 (2) 52911 (2) 52932 (2) 3094.28 (4) 53.45 (3) 0.00 3040.83
Brownian Motion 10 -68913 (7) 137830 (7) 137847 (7) 4051.63 (2) 4000.59 (6) 0.00 51.05
Exponential 10 -68905 (6) 137812 (6) 137820 (6) 4041.4 (1) 4004.12 (7) 0.00 37.27
Weibull 10 -67940 (5) 135884 (5) 135900 (5) 15061.08 (5) 1605.93 (5) 0.00 13455.15
Gamma 10 -67338 (4) 134680 (4) 134697 (4) 16685.64 (7) 707.63 (4) 0.00 15978.01
Generalised Gamma 10 -66550 (3) 133107 (3) 133131 (3) 14304.91 (4) 98.59 (3) 0.00 14206.32
Generalised F 10 -66477 (1) 132961 (1) 132994 (1) 11559.4 (3) 19.38 (1) 0.04 11540.02
Burr 10 -66487 (2) 132981 (2) 133005 (2) 16296.24 (6) 38.6 (2) 0.00 16257.64

IBM buy price fluctuations, NYSE
Brownian Motion 60 -28686 (7) 57377 (7) 57390 (7) 898.92 (2) 501.29 (6) 0.00 397.63
Exponential 60 -28686 (6) 57374 (6) 57381 (6) 898.92 (1) 501.32 (7) 0.00 397.6
Weibull 60 -28485 (4) 56975 (4) 56988 (4) 1379.65 (5) 195.08 (3) 0.00 1184.57
Gamma 60 -28516 (5) 57036 (5) 57049 (5) 1440.85 (7) 213.55 (5) 0.00 1227.3
Generalised Gamma 60 -28478 (3) 56962 (3) 56982 (3) 1388.07 (6) 195.31 (4) 0.00 1192.76
Generalised F 60 -28463 (1) 56934 (1) 56961 (1) 1229.28 (4) 173.74 (1) 0.01 1055.54
Burr 60 -28470 (2) 56946 (2) 56966 (2) 1197.87 (3) 187.65 (2) 0.00 1010.22
Brownian Motion 30 -50020 (7) 100044 (7) 100058 (7) 912.99 (2) 474.28 (7) 0.00 438.71
Exponential 30 -49852 (6) 99707 (6) 99714 (6) 906.4 (1) 429.25 (6) 0.00 477.15
Weibull 30 -49629 (4) 99262 (4) 99276 (4) 2179.52 (5) 223.47 (4) 0.00 1956.04
Gamma 30 -49700 (5) 99403 (5) 99418 (5) 2431.99 (7) 261.37 (5) 0.00 2170.62
Generalised Gamma 30 -49558 (3) 99121 (3) 99143 (3) 2368.36 (6) 180.8 (3) 0.00 2187.56
Generalised F 30 -49537 (1) 99083 (1) 99112 (2) 1994.37 (3) 167.14 (1) 0.00 1827.23
Burr 30 -49539 (2) 99084 (2) 99106 (1) 2157.03 (4) 167.55 (2) 0.00 1989.48
Brownian Motion 10 -131362 (7) 262728 (7) 262745 (7) 2364.12 (2) 874.12 (5) 0.00 1490
Exponential 10 -131273 (6) 262547 (6) 262556 (6) 2309.9 (1) 887.49 (6) 0.00 1422.42
Weibull 10 -130916 (4) 261836 (4) 261853 (4) 9397.49 (4) 803.52 (4) 0.00 8593.97
Gamma 10 -131128 (5) 262260 (5) 262277 (5) 10187.83 (7) 890.39 (7) 0.00 9297.44
Generalised Gamma 10 -130298 (3) 260603 (3) 260628 (3) 9865.25 (6) 157.84 (3) 0.00 9707.41
Generalised F 10 -130251 (1) 260509 (1) 260543 (2) 8247.3 (3) 113.44 (1) 0.00 8133.86
Burr 10 -130255 (2) 260516 (2) 260541 (1) 9418.79 (5) 122.15 (2) 0.00 9296.64

Microsoft buy price fluctuations, NYSE
Brownian Motion 60 -21543 (7) 43090 (7) 43103 (7) 285.87 (2) 200.65 (7) 0.00 85.23
Exponential 60 -21502 (6) 43006 (5) 43013 (5) 282.1 (1) 170.53 (6) 0.00 111.58
Weibull 60 -21502 (5) 43008 (6) 43022 (6) 1989.14 (5) 168.59 (5) 0.00 1820.55
Gamma 60 -21492 (4) 42989 (4) 43002 (4) 2208.12 (7) 127.59 (4) 0.00 2080.53
Generalised Gamma 60 -21366 (3) 42739 (3) 42759 (3) 2031.94 (6) 29.98 (3) 0.67 2001.97
Generalised F 60 -21354 (1) 42715 (2) 42742 (2) 1715.17 (3) 18.01 (1) 0.98 1697.17
Burr 60 -21354 (2) 42714 (1) 42735 (1) 1974.03 (4) 19.45 (2) 0.98 1954.58
Brownian Motion 30 -36712 (7) 73427 (7) 73442 (7) 834 (2) 769.55 (6) 0.00 64.45
Exponential 30 -36712 (6) 73425 (6) 73433 (6) 831.53 (1) 770.53 (7) 0.00 61.01
Weibull 30 -36670 (5) 73343 (5) 73358 (5) 4018.71 (5) 560.62 (5) 0.00 3458.09
Gamma 30 -36607 (4) 73217 (4) 73232 (4) 4646.12 (7) 481.88 (4) 0.00 4164.24
Generalised Gamma 30 -36202 (3) 72410 (3) 72432 (3) 4271.36 (6) 65.79 (3) 0.00 4205.57
Generalised F 30 -36172 (1) 72351 (1) 72381 (2) 3501.38 (3) 34.09 (1) 0.06 3467.29
Burr 30 -36176 (2) 72357 (2) 72379 (1) 3992.24 (4) 41.39 (2) 0.02 3950.85
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Table 5.5 continued: Maximum log-likelihood estimates of the implied discrete distributions of the
exponential, Weibull, gamma, generalised gamma, generalised F and Burr distribution for the buy price
fluctuation dataset together with the maximum log-likelihood, Akaike information criterion, Bayesian
information criterion, Pearson’s χ2 goodness of fit statistic and the associated p-value together with the
test statistics obtained from traditional log-likelihood estimator and the improvement gained.

Model T LOGLIK AIC BIC X2
C X2

D p-value X2
C −X2

D
Microsoft buy price fluctuations, NYSE

Brownian Motion 10 -94229 (7) 188463 (7) 188480 (7) 5203.09 (2) 5214.52 (7) 0.00 -11.43
Exponential 10 -94179 (6) 188360 (6) 188369 (6) 5181.42 (1) 5125.65 (6) 0.00 55.77
Weibull 10 -93308 (5) 186620 (5) 186637 (5) 17531.95 (5) 2631.24 (5) 0.00 14900.71
Gamma 10 -92513 (4) 185030 (4) 185047 (4) 19947.84 (7) 1391.08 (4) 0.00 18556.76
Generalised Gamma 10 -92159 (3) 184323 (3) 184348 (3) 17775.51 (6) 1021.87 (3) 0.00 16753.63
Generalised F 10 -90979 (1) 181966 (1) 182000 (1) 14200.88 (3) 35.85 (1) 0.00 14165.04
Burr 10 -90999 (2) 182005 (2) 182030 (2) 17524.34 (4) 62.93 (2) 0.00 17461.41

Gold futures buy price fluctuations, MCX
Brownian Motion 30 -7001 (7) 14006 (7) 14017 (7) 547.96 (6) 203.2 (7) 0.00 344.76
Exponential 30 -6885 (6) 13773 (6) 13778 (6) 146.29 (1) 108.93 (6) 0.00 37.36
Weibull 30 -6881 (5) 13765 (5) 13776 (5) 477.17 (3) 92.07 (5) 0.04 385.1
Gamma 30 -6878 (4) 13761 (4) 13772 (2) 565.78 (7) 89.28 (3) 0.06 476.5
Generalised Gamma 30 -6876 (3) 13759 (3) 13775 (4) 491.7 (4) 91.28 (4) 0.04 400.41
Generalised F 30 -6871 (1) 13751 (1) 13772 (3) 436.24 (2) 82.95 (1) 0.10 353.28
Burr 30 -6873 (2) 13752 (2) 13769 (1) 520.23 (5) 87.29 (2) 0.07 432.93
Brownian Motion 10 -17928 (7) 35860 (7) 35873 (7) 1172.02 (2) 560.51 (7) 0.00 611.51
Exponential 10 -17501 (6) 35004 (6) 35011 (6) 194.98 (1) 160.78 (6) 0.00 34.2
Weibull 10 -17497 (5) 34997 (5) 35010 (5) 2849.62 (6) 140.75 (5) 0.00 2708.87
Gamma 10 -17492 (4) 34989 (4) 35002 (4) 2699.72 (5) 132.75 (3) 0.00 2566.96
Generalised Gamma 10 -17483 (3) 34973 (3) 34992 (3) 2190.93 (4) 132.92 (4) 0.00 2058.01
Generalised F 10 -17460 (1) 34928 (1) 34954 (1) 1988.02 (3) 86.19 (1) 0.00 1901.83
Burr 10 -17470 (2) 34946 (2) 34966 (2) 3094.12 (7) 114.03 (2) 0.00 2980.09
Brownian Motion 5 -32346 (7) 64695 (7) 64710 (7) 5358.55 (3) 937.03 (7) 0.00 4421.52
Exponential 5 -31485 (6) 62972 (6) 62980 (6) 328.15 (1) 226.46 (6) 0.00 101.69
Weibull 5 -31478 (5) 62961 (5) 62975 (5) 8954.45 (7) 186.37 (5) 0.00 8768.08
Gamma 5 -31470 (4) 62945 (4) 62959 (4) 7294.32 (5) 170.27 (3) 0.00 7124.05
Generalised Gamma 5 -31451 (3) 62908 (3) 62930 (3) 5876.52 (4) 183.16 (4) 0.00 5693.36
Generalised F 5 -31382 (1) 62773 (1) 62801 (1) 5268.73 (2) 58.59 (1) 0.00 5210.14
Burr 5 -31419 (2) 62844 (2) 62865 (2) 8877.27 (6) 144.19 (2) 0.00 8733.07

Silver futures buy price fluctuations, MCX
Brownian Motion 30 -7964 (7) 15933 (7) 15943 (7) 493.54 (2) 303.78 (7) 0.00 189.76
Exponential 30 -7873 (6) 15748 (6) 15753 (2) 342.26 (1) 264.89 (5) 0.00 77.37
Weibull 30 -7869 (4) 15743 (3) 15754 (3) 904.51 (5) 257.19 (3) 0.00 647.32
Gamma 30 -7871 (5) 15745 (5) 15756 (5) 969.76 (6) 264.45 (4) 0.00 705.31
Generalised Gamma 30 -7869 (3) 15743 (4) 15759 (6) 778.45 (4) 245.11 (2) 0.00 533.34
Generalised F 30 -7841 (1) 15689 (1) 15711 (1) 735.21 (3) 206.33 (1) 0.00 528.88
Burr 30 -7867 (2) 15739 (2) 15756 (4) 1014.17 (7) 270.22 (6) 0.00 743.95
Brownian Motion 10 -21002 (7) 42009 (7) 42022 (7) 1610.12 (2) 1017.1 (7) 0.00 593.01
Exponential 10 -20568 (6) 41137 (6) 41144 (4) 550.39 (1) 488.51 (6) 0.00 61.87
Weibull 10 -20564 (5) 41132 (4) 41145 (5) 4088.54 (6) 473.85 (4) 0.00 3614.69
Gamma 10 -20559 (3) 41122 (3) 41135 (3) 3435.51 (5) 453.06 (3) 0.00 2982.44
Generalised Gamma 10 -20548 (2) 41102 (2) 41121 (2) 2676.24 (4) 396.33 (2) 0.00 2279.91
Generalised F 10 -20470 (1) 40949 (1) 40975 (1) 2422.89 (3) 272.87 (1) 0.00 2150.02
Burr 10 -20564 (4) 41134 (5) 41153 (6) 4909.12 (7) 476.09 (5) 0.00 4433.03
Brownian Motion 5 -38832 (7) 77668 (7) 77682 (7) 5383.03 (2) 2707.34 (7) 0.00 2675.69
Exponential 5 -37704 (6) 75411 (6) 75418 (6) 1066.38 (1) 1018.65 (6) 0.00 47.73
Weibull 5 -37636 (4) 75276 (4) 75291 (4) 11217.17 (7) 829.31 (4) 0.00 10387.86
Gamma 5 -37610 (3) 75225 (3) 75239 (3) 8046.08 (5) 752.09 (3) 0.00 7293.99
Generalised Gamma 5 -37595 (2) 75197 (2) 75218 (2) 6397.39 (4) 674.72 (2) 0.00 5722.68
Generalised F 5 -37449 (1) 74907 (1) 74935 (1) 5884.2 (3) 459.89 (1) 0.00 5424.3
Burr 5 -37636 (5) 75279 (5) 75300 (5) 11192.3 (6) 830.54 (5) 0.00 10361.76
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Table 5.5 continued: Maximum log-likelihood estimates of the implied discrete distributions of the
exponential, Weibull, gamma, generalised gamma, generalised F and Burr distribution for the buy price
fluctuation dataset together with the maximum log-likelihood, Akaike information criterion, Bayesian
information criterion, Pearson’s χ2 goodness of fit statistic and the associated p-value together with the
test statistics obtained from traditional log-likelihood estimator and the improvement gained.

Model T LOGLIK AIC BIC X2
C X2

D p-value X2
C −X2

D
Natural gas futures buy price fluctuations, MCX

Brownian Motion 30 -5761 (7) 11526 (7) 11537 (7) 117.32 (2) 79.43 (4) 0.00 37.89
Exponential 30 -5761 (6) 11524 (5) 11530 (3) 117.32 (1) 79.43 (3) 0.00 37.89
Weibull 30 -5759 (4) 11522 (4) 11533 (5) 1440.5 (6) 83.33 (6) 0.00 1357.17
Gamma 30 -5761 (5) 11525 (6) 11536 (6) 1185.71 (5) 81.25 (5) 0.00 1104.45
Generalised Gamma 30 -5755 (3) 11517 (3) 11533 (4) 994.09 (4) 85.1 (7) 0.00 908.99
Generalised F 30 -5739 (1) 11486 (1) 11507 (1) 901.8 (3) 60.53 (1) 0.00 841.27
Burr 30 -5748 (2) 11502 (2) 11518 (2) 1697.4 (7) 78.65 (2) 0.00 1618.75
Brownian Motion 10 -14386 (7) 28777 (7) 28790 (7) 500.63 (1) 282.1 (7) 0.00 218.53
Exponential 10 -14386 (6) 28775 (6) 28781 (6) 500.63 (2) 282.1 (6) 0.00 218.54
Weibull 10 -14298 (4) 28601 (4) 28614 (3) 8238.05 (6) 197.95 (3) 0.00 8040.1
Gamma 10 -14308 (5) 28620 (5) 28633 (5) 4949.69 (4) 190.03 (2) 0.00 4759.66
Generalised Gamma 10 -14297 (3) 28600 (3) 28620 (4) 4179.3 (3) 203.55 (5) 0.00 3975.75
Generalised F 10 -14257 (1) 28522 (1) 28548 (1) 5467.13 (5) 139.61 (1) 0.00 5327.52
Burr 10 -14288 (2) 28583 (2) 28602 (2) 8271.63 (7) 201.26 (4) 0.00 8070.38
Brownian Motion 5 -25383 (7) 50769 (7) 50784 (7) 2102.01 (2) 668.36 (7) 0.00 1433.65
Exponential 5 -25382 (6) 50766 (6) 50773 (6) 2035.08 (1) 661.02 (6) 0.00 1374.06
Weibull 5 -24994 (4) 49992 (4) 50006 (4) 20360.8 (7) 163.8 (3) 0.00 20197
Gamma 5 -25033 (5) 50069 (5) 50083 (5) 10586.32 (5) 160.72 (2) 0.00 10425.59
Generalised Gamma 5 -24989 (3) 49984 (3) 50005 (3) 9140.45 (4) 175.95 (5) 0.00 8964.5
Generalised F 5 -24918 (1) 49843 (1) 49872 (1) 8545.6 (3) 68.76 (1) 0.00 8476.84
Burr 5 -24972 (2) 49950 (2) 49972 (2) 19797.52 (6) 167.48 (4) 0.00 19630.05
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Figure 5.14: Examples of empirical distribution of buy price fluctuation and the estimated exponential,
Weibull, generalised gamma and generalised F distributions obtained from maximum log-likelihood
estimator of the discrete distribution implied by these distributions.
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5.5 Conditional distribution for price fluctuations

Whilst the models discussed in the previous section mainly focus on the unconditional distribution of

price fluctuations, it may be more useful to focus on the conditional distribution of price fluctuations

since the autocorrelation function of price fluctuations studied in Section 5.3.2 indicates strong correla-

tion between current and past price fluctuations. To achieve this, this section studies the possibility of

using time series analysis techniques to model this conditional probability by fitting the price fluctuation

dataset to three major time series models: the autoregressive moving average (ARMA) model [75], the

generalised autoregressive conditional heteroskedasticity (GARCH) model [12] and the autoregressive

conditional duration (ACD) model [28]. Since the result in the previous section indicates that the tradi-

tional maximum likelihood estimator is not a good candidate to estimate model parameters from price

fluctuation dataset, we also try to estimate the parameters of these models by maximising the likelihood

of the discrete distribution implied by the model, rather than maximising the likelihood of the model, as

in the previous section. An experiment is then conducted to compare the performance of each model as

well as the performance of the proposed estimator and the traditional maximum likelihood estimator.

This section is organised as follows. Section 5.5.1 discusses the ARMA model for price fluctuations

as a natural starting point. In Section 5.5.2, an ARMA-GARCH type model that models the conditional

mean using the ARMA model and the conditional variance using the GARCH model is discussed. The

ACD model, which is a time series model for non-negative random variables, is introduced in Section

5.5.3. The result obtained from fitting these models to the price fluctuation dataset will be presented and

analysed in Section 5.5.4. Finally, Section 5.5.5 provides a brief summary of the results obtained in this

study.

5.5.1 ARMA model for price fluctuations

The first model considered here is the autoregressive moving average model for price fluctuations that

models the price fluctuation at the i-th time step by

∆i = ω +

p∑
j=1

αj∆i−1 +

q∑
j=1

βjzi−j + zi (5.24)

zi = σϵi, (5.25)

where {ϵi} is a sequence of independent and identically distributed (i.i.d.) random variables with zero

mean and unit variance, and θ = (σ, ω, α1, . . . , αp, β1, . . . , βq) is a parameter of the model. To account

for the intraday seasonality effects discussed in Section 5.3.2, one common solution is to generate sea-

sonally adjusted series by differencing out the time-of-day effects. In our case, we decompose the price

fluctuations into a deterministic and stochastic component by assuming that the deterministic seasonality

effects act additively, thus

∆i = ∆̃i + s(ti), (5.26)
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where ∆̃i denotes the seasonally adjusted price fluctuation and s(ti) is the seasonality component at time

ti. The seasonality component can be specified by a time-of-day equation

s(ti) = ν1I1(ti) + ν2I2(ti) + . . .+ νsIs(ti), (5.27)

where (ν1, . . . , νs) are the parameters to be estimated and Ik(ti) is an indicator function whose value can

be either one or zero indicating whether the time ti is in a particular time interval of the day or not. Al-

though this seasonality function can be jointly estimated with the ARMA parameters, it is more common

to employ a two-step estimation approach where, in the first step, the price fluctuations are seasonally

filtered and, in the second step, parameters of the ARMA model are estimated from the deseasonalised

price fluctuation time series. Consequently, the seasonally adjusted price fluctuation series are modelled

using the ARMA model, so that the price fluctuations at the i-th time step is characterised by

∆i − s(ti) = ω +

p∑
j=1

αj
(
∆i−1 − s(ti)

)
+

q∑
j=1

βjzi−j + zi. (5.28)

If {ϵi} has a probability density function fϵ(.), the conditional distribution of price fluctuation at the i-th

time step for this ARMA model will be given by

f(∆i|Fi−1) =
1

σ
fϵ

(zi
σ

)
(5.29)

where Fi is the information set available after the i-th time step. To account for the discreteness and non-

negativity of price fluctuations, we apply the method proposed in Section 5.4.3 to model this conditional

distribution. Particularly, if the tick size of the considered asset is δ, the conditional distribution of the

price fluctuation at the i-th time step can be estimated by

fARMA(∆i|Fi−1) =

Fϵ
(
(zi + δ)/σ

)
if ∆i = 0

Fϵ
(
(zi + δ)/σ

)
− Fϵ

(
zi/σ

)
otherwise

, (5.30)

where Fϵ(.) is the cumulative distribution function of {ϵi}.

Clearly, the ARMA model can be specified based on any distribution defined on a real value support.

In time series forecasting literature, a standard way is to utilise the standard normal distribution whose

probability density function and cumulative distribution function are specified by

fN (ϵ) = exp
(
−ϵ2/2

)
/
√
2π, (5.31)

FN (ϵ) =
(
1 + erf(ϵ/

√
2)
)
/2, (5.32)

where erf(x) = 2√
π

∫ x
0
e−t

2

dt is the Gauss error function. However, this distribution might not be an

appropriate candidate to model the residuals of the price fluctuation time series, which is highly skewed.

To account for this, we also utilise the asymmetric Laplace distribution [90] to model price fluctuation
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time series. The probability density function and the cumulative distribution function of this distribution

are of the form

fAL(ϵ;κ) =


κ
√
2

1+κ2 exp
(
−
√
2κ(ϵ− θ)

)
if ϵ ≥ θ

κ
√
2

1+κ2 exp
(√

2κ−1(ϵ− θ)
)

if ϵ < θ

, (5.33)

FAL(ϵ;κ) =


1

1+k2

(
1 + κ2 − exp

(
−
√
2κ(ϵ− θ)

))
if ϵ ≥ θ

k2

1+k2 exp
(√

2κ−1(ϵ− θ)
)

if ϵ < θ

, (5.34)

θ =
1√
2

(
κ− κ−1

)
. (5.35)

Given a time series of price fluctuations ∆ = (∆1, . . . ,∆N ), the parameter of this model will be

estimated using two different approaches. The first method estimates model parameters by maximising

the conditional log-likelihood computed from Equation (5.29), while the second approach estimates the

parameters by maximising the conditional log-likelihood computed from Equation (5.30). In particular,

the maximum likelihood estimator of the first approach is obtained by maximising the conditional log-

likelihood function

lnL(∆; θ) =

N∑
i=p+1

ln fϵ

(zi
σ

)
−N lnσ, (5.36)

where zi are computed from Equation (5.28) using the observations ∆1, . . . ,∆N with zi = EZi = 0,

for i = min(p − q + 1, p), . . . , p. Similarly, the maximum likelihood estimator of the second approach

can be obtained by maximising the conditional log-likelihood function

lnL(∆; θ) =
N∑

i=p+1

ln fARMA(∆i|Fi−1). (5.37)

5.5.2 ARMA-GARCH model for price fluctuations

More sophisticated specifications for price fluctuations might be obtained by considering the non-linear

class of autoregressive conditionally heteroscedastic model introduced by Engle [27]. This class was

then generalised by Bollerslev [12] to the GARCH process. Accordingly, this section considers ARMA

models whose residual is driven by the GARCH process so that the price fluctuation at the i-th time step

is modelled by

∆i = ω +

p∑
j=1

αj∆i−1 +

q∑
j=1

βjzi−j + zi, (5.38)

σ2
i = γ +

P∑
j=1

ϕjz
2
i−j +

Q∑
j=1

λjσ
2
i−j , (5.39)

zi = σiϵi, (5.40)
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where θ = (ω, α1, . . . , αp, β1, . . . , βq, γ, ϕ1, . . . , ϕP , λ1, . . . , λQ) is a parameter of this model, and {ϵi}

is a sequence of i.i.d. random variables with zero mean and unit variance. By using the method discussed

in the previous section to account for the intraday seasonality effect, the conditional mean function in

Equation (5.38) is transformed to

∆i − s(ti) = ω +

p∑
j=1

αj
(
∆i−1 − s(ti)

)
+

q∑
j=1

βjzi−j + zi, (5.41)

where s(ti) is the seasonality component at time ti computed from Equation (5.27). Accordingly, the

conditional distribution of price fluctuation at the i-th time step implied from this model is given by

f(∆i|Fi−1) =
1

σi
fϵ

(
zi
σi

)
, (5.42)

while the conditional distribution of price fluctuation at the i-th time step from the extension to account

for the discreteness and non-negativity of price fluctuations is given by

fGARCH(∆i|Fi−1) =

Fϵ
(
(zi + δ)/σi

)
if ∆i = 0

Fϵ
(
(zi + δ)/σi

)
− Fϵ

(
zi/σi

)
otherwise

, (5.43)

where fϵ(.) and Fϵ(.) is the probability density function and cumulative distribution function of {ϵi}

respectively.

Given a time series of price fluctuations ∆ = (∆1, . . . ,∆N ), the parameter of this model will

be estimated using two different approaches. The first method estimates this parameter by maximising

the conditional log-likelihood computed from Equation (5.42) while the second approach estimates the

parameters by maximising the conditional log-likelihood computed from Equation (5.43). In particular,

the maximum likelihood estimator of the first approach is obtained by maximising the conditional log-

likelihood function

lnL(∆; θ) =
N∑

i=p+1

(
ln fϵ

(
zi
σi

)
− lnσi

)
, (5.44)

where zi is computed from Equation (5.41) using the observations ∆1, . . . ,∆N with zi = EZi = 0

for i ≤ p, while σi are computed recursively from Equation (5.39) and (5.40), with σ2
i = σ̂2 for all

i ≤ 0 when σ̂2 is the sample variance of the GARCH residual {zi}. Similarly, the maximum likelihood

estimator of the second approach can be obtained by maximising the conditional log-likelihood function

lnL(∆; θ) =
N∑

i=p+1

ln fGARCH(∆i|Fi−1). (5.45)

5.5.3 ACD model for price fluctuations

Another time series analysis technique that we can utilise to model price fluctuation time series is the

autoregressive conditional duration (ACD) model originally proposed by Engle and Russel [28] to model
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trade durations. The basic idea behind the ACD model is a dynamic parameterisation of the conditional

mean function. Specifically, let ψi be the expectation of the i-th observation, the basic ACD model for

price fluctuations can be specified by

∆i = ψiϵi, (5.46)

ψi = ω +

p∑
j=1

αj∆i−j +

q∑
j=1

βjψi−j , (5.47)

where {ϵi} is an independent identically distributed non-negative random variable with mean one and

finite second moment. To account for the intraday seasonality effects, a common solution is to generate

seasonally adjusted series by partialling out the time-of-day effects. In this case, we decompose the price

fluctuations into a deterministic and stochastic component by assuming that the deterministic seasonality

effects act multiplicatively so that

∆i = ∆̃is(ti), (5.48)

where s(ti) is the seasonality component at time ti computed from Equation (5.27). Accordingly, the

seasonal adjusted ACD model is characterised by

∆i

s(ti)
= ψiϵi, (5.49)

ψi = ω +

p∑
j=1

αj
∆i−j

s(ti−j)
+

q∑
j=1

βjψi−j . (5.50)

If {ϵi} has a probability density function fϵ(.), the conditional distribution of price fluctuation at the i-th

time step for this ACD model will be given by

f(∆i|Fi−1) =
1

ψis(ti)
fϵ

(
∆i

ψis(ti)

)
(5.51)

where Fi is the information set available after the i-th time step. To account for the discreteness and non-

negativity of price fluctuations, we apply the method proposed in Section 5.4.3 to model this conditional

distribution. In particular, if the tick size of the considered asset is δ, the conditional distribution of the

price fluctuation at the i-th time step will be given by

fACD(∆i|Fi−1) =

Fϵ
(

∆i+δ
ψis(ti)

)
if ∆i = 0

Fϵ
(

∆i+δ
ψis(ti)

)
− Fϵ

(
∆i

ψis(ti)

)
otherwise

, (5.52)

where Fϵ(.) is the cumulative distribution function of {ϵi}.

Since the ACD model is a model for non-negative random variables, the model must be specified

based on a distribution defined on non-negative support. Accordingly, the exponential [28], Weibull [28],

and generalised gamma [64] distribution have all been previously used in the context of the ACD model.

The probability density function and the cumulative distribution of these distributions are characterised
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by

fE(ϵ) = exp (−ϵ) , (5.53)

FE(ϵ) = 1− exp (−ϵ) , (5.54)

fW (ϵ;κ) =
κ

ϵ
(ϵΓ(1 + 1/κ))

κ
exp (− (ϵΓ(1 + 1/κ))

κ
) , (5.55)

FW (ϵ;κ) = 1− exp (− (ϵΓ(1 + 1/κ))
κ
) , (5.56)

fGG(ϵ;κ, λ) =
κ

ϵΓ(λ)

(
ϵΓ(λ+ 1/κ)

Γ(λ)

)κλ
exp

[
−
(
ϵΓ(λ+ 1/κ)

Γ(λ)

)κ]
, (5.57)

FGG(ϵ;κ, λ) =
γ (λ, [ϵΓ(λ+ 1/κ)/Γ(λ)]κ)

Γ(λ)
, (5.58)

where κ > 0 and λ > 0 are shape parameters of the Weibull and generalised gamma distribution,

γ(λ, x) =
∫ x
0
tλ−1e−tdt is the lower incomplete gamma function, and Γ(λ) =

∫∞
0
tλ−1e−tdt is the

gamma function. It is not difficult to see that these three distributions are nested since the generalised

gamma distribution reduces to the Weibull distribution when λ = 1, and to the exponential distribution

when λ = κ = 1. As a result, straight forward parametric tests can be employed to select the distribution

that better describes the dataset.

Given a time series of price fluctuations ∆ = (∆1, . . . ,∆N ), the parameters of the ACD model will

be estimated using two different approaches. The first method estimates model parameters by maximis-

ing the conditional log-likelihood computed from Equation (5.51), while the second approach estimates

the parameters by maximising the conditional log-likelihood computed from Equation (5.52). In partic-

ular, the maximum likelihood estimator of the first approach is obtained by maximising the conditional

log-likelihood function

lnL(∆; θ) =
N∑

i=p+1

(
ln fϵ

(
∆i

ψis(ti)

)
− lnψi − ln s(ti)

)
, (5.59)

where ψi are computed from Equation (5.50) using the observations ∆1, . . . ,∆N with ψi = ∆̂ for all

i ≤ 0 when ∆̂ is a sample mean of (∆1, . . . ,∆N ). Similarly, the maximum likelihood estimator of the

second approach can be obtained by maximising the conditional log-likelihood function

lnL(∆; θ) =

N∑
i=p+1

ln fACD(∆i|Fi−1). (5.60)

5.5.4 Experimental results

To determine the most suitable model for modelling the conditional distribution of price fluctuations,

this section tries to fit these three models to the buy price fluctuations dataset described in Section 5.3.1

by maximising both the original likelihood function and the modified likelihood function that account

for the discreteness of the dataset.
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Performance measures

The results obtained from fitting the above models will be evaluated against two different performance

measures, which are Brier’s score [15] and Epstein’s score [29].

The Brier score is a proper score function that measures the accuracy of a set of probability assess-

ment using the average squared deviation between predicted probabilities for a set of events and their

outcomes. In particular, when we consider a categorical variable whose sample space consists of a finite

number K of mutually exclusive events, the Brier score is given by

Bs =
1

N

N∑
i=1

K∑
k=1

(pki − dki)
2, (5.61)

where pki is the predicted probability of category k at the i-th time step, while dki is an indicator variable

which takes the value 1 if the outcome at the i-th time step falls in category k and 0 otherwise. The range

for the Brier score is usually stated as 0 ≤ Bs ≤ 2, though the extreme values can be obtained in extreme

circumstances when all probability is assigned to a single category and the outcome either does or does

not fall into it. In general, there is a non-zero lower bound that corresponds to the best fit, and thus

a lower score represents higher accuracy. In our application, K is set at one plus the price level that

contained the first 98% of the observations, or equivalently

K = 1 +min{k ∈ N|Pr{∆i ≤ δk} < 0.98}, (5.62)

where δ is the tick size of the considered instrument. The category k for 1 ≤ k < K is corresponding to

the situation when the price fluctuation is equal to kδ, and the category k = K is corresponding to the

situation when the price fluctuation is greater than Kδ.

Since the Brier score is indifferent to the ordering of the categories, it might be more useful to

consider a score that also considers the ordering of the categories. To achieve this, Epstein [29] propose to

replace the density functions implicit in the Brier score with their corresponding cumulative distribution

functions defined as

Pki =
k∑
j=1

pji, and Dki =
k∑
j=1

dji, (5.63)

where k = 1, . . . ,K with Pki = Dki = 1. The ranked probability score is then calculated from

Es =
1

N

N∑
i=1

K∑
k=1

(Pki −Dki)
2. (5.64)

With this equation, the Epstein’s score penalises forecasts less severely when their probabilities are

close to the actual outcome and more severely when their probabilities are further away from the actual

outcome.
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Table 5.6: List of conditional models for price fluctuations utilised to fit the buy price fluctuations
dataset.

Short name Model Distribution
GF - Generalised F
NARMA ARMA(3,3) Normal
ALARAMA ARMA(3,3) Asymmetric laplace
NGARCH ARMA(3,3)-GARCH(3,3) Normal
AGARCH ARMA(3,3)-GARCH(3,3) Asymmetric laplace
EACD ACD(3,3) Exponential
WACD ACD(3,3) Weibull
GGACD ACD(3,3) Generalised gamma

Results

For each instrument and for each time frame of price fluctuations, we estimate the ARMA, ARMA-

GARCH and ACD models summarised in Table 5.6, and compute the Brier’s score, Epstein’s score and

the {ϵi} series implied by each model. The parameters of these models are estimated by maximising the

likelihood of the original model as well as the likelihood of the extension to account for the discreteness

and non-negativity of price fluctuation. We specify the autoregressive models with three lags as our

primarily result at the longest time frame indicates that the best model according to the AIC and BIC

criterion never utilises more than three lags. The evaluation will be done using both in-sample and out-

of-sample result by using the first 80% of the sample as a training dataset. To establish a benchmark,

we also evaluate the Brier’s score and Epstein’s score based on the best unconditional models (i.e. the

generalised F distribution) for price fluctuations described in the previous section.

The results obtained from fitting these models to the buy price fluctuation dataset are illustrated in

Table 5.7 and 5.8. Table 5.7 reports the in-sample Brier’s score, Epstein’s score, and p-values of the

Ljung-Box Q-statistic for ϵ and ϵ2 using the first 10 autocorrelations for each estimator as well as the im-

provement gained from maximising the modified likelihood function rather than the original likelihood

function as measured by Brier’s score and Epstein’s score. The result obtained from maximising the

modified likelihood function that accounts for the discreetness and non-negativity of the price fluctua-

tions dataset, reported in the last two columns of the table, indicates that the modified likelihood provides

better fit to the dataset than maximising the original likelihood function in most situations since the im-

provements reported are generally positive. A closer inspection reveals that, in case of the ACD model,

the modified approach always provide better result for the ACD model with the Weibull and generalised

gamma distribution having the problem as discussed in Section 5.4.2. As expected, the improvement

gained in the case of the exponential distribution is somewhat limited since it does not suffer from the

same problem. For the ARMA and ARMA-GARCH model, the improvement gained in the case of the

normal distribution is generally higher than that of the asymmetric Laplace distribution. However, the

gains obtained in this case are not consistent as in the ACD model. This indicates that it is better to

utilise the modified likelihood to estimate the parameters of the ACD model, while we might need to

apply both estimators to estimate the parameters of the ARMA and ARMA-GARCH model.

Among these three models, the ACD model seem to be the best model for modelling the price
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Table 5.7: In-sample result obtained from a traditional maximum likelihood and the modified maximum
likelihood estimated of several time series analysis models together with the maximum log-likelihood,
the Brier’s score, the Epstein’s score and the p-value of Ljung-Box Q-statistic based on the first 10
autocorrelations of the residual and squared residual sequences.

Model T
Original likelihood Modified likelihood

∆Bs ∆Es
Bs Es Q(10) Q2(10) Bs Es Q(10) Q2(10)

GE buy price fluctuations, NYSE
GF 60 0.9988 (13) 5.22 (16) - - 0.9533 (5) 5.02 (13) - - 0.0455 0.21
NARMA 60 1.0048 (14) 4.89 (11) 29.81 100.00 0.9917 (11) 4.84 (10) 16.09 100.00 0.0131 0.05
ALARMA 60 0.9685 (9) 4.82 (9) 0.00 99.99 0.9671 (8) 4.81 (7) 0.00 100.00 0.0014 0.02
NGARCH 60 1.0058 (15) 5.02 (14) 0.00 100.00 0.9828 (10) 4.81 (8) 68.31 100.00 0.0230 0.20
ALGARCH 60 0.9669 (7) 4.78 (6) 65.12 100.00 0.9655 (6) 4.76 (5) 84.53 100.00 0.0014 0.02
EACD 60 0.9518 (4) 4.65 (4) 98.71 100.00 0.9515 (3) 4.61 (3) 99.98 100.00 0.0003 0.03
WACD 60 0.9962 (12) 5.01 (12) 93.69 100.00 0.9480 (2) 4.61 (2) 99.55 100.00 0.0482 0.40
GGACD 60 1.0110 (16) 5.05 (15) 0.00 100.00 0.9468 (1) 4.58 (1) 99.99 100.00 0.0642 0.47
GF 30 0.9926 (14) 3.83 (16) - - 0.9374 (3) 3.65 (12) - - 0.0552 0.19
NARMA 30 0.9948 (15) 3.58 (11) 21.99 100.00 0.9761 (11) 3.54 (10) 2.27 100.00 0.0187 0.04
ALARMA 30 0.9485 (9) 3.53 (9) 0.00 100.00 0.9466 (8) 3.50 (7) 0.00 100.00 0.0019 0.02
NGARCH 30 0.9866 (12) 3.70 (14) 0.00 100.00 0.9681 (10) 3.51 (8) 45.61 100.00 0.0184 0.19
ALGARCH 30 0.9454 (7) 3.48 (6) 24.90 100.00 0.9428 (6) 3.46 (5) 27.49 100.00 0.0025 0.01
EACD 30 0.9422 (5) 3.41 (4) 45.51 100.00 0.9405 (4) 3.39 (3) 96.58 100.00 0.0017 0.02
WACD 30 0.9918 (13) 3.66 (13) 77.55 100.00 0.9312 (2) 3.35 (2) 98.26 100.00 0.0607 0.32
GGACD 30 1.0078 (16) 3.72 (15) 0.00 100.00 0.9297 (1) 3.35 (1) 94.63 100.00 0.0781 0.38
GF 10 0.9964 (14) 2.31 (16) - - 0.8981 (4) 2.09 (12) - - 0.0983 0.22
NARMA 10 0.9609 (13) 2.06 (11) 9.31 99.98 0.9333 (11) 2.03 (9) 0.05 99.99 0.0277 0.03
ALARMA 10 0.9078 (7) 2.03 (10) 0.00 100.00 0.9021 (6) 2.01 (8) 0.00 100.00 0.0057 0.02
NGARCH 10 0.9503 (12) 2.09 (13) 0.00 82.99 0.9208 (9) 1.99 (6) 98.56 100.00 0.0295 0.10
ALGARCH 10 0.9020 (5) 1.99 (5) 13.40 100.00 0.8952 (3) 1.96 (3) 74.38 100.00 0.0067 0.03
EACD 10 0.9216 (10) 2.00 (7) 70.98 100.00 0.9158 (8) 1.98 (4) 98.68 100.00 0.0058 0.03
WACD 10 1.0137 (15) 2.24 (14) 33.85 100.00 0.8877 (2) 1.91 (2) 99.01 100.00 0.126 0.33
GGACD 10 1.0287 (16) 2.28 (15) 0.00 100.00 0.8851 (1) 1.91 (1) 98.79 100.00 0.1436 0.37

IBM buy price fluctuations, NYSE
GF 60 1.0012 (9) 21.62 (16) - - 0.9843 (5) 21.29 (15) - - 0.0169 0.33
NARMA 60 1.0428 (16) 19.51 (12) 0.02 0.00 1.0378 (15) 19.24 (11) 0.00 0.00 0.0050 0.27
ALARMA 60 1.0026 (11) 19.84 (14) 0.00 0.00 1.0063 (12) 19.55 (13) 0.00 0.00 -0.0037 0.29
NGARCH 60 1.0144 (13) 18.67 (7) 0.00 1.58 1.0201 (14) 18.74 (8) 0.00 17.22 -0.0057 -0.07
ALGARCH 60 0.9970 (7) 18.65 (6) 0.00 0.69 0.9988 (8) 18.55 (5) 0.00 0.37 -0.0018 0.10
EACD 60 0.9813 (4) 17.92 (4) 0.02 0.46 0.9813 (3) 17.91 (3) 0.01 0.23 0.0000 0.02
WACD 60 0.9929 (6) 19.05 (10) 0.00 4.25 0.9813 (2) 17.91 (2) 0.01 0.23 0.0116 1.14
GGACD 60 1.0014 (10) 18.92 (9) 0.00 0.83 0.9813 (1) 17.89 (1) 0.02 21.55 0.0201 1.02
GF 30 0.9990 (12) 15.58 (16) - - 0.9801 (5) 15.35 (15) - - 0.0189 0.23
NARMA 30 1.0411 (16) 14.01 (12) 1.62 0.00 1.0313 (15) 13.81 (11) 0.05 0.00 0.0097 0.20
ALARMA 30 0.9969 (9) 14.19 (14) 0.00 0.00 0.9989 (11) 14.07 (13) 0.00 0.00 -0.002 0.12
NGARCH 30 1.0177 (14) 13.51 (8) 45.50 77.73 1.0150 (13) 13.42 (7) 93.20 60.43 0.0027 0.09
ALGARCH 30 0.9936 (7) 13.32 (6) 1.46 94.57 0.9944 (8) 13.29 (5) 4.18 95.29 -0.0008 0.03
EACD 30 0.9754 (4) 12.84 (4) 90.02 99.97 0.9753 (3) 12.82 (3) 78.73 99.97 0.0000 0.01
WACD 30 0.9894 (6) 13.60 (10) 0.00 100.00 0.9752 (1) 12.79 (2) 65.01 99.98 0.0142 0.81
GGACD 30 0.9985 (10) 13.53 (9) 0.00 99.97 0.9753 (2) 12.78 (1) 89.52 99.97 0.0232 0.75
GF 10 1.0033 (12) 9.01 (16) - - 0.9668 (5) 8.79 (15) - - 0.0365 0.23
NARMA 10 1.0287 (16) 8.08 (13) 0.00 0.00 1.0176 (15) 7.94 (11) 0.00 0.00 0.0112 0.13
ALARMA 10 0.9787 (8) 8.18 (14) 0.00 0.00 0.9803 (9) 8.08 (12) 0.00 0.00 -0.0016 0.10
NGARCH 10 1.0035 (13) 7.70 (8) 0.00 99.92 0.9932 (10) 7.62 (7) 0.02 99.96 0.0102 0.08
ALGARCH 10 0.9732 (7) 7.58 (6) 0.00 97.51 0.9729 (6) 7.54 (5) 0.00 99.56 0.0003 0.03
EACD 10 0.9585 (4) 7.31 (4) 0.42 100.00 0.9581 (3) 7.30 (3) 96.30 100.00 0.0004 0.01
WACD 10 0.9973 (11) 7.91 (9) 0.68 100.00 0.9559 (2) 7.27 (2) 95.35 100.00 0.0414 0.64
GGACD 10 1.0074 (14) 7.92 (10) 0.00 100.00 0.9556 (1) 7.27 (1) 93.11 100.00 0.0519 0.64
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Table 5.7 continued: In-sample result obtained from a traditional maximum likelihood and the modified
maximum likelihood estimated of several time series analysis models together with the maximum log-
likelihood, the Brier’s score, the Epstein’s score and the p-value of Ljung-Box Q-statistic based on the
first 10 autocorrelations of the residual and squared residual sequences.

Model T
Original likelihood Modified likelihood

∆Bs ∆Es
Bs Es Q(10) Q2(10) Bs Es Q(10) Q2(10)

Microsoft buy price fluctuations, NYSE
GF 60 1.0001 (12) 6.04 (16) - - 0.9567 (5) 5.82 (15) - - 0.0434 0.22
NARMA 60 1.0166 (16) 5.64 (11) 5.14 66.87 1.0046 (14) 5.58 (8) 2.53 67.91 0.0119 0.06
ALARMA 60 0.9729 (9) 5.65 (12) 0.00 0.89 0.9728 (8) 5.61 (10) 0.00 4.38 0.0001 0.04
NGARCH 60 1.0041 (13) 5.59 (9) 0.94 99.99 0.9902 (10) 5.51 (7) 14.73 100.00 0.0139 0.08
ALGARCH 60 0.9693 (7) 5.46 (6) 19.83 100.00 0.9686 (6) 5.44 (5) 25.46 100.00 0.0007 0.03
EACD 60 0.9566 (4) 5.27 (4) 32.62 100.00 0.9561 (3) 5.26 (3) 35.12 100.00 0.0006 0.01
WACD 60 0.9966 (11) 5.66 (13) 4.72 100.00 0.9525 (2) 5.23 (2) 18.23 100.00 0.0441 0.43
GGACD 60 1.0113 (15) 5.67 (14) 0.00 99.99 0.9524 (1) 5.23 (1) 32.23 100.00 0.0589 0.44
GF 30 0.9930 (14) 4.30 (16) - - 0.9420 (3) 4.11 (15) - - 0.051 0.19
NARMA 30 1.0075 (16) 4.01 (12) 6.27 42.59 0.9882 (11) 3.96 (8) 0.17 39.74 0.0193 0.05
ALARMA 30 0.9586 (9) 3.99 (11) 0.00 0.70 0.9566 (8) 3.97 (10) 0.00 2.55 0.002 0.02
NGARCH 30 0.9913 (13) 3.96 (9) 0.00 100.00 0.9752 (10) 3.90 (7) 1.19 100.00 0.0161 0.06
ALGARCH 30 0.9549 (7) 3.88 (6) 19.00 100.00 0.9521 (6) 3.86 (5) 42.24 100.00 0.0028 0.02
EACD 30 0.9469 (5) 3.74 (4) 18.15 100.00 0.9454 (4) 3.73 (3) 30.48 100.00 0.0015 0.01
WACD 30 0.9907 (12) 4.02 (13) 0.00 99.99 0.9363 (2) 3.68 (2) 11.23 100.00 0.0544 0.33
GGACD 30 1.0058 (15) 4.03 (14) 0.00 99.99 0.9354 (1) 3.68 (1) 29.69 100.00 0.0704 0.35
GF 10 0.9907 (14) 2.55 (16) - - 0.9044 (3) 2.35 (13) - - 0.0863 0.20
NARMA 10 0.9756 (13) 2.29 (12) 60.45 3.90 0.9486 (12) 2.26 (10) 0.00 4.20 0.027 0.03
ALARMA 10 0.9182 (7) 2.28 (11) 0.00 0.14 0.9131 (6) 2.25 (8) 0.00 0.61 0.0051 0.02
NGARCH 10 0.9472 (11) 2.25 (9) 0.00 100.00 0.9290 (10) 2.21 (7) 0.01 100.00 0.0182 0.05
ALGARCH 10 0.9108 (5) 2.21 (6) 24.50 100.00 0.9045 (4) 2.19 (5) 3.43 100.00 0.0063 0.02
EACD 10 0.9277 (9) 2.19 (4) 7.07 100.00 0.9217 (8) 2.17 (3) 10.73 100.00 0.006 0.02
WACD 10 0.9998 (15) 2.41 (14) 0.02 100.00 0.8954 (2) 2.11 (2) 26.41 100.00 0.1044 0.30
GGACD 10 1.0158 (16) 2.44 (15) 0.00 100.00 0.8935 (1) 2.11 (1) 13.47 100.00 0.1223 0.33

Gold future buy price fluctuations, MCX
GF 30 0.9961 (11) 11.66 (13) - - 0.9797 (5) 11.34 (5) - - 0.0165 0.32
NARMA 30 1.0111 (15) 11.63 (12) 90.63 0.00 1.0109 (14) 11.60 (11) 63.63 0.00 0.0001 0.02
ALARMA 30 0.9949 (10) 11.51 (10) 3.15 0.00 1.0573 (16) 16.59 (16) 0.00 0.00 -0.0624 -5.08
NGARCH 30 1.0099 (13) 11.73 (15) 4.65 0.00 1.0091 (12) 11.67 (14) 28.91 0.00 0.0008 0.06
ALGARCH 30 0.9936 (8) 11.48 (9) 27.95 46.72 0.9938 (9) 11.40 (6) 53.01 38.93 -0.0002 0.08
EACD 30 0.9757 (4) 11.10 (4) 95.41 61.39 0.9757 (3) 11.09 (3) 95.80 60.14 0.0001 0.01
WACD 30 0.9845 (6) 11.45 (8) 92.17 26.80 0.9752 (2) 11.07 (2) 95.96 60.33 0.0093 0.38
GGACD 30 0.9925 (7) 11.43 (7) 98.48 78.87 0.9752 (1) 11.07 (1) 95.87 60.20 0.0173 0.31
GF 10 1.0230 (15) 7.04 (15) - - 0.9644 (5) 6.56 (5) - - 0.0586 0.49
NARMA 10 0.9954 (13) 6.75 (13) 88.61 0.00 0.9953 (12) 6.73 (12) 89.91 0.00 0.0001 0.02
ALARMA 10 0.9823 (9) 6.67 (11) 0.00 0.00 0.9804 (8) 6.65 (8) 0.00 0.00 0.002 0.01
NGARCH 10 0.9882 (10) 6.65 (10) 1.32 35.62 0.9896 (11) 6.65 (9) 0.71 58.17 -0.0014 0.00
ALGARCH 10 0.9799 (7) 6.63 (7) 73.68 71.38 0.9761 (6) 6.61 (6) 79.97 71.11 0.0038 0.03
EACD 10 0.9608 (4) 6.42 (4) 88.20 78.14 0.9605 (3) 6.41 (3) 87.51 71.88 0.0002 0.01
WACD 10 1.0108 (14) 7.04 (16) 54.86 35.50 0.9600 (2) 6.40 (2) 88.13 75.13 0.0508 0.64
GGACD 10 1.0247 (16) 6.96 (14) 27.91 77.21 0.9599 (1) 6.40 (1) 88.33 76.80 0.0647 0.56
GF 5 1.0516 (15) 5.22 (14) - - 0.9499 (5) 4.67 (10) - - 0.1017 0.55
NARMA 5 0.9776 (12) 4.73 (13) 74.79 0.00 0.9793 (13) 4.72 (12) 2.96 0.00 -0.0017 0.01
ALARMA 5 0.9662 (9) 4.71 (11) 0.00 0.00 0.9623 (7) 4.66 (7) 0.00 0.00 0.0039 0.05
NGARCH 5 0.9682 (10) 4.66 (8) 1.77 32.81 0.9701 (11) 4.66 (9) 3.37 34.85 -0.0019 0.00
ALGARCH 5 0.9624 (8) 4.65 (6) 3.83 29.97 0.9582 (6) 4.62 (5) 22.17 54.68 0.0043 0.02
EACD 5 0.9450 (4) 4.52 (4) 55.16 65.15 0.9444 (3) 4.51 (3) 42.94 48.64 0.0005 0.01
WACD 5 1.0498 (14) 5.25 (16) 53.11 10.47 0.9437 (2) 4.50 (2) 44.18 52.42 0.106 0.74
GGACD 5 1.0627 (16) 5.22 (15) 12.22 66.23 0.9437 (1) 4.50 (1) 44.45 53.23 0.119 0.72
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Table 5.7 continued: In-sample result obtained from a traditional maximum likelihood and the modified
maximum likelihood estimated of several time series analysis models together with the maximum log-
likelihood, the Brier’s score, the Epstein’s score and the p-value of Ljung-Box Q-statistic based on the
first 10 autocorrelations of the residual and squared residual sequences.

Model T
Original likelihood Modified likelihood

∆Bs ∆Es
Bs Es Q(10) Q2(10) Bs Es Q(10) Q2(10)

Silver future buy price fluctuations, MCX
GF 30 1.0018 (13) 20.79 (16) - - 0.9888 (5) 19.76 (11) - - 0.0130 1.03
NARMA 30 0.9981 (8) 19.48 (8) 19.71 0.00 1.0122 (16) 19.45 (5) 13.15 99.86 -0.0140 0.03
ALARMA 30 0.9999 (11) 19.52 (9) 10.33 91.76 0.9992 (9) 19.48 (6) 39.59 98.37 0.0007 0.04
NGARCH 30 1.0099 (15) 19.92 (13) 96.26 99.68 1.0064 (14) 19.81 (12) 33.59 0.14 0.0035 0.11
ALGARCH 30 0.9999 (12) 19.54 (10) 13.12 94.85 0.9998 (10) 19.48 (7) 3.67 86.58 0.0001 0.06
EACD 30 0.9859 (4) 19.01 (4) 95.10 82.25 0.9859 (3) 19.00 (3) 95.16 82.21 0.0000 0.01
WACD 30 0.9934 (6) 20.17 (15) 92.79 96.78 0.9857 (2) 18.89 (2) 95.21 96.74 0.0077 1.27
GGACD 30 0.9980 (7) 19.99 (14) 63.10 78.89 0.9853 (1) 18.89 (1) 93.92 96.21 0.0127 1.10
GF 10 1.0255 (15) 13.82 (14) - - 0.9801 (7) 12.58 (8) - - 0.0455 1.25
NARMA 10 1.0122 (13) 19.73 (16) 99.52 99.95 1.0007 (12) 12.70 (12) 1.02 0.00 0.0116 7.03
ALARMA 10 0.9781 (6) 12.23 (6) 58.24 3.76 0.9781 (5) 12.22 (4) 58.19 3.75 0.0000 0.01
NGARCH 10 0.9908 (10) 12.64 (11) 50.92 96.46 0.9923 (11) 12.58 (9) 27.37 98.00 -0.0015 0.06
ALGARCH 10 0.9874 (9) 12.60 (10) 14.03 74.53 0.9861 (8) 12.52 (7) 20.20 79.91 0.0013 0.08
EACD 10 0.9781 (4) 12.23 (5) 58.24 3.76 0.9781 (3) 12.22 (3) 58.19 3.75 0.0000 0.01
WACD 10 1.0135 (14) 13.86 (15) 4.77 8.54 0.9781 (2) 12.22 (2) 58.18 3.72 0.0355 1.64
GGACD 10 1.0264 (16) 13.73 (13) 41.12 53.48 0.9768 (1) 12.21 (1) 54.71 9.73 0.0496 1.52
GF 5 1.0493 (15) 10.62 (14) - - 0.9702 (6) 9.44 (11) - - 0.0791 1.18
NARMA 5 0.9841 (12) 9.57 (13) 64.19 0.00 0.9886 (13) 9.45 (12) 25.50 0.00 -0.0045 0.12
ALARMA 5 0.9682 (5) 9.13 (3) 30.39 0.17 0.9774 (10) 9.38 (7) 0.00 0.00 -0.0092 -0.25
NGARCH 5 0.9772 (9) 9.43 (10) 27.28 98.31 0.9800 (11) 9.38 (8) 27.39 97.21 -0.0027 0.05
ALGARCH 5 0.9758 (8) 9.39 (9) 32.33 79.90 0.9731 (7) 9.31 (6) 49.29 89.43 0.0027 0.08
EACD 5 0.9682 (4) 9.13 (2) 30.39 0.17 0.9682 (3) 9.12 (1) 26.87 0.16 0.0000 0.01
WACD 5 1.0457 (14) 10.80 (16) 0.00 0.00 0.9675 (2) 9.14 (5) 27.93 0.16 0.0782 1.65
GGACD 5 1.0592 (16) 10.79 (15) 0.66 1.03 0.9655 (1) 9.14 (4) 5.94 0.42 0.0937 1.65

Natural gas future buy price fluctuations, MCX
GF 30 1.0397 (14) 6.51 (14) - - 0.9579 (5) 5.94 (11) - - 0.0818 0.57
NARMA 30 0.9847 (12) 5.99 (12) 88.39 0.02 0.9866 (13) 5.93 (10) 82.77 0.04 -0.0019 0.06
ALARMA 30 0.9726 (9) 5.90 (7) 0.12 0.18 0.9700 (8) 5.87 (6) 3.38 0.21 0.0025 0.03
NGARCH 30 0.9769 (10) 6.00 (13) 20.47 99.11 0.9790 (11) 5.91 (9) 76.32 99.81 -0.0021 0.09
ALGARCH 30 0.9688 (7) 5.90 (8) 81.43 99.70 0.9653 (6) 5.85 (5) 94.20 99.51 0.0035 0.05
EACD 30 0.9497 (4) 5.61 (4) 94.21 92.49 0.9493 (3) 5.60 (3) 90.04 87.29 0.0004 0.01
WACD 30 1.0480 (15) 6.61 (16) 70.50 64.04 0.9491 (2) 5.59 (2) 90.12 87.41 0.099 1.01
GGACD 30 1.0665 (16) 6.59 (15) 2.24 3.32 0.9484 (1) 5.57 (1) 73.75 93.34 0.1181 1.02
GF 10 1.3311 (16) 4.25 (14) - - 0.9226 (9) 3.85 (11) - - 0.4084 0.4
NARMA 10 0.9295 (12) 3.90 (13) 11.22 0.00 0.9353 (13) 3.83 (10) 0.08 0.00 -0.0057 0.07
ALARMA 10 0.9245 (10) 3.86 (12) 0.00 0.00 0.9222 (8) 3.80 (7) 0.00 0.00 0.0023 0.05
NGARCH 10 0.9200 (6) 3.80 (8) 16.07 78.87 0.9249 (11) 3.78 (6) 16.16 98.53 -0.0049 0.02
ALGARCH 10 0.9212 (7) 3.81 (9) 47.99 66.70 0.9159 (5) 3.75 (5) 72.98 93.68 0.0053 0.07
EACD 10 0.9093 (3) 3.66 (4) 94.55 97.72 0.9095 (4) 3.66 (3) 83.87 96.72 -0.0001 0.01
WACD 10 1.1624 (15) 4.87 (16) 0.70 100.00 0.9080 (2) 3.66 (2) 87.24 96.68 0.2544 1.21
GGACD 10 1.1376 (14) 4.82 (15) 13.68 94.94 0.9072 (1) 3.66 (1) 78.20 97.65 0.2304 1.16
GF 5 1.0561 (14) 3.32 (14) - - 0.8834 (13) 2.88 (6) - - 0.1727 0.44
NARMA 5 0.8734 (10) 3.01 (13) 38.07 0.00 0.8802 (12) 2.92 (9) 7.98 0.00 -0.0068 0.08
ALARMA 5 0.8748 (11) 2.97 (12) 0.00 0.00 0.8684 (7) 2.91 (8) 0.00 0.00 0.0064 0.06
NGARCH 5 0.8665 (6) 2.94 (11) 0.90 98.10 0.8695 (8) 2.90 (7) 10.40 99.62 -0.003 0.03
ALGARCH 5 0.8721 (9) 2.93 (10) 68.18 83.34 0.8626 (3) 2.87 (5) 53.99 99.36 0.0095 0.07
EACD 5 0.8649 (4) 2.83 (4) 95.09 96.48 0.8665 (5) 2.83 (3) 57.29 91.69 -0.0016 0.00
WACD 5 1.1515 (16) 5.33 (16) 0.00 32.49 0.8590 (2) 2.82 (2) 81.03 91.71 0.2925 2.51
GGACD 5 1.1339 (15) 3.88 (15) 86.51 95.72 0.8583 (1) 2.82 (1) 72.47 94.94 0.2756 1.06
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fluctuation dataset, since the best models according to both Brier’s score and Epstein’s score always

belong to this class, with the generalised gamma distribution being the best distribution and the Weibull

distribution being the second best distribution. The results from the ARMA-GARCH model are always

better than the one obtained from the ARMA model with respect to the same distributional assumption,

while the result from the asymmetric Laplace distribution is better than the one from the standard normal

distribution. Interestingly, the resulted obtained from the unconditional model using the generalised F

distribution regularly beat the ARMA and ARMA-GARCH model in terms of Brier’s score, which does

not consider the order of the categories.

An easy-to-compute in-sample test for correct specification consists of calculating sample auto-

correlations of residuals for the estimated models and comparing it to the assumption of the models.

Consequently, if the model is correctly specified, there must be no unexplained structure left in the

residuals and, thus, the residuals time series must be independent. To determine this, we calculate the

Lijung-Box statistics at 10 lags for both residuals and square residuals. The p-value reported in Table 5.7

indicates that the best model generally passes this test except in the case of IBM’s 60 minute buy price

fluctuations which we can reject the independent assumption at a convenient level.

The out-of-sample result reported in Table 5.8 suggest similar results. In particular, the best model

among these three models is still the ACD model since the best performing model, in all datasets, be-

longs to this class, and the modified likelihood estimator always provides better results for the Weibull

and generalised gamma distribution. This further confirms that the ACD estimated by maximising the

modified likelihood model is the best candidate for modelling the price fluctuations dataset.

5.5.5 Summary

In this section, we studied several approaches for modelling the conditional distribution of price fluctua-

tion time series. We started this section by giving an overview of three important models for forecasting

time series in financial econometrics literatures. These included the autoregressive moving average

(ARMA) model, the generalised autoregressive conditional heteroskedasticity (GARCH) model and the

autoregressive conditional duration (ACD) model. For each of these models, we derived a modified like-

lihood function that account for the discreteness and non-negativity of the price fluctuations, and fit these

models to the price fluctuation dataset both by maximising the original likelihood function and the modi-

fied likelihood function. Since these models can be specified based on several distributional assumptions,

we utilise the normal and asymmetric Laplace distribution in case of the ARMA and ARMA-GARCH

models, while we utilise the exponential, Weibull and generalised gamma distribution in case of the ACD

model. The experimental results indicate that the modified likelihood function always improve the fitted

result only for the ACD model under the Weibull and the generalised gamma distribution, which allow

the density function to be infinite value at zero, while the gain obtained from the exponential distribution

is quite limited. However, the improvement in the case of the ARMA and ARMA-GARCH model is not

consistent, indicating that one might need to estimate these models using both original likelihood and

modified likelihood in order to find the best model parameters. Among all models considered, the ACD

model, with generalised gamma distribution estimated by maximising the modified likelihood function,
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Table 5.8: Out-of-sample result obtained from a traditional maximum likelihood and the modified
maximum likelihood estimated of several time series analysis models together with the maximum log-
likelihood, the Brier’s score, the Epstein’s score and the p-value of Ljung-Box Q-statistic based on the
first 10 autocorrelations of the residual and squared residual sequences.

Model T
Original likelihood Modified likelihood

∆Bs ∆Es
Bs Es Q(10) Q2(10) Bs Es Q(10) Q2(10)

GE buy price fluctuations, NYSE
GF 60 1.0215 (15) 12.91 (16) - - 0.9822 (8) 12.32 (15) - - 0.0393 0.59
NARMA 60 0.9870 (11) 10.59 (9) 0.00 0.00 0.9839 (10) 10.78 (11) 0.00 0.00 0.0031 -0.19
ALARMA 60 0.9819 (7) 11.19 (14) 0.00 0.00 0.9813 (6) 11.06 (12) 0.00 0.00 0.0006 0.13
NGARCH 60 1.0814 (16) 11.11 (13) 0.71 7.78 0.9973 (13) 10.23 (6) 0.53 0.23 0.0841 0.87
ALGARCH 60 0.9823 (9) 10.35 (7) 0.00 0.00 0.9798 (5) 10.17 (5) 0.00 0.00 0.0025 0.18
EACD 60 0.9731 (4) 10.16 (4) 7.19 1.54 0.9710 (3) 9.72 (2) 11.22 1.87 0.0021 0.44
WACD 60 0.9963 (12) 10.53 (8) 0.10 1.32 0.9696 (2) 9.76 (3) 0.60 0.00 0.0267 0.76
GGACD 60 1.0013 (14) 10.73 (10) 0.00 0.00 0.9694 (1) 9.68 (1) 13.55 1.81 0.0319 1.05
GF 30 1.0244 (15) 9.15 (16) - - 0.9768 (10) 8.65 (15) - - 0.0476 0.5
NARMA 30 0.9810 (11) 7.34 (8) 0.66 70.44 0.9763 (9) 7.46 (10) 0.49 69.84 0.0047 -0.13
ALARMA 30 0.9742 (8) 7.84 (14) 0.00 46.99 0.9728 (7) 7.66 (12) 0.62 59.49 0.0014 0.17
NGARCH 30 1.0695 (16) 7.64 (11) 0.00 81.44 0.9955 (12) 7.21 (7) 5.05 56.25 0.0739 0.43
ALGARCH 30 0.9687 (5) 7.13 (6) 12.69 50.01 0.9690 (6) 7.08 (5) 13.49 43.40 -0.0003 0.05
EACD 30 0.9663 (4) 7.04 (4) 56.83 64.93 0.9641 (3) 6.85 (3) 74.57 59.42 0.0022 0.19
WACD 30 0.9968 (13) 7.36 (9) 9.73 43.61 0.9604 (2) 6.79 (1) 64.88 56.06 0.0364 0.57
GGACD 30 1.0180 (14) 7.78 (13) 8.50 75.68 0.9602 (1) 6.81 (2) 73.10 58.32 0.0578 0.97
GF 10 1.0379 (14) 5.11 (16) - - 0.9552 (10) 4.67 (15) - - 0.0827 0.45
NARMA 10 0.9610 (11) 3.96 (8) 0.11 78.45 0.9547 (9) 4.03 (9) 2.20 79.27 0.0063 -0.07
ALARMA 10 0.9544 (8) 4.28 (13) 0.00 39.70 0.9518 (7) 4.15 (11) 0.00 54.41 0.0026 0.13
NGARCH 10 1.0644 (16) 4.26 (12) 0.00 0.00 0.9649 (12) 3.87 (6) 30.35 99.93 0.0995 0.39
ALGARCH 10 0.9434 (5) 3.92 (7) 1.09 99.99 0.9425 (3) 3.84 (5) 56.10 99.90 0.0009 0.09
EACD 10 0.9469 (6) 3.80 (4) 2.61 61.63 0.9434 (4) 3.75 (3) 21.87 43.70 0.0035 0.06
WACD 10 1.0062 (13) 4.14 (10) 0.00 12.04 0.9320 (2) 3.70 (1) 35.88 35.20 0.0742 0.43
GGACD 10 1.0408 (15) 4.44 (14) 0.23 27.95 0.9314 (1) 3.71 (2) 22.21 49.68 0.1094 0.73

IBM buy price fluctuations, NYSE
GF 60 0.9994 (10) 16.56 (16) - - 0.9834 (5) 16.28 (15) - - 0.016 0.27
NARMA 60 1.0402 (16) 16.10 (14) 68.28 97.04 1.0345 (15) 15.70 (11) 95.55 98.00 0.0057 0.4
ALARMA 60 0.9990 (9) 15.53 (8) 99.65 99.30 1.0023 (12) 15.46 (7) 97.65 99.08 -0.0033 0.07
NGARCH 60 1.0234 (14) 15.80 (12) 98.51 95.30 1.0209 (13) 15.63 (10) 98.88 98.22 0.0026 0.17
ALGARCH 60 0.9951 (7) 15.39 (6) 85.80 98.92 0.9968 (8) 15.32 (5) 92.94 99.11 -0.0016 0.06
EACD 60 0.9805 (4) 14.88 (4) 78.86 98.37 0.9805 (3) 14.87 (3) 88.70 98.31 0 0.01
WACD 60 0.9922 (6) 15.86 (13) 13.63 93.99 0.9805 (2) 14.87 (2) 88.71 98.30 0.0117 0.99
GGACD 60 0.9998 (11) 15.60 (9) 46.69 98.90 0.9803 (1) 14.86 (1) 58.76 99.13 0.0195 0.74
GF 30 0.9976 (11) 11.82 (15) - - 0.9787 (5) 11.63 (14) - - 0.0189 0.19
NARMA 30 1.0407 (16) 11.59 (13) 88.82 100.00 1.0299 (14) 11.28 (12) 93.11 100.00 0.0108 0.31
ALARMA 30 0.9935 (7) 11.13 (9) 91.36 100.00 0.9956 (10) 11.11 (8) 92.99 100.00 -0.0021 0.02
NGARCH 30 1.0400 (15) 12.23 (16) 0.00 100.00 1.0162 (13) 11.20 (10) 63.85 100.00 0.0238 1.03
ALGARCH 30 0.9942 (8) 11.09 (6) 79.15 99.99 0.9949 (9) 11.06 (5) 77.84 100.00 -0.0008 0.02
EACD 30 0.9756 (4) 10.63 (4) 56.47 97.46 0.9755 (3) 10.62 (3) 62.47 97.19 0.0001 0.01
WACD 30 0.9904 (6) 11.28 (11) 0.95 99.57 0.9753 (1) 10.59 (2) 63.78 96.94 0.0151 0.69
GGACD 30 0.9988 (12) 11.11 (7) 22.35 99.53 0.9754 (2) 10.58 (1) 78.57 98.08 0.0234 0.53
GF 10 1.0028 (13) 6.74 (16) - - 0.9644 (5) 6.53 (14) - - 0.0384 0.2
NARMA 10 1.0313 (16) 6.58 (15) 0.82 97.09 1.0184 (15) 6.38 (11) 26.29 98.10 0.0129 0.2
ALARMA 10 0.9768 (8) 6.28 (9) 1.13 96.11 0.9785 (9) 6.27 (8) 65.71 98.15 -0.0017 0.02
NGARCH 10 1.0024 (12) 6.32 (10) 0.13 100.00 0.9954 (10) 6.22 (7) 3.79 100.00 0.007 0.1
ALGARCH 10 0.9742 (7) 6.17 (6) 1.68 100.00 0.9740 (6) 6.14 (5) 9.39 100.00 0.0002 0.03
EACD 10 0.9596 (4) 5.98 (4) 36.46 100.00 0.9596 (3) 5.96 (3) 65.71 99.99 0 0.02
WACD 10 1.0002 (11) 6.50 (13) 0.54 100.00 0.9574 (2) 5.93 (2) 71.59 99.98 0.0428 0.57
GGACD 10 1.0109 (14) 6.43 (12) 0.00 99.99 0.9571 (1) 5.93 (1) 58.50 99.99 0.0538 0.49
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Table 5.8 continued: Out-of-sample result obtained from a traditional maximum likelihood and the
modified maximum likelihood estimated of several time series analysis models together with the maxi-
mum log-likelihood, the Brier’s score, the Epstein’s score and the p-value of Ljung-Box Q-statistic based
on the first 10 autocorrelations of the residual and squared residual sequences.

Model T
Original likelihood Modified likelihood

∆Bs ∆Es
Bs Es Q(10) Q2(10) Bs Es Q(10) Q2(10)

Microsoft buy price fluctuations, NYSE
GF 60 0.9971 (12) 4.78 (16) - - 0.9516 (4) 4.61 (11) - - 0.0455 0.17
NARMA 60 1.0158 (16) 4.67 (15) 74.19 99.99 1.0014 (14) 4.56 (10) 84.07 99.99 0.0144 0.11
ALARMA 60 0.9654 (8) 4.44 (7) 76.15 100.00 0.9656 (9) 4.45 (8) 88.04 100.00 -0.0002 -0.01
NGARCH 60 0.9997 (13) 4.65 (13) 10.13 100.00 0.9891 (10) 4.52 (9) 26.27 100.00 0.0106 0.14
ALGARCH 60 0.9628 (7) 4.40 (6) 77.65 100.00 0.9626 (6) 4.40 (5) 86.76 100.00 0.0002 0
EACD 60 0.9519 (5) 4.28 (4) 80.28 99.93 0.9513 (3) 4.27 (3) 84.95 99.94 0.0007 0.01
WACD 60 0.9965 (11) 4.66 (14) 68.01 99.87 0.9468 (2) 4.23 (2) 81.33 99.95 0.0497 0.44
GGACD 60 1.0104 (15) 4.63 (12) 36.15 99.85 0.9466 (1) 4.22 (1) 83.30 99.95 0.0638 0.41
GF 30 0.9881 (12) 3.56 (16) - - 0.9349 (3) 3.42 (11) - - 0.0532 0.14
NARMA 30 1.0098 (16) 3.50 (15) 37.50 100.00 0.9869 (11) 3.41 (10) 42.72 100.00 0.0229 0.09
ALARMA 30 0.9510 (9) 3.33 (6) 85.97 100.00 0.9492 (8) 3.33 (7) 91.58 100.00 0.0018 0
NGARCH 30 0.9886 (13) 3.43 (12) 2.92 100.00 0.9742 (10) 3.39 (9) 19.73 100.00 0.0145 0.05
ALGARCH 30 0.9486 (7) 3.33 (8) 73.47 100.00 0.9461 (6) 3.32 (5) 80.50 100.00 0.0025 0.01
EACD 30 0.9423 (5) 3.22 (4) 52.31 99.43 0.9406 (4) 3.21 (3) 71.68 99.62 0.0017 0.01
WACD 30 0.9901 (14) 3.48 (14) 3.41 99.17 0.9304 (2) 3.16 (2) 69.19 99.82 0.0597 0.32
GGACD 30 1.0049 (15) 3.47 (13) 0.11 98.68 0.9293 (1) 3.16 (1) 68.43 99.61 0.0756 0.31
GF 10 0.9841 (14) 2.11 (14) - - 0.8944 (3) 1.95 (12) - - 0.0897 0.16
NARMA 10 0.9759 (13) 1.99 (13) 8.97 1.08 0.9443 (12) 1.94 (10) 0.96 0.30 0.0316 0.05
ALARMA 10 0.9087 (7) 1.89 (6) 0.00 0.00 0.9031 (5) 1.89 (7) 0.00 0.00 0.0056 0
NGARCH 10 0.9402 (11) 1.94 (11) 0.00 100.00 0.9220 (9) 1.89 (8) 84.43 100.00 0.0182 0.04
ALGARCH 10 0.9032 (6) 1.88 (5) 0.11 99.99 0.8965 (4) 1.86 (3) 33.78 100.00 0.0067 0.02
EACD 10 0.9240 (10) 1.90 (9) 50.76 99.99 0.9175 (8) 1.88 (4) 79.19 99.98 0.0065 0.02
WACD 10 1.0013 (15) 2.11 (15) 3.88 100.00 0.8881 (2) 1.80 (2) 78.29 99.98 0.1131 0.31
GGACD 10 1.0161 (16) 2.12 (16) 0.00 80.98 0.8860 (1) 1.80 (1) 72.29 99.98 0.1301 0.32

Gold future buy price fluctuations, MCX
GF 30 0.9979 (11) 16.06 (12) - - 0.9832 (6) 15.57 (5) - - 0.0147 0.49
NARMA 30 1.0014 (12) 16.27 (15) 0.04 0.00 1.0030 (13) 16.03 (11) 7.93 0.00 -0.0016 0.24
ALARMA 30 0.9898 (8) 15.85 (10) 10.23 0.00 1.0480 (16) 19.75 (16) 0.02 1.07 -0.0583 -3.9
NGARCH 30 1.0278 (15) 16.26 (14) 0.04 0.00 1.0276 (14) 16.25 (13) 0.04 0.00 0.0002 0.01
ALGARCH 30 0.9909 (9) 15.72 (7) 52.34 92.49 0.9914 (10) 15.83 (9) 1.26 0.00 -0.0005 -0.11
EACD 30 0.9746 (4) 15.36 (4) 61.59 65.02 0.9745 (3) 15.33 (3) 61.36 63.45 0.0001 0.03
WACD 30 0.9807 (5) 15.63 (6) 81.06 94.99 0.9744 (2) 15.31 (2) 62.44 65.43 0.0064 0.32
GGACD 30 0.9883 (7) 15.80 (8) 67.72 78.05 0.9744 (1) 15.31 (1) 61.62 63.91 0.0139 0.49
GF 10 1.0278 (16) 9.72 (16) - - 0.9713 (5) 9.03 (13) - - 0.0565 0.69
NARMA 10 0.9907 (10) 8.84 (9) 5.46 0.00 0.9912 (11) 8.85 (10) 3.09 0.00 -0.0005 -0.01
ALARMA 10 0.9843 (9) 8.98 (12) 0.00 0.00 0.9813 (8) 8.90 (11) 0.01 0.00 0.0031 0.08
NGARCH 10 0.9987 (13) 8.78 (8) 66.80 99.54 0.9927 (12) 8.70 (7) 56.52 99.69 0.0061 0.08
ALGARCH 10 0.9803 (7) 8.70 (6) 59.50 97.45 0.9781 (6) 8.66 (5) 58.12 99.25 0.0022 0.05
EACD 10 0.9663 (4) 8.51 (4) 41.33 97.10 0.9661 (3) 8.49 (3) 42.60 97.14 0.0002 0.02
WACD 10 1.0062 (14) 9.29 (15) 28.64 97.62 0.9659 (2) 8.48 (2) 42.31 97.06 0.0403 0.81
GGACD 10 1.0219 (15) 9.26 (14) 22.68 93.92 0.9658 (1) 8.48 (1) 42.11 97.02 0.056 0.78
GF 5 1.0615 (15) 6.87 (16) - - 0.9596 (5) 6.11 (13) - - 0.1019 0.76
NARMA 5 0.9766 (10) 5.92 (10) 3.89 0.00 0.9774 (11) 5.91 (8) 4.61 0.00 -0.0008 0.01
ALARMA 5 0.9764 (9) 6.09 (12) 0.00 0.00 0.9690 (8) 5.96 (11) 0.00 0.00 0.0074 0.14
NGARCH 5 0.9821 (13) 5.91 (9) 90.52 67.91 0.9804 (12) 5.86 (6) 95.02 93.78 0.0016 0.05
ALGARCH 5 0.9675 (7) 5.87 (7) 69.86 89.84 0.9661 (6) 5.83 (5) 81.72 91.98 0.0014 0.04
EACD 5 0.9549 (4) 5.73 (4) 40.04 93.14 0.9545 (3) 5.71 (3) 85.11 96.45 0.0004 0.02
WACD 5 1.0468 (14) 6.61 (15) 12.05 84.98 0.9541 (2) 5.70 (2) 85.49 96.51 0.0927 0.91
GGACD 5 1.0638 (16) 6.61 (14) 89.00 96.96 0.9541 (1) 5.70 (1) 85.58 96.52 0.1097 0.91
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Table 5.8 continued: Out-of-sample result obtained from a traditional maximum likelihood and the
modified maximum likelihood estimated of several time series analysis models together with the maxi-
mum log-likelihood, the Brier’s score, the Epstein’s score and the p-value of Ljung-Box Q-statistic based
on the first 10 autocorrelations of the residual and squared residual sequences.

Model T
Original likelihood Modified likelihood

∆Bs ∆Es
Bs Es Q(10) Q2(10) Bs Es Q(10) Q2(10)

Silver future buy price fluctuations, MCX
GF 30 1.0102 (12) 33.67 (16) - - 0.9922 (6) 31.87 (7) - - 0.018 1.8
NARMA 30 1.0058 (11) 31.86 (6) 59.05 0.00 1.0161 (14) 33.45 (15) 18.09 0.00 -0.0104 -1.59
ALARMA 30 0.9981 (7) 32.93 (13) 8.14 0.00 0.9982 (8) 32.55 (11) 16.30 0.00 -0.0001 0.38
NGARCH 30 1.0564 (16) 33.20 (14) 57.67 54.26 1.0335 (15) 31.63 (5) 99.67 99.87 0.0229 1.57
ALGARCH 30 1.0026 (10) 31.96 (9) 0.92 0.00 1.0149 (13) 31.90 (8) 1.23 0.00 -0.0124 0.06
EACD 30 0.9844 (4) 31.29 (4) 98.92 79.80 0.9843 (3) 31.24 (3) 98.85 79.62 0 0.05
WACD 30 0.9915 (5) 32.44 (10) 93.76 64.89 0.9839 (1) 31.10 (1) 95.95 58.31 0.0076 1.34
GGACD 30 0.9996 (9) 32.85 (12) 98.52 66.92 0.9840 (2) 31.16 (2) 97.87 68.27 0.0156 1.69
GF 10 1.0427 (15) 20.05 (16) - - 0.9858 (7) 18.10 (13) - - 0.0569 1.96
NARMA 10 0.9988 (10) 17.65 (11) 23.64 78.68 1.0000 (11) 17.59 (10) 3.65 74.40 -0.0012 0.06
ALARMA 10 0.9821 (6) 17.13 (6) 88.40 100.00 0.9820 (4) 17.11 (4) 86.66 100.00 0 0.02
NGARCH 10 1.0095 (12) 17.74 (12) 67.53 100.00 1.0097 (13) 17.43 (7) 92.00 100.00 -0.0002 0.31
ALGARCH 10 0.9926 (8) 17.58 (9) 86.82 100.00 0.9976 (9) 17.52 (8) 77.34 100.00 -0.0049 0.06
EACD 10 0.9821 (5) 17.13 (5) 88.40 100.00 0.9820 (3) 17.11 (3) 86.66 100.00 0 0.02
WACD 10 1.0234 (14) 19.48 (14) 72.58 100.00 0.9820 (2) 17.11 (2) 86.60 100.00 0.0414 2.37
GGACD 10 1.0433 (16) 19.91 (15) 80.41 100.00 0.9817 (1) 17.09 (1) 94.56 100.00 0.0616 2.82
GF 5 1.0769 (15) 14.04 (15) - - 0.9787 (6) 12.26 (12) - - 0.0982 1.78
NARMA 5 0.9959 (10) 12.15 (11) 41.93 70.40 0.9998 (12) 12.11 (9) 43.65 73.27 -0.0038 0.05
ALARMA 5 0.9763 (5) 11.74 (3) 98.06 100.00 0.9921 (9) 12.27 (13) 0.07 62.53 -0.0158 -0.54
NGARCH 5 0.9988 (11) 12.11 (10) 99.29 100.00 1.0024 (13) 12.05 (7) 99.38 100.00 -0.0036 0.06
ALGARCH 5 0.9859 (7) 12.08 (8) 99.28 100.00 0.9880 (8) 11.98 (6) 98.80 100.00 -0.0021 0.09
EACD 5 0.9763 (4) 11.74 (2) 98.06 100.00 0.9762 (3) 11.73 (1) 97.77 100.00 0 0.01
WACD 5 1.0644 (14) 13.96 (14) 20.61 100.00 0.9762 (2) 11.75 (4) 97.88 100.00 0.0881 2.21
GGACD 5 1.0896 (16) 14.35 (16) 83.49 100.00 0.9757 (1) 11.76 (5) 93.80 100.00 0.1138 2.59

Natural gas future buy price fluctuations, MCX
GF 30 0.9921 (14) 4.16 (15) - - 0.9390 (6) 4.42 (16) - - 0.0531 -0.26
NARMA 30 0.9517 (11) 4.09 (14) 23.38 30.55 0.9537 (12) 3.93 (9) 61.07 35.76 -0.002 0.16
ALARMA 30 0.9429 (9) 4.07 (12) 70.91 64.36 0.9392 (7) 4.05 (11) 75.06 59.15 0.0037 0.02
NGARCH 30 0.9508 (10) 4.07 (13) 18.15 99.97 0.9540 (13) 4.05 (10) 50.86 99.94 -0.0032 0.01
ALGARCH 30 0.9410 (8) 3.84 (7) 77.23 99.67 0.9368 (5) 3.81 (6) 85.87 99.88 0.0042 0.03
EACD 30 0.9095 (4) 3.31 (1) 49.36 85.82 0.9095 (3) 3.32 (3) 58.11 85.22 -0.0001 -0.01
WACD 30 1.0109 (15) 3.90 (8) 94.96 96.55 0.9095 (2) 3.32 (2) 59.82 85.68 0.1014 0.59
GGACD 30 1.0187 (16) 3.76 (5) 88.24 97.57 0.9093 (1) 3.33 (4) 70.32 86.80 0.1094 0.43
GF 10 1.2377 (15) 2.66 (13) - - 0.8905 (6) 2.68 (14) - - 0.3472 -0.02
NARMA 10 0.9099 (12) 2.63 (12) 30.31 35.83 0.9175 (13) 2.52 (10) 13.02 40.82 -0.0076 0.12
ALARMA 10 0.8923 (7) 2.55 (11) 13.00 89.12 0.8946 (10) 2.50 (9) 30.03 70.78 -0.0023 0.05
NGARCH 10 0.8932 (9) 2.39 (8) 84.42 96.18 0.8994 (11) 2.37 (7) 50.68 96.12 -0.0062 0.02
ALGARCH 10 0.8930 (8) 2.37 (6) 47.93 98.67 0.8851 (5) 2.34 (5) 78.21 98.01 0.0079 0.03
EACD 10 0.8588 (1) 2.11 (1) 61.70 65.87 0.8596 (2) 2.14 (3) 58.84 58.70 -0.0009 -0.03
WACD 10 1.2431 (16) 3.98 (16) 0.00 46.19 0.8605 (3) 2.14 (2) 59.16 57.87 0.3826 1.84
GGACD 10 1.1136 (14) 2.74 (15) 52.79 44.72 0.8621 (4) 2.15 (4) 61.46 64.28 0.2515 0.59
GF 5 0.9895 (14) 2.00 (13) - - 0.8424 (9) 1.96 (11) - - 0.1471 0.04
NARMA 5 0.8507 (11) 2.02 (14) 50.08 35.19 0.8631 (13) 1.88 (9) 41.85 53.80 -0.0123 0.14
ALARMA 5 0.8390 (6) 1.97 (12) 0.01 58.26 0.8399 (8) 1.88 (10) 45.50 52.14 -0.0009 0.09
NGARCH 5 0.8396 (7) 1.76 (6) 88.72 100.00 0.8528 (12) 1.75 (5) 93.15 100.00 -0.0132 0.01
ALGARCH 5 0.8439 (10) 1.82 (8) 89.27 100.00 0.8327 (5) 1.77 (7) 99.97 100.00 0.0112 0.05
EACD 5 0.8130 (1) 1.65 (1) 89.54 99.85 0.8135 (2) 1.67 (4) 83.54 99.79 -0.0004 -0.03
WACD 5 1.1229 (16) 2.98 (16) 0.00 97.88 0.8143 (3) 1.67 (3) 83.37 99.78 0.3086 1.32
GGACD 5 1.1161 (15) 2.27 (15) 78.77 99.70 0.8154 (4) 1.67 (2) 85.02 99.79 0.3007 0.6
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is the best performing model both from in-sample and out-of-sample tests.

5.6 Alternative ACD model for price fluctuations
Although the experiment performed in the previous section indicates that the autoregressive conditional

duration is the most appropriate model for analysing price fluctuations dataset, the basic ACD model

considered in the previous section still has several limitations since it assumes that the conditional mean

adjusts proportionally to recent price fluctuations and the effects of these shocks decay exponentially

over time which might not be compatible with the price fluctuations process. To further investigate this

issue, this section tries to fit several extensions of the basic ACD model to the price fluctuations dataset

with the aim of examining whether some extensions perform better than others, and which extension is

particularly suited, or inadequate, for modelling the price fluctuations dataset. The extensions considered

here are models that try to generalise the linear parameterisation of the basic ACD model in three main

directions. The first approach generalises the basic model by adding an additive innovation component

into the conditional mean function, while the second approach achieves this by applying the conditional

mean function on the transformation of price fluctuations rather than in the plain price fluctuation. Lastly,

the third approach generalises this by introducing an asymmetric response to positive and negative shocks

into the conditional mean equation. Since the result in the previous section indicates that it is more

appropriate to estimate ACD model parameters, by maximising the likelihood of the implied discrete

distribution, the parameter of each model will be estimated solely based on this approach.

This section is organised as follows. Section 5.6.1 firstly reviews the concepts behind the ACD

model. In Section 5.6.2, several extensions to the basic ACD parameterisation are discussed. The re-

sults obtained from fitting these extensions to the price fluctuation dataset are analysed and discussed in

Section 5.6.3. Finally, Section 5.6.4 gives a brief discussion on the result obtained in this section.

5.6.1 The basic ACD framework

This section summarises the basic ideas behind the autoregressive conditional duration model originally

proposed by Engle and Russell [28] to model the duration between two consecutive trades. In its original

form, the ACD model is a stochastic process where the observation at the i−th time step is modelled by

∆i = ψiϵi,

where Fi−1 is the set of all information available at the i-th time step, {ϵi} is an independent and

identically distributed nonnegative process with unit mean and finite second moment, ψi = E(∆i|Fi−1)

is a conditional mean process which is assumed to be stochastically independent of the i.i.d. sequence

formed by ϵi and Fi−1. This setup is very general and allows us to construct a variety of models by

choosing different specifications for the conditional mean function, ψi, and different distributions for

{ϵi}. The conditional mean function is generally assumed to depend on its own lags as well as past

observations, which can be characterised by

ψi = ψ(∆i−1, . . . ,∆i−p, ψi−1, . . . , ψi−q). (5.65)



5.6. Alternative ACD model for price fluctuations 142

Since this conditional mean function depends on the last p lags of the observed durations and on the last

q lags of expected durations, this model is generally called ACD(p, q). One example of this specification

is the basic model considered in the previous section, which models this conditional mean function by a

linear parameterisation of the form

ψi = ω +

p∑
j=1

αj∆i−j +

q∑
j=1

βjψi−j . (5.66)

If fϵ(ϵ) and Fϵ(ϵ) are the probability density function and cumulative distribution function of {ϵi} re-

spectively, the conditional density of ∆i will be given by

f(∆i|Fi−1) =
1

ψi
fϵ

(
∆i

ψi

)
,

while the implied discrete distribution when the tick size of the considered asset is δ will be given by

f(∆i|Fi−1) = Fϵ

(
∆i + δ

ψi

)
− Fϵ

(
∆i

ψi

)
.

Consequently, giving a time series of price fluctuations ∆ = (∆1, . . .∆N ), the parameters of the

ACD(p, q) model can be estimated by maximising the log-likelihood computed from the implied dis-

crete distribution, or, equivalently, by maximising the conditional log-likelihood function

lnL(∆; θ) =

N∑
i=p+1

(
Fϵ

(
∆i + δ

ψi

)
− Fϵ

(
∆i

ψi

))
,

where ψi are computed from the observations ∆1, . . . ,∆N with ψi = ∆̂ for all i < 0 when ∆̂ is a

sample mean of (∆1, . . . ,∆N ). This log-likelihood function can then be optimised using numerical

optimisation methods.

5.6.2 Extensions of the ACD framework

Although the results obtained in the previous section indicates that the linear parameterisation performs

quite well, as it passes the independence test in most of the cases, this parameterisation might not be

the best model for describing the price fluctuations dataset. To further investigate this issue, this sec-

tion briefly discusses several extensions to the standard ACD model which could improve the fitting to

the price fluctuation dataset. In particular, we consider extensions in three directions. The first direc-

tion extends the basic ACD model by allowing both additive and multiplicative stochastic components,

where lagged innovations enter the conditional mean function both additively and multiplicatively, while

the second approach generalises the basic ACD model by applying the conditional mean function on

the transformation of price fluctuations rather than on the plain price fluctuation. Lastly, the third ap-

proach generalises this by introducing an asymmetric response to positive and negative shocks into the

conditional mean equation.
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Additive and multiplicative ACD (AMACD) model

The first extension considered here is an additive and multiplicative ACD model proposed by Hautsch

[45]. This specification is a generalisation of the basic ACD model specified by Equation (5.66) and an

Additive ACD (AACD) model whose conditional mean function is specified by

ψi = ω +

p∑
j=1

λjϵi−j +

q∑
j=1

βjψi−j .

Unlike the basic ACD model, the innovation, ϵi, enters the conditional mean function in an additive

form without any interaction with previous conditional mean values ψi. Consequently, a more general

specification that encompasses these two models can be specified by

ψi = ω +

p∑
j=1

(αjψi−j + λj)ϵi−j +

q∑
j=1

βjψi−j ,

= ω +

p∑
j=1

αj∆i−j +

p∑
j=1

λjϵi−j +

q∑
j=1

βjψi−j . (5.67)

In this specification, the lagged innovation enters the conditional mean function both additively and

multiplicatively. In this sense, this model is more flexible and nest the basic ACD model when λi = 0,

and the additive ACD model when αi = 0.

Logarithmic ACD (LACD) model

In the basic ACD(p, q) model, described in Equation (5.66), sufficient conditions on model parameters

are required to ensure the positivity of the conditional mean function. Since these conditions might be

violated when we added explanatory variables, which have negative effects into the conditional mean

function, Bauwens and Giot [7] introduce a more flexible model in which the autoregressive equation

is specified based on the logarithmic transformation of the conditional mean value, ψi. Specifically,

Bauwens and Giot propose two parameterisations of the conditional mean function which can be char-

acterised by

lnψi = ω +

p∑
j=1

αj ln∆i−j +

q∑
j=1

βj lnψi−j

= ω +

p∑
j=1

αj ln ϵi−j +

q∑
j=1

(βj − αj) lnψi−j ,

and

lnψi = ω +

p∑
j=1

λjϵi−j +

q∑
j=1

βj lnψi−j . (5.68)

Unlike the standard ACD(p, q) model, no non-negativity restrictions on the parameters of the autore-

gressive equation are needed to ensure the positivity of these two conditional mean function. Since the

innovation in our situations can be zero, the first parameterisation might not be a good candidate for
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modelling price fluctuation time series. Consequently, we will utilise only the second parameterisation

to model the price fluctuation time series in the rest of this study.

Logarithmic additive and multiplicative ACD (LAMACD) model

Since the lagged innovations in the LACD model discussed in the previous section enter the conditional

mean function only in an additive form, we can extend this model by introducing a multiplicative com-

ponent into the conditional mean function, resulting in a conditional mean function of the form

lnψi = ω +

p∑
j=1

(αj lnψi−j + λj)ϵi−j +

q∑
j=1

βj lnψi−j . (5.69)

Consequently, in this specification, the lagged innovation enters the conditional mean function both

additively and multiplicatively. In this sense, this model is more flexible than the LACD model since it

nests the LACD model when αj = 0 for all 1 ≤ j ≤ p.

Box-Cox ACD (BACD) model

Another specification that generalises the basic ACD model, by using a transformation, could be obtained

by applying a Box-Cox transformation as suggested by Hentschel [47], Hautsch [45], and Fernandes and

Gramming [31], giving way to

ψδ1i − 1

δ1
= ω̃ +

p∑
j=1

λ̃j
ϵδ2i−j − 1

δ2
+

q∑
j=1

βj
ψδ1i−j − 1

δ1
,

where δ1 and δ2 are parameters of the Box-Cox transformation, and the Box-Cox transformation will be

concave when δi ≤ 1 and convex when δi ≥ 1. The BACD model can then be ensured by rewriting the

above equation as

ψδ1i = ω +

p∑
j=1

λjϵ
δ2
i−j +

q∑
j=1

βjψ
δ1
i−j , (5.70)

where ω = 1 + δ1ω̃ −
∑p
j=1 δ1λ̃j/δ2 −

∑q
j=1 βj , and λj = δ1λ̃j/δ2. Consequently, this specification

allows for concave, convex as well as linear conditional mean functions. It nests the ACD model when

δ1 = δ2 = 1, the LACD model when δ1 → 0 and δ2 = 1. When δ1 → 1, it coincides with a Box-Cox

ACD specification proposed by Dufour and Engle [24]. Note that although the LACD is a encompassed

by the BACD model, the Box-Cox transformation does not necessarily guarantee the non-negativity of

the conditional mean function. In fact, the non-negativity of the conditional mean function is guaranteed

only at some value of δ1, and, thus, can cause a problem when we optimise the parameters of this model

using local search techniques as the process might generate a negative conditional mean value when δ1

changes value. To solve this problem, we will optimise this model only in the region that guarantees the

non-negativity of the conditional mean function for all values of δ1.

Box-Cox additive and multiplicative ACD (BAMACD) model

Similar to the LACD model, the BACD model discussed in the previous section allows the innovations to

enter the conditional mean function only in an additive form. Accordingly, we can generalise the BACD
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model by adding multiplicative components into the conditional mean function so that the conditional

mean function becomes

ψδ1i = ω +

p∑
j=1

(αjψ
δ1
i−j + λj)ϵ

δ2
i−j +

q∑
j=1

βjψ
δ1
i−j . (5.71)

With this specification, the lagged information enters the conditional mean function both additively and

multiplicatively, and the BACD model can be obtained by setting αj = 0 for all 1 ≤ j ≤ p.

EXponential ACD (EXACD) model

Instead of applying a transformation to the conditional mean value, we can also generalise the basic ACD

model by accounting for the asymmetry between the impact of large and small innovations. To achieve

this, Dufour and Engle [24] introduce the so called EXponential ACD model that captures features

of the EGARCH specification proposed by Nelson [70] by utilising a pair-wise linear conditional mean

function. This model allows the conditional mean function that is kinked at ϵi−j = 1 and is characterised

by

lnψi = ω +

p∑
j=1

(λj(ϵi−j − 1) + cj |ϵi−j − 1|) +
q∑
j=1

βj lnψi−j . (5.72)

Hence, for observations less than the conditional mean (ϵi−j < 1), the impact from these observations

will be (αj − cj)ϵi−j , while for observations larger than the conditional mean (ϵi−j > 1), the impact

will be (αj + cj)ϵi−j respectively. Accordingly, this model is more flexible and nests the LACD model

when cj = 0 for all 1 ≤ j ≤ p.

Augmented logarithmic additive and multiplicative ACD (ALAMACD) model

The EXACD model discussed in the previous section can be extended in two directions. Firstly, since

the EXACD model allows the lagged innovations to enter the conditional mean function only in an

additive form, we can extend this model by adding the multiplicative component into the conditional

mean function like we did for the LAMACD and BAMACD models. Secondly, while the conditional

mean function of the EXACD model is kinked at ϵi−j = 1, a valuable generalisation is to parameterise

the position of the kink. Using the parameterisation for modelling an asymmetric GARCH process

suggested by Hentschel [47], the specification that we call the ALAMACD model can be specified by

lnψi = ω+

p∑
j=1

αj lnψi−j (|ϵi−j − b|+ cj(ϵi−j − b))+

p∑
j=1

λj (|ϵi−j − b|+ cj(ϵi−j − b))+

q∑
j=1

βj lnψi−j .

(5.73)

In this specification, the parameter b gives the position of the kink. It nests the EXACD model when

b = 1, and αj = 0 for all 1 ≤ j ≤ p, and encompasses the LAMACD model when b = 0 and cj = 0 for

all 1 ≤ j ≤ p.

Augmented Box-Cox additive and multiplicative ACD (ABAMACD) model

The last extension considered in this section is the augmented Box-Cox additive and multiplicative ACD

model, originally proposed as Augmented ACD model in [45]. This specification is constructed by
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utilising the Box-Cox transformation instead of logarithmic transformation as in the ALAMACD model.

Accordingly, the conditional mean function of the ABAMACD model can be specified by

ψδ1i = ω+

p∑
j=1

αjψ
δ1
i−j (|ϵi−j − b|+ cj(ϵi−j − b))

δ2+

p∑
j=1

λj (|ϵi−j − b|+ cj(ϵi−j − b))
δ2+

q∑
j=1

βjψ
δ1
i−j .

(5.74)

This specification nests all specifications outlined above. Particularly, it encompasses all specifications

nested by the ALAMACD model, as well as all other models based on additive and multiplicative

stochastic components as it nests the AMACD model for δ1 = δ2 = 1, b = cj = 0 and the BA-

MACD model for b = cj = 0 for all 1 ≤ j ≤ p. Even though this specification allows for more

flexibility, it has one major drawback since the parameter restriction |cj | ≤ 1 has to be imposed in order

to circumvent a complex value whenever δ2 ̸= 1.

5.6.3 Experimental results

To compare the performance of the basic ACD model and its eight extensions discussed in Section

5.6.2, this section analyses the results obtained from fitting these models to the buy price fluctuations

dataset by maximising the likelihood of the implied discrete distribution. For each instrument and for

each time frame of buy price fluctuation time series, we compute the maximum likelihood, the Brier’s

score, Epstein’s score and the {ϵi} series implied by each model. We specify the autoregressive model

with three lags as discussed in Section 5.5.4. The evaluation will be done using both in-sample and

out-of-sample results by using the first 80% of the sample as a training dataset.

Table 5.9 reports the in-sample and out-of-sample log-likelihood, Brier’s score, Epstein’s score and

the p-value of the Ljung-Box Q-statistic for ϵ and ϵ2 using the first 10 autocorrelations for each of the

nine models in both training and testing dataset. The results indicate that among all models considered,

the ABAMACD seems to be the best performing model, according to in-sample log-likelihood and

Epstein’s score, as it was the maximum log-likelihood and minimum Epstien’s score in 13 out of the

18 cases considered. When the ABAMACD is not the best model, the ALAMACD is the model with

the best performance. This result is not surprising since the ABAMACD is the most general model that

encompasses all models considered here, while ALAMACD is the most general model that encompasses

all models that utilise a logarithmic transform. Although, theoretically, the ABAMACD contains the

ALAMACD as its special cases, the reason why the ALAMACD beat the ABAMACD in some cases is

simply because the best model obtained from ALAMACD model has negative conditional mean (before

applying the transformation), which we are not allowed to have in the ABAMACD model as discussed

in the previous section. However, when we consider the out-of-sample results, no clear winning model

can be identified, as the best model varies from case to case. To simplify the analysis, we calculated

the average rank score of each model by taking the arithmetic mean of the rank in each model. The

result reported in Table 5.10 indicates that the ABAMACD is the best performing model in both training

and testing dataset according to all measures. Additionally, we observe the strongest increase of the

log-likelihood function when the model is extended to include an additive stochastic component, i.e.

when the ACD model is extended to the AMACD model, the BACD model is extended to the BAMACD
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Table 5.9: In-sample result and out-of-sample result obtained from the maximum log-likelihood estimate
of several non-linear ACD models. The statistics reported include the maximum log-likelihood, Brier’s
score, Epstein’s score and the p-value of Ljung-Box Q statistic based on the first 10 autocorrelations of
the residual and squared residuals sequence.

Training dataset Testing dataset
Model T LL Bs Es Q(10) Q2(10) LL Bs Es Q(10) Q2(10)

GE buy price fluctuations, NYSE
ACD 60 -15187 (4) 0.9468 (4) 4.579 (4) 99.99 100.00 -4577 (2) 0.9694 (2) 9.681 (4) 13.55 1.81
LACD 60 -15264 (9) 0.9497 (9) 4.647 (9) 98.43 100.00 -4605 (8) 0.9703 (9) 9.865 (6) 0.00 0.00
BACD 60 -15231 (5) 0.9472 (5) 4.608 (5) 99.98 100.00 -4605 (9) 0.9701 (8) 9.869 (7) 0.39 0.00
AMACD 60 -15183 (3) 0.9468 (2) 4.571 (3) 100.00 100.00 -4576 (1) 0.9694 (1) 9.677 (2) 14.53 3.43
LAMACD 60 -15240 (7) 0.9485 (7) 4.609 (6) 95.52 100.00 -4594 (6) 0.9697 (5) 9.889 (8) 0.08 0.00
BAMACD 60 -15182 (2) 0.9468 (3) 4.569 (2) 100.00 100.00 -4578 (3) 0.9694 (3) 9.681 (3) 11.82 1.39
EXACD 60 -15247 (8) 0.9481 (6) 4.623 (8) 99.55 100.00 -4602 (7) 0.9700 (7) 9.822 (5) 0.00 0.00
ALAMACD 60 -15240 (6) 0.9485 (8) 4.609 (7) 94.94 100.00 -4589 (5) 0.9697 (6) 9.894 (9) 1.67 0.23
ABAMACD 60 -15176 (1) 0.9467 (1) 4.562 (1) 100.00 100.00 -4580 (4) 0.9695 (4) 9.675 (1) 13.79 0.96
ACD 30 -25779 (6) 0.9297 (7) 3.346 (6) 94.63 100.00 -7815 (1) 0.9602 (5) 6.805 (3) 73.10 58.32
LACD 30 -25864 (9) 0.9325 (9) 3.378 (9) 98.25 100.00 -7856 (9) 0.9616 (9) 6.901 (9) 2.08 7.41
BACD 30 -25765 (5) 0.9286 (4) 3.345 (4) 94.06 100.00 -7848 (7) 0.9604 (6) 6.890 (8) 7.68 8.36
AMACD 30 -25762 (4) 0.9290 (5) 3.345 (5) 81.15 100.00 -7817 (3) 0.9600 (4) 6.803 (2) 35.58 52.00
LAMACD 30 -25801 (8) 0.9307 (8) 3.351 (7) 94.33 100.00 -7825 (6) 0.9607 (8) 6.879 (7) 63.81 44.48
BAMACD 30 -25752 (2) 0.9284 (2) 3.338 (2) 71.71 100.00 -7817 (2) 0.9600 (3) 6.800 (1) 58.13 59.39
EXACD 30 -25799 (7) 0.9291 (6) 3.357 (8) 91.60 100.00 -7850 (8) 0.9605 (7) 6.860 (6) 1.22 0.21
ALAMACD 30 -25762 (3) 0.9284 (3) 3.345 (3) 80.51 100.00 -7824 (5) 0.9599 (1) 6.830 (5) 5.34 37.46
ABAMACD 30 -25745 (1) 0.9282 (1) 3.337 (1) 75.35 100.00 -7820 (4) 0.9599 (2) 6.807 (4) 42.73 56.10
ACD 10 -64256 (5) 0.8851 (7) 1.908 (5) 98.79 100.00 -19895 (4) 0.9314 (5) 3.709 (4) 22.21 49.68
LACD 10 -64576 (8) 0.8865 (9) 1.926 (8) 4.19 100.00 -20120 (9) 0.9330 (8) 3.814 (9) 4.26 68.79
BACD 10 -64173 (4) 0.8843 (3) 1.905 (4) 97.14 100.00 -19956 (7) 0.9317 (6) 3.741 (7) 0.00 0.06
AMACD 10 -64161 (3) 0.8844 (4) 1.904 (3) 97.84 100.00 -19881 (3) 0.9309 (3) 3.705 (3) 2.83 44.05
LAMACD 10 -64576 (9) 0.8865 (8) 1.926 (9) 4.19 100.00 -19995 (8) 0.9359 (9) 3.802 (8) 0.34 12.84
BAMACD 10 -64144 (2) 0.8841 (2) 1.902 (2) 93.83 100.00 -19880 (2) 0.9309 (2) 3.703 (2) 0.50 9.12
EXACD 10 -64338 (7) 0.8850 (6) 1.915 (7) 26.93 100.00 -19956 (6) 0.9320 (7) 3.736 (6) 0.00 0.00
ALAMACD 10 -64299 (6) 0.8848 (5) 1.912 (6) 6.77 100.00 -19901 (5) 0.9312 (4) 3.714 (5) 0.04 0.00
ABAMACD 10 -64144 (1) 0.8841 (1) 1.902 (1) 93.83 100.00 -19878 (1) 0.9309 (1) 3.703 (1) 0.50 9.12

IBM buy price fluctuations, NYSE
ACD 60 -27556 (7) 0.9813 (1) 17.894 (5) 0.02 21.55 -6754 (5) 0.9803 (5) 14.862 (6) 58.76 99.13
LACD 60 -27560 (9) 0.9813 (2) 17.909 (8) 0.01 22.77 -6754 (6) 0.9804 (7) 14.863 (7) 78.36 99.30
BACD 60 -27560 (8) 0.9813 (4) 17.923 (9) 0.02 55.14 -6753 (3) 0.9803 (6) 14.849 (4) 88.31 98.81
AMACD 60 -27550 (5) 0.9813 (3) 17.880 (2) 0.02 30.05 -6754 (8) 0.9803 (4) 14.862 (5) 57.63 99.30
LAMACD 60 -27555 (6) 0.9814 (5) 17.897 (6) 0.03 15.48 -6754 (4) 0.9804 (8) 14.865 (9) 65.39 98.99
BAMACD 60 -27543 (3) 0.9815 (9) 17.899 (7) 0.15 61.62 -6755 (9) 0.9804 (9) 14.865 (8) 66.46 98.34
EXACD 60 -27543 (4) 0.9814 (7) 17.889 (4) 0.39 88.62 -6752 (2) 0.9803 (2) 14.819 (1) 90.75 96.90
ALAMACD 60 -27534 (1) 0.9814 (6) 17.867 (1) 0.93 50.52 -6752 (1) 0.9802 (1) 14.819 (2) 86.10 93.42
ABAMACD 60 -27537 (2) 0.9814 (8) 17.884 (3) 0.07 10.26 -6754 (7) 0.9803 (3) 14.848 (3) 80.68 97.85
ACD 30 -47753 (6) 0.9753 (7) 12.777 (6) 89.52 99.97 -11668 (7) 0.9754 (7) 10.579 (7) 78.57 98.08
LACD 30 -47755 (8) 0.9755 (9) 12.791 (9) 75.21 99.95 -11686 (8) 0.9757 (8) 10.653 (9) 55.68 98.12
BACD 30 -47764 (9) 0.9751 (3) 12.782 (7) 87.16 100.00 -11668 (6) 0.9752 (5) 10.577 (6) 75.09 98.15
AMACD 30 -47727 (4) 0.9751 (4) 12.761 (4) 92.75 100.00 -11666 (5) 0.9752 (6) 10.570 (4) 60.33 97.62
LAMACD 30 -47755 (7) 0.9755 (8) 12.791 (8) 75.21 99.95 -11686 (9) 0.9757 (9) 10.653 (8) 55.68 98.12
BAMACD 30 -47726 (3) 0.9749 (1) 12.753 (3) 91.23 100.00 -11664 (1) 0.9751 (2) 10.563 (2) 62.50 98.41
EXACD 30 -47733 (5) 0.9753 (6) 12.775 (5) 83.38 100.00 -11664 (3) 0.9751 (4) 10.558 (1) 67.89 97.85
ALAMACD 30 -47702 (1) 0.9752 (5) 12.750 (1) 97.50 99.99 -11664 (2) 0.9751 (1) 10.573 (5) 48.61 97.41
ABAMACD 30 -47725 (2) 0.9749 (2) 12.752 (2) 91.79 100.00 -11665 (4) 0.9751 (3) 10.564 (3) 60.94 98.39
ACD 10 -124224 (7) 0.9556 (6) 7.272 (6) 93.11 100.00 -30234 (9) 0.9571 (7) 5.933 (8) 58.50 99.99
LACD 10 -124319 (9) 0.9571 (9) 7.298 (9) 97.77 100.00 -30224 (6) 0.9580 (9) 5.923 (7) 64.77 99.50
BACD 10 -123994 (4) 0.9547 (3) 7.237 (3) 91.26 100.00 -30185 (4) 0.9561 (3) 5.908 (5) 30.43 100.00
AMACD 10 -123992 (3) 0.9549 (4) 7.241 (4) 99.97 100.00 -30174 (3) 0.9563 (4) 5.896 (3) 26.08 100.00
LAMACD 10 -124319 (8) 0.9571 (8) 7.298 (8) 97.77 100.00 -30224 (7) 0.9580 (8) 5.923 (6) 64.77 99.50
BAMACD 10 -123931 (2) 0.9546 (2) 7.225 (2) 97.45 100.00 -30166 (2) 0.9560 (2) 5.893 (1) 14.52 99.99
EXACD 10 -124171 (6) 0.9558 (7) 7.275 (7) 99.59 100.00 -30232 (8) 0.9571 (6) 5.936 (9) 84.61 99.99
ALAMACD 10 -124033 (5) 0.9555 (5) 7.246 (5) 59.12 100.00 -30187 (5) 0.9566 (5) 5.905 (4) 74.74 99.99
ABAMACD 10 -123916 (1) 0.9545 (1) 7.222 (1) 92.77 100.00 -30161 (1) 0.9559 (1) 5.893 (2) 10.94 100.00
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Table 5.9 continued: In-sample result and out-of-sample result obtained from the maximum log-
likelihood estimate of several non-linear ACD models. The statistics reported include the maximum
log-likelihood, Brier’s score, Epstein’s score and the p-value of Ljung-Box Q statistic based on the first
10 autocorrelations of the residual and squared residuals sequence.

Training dataset Testing dataset
Model T LL Bs Es Q(10) Q2(10) LL Bs Es Q(10) Q2(10)

Microsoft buy price fluctuations, NYSE
ACD 60 -20810 (6) 0.9524 (1) 5.226 (5) 32.23 100.00 -4982 (5) 0.9466 (1) 4.224 (3) 83.30 99.95
LACD 60 -20817 (8) 0.9526 (6) 5.238 (8) 31.57 100.00 -4984 (7) 0.9468 (4) 4.234 (8) 74.60 99.94
BACD 60 -20825 (9) 0.9527 (8) 5.242 (9) 0.19 100.00 -4986 (9) 0.9470 (7) 4.229 (6) 49.43 99.95
AMACD 60 -20798 (4) 0.9524 (2) 5.223 (4) 12.31 100.00 -4980 (4) 0.9467 (2) 4.228 (4) 66.96 99.89
LAMACD 60 -20804 (5) 0.9526 (7) 5.230 (6) 14.81 100.00 -4982 (6) 0.9469 (6) 4.236 (9) 60.49 99.91
BAMACD 60 -20796 (3) 0.9525 (4) 5.221 (3) 12.97 100.00 -4980 (3) 0.9468 (5) 4.228 (5) 71.50 99.89
EXACD 60 -20812 (7) 0.9525 (5) 5.235 (7) 33.88 100.00 -4985 (8) 0.9467 (3) 4.231 (7) 83.13 99.98
ALAMACD 60 -20792 (2) 0.9529 (9) 5.220 (2) 11.26 100.00 -4978 (2) 0.9471 (9) 4.218 (2) 79.21 99.92
ABAMACD 60 -20790 (1) 0.9525 (3) 5.216 (1) 12.20 100.00 -4977 (1) 0.9471 (8) 4.211 (1) 68.44 99.91
ACD 30 -35136 (5) 0.9354 (6) 3.681 (4) 29.69 100.00 -8444 (4) 0.9293 (6) 3.161 (4) 68.43 99.61
LACD 30 -35153 (9) 0.9358 (8) 3.692 (9) 20.22 100.00 -8447 (9) 0.9295 (7) 3.168 (9) 80.91 99.75
BACD 30 -35138 (7) 0.9349 (3) 3.684 (5) 30.40 100.00 -8445 (6) 0.9289 (3) 3.165 (7) 70.15 99.84
AMACD 30 -35120 (3) 0.9351 (4) 3.680 (3) 30.75 100.00 -8443 (3) 0.9291 (5) 3.162 (5) 62.36 99.67
LAMACD 30 -35136 (6) 0.9358 (7) 3.687 (6) 23.17 100.00 -8446 (8) 0.9296 (8) 3.167 (8) 75.49 99.76
BAMACD 30 -35116 (2) 0.9346 (1) 3.678 (2) 28.99 100.00 -8440 (2) 0.9286 (1) 3.159 (2) 65.61 99.85
EXACD 30 -35141 (8) 0.9353 (5) 3.689 (8) 20.81 100.00 -8445 (5) 0.9290 (4) 3.161 (3) 80.93 99.87
ALAMACD 30 -35135 (4) 0.9360 (9) 3.688 (7) 17.54 100.00 -8445 (7) 0.9297 (9) 3.165 (6) 78.11 99.63
ABAMACD 30 -35115 (1) 0.9348 (2) 3.678 (1) 28.28 100.00 -8440 (1) 0.9287 (2) 3.158 (1) 66.47 99.84
ACD 10 -87717 (5) 0.8935 (7) 2.107 (5) 13.47 100.00 -21010 (9) 0.8860 (6) 1.802 (6) 72.29 99.98
LACD 10 -87772 (8) 0.8938 (8) 2.112 (8) 10.72 100.00 -21009 (7) 0.8861 (8) 1.802 (8) 64.61 99.98
BACD 10 -87645 (4) 0.8926 (4) 2.104 (4) 28.33 100.00 -20998 (4) 0.8852 (1) 1.800 (4) 68.77 100.00
AMACD 10 -87608 (3) 0.8925 (2) 2.103 (3) 42.58 100.00 -20994 (3) 0.8853 (3) 1.800 (3) 65.20 99.99
LAMACD 10 -87772 (9) 0.8938 (9) 2.112 (9) 10.72 100.00 -21009 (6) 0.8861 (7) 1.802 (7) 64.61 99.98
BAMACD 10 -87601 (2) 0.8926 (3) 2.101 (2) 14.90 100.00 -20991 (1) 0.8853 (2) 1.799 (1) 73.39 100.00
EXACD 10 -87733 (6) 0.8934 (5) 2.110 (6) 3.89 100.00 -21010 (8) 0.8857 (5) 1.801 (5) 48.71 99.96
ALAMACD 10 -87733 (7) 0.8934 (6) 2.110 (7) 3.89 100.00 -21007 (5) 0.8861 (9) 1.803 (9) 90.42 99.99
ABAMACD 10 -87597 (1) 0.8925 (1) 2.101 (1) 21.24 100.00 -20994 (2) 0.8853 (4) 1.799 (2) 72.32 100.00

Gold future buy price fluctuations, MCX
ACD 30 -6224 (8) 0.9752 (7) 11.068 (6) 95.87 60.20 -1664 (5) 0.9744 (6) 15.312 (6) 61.62 63.91
LACD 30 -6227 (9) 0.9753 (8) 11.110 (9) 97.93 70.67 -1674 (9) 0.9749 (9) 15.578 (8) 4.58 1.84
BACD 30 -6221 (6) 0.9751 (4) 11.080 (8) 93.76 72.12 -1663 (4) 0.9744 (4) 15.295 (4) 68.34 87.33
AMACD 30 -6219 (3) 0.9750 (1) 11.046 (2) 62.14 55.49 -1663 (3) 0.9744 (5) 15.276 (3) 66.99 78.20
LAMACD 30 -6220 (5) 0.9754 (9) 11.068 (7) 99.31 79.54 -1667 (7) 0.9744 (3) 15.380 (7) 53.80 25.89
BAMACD 30 -6219 (4) 0.9750 (2) 11.046 (3) 62.14 55.49 -1664 (6) 0.9744 (7) 15.311 (5) 68.84 86.01
EXACD 30 -6222 (7) 0.9752 (6) 11.067 (5) 94.71 72.18 -1662 (2) 0.9744 (2) 15.267 (2) 68.33 83.78
ALAMACD 30 -6218 (1) 0.9751 (3) 11.037 (1) 85.28 63.66 -1671 (8) 0.9749 (8) 15.652 (9) 87.63 95.53
ABAMACD 30 -6219 (2) 0.9752 (5) 11.064 (4) 96.17 87.93 -1662 (1) 0.9743 (1) 15.241 (1) 58.14 57.14
ACD 10 -15726 (9) 0.9599 (9) 6.401 (9) 88.33 76.80 -4246 (5) 0.9658 (8) 8.475 (3) 42.11 97.02
LACD 10 -15718 (8) 0.9597 (5) 6.389 (8) 10.94 9.75 -4243 (2) 0.9658 (2) 8.470 (2) 43.43 95.39
BACD 10 -15715 (6) 0.9598 (8) 6.383 (6) 89.62 84.56 -4241 (1) 0.9658 (6) 8.457 (1) 61.14 97.07
AMACD 10 -15716 (7) 0.9598 (7) 6.383 (7) 75.53 85.00 -4250 (8) 0.9658 (3) 8.514 (9) 45.98 96.06
LAMACD 10 -15714 (3) 0.9596 (2) 6.377 (4) 54.48 42.76 -4247 (6) 0.9658 (5) 8.507 (7) 54.63 95.69
BAMACD 10 -15714 (4) 0.9596 (4) 6.377 (2) 54.46 42.61 -4252 (9) 0.9659 (9) 8.508 (8) 35.02 95.93
EXACD 10 -15715 (5) 0.9595 (1) 6.380 (5) 10.55 15.84 -4244 (3) 0.9658 (7) 8.476 (5) 32.89 89.99
ALAMACD 10 -15714 (2) 0.9596 (3) 6.377 (3) 54.48 42.75 -4249 (7) 0.9658 (4) 8.484 (6) 20.41 93.79
ABAMACD 10 -15709 (1) 0.9597 (6) 6.376 (1) 59.90 94.42 -4246 (4) 0.9656 (1) 8.476 (4) 43.35 90.49
ACD 5 -28221 (9) 0.9437 (9) 4.503 (9) 44.45 53.23 -7603 (1) 0.9541 (9) 5.702 (1) 85.58 96.52
LACD 5 -28218 (8) 0.9437 (7) 4.503 (8) 22.94 58.53 -7604 (3) 0.9540 (6) 5.704 (3) 92.68 96.44
BACD 5 -28218 (7) 0.9437 (6) 4.503 (7) 22.94 58.52 -7604 (2) 0.9540 (5) 5.704 (2) 92.68 96.44
AMACD 5 -28204 (3) 0.9434 (3) 4.496 (3) 54.83 43.62 -7620 (9) 0.9540 (4) 5.727 (8) 24.34 88.68
LAMACD 5 -28205 (5) 0.9434 (1) 4.497 (5) 31.92 31.71 -7618 (6) 0.9540 (1) 5.728 (9) 66.56 97.41
BAMACD 5 -28201 (2) 0.9434 (5) 4.494 (2) 61.20 73.08 -7616 (5) 0.9540 (7) 5.719 (5) 33.79 90.30
EXACD 5 -28217 (6) 0.9437 (8) 4.503 (6) 22.62 70.77 -7605 (4) 0.9541 (8) 5.706 (4) 93.40 95.16
ALAMACD 5 -28205 (4) 0.9434 (4) 4.497 (4) 28.97 47.46 -7618 (7) 0.9540 (3) 5.727 (7) 71.78 94.91
ABAMACD 5 -28198 (1) 0.9434 (2) 4.494 (1) 50.13 56.05 -7618 (8) 0.9540 (2) 5.723 (6) 31.19 86.25
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Table 5.9 continued: In-sample result and out-of-sample result obtained from the maximum log-
likelihood estimate of several non-linear ACD models. The statistics reported include the maximum
log-likelihood, Brier’s score, Epstein’s score and the p-value of Ljung-Box Q statistic based on the first
10 autocorrelations of the residual and squared residuals sequence.

Training dataset Testing dataset
Model T LL Bs Es Q(10) Q2(10) LL Bs Es Q(10) Q2(10)

Silver future buy price fluctuations, MCX
ACD 30 -7095 (9) 0.9853 (8) 18.889 (9) 93.92 96.21 -1957 (5) 0.9840 (6) 31.164 (6) 97.87 68.27
LACD 30 -7079 (2) 0.9850 (5) 18.687 (2) 78.18 71.81 -1961 (7) 0.9840 (5) 31.086 (3) 91.19 68.44
BACD 30 -7079 (7) 0.9850 (2) 18.687 (7) 78.68 72.89 -1954 (2) 0.9835 (1) 30.898 (2) 97.08 77.46
AMACD 30 -7090 (8) 0.9854 (9) 18.865 (8) 69.49 80.86 -1959 (6) 0.9841 (8) 31.231 (8) 96.37 61.52
LAMACD 30 -7079 (3) 0.9850 (4) 18.687 (3) 78.18 71.81 -1984 (9) 0.9845 (9) 32.386 (9) 97.00 94.08
BAMACD 30 -7079 (6) 0.9850 (3) 18.687 (6) 78.68 72.89 -1950 (1) 0.9838 (3) 30.790 (1) 99.89 96.45
EXACD 30 -7079 (4) 0.9850 (6) 18.687 (4) 78.18 71.81 -1962 (8) 0.9838 (4) 31.204 (7) 80.88 50.38
ALAMACD 30 -7079 (5) 0.9850 (7) 18.687 (5) 78.18 71.81 -1955 (3) 0.9838 (2) 31.114 (5) 99.76 90.80
ABAMACD 30 -7078 (1) 0.9850 (1) 18.671 (1) 78.68 72.89 -1956 (4) 0.9840 (7) 31.096 (4) 98.91 91.78
ACD 10 -18472 (9) 0.9768 (7) 12.212 (9) 54.71 9.73 -5018 (1) 0.9817 (1) 17.085 (1) 94.56 100.00
LACD 10 -18471 (8) 0.9768 (5) 12.210 (8) 56.75 17.55 -5021 (2) 0.9818 (2) 17.146 (2) 96.68 100.00
BACD 10 -18463 (4) 0.9768 (9) 12.198 (3) 65.65 88.50 -5030 (4) 0.9820 (3) 17.223 (4) 32.03 100.00
AMACD 10 -18465 (7) 0.9767 (2) 12.204 (6) 44.58 39.25 -5034 (5) 0.9821 (6) 17.287 (5) 84.00 100.00
LAMACD 10 -18465 (6) 0.9767 (1) 12.204 (4) 55.44 60.84 -5040 (8) 0.9823 (8) 17.387 (9) 4.37 100.00
BAMACD 10 -18459 (3) 0.9767 (4) 12.197 (2) 69.72 78.00 -5036 (6) 0.9821 (5) 17.314 (6) 89.25 100.00
EXACD 10 -18465 (5) 0.9768 (8) 12.206 (7) 69.34 41.07 -5023 (3) 0.9821 (4) 17.191 (3) 99.14 100.00
ALAMACD 10 -18459 (2) 0.9767 (3) 12.204 (5) 58.90 60.85 -5038 (7) 0.9824 (9) 17.381 (8) 18.67 100.00
ABAMACD 10 -18455 (1) 0.9768 (6) 12.193 (1) 47.55 43.11 -5040 (9) 0.9822 (7) 17.355 (7) 66.11 100.00
ACD 5 -33689 (7) 0.9655 (5) 9.137 (5) 5.94 0.42 -9108 (1) 0.9757 (1) 11.760 (1) 93.80 100.00
LACD 5 -33697 (9) 0.9655 (2) 9.146 (9) 70.32 9.62 -9130 (9) 0.9768 (8) 11.904 (8) 96.03 100.00
BACD 5 -33696 (8) 0.9655 (4) 9.146 (8) 53.28 11.09 -9128 (7) 0.9764 (7) 11.873 (7) 93.42 100.00
AMACD 5 -33687 (5) 0.9655 (1) 9.132 (1) 8.50 0.31 -9111 (2) 0.9758 (2) 11.771 (2) 91.90 100.00
LAMACD 5 -33689 (6) 0.9655 (3) 9.136 (4) 6.77 0.44 -9116 (4) 0.9764 (6) 11.837 (5) 95.82 100.00
BAMACD 5 -33680 (3) 0.9656 (7) 9.135 (3) 7.01 1.46 -9116 (3) 0.9760 (3) 11.813 (3) 92.88 100.00
EXACD 5 -33681 (4) 0.9656 (8) 9.139 (7) 4.31 6.17 -9119 (5) 0.9763 (5) 11.843 (6) 96.23 100.00
ALAMACD 5 -33677 (2) 0.9655 (6) 9.138 (6) 4.46 7.46 -9129 (8) 0.9770 (9) 11.919 (9) 97.14 100.00
ABAMACD 5 -33675 (1) 0.9656 (9) 9.133 (2) 9.22 5.96 -9128 (6) 0.9761 (4) 11.821 (4) 94.01 100.00

Natural gas future buy price fluctuations, MCX
ACD 30 -5052 (6) 0.9484 (5) 5.573 (5) 73.75 93.34 -1079 (6) 0.9093 (6) 3.332 (5) 70.32 86.80
LACD 30 -5050 (2) 0.9483 (1) 5.566 (1) 72.81 80.87 -1088 (8) 0.9117 (8) 3.454 (8) 45.80 98.67
BACD 30 -5062 (9) 0.9489 (8) 5.602 (9) 79.76 96.06 -1075 (1) 0.9086 (1) 3.306 (2) 84.00 89.70
AMACD 30 -5052 (5) 0.9484 (6) 5.573 (6) 73.75 93.34 -1075 (2) 0.9086 (2) 3.299 (1) 84.48 88.86
LAMACD 30 -5050 (3) 0.9483 (2) 5.566 (2) 72.81 80.87 -1086 (7) 0.9113 (7) 3.423 (7) 45.80 98.67
BAMACD 30 -5059 (8) 0.9490 (9) 5.591 (8) 97.64 98.38 -1076 (3) 0.9089 (4) 3.311 (3) 61.39 85.82
EXACD 30 -5050 (4) 0.9483 (3) 5.566 (3) 72.81 80.87 -1088 (9) 0.9117 (9) 3.454 (9) 45.80 98.67
ALAMACD 30 -5050 (1) 0.9483 (4) 5.566 (4) 72.83 80.86 -1077 (4) 0.9087 (3) 3.327 (4) 45.80 98.67
ABAMACD 30 -5052 (7) 0.9484 (7) 5.573 (7) 73.75 93.34 -1078 (5) 0.9091 (5) 3.335 (6) 83.33 95.90
ACD 10 -12489 (9) 0.9072 (1) 3.660 (9) 78.20 97.65 -2620 (7) 0.8621 (3) 2.148 (6) 61.46 64.28
LACD 10 -12485 (8) 0.9073 (5) 3.655 (5) 9.11 78.20 -2615 (1) 0.8619 (1) 2.136 (1) 74.12 76.95
BACD 10 -12481 (4) 0.9073 (6) 3.655 (4) 76.83 94.89 -2619 (4) 0.8629 (8) 2.147 (4) 50.58 81.28
AMACD 10 -12482 (7) 0.9072 (2) 3.656 (7) 52.54 93.73 -2622 (9) 0.8637 (9) 2.152 (8) 7.57 71.00
LAMACD 10 -12481 (5) 0.9073 (4) 3.657 (8) 68.38 95.89 -2619 (5) 0.8626 (6) 2.144 (3) 9.77 62.42
BAMACD 10 -12479 (3) 0.9073 (8) 3.655 (6) 73.88 95.44 -2621 (8) 0.8626 (5) 2.151 (7) 12.07 75.29
EXACD 10 -12482 (6) 0.9074 (9) 3.654 (3) 87.40 96.99 -2617 (2) 0.8620 (2) 2.139 (2) 63.62 92.04
ALAMACD 10 -12469 (2) 0.9073 (7) 3.650 (2) 74.86 96.04 -2620 (6) 0.8623 (4) 2.148 (5) 75.94 72.69
ABAMACD 10 -12465 (1) 0.9073 (3) 3.647 (1) 66.95 95.02 -2618 (3) 0.8627 (7) 2.152 (9) 47.70 88.51
ACD 5 -21343 (9) 0.8583 (4) 2.819 (9) 72.47 94.94 -4511 (4) 0.8154 (4) 1.669 (4) 85.02 99.79
LACD 5 -21332 (8) 0.8582 (2) 2.817 (6) 0.76 74.69 -4522 (8) 0.8179 (8) 1.692 (8) 93.94 99.94
BACD 5 -21322 (4) 0.8586 (5) 2.815 (5) 80.13 99.97 -4513 (5) 0.8161 (5) 1.671 (5) 95.46 99.96
AMACD 5 -21330 (6) 0.8582 (1) 2.815 (3) 60.81 98.46 -4510 (2) 0.8153 (3) 1.668 (3) 73.26 99.87
LAMACD 5 -21332 (7) 0.8582 (3) 2.817 (7) 0.76 74.69 -4557 (9) 0.8209 (9) 1.726 (9) 0.06 99.68
BAMACD 5 -21319 (3) 0.8586 (6) 2.813 (2) 75.52 99.93 -4511 (3) 0.8152 (1) 1.666 (2) 80.99 99.90
EXACD 5 -21323 (5) 0.8591 (7) 2.817 (8) 85.71 99.93 -4517 (6) 0.8170 (7) 1.679 (6) 97.62 99.97
ALAMACD 5 -21313 (2) 0.8591 (8) 2.815 (4) 54.30 99.97 -4518 (7) 0.8170 (6) 1.681 (7) 89.00 99.92
ABAMACD 5 -21308 (1) 0.8593 (9) 2.810 (1) 45.67 99.67 -4497 (1) 0.8153 (2) 1.648 (1) 92.00 99.82
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Table 5.10: The average ranking of the nine ACD models considered both in the in-sample and out-of-
sample dataset.

Training dataset Testing dataset
Model LL Bs Es LL Bs Es
ACD 6.88 (8) 5.71 (7) 6.29 (8) 4.53 (4) 4.94 (5) 4.35 (3)
LACD 7.71 (9) 6.29 (9) 7.47 (9) 6.47 (8) 6.47 (8) 6.29 (8)
BACD 6.24 (7) 4.94 (4) 6.00 (7) 4.71 (5) 4.71 (4) 4.71 (5)
AMACD 4.53 (4) 3.59 (2) 4.18 (4) 4.53 (3) 4.18 (2) 4.41 (4)
LAMACD 5.94 (6) 5.47 (5) 6.00 (6) 6.59 (9) 6.65 (9) 7.41 (9)
BAMACD 3.18 (2) 4.06 (3) 3.35 (2) 3.88 (2) 4.24 (3) 3.71 (2)
EXACD 5.82 (5) 6.00 (8) 5.88 (5) 5.35 (7) 5.06 (6) 4.76 (6)
ALAMACD 3.18 (3) 5.47 (6) 4.06 (3) 5.12 (6) 5.12 (7) 5.88 (7)
ABAMACD 1.53 (1) 3.47 (1) 1.76 (1) 3.82 (1) 3.65 (1) 3.47 (1)

model and the LACD model is extended to the LAMACD model. This result illustrates that for the price

fluctuations dataset, it is crucial to account for both additive and multiplicative stochastic components.

The p-value of the Lijung-Box Q-statistic, based on the first 10 autocorrelations of the residuals and

square residuals reported in Table 5.9, indicates that all models pass this test in most cases except in the

case of IBM’s 60 minute buy price fluctuations.

5.6.4 Summary

This section compared the performance of several extensions of the ACD model in modelling the price

fluctuation time series. These models extend the basic ACD model in three main directions which are

i) introducing the additive innovation into the conditional mean function, ii) applying transformation to

the conditional mean value, and iii) introducing an asymmetric response to positive and negative shocks

into the conditional mean function. In particular, we compare the performance of nine ACD models in-

cluding the linear ACD model, the BACD model, the LACD model, the AMACD model, the LAMACD

model, the BAMACD model, the EXACD model, the ALAMACD model and the ABAMACD model.

The experimentation results indicated that the ABAMACD model, which encompasses all other models

as its special case, is the best performing model in both training and testing dataset according to all per-

formance measures. Among all extensions considered, we find the strongest increase of log-likelihood

function when the model is extended to include the additive innovation. As a result, it is crucial to

account for both additive and multiplicative stochastic components when we apply the ACD model to

model the price fluctuation time series.

5.7 Summary
This chapter proposed a new method for modelling the execution probability at a specified time period

from the fluctuation of the asset price during the interested period. The advantage of this approach

over traditional techniques is that it requires less data to model the execution probability at all price

levels simultaneously since it requires only one record per sample while traditional techniques require

n records per sample to model the execution probability for n price levels. Additionally, it provides a

natural way to apply traditional time series analysis techniques to model the execution probability.

The statistical analysis of the price fluctuation dataset obtained from the Multi Commodity Ex-

change of India and the New York Stock Exchange in Section 5.3 indicated that the form of the market
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seems to have a strong impact on the dynamics of price fluctuations, as the strength and persistence of

serial dependency in price fluctuations mainly differ between the individual exchanges and less between

the different assets traded in the same exchange. The analysis also suggested that the price fluctuation

process seem to have a long range dependency with a clear intraday seasonality pattern. The buy price

fluctuation process and sell price fluctuation process of the same instrument are not necessarily identi-

cal and, thus one might need to model them separately. The analysis of the dependency between price

fluctuation, return and volatility indicated that price fluctuation is highly correlated with the direction of

return during the same period in the sense that buy price fluctuation is negatively correlated with return,

while sell price fluctuation is positively correlated with return. However, the correlation between price

fluctuation and previous returns is typically weak and it might not be useful for predicting future price

fluctuation. Additionally, the results also indicated that price fluctuation is also strongly correlated to

volatility, as estimated by the range between the highest and lowest price.

To find a suitable model for the price fluctuation process, Section 5.4 started the investigation by

analysing the unconditional model of price fluctuations. In particular, we derived the unconditional

distribution of price fluctuation when the asset price is assumed to follow the arithmetic Brownian mo-

tion. Moreover, we also fitted several distributions with non-negative support including the exponential,

Weibull, gamma, generalised gamma, generalised F and Burr distribution to the buy price fluctuation

dataset using the maximum likelihood estimator. The results indicated that the maximum likelihood

estimator is not a good method for estimating model parameters of the price fluctuation process, as the

estimated distribution converged to the distribution that had large probability density at zero rather the

distribution that provided the best fit. To solve the problem, we proposed to estimate model parameters

by maximising the likelihood of the discrete distribution implied by the distribution considered rather

than maximising the likelihood of the distribution directly. The experiment results indicated that the

distribution estimated by the proposed method does not suffer from this problem and is able to estimate

the empirical distribution reasonably well. Among all considered models the generalised F distribution

is the best performing distributions while the Burr distribution and the generalised gamma distribution

are the second and third-best models, respectively.

In Section 5.5, we further investigatd this issue by applying three major time series analysis

techniques, which are the autoregressive moving average (ARMA) model, the generalised autoregres-

sive conditional heteroskedasticity (GARCH) model and the autoregressive conditional duration (ACD)

model, to model price fluctuation processes. For each of these models, we derived a modified likelihood

function that accounts for the discreteness and non-negativity of the price fluctuations dataset, and fit

these models to the price fluctuation dataset both by maximising the original likelihood function and

the modified likelihood function. Since these models can be specified based on several distributional

assumptions, we utilised the normal and asymmetric Laplace distribution for the ARMA and ARMA-

GARCH models, while we utilised the exponential, Weibull and generalised gamma distribution for the

ACD model. The experimental results indicated that the modified likelihood function always provide

improved results for the ACD model under the Weibull and generalised gamma distribution, which al-
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low the density function to be infinite at zero, while the gain obtained from the exponential distribution

is quite limited. However, the improvement in case of the ARMA and ARMA-GARCH models is not

consistent, indicating that one might need to estimate these models using both original likelihood and

modified likelihood in order to find the best model parameters. Among all models considered, the ACD

model with generalised gamma distribution estimated by maximising the modified likelihood function is

the best performing model both from in-sample and out-of-sample tests.

Although the experiment performed in Section 5.5 indicate that the ACD model is the most appro-

priate model for analysing price fluctuation processes, the assumption made by the basic ACD model

is somewhat limited. To find a better model, Section 5.6 further applied several extensions of the basic

ACD model to model the price fluctuation process. The experimentation result indicated that the ABA-

MACD model, which encompasses all other models as its special cases, is the best performing model in

both training and testing dataset according to all performance measures. Consequently, we will utilise

the ABAMACD model as a primary tool for estimating the probability that the limit order submitted at

each price level will be executed in the rest of this study.



Chapter 6

Asset price dynamics in a continuous double

auction market

This chapter presents a stochastic model of asset prices in an order-driven market whose

dynamics are described by the incoming flow of market orders, limit orders and order can-

cellation processes. Particularly, we introduce a framework to model the dynamics of asset

prices giving the statistical properties of those processes, thus, establishing the relationship

between the microscopic dynamics of the limit order book and the long-term dynamics of

the asset price process. Unlike traditional methods that model asset price dynamics using

a one-dimensional stochastic process, the proposed framework models the dynamics using

a two-dimensional stochastic process where the additional dimension represents informa-

tion about the latest price change. Using dynamic programming methods, we are able to

efficiently compute several interesting properties of the asset price dynamic (i.e. volatility,

occupation probability and first-passage probability), conditioning on the trading horizon,

without resorting to simulation.

6.1 Introduction
Many equity and derivative exchanges around the world are nowadays organised as order-driven mar-

kets where the instantaneous liquidity is provided through a limit order book, in which unexecuted or

partially executed limit orders submitted by market participants are stored and waiting for possible ex-

ecution. These types of market have gained in popularity in recent years over quote-driven markets

where liquidity is provided by market makers or designated dealers. Examples of such equity markets

include the Electronic Communication Networks in the United States, the Toronto Stock Exchange,

the Stockholm Stock Exchange, the Australian Stock Exchange, the Shanghai Stock Exchange and the

Tokyo Stock Exchange. Order-driven markets for derivative instruments have also gained in popularity

in recent years over the traditional open-outcry auctions, and many derivative exchanges, including the

Chicago Mercantile Exchange, the International Petroleum Exchange of London, the Sydney Futures

Exchange, and the Hong Kong Futures Exchange, are nowadays organised in this fashion.

The growing popularity of order-driven markets clearly establishes a need for economic and statis-
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tical models of such markets. At a fundamental level, a good model should provide some insight into the

interplay between order flows, liquidity, and price dynamics in these markets, while, at the level of appli-

cation, such a model should also provide a quantitative framework for traders to optimise their execution

strategies. Unfortunately, to the best of our knowledge, previous statistical models linking order flows

to price dynamics (e.g. Bouchaud et al. [14], Mike and Farmer [68], and Boer et al. [11]) study this

relation only by simulation, and, thus, may not be appropriate to employ in real-time applications where

fast computation is a necessity. Although, Const et al. [20] recently proposed a stochastic model of a

limit order book that allows fast computation of various interesting quantities without resorting to sim-

ulation, their model does not allow fast computation of the return distribution, probability of execution,

and volatility which are important quantities for optimising trade execution strategies.

The main objective of this chapter is to develop a model for explaining the relation between or-

der flows and price dynamics in order-driven markets that is simple enough to allow fast computation

of such quantities. To achieve this, we derive a new stochastic model of price dynamics from micro-

scopic behaviour of the limit order book, and present a procedure to estimate its parameters from order

flow properties. Unlike traditional methods that model price dynamics using one-dimensional stochastic

processes, we propose to model these dynamics using a two-dimensional stochastic process where the

additional dimension represents information about the latest price change. This added dimension enables

the model to reproduce the negative first-order autocorrelation property as can be observed in real mar-

kets. Under the independent and identical order flow assumption, the parameters of the proposed model

and the above quantities can be estimated using numerical transformation techniques. A comparison

with simulation results illustrates that our model can accurately predict the desired probabilities without

resorting to simulation.

This chapter is organised as follows. In Section 6.2, the background information on a number of key

concepts utilised in this study and related works will be reviewed in detail to give the reader a clear view

of the problems and environments studied in this chapter. Section 6.3 presents the main result of this

chapter by firstly describing a stylised model for the dynamics of a limit order book where the order flow

is described by independent Poisson processes, and then deriving the price dynamics and the relation

between them. In Section 6.4, simulation results are compared with the estimates from our model to

assess the accuracy of the proposed model. Finally, a conclusion and scope for future work are given in

Section 6.5.

6.2 Background

6.2.1 Order-driven markets and the limit order book

Most order-driven markets utilise the continuous double auction mechanism to match buyers and sellers

during trading hours. This mechanism permits traders to provide or take liquidity at any time while

the market is open. Although trading rules in these markets can vary considerably (i.e. by the types of

orders that may be submitted and the way in which they are handled), most order-driven markets operate

primarily as limit order markets where traders execute their trade by submitting either market orders or
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limit orders.

Traders who provide liquidity submit limit orders (i.e. requests to buy a specific quantity at a price

not exceeding some specified maximum, or to sell a specified quantity at a price not less than some

specified minimum) to indicate the terms at which they want to trade. Unless it can be executed against a

pre-existing order in the order book, a new limit order joins the queue in the limit order book and remains

there until it is amended, cancelled, or executed against subsequent orders. Limit buy orders are called

bids, and limit sell orders are called asks. The lowest selling price offered at any point in time is called

the best ask, and the highest buying price, the best bid. The best prices may change as new orders arrive

or old orders are cancelled. Prices in these markets are not continuous, but rather have discrete quanta

called ticks with the minimum interval that prices change specified by the tick size. Throughout the rest

of this chapter, all prices will be expressed as integers with the tick size equal to one.

Traders who take liquidity accept the above terms by submitting market orders (i.e. requests to

transact a specified quantity at the best available price) to execute their trade at the best available price.

A market order is normally executed immediately and as fully as possible. Any unexecuted part may

then be converted to a limit order at the same price, or else executed at the next best available price

resulting in partial executions at progressively worse price until the order is fully executed. Liquidity

takers can also execute their trade immediately by submitting marketable limit orders, which are limit

orders to buy (sell) at or above (below) the best available price. Since both market orders and marketable

limit orders result in immediate execution, we do not make a distinction between them and refer to both

of them as market orders in the rest of this chapter.

6.2.2 Related literatures

With the world-wide proliferation of order-driven markets, various studies have focused on modelling

price dynamics in these markets with the aim of providing more insight into price formation and the

stochastic properties of price fluctuations. Since the evolution of prices in such markets results from

the interaction of incoming orders with existing orders in the limit order books, an understanding of

this interaction is therefore required in order to understand these processes. To achieve this, a great

deal of research has examined this relationship with recent studies focusing on understanding traders’

decisions to submit more (or less) aggressive orders and how information in the limit order book affects

these decisions. Recent empirical studies indicate that traders’ decisions of when and how to trade are

significantly influenced by the state of the order book (e.g. queued volume, the market depth, and the

spread) as well as recent changes in both the order flow and the price [39]. For example, Biais, Hillion

and Spatt [9] discover that traders place limit orders when the spread is large and the book is thin, and

place market orders when the opposite holds true. Similarly, Ranaldo [82] shows that patient traders

become more aggressive when the spread is wider, the volatility increases, and the own book is thicker

as well as when the opposite book is thinner. Lo and Sapp [62] utilise an autoregressive conditional

duration model to show that the execution of market orders, changes in the level of price uncertainty,

and market depth impact the submission of both limit and market orders. Moreover, traders generally

use market orders at times when execution risk for limit orders is higher, and use limit orders when the
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risk of unexpected price movements is highest. Verhoeven et al. [91] utilise logit regression to indicate

that the spread, depth at the best price, price changes in five minutes and order imbalances are major

determinants of the traders’ decision to place market and limit orders.

Issues regarding the statistical properties of order flow have also gained more attention in recent

years, and several stylised facts in these markets have been identified. These include: i) Long-memory

of order sign [57, 13, 58], where the order flow appears to be a long memory process since the time

series generated by replacing a buy order with +1 and a sell order with -1, exhibits a power-law decay

both for market orders and limit orders; ii) Power-law limit prices [95, 14, 77], where the probability

of a limit order placement depends significantly on the distance from the current best prices and this

probability drops off asymptotically as a power law; iii) Log-normal order size [66, 13], where the

order size distribution was reported to be very skewed, with tails possibly following a log-normal or

power-law distribution; iv) Non-exponential waiting time [81, 84], where the waiting times between

consecutive orders and between consecutive trades are not exponential. This refutes the hypothesis of

constant trading activity during the day, as well as the modelling of this activity using a pure Poisson

process.

Many analytical works have also attempted to explain some of these observed behaviours. Cohen

et al. [19] consider traders’ order submission strategies and discover that transaction cost causes bid-ask

spread to be an equilibrium property of order-driven markets and the spread is negatively related to the

order arrival rate. Glosten [35] analyses the nature of equilibrium in an idealised limit order book. His

result indicates that the order book has a small positive bid-ask spread, and it is more profitable to trade

in small size than in large size. Parlour [76] developed a dynamic model of a limit order market where

traders’ submission strategies are dependent on the state of the order book. In this model, all traders

know that their order will effect the decisions of others, and, thus, the execution probability of their

limit orders is endogenous. The result suggests that the optimal choice of either market or limit orders

generates systematic patterns in any observed transaction data, and both sides of the book are important

in determining a trader’s choice. Foucault [32] describes a game theoretical model of price formation

and order submission in a dynamic limit order market. His result indicates that the proportion of limit

orders in the order flow is positively related to volatility, the ratio of filled limit orders to total number

of limit orders is negatively related to volatility, and the proportion of limit orders is positively related to

the spread. Foucault, Kadan and Landel [33] analyse a dynamic model of a limit order market populated

by strategic liquidity traders of varying impatience who aim to optimise the trade off between the cost

of delayed execution and the cost of immediacy. The result indicates that the proportion of patient

traders in the population and the order arrival rate are the key determinants of the limit order book

dynamics. In particular, traders submit aggressive limit orders when the order arrival rate is low or when

the proportion of patient traders is larger. Lillo [56] considers the problem of the optimal limit order price

in the framework of utility maximisation. The analytical solution of the problem gives insight into the

origin of the empirically observed power law distribution of limit order prices. Although these models

provide interesting insights into the price formation process, they contain unobservable parameters that
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govern agent preferences, and, thus, they are difficult to estimate and use in real applications.

Although traders make decisions in an extremely complex environment, in the end these decisions

are reduced to the simple actions of placing and cancelling trading orders. Instead of attempting to an-

ticipate how traders will behave, another approach is to start by assuming that their combined effect is to

generate flows of order submission and cancellation with a known distribution, and then determine the

quantities of interest based on this assumption. For example, Luckock’s analysis [63] yields the station-

ary probability distribution for the best ask and best bid prices and the prices of actual trades when the

arrival of new orders at each price level follows a Poisson process. Smith et al. [88] develop a micro-

scopic dynamic statistical model of the order book under the assumption of independent and identical

random order flow and analyse it using simulation, dimensional analysis, and mean field approximation.

Their result provides testable predictions for basic properties of markets such as the depth of stored sup-

ply and demand versus price, the bid-ask spread, the price impact function, and the time and probability

of filling orders in steady state. Mike and Farmer [68] develop a model of the order book based on empir-

ical regularities of order flows in the London Stock Exchange and utilise it to simulate price formation

which is then compared to those of real data. The result indicates that the prediction from the model

is very good especially for small tick size stocks. Const et al. [20] propose a stochastic model of the

continuous-time dynamics of a limit order book that can be utilised to compute the probability of various

events, conditional on the state of the order book, including the probability of the mid-price increasing

in the next move, the probability of executing an order at the best bid before the best ask move, and the

probability of executing both a buy and a sell order at the best price before the price moves giving the

state of the order book.

Whilst some of these works provide the interplay between order flows, liquidity and price dynamics

(e.g. Bouchaud et al. [14], Mike and Farmer [68], and Boer et al. [11]), they study this relation only

by simulation which may not be appropriate to employ in real applications where fast computation is

necessity. Although, Const et al. [20] recently proposed a stochastic model of a limit order book that

allows fast computation of various interesting quantities without resorting to simulation, their model

does not allow fast computation of return distribution, probability of execution, and volatility which are

important quantities for optimising trade execution strategies.

To fill this gap, this chapter aims to develop a model that is simple enough to allow fast computation

of the interesting quantities. The model considered here is admittedly simpler in structure than other ex-

isting works since it does not incorporate strategic interaction of traders as in game theoretic approaches,

nor does it account for long memory features of the order flow. However, it leads to an analytically

tractable framework where several quantities of interest may be efficiently computed without resorting

to simulation.

6.3 The Model

This section presents the main result of this chapter. We start by describing the model of the order book,

derive the price dynamics, and the relationship between them.
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6.3.1 Model of the order book

The limit order book model utilised in this chapter is adapted from the models of Smith et al. [88] and

Const et al. [20] with some additional assumptions. It is constructed to be as analytically tractable as

possible while capturing the key features of order driven markets. Particularly, we consider a limit order

book model with the following assumptions:

A1: Limit orders are placed on an integer price grid P ≡ {1, 2, ..., n} which represents multiples of a

price tick.

A2: There are large numbers of liquidity providers and liquidity takers acting independently of one

another, with each individual only occasionally submitting an order to the exchange. This allows

us to regard each order as originating from a different source and hence unrelated to any other

order. The arrival of orders of any specified type is assumed to follow a Poisson process.

A3: All orders are of unit size. Hence all agents in the model need only to specify the price at which

they want to trade. This eliminates the possibility of partial execution and the need for rules

governing the handling of partially executed orders.

A4: Once submitted to the exchange, orders will be automatically cancelled when a specified lifetime

is reached. This lifetime is also assumed to follow a Poisson process.

A5: Market participants prepare and submit their orders without making use of detailed information

about the current state of the order book. Opportunistic traders are thus unable to take advantage

of temporary anomalies in the order book.

A6: Liquidity providers will submit buy orders at price level p only when the price level p − 1 is

previously occupied by other buy orders, while they will submit sell orders at price level p only

when price level p+ 1 is previously occupied by other sell orders.

Most of these assumption are similar to the one made in [88, 20]. The only difference is the assumption

A6 which considerably simplifies the problem and appears to be indispensable to our analysis. Before

discussing more details about this assumption, let us firstly define the notations utilised to described the

state of the order book throughout the rest of this chapter.

Using notations similar to the one utilised by Const et al. [20], the state of the order book at a

particular time t will be represented by X(t) ≡ (X1(t), ..., Xn(t))t≥0, where |Xp(t)| is the number of

unexecuted limit orders at price p, 1 ≤ p ≤ n, and the sign of Xp(t) indicates the side of the orders;

particularly, there will be Xp(t) sell orders at price p when Xp(t) is positive, while there will be −Xp(t)

buy orders at price p when Xp(t) is negative. Using this notation, the best ask price, pA(t), which is the

lowest selling price offered at a particular time t, can be defined by

pA(t) ≡ inf {p = 1, . . . , n | Xp(t) > 0} ∧ (n+ 1).
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Similarly, the best bid price, pB(t) which is the highest buying price at a particular time t, can be defined

by

pB(t) ≡ sup {p = 1, . . . , n | Xp(t) < 0} ∨ 0.

Notice that, when there are no sell orders in the book, the best ask is forced to be n + 1, while the best

bid is forced to be 0, when there is no buy orders in the book. From the definition of the best bid and the

best ask, we can define the mid-price, pM (t), and the bid-ask spread, s(t), by

pM (t) ≡ pA(t) + pB(t)

2
and s(t) ≡ pA(t)− pB(t).

Under assumption A6, liquidity providers will submit limit buy orders at price level p only when

price level p − 1 is previously occupied by limit buy orders, while they will submit limit sell orders at

price level p only when price level p + 1 is previously occupied by limit sell orders. This suggests that

the price level at which liquidity providers can submit limit buy and limit sell orders depends not only

on the current state of the order book but also on its history. For example, if the order book has just

changed from (−5, 0, 0,−1, 4) to (−5, 0, 0, 0, 4), liquidity providers can submit limit buy orders at all

price levels from 1 to 4 while they can submit limit sell orders only at price level 4 and 5. Conversely,

if the order book has just changed from (−5, 1, 0, 0, 4) to (−5, 0, 0, 0, 4), liquidity providers can submit

limit buy orders only at price level 1 and 2 while they can submit limit sell orders at all price level from 2

to 5. If the order book has changed from (−5, 0,−1, 1, 4) to (−5, 0, 0, 1, 4) and then to (−5, 0, 0, 0, 4),

liquidity providers can submit limit buy orders from price level 1 to 4, while they can submit sell orders

from price level 3 to 5.

Although we need the type of the order previously occupied at price level p − 1 to determine

whether we can submit limit buy orders at price level p or not, we do not need to determine this for all

price levels. Particularly, knowing only the highest price level that is previously occupied by limit buy

orders is enough to answer this question for all price levels since if price level p is previously occupied

by buy orders, all price levels below pmust also be previously occupied by buy orders as well. Similarly,

knowing only the lowest price level that is previously occupied by sell orders is also enough to determine

the price level at which liquidity providers can submit limit sell orders. Let us define the reference ask

price, rA(t), as the lowest price level previously occupied by limit sell orders by

rA(t) ≡ inf
{
p = 1, . . . , n | Xp

(
sup
{
t̂ ≤ t|Xp(t̂) ̸= 0

})
> 0 ∧ p > pB(t)

}
, (6.1)

and the reference bid price, rB(t), as the highest price level that is previously occupied by limit buy

orders at a particular time t by

rB(t) ≡ sup
{
p = 1, . . . , n | Xp

(
sup
{
t̂ ≤ t|Xp(t̂) ̸= 0

})
< 0 ∧ p < pA(t)

}
. (6.2)
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Given these two reference prices, the set of all price levels at which liquidity traders can submit limit sell

orders at a particular time t, PA(t), can be defined by

PA(t) ≡ {p = 1, . . . , n | (p+ 1) ≥ rA(t) ∧ p > pB(t)} , (6.3)

while the set of all price levels at which liquidity providers can submit limit buy orders at a particular

time t, PB(t), can be defined by

PB(t) ≡ {p = 1, . . . , n | (p− 1) ≤ rB(t) ∧ p < pA(t)} . (6.4)

From Equation (6.3) it is easy to see that the reference ask price can decrease by only one tick at a time

since the lowest price level that liquidity providers can submit limit sell orders at a particular time t is

always equal to or greater than rA(t)− 1. Additionally the reference ask price can be increased by only

one tick at a time, since this value will increase only when liquidity providers submit limit buy orders at

a price equal to or greater than the current reference sell price and the highest price level that liquidity

providers can submit limit buy orders at a particular time t is always equal to or less than rB(t) + 1 as

indicated in Equation (6.4). Similarly, when applying the same analysis to the reference bid price, one

will find that its value can be changed by only one tick at a time as well. Since these reference prices can

be changed by only one tick at a time, they are easier to model than other quantities (e.g. the best bid

price, the best ask price and the mid-price) and thus we will utilise them as a proxy for the asset price in

the rest of this chapter.

Let us now describe how the limit order book is updated by the incoming flow of market orders,

limit orders and cancellation of limit orders at each price level. According to assumption A2 and A4,

these flows are modelled as Poisson processes. Specifically, market buy and sell orders are assumed to

arrive at a rate of µ orders per unit time, while limit buy and sell orders at each possible price level are

assumed to arrive at a rate of α orders per unit time. In addition, all outstanding limit orders are cancelled

randomly with a rate of δ per unit time. Assuming that all orders are of unit size (assumption A3),

• a market buy order decreases the quantity of sell orders at the best ask price : XpA(t) → XpA(t)−1

• a market sell order decreases the quantity of buy orders at the best bid price : XpB(t) → XpB(t)+1

• a limit buy order at price level p ∈ PB(t) increases the quantity of buy orders at price level p :

Xp → Xp − 1

• the arrival of a limit sell order at price level p ∈ PA(t) increases the quantity of sell orders at price

level p : Xp → Xp + 1

• a cancellation of an outstanding buy order at price level p < pA(t) decreases the quantity of buy

orders at price p : Xp → Xp + 1

• a cancellation of an outstanding sell order at price level p > pB(t) decreases the quantity of sell

orders at price p : Xp → Xp − 1
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Given a sequence of these orders, the above rules completely determine the evolution of the order book.

With the above assumptions, the order book process X(t) is a stochastic process whose state space

is a subset of Zn, and the dynamic behaviour and statistical properties of this process is completely

specified by the three parameters characterising the model as summarised in Table 6.1. The next section

will analyse this stochastic process to derive the model of the asset price dynamics from these three

parameters.

6.3.2 Asset price dynamics

This section presents a framework for modelling the dynamics of the asset price from the order book

model described in the previous section. Although the asset price can be represented by many quantities

(e.g. the best price, the reference price and the mid-price), this chapter will utilise the reference price as

a proxy for the asset price. This is because, under assumption A6, the reference price can be changed

by only one tick at a time and thus is easier to model than other quantities which can be changed rapidly

from one level to the others.

Before modelling the full dynamics of the reference price, let us firstly analyse a single-step tran-

sition from one reference price to the next. Under assumption A6, we know that the reference bid price

and the reference ask price can be changed by only one tick at a time. Specifically, the reference bid

price will increase from p to p + 1 when liquidity providers submit limit buy orders at level p + 1 and

will decrease to p − 1 when liquidity providers submit limit sell orders at price level p. Conversely, the

reference ask price will increase from p to p+1 when liquidity providers submit limit buy orders at price

level p and will decrease to p − 1 when liquidity providers submit limit sell orders at price level p − 1.

Assume that the order book is initialised with the spread equal to one tick so that the reference bid price

and the reference ask price are equal to the best bid price and the best ask price respectively. In this

situation, the difference between these two reference prices will be one tick, and, hence, the submission

of limit buy orders at price level rB(t) + 1 will increase both the reference bid price to level rB(t) + 1

and the reference ask price to level rA(t) + 1 . Similarly, the submission of limit sell orders at price

level rA(t)− 1 will decrease both the reference bid price to level rB(t)− 1 and the reference ask price

to level rA(t) − 1. This illustrates that, when the order book is initialised with the spread equal to one,

both reference prices will increase and decrease together and thus allow us to track their value by using

either one of them.

Assume that the order book is initialised with the spread equal to one tick and the reference bid

price is at level p. As time goes by, the order book will evolve according to the dynamics described in the

previous section, and it will finally reach a situation when the reference bid price changes. Particularly,

the reference bid price will decrease to p − 1 when the orders at price level p change from buy orders

Parameter Description Dimensions
µ arrival rate of market orders shares/time
α arrival rate of limit orders shares/time
δ cancellation rate of limit orders 1/time

Table 6.1: The six parameters that characterise this model.
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Figure 6.1: Dynamics of the reference price as modelled by the transitions between Ap and Bp

to sell orders, while the reference bid price will increase to p + 1 when the orders at price level p + 1

change from buy orders to sell orders. After the reference price changes, the dynamics of the order book

will continue from that price and will finally reach the situation when the reference price changes again.

Define Ap as the situation when the reference bid price is at level p and there is only one sell order at

price level p+ 1, Bp as the situation when the reference bid price is at level p and there is only one buy

order at price level p and Xp as the situation when the reference bid price is at level p. The dynamics

of the reference price can be illustrated in Figure 6.1. This diagram suggests that the dynamics of the

reference price can be modelled as a two-dimensional stochastic process with state space P × {A,B}

and state transition diagram as shown in Figure 6.1. From any state z = (p, l) ∈ P × {A,B}, there

are two possible transitions: to state (p − 1, A) when the reference price decreases by one tick, and to

state (p+1, B) when the reference price increases by one tick. Notice that the second dimension can be

thought of as a representation of the latest price change since it will always beAwhen the reference price

decreases and always be B when the reference price increases. To fully characterise this process, the

stochastic behaviour of each state transition needs to be specified. Since these transitions are independent

of the reference price, there will be only four main transition types, which are:

ρA− the transition from (p,A) to (p− 1, A),

ρA+ the transition from (p,A) to (p+ 1, B),

ρB− the transition from (p,B) to (p− 1, A),

ρB+ the transition from (p,B) to (p+ 1, B).

The stochastic behaviour of these transitions can be modelled from the dynamics of the order book at

the reference bid price and the reference ask price. Particularly, let TA|qA be the first time that the orders

at the reference ask price change from qA sell orders to buy orders, and TB|qB be the first time that the

orders at the reference bid price change from qB buy orders to sell orders. The waiting time until the

reference price changes when there are qA sell orders at the reference ask price and qB buy orders at the

reference bid price, is

TW |qA,qB = min
{
TA|qA , TB|qB

}
,

and its probability distribution can be computed from

P
{
TW |qA,qB = t

}
= P

{
TA|qA = t ∧ TB|qB > t

}
+ P

{
TB|qB = t ∧ TA|qA > t

}
.
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Since the dynamics of the orders at the reference bid price and the reference ask price are independent

of each other, TA|qA and TB|qB are also independent and the above equation is reduced to

P
{
TW |qA,qB = t

}
= P

{
TA|qA = t

}
P
{
TB|qB > t

}
+ P

{
TB|qB = t

}
P
{
TA|qA > t

}
.

Equivalently, the probability density function of TW |qA,qB , denoted by fW |qA,qB (t), can be expressed by

fW |qA,qB (t) = fA|qA(t)[1− FB|qB (t)] + fB|qB (t)[1− FA|qA(t)], (6.5)

where fA|qA(t) and FA|qA(t) are the probability density function (p.d.f.) and cumulative distribution

function (c.d.f.) of TA|qA , respectively, while fB|qB (t) and FB|aB (t) are the p.d.f. and c.d.f. of TB|qB

respectively. Since the order arrival and cancellation rate of buy and sell orders are similar, the dis-

tribution of TA|qA and TB|qB when qA = qB must be similar as well and thus Equation (6.5) reduces

to

fW |qA,qB (t) = fT |q=qA(t)[1− FT |q=qB (t)] + fT |q=qB (t)[1− FT |q=qA(t)], (6.6)

where fT |q(t) and FT |q(t) are respectively the p.d.f. and c.d.f. of the first time that the orders at the

reference price change from q buy (sell) orders to sell (buy) orders. Additionally, the probability that the

reference price will decrease to Ap−1 at time t is given by

PB|qA,qB (t) = P
{
TB|qB = t ∧ TW |qA,qB = t

}
= fT |q=qB (t)[1− FT |q=qA(t)]. (6.7)

Similarly, the probability that the reference price will increase to Bp−1 is given by

PA|qA,qB (t) = P
{
TA|qA = t ∧ TW |qA,qB = t

}
= fT |q=qA(t)[1− FT |q=qB (t)]. (6.8)

To apply the above equations to estimate the transition probability, the number of the orders at the

reference price is required. Unfortunately, when the order book has just changed to Ap we know only

the number of orders at the reference ask price, which must be equal to one, but not the number of

orders at the reference bid price. Similarly, when the order book has just changed to Bp, we know only

the number of orders at the reference bid price but not the number of orders at the reference ask price.

To solve the problem, we will assume that these unknown quantities are distributed according to some

known probability mass function fq(x). Consequently, the distribution of the transition probability and

the waiting time when the order book is in Ap can be estimated from

ρA−(t) =
∑
x

PB|qA=1,qB=x(t)fq(x) =
∑
x

fT |q=x(t)[1− FT |q=1(t)]fq(x)

ρA+(t) =
∑
x

PA|qA=1,qB=x(t)fq(x) =
∑
x

fT |q=1(t)[q − FT |q=x(t)]fq(x) (6.9)

fW |A(t) =
∑
x

fW |qA=1,qB=x(t)fq(x) = ρA−(t) + ρA+(t)

Similarly the distribution of the transition probability and the waiting time when the order book is in Bp
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can be estimated from

ρB−(t) =
∑
x

PB|qA=x,qB=1(t)fq(x) =
∑
x

fT |q=1(t)[1− FT |q=x(t)]fq(x)

ρB+(t) =
∑
x

PA|qA=x,qB=1(t)fq(x) =
∑
x

fT |q=x(t)[1− FT |q=1(t)]fq(x) (6.10)

fW |B(t) =
∑
x

fW |qA=x,qB=1(t)fq(x) = ρB−(t) + ρB+(t)

Comparing Equation (6.9) and (6.10), we have

ρA+(t) = ρB−(t), ρA−(t) = ρB+(t) and fW |A(t) = fW |B(t). (6.11)

Hence, given the distribution of fT |q(t), FT |q(t) and fq(x), we can derive the transition probability of

the asset price dynamics model from Equation (6.9) and (6.10). The next question is how to estimate

these three distributions from the three parameters of the order flow model described in the previous

section, and this will be the main subject of the next section.

To avoid the corner condition and simplify the analysis, the rest of this chapter will model the

difference between the reference price and the initial reference price, i.e. rB(t) − rB(0), instead of

directly modelling the reference price and further assume that this difference has no bound so that the

domain of the first-dimension becomes Z rather than P. Particularly we will model this dynamic using

a two-dimensional stochastic process {Z(t) = [P (t), L(t)] ; t ≥ 0} with state space Z × {A,B} and

initial conditions P (0) = 0, L(0) = A with probability a0 and L(0) = B with probability b0 where

a0+b0 = 1. The state Z(t) of this process at time t is a two-dimensional vector with the first component

representing the difference between the reference price at time t and the initial reference price, while the

second component being the lastest price change. Since the state holding time of all states in the model

have the same distribution, this dynamic process can be approximated by a discrete-time Markov chain

whose state holding time can be estimated by

TH ≡
∫ ∞

0

tfW |A(t)dt =

∫ ∞

0

tfW |B(t)dt, (6.12)

and its transition probability characterised by:

ρA+ ≡
∫ ∞

0

ρA+(t)dt, ρA− ≡
∫ ∞

0

ρA−(t)dt, (6.13)

ρB+ ≡
∫ ∞

0

ρB+(t)dt, ρB− ≡
∫ ∞

0

ρB−(t)dt. (6.14)

The rest of this section will present a numerical method for estimating the quantities of interest from the

asset price dynamics.
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Occupancy probability, expected return and the volatility

Let A(p, n) and B(p, n) be the probabilities that the process is in state (p,A) and (p,B) at the n-th time

step respectively. The evolution of these two probabilities is described by the master equation

A(p, n) = ρA−A(p+ 1, n− 1) + ρB−B(p+ 1, n− 1) (6.15)

B(p, n) = ρA+A(p− 1, n− 1) + ρB+B(p− 1, n− 1) (6.16)

with initial condition A(0, 0) = a0 and B(0, 0) = b0 where a0 + b0 = 1. Since the asset price can be

changed by only one tick at a time, the asset price at the n-th time step must be in the closed interval

[−n, n] which is a finite set. This allows us to compute the value of A(p, n) and B(p, n) directly from

the master equation by using a dynamic programming approach which requires O(n) space and O(n2)

running time. The probability that the reference price will be at level p at the n-th time step, P (p, n),

can be computed from

P (p, n) = A(p, n) +B(p, n) (6.17)

Accordingly the expected return at the n-th time step, µ(n), can be estimated by

µ(n) =
n∑

p=−n
pP (p, n), (6.18)

while the volatility at the n-th time step, σ(n), can be estimated by

σ(n) =
n∑

p=−n
p [P (p, n)− µ(n)]

2
=

n∑
p=−n

pP (p, n)2 − µ(n)2, (6.19)

First-passage probability and survival probability

Since an important aspect of the first-passage phenomenon is the condition by which the process termi-

nates when the target state is reached, we can compute the first-passage probability to state z = (p̂, l̂)

by the occupancy probability of a state z in a modified process where state z is an absorbing state. Let

F+
A,p̂(p, n) and F+

B,p̂(p, n) be the probability that the modified process is in state (p,A) and (p,B) at the

n-th time step when p̂ > 0 and l̂ = B respectively. The evolution of these probabilities can be described

by the master equations

F+
A,p̂(p, n) =

 ρA+F
+
A,p̂(p− 1, n− 1) + ρB+F

+
B,p̂(p− 1, n− 1) if p < p̂− 1

0 otherwise
(6.20)

F+
B,p̂(p, n) =

 ρA−F
+
A,p̂(p+ 1, n− 1) + ρB−F

+
B,p̂(p+ 1, n− 1) if p ≤ p̂

0 otherwise
(6.21)

with initial conditions F+
A,p̂(0, 0) = a0 and F+

B,p̂(0, 0) = b0 where a0+b0 = 1. Similarly, let F−
A,p̂(p, n)

and F−
B,p̂(p, n) be the probability that the modified process is in state (p,A) and (p,B) at the n-th time
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step when p̂ < 0 and l̂ = A. The evolution of this probability can be described by the master equations

F−
A,p̂(p, n) =

 ρA+F
−
A,p̂(p− 1, n− 1) + ρB+F

−
B,p̂(p− 1, n− 1) if p ≥ p̂

0 otherwise
(6.22)

F−
B,p̂(p, n) =

 ρA−F
−
A,p̂(p+ 1, n− 1) + ρB−F

−
B,p̂(p+ 1, n− 1) if p > p̂+ 1

0 otherwise
(6.23)

with similar initial conditions as before. These master equations allow us to compute the value of

F+
A,p̂(p, n), F

+
B,p̂(p, n), F

−
A,p̂(p, n) and F−

B,p̂(p, n) using a dynamic programming approach which re-

quires O(n) space and O(n2) running time. Using these equations, the probability that the reference

price reaches price level p for the first time at the n-th time step, F (p, n) can be computed from

F (p, n) =

 F+
B,p(p, n) for p > 0

F−
A,p(p, n) for p < 0

(6.24)

Accordingly, the survival probability, the probability that the reference price does not reach level p at the

n-th time step, S(p, n) can be computed from

S(p, n) = 1−
p∑
i=1

F (i, n) (6.25)

6.3.3 Parameter estimation

This section presents a method for estimating the two distributions required to derive the transition

probability of the asset price dynamics model described in the previous section.

Distribution of waiting time until orders at reference price change side

We now present a method to estimate the distribution of the waiting time until the orders at the reference

price change side. Let Ti,j be a random variable representing the first-passage time that the state of the

order book at the reference price changes from i to j when i > j. Note that the random variable we

want to model is Tq,−1 which represents the waiting time until the orders at the reference bid (ask) price

change from q buy (sell) orders to buy (sell) orders. This first passage time can be expressed in terms of

the first passage time to neighbouring states as follows

Ti,j = Ti,i−1 + Ti−1,i−2 + · · ·+ Tj+1,j , (6.26)

where the random variables on the right-hand side are mutually independent. Let fi,j be the p.d.f. of

Ti,j and let f̂i,j be its Laplace transform, i.e.,

f̂i,j ≡
∫ ∞

0

e−stfi,j(t)dt ≡ Ee−sTi,j . (6.27)
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From Equation (6.26), we have

f̂i,j(s) =

k=i∏
k=j+1

f̂k,k−1(s). (6.28)

Therefore, in order to compute f̂i,j , it suffices to compute the simpler Laplace transform of the first

passage time to a neighbouring state f̂i,i−1. Let λi be the rate of the transition from state i to i+ 1, and

let σi be the rate of the transition from state i to i− 1. By considering the transition in state i, we have

Ti,i−1 =

(
σi

λi + σi

)
Twi +

(
λi

λi + σi

)
(Twi + Ti+1,i + Ti,i−1) ,

where Twi is the state i holding time which is an exponential waiting time with rate λi + σi. Applying

the Laplace transform to the above relation, we get

f̂i,i−1(s) =

(
σi

λi + σi

)(
λi + σi

λi + σi + s

)
+

(
λi

λi + σi

)[(
λi + σi

λi + σi + s

)
f̂i+1,i(s)f̂i,i−1(s)

]
=

σi
λi + σi + s

+
λif̂i+1,i(s)f̂i,i−1(s)

λi + σi + s

Rearranging f̂i,i−1(s) to the left-hand side, we obtain

f̂i,i−1(s) =
σi

λi + σi + s− λif̂i+1,i(s)
(6.29)

Iterating on Equation (6.29) produces a continued fraction [1]

f̂i,i−1(s) = − 1

λi−1
Φ∞
k=i

−λk−1σk
λk + σk + s

, (6.30)

where

Φ∞
k=1

ak
bk

≡ a1
b1+

a2
b2+

a3
b3+

· · · . (6.31)

Abate and Whitt [1] illustrate that when this continued fraction is convergent, its value can be approxi-

mated using a sample recursion for calculating the successive approximantions. Particularly, given the

continued fractions in Equation (6.31), we have

wn = Φnk=1

ak
bk

≈ Pn
Qn

,

where P0 = 0, P1 = a1, Q0 = 1, Q1 = b1 and

Pn = bnPn−1 + anPn−2

Qn = bnQn−1 + anQn−2

for n ≥ 2. To increase the quality of the approximation, they also suggest that it is prudent to renormalise

these values after a couple of iterations by dividing the current value of Pk, Qk, Pk−1 and Qk−1 all by
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Qk. Combining Equation (6.28) and (6.30), we get

f̂i,j(s) =
k=i∏

k=j+1

{
− 1

λi−1
Φ∞
k=i

−λk−1µk
λk + µk + s

}
. (6.32)

Consequently, we can estimate fT |q(x) and FT |q(x) by applying the numerical inverse Laplace transform

to f̂q,−1(s) and f̂q,−1(s)/s when the transition rate in each state is specified by

λi = α, σi =

 µ+ iδ if i > 0,

α if i = 0.

Distribution of the number of orders at the reference price

This section presents a method for approximating the number of orders at the new reference price when

the reference price has just changed. Let us consider the situation when the reference bid price has just

changed from level p to p+1. In this situation, the number of orders at the new reference bid price must

be equal to one, while the number of orders at the new reference ask price is a random variable whose

value is dependent on the dynamics of the order book at price level p + 2. Under assumption A7, the

dynamics of the orders at price level p+2 will evolve according to a birth-death process with birth rate α

and death rate iδ in state i ≥ 1, which have the same behaviour as that of the M/M/∞ queuing system.

Thus we will approximate this distribution using the steady-state probability of this process, which can

be obtained from the following equation

fq(x) =
(α/δ)xe−α/δ

x!
(6.33)

6.4 Numerical Results
The proposed order book model allows one to compute various quantities of interest both by simulating

the evolution of the order book as described in Section 6.3.1 and by using the estimation techniques in

Section 6.3.2 and 6.3.3, based on the order flow parameters µ, α and δ. In this section, we compute

these quantities from both methods and compare them to assess the precision of our estimation in several

settings. Particularly, we will fix the market order arrival rate µ at 1, vary the limit order arrival rate

α from {1/4, 1/2, 1, 2, 4} and vary the limit order cancellation rate δ from {α, α/2, α/4, α/8} which

results in twenty unique parameter settings. In Section 6.4.1, we compare the parameter of the asset

price model estimated from the simulation to the one obtained from the proposed estimation framework.

Then Section 6.4.2 will compare the prediction from our model to the simulation results.

6.4.1 Parameter estimation

To access the accuracy of the proposed parameter estimation method, we compare the value of ρA− and

TH estimated by our model to the one obtained from Monte Carlo simulation. Table 6.2 gives these two

parameters as computed using both simulation and the proposed method. The simulation results, reported

as 95% confidence intervals, agree very well with the estimation results when α is large; however, there
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µ α δ
Simulation Estimated Corrected fQ(x)

ρA− TH ρA− TH ρA− TH

1.0000 0.2500 0.2500 0.5191 ± 0.0004 3.1333 ± 0.0021 0.5088 3.1931 0.5194 3.1333
1.0000 0.2500 0.1250 0.4816 ± 0.0004 3.5152 ± 0.0024 0.4432 3.7406 0.4816 3.5153
1.0000 0.2500 0.0625 0.4293 ± 0.0004 3.9325 ± 0.0028 0.3276 4.5361 0.4291 3.9328
1.0000 0.2500 0.0363 0.3727 ± 0.0004 4.3315 ± 0.0032 0.1751 5.5106 0.3726 4.3356
1.0000 0.5000 0.5000 0.5238 ± 0.0004 1.9685 ± 0.0015 0.5173 1.9951 0.5243 1.9699
1.0000 0.5000 0.2500 0.4650 ± 0.0005 2.4772 ± 0.0021 0.4351 2.6004 0.4654 2.4764
1.0000 0.5000 0.1250 0.3811 ± 0.0005 3.0992 ± 0.0029 0.2992 3.4740 0.3812 3.1006
1.0000 0.5000 0.0625 0.2906 ± 0.0005 3.7645 ± 0.0040 0.1443 4.5039 0.2903 3.7630
1.0000 1.0000 1.0000 0.5296 ± 0.0005 1.2460 ± 0.0011 0.5267 1.2532 0.5295 1.2468
1.0000 1.0000 0.5000 0.4556 ± 0.0006 1.8724 ± 0.0021 0.4389 1.9243 0.4553 1.8720
1.0000 1.0000 0.2500 0.3500 ± 0.0007 2.9322 ± 0.0043 0.3083 3.1262 0.3499 2.9318
1.0000 1.0000 0.1250 0.2412 ± 0.0008 4.6019 ± 0.0094 0.1804 5.0791 0.2420 4.6089
1.0000 2.0000 2.0000 0.5337 ± 0.0005 0.7598 ± 0.0008 0.5345 0.7596 0.5342 0.7601
1.0000 2.0000 1.0000 0.4555 ± 0.0007 1.4156 ± 0.0021 0.4494 1.4320 0.4557 1.4159
1.0000 2.0000 0.5000 0.3575 ± 0.0011 3.1717 ± 0.0078 0.3429 3.2639 0.3576 3.1802
1.0000 2.0000 0.2500 0.2863 ± 0.0017 9.1494 ± 0.0440 0.2726 9.4732 0.2865 9.2062
1.0000 4.0000 4.0000 0.5381 ± 0.0006 0.4366 ± 0.0005 0.5396 0.4349 0.5379 0.4364
1.0000 4.0000 2.0000 0.4609 ± 0.0009 0.9918 ± 0.0018 0.4595 0.9950 0.4610 0.9923
1.0000 4.0000 1.0000 0.3831 ± 0.0016 3.3720 ± 0.0128 0.3790 3.4010 0.3832 3.3738
1.0000 4.0000 0.5000 0.3618 ± 0.0041 23.6960 ± 0.2564 0.3615 23.8707 0.3635 23.7700

Table 6.2: The parameters of the asset pricing model obtained from simulation results (95% confidence
intervals), the proposed estimatation method, and the proposed estimation method with corrected fQ(x).

are significant differences when the α is small. These differences result from the fact that when α is small

relative to µ, the reference price will change so quickly that the estimation of fQ(x) with the steady state

probability described in Section 6.3.3 is no longer accurate. Additionally, the difference also tends to

be larger when δ is smaller. Although this may seem to contradict the above argument since smaller

δ will lengthen the state holding time which should make the distribution fQ(x) more similar to the

steady-state probability, the actual problem in this situation is that smaller δ is associated with smaller

ρA− and ρB+, which causes the reference price to move back and forth between a particular price rather

than extending the move to the new price. This make the fQ(x) look more similar to the dynamics of

the order at the best price rather than the one analysed in Section 6.3.3.

To confirm that these errors are actually caused by the problem in the estimation of fQ(x), we re-

estimate the parameters of the model by setting fQ(x) to the empirical distribution obtained from the

simulation. The results agreed very well with the simulation results as illustrated in the last two columns

of Table 6.2.

6.4.2 Model prediction

As discussed in the introduction, volatility, return distribution and probability of execution are the main

quantities of interest for applications in algorithmic trading. A good asset pricing model should allow

us to predict these quantities correctly. To assess the accuracy of the prediction obtained from our asset

pricing model, this section compares the results obtained from simulations to the ones estimated from

our model. Since we model the asset price dynamics in a discrete-time setting while the simulation is

performed in a continuous-time setting, all results reported in this section will be in discrete-time and

the time step for the simulation is the number of times the reference price changes.

Volatility

Table 6.3 gives the volatility computed using both simulation and our numerical method at several time

steps. The simulation results agree very well with our numerical computations when α is large, while

they differ substantially when the α is small, as in the previous section.
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µ α δ
Simulation Estimated

n = 10 n = 50 n = 100 n = 10 n = 50 n = 100
1.0000 0.2500 0.25000 10.39 ± 0.29 51.67 ± 1.43 101.65 ± 2.83 10.71 53.88 107.84
1.0000 0.2500 0.12500 8.33 ± 0.23 39.83 ± 1.10 79.89 ± 2.22 9.36 46.52 92.96
1.0000 0.2500 0.06250 5.79 ± 0.16 25.53 ± 0.71 49.24 ± 1.37 7.74 37.83 75.45
1.0000 0.2500 0.03125 3.59 ± 0.10 12.85 ± 0.37 - 6.27 30.03 59.74
1.0000 0.5000 0.50000 10.63 ± 0.29 52.93 ± 1.47 108.35 ± 3.02 10.89 54.89 109.88
1.0000 0.5000 0.25000 7.79 ± 0.22 37.57 ± 1.04 74.50 ± 2.08 8.81 43.57 87.03
1.0000 0.5000 0.12500 4.84 ± 0.13 21.87 ± 0.61 42.69 ± 1.19 6.47 31.10 61.90
1.0000 0.5000 0.06250 2.77 ± 0.08 10.92 ± 0.30 20.85 ± 0.58 4.51 20.89 41.37
1.0000 1.0000 1.00000 11.16 ± 0.31 55.08 ± 1.53 110.52 ± 3.09 11.12 56.15 112.44
1.0000 1.0000 0.50000 7.86 ± 0.22 38.53 ± 1.07 77.53 ± 2.17 8.52 41.99 83.83
1.0000 1.0000 0.25000 4.91 ± 0.14 22.69 ± 0.63 43.77 ± 1.23 5.74 27.28 54.21
1.0000 1.0000 0.12500 2.87 ± 0.08 12.07 ± 0.33 23.67 ± 0.67 3.63 16.35 32.24
1.0000 2.0000 2.00000 11.47 ± 0.32 57.80 ± 1.60 115.12 ± 3.23 11.29 57.08 114.32
1.0000 2.0000 1.00000 8.17 ± 0.23 41.08 ± 1.14 81.66 ± 2.29 8.52 41.98 83.82
1.0000 2.0000 0.50000 5.59 ± 0.15 25.89 ± 0.72 52.08 ± 1.47 5.91 28.17 55.99
1.0000 2.0000 0.25000 4.12 ± 0.11 19.62 ± 0.54 38.17 ± 1.09 4.43 20.48 40.54
1.0000 4.0000 4.00000 11.74 ± 0.33 58.02 ± 1.61 116.73 ± 3.29 11.47 58.08 116.33
1.0000 4.0000 2.00000 8.69 ± 0.24 41.76 ± 1.16 85.63 ± 2.41 8.69 42.89 85.64
1.0000 4.0000 1.00000 6.46 ± 0.18 30.59 ± 0.85 60.96 ± 1.73 6.52 31.36 62.41
1.0000 4.0000 0.50000 6.07 ± 0.17 28.63 ± 0.87 - 6.01 28.69 57.04

Table 6.3: Volatility obtained from simulation results (95% confidence intervals) and the proposed esti-
mation method.

µ α δ
Simulation Estimated

n = 10 n = 50 n = 100 n = 10 n = 50 n = 100
1.00000 0.25000 0.25000 0.77000 ± 0.01830 0.88558 ± 0.02786 0.91350 ± 0.08044 0.77427 0.88764 0.91314
1.00000 0.25000 0.12500 0.78640 ± 0.01919 0.89409 ± 0.02907 0.90828 ± 0.05065 0.77427 0.88765 0.91210
1.00000 0.25000 0.06250 0.79870 ± 0.01992 0.90398 ± 0.03071 0.91763 ± 0.03873 0.77234 0.88661 0.91434
1.00000 0.25000 0.03125 0.80700 ± 0.02045 0.90629 ± 0.03113 0.92449 ± 0.05409 0.76747 0.88398 0.90808
1.00000 0.50000 0.50000 0.77900 ± 0.01877 0.89038 ± 0.02853 0.90894 ± 0.03751 0.77418 0.88760 0.91311
1.00000 0.50000 0.25000 0.78570 ± 0.01915 0.89512 ± 0.02925 0.91574 ± 0.04627 0.77391 0.88745 0.91194
1.00000 0.50000 0.12500 0.79680 ± 0.01980 0.90137 ± 0.03026 0.92452 ± 0.07383 0.76839 0.88448 0.91171
1.00000 0.50000 0.06250 0.78750 ± 0.01925 0.89702 ± 0.02955 0.92174 ± 0.08367 0.75402 0.87662 0.90453
1.00000 1.00000 1.00000 0.77430 ± 0.01852 0.89041 ± 0.02853 0.91513 ± 0.07328 0.77405 0.88753 0.91305
1.00000 1.00000 0.50000 0.78060 ± 0.01886 0.89218 ± 0.02882 0.91584 ± 0.07088 0.77360 0.88729 0.91387
1.00000 1.00000 0.25000 0.77700 ± 0.01867 0.88900 ± 0.02834 0.92683 ± 0.18288 0.76460 0.88243 0.91308
1.00000 1.00000 0.12500 0.77370 ± 0.01849 0.88885 ± 0.02838 0.91078 ± 0.04661 0.74090 0.86928 0.90218
1.00000 2.00000 2.00000 0.77370 ± 0.01849 0.88930 ± 0.02839 0.91366 ± 0.05121 0.77395 0.88747 0.91402
1.00000 2.00000 1.00000 0.77430 ± 0.01852 0.88814 ± 0.02824 0.93590 ± 0.29412 0.77360 0.88729 0.91181
1.00000 2.00000 0.50000 0.77730 ± 0.01868 0.88909 ± 0.02838 0.91014 ± 0.04691 0.76561 0.88297 0.91156
1.00000 2.00000 0.25000 0.75560 ± 0.01758 0.87780 ± 0.02694 0.91086 ± 0.05785 0.75307 0.87610 0.90835
1.00000 4.00000 4.00000 0.77440 ± 0.01853 0.88570 ± 0.02788 0.90245 ± 0.03938 0.77382 0.88740 0.91295
1.00000 4.00000 2.00000 0.77690 ± 0.01866 0.89107 ± 0.02869 0.91490 ± 0.05087 0.77379 0.88739 0.91679
1.00000 4.00000 1.00000 0.76820 ± 0.01820 0.88292 ± 0.02754 0.91452 ± 0.07832 0.76860 0.88459 0.91470
1.00000 4.00000 0.50000 0.76770 ± 0.01817 0.88153 ± 0.02832 0.90880 ± 0.04317 0.76616 0.88327 0.91277

Table 6.4: First-passage probability to price level 1 obtained from simulation results (95% confidence
intervals) and the proposed estimation method.

First-passage probability

Table 6.4-6.7 compare the first-passage probability to price levels 1, 2, 4 and 6 from the simulations to

the model-predicted probability. We computed these quantities using Monte Carlo simulation (using

10,000 replications) and the first-passage time model described in Section 6.3.2. The simulation results,

reported as 95% confidence intervals, agree very well with the estimated results when p is equal to 1 and

2. However, the difference increases with p. Additionally, the results also illustrate a tendency toward a

higher error when α is small and when δ is small, as discussed in the previous section. The results also

indicate that the first-passage probability decreases when δ and α increase, and increases when δ and α

decrease.

6.5 Summary
This chapter derived a stochastic model of asset prices in a stylised order-driven market whose dynam-

ics are described by the incoming flow of market orders, limit orders and order cancellations, each of
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µ α δ
Simulation Estimated

n = 10 n = 50 n = 100 n = 10 n = 50 n = 100
1.00000 0.25000 0.25000 0.55000 ± 0.01106 0.77990 ± 0.01886 0.82023 ± 0.05378 0.55641 0.78373 0.83154
1.00000 0.25000 0.12500 0.54360 ± 0.01091 0.78331 ± 0.01903 0.81492 ± 0.03653 0.54105 0.77565 0.82100
1.00000 0.25000 0.06250 0.51660 ± 0.01034 0.76516 ± 0.01807 0.81683 ± 0.05481 0.51638 0.76227 0.81675
1.00000 0.25000 0.03125 0.46160 ± 0.00926 0.73342 ± 0.01661 0.77699 ± 0.02697 0.48472 0.74441 0.79577
1.00000 0.50000 0.50000 0.56590 ± 0.01142 0.78737 ± 0.01927 0.82030 ± 0.02631 0.55822 0.78467 0.83227
1.00000 0.50000 0.25000 0.53500 ± 0.01073 0.77854 ± 0.01878 0.81648 ± 0.03079 0.53363 0.77168 0.82206
1.00000 0.50000 0.12500 0.49560 ± 0.00991 0.75268 ± 0.01747 0.80270 ± 0.03402 0.48980 0.74733 0.80722
1.00000 0.50000 0.06250 0.39230 ± 0.00803 0.68993 ± 0.01494 0.74921 ± 0.04779 0.42724 0.70969 0.77544
1.00000 1.00000 1.00000 0.56110 ± 0.01131 0.78979 ± 0.01942 0.82142 ± 0.02997 0.56039 0.78580 0.83315
1.00000 1.00000 0.50000 0.52730 ± 0.01056 0.76620 ± 0.01814 0.80832 ± 0.04763 0.52926 0.76932 0.82422
1.00000 1.00000 0.25000 0.46170 ± 0.00926 0.73294 ± 0.01662 0.79532 ± 0.05293 0.47037 0.73603 0.80063
1.00000 1.00000 0.12500 0.37460 ± 0.00774 0.67694 ± 0.01454 0.73599 ± 0.02811 0.38413 0.68124 0.75552
1.00000 2.00000 2.00000 0.56270 ± 0.01134 0.78808 ± 0.01932 0.82286 ± 0.02980 0.56193 0.78659 0.83378
1.00000 2.00000 1.00000 0.52870 ± 0.01059 0.77226 ± 0.01849 0.81906 ± 0.04473 0.52925 0.76931 0.82020
1.00000 2.00000 0.50000 0.48370 ± 0.00968 0.74427 ± 0.01712 0.79095 ± 0.02599 0.47522 0.73889 0.80067
1.00000 2.00000 0.25000 0.41270 ± 0.00838 0.70589 ± 0.01560 0.76873 ± 0.03297 0.42382 0.70753 0.78537
1.00000 4.00000 4.00000 0.56780 ± 0.01146 0.78622 ± 0.01922 0.84592 ± 0.12635 0.56353 0.78742 0.83442
1.00000 4.00000 2.00000 0.53680 ± 0.01077 0.77613 ± 0.01870 0.82288 ± 0.04749 0.53178 0.77068 0.82716
1.00000 4.00000 1.00000 0.49010 ± 0.00980 0.74231 ± 0.01704 0.82072 ± 0.11285 0.49096 0.74799 0.81183
1.00000 4.00000 0.50000 0.47480 ± 0.00951 0.72723 ± 0.01729 0.79627 ± 0.02697 0.47796 0.74048 0.80613

Table 6.5: First-passage probability to price level 2 obtained from simulation results (95% confidence
intervals) and the proposed estimation method.

µ α δ
Simulation Estimated

n = 10 n = 50 n = 100 n = 10 n = 50 n = 100
1.00000 0.25000 0.25000 0.23650 ± 0.00557 0.57425 ± 0.01164 0.63955 ± 0.02132 0.23996 0.58660 0.67348
1.00000 0.25000 0.12500 0.19710 ± 0.00495 0.55791 ± 0.01125 0.63344 ± 0.02934 0.21362 0.56503 0.64789
1.00000 0.25000 0.06250 0.13710 ± 0.00399 0.48622 ± 0.00975 0.59842 ± 0.03328 0.17707 0.53180 0.63205
1.00000 0.25000 0.03125 0.06460 ± 0.00263 0.37558 ± 0.00777 0.54021 ± 0.08998 0.13834 0.49073 0.60968
1.00000 0.50000 0.50000 0.23900 ± 0.00560 0.58378 ± 0.01186 0.66789 ± 0.05121 0.24328 0.58921 0.67561
1.00000 0.50000 0.25000 0.18170 ± 0.00471 0.54909 ± 0.01106 0.63991 ± 0.04638 0.20195 0.55489 0.64732
1.00000 0.50000 0.12500 0.10950 ± 0.00351 0.45874 ± 0.00923 0.59870 ± 0.06815 0.14402 0.49724 0.60721
1.00000 0.50000 0.06250 0.03360 ± 0.00186 0.31080 ± 0.00673 0.43767 ± 0.03810 0.08591 0.41849 0.53525
1.00000 1.00000 1.00000 0.24830 ± 0.00575 0.59327 ± 0.01211 0.66384 ± 0.03332 0.24734 0.59235 0.68170
1.00000 1.00000 0.50000 0.18770 ± 0.00481 0.54469 ± 0.01097 0.64398 ± 0.05070 0.19537 0.54898 0.64999
1.00000 1.00000 0.25000 0.09970 ± 0.00333 0.44396 ± 0.00897 0.54066 ± 0.02580 0.12330 0.47249 0.59051
1.00000 1.00000 0.12500 0.03620 ± 0.00194 0.32635 ± 0.00701 0.44165 ± 0.02474 0.05824 0.36519 0.49704
1.00000 2.00000 2.00000 0.24560 ± 0.00571 0.59817 ± 0.01224 0.66533 ± 0.02774 0.25026 0.59460 0.68352
1.00000 2.00000 1.00000 0.19030 ± 0.00485 0.54724 ± 0.01104 0.62841 ± 0.02589 0.19535 0.54897 0.64240
1.00000 2.00000 0.50000 0.11990 ± 0.00369 0.47979 ± 0.00965 0.59260 ± 0.05586 0.12823 0.47864 0.61092
1.00000 2.00000 0.25000 0.07310 ± 0.00281 0.39920 ± 0.00822 0.51328 ± 0.02249 0.08340 0.41426 0.55744
1.00000 4.00000 4.00000 0.25690 ± 0.00588 0.60062 ± 0.01230 0.66683 ± 0.02215 0.25334 0.59695 0.68878
1.00000 4.00000 2.00000 0.19560 ± 0.00493 0.54149 ± 0.01092 0.81902 ± 0.70808 0.19913 0.55238 0.65634
1.00000 4.00000 1.00000 0.14280 ± 0.00408 0.49774 ± 0.01001 0.58946 ± 0.02382 0.14534 0.49873 0.61627
1.00000 4.00000 0.50000 0.12610 ± 0.00380 0.48898 ± 0.00985 0.62814 ± 0.07992 0.13107 0.48212 0.61727

Table 6.6: First-passage probability to price level 4 obtained from simulation results (95% confidence
intervals) and the proposed estimation method.

µ α δ
Simulation Estimated

n = 10 n = 50 n = 100 n = 10 n = 50 n = 100
1.00000 0.25000 0.25000 0.07030 ± 0.00275 0.40721 ± 0.00831 0.49192 ± 0.01595 0.07411 0.41592 0.53337
1.00000 0.25000 0.12500 0.04760 ± 0.00224 0.36920 ± 0.00767 0.46799 ± 0.02052 0.05762 0.38639 0.50229
1.00000 0.25000 0.06250 0.01880 ± 0.00138 0.27359 ± 0.00615 0.39742 ± 0.02909 0.03857 0.34296 0.46781
1.00000 0.25000 0.03125 0.00370 ± 0.00061 0.14511 ± 0.00413 0.22535 ± 0.01039 0.02295 0.29264 0.43568
1.00000 0.50000 0.50000 0.07590 ± 0.00287 0.41711 ± 0.00848 0.56250 ± 0.10918 0.07636 0.41956 0.53181
1.00000 0.50000 0.25000 0.04190 ± 0.00209 0.35377 ± 0.00742 0.44348 ± 0.01474 0.05107 0.37287 0.49008
1.00000 0.50000 0.12500 0.01390 ± 0.00119 0.24233 ± 0.00567 0.33465 ± 0.01231 0.02496 0.30036 0.43296
1.00000 0.50000 0.06250 0.00050 ± 0.00022 0.10276 ± 0.00340 0.20700 ± 0.02476 0.00867 0.21313 0.33981
1.00000 1.00000 1.00000 0.08000 ± 0.00295 0.42021 ± 0.00854 0.54504 ± 0.08220 0.07916 0.42398 0.54042
1.00000 1.00000 0.50000 0.04360 ± 0.00214 0.35511 ± 0.00745 0.50389 ± 0.10681 0.04757 0.36511 0.49301
1.00000 1.00000 0.25000 0.01220 ± 0.00111 0.23988 ± 0.00565 0.44531 ± 0.11454 0.01808 0.27146 0.41014
1.00000 1.00000 0.12500 0.00150 ± 0.00039 0.12168 ± 0.00376 0.33331 ± 0.15514 0.00402 0.16207 0.31885
1.00000 2.00000 2.00000 0.08290 ± 0.00301 0.42652 ± 0.00865 0.53889 ± 0.03480 0.08121 0.42715 0.54318
1.00000 2.00000 1.00000 0.04510 ± 0.00217 0.36330 ± 0.00759 0.46546 ± 0.01887 0.04756 0.36509 0.51568
1.00000 2.00000 0.50000 0.01730 ± 0.00133 0.28013 ± 0.00629 0.38502 ± 0.01779 0.01960 0.27852 0.43650
1.00000 2.00000 0.25000 0.00640 ± 0.00080 0.19897 ± 0.00505 0.32336 ± 0.01953 0.00817 0.20883 0.36622
1.00000 4.00000 4.00000 0.08860 ± 0.00312 0.43544 ± 0.00882 0.54966 ± 0.03066 0.08341 0.43047 0.55061
1.00000 4.00000 2.00000 0.04550 ± 0.00218 0.35538 ± 0.00747 0.49836 ± 0.04489 0.04955 0.36956 0.50178
1.00000 4.00000 1.00000 0.02820 ± 0.00170 0.30209 ± 0.00663 0.58014 ± 0.29036 0.02544 0.30214 0.44955
1.00000 4.00000 0.50000 0.02040 ± 0.00144 0.28476 ± 0.00637 0.59241 ± 0.24391 0.02052 0.28255 0.44491

Table 6.7: First-passage probability to price level 6 obtained from simulation results (95% confidence
intervals) and the proposed estimation method.
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which is assumed to be an independent Poisson process. This establishes the relationship between the

microscopic dynamics of the limit order book and the long-term dynamics of the asset price process.

Unlike traditional methods that model price dynamics using one-dimensional stochastic processes, the

derived model is a two-dimensional stochastic process where the additional dimension represents the

latest price change. The parameters of the proposed model can be estimated directly from the order

arrival and cancellation rate describing the incoming flow of orders. Additionally, the model also allows

us to efficiently compute several quantities of interest of the asset price dynamics (i.e. volatility, return

distribution, and first-passage probability) without resorting to simulation.

The proposed parameter estimation method tends to have increased error when the arrival rate of

limit orders is small when compared to the arrival rate of market orders as well as when the order

cancellation rate is getting smaller. The merit of the proposed framework is the ability to accurately

predict the long-term behaviour of the limit order market when we get the right parameters. Hence

future work will be focused on developing a better method for estimating the distribution of the number

of the orders at the reference price which is the cause of this error. Additionally, we also look forward to

investigating the validity of the proposed model by estimating model parameters from a real data set and

comparing the prediction with the empirical results.



Chapter 7

Order placement strategy

To illustrate a way to utilise the models of execution probability studied in this dissertation

to make order placement decisions, this chapter proposes a new framework for making order

placement decisions based on the trade-off between the profit gained from better execution

prices and the risk of non-execution that uses the developed execution probability model to

balance this trade-off. The result obtained from applying the proposed framework to make

order placement for liquidity traders who need to transact their order before the end of a

deadline in the historical dataset obtained from the Multi Commodity of India and the New

York Stock Exchange indicates that the proposed framework has better performance than

the best static order placement strategy for all instruments in the Multi Commodity of India,

while it beat the best static strategy only in two out of six cases studied in the New York

Stock Exchange. Although the proposed framework cannot beat the best static strategy in

all cases, the improvement gained from the proposed framework when it can beat the best

static strategy is very significant.

7.1 Introduction
To illustrate the application of the execution probability model developed in this study, this chapter

presents and investigates an order placement strategy that uses the developed model to make order place-

ment decisions. This decision is very important especially for traders who trade in limit-order markets,

where traders can freely specify the price at which they want to trade. On one hand, traders would prefer

to place their orders far away from the current best price as this will increase their payoff. On the other

hand, the farther away from the best price, the lower the chance that the order will be executed. Conse-

quently, traders have to find the right tradeoff between these two opposite choices in order to maximise

the profit gained from the trade.

In reality, an order submission strategy that a trader selects normally depends on the trading problem

he is trying to solve. As suggested by Harris [42], three main trading problems frequently faced by traders

are: (i) the liquidity trader problem considers how a liquidity trader who must fill his order before some

deadlines should trade, (ii) the informed trader problem considers how an informed trader who receives

a single signal about asset value should trade before his information becomes obsolete and (iii) the value-
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motivated trader problem considers how a trader who continuously estimates security value should trade.

Specifically, liquidity traders must fill their order before some deadline which may arise when they need

to invest or disinvest their cash flow. The main objective of these traders is to obtain the best price for

their trades by carefully choosing their order submission strategies. On the other hand, informed traders,

who have private information about the underlying value of the asset, want to profitably trade on their

information. Although informed traders do have a trading deadline, which is the time their information

becomes obsolete, they did not have to fill their orders before the deadline like liquidity traders. In fact,

informed traders will trade only when it is profitable to do so. Like informed traders, value-motivated

traders also have private information about the value of assets. However, unlike informed traders, they

do not have a specific deadline and are assumed to trade repeatedly in the market since they receive

continuous information about the values.

This chapter presents a framework to solve these decision problems based on the developed execu-

tion probability model. Section 7.2 starts the chapter by giving a brief review on previously proposed

methods to solve this problem. In Section 7.3, the proposed framework that utilised the developed execu-

tion probability model to make order placement decision is presented. Section 7.3 then gives a detailed

discussion on how to utilise the proposed framework to make order placement decisions for liquidity

traders, as well as analysing the result obtained from applying the proposed framework to make order

placement decisions in a historical dataset. Finally, the conclusion of the results investigated in this

section are summarised in Section 7.5.

7.2 Previous work

Order placement strategies previously proposed in the literature can be classified into two main cate-

gories: (i) static order placement strategies and (ii) dynamic order placement strategies. Static order

submission strategies view this problem as a one-shot game where traders can make their order decision

only once. If they decide to submit a limit order, no additional change can be made to the order and it

will stay in the order book until it is executed or the end of the trading period is reached. Conversely,

dynamic order submission strategies allow traders to cancel or make changes to their orders before the

order expires or is executed [42, 87]. Empirically, traders change their order submission as market con-

ditions change. They continuously monitor the market and make appropriate changes to their orders

whenever necessary. For example, to reduce the execution risk, they may convert their limit orders to

market orders when the demand for immediacy increases. They may also reprice or cancel their limit

orders when the underlying value of the asset changes to manage the adverse selection cost. Hence, it is

more appropriate to model this decision with dynamic strategies than with static strategies.

This section briefly describes related work in order submission strategy. Static order submission

strategies are presented in Section 7.2.1, while dynamic strategies are discussed in Section 7.2.2. The

overview of all models discussed in this section is summarised in Table 7.1.
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Table 7.1: Overview of previous work on order placement strategies. Each model is characterised by
the trading problem it tries to solve, whether it is static or dynamic strategy and the market variables that
it utilises.

Problem Type Strategy
Models

I II III Static Dynamic
Incorporated Variables

Handa and Schwartz [41] x x -
Parlour [76] x x volume in the book
Foucault [32] x x volatility
Hollifield et al. [49] x x volatility, order quantity,

volume at bid/ask, trading volume,
time of day

Foucault et al. [33] x x order arrival rate, spread
Nevmyvaka et al. [73] x x order quantity, time of day,

trading volume
Lillo [56] x x volatility
Cohen et al. [19] x x -
Harris [42] x x x x volatility
Slive [87] x x volatility, spread
Nevmyvaka et al. [72] x x order quantity, spread, order imbalance,

immediate cost, trading volume
Wang and Zhang [92] x x order quantity, order imbalance

7.2.1 Static order submission strategies

As previously discussed, static order submission models consider the decision whether to submit a mar-

ket order or to submit a limit order as a one-shot game where a trader can make their order decision

only once. If the trader decides to submit a limit order, no additional change can be made to his order

and it will stay in the order book until it is executed or the end of the trading period is reached. This

formulation can be utilised to solve the problems of both liquidity traders [41, 73] and informed traders

[19, 76, 32, 49, 33, 56]. The main difference between these two problems is that liquidity traders have

to fill their order before the deadline; thus, if liquidity traders decide to submit a limit order and their

orders are not executed, they have to submit a market order to execute the trade when their deadlines are

approached. On the other hand, informed traders will submit market orders to fill the traders only when

it is still profitable to do so.

Static strategies for liquidity traders

Consider the problem of liquidity traders who want to transact their orders before some specific dead-

lines. Normally, they can choose to submit their order using the following strategies: (i) submitting a

market order at the beginning of the time period, (ii) submitting a market order at the end of the time

period, and (iii) submitting a limit order at the beginning of the time period and a market order for

unexecuted shares at the end of the time period.

Handa and Schwartz [41] analyse the profitability of the third strategy compared to the first one.

The limit order strategy that they study is to submit a limit order placed l percent below the current

price, where l is set to 0.5, 1, 2 and 3. The limit order is followed until it executes or until the last price

in the trading window is reached. If the limit order does not execute during the trading window, the

stock is purchased at the opening price on the day following the trading window. The experimentation

results indicate that returns of limit order conditional on execution are positive, while returns of limit

order conditional on nonexecution are negative. They also find that picking off risk is not a cost to limit
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order traders, but that nonexecution is. Thus, it is more appropriate for liquidity trader to transact by the

market order strategy, while traders who gain relatively little by trading at current prices (and who are

willing to risk not executing) may prefer the limit order strategy.

Another study comparing the profitability of these three choices by Nevmyvaka, Kearns, Papan-

dreou, and Sycara [73] suggests that the limit order strategy performs better than the market order strat-

egy. Although this may seem to contradict [41], they study the limit strategy in finer detail. Specifically,

they present a method to estimate return, risk, and risk-return profiles of each strategy from historical

data, as well as a method to derive optimal pricing frontiers based on the trade-off between risk and

return. Their quantitative method allows traders to optimally price their limit orders to minimise trading

costs and control corresponding risks. The importance of a number of microstructure variables (e.g.

order size, time window and liquidity) is also highlighted.

Static strategies for informed traders

Unlike liquidity traders, informed traders do not have a responsibility to fill the trade when the deadline is

approached. Thus the decision these traders face is simply whether to trade aggressively by submitting

a market order or to trade passively by placing a limit order. This static decision problem is usually

formalised as an optimisation problem that considers the trade-off between the payoff associated with

limit orders and the risk of nonexecution. On one hand, traders would prefer to place their orders very

far from the best bid/ask price because this will increase their payoff. On the other hand, the larger

the distance from the best price the larger the chance that the order will not be executed. Thus, in this

setting, traders have to find the right trade-off between these two opposite choices in order to maximise

the expected profit obtained from the trade. This section briefly reviews static order submission strategies

for informed traders previously proposed in the literature.

Parlour [76] presents a model of the evolution of the limit order book. The optimal choice between

submitting a limit order and a market order is characterised as a single-period optimisation model. The

central intuition of her research is that each trader knows that his order will affect the order submission

strategies of other traders who follow; thus, he take this effect into account, which in equilibrium, gen-

erate systematic patterns in prices and order placement strategies even without asymmetric information.

Her study also suggests that both side of the order book are important in determining an agent’s order

choice.

Foucault [32] describes a game theoretical model of price formation and order submission decisions

in a dynamic limit order market where traders arrive sequentially and choose to submit either a market

order or a limit order with one-period life. His results indicate that (i) the proportion of limit orders in

the order flow is positively related to asset volatility, (ii) the ratio of filled limit orders to total number

of limit orders is negatively related to asset volatility, (iii) the proportion of limit orders is positively

related to the average size of the spread, (iv) the increase in trading cost at the end of the trading day is

negatively related to the level of competition between limit order traders and (v) the size of the sum of

trading costs for buy and sell orders is maximised when the ratio of buy to sell orders, is equal to one.

Hollifield, Miller and Sandas [49] present empirical restrictions of a model of optimal order sub-
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mission in limit order markets. A trader’s optimal order submission depends on the trader’s valuation of

the asset and the trade-offs between order prices, execution probability, and picking off risks. The opti-

mal order submission strategy is a monotonic function of a trader’s valuation, characterised in terms of

threshold valuations. The threshold valuations are functions of the order prices and the trader’s subjective

beliefs about the execution probabilities and picking off risks.

Foucault, Kadan and Kandel [33] propose a dynamic model of a limit order market populated by

strategic liquidity traders of varying impatience who aim to optimise the trade-off between the cost of

delayed execution and the cost of immediacy (the spread). The optimal order submission strategy of

each trader is modelled as a single period optimisation problem. Under several simplifying assumptions,

they derive the equilibrium order placement strategies. They find that the proportion of patient traders

in the population and the order arrival rate are the key determinants of the limit order book dynamics.

Traders submit aggressive limit orders, which improve current best quotes by large amounts, when the

order arrival rate is low or when the proportion of patient traders is large. As a result, markets with a

high proportion of patient traders or a small order arrival rate are more resilient. Also, a reduction in the

tick size reduces market resiliency, and, in some case, increases the average spread. Their analysis also

yields several testable predictions: (i) a positive relationship between inter-trader durations and market

resiliency, (ii) a negative relationship between the order arrival rate and market resiliency, (iii) a joint

decline of limit order aggressiveness and market resiliency at the end of the trading session and (iv) limit

order traders submit more (less) aggressive orders when the spread is large if patient (impatient) traders

dominate the trading population.

Lillo [56] considers the problem of the optimal limit order price for a financial asset in the frame-

work of utility maximisation. The analytical solution of the problem gives insight into the origin of

the recently empirically observed power law distribution of limit order prices. In the framework of the

model, the most likely proximate cause of this power law is power law heterogeneity of traders’ invest-

ment time horizons.

7.2.2 Dynamic order submission strategies

Unlike static order submission strategies, dynamic order submission strategies allow traders to moni-

tor the changing market conditions and make changes to their order any time before the order expires

or is executed. Empirically, traders change their order submission as market conditions change. They

continuously monitor the market and make appropriate changes to their orders whenever necessary. For

example, to reduce the execution risk, they may convert their limit orders to market orders when the

demand for immediacy increases. They may also reprice or cancel their limit orders when the under-

lying value of the asset changes to manage the adverse selection cost. Hence, it is more appropriate to

model this decision with dynamic strategies than with static strategies. This section presents the existing

dynamic strategies previously proposed in the literature.

Cohen, Maier, Schwartz and Whitcomb [19] consider an order submission strategy as a dynamic

optimisation problem. Traders in their model may seek to trade via limit order, trade with certainty

via a market order, or not to trade at all. Their result demonstrates that transaction costs cause bid-ask
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spreads to be an equilibrium property of financial markets since, with transaction costs, the execution

probability of a limit order does go to unity as the order is placed infinitesimally close to the opposite

market quote; thus, with certainty of execution at the opposite market quote, a ”gravitational pull” that

keeps the opposite quotes from being placed infinitesimally close to each other is generated. They also

define an equilibrium market spread and illustrate that it is negatively related to the order arrival rate.

Harris [42] derives optimal dynamic order submission strategies for trading problems faced by

three stylised traders: an uninformed liquidity trader, an informed trader and a value-motivated trader.

Separate solutions are obtained for quote- and order-driven markets. This results suggest that traders

are most aggressive when volatility is high and when their information advantages, if any, are large and

decay quickly. Traders are patient when their deadlines are not pressing and when bid/ask spread are

wide. The numerical results suggest that most traders should place limit orders close to the market when

they trade. Although it may sometimes be optimal for risk neutral traders to place orders far from the

market (when deadlines are distant or when private information will not be revealed soon), the expected

additional benefits from this strategy are very small. If monitoring costs are high or if the trader is risk

averse, distant order placement strategies will not be optimal. The only exception to this rule is for

traders who believe that prices are mean-reverting. They may place limit orders far from the market to

benefit if prices move far from fundamental values.

Nevmyvaka, Feng and Kearns [72] present the first large-scale empirical application of reinforce-

ment learning to the problem of trade execution. In their problem, the goal is to sell (respectively, buy)

V shares of a given stock within a fixed period of time in a manner that maximises the revenue received

(respectively, minimises the capital spent). Their results indicate that introducing market variables into

the model can greatly improve the execution result and reinforcement learning can indeed result in sig-

nificant improvement over simpler forms of a single-period optimisation model.

Wang and Zhang [92] present dynamic focus strategies that incorporate a series of market orders of

different volume into the limit order strategy and dynamically adjust their volume by monitoring state

variables such as inventory and order book imbalance in real-time. The sigmoid function is suggested

as the quantitative model to represent the relationship between the state variables and the volume to be

adjusted. The empirical results indicate that the dynamic focus strategies can outperform the limit order

strategy, which does not adopt dynamic volume adjustment.

Slive [87] derives the optimal dynamic order submission strategies of a trader in a limit order market

who has the ability to actively monitor his order and use cancellations and order changes to mitigate the

adverse selection and execution risks inherent in limit orders. His results suggest that the ability to

implement a dynamic strategy has a large impact on the payoffs to submit limit orders and on limit order

submission strategies. After calibrating the parameters to a stock on the Vancouver Stock Exchange,

profits from limit order submission are 48% higher when implementing a dynamic strategy compared to a

one-shot strategy. Cancellations and order changes are used to avoid adverse selection by moving orders

when the underlying value changes. Order changes are used to mitigate execution risk by converting to

a market order when the probability of execution declines.
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7.3 Framework for an order placement strategy
This section presents a new framework for making order placement decisions which is general enough

to solve all three trading problems mentioned above in a mean-variance optimisation framework by

extending the model presented in [42]. This framework is based on the trade-off between the profit

gained from better execution and the risk of non-execution. As a starting point, we will consider only

a static strategy where traders can make decisions only once before the trade begins. After the order is

submitted, no additional change can be made to the order until the trading period ends. In particular, we

consider an order placement problem of a trader who wants to buy a particular instrument1 within a time

period T in order to maximise his utility function. In this situation, a trader has four possible choices:

1. Do nothing;

2. Execute the order at the beginning of the period at the current market price pM0 ;

3. Execute the order at the end of the period at the closing price pMT ; or

4. Firstly, submit a limit order to execute a trade at a limit price pL. If the order is not executed,

the trader then either executes the order at the closing price or does nothing depending on his

objective.

Although the trader has four choices, these choices can be represented by using only the last strategy.

This is because the first and the third choices can be represented by a very low limit price so that the

chance that the order will be executed is zero. The second choice can be represented by a limit price

higher then the current market price so that the order will be executed immediately. To model these

choices, the trader needs to specify his trading objective by defining two payoff functions: a function

UE(p), that defines the payoff he will get when he executes the trade at a price p, and a function UNE(p),

that defines the cost he needs to pay if his order is not executed when the asset price at the end of the

period is p. Consequently, the payoff the trader will get from submitting a limit buy order at price level

pL is characterised by

U(pL) =

 UE(p
L) ,if the order is executed

UNE(p
M
T ) ,if the order is not executed

(7.1)

This payoff is a random variable since its value depends on whether the submitted order will be executed

or not as well as the price of the asset at the end of the period pMT , whose values are not known before-

hand. Given the probability that the limit order at price pL will be executed before the end of the period

together with the distribution of the asset price at the end of the period, the expected payoff the trader

might get can be computed from

E[U(pL)] = PE(p
L)UE(p

L) + [1− PE(p
L)]

∫ ∞

−∞
UNE(p)fpTM |pL(p)dp, (7.2)

1An order placement problem for a trader who want to sell a particular instrument can be formulated in a similar way
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where PE(pL) is the probability that the limit order at price pL will be executed before the end of the

period, and fpM |pL(.) is the probability density function of the asset price at the end of the period given

that the limit order at price level pL is not executed, i.e., the asset price is never lower than or equal to

pL. Similarly, the variance of this utility function can be computed from

V [U(pL)] = PE(p
L)
(
UE(p

L)− E[U(pL)]
)2

+ [1− PE(p
L)]

∫ ∞

−∞

(
UNE(p)− E[U(pL)]

)2
fpTM |pL(p)dp, (7.3)

Inserting Equation (7.2) into (7.3), Equation (7.3) can be rewritten as

V [U(pL)] =
[
1− PE(p

L)
] [
PE(p

L)

(
UE(p

L)−
∫ ∞

−∞
UNE(p)fpTM |pL(p)dp

)2
]

+
[
1− PE(p

L)
] [∫ ∞

−∞

[
UNE(p)

]2
fpTM |pL(p)dp−

(∫ ∞

−∞
UNE(p)fpTM |pL(p)dp

)2
]

(7.4)

To perform a mean-variance optimisation, a utility function of a trader who executes his trade by using a

limit order at price level pL could be defined as

UO(p
L) = E[U(pL)]− λV [U(pL)], (7.5)

where λ is proportional to the trader’s risk aversion, or inversely proportional to trader’s aggressiveness.

As an example, a value of λ = 0 indicates a trader who is concerned only about the profit gained from

better execution while a value of λ = 1 indicates a trader who equally concerns about the profit gained

from better execution and the risk of non-execution. Consequently, the optimal order placement strategy

that balances the trade-off between the profit gained from limit orders and the risk of non-execution at

the trader’s specified level of risk aversion can be determined by maximising the above utility function

and can be defined as

p̂ = argmax
pL

UO(p
L),

= argmax
pL

E[U(pL)]− λV [U(pL)]. (7.6)

By specifying the form of these two utility functions, this framework can be utilised to solve all

three trading problems mentioned in the beginning of this chapter. In particular, the problem of liquidity

traders who need to transact shares before a deadline can be modelled by setting UNE(p) = UE(p), so

that the cost that a trader needs to pay if his limit order is not executed is equal to the cost of buying at the

price at the end of the period. The utility function of informed traders and value motivated traders can

be modelled by setting UNE(p) = max{UE(p), UNT }, where UNT is a utility gained from not trading,

so that they will trade at the end of the period only when it is profitable to do so. To completely specify

this framework, one also needs to specify a model of the probability that the limit order at price level pL
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will be executed before the end of the period, as well as a probability density function of the price at the

end of the period given that the limit order submitted at price level pL is not executed. In the rest of this

chapter, we will utilise the price fluctuation model developed in Chapter 5 to model the probability of

execution, while utilise the ARMA-GARCH model to model the probability density function of the price

at the end of the period. More detail about this will be discussed in the next section where we derive the

optimal order placement strategy for liquidity traders.

7.4 Order placement strategy for liquidity traders
This section derives an order placement strategy for liquidity traders who need to transact their orders

before some specified deadline from the framework discussed in the previous section. Particularly, we

consider a problem of how a trader who want to buy shares should submit his order to execute the trade

before the deadline T . In this setting, a trader has three possible choices:

1. Execute the order at the beginning of the trading period, at the current market price pM0 ;

2. Execute the order at the end of the trading period, at the future closing price pMT ; or

3. Submit a limit order at price level pL, at the beginning of the trading period. If the order is not

executed, the trader then executes the trade at the future closing price pMT .

In all these cases, the order is guaranteed to have been executed by the end of the period but the

money spent to open this position will be different. The objective of this section is to determine the

best way to execute this order to get the most favourable price at a specified risk aversion parameter.

To achieve this, Section 7.4.1 firstly derives the model for optimising this decision based on the frame-

work discussed in the previous section. We then describe three different approaches for modelling the

execution probability and the probability density of the asset price at the end of the trading period. Par-

ticularly, Section 7.4.2 discusses the unconditional model implied from an arithmetic Brownian model.

The unconditional empirical model obtained from density estimation is described in Section 7.4.3, while

the conditional empirical model using ACD and ARMA-GARCH model is presented in Section 7.4.4.

Finally, the results obtained from applying these model to make trading decision are analysed in Section

7.4.5.

7.4.1 Order placement model for liquidity traders

To utilise the proposed framework to make order placement decisions for liquidity traders, one needs

to specify a utility function UE(p) that defines the payoff the trader will get from executing a trade at

price p, a utility function UNE(p) that defines the cost the trader will pay if his order is not executed

and the price at the end of the period is p, a probability model PE(p) that describes the probability that

the order submitted at price p will be executed before the end of the period, and a probability density

function fpMT |pL,pM0 (pMT ) that describes the probability that the closing price will be pMT , if the limit order

submitted at price pL is not executed. In this setting, we specify the payoff that the trader will get from

executing his order at price pL as the difference between the current best ask price and the execution
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price, or equivalently, we set

UE(p
L) = pM0 − pL, (7.7)

where pM0 is the market price at the beginning of the trading period. Similarly, the payoff that the trader

will get if his order is not executed, when the price at the end of the period is pMT , is defined as

UNE(p
M
T ) = pM0 − pMT , (7.8)

which is basically the profit gained from executing the order at the end of the trading period. Although

the payoff the trader gets from executing his order at limit price pL is always greater than zero, as the

limit price pL must be lower than pM0 , the payoff that the trader will get if his order is not executed

can be both positive and negative. In fact, this payoff will be negative if the asset price increases at the

end of the trading period, while it will be positive if the asset price decreases at the end of the period.

Consequently, when the limit order submitted by the trader is not executed, the trader will still gain price

improvement if the asset price decreases and he will suffer a loss only when the asset price increases.

The probability that the limit order at each price level will be executed and the distribution of the

asset price at the end of the trading period, given that the limit order place at price level pL is not executed,

can be modelled by several approaches. In this section, we will discuss three different approaches for

modelling these two distributions, which are the distribution implied by an arithmetic Brownian motion,

the unconditional model that utilises the empirical distribution, and the conditional model that uses the

ACD model and ARMA-GARCH model.

7.4.2 Unconditional model implied by the arithmetic Brownian motion

The first and only theoretical model considered here is the model implied by an arithmetic Brownian

motion. In this situation, the asset price is assumed to follow the arithmetic Brownian motion and a limit

order is assumed to be executed when the asset price hits or crosses the limit price. Particularly, the asset

price pt is assumed to follow

dpt = σdWt + µdt, (7.9)

where µ is the instantaneous drift, σ is the standard deviation, andWt is a Wiener process. In the context

of a buy problem, pt is best thought of as the best ask price and the limit order submitted at price level pL

will be executed before the end of the trading period T only when pt ≤ pL for some time t, 0 ≤ t ≤ T .

As discussed in Section 5.4.1, the probability that the limit buy order submitted at price level pL < p0

will be executed before the end of the period T can be obtained from

PE(p
L|p0) = Φ

(
pL − p0 − µT

σ
√
T

)
+ exp

(
2µ(pL − p0)

σ2

)
Φ

(
pL − p0 + µT

σ
√
T

)
, (7.10)

where Φ(.) is the cumulative distribution function of a standard Normal distribution. When there are

no constraints, the distribution of the asset price at the end of the trading period is simply a Normal

distribution with mean µT and variance σ2T . However, the condition that the limit order at price level

pL is not executed constrains pt to be higher than pL for all 0 < t < T . This means that the distribution
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of pT is not simply a Normal distribution truncated on the left at pL but is a more complicated expression

given by (see [44] page 165)

fpT |pL,p0(pT ) =
ϕ
(
p0−pT+µT

σ
√
T

)
− exp

(
2µ(pL−p0)

σ2

)
ϕ
(

2pL−p0−pT+µT

σ
√
T

)
σ
√
T
(
1− PE(pL|p0)

) , (7.11)

where ϕ(.) is the probability density function of a standard Normal distribution. To gain more insight

into the property of this distribution, Figure 7.1 plots this distribution in several parameter settings. The

results displayed in the first column indicates that the distribution of asset prices at the end of the trading

period given no execution of limit order at price level pL is generally right-skewed and tends to shift

upward to the right when pL increases. This suggests that this distribution typically has higher mean and

lower variance as pL increases. The results displayed in the second and third columns convey similar

outcomes as this distribution tends to shift downward to the right when the drift parameter and the

volatility parameter increases. This suggests that this distribution generally has higher mean and higher

variance when the drift and volatility parameter of the arithmetic Brownian motion increase.

By inserting Equation (7.10) and (7.11) into Equation (7.2) and (7.4), one can compute the expec-

tation and the variance of the payoff the trader will get from executing his trade using a limit order at

each price level under the arithmetic Brownian motion assumption. Consequently, the optimal order

placement strategy for a specified level of risk aversion parameter can be derived accordingly by finding

the limit order price that maximises the utility function described in Equation (7.5). To gain more insight

into the optimal order placement strategy generated from this model, Figure 7.2 displays the expectation

and the variance of this payoff function at several parameter settings. The result displayed in the first row

of this figure indicates that this expectation is a monotonic decreasing function when the drift parameter

is negative, a straight horizontal line when the drift parameter is zero, and a monotonic increasing func-

tion when the drift parameter is positive. This indicates that the optimal order placement strategy of a

trader whose only concern is the expected profit gained from limit order trading depends heavily on the

drift parameter of the arithmetic Brownian motion in the sense that it is always optimal to execute the

order immediately at the beginning of the trading period when the drift parameter is positive, while it is
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Figure 7.1: The probability density function of the asset price at the end of the trading period T given
no execution of the limit order at price level pL when the asset price is assumed to follow the arithmetic
Brownian motion with the drift parameter equal to µ and the volatility parameter equal to σ at several
parameter settings.
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Figure 7.2: The expectation (top row) and the variance (bottom row) of the profit that liquidity traders
will get from executing their trade using limit order at price level pL when the asset price is assumed to
follow the arithmetic Brownian motion with the drift parameter equal to µ and the volatility parameter
equal to σ at several parameter settings.

always optimal to execute the order at the end of the period when the drift is negative. When the drift

parameter is zero, all trading strategies are optimal since the expectation of this payoff is the same for

all price levels. Additionally, the variance of this payoff function, displayed in the second row of Figure

7.2 indicates that the variance of this payoff is always a monotonic decreasing function with a minimum

at zero. This suggests that it is always optimal to execute the trade immediately at the beginning of the

trading period if the trader’s objective is to minimise the risk of non-execution.

To analyse the optimal strategy of a trader who is concerned about the trade-off between the profit

gained from limit order trading and the risk of non-execution, we plot the combined utility function

at three different risk aversion levels when the drift parameter is negative in Figure 7.32. The result

indicates that the combined utility function can be monotonic increasing, monotonic decreasing as well

as unimodal depending on the parameters of the model. Unlike the optimal strategy of the trader whose

only concern is the expected payoff or the risk of non-execution, the optimal strategy in this case also

involves the use of limit orders especially when the combined utility function is unimodal. This also

illustrates that the optimal strategy depends heavily on the parameters of the model, as the optimal limit

price tends to move towards zero, which results in immediate execution, when trader’s risk aversion level

or the volatility parameter of the arithmetic Brownian motion increases.

2We only analyse the case when the drift parameter is negative since it is always optimal to execute the trade immediately at
the beginning of the trading period when the drift parameter is positive.
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Figure 7.3: The utility function that liquidity traders will get from executing their trade using limit order
at price level pL at three different risk aversion levels, λ = 0.1, 0.5, 1.0, when the asset price is assumed
to follow the arithmetic Brownian motion with drift parameter equal to µ and the volatility parameter
equal to σ at several parameter settings.

7.4.3 Empirical unconditional model using density estimation

Since the results analysed in Section 5.4.1 indicates that the probability execution model implied by

the arithmetic Brownian motion does not fit very well with the empirical distribution, it might be more

appropriate to make order placement decision from the empirical distributions. To achieve this, this

section presents a method for estimating the unconditional distribution of the execution probability and

the asset price at the end of the trading period given no execution from the history of asset price. In

particular, we estimated the probability that the limit order submitted at each price level will be executed

before the end of the trading period is estimated from the empirical distribution of price fluctuations as

discussed in Section 5.2, while the probability density function of future closing price given no execution

will be estimated from the empirical distribution of asset returns at the end of the trading period.

Before discussing a method for modelling these two distributions from asset price history, we will

firstly review the relationship between price fluctuations and the probability of execution as discussed in

Section 5.2. Define a buy price fluctuation during time T , denoted by MB
T , as the difference between the

initial price level and the lowest price level reached during the trading period T , or equivalently

MB
T = sup{p0 − pt; 0 ≤ t ≤ T}. (7.12)

Accordingly, the probability that a limit buy order submitted at price level pL < p0 will be executed

before the end of the period T can be estimated from

PE(p
L|p0) = Pr

{
sup {p0 − pt; 0 ≤ t ≤ T} ≥ p0 − pL

}
,

= Pr
{
MB
T ≥ p0 − pL

}
,

= 1− FMB
T
(p0 − pL), (7.13)

where FMB
T
(.) is a cumulative distribution function of the buy price fluctuations during time period

T . Given a history of buy price fluctuations (∆1, . . . ,∆2), this unconditional cumulative distribution
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function can be estimated from

FMB
T
(∆) =

1

N

N∑
i=1

I{∆i ≤ ∆}, (7.14)

where I{.} is an indicator function which is equal to one when the enclosed expression is true, while it

will be zero when the enclosed expression is false. Inserting Equation (7.14) into (7.13), the probability

that the limit order at price level pL will be executed before the end of the period can be estimated from

PE(p
L|p0) = 1− 1

N

N∑
i=1

I{∆i < p0 − pL}. (7.15)

Let us now consider a method to estimate the probability density function of the asset price at the end of

the trading period given no execution of the limit order at price level pL from the empirical distribution

of asset returns at the end of the period. Given a history of asset price dynamics sampling every T unit

time (p0, . . . , pN ), the unconditional empirical distribution of asset returns at the of the trading period T

can be estimated from

frT (r) =
1

N

N∑
i=1

I{pi − pi−1 = r}. (7.16)

Consequently, under the assumption that the asset price at the end of the period is independent of the

execution of limit order at price level pL, the distribution of asset prices at the end of the period can be

estimated from

fpMT |pM0 (pMT ) = frT (p
M
T − pM0 ) =

1

N

N∑
i=1

I{pi − pi−1 = pMT − pM0 }. (7.17)

However, this assumption is generally violated in most situations since the condition that a limit order at

price level pL is not executed constrains the asset price to be higher than pL for all time. This suggest

that it might not be appropriate to estimate the probability density function of the asset price at the end

of the trading period given no execution of limit order at price level pL using the above equation. To

improve this estimation, we choose to model this distribution using a left-truncated version of the above

distribution which can be computed from

fpMT |pL,pM0 (pMT ) = frT (p
M
T − pM0 |pMT ≥ pL)

= frT (p
M
T − pM0 |pMT − pM0 ≥ pL − pM0 )

=

∑N
i=1 I{pi − pi−1 = pMT − pM0 }∑N
i=1 I{pi − pi−1 ≥ pL − pM0 }

. (7.18)

Since the distribution considered in this section is discrete in nature, the expectation of the payoff func-

tion in Equation (7.2) is changed to

E[U(pL)] = PE(p
L)UE(p

L) + [1− PE(p
L)]

∞∑
i=−∞

UNE
(
pLi + iδ

)
fpMT |pL,pM0

(
pL + iδ

)
, (7.19)
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where δ is the tick size of the instrument considered. Similarly, the variance of this payoff in Equation

(7.4) is changed to

V [U(pL)] =
[
1− PE(p

L)
] PE(pL)(UE(pL)− ∞∑

i=−∞
UNE(p

L + iδ)fpMT |pL,pM0 (pL + iδ)

)2


+
[
1− PE(p

L)
] [ ∞∑

i=−∞
[UNE(p

L + iδ)]2fpMT |pL,pM0 (pL + iδ)

]

−
[
1− PE(p

L)
] [ ∞∑

i=−∞
UNE(p

L + iδ)fpMT |pL,pM0 (pL + iδ)

]2
. (7.20)

Consequently, one can determine the optimal order placement strategy for a liquidity trader with a spec-

ified risk aversion level λ by finding a limit order pL that maximises the combined utility function

p̂L = argmax
pL

(
E[U(pL)]− λV [U(pL)]

)
. (7.21)

7.4.4 Empirical conditional model using ACD and ARMA-GARCH models

Whilst the models considered in the previous two sections are mainly focused on the unconditional dis-

tribution of the probability that the limit order will be executed before the deadline and the unconditional

distribution of the asset price at the of the trading period, it might be more useful to consider conditional

models of these two distribution so that the optimal order placement strategy can adapt according to cur-

rent market situations rather than fixing at a specified price level. To achieve this, this section presents

a method for estimating the conditional distribution of the execution probability using the Autoregres-

sive Condition Duration (ACD) model as described in Section 5.5.3, while modelling the distribution

of asset price at the end of the trading period using the Autoregressive Moving Average - Generalised

Autoregressive Conditional Heteroskedasticity (ARMA-GARCH) model.

Let (∆1, . . . ,∆N ) be a sequence of price fluctuations during the considered time period. The

ACD(p, q) model for price fluctuation, as discussed in Section 5.5.3 and 5.6, can be specified by

∆i = ∆̂is(ti),

∆̂i = ψiϵi,

ψi = Ψ
(
∆̂i−1, . . . , ∆̂i−p, ψi−1, . . . , ψi−q

)
,

where ∆̂i is the seasonally adjusted price fluctuations at the i-th time step, s(ti) is the seasonality compo-

nent at the i-th time step, ψi is the conditional expectation of price fluctuations at the i-th time step, {ϵi}

is an independent and identically distributed white noise with unit mean and finite variance, and Ψ(.)

is the conditional mean function. If {ϵi} has a cumulative distribution function Fϵ(.), the conditional

distribution of price fluctuations at the i-th time step, when the tick size of the considered instrument is

δ, will be given by

fACD(∆i|Fi−1) = Fϵ

(
∆i + δ

ψis(ti)

)
− Fϵ

(
∆i

ψis(ti)

)
, (7.22)
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and the probability that the limit order at price level pLi , submitted at the i-th time step will be executed

before the end of the trading period can be computed from

PE(p
L
i |pi−1) = 1− Pr

{
∆i < pi−1 − pLi

}
,

= 1−
(pi−1−pLi )/δ−1∑

i=−∞
fACD(iδ),

= 1− Fϵ

(
pi−1 − pLi
ψis(ti)

)
. (7.23)

In the rest of this section, we will assume that the conditional mean function has the form of the

ABAMACD model which can be specified by

ψδ1i = ω +

p∑
j=1

αjψ
δ1
i−j (|ϵi−j − b|+ cj(ϵi−j − b))

δ2

+

p∑
j=1

λj (|ϵi−j − b|+ cj(ϵi−j − b))
δ2 +

q∑
j=1

βjψ
δ1
i−j , (7.24)

where θΨ = (δ1, δ2, b, c1, . . . , cp, α1, . . . , αp, λ1, . . . , λp, β1, . . . , βq) are the parameters of the model.

The seasonality component at the i-th time step will be specified by a time-of-day equation

s(ti) = ν1I1(ti) + ν2I2(ti) + . . .+ νsIs(ti), (7.25)

where θs = (ν1, . . . , νs) are the parameters to be estimated and Ik(ti) is an indicator function whose

value can be either one or zero indicating whether the time ti is in a particular time interval of the day or

not. Additionally, the independent and identically distributed white noise {ϵi} will be assumed to follow

the unit generalised gamma distribution whose cumulative density function has the form

FGG(ϵ) =
γ (λ, [ϵΓ(λ+ 1/κ)/Γ(λ)]κ)

Γ(λ)
, (7.26)

where θϵ = (κ, λ) are parameters of the generalised gamma distribution, γ(λ, x) =
∫ x
0
tλ−1e−tdt is

a lower incomplete gamma function, and Γ(λ) =
∫∞
0
tλ−1e−tdt is a gamma function. Consequently,

given a time-series of price fluctuations (∆1, . . . ,∆2) the parameters of this model can be estimated

by maximising the log-likelihood of the probability density function described in Equation (7.22), or,

equivalently, the maximum likelihood estimator θ̂ = (θ̂Ψ, θ̂s, θ̂ϵ) of this model can be obtained from

θ̂ = argmax
θ∈(θΨ,θs,θϵ)

N∑
i=p+1

ln fACD(∆i|Fi−1),

= argmax
θ∈(θΨ,θs,θϵ)

N∑
i=p+1

ln

(
FGG

(
∆i + δ

ψis(ti)

)
− FGG

(
∆i

ψis(ti)

))
, (7.27)

where ψi are computed from Equation (7.24) using the observations ∆1, . . . ,∆N with ψi = ∆̂ for all

i ≤ 0 when ∆̂ is the sample mean of (∆1, . . . ,∆N ).
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To model the probability density function of the asset price at the end of the i-th time step given no

execution of limit order at price level pLi , we will utilise the ARMA-GARCH model to model the return

at the i-th time step, and, then, estimate the density of the asset price at the end of the i-th time step

given no execution of limit order at price level pL from the density of the return at the i-th time step,

as discussed in the previous section. Particularly, let (p0, . . . , pN ) be a series of asset price sampling

every T unit time. We model the return of the i-th time step, ri = pi − pi−1, using the ARMA(p,q)-

GARCH(r,s) model of the form

ri = r̂i + sr(ti),

r̂i = ω +

p∑
j=1

αjri−j +

q∑
j=1

βjzi−j + zi,

σ2
i = γ +

r∑
j=1

θjz
2
i−j +

s∑
j=1

λjσ
2
i−j ,

zi = σiϵi, (7.28)

where θa = (ω, γ, α1, . . . , αp, β1, . . . , βq, θ1, . . . , θr, λ1, . . . , λs) are the parameters of the model, {ϵi}

is an independent and identically distributed white nose with zero mean and unit variance, r̂i is the

seasonality adjusted return at the i-th time step, and sr(ti) is the seasonality component at the i-th time

step which has the form

sr(ti) = ν1I1(ti) + ν2I2(ti) + . . .+ νsIs(ti), (7.29)

where θs = (ν1, . . . , νs) are the parameters to be estimated and Ik(ti) is an indicator function whose

value can be either one or zero indicating whether the time ti is in a particular time interval of the day

or not, similar to the seasonality component of the ACD model. If the white noise {ϵi} has a probability

density function fϵ(.), the conditional distribution of the asset return at the i-th time step can be computed

from

fri(ri|Fi−1) =
1

σi
fϵ

(
zi
σi

)
,

=
1

σi
fϵ

(
ri − (ω +

∑p
j=1 αjri−j +

∑q
j=1 βjzi−j + s(ti))

σi

)
. (7.30)

Consequently, under the assumption that the asset price at the end of the period is independent of the

execution of limit orders at price level pL, the distribution of the asset price at the end of the i-th time

step given no execution of limit order at price level pLi can be estimated from

fpi(pi|Fi−1) = fri (pi − pi−1|Fi−1)

=
1

σi
fϵ

(
pi − pi−1 − (ω +

∑p
j=1 αjri−j +

∑q
j=1 βjzi−j + s(ti))

σi

)
, (7.31)

while the probability density function of the asset price at the end of the i-th time step given no execution
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of limit order at price level pLi , using the left-truncated version of the distribution above can be computed

from

fpi|pL(pi|Fi−1) = fri
(
pi − pi−1|pi ≥ pL,Fi−1

)
,

=
fri (pi − pi−1|Fi−1)

1−
∫ pL
−∞ fri (p− pi−1|Fi−1) dp

,

=
fϵ

((
pi − pi−1 −

[
ω +

∑p
j=1 αjri−j +

∑q
j=1 βjzi−j + s(ti)

])
/σi

)
σi

[
1− Fϵ

((
pi − pi−1 −

[
ω +

∑p
j=1 αjri−j +

∑q
j=1 βjzi−j + s(ti)

])
/σi

)] ,
(7.32)

where Fϵ(.) is the cumulative distribution function of the independent and identically distributed white

noise {ϵi}. In the rest of this section, we will assume that distribution of the white noise {ϵi} follows

a standard Normal distribution whose probability density function and cumulative distribution function

are

fNN (ϵ) =
1√
2π

exp

(
−x

2

2

)
and FNN (ϵ) =

1

2

[
1 + erf

(
x√
2

)]
, (7.33)

where erf(x) = 2√
π

∫ x
0
e−t

2

dt is the Gauss error function. Consequently, given a sequence of asset

prices p0, . . . , pN , the parameter of this ARMA-GARCH model can be estimated by maximising the log-

likelihood implied by the probability density function described in Equation (7.31), or equivalently, the

maximum likelihood estimator θ̂ = (θa, θs) of this ARMA(p, q)-GARCH(r, s) model can be computed

from

θ̂ = argmax
θ∈(θΨ,θs,θϵ)

N∑
i=p+1

[
ln fNN

(
zi
σi

)
− lnσi

]
, (7.34)

where zi are computed from Equation (7.28) using the observation p0, . . . , pN with zi = Ezi = 0 for

i = min(p− q+1, p), . . . , p. Since the distribution considered in this section is discrete, the expectation

of the payoff function for executing the trade using limit orders at price pLi at the i-th time step is

E[U(pLi )] = PE(p
L
i |pi−1)UE(p

L
i )

+ [1− PE(p
L
i |pi−1)]

∞∑
j=−∞

UNE
(
pLi + jδ

)
fpi|pLi

(
pLi + jδ

)
, (7.35)

where δ is the tick size of the instrument considered. Similarly, the variance of this payoff at the i-th
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time step is characterised by

V [U(pLi )] =
[
1− PE(p

L
i |pi−1)

] PE(pLi |pi−1)

UE(pLi )− ∞∑
j=−∞

UNE(p
L + iδ)fpi|pLi

(
pLi + jδ

)2


+
[
1− PE(p

L
i |pi−1)

]  ∞∑
j=−∞

[UNE(p
L
i + jδ)]2fpi|pLi

(
pLi + jδ

)
−
[
1− PE(p

L
i |pi−1)

]  ∞∑
j=−∞

UNE(p
L
i + jδ)fpi|pLi

(
pLi + jδ

)2

. (7.36)

Consequently, one can determine the optimal order placement strategy for a liquidity trader with a spec-

ified risk aversion level λ at the i-th time step by finding a limit order pL that maximises the combined

utility function

p̂Li = argmax
pLi

E[U(pLi )]− λV [U(pLi )]. (7.37)

7.4.5 Experimentation results

This section investigates the performance of applying the proposed model to make order placement

decisions for liquidity traders by utilising the historical data from the Multi Commodity Exchange of

India (MCX) and the New York Stock Exchange (NYSE) as described in Section 5.3.1. In particular,

we focus here on six instruments, which are the gold, silver, and natural gas futures contracts traded at

the MCX and the GE, IBM and Microsoft stock traded at the NYSE. To measure the performance of

the proposed order placement model, the trading period, T , for the instruments in the MCX is set to five

minutes, while the trading period for the instruments in the NYSE is set to ten minutes. To reveal any

bias in our results, we test our model on both a buy and a sell problem. We also vary the risk aversion

parameters at several levels to analyse the effect of this parameter on the trading performance.

Since the order placement strategy obtained from unconditional models is static in the sense that

they will execute the trade at the same limit order price in all situations, we will not analyse their results

directly but will represent them using the static strategy that has the best performance in each dataset.

However, we will replace some components of the conditional model discussed in Section 7.4.4 with the

corresponding component of the unconditional model discussed in Section 7.4.3 with the aim of identi-

fing the improvement gained from the conditional model. In particular, we will perform the experiment

with three order placement models which are: i) the ACD-ARMA model that models the probability of

execution and the density of the asset price at the end of the trading period using the ACD model and

ARMA-GARCH model, respectively, ii) the ACD-DENSITY model that models the probability of exe-

cution using the ACD model, while modeling the density of future closing prices using density estima-

tion, and iii) DENSITY-ARMA that utilises the density estimation to model the probability of execution

but utilises the ARMA-GARCH model to model the density of the future closing prices. Additionally,

since the probability density of the asset price at the end of the trading period given no execution of limit

order can be estimated under both independent and truncated assumptions, for each of the three models,
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we also estimate this distribution under both assumptions. As a result, this section will investigate six

order placement models as summarised in Table 7.2. For each of these models, we firstly estimate its

parameters from the first 75% of the dataset using the method described in Section 7.4.3 and 7.4.4. We

then perform an experiment to find the risk aversion level that produces the best result in the first 75%

of the dataset, and utilise the best risk aversion level to perform trading in the last 25% of the dataset.

Finally, we compare the performance of the best trading strategy obtained from each model in order to

determine the best model for making order placement decisions.

Trading with no market variables

Let us firstly analyse the results obtained from applying the ACD and ARMA-GARCH model without

any market variables. Table 7.3 displays the trading results for the IBM stock in NYSE market using

the above models at several risk aversion levels. The results indicate that the risk aversion level that

provide the best profit is not zero, but generally higher than that. However, the result clearly confirms

the important of the risk aversion parameters in controlling the risk of non-execution as the variance of

the profit gained from using the strategy is generally lower when the risk aversion parameter is higher.

Table 7.4 and Table 7.5 report the performance of the best risk aversion level for each of the six

models together with the performance of the static strategy that always executes the trade immediately

at the beginning of the period, the static strategy that always executes the trade at the end of the trading

period and the static strategy that always executes the trade at the best level. The result indicates that

all of the six models beat the strategy that executes the trade at the beginning and the end of the trading

period in all situations both in the training and testing dataset. Additionally, the best of these six models

can also beat the best static strategy in all instruments in the MCX market, while, in the NYSE market,

it can beat the static strategy only in the IBM stock. Although our proposed model cannot beat the

best static strategy in all cases, the improvement gained from our model when it does beat the best

static strategy is significant and ranges from 0.1% to 6.4% in the training dataset and 0.1% to 14.2%

in the testing dataset. However, no clear winning models can be identified since the best models vary

considerably from case to case. This suggests that it is more appropriate to try all possible models and

select the best performing one to make trading decisions.

To compare the performance of these models, we calculate the profit gained (in number of ticks)

from these strategies over immediately executing the trade at the beginning of the period averaged over

all instruments in the same markets. The result reported in Table 7.6 indicates that the ACD-ARMA

model with independent assumption seems to be the best performing model with 26.25% and 15.72%

Table 7.2: List of models for making order placement decisions.
Short name Model
T-ACD-ARMA The ACD-ARMA model with truncated assumption
I-ACD-ARMA The ACD-ARMA model with independent assumption
T-DEN-ARMA The DENSITY-ARMA model with truncated assumption
I-DEN-ARMA The DENSITY-ARMA model with independent assumption
T-ACD-DEN The ACD-DENSITY model with truncated assumption
I-ACD-DEN The ACD-DENSITY model with independent assumption
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Table 7.3: The performance of the proposed order placement strategies at several risk aversion levels
when used to make order placement decisions for the IBM stock traded in the New York Stock Exchange.
The performance reported includes the probability that the submitted order is executed (PE), the aver-
age profit obtained when the submitted order is executed (E(UE)), the average loss incurred when the
submitted order is not executed (E(UNE)), the average profit obtained (E(U)), and the variance of the
profit (V (U)).

Buy Sell
λ PE E(UE) E(UNE) E(∆) E(U) V (U) PE E(UE) E(UNE) E(∆) E(U) V (U)

Truncated ACD-ARMA Model
0.0 0.49 0.0499 -0.0406 0.37 0.0035 0.0381 0.38 0.1604 -0.0927 0.15 0.0041 0.0401
0.5 0.86 0.0230 -0.1196 0.05 0.0025 0.0118 0.41 0.1485 -0.0963 0.14 0.0047 0.0373
1.0 0.93 0.0135 -0.1635 0.02 0.0019 0.0062 0.44 0.1387 -0.0987 0.13 0.0047 0.0350
1.5 0.96 0.0083 -0.1863 0.01 0.0013 0.0034 0.46 0.1303 -0.1007 0.12 0.0045 0.0334
2.0 0.98 0.0054 -0.1945 0.01 0.0009 0.0022 0.47 0.1223 -0.1022 0.11 0.0042 0.0312
2.5 0.99 0.0035 -0.2069 0.00 0.0005 0.0015 0.49 0.1151 -0.1031 0.11 0.0044 0.0294
3.0 0.99 0.0023 -0.2111 0.00 0.0001 0.0011 0.51 0.1078 -0.1030 0.10 0.0043 0.0273
3.5 0.99 0.0016 -0.2227 0.00 0.0000 0.0008 0.52 0.1011 -0.1026 0.10 0.0043 0.0255
4.0 1.00 0.0011 -0.2507 0.00 -0.0001 0.0007 0.54 0.0948 -0.1023 0.09 0.0039 0.0240

Independent ACD-ARMA Model
0.0 0.42 0.1484 -0.0988 0.15 0.0048 0.0389 0.41 0.1505 -0.0959 0.15 0.0044 0.0393
0.5 0.54 0.1045 -0.1107 0.11 0.0046 0.0288 0.53 0.1051 -0.1081 0.10 0.0043 0.0291
1.0 0.64 0.0748 -0.1188 0.08 0.0052 0.0210 0.63 0.0744 -0.1163 0.08 0.0044 0.0215
1.5 0.72 0.0550 -0.1257 0.06 0.0053 0.0157 0.72 0.0542 -0.1234 0.06 0.0041 0.0158
2.0 0.79 0.0412 -0.1327 0.04 0.0046 0.0121 0.79 0.0402 -0.1277 0.04 0.0046 0.0117
2.5 0.84 0.0312 -0.1391 0.03 0.0045 0.0090 0.84 0.0302 -0.1345 0.03 0.0044 0.0091
3.0 0.88 0.0237 -0.1427 0.03 0.0043 0.0064 0.88 0.0228 -0.1419 0.02 0.0038 0.0071
3.5 0.92 0.0180 -0.1478 0.02 0.0039 0.0048 0.92 0.0172 -0.1455 0.02 0.0034 0.0054
4.0 0.94 0.0136 -0.1499 0.01 0.0032 0.0036 0.94 0.0129 -0.1522 0.01 0.0029 0.0036

Truncated Density-ARMA Model
0.0 0.04 0.1918 -0.0075 0.62 0.0006 0.0508 0.39 0.1450 -0.0860 0.14 0.0036 0.0322
0.5 0.41 0.0132 -0.0081 0.21 0.0006 0.0113 0.42 0.1342 -0.0892 0.13 0.0036 0.0307
1.0 0.67 0.0034 -0.0075 0.09 -0.0002 0.0036 0.44 0.1258 -0.0909 0.12 0.0038 0.0293
1.5 0.88 0.0008 -0.0055 0.03 0.0000 0.0010 0.46 0.1178 -0.0924 0.11 0.0040 0.0277
2.0 0.97 0.0002 -0.0042 0.00 0.0001 0.0002 0.48 0.1104 -0.0923 0.11 0.0042 0.0256
2.5 1.00 0.0000 -0.0315 0.00 -0.0001 0.0001 0.50 0.1021 -0.0922 0.10 0.0043 0.0232
3.0 1.00 0.0000 0.3400 0.00 0.0000 0.0000 0.51 0.0954 -0.0913 0.10 0.0041 0.0215
3.5 1.00 0.0000 0.3400 0.00 0.0000 0.0000 0.52 0.0896 -0.0892 0.09 0.0044 0.0192
4.0 1.00 0.0000 0.3400 0.00 0.0000 0.0000 0.54 0.0833 -0.0883 0.09 0.0045 0.0176

Independent Density-ARMA Model
0.0 0.35 0.1450 -0.0758 0.15 0.0023 0.0291 0.35 0.1460 -0.0743 0.15 0.0031 0.0293
0.5 0.47 0.0883 -0.0732 0.10 0.0027 0.0178 0.46 0.0905 -0.0713 0.11 0.0036 0.0177
1.0 0.56 0.0612 -0.0714 0.08 0.0032 0.0121 0.55 0.0630 -0.0699 0.08 0.0035 0.0126
1.5 0.63 0.0448 -0.0683 0.06 0.0034 0.0087 0.63 0.0460 -0.0678 0.06 0.0039 0.0091
2.0 0.70 0.0333 -0.0644 0.04 0.0035 0.0059 0.70 0.0346 -0.0654 0.05 0.0042 0.0065
2.5 0.75 0.0249 -0.0614 0.03 0.0032 0.0042 0.75 0.0262 -0.0616 0.03 0.0043 0.0046
3.0 0.80 0.0187 -0.0582 0.03 0.0031 0.0031 0.80 0.0199 -0.0565 0.03 0.0043 0.0032
3.5 0.84 0.0137 -0.0537 0.02 0.0029 0.0021 0.83 0.0147 -0.0517 0.02 0.0037 0.0023
4.0 0.88 0.0096 -0.0472 0.01 0.0026 0.0014 0.87 0.0104 -0.0445 0.01 0.0032 0.0016

Truncated ACD-Density Model
0.0 0.71 0.0703 -0.1569 0.10 0.0041 0.0350 0.37 0.1633 -0.0897 0.15 0.0041 0.0392
0.5 0.81 0.0502 -0.2023 0.07 0.0032 0.0280 0.42 0.1446 -0.0954 0.13 0.0045 0.0358
1.0 0.88 0.0361 -0.2489 0.05 0.0021 0.0219 0.45 0.1296 -0.1000 0.12 0.0042 0.0331
1.5 0.92 0.0261 -0.2892 0.03 0.0007 0.0175 0.49 0.1175 -0.1042 0.11 0.0044 0.0308
2.0 0.94 0.0192 -0.3252 0.02 -0.0001 0.0142 0.52 0.1074 -0.1088 0.10 0.0042 0.0293
2.5 0.96 0.0145 -0.3615 0.02 -0.0002 0.0116 0.55 0.0985 -0.1123 0.09 0.0042 0.0278
3.0 0.97 0.0111 -0.3848 0.01 -0.0003 0.0095 0.61 0.0871 -0.1227 0.09 0.0045 0.0262
3.5 0.98 0.0086 -0.4198 0.01 -0.0002 0.0078 0.66 0.0766 -0.1360 0.08 0.0049 0.0249
4.0 0.98 0.0068 -0.4614 0.01 -0.0006 0.0068 0.71 0.0670 -0.1489 0.07 0.0047 0.0234

Independent ACD-Density Model
0.0 0.43 0.1457 -0.1007 0.14 0.0048 0.0387 0.42 0.1473 -0.0974 0.14 0.0046 0.0391
0.5 0.61 0.0967 -0.1348 0.10 0.0068 0.0322 0.60 0.0972 -0.1314 0.10 0.0052 0.0328
1.0 0.75 0.0671 -0.1711 0.07 0.0064 0.0262 0.74 0.0666 -0.1668 0.07 0.0050 0.0268
1.5 0.84 0.0473 -0.2102 0.05 0.0050 0.0212 0.83 0.0463 -0.2045 0.05 0.0039 0.0217
2.0 0.89 0.0340 -0.2443 0.04 0.0026 0.0178 0.89 0.0328 -0.2435 0.04 0.0021 0.0181
2.5 0.92 0.0249 -0.2749 0.03 0.0015 0.0146 0.93 0.0237 -0.2787 0.03 0.0010 0.0150
3.0 0.94 0.0186 -0.3037 0.02 0.0004 0.0122 0.95 0.0176 -0.3158 0.02 0.0005 0.0123
3.5 0.96 0.0141 -0.3289 0.02 -0.0004 0.0103 0.96 0.0133 -0.3484 0.02 -0.0004 0.0106
4.0 0.97 0.0109 -0.3582 0.01 -0.0006 0.0087 0.97 0.0103 -0.3749 0.01 -0.0004 0.0088
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Table 7.4: The performance of the proposed order placement strategies and the best static strategy
when used to make order placement decisions for the instruments in the Multi Commodity Exchange of
India. The performance reported includes the probability that the submitted order is executed (PE), the
average profit obtained when the submitted order is executed (E(UE)), the average loss incurred when
the submitted order is not executed (E(UNE)), the average profit obtained (E(U)), and the gain/loss in
percentage when compared to the best static strategy.

Training dataset Testing dataset
Strategy ∆/λ PE E(UE) E(UNE) E(U) % PE E(UE) E(UNE) E(U) %

Liquidity buy problem for Gold future, MCX
MARKET - 1.00 -2.6356 - -2.6356 - 1.00 -3.3537 - -3.3537 -

LMARKET - 0.00 - -2.7558 -2.7558 - 0.00 - -3.593 -3.593 -
BEST LIMIT 7 0.55 4.0956 -9.9886 -2.263 - 0.60 3.2913 -12.5233 -2.9682 -

T-ACD-ARMA 0.002 0.58 0.6447 -6.0006 -2.1432 5.30% 0.56 1.2604 -8.286 -2.8942 2.50%
I-ACD-ARMA 0.038 0.73 1.5695 -12.8164 -2.2903 -1.20% 0.73 1.3562 -14.8049 -2.928 1.40%
T-DEN-ARMA 0.007 0.48 -0.8093 -3.5061 -2.2011 2.70% 0.54 -1.5367 -4.9033 -3.0948 -4.30%
I-DEN-ARMA 0.035 0.67 1.2568 -9.5154 -2.2726 -0.40% 0.7 0.3866 -11.5807 -3.1913 -7.50%

T-ACD-DEN 0.000 0.62 3.1335 -11.2481 -2.3453 -3.60% 0.59 4.4427 -13.6369 -2.8997 2.30%
I-ACD-DEN 0.009 0.58 4.3987 -11.5322 -2.2203 1.90% 0.6 4.6666 -14.122 -2.9291 1.30%

Liquidity sell problem for Gold future, MCX
MARKET - 1.00 -2.6356 - -2.6356 - 1.00 -3.3537 - -3.3537 -

LMARKET - 0.00 - -2.5233 -2.5233 - 0.00 - -3.0558 -3.0558 -
BEST LIMIT 5 0.68 2.1814 -10.937 -2.0635 - 0.72 1.3887 -13.0614 -2.5963 -

T-ACD-ARMA 0.049 0.55 4.9488 -10.5892 -2.0948 -1.50% 0.59 4.577 -12.5053 -2.505 3.50%
I-ACD-ARMA 0.026 0.61 3.6299 -11.1175 -2.1133 -2.40% 0.62 3.4711 -13.2599 -2.917 -12.40%
T-DEN-ARMA 0.058 0.57 3.9071 -10.0436 -2.0708 -0.40% 0.64 3.0458 -12.1469 -2.4361 6.20%
I-DEN-ARMA 0.014 0.45 5.535 -8.3021 -2.055 0.40% 0.51 4.6932 -10.2455 -2.6442 -1.80%

T-ACD-DEN 0.057 0.63 3.6295 -11.6495 -2.071 -0.40% 0.65 3.369 -13.8379 -2.5926 0.10%
I-ACD-DEN 0.006 0.51 5.9787 -10.5162 -2.0823 -0.90% 0.52 6.4013 -12.6331 -2.6534 -2.20%

Liquidity buy problem for Silver future, MCX
MARKET - 1.00 -13.9272 - -13.9272 - 1.00 -8.5941 - -8.5941 -

LMARKET - 0.00 - -14.2661 -14.2661 - 0.00 - -8.7152 -8.7152 -
BEST LIMIT 20 0.4 2.7885 -22.6995 -12.4615 - 0.48 10.3945 -23.2267 -6.9312 -

T-ACD-ARMA 0.000 0.43 -4.3234 -17.9896 -12.1312 2.70% 0.39 3.5043 -14.3259 -7.3623 -6.20%
I-ACD-ARMA 0.018 0.48 2.8293 -25.2498 -11.8178 5.20% 0.64 3.2918 -24.9985 -6.8902 0.60%
T-DEN-ARMA 0.001 0.23 -1.6784 -15.6905 -12.4859 -0.20% 0.28 3.4333 -11.7572 -7.4675 -7.70%
I-DEN-ARMA 0.014 0.4 4.2479 -22.8506 -12.0092 3.60% 0.59 3.8189 -22.7046 -7.1371 -3.00%

T-ACD-DEN 0.002 0.62 -3.1283 -28.0195 -12.6417 -1.40% 0.55 6.8026 -24.8378 -7.5635 -9.10%
I-ACD-DEN 0.000 0.37 6.7799 -23.5323 -12.3283 1.10% 0.40 16.3573 -22.8207 -7.1582 -3.30%

Liquidity sell problem for Silver future, MCX
MARKET - 1.00 -13.9272 - -13.9272 - 1.00 -8.5941 - -8.5941 -

LMARKET - 0.00 - -13.6492 -13.6492 - 0.00 - -8.2202 -8.2202 -
BEST LIMIT 27 0.31 8.9971 -20.8138 -11.4747 - 0.37 16.9567 -21.2201 -7.2121 -

T-ACD-ARMA 0.000 0.41 6.8507 -23.8936 -11.3018 1.50% 0.43 14.6263 -23.783 -7.1659 0.60%
I-ACD-ARMA 0.014 0.43 6.6679 -24.0288 -10.8055 5.80% 0.59 5.452 -23.8278 -6.5993 8.50%
T-DEN-ARMA 0.000 0.41 4.4635 -22.6947 -11.5549 -0.70% 0.46 12.3014 -23.0055 -6.7662 6.20%
I-DEN-ARMA 0.012 0.38 6.1091 -21.9234 -11.1369 2.90% 0.57 4.8188 -21.1451 -6.4428 10.70%

T-ACD-DEN 0.000 0.38 7.8089 -23.1627 -11.3751 0.90% 0.43 15.01 -23.4589 -7.0858 1.80%
I-ACD-DEN 0.000 0.37 8.873 -22.9993 -11.3011 1.50% 0.4 16.2643 -22.7785 -7.1268 1.20%

Liquidity buy problem for Natural Gas future, MCX
MARKET - 1.00 -0.9031 - -0.9031 - 1.00 -0.3633 - -0.3633 -

LMARKET - 0.00 - -0.8942 -0.8942 - 0.00 - -0.3607 -0.3607 -
BEST LIMIT 0.9 0.23 -0.3671 -1.0106 -0.8611 - 0.12 0.2589 -0.43 -0.349 -

T-ACD-ARMA 0.033 0.43 -0.7164 -0.8718 -0.8058 6.40% 0.40 -0.2267 -0.3785 -0.3176 9.00%
I-ACD-ARMA 0.085 0.12 0.5026 -1.0248 -0.8415 2.30% 0.13 0.3754 -0.4558 -0.3468 0.60%
T-DEN-ARMA 0.089 0.14 -0.5275 -0.8815 -0.8335 3.20% 0.07 0.0857 -0.3715 -0.3374 3.30%
I-DEN-ARMA 0.084 0.11 0.5007 -1.0135 -0.845 1.90% 0.09 0.4614 -0.4348 -0.3539 -1.40%

T-ACD-DEN 0.037 0.56 -0.555 -1.2675 -0.8677 -0.80% 0.69 -0.2281 -0.6399 -0.3541 -1.40%
I-ACD-DEN 0.000 0.32 -0.3219 -1.1052 -0.8573 0.40% 0.27 0.0627 -0.4867 -0.3366 3.60%

Liquidity sell problem for Natural Gas future, MCX
MARKET - 1.00 -0.9031 - -0.9031 - 1.00 -0.3633 - -0.3633 -

LMARKET - 0.00 - -0.9105 -0.9105 - 0.00 - -0.3681 -0.3681 -
BEST LIMIT 1.000 0.23 -0.2868 -0.989 -0.8261 - 0.81 -0.2775 -0.6328 -0.3454 -

T-ACD-ARMA 0.017 0.43 -0.3247 -1.1818 -0.8091 2.10% 0.44 0.027 -0.5473 -0.2965 14.20%
I-ACD-ARMA 0.085 0.14 0.576 -1.0346 -0.8105 1.90% 0.17 0.4076 -0.458 -0.3141 9.10%
T-DEN-ARMA 0.000 0.49 -0.5099 -1.1232 -0.8252 0.10% 0.36 -0.0069 -0.4731 -0.3044 11.90%
I-DEN-ARMA 0.085 0.13 0.5403 -1.0176 -0.8174 1.10% 0.09 0.5206 -0.4232 -0.3383 2.10%

T-ACD-DEN 0.010 0.37 -0.2891 -1.1268 -0.8138 1.50% 0.32 0.0991 -0.4959 -0.3074 11.00%
I-ACD-DEN 0.000 0.37 -0.2485 -1.1365 -0.8109 1.80% 0.35 0.077 -0.5132 -0.3048 11.80%
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Table 7.5: The performance of the proposed order placement strategies and the best static strategy
when apply to make order placement decision for the instruments in the New York Stock Exchange. The
performance reported include the probability that the submitted order is executed (PE), the average profit
obtained when the submitted order is executed (E(UE)), the average loss incurred when the submitted
order is not executed (E(UNE)), the average profit obtained (E(U)), and the gain/loss in percentage
when comparing to the best static strategy.

Training dataset Testing dataset
Strategy ∆/λ PE E(UE) E(UNE) E(U) % PE E(UE) E(UNE) E(U) %

Liquidity buy problem for GE stock, NYSE
MARKET - 1.00 0.0000 - 0.0000 - 1.00 0.0000 - 0.0000 -

LMARKET - 0.00 - 0.0002 0.0002 - 0.00 - 0.0005 0.0005 -
BEST LIMIT 0.02 0.80 0.0200 -0.0354 0.0092 - 0.87 0.0200 -0.0683 0.0085 -

T-ACD-ARMA 0.20 0.78 0.0186 -0.0290 0.0081 -11.89% 0.73 0.0329 -0.0620 0.0068 -19.63%
I-ACD-ARMA 5.20 0.80 0.0211 -0.0409 0.0090 -1.66% 0.81 0.0276 -0.0781 0.0073 -14.73%
T-DEN-ARMA 3.00 0.91 0.0057 -0.0088 0.0043 -52.56% 0.96 0.0018 -0.0124 0.0013 -84.77%
I-DEN-ARMA 5.00 0.81 0.0172 -0.0294 0.0082 -10.16% 0.91 0.0110 -0.0449 0.0057 -32.88%

T-ACD-DEN 0.00 0.70 0.0263 -0.0334 0.0084 -8.55% 0.60 0.0538 -0.0646 0.0063 -25.70%
I-ACD-DEN 2.40 0.75 0.0259 -0.0407 0.0091 -0.77% 0.70 0.0436 -0.0762 0.0071 -16.38%

Liquidity sell problem for GE stock, NYSE
MARKET - 1.00 0.0000 - 0.0000 - 1.00 0.0000 - 0.0000 -

LMARKET - 0.00 - -0.0002 -0.0002 - 0.00 - -0.0005 -0.0005 -
BEST LIMIT 0.02 0.80 0.0200 -0.0365 0.0090 - 0.86 0.0200 -0.0773 0.0067 -

T-ACD-ARMA 11.00 0.59 0.0346 -0.0321 0.0073 -18.50% 0.65 0.0435 -0.0638 0.0063 -5.30%
I-ACD-ARMA 4.40 0.79 0.0224 -0.0416 0.0087 -2.76% 0.78 0.0299 -0.0765 0.0063 -5.93%
T-DEN-ARMA 8.60 0.61 0.0322 -0.0308 0.0075 -16.23% 0.71 0.0339 -0.0642 0.0057 -14.29%
I-DEN-ARMA 4.80 0.82 0.0168 -0.0305 0.0084 -6.00% 0.91 0.0107 -0.0461 0.0057 -15.19%

T-ACD-DEN 11.00 0.74 0.0258 -0.0399 0.0085 -4.74% 0.72 0.0380 -0.0768 0.0062 -6.82%
I-ACD-DEN 2.60 0.77 0.0240 -0.0431 0.0085 -5.20% 0.70 0.0419 -0.0784 0.0060 -9.68%

Liquidity buy problem for IBM stock, NYSE
MARKET - 1.00 0.0000 - 0.0000 - 1.00 0.0000 - 0.0000 -

LMARKET - 0.00 - -0.0004 -0.0004 - 0.00 - -0.0029 -0.0029 -
BEST LIMIT 0.08 0.57 0.0800 -0.0975 0.0041 - 0.60 0.0800 -0.1159 0.0019 -

T-ACD-ARMA 0.00 0.49 0.0499 -0.0406 0.0035 -16.58% 0.49 0.0422 -0.0374 0.0015 -18.71%
I-ACD-ARMA 1.50 0.72 0.0550 -0.1257 0.0053 27.62% 0.72 0.0566 -0.1377 0.0020 6.98%
T-DEN-ARMA 0.20 0.20 0.0365 -0.0074 0.0014 -67.44% 0.16 0.0435 -0.0103 -0.0014 -175.92%
I-DEN-ARMA 1.20 0.59 0.0538 -0.0696 0.0037 -9.63% 0.63 0.0599 -0.1008 0.0011 -41.32%

T-ACD-DEN 0.00 0.71 0.0703 -0.1569 0.0041 -0.68% 0.67 0.0664 -0.1303 0.0015 -19.47%
I-ACD-DEN 0.60 0.64 0.0899 -0.1414 0.0068 63.15% 0.62 0.0860 -0.1337 0.0034 76.13%

Liquidity sell problem for IBM stock, NYSE
MARKET - 1.00 0.0000 - 0.0000 - 1.00 0.0000 - 0.0000 -

LMARKET - 0.00 - 0.0004 0.0004 - 0.00 - 0.0029 0.0029 -
BEST LIMIT 0.07 0.62 0.0700 -0.1015 0.0043 - 0.66 0.0700 -0.1189 0.0049 -

T-ACD-ARMA 0.80 0.43 0.1426 -0.0978 0.0049 11.67% 0.45 0.1314 -0.0964 0.0062 25.98%
I-ACD-ARMA 0.20 0.46 0.1309 -0.1013 0.0048 10.36% 0.47 0.1234 -0.0989 0.0059 20.35%
T-DEN-ARMA 5.20 0.58 0.0708 -0.0850 0.0048 9.77% 0.61 0.0787 -0.1070 0.0057 17.38%
I-DEN-ARMA 2.80 0.78 0.0222 -0.0585 0.0044 2.13% 0.84 0.0207 -0.0879 0.0036 -27.36%

T-ACD-DEN 3.50 0.66 0.0766 -0.1360 0.0049 12.26% 0.67 0.0760 -0.1345 0.0057 17.35%
I-ACD-DEN 0.40 0.56 0.1052 -0.1238 0.0053 21.91% 0.56 0.1008 -0.1172 0.0058 17.88%

Liquidity buy problem for Microsoft stock, NYSE
MARKET - 1.00 0.0000 - 0.0000 - 1.00 0.0000 - 0.0000 -

LMARKET - 0.00 - 0.0007 0.0007 - 0.00 - -0.0005 -0.0005 -
BEST LIMIT 0.02 0.82 0.0200 -0.0415 0.0092 - 0.83 0.0200 -0.0427 0.0091 -

T-ACD-ARMA 0.00 0.77 0.0225 -0.0401 0.0081 -12.30% 0.79 0.0201 -0.0371 0.0083 -9.07%
I-ACD-ARMA 6.20 0.81 0.0218 -0.0470 0.0089 -3.29% 0.82 0.0207 -0.0444 0.0088 -2.98%
T-DEN-ARMA 2.60 0.94 0.0063 -0.0188 0.0047 -48.88% 0.94 0.0065 -0.0221 0.0048 -47.46%
I-DEN-ARMA 5.00 0.84 0.0159 -0.0316 0.0081 -12.23% 0.84 0.0167 -0.0355 0.0082 -9.80%

T-ACD-DEN 0.80 0.75 0.0268 -0.0496 0.0079 -13.89% 0.77 0.0242 -0.0455 0.0079 -12.61%
I-ACD-DEN 3.00 0.74 0.0286 -0.0475 0.0087 -5.90% 0.74 0.0264 -0.0442 0.0083 -8.46%

Liquidity sell problem for Microsoft stock, NYSE
MARKET - 1.00 0.0000 - 0.0000 - 1.00 0.0000 - 0.0000 -

LMARKET - 0.00 - -0.0007 -0.0007 - 0.00 - 0.0005 0.0005 -
BEST LIMIT 0.02 0.83 0.0200 -0.0444 0.0088 - 0.84 0.0200 -0.0429 0.0098 -

T-ACD-ARMA 11.00 0.67 0.0235 -0.0314 0.0055 -37.31% 0.68 0.0232 -0.0299 0.0061 -37.13%
I-ACD-ARMA 1.80 0.75 0.0184 -0.0331 0.0057 -36.03% 0.75 0.0177 -0.0259 0.0069 -29.02%
T-DEN-ARMA 10.20 0.56 0.0294 -0.0255 0.0053 -40.35% 0.56 0.0313 -0.0261 0.0063 -35.74%
I-DEN-ARMA 1.00 0.68 0.0153 -0.0205 0.0037 -58.08% 0.68 0.0150 -0.0162 0.0049 -49.97%

T-ACD-DEN 14.80 0.78 0.0249 -0.0515 0.0084 -4.73% 0.79 0.0239 -0.0458 0.0094 -3.31%
I-ACD-DEN 3.40 0.75 0.0273 -0.0500 0.0081 -8.30% 0.77 0.0257 -0.0447 0.0092 -5.84%
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Table 7.6: The profit gained from using the proposed strategy over immediately executing the trade at
the beginning of the trading period in number of ticks averaged over all instruments in the same markets
together with the improvement over the best static strategy in percentage terms and its ranking.

MCX Training MCX Testing NYSE Training NYSE Testing
Model E(U) % # E(U) % # E(U) % # E(U) % #

BEST LIMIT 1.0088 0.00% 6 0.7516 0.00% 6 0.7445 0.00% 2 0.6811 0.00% 1
T-ACD-ARMA 1.2281 21.74% 2 0.8491 12.96% 2 0.6218 -16.47% 5 0.5884 -13.61% 5
I-ACD-ARMA 1.2735 26.25% 1 0.8698 15.72% 1 0.7063 -5.13% 3 0.6207 -8.88% 3
T-DEN-ARMA 1.0481 3.90% 5 0.8301 10.43% 3 0.4660 -37.41% 7 0.3732 -45.22% 7
I-DEN-ARMA 1.1818 17.15% 3 0.8042 6.99% 5 0.6106 -17.99% 6 0.4859 -28.67% 6

T-ACD-DEN 0.9899 -1.86% 7 0.7343 -2.31% 7 0.7044 -5.38% 4 0.6205 -8.90% 4
I-ACD-DEN 1.0956 8.61% 4 0.8135 8.23% 4 0.7738 3.93% 1 0.6635 -2.59% 2

improvement over the best static strategy in training and testing dataset, respectively. For the NYSE

market, the ACD-DENSITY model with the independent assumption is the best performing model with

3.93% improvement in the training dataset. The result also indicates that the model with independent

assumption generally performed better than the model with the truncated assumption (except in the case

of the DENSITY-ARMA model in the MCX testing dataset).

Introducing market variables

We now add market variables into our model to investigate whether adding market variables can improve

the order placement decision or not. To achieve this, we modify the ACD and the ARMA-GARCH model

in Equation (7.24) and (7.28) to include the effect from market variables by adding the market variables

into the conditional mean equations resulting in

ψδ1i = ω +

p∑
j=1

αjψ
δ1
i−j (|ϵi−j − b|+ cj(ϵi−j − b))

δ2

+

p∑
j=1

λj (|ϵi−j − b|+ cj(ϵi−j − b))
δ2 +

q∑
j=1

βjψ
δ1
i−j +

s∑
j=1

γjxij , (7.38)

for the conditional mean function of the ACD model, and

r̂i = ω +

p∑
j=1

αjri−j +

q∑
j=1

βjzi−j + zi +
s∑
j=1

γjxij , (7.39)

for the conditional mean function of the ARMA-GARCH model when xi = (xi1, . . . , xis) is the market

variables at the i-th time step.

Since we only have market variables for the MCX dataset, this section will perform the analysis

on only the MCX dataset. The market variables considered here consist of the bid-ask spread, order

imbalance (the difference between the number of orders at the best bid and the best ask), and trading

volume in the previous trading period, which is reported to improve trading performance in Nevmyvaka

et al. [72]. Table 7.7 displays the performance of the best risk aversion level for each of the six models

together with the three static strategies mentioned above. Similar to the case of no market variables, the

result indicates that all models beat the static strategies that always execute the trade at the beginning

and at the end of the trading period in all situations. Additionally, the best of these six models also beat
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Table 7.7: The performance of the proposed order placement strategies with market variables and the
best static strategy when used to make order placement decision for the instruments in the Multi Com-
modity Exchange of India. The performance reported includes the probability that the submitted order is
executed (PE), the average profit obtained when the submitted order is executed (E(UE)), the average
loss incurred when the submitted order is not executed (E(UNE)), the average profit obtained (E(U)),
and the gain/loss in percentage when compared to the best static strategy.

Training dataset Testing dataset
Strategy ∆/λ PE E(UE) E(UNE) E(U) % PE E(UE) E(UNE) E(U) %

Liquidity buy problem for Gold future, MCX
MARKET - 1.00 -2.6356 - -2.6356 - 1.00 -3.3537 - -3.3537 -

LMARKET - 0.00 - -2.7558 -2.7558 - 0.00 - -3.5930 -3.5930 -
BEST LIMIT 7 0.55 4.0956 -9.9886 -2.2630 - 0.60 3.2913 -12.5233 -2.9682 -

T-ACD-ARMA 0.008 0.73 0.1681 -8.7285 -2.2025 2.68% 0.70 0.3004 -10.7919 -3.0363 -2.30%
I-ACD-ARMA 0.031 0.67 2.5107 -11.9494 -2.2839 -0.92% 0.69 1.9915 -14.3339 -3.0576 -3.01%
T-DEN-ARMA 0.015 0.76 -1.2868 -4.8906 -2.1687 4.17% 0.75 -1.9302 -6.2305 -2.9847 -0.56%
I-DEN-ARMA 0.028 0.61 1.9138 -9.0821 -2.3455 -3.64% 0.67 0.7044 -11.0116 -3.2038 -7.94%

T-ACD-DEN 0.016 0.83 0.4393 -15.7548 -2.3717 -4.80% 0.81 0.6914 -18.8440 -3.1136 -4.90%
I-ACD-DEN 0.03 0.84 0.5771 -16.5422 -2.2369 1.16% 0.50 6.8490 -12.8132 -2.9387 0.99%

Liquidity sell problem for Gold future, MCX
MARKET - 1.00 -2.6356 - -2.6356 - 1.00 -3.3537 - -3.3537 -

LMARKET - 0.00 - -2.5233 -2.5233 - 0.00 - -3.0558 -3.0558 -
BEST LIMIT 5 0.68 2.1814 -10.9370 -2.0635 - 0.72 1.3887 -13.0614 -2.5963 -

T-ACD-ARMA 0.064 0.58 4.4270 -10.9370 -2.0640 -0.02% 0.62 4.0155 -13.0351 -2.5072 3.43%
I-ACD-ARMA 0.021 0.57 4.4582 -10.5350 -2.0437 0.96% 0.57 4.5130 -12.5243 -2.8389 -9.35%
T-DEN-ARMA 0.052 0.55 4.1547 -9.7784 -2.0518 0.57% 0.62 3.3729 -12.1278 -2.4542 5.47%
I-DEN-ARMA 0.016 0.49 4.4640 -8.3040 -2.0455 0.88% 0.54 3.6905 -10.2512 -2.6644 -2.62%

T-ACD-DEN 0.068 0.66 3.2422 -12.2083 -2.0573 0.30% 0.69 2.9486 -14.5518 -2.5219 2.86%
I-ACD-DEN 0.009 0.57 5.1129 -11.3937 -2.0596 0.19% 0.58 5.4707 -13.6478 -2.6033 -0.27%

Liquidity buy problem for Silver future, MCX
MARKET - 1.00 -13.9272 - -13.9272 - 1.00 -8.5941 - -8.5941 -

LMARKET - 0.00 - -14.2661 -14.2661 - 0.00 - -8.7152 -8.7152 -
BEST LIMIT 20 0.40 2.7885 -22.6995 -12.4615 - 0.48 10.3945 -23.2267 -6.9312 -

T-ACD-ARMA 0.005 0.62 -5.3800 -21.5245 -11.4349 8.24% 0.72 -2.5691 -18.1243 -6.9101 0.30%
I-ACD-ARMA 0.013 0.41 5.4125 -24.3563 -12.0391 3.39% 0.60 4.9270 -25.3493 -7.1992 -3.87%
T-DEN-ARMA 0.009 0.55 -6.4325 -18.2981 -11.7399 5.79% 0.69 -4.2680 -14.9368 -7.5683 -9.19%
I-DEN-ARMA 0.007 0.32 6.3043 -21.6261 -12.6626 -1.61% 0.48 7.8295 -22.2245 -7.7134 -11.29%

T-ACD-DEN 0.003 0.65 -2.5233 -29.4288 -11.8876 4.61% 0.67 3.4547 -28.7167 -7.2335 -4.36%
I-ACD-DEN 0.001 0.39 7.8801 -24.5098 -11.8030 5.28% 0.48 13.5446 -25.3791 -6.8440 1.26%

Liquidity sell problem for Silver future, MCX
MARKET - 1.00 -13.9272 - -13.9272 - 1.00 -8.5941 - -8.5941 -

LMARKET - 0.00 - -13.6492 -13.6492 - 0.00 - -8.2202 -8.2202 -
BEST LIMIT 27 0.31 8.9971 -20.8138 -11.4747 - 0.37 16.9567 -21.2201 -7.2121 -

T-ACD-ARMA 0 0.39 9.8776 -24.1011 -10.9930 4.20% 0.43 15.4360 -24.2853 -7.1006 1.55%
I-ACD-ARMA 0.013 0.42 7.9824 -24.1931 -10.8167 5.73% 0.59 5.9884 -24.3773 -6.5772 8.80%
T-DEN-ARMA 0.000 0.40 6.2994 -23.2220 -11.3821 0.81% 0.46 12.8073 -23.0657 -6.6454 7.86%
I-DEN-ARMA 0.008 0.32 11.1002 -21.6620 -11.0348 3.83% 0.50 8.8558 -20.9699 -6.1176 15.18%

T-ACD-DEN 0.003 0.41 7.8032 -24.0072 -11.1120 3.16% 0.47 13.1287 -24.8965 -7.0700 1.97%
I-ACD-DEN 0.003 0.43 6.8151 -24.9905 -11.2268 2.16% 0.49 12.0850 -25.7921 -7.2800 -0.94%

Liquidity buy problem for Natural Gas future, MCX
MARKET - 1.00 -0.9031 - -0.9031 - 1.00 -0.3633 - -0.3633 -

LMARKET - 0.00 - -0.8942 -0.8942 - 0.00 - -0.3607 -0.3607 -
BEST LIMIT 0.9 0.23 -0.3671 -1.0106 -0.8611 - 0.12 0.2589 -0.4300 -0.3490 -

T-ACD-ARMA 0.060 0.47 -0.5156 -1.0321 -0.7883 8.46% 0.44 -0.1711 -0.4289 -0.3155 9.61%
I-ACD-ARMA 0.089 0.14 0.4654 -1.0485 -0.8292 3.72% 0.15 0.3827 -0.4574 -0.3355 3.89%
T-DEN-ARMA 0.089 0.11 -0.2569 -0.9115 -0.8391 2.56% 0.07 0.1522 -0.3761 -0.3382 3.10%
I-DEN-ARMA 0.060 0.10 0.5543 -1.0061 -0.8451 1.87% 0.07 0.6389 -0.4248 -0.3540 -1.43%

T-ACD-DEN 0.013 0.59 -0.3882 -1.4561 -0.8217 4.58% 0.69 -0.1953 -0.6540 -0.3360 3.74%
I-ACD-DEN 0.000 0.34 -0.1294 -1.1801 -0.8231 4.41% 0.28 0.1146 -0.5031 -0.3280 6.02%

Liquidity sell problem for Natural Gas future, MCX
MARKET - 1.00 -0.9031 - -0.9031 - 1.00 -0.363332 - -0.363332 -

LMARKET - 0.00 - -0.9105 -0.9105 - 0.00 - -0.36812 -0.36812 -
BEST LIMIT 1 0.23 -0.2868 -0.9890 -0.8261 - 0.81 -0.277526 -0.63279 -0.345426 -

T-ACD-ARMA 0.003 0.41 -0.1576 -1.2298 -0.7938 3.92% 0.41 0.0691839 -0.552794 -0.294706 14.68%
I-ACD-ARMA 0.088 0.14 0.5725 -1.0417 -0.8127 1.63% 0.16 0.403118 -0.451998 -0.313196 9.33%
T-DEN-ARMA 0.037 0.48 -0.4544 -1.1477 -0.8166 1.16% 0.39 0.0041958 -0.49375 -0.299728 13.23%
I-DEN-ARMA 0.074 0.12 0.6390 -1.0152 -0.8181 0.98% 0.10 0.490945 -0.425961 -0.335306 2.93%

T-ACD-DEN 0.012 0.36 -0.1664 -1.1599 -0.8028 2.82% 0.28 0.14509 -0.487378 -0.309381 10.43%
I-ACD-DEN 0.009 0.34 -0.1339 -1.1535 -0.8038 2.71% 0.29 0.135054 -0.49147 -0.309537 10.39%
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Table 7.8: Comparison between the performance of the best strategy with market variables and the one
without market variables.

Training dataset Testing dataset
Instrument Side E(U) with X E(U) no X Gain(%) E(U) with X E(U) no X Gain(%)
Gold futures Buy -2.1687 -2.1432 -1.19% -2.9847 -2.8942 -3.13%
Gold futures Sell -2.0437 -2.0550 0.55% -2.8389 -2.6442 -7.36%
Silver futures Buy -11.4349 -11.8178 3.24% -6.9101 -6.8902 -0.29%
Silver futures Sell -10.8167 -10.8055 -0.10% -6.5772 -6.5993 0.33%
Natural gas futures Buy -0.7883 -0.8058 2.17% -0.3155 -0.3176 0.66%
Natural gas futures Sell -0.7938 -0.8091 1.89% -0.2947 -0.2965 0.61%
Average ticks gained -7.0475 -7.1618 1.60% -4.2355 -4.1948 -0.97%

the best static strategy in all situations as well.

To compare the improvement gained from including market variables into the model, Table 7.8

compares the performance of the best performing models that includes market variables and the one that

does not include market variables. The result indicates that including market variables into the model

does not necessarily improve trading performance as we gain performance improvement in the training

dataset in only four out of the six cases considered. Additionally, we gain improvement both in the

training dataset and testing dataset only in two cases for the Natural gas futures. When considering the

average profit gained from including the market variables into the model, averaged over all situations, we

find that the model with market variables has better performance in the training dataset while it performs

worse in the testing dataset.

Consequently, the result studied in this section indicates that including market variables in our

model does not always result in better trading performance, as suggested in [72], and it is more appro-

priate to try the model with and without market variables to select the best model for making the order

placement decision. A general guideline to select the best model for a particular instrument is to adopt

the model that has the best combined performance on the buy and the sell problem. By using this crite-

rion, we will select the model without market variables for Gold futures, while we will select the model

with market variables for Silver and Natural gas futures which is exactly the best performing model for

each instrument.

7.5 Summary
This chapter proposed a new framework for making order placement decisions based on the trade-off

between the profit gained from better execution price and the risk of non-execution in a mean-variance

optimisation framework. This framework is general enough to solve all trading problems mentioned in

Harris [42] as traders can define their trading objective by specifying two payoff functions: a function

UE(p) that defines the payoff that traders will get when they execute the trade at price level p, and a

function UNE(p) that defines the cost that traders need to pay when their order is not executed and the

price of the asset at the end of the trading period is p. In particular, the order placement problem of

liquidity traders who need to transact their order before some specified deadline can be modelled by

setting UNE(p) = UE(p) so that the cost that a trader needs to pay if his order is not executed is equal

to the cost of executing the trade at the end of the trading period. The utility function of informed traders
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and value motivated traders can be modelled by setting UNE(p) = max{UE(p), UNT }, where UNT is a

utility gained from not trading, so that they will trade at the end of the period only when it is profitable to

do so. After specifying the objective function, traders also need to specify a model for the probability that

the limit order at price level pL will be executed before the end of the period and a probability density

function of the asset price at the end of the trading period given no execution of limit order at price level

pL. Accordingly, we discuss three different approaches to model these two probabilities, which are i) the

unconditional model implied by an arithmetic Brownian motion, ii) the empirical unconditional model

using density estimation and iii) the empirical conditional distribution using ACD and ARMA-GARCH

models.

To measure the performance of the proposed framework in making order placement decisions, we

performed an experiment to apply the proposed framework to make order placement decision for liq-

uidity traders using the historical data from the Multi Commodity Exchange of India (MCX) and the

New York Stock Exchange (NYSE). The results indicated that the proposed framework beats the sim-

ple static strategies that always execute the trade at the beginning of the period and at the end of the

period in all cases studied. The proposed framework also beated the best static strategy in all cases in

the MCX dataset, while it beated the best static strategy only in two out of six cases considered in the

NYSE dataset. Although the proposed framework could not beat the best static strategy in all cases,

the improvement gained from the proposed framework when it can beat the best static strategy is very

significant. Additionally, the result obtained from the model with market variables indicated that adding

market variables into the model does not necessary improve the trading performance of the model. This

suggests that it is more appropriate to try both models and select the one that performs best in the training

dataset to make the trading decision.



Chapter 8

Conclusion

This chapter brings the thesis to a conclusion. We begin by summarising the key points

of this work, what guided us in this direction and what can be learned from our models

and experiments. We the review our contributions and academic achievements, and suggest

some direct applications for practitioners.

8.1 On the origins of this thesis
This thesis had been mainly concerned with the model of execution probability and its application in an

order placement strategy.

We started the adventure in these subjects by acknowledging that most of the publications in algo-

rithmic trading are mainly focusing on the trade scheduling problem but the order choice problem, which

was equally important, has largely dismissed by researchers in this field. Although the order choice prob-

lem was an active research topic during the last few decades in the market microstructure community,

these studies were mostly theoretical and mainly focused on analysing the rational for, and the profitabil-

ity of, limit order trading as well as the dynamic characteristics of limit order markets implied by those

findings rather than focusing on developing a profitable algorithmic trading system. Consequently, to

fill the gap in this research area, the main objective of this research was set to develop a framework for

optimising the order placement strategy in an algorithmic trading system.

After reviewing previous works from the market microstructure community, we found that these

theoretical works generally viewed the order type problem as a trade-off between the payoffs associated

with limit orders and the risk of non execution. On one hand, traders would prefer to place their orders

very far from the best price to increase their payoff. On the other hand, the larger the distance from the

best price, the larger the chance that the order will not be executed. Accordingly, in this setting, traders

have to find the right trade-off between these two opposite choices, in order to maximise the expected

profit obtained from the trade, and one of the most important factors in valuing such a trade-off is a

model of execution probability which can be utilised to compute the probability that limit orders at a

specific price level will be executed. Unfortunately, the research into how to model such probability is

still very limited and mainly focused on identifying the determinants of the execution probability and

the effect that each determinants have on the execution probability with the aim of explaining traders
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decisions, rather than focus on the accuracy of the prediction result, which is important for developing

a profitable algorithmic trading system. These limitations led us to develop a model of execution proba-

bility with high accuracy and utilise the developed model to implement an order placement strategy for

an algorithmic trading system.

Our journey in developing a model of execution probability starts from an in-depth experiment to

compare the performance of previously proposed models in a controlled environment by utilising the

data generated from simulation models with the aim to understand the advantage, disadvantage and the

limitation of each method. The result from this experiment indicated that among previously proposed

models, the models that utilise survival analysis to handle cancelled orders seemed to be the best per-

forming method both from theoretical and empirical point of view. However, the result also indicate

that traditional survival analysis models (i.e. the proportional hazards model and the accelerated failure

time model) utilised in previous works were not flexible enough to model the effect from explanatory

variables even in the simplest simulation model since the assumptions made by these models are violated

in most of the situations. Although it is tempting to develop a new method by relaxing the assumptions

made by these models, we decide not to take this part as the preliminary result obtained from applying

Bayesian neural networks to model this probability proved dissatisfactory. Accordingly, we decided to

take two alternative approaches inspired by the disadvantage and limitation we experienced during these

experimentations.

The first approach was inspired by the disadvantage and limitation of previous models when we

want to model the execution probability from first-passage time information at several price levels simul-

taneously. Particularly, to model the execution probability at p different price levels from n realisations

of a particular asset price process, all previous models required us to prepare np data records which could

be very large especially when we want to model the execution probability at all possible price levels. To

amend the problem, we proposed a new approach to model the execution probability at a specified time

period from the price fluctuation during that period so that the data required for estimating the model

was reduced from np to n. Although this model did not allow us to compute the execution probability at

several trading horizons simultaneously, the ability to compute the execution probability at several price

levels is far more important in our trading application.

The second approach was inspired by the lack of theoretical models for computing the execution

probability, even in the simplest simulation model. To fill the gap in this area, we tried to find a way to

compute this probability in such a model without resorting to simulation, and this led us to derive the

model for describing the dynamics of asset prices in the simulation model and estimate the execution

probability from the derived asset price dynamics model. Although the estimation we obtained from the

model has high accuracy only for a small subset of the parameter space, the developed framework sheds

some light on the interaction between order arrival/cancellation processes and the asset price dynamics.
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8.2 Contributions and achievements

In this dissertation, we had presented a general framework and computer implementation for simulating

an order flow in order-driven markets based on a continuous-time aggregated order flow model, which

is able to be used to simulate several previous simulation models such as those proposed by Smith et al.

[88] and Cont et al. [20]. The dynamics of the order book in this framework is assumed to be driven by

two different types of agents: i) impatient agents who place market orders randomly according to some

predefined stochastic process, and ii) patient agents who place limit orders randomly both in time and

in price. Additionally, unexecuted limit orders are also assumed to be cancelled according to some pre-

defined stochastic processes. By controlling the properties of these orders submission and cancellation

processes, several realisations of the order book dynamics that have similar stochastic properties can be

generated. This enabled us to evaluate the developed model in a controlled environment before applying

them to the data generated from real markets.

The main contributions of this thesis are probably related to the evaluation and development of ex-

ecution probability models. Particularly, the evaluation of previous models in a controlled environment

using data generated from simulation models reveal several interesting facts about these models. These

include the fact that censored observations, in form of unexecuted orders, are the main obstacle that pre-

vents us from applying traditional methods to model the execution probability and survival analysis is an

appropriate method for modelling this probability. The analysis of the relationship between the execu-

tion probability and possible explanatory variables indicates that the execution probability of a limit buy

order is positively correlated with bid-ask spread, number of sell orders in the order book, market order

arrival rate and order cancellation rate while it is negatively correlated with the distance from the oppo-

site best price, the number of buy orders in the order book and the limit order arrival rate. Additionally,

the results also indicate that standard survival analysis techniques (i.e. the proportional hazards model

and the accelerated failure time model) generally used to model this probability in previous works is not

flexible enough to model the effect of these variables even in the simplest simulation model.

We then shifted our attention to the relation between price fluctuation and execution probability.

Particularly, we derived the equation relating the distribution of price fluctuation and execution probabil-

ity which led us to a new method for modelling the execution probability at a specified time period from

the fluctuation of the price during the interested period. The advantage of this approach over traditional

technique is that it requires less data to model the execution probability at all price levels since it requires

only one record per sample while survival analysis requires n records per sample to model the execu-

tion probability for n price levels. Additionally, this provides a natural way to apply traditional time

series analysis techniques to model the execution probability. The statistical analysis of price fluctuation

dataset obtained from the Multi Commodity Exchange of India and the New York stock exchange indi-

cates that the form of the market seem to have strong impact on the dynamics of price fluctuations as the

strength and persistence of serial dependency in price fluctuations mainly differ between the individual

exchanges and less between the different assets traded in the same exchange. The analysis also suggests

that the price fluctuation process seem to have a long range dependency with clear intraday seasonality
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pattern similar to the one observed from volatility processes. The analysis of the dependency between

price fluctuation, return and volatility indicates that price fluctuation is heavily dependent on the direc-

tion of returns during the same period in the sense that buy price fluctuation is negatively correlated with

return, while sell price fluctuation is positively correlated with return. However, the correlation between

price fluctuation and previous return is typically weak and might not be useful for predicting future price

fluctuations. Additionally, the results indicated that price fluctuations are also strongly correlated with

volatility, as estimated by the range between the highest and lowest price. In a search for the best model

for modelling the price fluctuation process, we proposed a new method for fitting the distributions of

price fluctuations that do not suffer from the problem experienced in traditional maximum likelihood

estimation by maximising the likelihood of the implied discrete distribution rather than directly max-

imising the likelihood of the model. The results obtained from fitting the price fluctuation process with

several time series analysis models indicate that the ACD model is the most appropriate model for mod-

elling this process, and the ABAMACD model, which extends the basic ACD parameterisation by adding

an additive stochastic component and an asymmetric news response, as well as applying the Box-Cox

transform to the conditional mean function, is the best model for modelling the price fluctuations, and,

thus, the best model for modelling the execution probability.

We then derived a stochastic model of asset price dynamics in a simulated model of order-driven

markets whose dynamics are described by the incoming flow of market orders, limit orders and order

cancellation processes. Particularly, we introduced a framework to model the dynamics of asset prices

giving the statistical properties of those processes, thus, establishing the relationship between the micro-

scopic dynamics of the limit order book and the long-term dynamics of the asset price process. Unlike

traditional methods that model asset price dynamics using a one-dimensional stochastic process, the pro-

posed framework models this dynamic using a two-dimensional stochastic process where the additional

dimension represents information about the latest price change. Using dynamic programming methods,

we were able to efficiently compute several interesting properties of the asset price dynamics (i.e. volatil-

ity, occupation probability and first-passage probability), conditioning on the trading horizon, without

resorting to simulation.

Finally, we proposed a new framework for making order placement decision based on the trade-off

between the profit gained from better execution price and the risk of non-execution in a mean-variance

optimisation setting. We then applied the developed execution probability model based on the relation-

ship between price fluctuation and the execution probability to implement order placement strategy for

liquidity traders who need to transact their order before some specified deadline. The results obtained

from applying the proposed framework to make order placements in the historical dataset obtained from

the Multi Commodity of India and the New York Stock Exchange indicated that the proposed frame-

work has better performance than the best static order placement strategy for all instruments in the Multi

Commodity of India, while it beat the best static strategy only in two out of six cases studied in the New

York Stock Exchange. Although the proposed framework cannot beat the best static strategy in all cases,

the improvement gained when it did beat the best static strategy was very significant.
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8.3 Possible extensions
The analysis and experiments in this dissertation suggested several possible extensions that future work

can be carried out to answer some open questions.

To begin with, the simulation results, reported in Chapter 3, indicated that previous simulation mod-

els based on the concept of aggregated order flow with constant Poisson rate are not able to generate all

the stylised facts observed in real markets. This was somehow inline with empirical findings that Pois-

son processes are not flexible enough to model the order flows in real markets since the order flows in

real markets display clustering. Although several alternative models (e.g. Hawkes process and Autore-

gressive Conditional Duration) have been proposed to model this order flows, no simulation models had

incorporated this finding into the model before. Hence, it is interesting to investigate whether a more

complicated order flow model is enough to generate all the stylised facts about the real markets or not.

Secondly, the inability to model the effect of explanatory variables on the execution probability

of traditional survival analysis techniques since the assumptions made by these models are generally

violated, as reported in Chapter 4, suggested that improvement could be made if we could relax these

assumptions. Consequently, possible extensions could be achieved by developing a new survival analysis

technique that is flexible enough to model these effects by relaxing these assumptions.

Thirdly, although the result reported in Chapter 5 indicated that the basic ACD model is able to

capture the dynamic of the conditional mean function in most of situations, there was still a situation

when this model cannot capture all the dynamics especially in the price fluctuation time series of the

IBM stock traded in the New York Stock Exchange. Accordingly, this suggested the need to develop a

new parameterisation of the ACD model or a new model that is able to capture the dynamics of price

fluctuations in this case.

Finally, it would be interesting to see the performance of the proposed order placement framework

when used to make order placement decisions of other types of traders rather than the liquidity traders.

Consequently, one possible future work would apply the framework to make order placement decisions

for informed and value-motivated traders. Additionally, since the single period model considered in this

study is somewhat limited, future work could also focus on extending the model into a multi-period

setting.
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