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Классификация агрокультур  
по космическим изображениям среднего разрешения  
с использованием методов  
на основе гауссовских случайных процессов
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Разработан алгоритм классификации сельскохозяйственных культур с применением 
процессов Гаусса для анализа временных рядов вегетационного индекса NDVI по данным 
спутника Landsat 8. В алгоритме используется регрессия с нулевым средним значением 
и квадратом экспоненциального ядра. Описана методика классификации и приведен 
пример распознавания видов культур. Дана оценка определения культур разработанным 
классификатором. Самая высокая общая точность классификации в трех классах культур 
составляет 77,78 %.

Ключевые слова: процессы Гаусса, классификация, регрессия, сельскохозяйственные культуры, 
снимки Landsat, дистанционное зондирование, NDVI.

Introduction

Remote sensing is a useful tool for agricultural management and decision making [1]. The vast 
diversity of available instruments makes possible the effective and low-cost observations of agricultural 
lands condition [2]. The use of remote sensing data for agricultural land monitoring enables to control 
arable land areas and various types of cultures growing there. Particularly, with the use of satellite data 
collected over different time periods, it is possible to track changes in the state of vegetation and to 
assess the plant growth rate and type [2-4].

An important problem arising during analysis of the satellite images is objects recognition. 
There are several methods of image classification for agricultural land analysis [3]. The most widely 
used methods for classifying crop species from satellite images are maximum likelihood classifier 
(MLC) and support vector machine (SVM). MLC is a simple parametric classifier [5], while non-
parametric SVM use optimization algorithms to determine the optimal boundaries between classes 
[6]. These methods demonstrate quite good results. For example, in the work of Devadas et al., 2012, 
the accuracy of classifying several classes of cultures (fallow, crop, pasture, woody) using Landsat 
satellite data is 93% with MLC methods and 78% with SVM methods [7]. However, the accuracy 
of these methods is not always satisfactory for specific applications and images. In the work of 
Topalogu et al., 2016, the accuracy of classifying a general class of cultures using Landsat satellite 
data is about 45.45% with MLC and 77.42% with SVM methods [8]. In the work of Waske, 2007, the 
accuracy of classifying several classes (arable crops, cereal, canola, root crops, grassland, orchard, 
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forest, urban) using Landsat satellite data is about 62% with MLC methods and 64% with SVM 
methods [9].

The aim of this work is to implement the classical GP based techniques on multi-temporal images 
of arable land areas acquired by the Landsat satellite in order to classify species of agriculture plants 
grown in selected areas of Krasnoyarsk Krai (Russia).

Remote sensing data and the study area

Middle-resolution satellite imagers are best suited for studying local test areas by using 
multitemporal images. In this paper we employed imagery of the Landsat 8 satellite (American Earth 
observation satellite launched on 11 February 2013), which allows obtaining up to 400 scenes every 
day. This satellite acquires images in 11 spectral channels by using Operational Land Imager (OLI) and 
Thermal Infrared Sensor (TIRS) instruments. OLI operates in 9 spectral channels while TIRS forms 
images in channels 10 and 11 [10]. Landsat 8 level 1products used were derived from the open source 
of United States Geological Survey (USGS).

Level 1 images are represented in the form of 16-bit digital numbers which can be transformed to 
the TOA spectral radiance 

( ) ( ) ( )L n LL M D Aλ λ λ= + , (1)

where LA  и LM  are – additive and multiplicative parameters or to the TOA spectral reflectance
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where SEθ  is the solar elevation angle. The calibration parameters can be obtained from metadata.
The training data were obtained from images with 8071 × 8161 pixel resolution. We employed 

the spectral channels of visible and near-infrared spectral region for the formation of the additive 
color model (RGB) and calculating vegetation indexes. The image data were acquired from the 
Georeferencing Tagged Image File Format GEOTIFF with Universal Transverse Mercator (UTM) 
projection in coordinate World Geodetic System (WGS).

To increase the accuracy of the analysis, we have used cloudless and terrain-corrected images 
for years 2015 and 2016 acquired during the period of active plant growth. The available geo-
referencing information allowed us to cut automatically the training data from the coordinated plot of 
219 × 196 pixels (about 16 km2).

The ground-based information is available for agricultural fields of Suhobuzimsky district, 
located in the central part of Krasnoyarsk Krai, Russia with a total area of 5612 km2. The fields of JSC 
Uchkhoz “Minderlinskoe” are labeled as containing different crops (wheat, oats and barley), annual 
and perennial grasses or as a fallow (Fig. 1).

The test data were obtained from the same satellite imagery that were used for the training set in 
years 2015-2016 but acquired from a different area. The test sites are from Plemzavod territory of JSC 
“Taiga” Suhobuzimsky area of 546 × 627 pixels, which corresponds to the area on the Earth’s surface 
of 135 km2. The test fields are also labeled as wheat, oats, barley, annual grasses, perennial grasses and 
fallow (Fig. 2).
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Fig. 1. Maps of agriculture fields of JSC Uchkhoz “Minderlinskoe” for years 2015-2016
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Fig. 3. Mask of the fields of Suhobuzimsky district, where (a) is the training land of JSC Uchkhoz “Minderlin-
skoe”, (b) is the test land of JSC Plemzavod “Taiga”, (c) shows the total sown area of the region, which includes 
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Fig. 2. Maps of agriculture fields of Plemzavod territory of JSC "Taiga" for years 2014-2015 

 

The verification was performed using field data presented at the geoinformation portal of the 

Institute of Space and Information Technologies, Siberian Federal University [11].  

Pre-processing of the satellite data was performed using the software ENVI 5.2 and a 

geographic information system QGIS 2.8.2. This procedure consisted of several stages: (i) 

combining spectral channels from 2 to 5 for all satellite images, (ii) creating a mask for input and 

test plots on the vegetation field map (Fig. 3), (iii) cropping satellite images according to the 

previously created masks (as an example, see image for 16.05.2016 on Fig. 4), (iv) saving images in 

the format GEOTIFF.  
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previously created masks (as an example, see image for 16.05.2016 on Fig. 4), (iv) saving images 
in the format GEOTIFF. 

Data analysis and pre-processing

In the pre-processing stage, 21 multitemporal satellite images were prepared, of which 12 images 
were the training data (6 for 2015, 6 for 2016), and 9 images were the test data (5 for 2015, 4 for 2016). 
Table 1 shows the total number of fields and pixels for each culture for a training and test set in two 
years.

Table 1 shows that the number of test samples is much higher than the number of training samples. 
The main reason for choosing the fields of JSC Uchkhoz “Minderlinskoe” as the training set was 
the greater amount of data for the whole period of the crop life cycle, in contrast to the fields of JSC 
Plemzavod “Taiga”.

Fig. 4. Satellite image with the capture of fields of Suhobuzimsky district for 16.05.2016, where (а) is the original 
image, (b) is the training land of JSC Uchkhoz “Minderlinskoe”, (с) is the test land of JSC Plemzavod “Taiga”
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Barley 3 2386 1 996 16 14079 11 7940 
Wheat 6 7158 7 9245 8 6016 4 4032 
Annual 
herbs 2 4227 2 2805 12 11812 16 17960 

Perennial 
herbs - - 2 4227 - - 7 7288 

Fallow 1 2241 - - - - - - 
Total 12 16012 12 17273 36 31907 38 37220 
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The classification algorithm is based on the use of vegetation maps, satellite imagery, and on 
the analysis of Normalized Difference Vegetation Index (NDVI). This indicator is widely used for 
data analysis and monitoring of the state of vegetation on a global and continental scale [1]. NDVI is 
a simple quantitative indicator of photosynthetic active biomass, often referred to as the vegetation 
index. NDVI is calculated according to the data of broad spectral zones as follows
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Fig. 5. The NDVI of vegetation plotted against days of year 2015 and 2016, where the training set is 

represented by red crosses, the test set is shown by blue crosses, and the black horizontal line is the 

boundary of the soil. The error bars show the 95 % range of NDVI values 
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distinguish clearly the average NDVI of vegetation from the NDVI of the open soil. It should also 

be noted that usually, the NDVI index value close to 0.6 (for Landsat images) corresponds to the 

area with a dense vegetation cover, while the value of about 0.3 are characteristic for the areas with 

mixed cover, i.e. immature vegetation or crops at the end of their life cycle [1].  
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error bars show the 95% range of NDVI values
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The boundary of the soil shown in Fig. 5 by the black horizontal line was determined from the 
imagery of fields with fallow acquired during the spring period. This boundary allows us to distinguish 
clearly the average NDVI of vegetation from the NDVI of the open soil. It should also be noted that 
usually, the NDVI index value close to 0.6 (for Landsat images) corresponds to the area with a dense 
vegetation cover, while the value of about 0.3 are characteristic for the areas with mixed cover, i.e. 
immature vegetation or crops at the end of their life cycle [1]. 

NDVI time-series modeling

To solve the problem of vegetation recognition on satellite images, we have proposed a method 
which can be employed also for predicting the crops found in the surrounding areas. The method 
consists of two stages: regression and classification. The aim of the first stage consists in NDVI time-
series modeling by using the Gaussian Process Regression (GPR) [12-14]. We are interested in predicting 
the NDVI values for the whole active season day by day, so that we can later use this information for 
the final classification step. 

Let us consider a problem

y = f(t) + ε, (4)

where t is an input variable (the time point in our case), y is a scalar response (NDVI value), f is some 
model function, considered as a random process, and 
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where h  is the scale factor of the response and λ  is the input length-scale hyperparameter, 

which controls the smoothness of the regression function. Such types of functions were chosen to 

produce the smooth regression curve, since it is obvious that NDVI variations from a day to another 

should be small enough. GPs also have a noise parameter. This parameter controls how tight should 

be the fit of the posterior function to the data points. 

The unknown hyperparameters were obtained from the training set by using minimization of 

the negative logarithmic likelihood function. The regression results are represented in Fig. 6 for the 

years 2015 and 2016. Grey areas show the uncertainty of the regression. As we can see, GPR allows 

us to interpolate well the NDVI values during the vegetation period. We should also notice that 

areas with lower density of data have greater uncertainty. 
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interpolate well the NDVI values during the vegetation period. We should also notice that areas with 
lower density of data have greater uncertainty.
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precision of the acquired data. The temporal data from each area in a new image is compared to the 
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values for perennial herbs. It should be carefully investigated why this happened. The reason for this 
may be that this class comprises several types of crops, which could have different NDVI profiles. In 
addition, we notice an unseen value in 2016 for the same class, which is not close to the learned curve, 
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Fig. 8. The classification algorithm
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Finally, we present the results obtained for the implemented classification method. The 
classification of agricultural crops based on NDVI of was carried out, where the time variability 
of this vegetation index was obtained from satellite images of OLI Landsat 8. NDVI is the most 
important feature, which affects the overall accuracy of classification by Gauss method. The test 
image consisted of 56 regions with different crops. We selected only those which contained one 
of the plants plotted in Fig. 7 (Notice that we did not have training data for annual herbs in 2015, 
so in this case we only considered 3 classes). Fig. 8 shows a simple diagram that depicts the whole 
classification process.

The results of the classification are presented in Tables 2 and 3. The algorithm always distinguishes 
class 3 from classes 1 and 2, although these latter classes are often confused. The reason lies in the 
similar NDVI profile, suggesting that additional information on those areas should be used, like 
weather, soil and other factors that were not used in this work.

The overall accuracy is low. Only the first class obtains a decent precision. We notice that wheat 
is often assigned to class barley, which suggest again that additional data should be used. Additionally, 
NDVI average profiles for year 2016 seem to differ noticeably from the learned regression, as shown 
on Fig. 7. NDVI profiles should be checked individually to detect acquisition errors or cloud presence 
that may be worsening the performance of the algorithm. The low classification accuracy can also be 
addressed to the following reasons: classification errors between crops and pastures; a high amount 
of precipitation during the growing season, which leads to the difficulties in recognizing crops on the 
images; cloud cover during the summer.

For comparison, we present in Table 4 the results of classification by the simplest metric classifier 
based [15]. As can be seen from Table 4, the overall classification accuracy of crops by the metric 
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classifier is 60% for year 2015. For data of year 2016, the metric classifier could not classify crops 
presumably due to the small number of test data points.

We note that a separate analysis, carried out by combining several classes–barley and wheat–into 
single spring crops class showed that the overall accuracy of the Gauss method is 97.02% for year 2015 
and 83.72% for year 2016. 

Conclusions

In this paper, we use the Gaussian process to classify crops on Landsat satellite data imagery. The 
results of this study show that GР demonstrates high precision in recognizing barley and wheat crops 
against perennial grasses. However, there are difficulties in recognizing individual vegetation types 

Table 4. The confusion matrix and overall precision for year 2015 are by the metric classifier

Classes
Predicted class

Barley Wheat Perennial herbs Total

G
ro

un
d 

tr
ut

h Barley 7 3 0 10
Wheat 1 2 0 3

Perennial herbs 0 2 0 2
Total 8 7 0 15

Overall accuracy = 60%

Table 2. The confusion matrix and overall accuracy for year 2015 are by the Gauss method

Classes
Predicted class

Barley Wheat Perennial herbs Total
G

ro
un

d 
tr

ut
h Barley 12 4 0 16

Wheat 4 4 0 8
Perennial herbs 0 0 12 12

Total 16 8 12 36
Overall accuracy = 77.78%

Table 3. The confusion matrix and overall accuracy for year 2016 are by the Gauss method

Classes
Predicted class

Barley Wheat Annual herbs Perennial herbs Total

G
ro

un
d 

tr
ut

h

Barley 12 4 0 0 16
Wheat 4 4 0 0 8

Annual herbs 0 6 0 1 7
Perennial 

herbs 0 0 0 12 12

Total 16 14 0 13 43
Overall accuracy = 65.12%
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due to the almost identical time-series of NDVI. The overall classification accuracy of crops by the 
Gaussian method is 77.78% for year 2015 and 65.12% for 2016. The overall classification accuracy of 
crops by the metric classifier method is 60% for year 2015. Comparison of the overall accuracy of the 
GP classification with the results obtained by using the metric classification clearly shows the advan-
tage of GP. Thus, the Gaussian process has perspectives in its further use for classifying objects from 
remote sensing data.
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