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Abstract

Clustered data arise in many scenarios. We may wish to fit a marginal regression model

relating outcome measurements to covariates for cluster members. Often the cluster

size, the number of members, varies. Informative cluster size (ICS) has been defined

to arise when the outcome depends on the cluster size conditional on covariates. If the

clusters are considered complete then the population of all cluster members and the

population of typical cluster members have been proposed as suitable targets for infer-

ence, which will differ between these populations under ICS. However if the variation

in cluster size arises from missing data then the clusters are considered incomplete and

we seek inference for the population of all members of all complete clusters.

We define informative covariate structure to arise when for a particular member the

outcome is related to the covariates for other members in the cluster, conditional on the

covariates for that member and the cluster size. In this case the proposed populations for

inference may be inappropriate and, just as under ICS, standard estimation methods are

unsuitable. We propose two further populations and weighted independence estimating

equations (WIEE) for estimation.

An adaptation of GEE was proposed to provide inference for the population of

typical cluster members and increase efficiency, relative to WIEE, by incorporating

the intra-cluster correlation. We propose an alternative adaptation which can provide

superior efficiency. For each adaptation we explain how bias can arise. This bias was

not clearly described when the first adaptation was originally proposed.

Several authors have vaguely related ICS to the violation of the ‘missing com-

pletely at random’ assumption. We investigate which missing data mechanisms can

cause ICS, which might lead to similar inference for the populations of typical cluster

members and all members of all complete clusters, and we discuss implications for

estimation.
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Chapter 1

Introduction

Clustered data arise in many fields of research. In longitudinal studies, a response may

be measured repeatedly on the same person at different times; a person is a cluster.

In toxicology, a response maybe measured on pups in a litter; a litter is a cluster. In

educational studies, data are recorded on pupils in a school; a school is a cluster. Mem-

bers which belong to the same cluster are likely to be more similar than members from

different clusters because of genetic factors, persistent environmental characteristics or

other determinants. So, clustered data are likely to exhibit correlation between outcome

measurements for members in the same cluster. This feature renders standard statistical

methods for univariate responses inappropriate for the analysis of clustered data.

Statistical methods for clustered data based on extensions of methods for univari-

ate responses take into account the association between responses in the same cluster.

For univariate data, interest lies in modelling the population average (or marginal mean)

in terms of a set of regression covariates. For clustered data there is a wider choice of

inferences, depending on the way the intracluster association is accounted for. Three

main classes of models for clustered data have been considered: marginal models, ran-

dom effects models and conditional models. Marginal models provide population aver-

age inference and the association between measurements is captured using measures of

association, such as correlations and odds ratios, and a set of association parameters. In

random effects models, the responses in a cluster are assumed to be independent given

a set of cluster-specific parameters (random effects). Random effects models provide

inference specific to each cluster. In conditional models, the clustered responses are

modelled conditional on other responses (on previously observed responses in transi-

tion models).
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Clusters may vary in size due to missing data. So, the observed clusters are re-

garded as incomplete and we seek inference for the population of all members of all

complete clusters. Several authors have examined the performance of GEE and random

effects models, when the variation in cluster size has arisen because of missing data and

the aim is to estimate parameters of the distribution of the complete data. In the present

work, we, on the other hand, are more concerned with the situation where the vari-

ability in cluster size is considered to be an inherent feature of the data and not due to

missing data, i.e. the observed data are complete, and our interest is in parameters of

the distribution of the observed data.

1.1 Informative cluster size and structure

When cluster size varies, cluster size is said to be informative if, for a given outcome

variable of interest and set of covariates, the conditional expected value of the outcome

given the covariates and the cluster size depends on the cluster size. That is, the relation

between covariates and outcome is different in clusters of different size. Formally, if we

denote the outcome for a cluster member by Y , the corresponding vector of covariates

by X and the size of the cluster to which the member belongs by N , then cluster size

is said to be informative if E(Y |X, N) 6= E(Y |X). For example, in studies of factors

associated with periodontal disease (Williamson et al., 2003), a cluster corresponds

to a person’s mouth and members to the teeth. The disease status of the teeth may

be associated with the number of teeth in the mouth, even conditional on covariates,

because it is likely that genetic and environmental factors causing periodontal disease

to also lead to tooth loss.

1.1.1 Methods for Marginal inference

Williamson et al. (2003) suggest that there are two marginal analyses of interest when

clusters are complete: one for the population of all cluster members (population M)

and one for a typical member of a typical cluster. In the first, larger clusters contribute

more to inference than smaller ones; in the second all clusters contribute equally. We

view the latter as inference for the population of typical cluster members (population

C1), which is a subpopulation of population M, formed by selecting one member at

random from each cluster. Therefore if E(.) denotes expectation in population M (we
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shall also use EM(.) to denote this) and EC1(.) denotes expectation in population C1,

then E(Y |X) = EN |XEY |X,N(Y ) and EC1(Y |X) = EN |X [ 1
N
EY |X,N(Y )]/EN |X( 1

N
).

Williamson et al. (2003) provide a guide to the analyst as to which population

should be selected for inference according to the objective of the analysis. In an eco-

nomic assessment of how many, and which, teeth among patients seen at a dental clinic

require a costly intervention, the population of all members (teeth) might be preferred,

as clustering by patient may not be of direct relevance. Conversely, in a study of patient

factors linked to the disease status of teeth, the population of typical cluster members

(typical teeth for patients) might be of more interest.

Inference for population M can be obtained by applying the standard GEE with

independence working correlation. For population C1 two inference methods were

initially proposed: the computationally-intensive within-cluster resampling method

(WCR - Hoffman et al., 2001) and the simpler inversely-weighted-by-cluster-size GEE

with independence working correlation (Williamson et al., 2003; Benhin et al., 2005),

abbreviated as WIEE. Williamson et al. (2003) proved that the two methods are asymp-

totically equivalent and showed through simulations that WIEE may perform better

than WCR in terms of bias when the number of clusters is small.

When the covariates in the regression model are cluster-varying another type of

informativeness may arise. We define informative covariate structure to arise when

for a particular member, the outcome is related to the covariates for other members in

the cluster, conditional on the covariates for that member and the cluster size. We say

that covariates are size-balanced if their distribution is independent of the cluster size;

otherwise they are non-size-balanced. When cluster size is informative, informative co-

variate structure may arise if the covariates are cluster-varying and non-size-balanced.

Informative covariate structure may also arise when cluster size is non-informative and

even when the cluster size is not varying. When the covariate structure is informative

and the covariates are categorical cluster-varying we introduce populations for infer-

ence, additional to the ones previously proposed. We present estimation methods which

are modifications of the WIEE method.
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1.1.2 Efficient estimation for marginal inference

To provide inference for population C1 a potentially more efficient method (MWCR)

was proposed by Chiang and Lee (2008), based on the WCR method. When the min-

imum cluster size, m, is greater than one, the authors propose randomly sampling m

members from each cluster and then applying the GEE with a realistic working cor-

relation to each resampled dataset. As the intracluster correlation is accounted for,

efficiency may be gained.

Previous authors focused primarily on simple cases of informative cluster size, in

the sense that the covariates of interest were either cluster-constant or size balanced.

These authors have also focused on scenarios in which the expected value of the out-

come depends on cluster size and covariates but not on interactions between the two. In

this work we consider more general scenarios where the covariates involved are cluster-

varying and non-size balanced. We explain why MWCR may lead to biased inference

in these cases, a fact that was not mentioned in the original presentation of the method

(Chiang and Lee, 2008). Furthermore, bias in MWCR can arise from realistic choices

of the working correlation.

We derive an alternative estimator that is suitable in certain situations and which

has the potential to be more efficient than WIEE. We call this method WRGEE because

it may be used with a realistic working correlation, rather than requiring the use of

the independence working assumption. We compare the performance of WRGEE to

MWCR for scenarios where they are both unbiased and also show how WRGEE can

give unbiased inference with moderate efficiency gains relative to WIEE in certain

scenarios where MWCR is biased.

1.2 Informative cluster size versus missing data
When the variation in cluster size has arisen because of missing data, the observed

clusters are incomplete; all clusters may be in fact of the same size, but not all of

their members have been observed. We want to make inference for the population of

all members of all complete clusters based on the sample of observed (incomplete)

clusters in the dataset.

Methods for missing data are well known by statisticians; methods for informative

cluster size are less well known. Previous authors referred to the relation between in-
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formative cluster size and missing data mechanisms but this relation has not been made

clear. We clarify the relation between the two and, having surveyed the methods avail-

able for inference about observed clusters and complete clusters, we provide intuition

as to why different methods are needed for the two. We identify scenarios and special

missing data mechanisms where some of the populations might be equivalent and we

discuss implications for estimation methods.

1.3 Data example
To illustrate the methodology we use data from the Delta trial which compares three

antiretroviral therapies. Zidovudine (AZT) in HIV-infected individuals was found to

have a small and not long lasting effect. The Delta trial (Aber et al., 1996) was a three

arm international randomised controlled trial designed to test whether combinations of

AZT with zalcitabine (ddC) or AZT with didanosine (ddI) were more effective than

AZT alone in extending survival and delaying disease progression for HIV infected

patients. Full blood count and immunology subsets were measured on patients at all

visits during follow-up. The primary endpoints were death in those with AIDS at entry,

and AIDS and death in those without AIDS at entry.

There were 3207 individuals who took part in the Delta Trial; 1055 in AZT arm,

1080 in the AZT+ddC arm and 1072 in the AZT+ddI arm. The median follow-up

time was 30 months and during this interval 699(22%) participants died. Of the 2765

participants without AIDS at entry, 936 (34%) developed AIDS or died. The number

of months spent on allocated therapy was greatest in the AZT+ddC arm, the median

(IQR) being 19 (8 to 29) compared to 17 (5 to 28) in the AZT+ddI and 18 (11 to 27) in

the AZT arm.

The primary analysis indicated that for participants who had not had AZT before,

initiation of AZT+ddI and AZT+ddC combination regimens had substantial benefits

in prolonging survival compared to AZT alone. In particular, there was a significant

relative reduction in mortality for both AZT+ddI (33%; p < 0.001) and AZT+ddC

(21%; p = 0008) compared to AZT alone. For participants who had been treated with

AZT before, the addition of ddI improved survival but there was no direct evidence of

benefit from the addition of ddC. The benefit in terms of disease progression was seen

mainly in patients not previously treated with AZT.



1.4. Structure of the thesis 19

For each patient, any adverse events during follow-up were recorded. Apart from

acknowledging the benefit of different treatment regimens in extending survival, it is

also of interest to clinicians and researchers to establish whether the treatment regimens

and other factors are associated with the types of adverse events experienced. In our

illustrations we consider patients with at least one AIDS Related Conditions (ARC)

event. Each cluster is composed of all the ARC events reported during a patient’s

follow-up. We identified 979 patients with sufficient information and at least one ARC

event. The median number of events was 2; the range 1-15. There were roughly equal

numbers of patients with 1 event, 2-3 events and more than 4 events. The most prevalent

ARC event type was Oral Candidiasis (OC). The proportion of events that are OC

decreases from 27% in patients with 1 event to 22% in patients with 2-3 events and to

15% in patients with more than 3 events.

In secondary analysis to illustrate the methods in Chapter 3, amongst all ARC

events recorded, we examine the relation between whether or not the event is of type

OC (binary outcome) and the covariates randomisation arm, CD4 count (most recent

to the event) and time of the event since entry in the trial. As the total number of

ARC events experienced by the patient increases, the percentage of events that are Oral

Candidiasis decreases, suggesting that the cluster size might be informative.

It is also of interest to investigate how the immune status of a patient (of which

CD4 count is an indicator), at times where ARC events are experienced, changes over

time and whether it differs between the treatment arms. In Chapter 4 we examine the re-

lation between CD4 count (continuous outcome) and randomisation arm and time since

entry in the study. We discuss the application of the methods considered in Chapter 4

in the context of this example.

1.4 Structure of the thesis
The thesis is organised as follows. Chapter 2 introduces the main methods for analysing

clustered data. The model families and the corresponding estimation methods are pre-

sented. The method of generalised estimating equations, modifications of which fea-

ture as main estimation methods in the subsequent chapters, is considered in detail. We

also review methods for missing data. In Chapter 3, we introduce informative clus-

ter size, populations for inference and relevant estimation methods for marginal and
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cluster-specific inference. We define informative structure and two populations for in-

ference, additional to the ones previously considered. We develop estimation methods

for marginal inference for the additional populations. The application of the methods

is illustrated using data from the Delta Trial. Chapter 4 deals with efficient methods

for marginal inference. An existing efficient method is presented and its limitations are

noted. Also, an alternative efficient method is proposed. We again use the Delta Trial

example to demonstrate the application of the methods. In Chapter 5, we attempt to

bridge the gap between informative cluster size and missing data. Chapter 6 concludes

with a discussion about the proposed methodology and its limitations and areas for

further work.
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Chapter 2

Approaches to the analysis of clustered

data

2.1 Introduction
In univariate statistics, each experimental unit gives rise to a single outcome variable

and a vector of explanatory variables. In multivariate statistics each unit provides a

number of different response variables. For example, the blood pressure and heart rate

for each patient may be measured simultaneously. We concentrate on settings where

responses emerging from each unit measure the same physical quantity and naturally

form clusters.

Clustered data of this type arise in many situations. The response may be mea-

sured on different members of a group. For example, in toxicology measurements are

obtained on the offsprings within a litter (cluster). Alternatively, the response may

be repeatedly measured on each subject at several time occasions (repeated measure-

ments). For example, in a clinical trial aiming to assess the effectiveness of a particular

treatment compared to another, a measure of health outcome is recorded for each pa-

tient (cluster) at each follow-up time, giving rise to a vector of responses with natural

time ordering among the measurements. In the latter scenario, if time is at least partly

under scientific investigation, we specifically refer to longitudinal data.

The most important merit of longitudinal studies is enabling the direct study of

change. As each subject is measured repeatedly over time, the researcher can study

temporal changes within subjects (age effects) and factors that influence change. For

example, longitudinal studies may aid understanding of how chronic diseases evolve
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over time. Also, age effects can be separated from cohort effects (differences be-

tween subjects at baseline). In a cross-sectional study only cohort effects can be es-

timated. Additionally, in longitudinal studies each subject can serve as a control of

himself/herself since the age effects can be estimated by comparing the individual’s

response at different times. This feature is particularly useful in crossover treatment

studies where the experimental condition for a patient may change from control to alter-

native treatment, or vice-versa. Finally, longitudinal studies economise on the subjects,

since fewer subjects are required in a longitudinal study, to achieve the same power as

in a cross-sectional one.

Clustered and longitudinal data have important advantages, but also pose chal-

lenges to analysts. The main feature of such data is that the within-cluster responses

tend to be correlated. Extensions of generalised linear models for univariate responses

have been developed to account for this correlation. Three broad classes of models

have been proposed: marginal, random effects and conditional models. The estima-

tion methods for analysing clustered data and the interpretation of regression estimates

tend to be more complicated than the ones for univariate responses. Also, the pres-

ence of time-varying covariates often complicates estimation. Finally, when dealing

with studies with clustered or longitudinal data, a frequently encountered issue is miss-

ing data. Missing data arise when the outcome and/or covariates are not recorded at

all of the intended measurement occasions. Appropriate handling of missing data re-

quires development of more sophisticated methods, the validity of which often relies

on untestable assumptions about the missing data mechanism.

In the next section, we define the notation which will be used throughout the the-

sis. In Sections 2.3-2.7, we introduce the three broad classes of models for analysing

clustered data, present estimation methods for each and contrast the three approaches.

As the proposed methodology in the Chapters 3 and 4 mainly relates to methods for

marginal inference, more attention is paid to estimation methods for marginal models.

In Section 2.8, we discuss the separation of covariate effects into the between- and

within-cluster components. We also review methods for estimating the within-cluster

covariate effects in the presence of cluster-confounding. Finally, we discuss missing

data in Section 2.9. We introduce the missing data mechanisms which set a framework

for analysing missing data, and we present the main estimation approaches for marginal
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and cluster-specific inference.

2.2 Notation
We use capital letters to denote random variables, while lowercase letters are used for

the realisation of each variable as a specific observation. The normal type is used to

denote scalar quantities and the bold type is used to denote vectors and matrices. We

use Greek letters to denote fixed effects parameters and Latin letters to denote random

effects. Letter ‘T ’ as a superscript is used to denote matrix transposition.

We now introduce the notation for clustered data. Suppose that K clusters repre-

sent a random sample from a population of clusters. The values of an outcome Y and

a q × 1 vector of covariatesX are recorded for each member of each of these clusters.

Let N denote the number of members in a cluster. We use subscripts i and j for the

cluster and the member, respectively.

So,Ni is the number of members in cluster i, and Yij andXij = (Xij1, . . . , Xijq)
T

are the values of Y andX for member j of cluster i (i = 1, . . . , K; j = 1, . . . , Ni). Let

Y ∗i = (Yi1, . . . , YiNi)
T be the Ni × 1 vector of responses and X∗i = (Xi1, . . . ,XiNi)

T

the Ni × q matrix of covariate values; the jth row of X∗i corresponds to the vector of

covariates for the jth member in cluster i. Let µ(X) = E(Y | X), µij = µ(Xij) and

µi = (µi1, . . . , µiNi)
T .

Often, a regression model which associates the expected response with covariates

is assumed. For example, a linear regression model is specified as:

µij = E(Yij |Xij) = β0 + β1Xij1 + . . .+ βqXijq. (2.1)

We denote β1 = (β1, . . . , βq)
T and β = (β0,β

T
1 )T is a (q+ 1)× 1 vector of regression

parameters. We shall refer to β0 as ‘the intercept term’ and to β1 as ‘the effect of

X’ or simply ‘the covariate effects’. Model (2.1) is often expressed as µij = E(Yij |

Xij) = β0 +XT
ijβ1 or in matrix form as µi = E(Y ∗i | X∗i ) = β01 +X∗i β1, where

1 = (1, . . . , 1)T denotes a N × 1 vector of units. To simplify calculations in some of

the sections to follow we also defineX∗i to be the matrix of covariates for cluster i with

the first column being an N -dimensional vector of units (to account for the intercept

term). So the model can be written as µi = E(Y ∗i |X∗i ) = X∗iβ.
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2.3 Model families for the analysis of clustered data
Generalised Linear Models (GLMs - McCullogh and Nelder, 1989) are used for

analysing univariate continuous and discrete outcomes. They have a two-part speci-

fication. Firstly, the relationship between the expected outcome and covariates is spec-

ified: µ(Xi) = E(Yi | Xi) = h−1(β0 + XT
i β1), i = 1, . . . , K, through a mono-

tone and differentiable function h, the link function. Secondly, the variance of the

response is assumed to depend on the mean: var(Yi | Xi) = v(µi)φ, where v(µ) is

the variance function and φ is a scale parameter. We write v(µ) = dh−1(θ)
dθ

∣∣∣
θ=h(µ)

.

Examples are: for a continuous outcome, h−1(θ) = θ and v(µ) = 1; for a binary out-

come, h−1(θ) = eθ/(1 + eθ), v(µ) = µ(1 − µ) and φ = 1; and for a count outcome,

h−1(θ) = eθ, v(µ) = µ and φ = 1.

In univariate response settings, attention is unavoidably restricted in modelling

the population average of Y or otherwise the marginal mean in terms of regression

covariates. Dealing with clustered data is more complicated because there are two

levels of replication; clusters and repeated measurements within clusters. The structure

of clustered data implies more than one sources of variability: differences between

clusters and differences between members within clusters. An additional complexity is

that measurements which belong to the same cluster tend to be correlated.

Extensions of generalised linear models to handle clustered data have been de-

veloped. Three broad classes of models have been used: (i) marginal or population-

averaged models (ii) random effects or cluster-specific models and (iii) conditional or

transition models. These classes of models differ in the way they handle the depen-

dence among the clustered responses. In marginal models, a model is specified for the

within-cluster associations between responses and these within-cluster associations are

modelled separately from the marginal mean. In random effects models, the within-

cluster associations are accounted for by the inclusion of random effects, specific to

each cluster. In conditional models, the dependence between clustered responses is

handled by directly conditioning on other responses (previous responses for transition

models).

The three model classes are distinct in several ways. Apart from the different way

they handle the within-cluster dependence, the targets for inference are different in

each approach. This is reflected by the difference in the interpretation of the regression
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parameters for each class of models. Also, each modelling approach requires different

estimation methods. In the following sections, we separately consider each model class

and the corresponding estimation methods. We do not discuss missing data and their

implications in estimation methods and inference until Section 2.9. In this chapter, we

assume that the cluster size and covariate structure are non-informative (and even if

some settings imply informative cluster size or informative covariate structure we shall

not discuss these issues until Chapter 3).

2.4 Marginal models
The first approach in analysing clustered data is using a marginal model. The marginal

expectation, µij = E(Yij |Xij), of the responses at each occasion is modelled in terms

of explanatory variables, as in cross-sectional studies. The term ‘marginal expectation’

refers to the average response of a sub-population that shares common values of the

explanatory variables. These models are useful when interest lies on inference about

the population-average.

The additional complexity compared to GLMs is that the repeated measurements

are not independent and this association must be accounted for. The specification of

marginal models for clustered data consists of three components:

1. The marginal mean is related to the covariates through a link function, h(.):

µij = E(Yij |Xij) = h−1(β0 +XT
ijβ1). (2.2)

2. The variance of each response is assumed to depend on the mean through the

variance function: var(Yij |Xij) = v(µij)φ.

3. The within-cluster association between the responses is assumed to be a function

of association parameters.

The first two components are analogous to the ones for GLMs. The third compo-

nent reflects the lack of independence between the responses within the same cluster.

The use of the term ‘correlation’ was deliberately avoided in the third component. For

continuous responses, correlation is a natural measure of dependence between the re-

sponses. For discrete ones, such as binary, correlation is not the most natural measure

of within-cluster association because is constrained by the marginal means; instead the
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odds ratio may be used. In the next sections we present estimation methods for con-

tinuous and discrete outcomes. We initially consider maximum likelihood estimation

(MLE). We note the considerable difficulties implementing MLE for discrete outcomes,

mainly due to the complex form of the likelihood function for the clustered responses.

We then present generalised estimating equations (GEE - Liang and Zeger, 1986) which

simplify estimation by avoiding to specify the full distribution of the responses for each

cluster. GEE can be used in fitting marginal regression models for continuous and dis-

crete outcomes and extensions of them are used as key methodological tools in this

work.

2.4.1 MLE: continuous responses

For continuous clustered responses, a linear regression model is specified to describe

the relationship between the response and covariates at each occasion:

Yij = β0 +β1Xij1 + . . .+βqXijq+εij , where εij’s are zero-mean error terms associated

with each response and β = (β0, . . . , βq)
T is a (q+1)×1 vector of marginal regression

parameters. The error terms in the standard linear model for univariate data are assumed

to be mutually independent, identically distributed variables; for clustered data they

tend to be correlated within the clusters.

It is often reasonable to treat the vector of responses (or a transformation of them)

for cluster i, as a realisation of a multivariate Gaussian vector Y ∗i . So the general linear

model is

Y ∗i |X∗i ∼ MVN
(
X∗iβ, σ

2Vi(ρ)
)
, (2.3)

where Vi(ρ) is the variance matrix of the responses for each cluster as a function of

variance parameters, ρ, while σ2 is the residual variance. The vector of parameters to

be estimated consists of one set for the regression parameters, β, and two more sets for

the variance parameters, ρ and σ2.

Assuming that responses from different clusters are independent, the density func-

tion of the multivariate normal distribution for each cluster f(Y ∗i | X∗i ,β, σ2,ρ)

is used to obtain the density function for the joint distribution of the responses,

f(Y ∗1 , . . . ,Y
∗
K) =

∏K
i=1 f(Y ∗i | X∗i ,β, σ2,ρ). MLE maximises the likelihood func-
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tion (expressed as a function of the unknown parameters given the data):

L(β, σ2,ρ) =
K∏
i=1

{
(2πσ2)−Ni/2|Vi(ρ)|−1/2 e

(
−σ

2

2
(Y ∗i −X

∗
iβ)TVi(ρ)−1(Y ∗i −X

∗
iβ)

)}
.

(2.4)

Assuming that ρ is known, the MLE estimator for β (by maximising the likelihood

conditional on ρ) does not depend on σ2 (Laird and Ware, 1982) and is given by

β̂(ρ) =

(
K∑
i=1

X∗Ti Vi(ρ)−1X∗i

)−1 K∑
i=1

X∗Ti Vi(ρ)−1Y ∗i . (2.5)

Assuming model (2.3), and conditionally on ρ, β is normally distributed with mean as

in equation (2.5) and variance(
K∑
i=1

X∗Ti Vi(ρ)−1X∗i

)−1

. (2.6)

In practice, ρ is generally unknown. So, the maximum likelihood function must

be firstly expressed in terms of ρ and once an estimate for ρ is obtained, β̂ can be

obtained by substitution in equation (2.5).

The procedure is as follows. The maximum likelihood function in terms of σ2,

and ρ is obtained by substituting β̂(ρ) in equation (2.4) which becomes:

L(σ2,ρ) =
K∏
i=1

{
(2πσ2)−Ni/2|Vi(ρ)|−1/2 e

(
−σ

2

2
RSS[Vi(ρ)]

)}
, (2.7)

where RSS[Vi(ρ)] =
(
Y ∗i −X∗i β̂(ρ)

)T
V −1
i (ρ)

(
Y ∗i −X∗i β̂(ρ)

)
. Expression (2.7)

is then maximised with respect to σ2 to give the MLE estimate for σ2 in terms of ρ.

Substituting σ̂2(ρ) in equation (2.7) gives an expression for the likelihood in terms of

ρ only:

L(ρ) =
K∏
i=1

{
[2πσ̂2(ρ)]−Ni/2|Vi(ρ)|−1/2e

(
− σ̂

2(ρ)
2

RSS[Vi(ρ)]

)}
. (2.8)

Maximisation of expression (2.8) to obtain estimates for ρ usually requires numerical

optimisation methods. When an estimate for ρ is obtained, backwards substitution in

the corresponding expressions provides maximum likelihood estimates of σ2 and β.

Restricted Maximum Likelihood

When it comes to estimation of variance components, MLE is consistent (i.e. asymptot-

ically unbiased and with variance that tends to zero as the sample size tends to infinity)
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but can be biased in finite samples because it does not adjust for the degrees of freedom

lost by estimating the regression coefficients (Diggle et al., 2002, pg. 65). Especially

in cases where the number of clusters in the sample is small relative to the number of

regression parameters, MLE can be heavily biased in estimating variance components.

Restricted maximum likelihood estimation (REML) was proposed by Patterson

and Thompson (1971) to correct for this finite-sample bias. The underlying principle

in REML is that estimation of variance components should not require the estimation

of regression parameters first.

Let Ya be the vector of all responses, Ya = (Y ∗T1 , . . . ,Y ∗TK )T , so model (2.3) can

be expressed as

Ya ∼ MVN
(
Xaβ, σ

2Va(ρ)
)
, (2.9)

where Xa is the combined matrix of the covariate matrices X∗i stacked below each

other. Va(ρ) is a block-diagonal matrix, each block being the covariance matrix Vi(ρ).

REML is a maximum likelihood estimator for ρ after a linear transformation, defined

by a matrix A, is applied to the data, Ua = ATYa. Matrix A can be any matrix which

results in the distribution of U being independent of β. Let M =
∑K

i=1Ni. Verbeke

and Molenberghs (2000, pg. 45) state that A could be any M × (M − q) matrix with

the property that its (M − q) columns are orthogonal to the columns of matrixXa.

The transformed responses, Ua, then follow a zero mean multivariate normal dis-

tribution (which does not depend on β anymore) with covariance matrix ATVa(ρ)A .

Patterson and Thompson (1971) proved that inferences for ρ, based on Ua rather than

Ya, provide consistent estimation for ρ. Importantly, no information on ρ is lost in the

absence of information on β. REML does not itself provide estimates for β. However,

when the variance components have been estimated using REML, estimates for β can

be obtained by substitution in the corresponding MLE expression for β̂.

Parametric modelling of the covariance structure

In the estimation procedures described so far, no parametric form was assumed for

the covariance matrix Vi(ρ) (non-parametric approach). All the elements of Vi(ρ) are

explicitly estimated using MLE or REML. For example, for balanced datasets (Ni = N

∀ i) the number of parameters in Vi adds up to 1
2
N(N − 1).

The non-parametric approach has important limitations. The number of variance
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parameters to be estimated and the computational burden increases with the cluster

size. Moreover, the true covariance matrix often depends on much fewer parameters

which can be estimated more efficiently than the 1
2
N(N − 1) parameters. Also, since

replication across clusters is used to estimate ρ, the non-parametric approach is more

suitable when the dataset consists of a large number of equally sized small clusters. For

unbalanced data the non-parametric approach might cause problems. If, for example,

only a few large clusters exist in the dataset, the statistical power to estimate the subset

of variance parameters which correspond to these large clusters might be low.

For these reasons explicitly modelling the covariance matrix is not recommended

except for balanced datasets consisting of long sequences of small clusters. In more

general scenarios, parametric modelling of the covariance matrix can be considered.

In the parametric approach, the covariance matrix of the responses is assumed to be a

function of a small number of unknown parameters. Popular choices for the form of

the covariance matrix are the exchangeable and autoregressive correlation models under

which the assumed form of the covariance matrix depends only on two parameters; ρ

and σ2.

2.4.2 MLE: discrete responses

Under Gaussian assumptions for the responses, MLE is a feasible and relatively

straightforward procedure to apply, mainly due to the elegant properties of the mul-

tivariate Normal distribution. When the clustered responses are discrete (e.g. binary,

categorical or counts), MLE for model (2.2) tends to be more complicated in theory

and more cumbersome in computation.

Although likelihood based inference for marginal models with discrete outcomes

is not the focus of this work, we consider some probability models for the joint dis-

tribution of binary responses. This will facilitate direct comparisons with GEE which

are simpler to apply and can be used for fitting marginal regression models for discrete

and continuous outcomes, without the need of specifying the joint distribution of the

responses in each cluster.

The Bahadur representation

Bahadur (1961) proposed a parameterisation which uses marginal means, while second-

and higher-order moments are described in terms of correlations. The Bahadur repre-
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sentation of the probability model for the binary clustered responses is

P (Y ∗i = y∗i |X∗i ,β) =

(
Ni∏
j=1

µ
yij
ij (1− µij)1−yij

)
×

(
1 +

∑
j1<j2

ρij1j2rij1rij2+

+
∑

j1<j2<j3

ρij1j2j3rij1rij2rij3 + . . .+ ρi123...Niri1ri2rini

)
, (2.10)

where µij = P (Yij = 1 | Xij,β) and rij =
Yij−µij√
µij(1−µij)

are the standardised Pearson

residuals. The second- and higher-order correlations are defined as ρijk = E(rijrik)

and ρi123...Ni = E(ri1ri2 . . . riNi) respectively.

The Bahadur representation of the joint probability function is straightforward and

the likelihood comes in an attractive closed form and involves marginal probabilities

and correlations which are familiar concepts from the analysis of continuous outcomes.

However, it suffers from restrictions in the parameter space of second- and higher-

order correlations, since the correlations between the responses are constrained by the

marginal means. As a result, the Bahadur parameterisation requires a set of complicated

constraints on the model parameters, which make maximisation of the likelihood very

difficult. Also, the computational work increases as the cluster size increases. Except

in settings with small cluster sizes, the Bahadur parameterisation has not been widely

adopted for the analysis of clustered data with binary responses.

Other parameterisations

The log-linear model (Bishop et al., 2000) is another popular example of a probability

model for multivariate binary responses. Assuming that the all clusters are of equal

size, i.e. Ni = N ∀ i, the joint probability distribution of a vector of binary responses

is

P (Y ∗i = y∗i ) = c(θ) exp

(
N∑
j=1

θ
(1)
j yij +

∑
j1<j2

θ
(2)
j1,j2

yij1yij2 + . . .+ θ
(N)
1,2,...,Nyi1yi2 . . . yiN

)
,

(2.11)

where θ = (θ
(1)
1 , . . . , θ

(1)
N , θ

(2)
1,2, . . . , θ

(2)
N−1,N , . . . , θ

(N)
1,2,...,n) is the vector of 2N − 1 canon-

ical parameters, and c(θ) is the normalising constant for the probability distribution

to add up to one. These parameters have interpretations in terms of conditional prob-

abilities. Consider, for example, the quadratic exponential model, where third- and

higher-order terms in equation (2.11) are set equal to zero:

θ
(1)
j = logit{P (Yij = 1|Yik = 0, k 6= j)}, j = 1, . . . , N,
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θ
(2)
jk = log OR(Yij, Yik|Yil = 0, l 6= j, k), j < k = 1, . . . , N.

As discussed in Diggle et al. (2002, pg.142-144), canonical parameters are useful for

the calculation of cell probabilities, but not convenient when the target is to describe the

joint distribution of a vector of binary responses as a function of explanatory variables,

i.e. when the parameters θ depend on explanatory variables, θ = θ(x). Another

limitation of the canonical parameters is the sensitivity of interpretation to changes in

the number of observations in the cluster. IfN changes, the value and the interpretation

of the canonical parameters change as well.

Given the limitations of the canonical parameters θ, alternative parameterisations,

stemming from the original log-linear model, have been proposed. These parame-

terisations start with the N marginal parameters µij = P (Yij = 1), i = 1, . . . , K,

j = 1, . . . , N , as the building block for the model. The remaining 2N −N − 1 param-

eters maybe specified in various ways.

Fitzmaurice and Laird (1993) proposed a parameterisation which uses marginal

means but the dependence between the responses is modelled as a function of condi-

tional odds ratios, as in the original log-linear model. The interpretation of the condi-

tional association parameters depends on the cluster size, so is more attractive for bal-

anced datasets. The marginal means are routinely modelled using a regression model,

µij = logit−1(β0 +XT
ijβ1) and, as noted by Fitzmaurice and Laird (1993), the likeli-

hood equations for β have the form of a GEE-type score equation.

Liang et al. (1992) parameterised the association structure between the responses

using marginal odds ratios which do not have interpretations conditional on other re-

sponses, do not depend on the cluster size and have weaker constraints than correla-

tions. The second-order associations using the marginal odds ratio are

OR(Yij, Yik) = γijk =
P (Yij=1,Yik=1)P (Yij=0,Yik=0)

P (Yij=1,Yik=0)P (Yij=0,Yik=1)
, j < k = 1, . . . , N . The parameter-

isation of the full distribution can be completed by expressing higher-order associations

in terms of contrasts of marginal odds ratios. The constraints in the parameters’ space

when N > 2 (weaker though from the Bahadur model) and the computational bur-

den which becomes larger as the cluster size increases limit the applicability of this

parameterisation.

To summarise, several parameterisations have been proposed for the joint distribu-

tion of binary responses. The second- and higher-order associations can be described
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in terms of correlations, marginal odds ratios or conditional odds ratios. Each of the

parameterisations has certain limitations. Even when the joint distribution is fully de-

fined, the likelihood can be complicated and its maximisation difficult, except in set-

tings with constant and small cluster size. An alternative is to consider methods based

on the quasi-likelihood function which is calculated from the first two moments only

(Wedderburn, 1974). GEE are a quasi-likelihood method and are presented next.

2.4.3 Generalised estimating equations

GEE (Liang and Zeger, 1986; Zeger and Liang, 1986) emerge as a multivariate exten-

sion of the quasi-likelihood principle (Wedderburn, 1974) for GLMs, and can be viewed

as an extension of GLMs for correlated data. A basic feature of GEE is that only the

univariate distribution for each response needs to be specified, not the joint distribution

of responses in each cluster. Due to the ease of implementation, the method has become

popular for the analysis of categorical and count clustered responses but can be used as

well for analysis of clustered continuous outcomes.

The Quasi-Likelihood principle

In contrast to the classical maximum likelihood estimation where the actual form of the

distribution of the dependent variable needs to be specified, quasi-likelihood estimation

requires fewer distributional assumptions about the response variable. Only the rela-

tionship between the mean and the covariates and the relationship between the mean

and variance need to be specified.

We initially consider quasi-likelihood for univariate response settings, i.e. Ni = 1

∀ i. So, Y ∗i = Yi is the ith univariate response and Xij = Xi is the q-dimensional

vector of covariates for the ith univariate response; i = 1, . . . , K. Also, µi = E(Yi |

Xi). A generalised linear regression model to describe the relationship between the

expected response and covariates is specified:

µi = h−1(β0 +XT
i β1),

where h(.) is a link function and β = (β0,β
T
1 )T is a (q + 1)-dimensional vector of

regression parameters.

The variance of the response variable is assumed to be a function of the mean i.e.

var(Yi|Xi) = φv(µi), where φ is a scale parameter and v(µi) is called the variance
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function. The quasi-likelihood function for each univariate response was defined by

Wedderburn (1974) as Ui = U(Yi, µi) = ∂Qi(Yi,µi)
∂µi

= Yi−µi
v(µi)

. It can be shown to have

similar important properties to the derivative of a log-likelihood:

(i) E(Ui) = 0, (ii) var(Ui) =
1

φv(µi)
and (iii) − E

(
∂Ui
∂µi

)
=

1

φv(µi)
. (2.12)

When the responses are independent and their variance is constant, the log-quasi-

likelihood can be expressed as Q = Q(µ1, . . . , µK ;Y1, . . . , YK) =
∑K

i=1Qi(µi, Yi)

and has similar properties to the actual log-likelihood.

Estimates for the regression parameters are obtained by maximizing the log-quasi-

likelihood, i.e. setting its derivative with respect to the parameters βk (k = 0, 1, . . . , q),

equal to zero:

∂Q

∂βk
=

∂

(
K∑
i=1

Qi(Yi, µi)

)
∂βk

=
K∑
i=1

∂Qi(Yi, µi)

∂βk

=
K∑
i=1

∂Qi(Yi, µi)

∂µi

∂µi
∂βk

=
K∑
i=1

U(Yi, µi)
∂µi
∂βk

=
K∑
i=1

yi − µi
v(µi)

∂µi
∂βk

= 0.

The above estimating equations can be written in matrix form as

U(β) =
K∑
i=1

∂µi
∂β

v(µi)
−1 (Yi − µi) = 0. (2.13)

GEE

GEE are an extension of the quasi-likelihood approach to clustered data. The method

requires specification of (a) a model for the marginal mean (b) the variance of each

measurement in terms of the mean and (c) a model for the pairwise association between

responses in the cluster.

Returning to the setting of clustered data recall that µ(Xij) = E(Yij | Xij),

µij = µ(Xij) and µi = (µi1, . . . , µiNi)
T . A marginal regression model µ(Xij) =

h−1(β0 + XT
ijβ1) is specified, where h(.) is a known link function and β a (q + 1)-

dimensional vector of unknown parameters of interest. A working correlation structure

is also chosen. Depending on this choice, the actual working correlation may involve

unknown parameters ρ that need to be estimated. LetRi(ρ) denote the working corre-

lation matrix for cluster i.
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If the marginal model is correctly specified, then under regularity conditions the

solution β̂ to the following GEE is a consistent and asymptotically normally distributed

estimator of β:

K∑
i=1

U(β;ρ;Y ∗i ,X
∗
i ) =

K∑
i=1

∂µTi
∂β

V −1
i (ρ)(Y ∗i − µi) = 0, (2.14)

where Vi = A
1/2
i Ri(ρ)A

1/2
i φ is the working covariance matrix for cluster i and Ai

is the Ni × Ni diagonal matrix whose jth diagonal element is v(µij). Robustness to

misspecification of the working correlation is one of the most important features of

GEE; even if the working correlation assumption is false, the GEE estimator provides

consistent estimation of β. Pepe and Anderson (1994) raise a note of caution when

X∗i includes cluster-varying covariates. They show that equations (2.14) are consistent

provided that the condition:

E(Yij |Xij) = E(Yij |X∗i ) ∀ j (2.15)

is satisfied. When condition (2.15) is unlikely to hold, equations (2.14) should be ap-

plied with independence working correlation for consistent estimation.

The variance of β̂ is consistently estimated by the sandwich estimator(
K∑
i=1

∂µTi
∂β

Vi(ρ)−1 ∂µi
∂βT

)−1( K∑
i=1

∂µTi
∂β

Vi(ρ)−1var(Y ∗i )Vi(ρ)−1 ∂µi
∂βT

)

×

(
K∑
i=1

∂µTi
∂β

Vi(ρ)−1 ∂µi
∂βT

)−1

, (2.16)

where an estimate for var(Y ∗i ) is given by (Y ∗i − µi)(Y ∗i − µi)T and all quantities

are evaluated at β̂ and ρ̂. The variance estimator is also known as robust variance

estimator because it provides consistent variance estimation even when the working

variance assumption is false, provided the number of clusters is large. If the working

correlation matrix is the true one, then var(Yi) = Vi(ρ) and the sandwich variance

estimator reduces to the model-based estimator,
(∑K

i=1
∂µTi
∂β
Vi(ρ)−1 ∂µi

∂βT

)−1

.

Liang and Zeger (1986) suggested using moment estimates for ρ and φ, and a

modified Fisher scoring iterative algorithm to solve the GEE:

1. Obtain an initial estimate for β̂(0), from the fit of a GLM ignoring the dependence

between repeated measurements.
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2. Obtain estimates of φ and ρ andRi(ρ), i = 1, . . . , K (see below).

3. Use the current estimates for β, φ and ρ to obtain an updated estimate for β (see

below).

4. Return to Step 2 and continue iterating until convergence.

Step 3 uses the iterative procedure

β̂(m+1) = β̂(m) −

{
K∑
i=1

∂µTi
∂β

V −1
i

∂µi
∂βT

}−1{ K∑
i=1

∂µTi
∂β

V −1
i (Yi − µi)

}
,m = 1, . . .

(2.17)

and current estimates for β and ρ are substituted in the right hand side of equation

(2.17) to update β.

In Step 2, moment estimates for φ and ρ are obtained. Firstly, φ is estimated:

φ̂ = 1∑K
i=1Ni−p

∑K
i=1

∑ni
j=1 r̂

2
ij where rij =

Yij−µij√
v(µij)

and r̂ij =
yij−µ̂ij√
v(µ̂ij)

are the theoretical

and observed standardised Pearson residuals respectively.

The estimate of φ is then used to estimate ρ. Although estimation for β is ro-

bust to misspecification of the working correlation, an appropriate specification of the

working correlation can increase the efficiency of the regression parameter estimates.

The choice of the working correlation structure should generally be consistent with the

observed correlations and prior knowledge. The off-diagonal elements of the (Ni×Ni)

working correlation matrixRi(ρ) can be expressed in terms of the correlation parame-

ters ρ.

Commonly used working correlation structures are independence, exchange-

able, auto-regressive, unstructured and fixed. Independence working correlation

(Ri = INi) assumes that the observations within a cluster are independent and

does not require estimation of any correlation parameters. Exchangeable working

correlation (Ri(j, k) = ρ, j 6= k) assumes that all observations within a cluster

are equicorrelated. The moment estimate for ρ using all available pairs is: ρ̂ =

1
(K∗−q)φ

∑N
i=1

∑
j 6=k r̂ij r̂ik, where K∗ =

∑K
i=1Ni(1−Ni). Auto-regressive-1 working

correlation (Ri(j, k) = ρ|j−k|, j 6= k) assumes that the correlation decreases as the dis-

tance between observations increases. A moment estimate of ρ using adjacent pairs is:

ρ̂ = 1
(K∗∗−q)φ

∑K
i=1

∑
j≤Ni−1 r̂ij r̂ik, whereK∗∗ =

∑K
i=1(Ni−1). For longitudinal data,

auto-regressive-t correlation structure might be defined as Ri(j, k) = ρ|tj−tk|, j 6= k,
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where tj and tk indicate the times of measurements j and k. For unstructured cor-

relation structure (Ri(j, k) = ρjk, j < k) the working correlation structure is left

completely unspecified. The number of correlation parameters increases with the max-

imum cluster size. For balanced datasets (Ni = N ∀ i), 1
2
N(N − 1) parameters need to

be estimated. The moment estimates are ρ̂jk = 1
(K−p)φ

∑N
i=1 r̂ij r̂ik. Estimation may be

inefficient for unbalanced datasets with few large cluster sizes.

Alternative GEE formulations

In their seminal article, Liang and Zeger (1986) emphasise that GEE are proposed as an

estimation method for marginal inference when the principal interest is in the associa-

tions between the expected outcome and covariates. The association structure between

the responses is treated as nuisance. Valid inference for the regression parameters is

obtained even if the association structure (expressed through correlations) is misspeci-

fied. The GEE proposed by Liang and Zeger (1986) were subsequently termed ‘GEE1’.

When the scientific question regards the association structure of the responses as well as

the estimation of regression parameters, moment estimation generally performs poorly

for the estimation of correlation parameters and several extensions have been proposed

to address this issue.

Prentice (1988) amended the GEE1, by adding a separate set of estimat-

ing equations for the parameters corresponding to pairwise correlations. For

the additional set of estimating equations the components that carry informa-

tion about the correlation between responses Yij and Yik are defined as Zijk =

(Yij−µij)(Yik−µik)√
v(µij)
√
v(µik)

, i = 1, . . . , K, j, k = 1, . . . , Ni. Zi consists of
(
Ni
2

)
+ Ni elements,

Zi = (Zi12, Zi13, . . . , ZiNi−1Ni , Zi11, Zi22, . . . , ZiNiNi).

Let ηijk = E(Zijk). The additional set of estimating equations for the correlation

parameters are:

Uρ(β,ρ) =
K∑
i=1

∂ηi
∂ρ
H−1

i (Zi − ηi) = 0, (2.18)

where Hi is a working covariance matrix for Zi. If the primary interest lies in mod-

elling the marginal mean, Prentice (1988) suggests using an identity or diagonal matrix

forHi. Although these choices are not optimal (Godambe, 1960), they result in simple

computation and minimally affect the efficiency of β̂. Comparative studies on the issue

of using a diagonal matrix Hi as opposed to alternative forms are given by Hall and
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Severini (1998).

The solution, ρ̂, to equations (2.18) is obtained iteratively:

ρ̂(m+1) = ρ̂(m) −

{
K∑
i=1

∂ηTi
∂ρ

H−1
i

∂ηi
∂ρT

}−1{ K∑
i=1

∂ηTi
∂ρ

H−1
i (Zi − ηi)

}
,m = 1, . . . .

(2.19)

An initial value for ρ is needed to start the iterative procedure in (2.19). Estimates

for β and ρ are obtained by iteration between equations (2.14) and (2.18). If the model

for the marginal mean is correctly specified, the solution to equations (2.14) is a con-

sistent estimate of β even when the model for the pairwise correlation is not correctly

specified.

The estimating equations for ρ and β can be written jointly as:

UGEEP (β,ρ) =
K∑
i=1

 ∂µTi
∂β

0

0
∂ηTi
∂ρ


 cov(Yi) 0

0 cov(Zi)


 Yi − µi

Zi − ηi


=

K∑
i=1

CiBiSi = 0. (2.20)

Under regularity assumptions the joint distribution of the solution (β̂, ρ̂) to equa-

tions (2.20) is asymptotically Normally distributed with mean (β,ρ) and variance con-

sistently estimated by(∑K
i=1C

T
i BiCi

)−1 (∑K
i=1C

T
i BiSiS

T
i BiCi

)(∑K
i=1C

T
i V

−1
i Bi

)−1

; all quantities

are evaluated at (β̂, ρ̂).

In Prentice’s GEE1, the estimating equations for β and ρ are considered to be

independent (this is reflected by the diagonal matrices Ci and Bi in equation (2.20)).

This might have some cost in terms of efficiency in the estimation of the regression

coefficients but has the advantage of retaining consistency under misspecification of

the working correlation structure. The advantage over the GEE1 of Liang and Zeger

(1986) is that formal inferences can be made about the correlation parameters. Prentice

(1988) mentioned that even in cases where scientific interest is in the marginal means

rather than in the correlations, careful modelling of the association structure might

improve the efficiency of β̂.

Several authors considered extensions of the Prentice’s GEE where estimation of

β and ρ is performed simultaneously. These methods are often termed ‘GEE2’. One
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motivation for such extensions is to increase the efficiency of the parameter estimates,

especially for ρ. Another motivation is that, certain choices for the working correla-

tion structure as opposed to the ‘true’ one, might cause breakdown of the asymptotic

properties of GEE1 (Crowder, 1995).

Preserving notation from Prentice’s GEE1, the following single estimating equa-

tion was proposed by Prentice and Zhao (1991) for joint estimation of the vector of

parameters of interest (β,ρ);

UGEE2(β,ρ) =
K∑
i=1

 ∂µi

∂β
0

∂ηi
∂β

∂ηi
∂ρ


T  cov(Y ∗i ) cov(Y ∗i ,Zi)

cov(Zi,Y
∗
i ) cov(Zi)


−1 Y ∗i − µi

Zi − ηi


=

K∑
i=1

CiBiSi = 0. (2.21)

Contrary to GEE1, in GEE2 the matrix of covariances Bi, and more importantly

the matrix of derivatives Ci, are non-diagonal. The implication of the first being non-

diagonal is that consistent estimation of β requires that, apart from the model for the

marginal mean to be correctly specified, the model for the pairwise associations to also

be correctly specified. An additional complication in GEE2 comes with the specifica-

tion of the working covariance matrixBi. In GEE2 (as well as in GEE1), three-way and

higher-order correlations are set equal to zero. Although cov(Y ∗i ) is fully specified by

the marginal means and pairwise correlations, specification of the other covariance ma-

trices requires third- and fourth-order moments of Y ∗i . Calculation of these moments

becomes computationally cumbersome as the cluster size becomes larger.

When the model for the marginal mean and the model for the pairwise correla-

tions are correctly specified, equations (2.21) yield consistent estimates for β. Under

regularity conditions the solution (β̂, ρ̂) to equations (2.21) is asymptotically normally

distributed with mean (β,ρ) and variance which can be consistently estimated by(∑K
i=1C

T
i BiCi

)−1 (∑K
i=1C

T
i BiSiS

T
i BiCi

)(∑K
i=1C

T
i V

−1
i Bi

)−1

and evaluated

at (β̂, ρ̂).

Liang et al. (1992) also developed GEE2 for clustered binary responses using odds

ratios, instead of correlations, as a measure of within-cluster associations between the

responses. The choice between GEE1 and GEE2 should be based on the bias-precision

trade-off and also depending on the scientific question to be answered. In GEE2, if
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the model for the marginal mean is true, consistency of β̂ depends also on the correct

specification of the model for the pairwise associations. If both models are correctly

specified, GEE2 provide consistent estimates for β with higher efficiency compared to

GEE1. GEE1 might provide slightly less efficient estimates for β but still consistent,

even if the model for pairwise associations is not correctly specified. Simulation studies

(Liang et al., 1992) indicate that GEE1 can be highly efficient for the estimation of β

but could be extremely inefficient for the estimation of ρ. Therefore, GEE1 should be

the preferred estimation method when interest is in modelling the marginal mean; if

modelling the marginal pairwise associations is equally important, GEE2 could be the

considered.

Finally, we draw attention to another extension of GEE for binary responses pro-

posed by Carey et al. (1993) and termed alternating logistic regressions (ALR). Through

an elegant combination of marginal and conditional specifications to capture the pair-

wise associations between the responses, addressing the third- and fourth-order mo-

ments is completely avoided, which is different to setting them to zero (Molenberghs

and Verbeke, 2006). The estimating equations for β remain the same as in (2.14).

ALR is an attractive procedure since it retains the computational ease of GEE1 and

robustness against misspecification of the model for the pairwise associations, but also

enables highly efficient estimation of association parameters with precision estimates,

as in GEE2. The computational burden is much less than in GEE2 and consequently

ALR can be used in datasets where the cluster sizes are moderate or large.

2.5 Random effects models

2.5.1 Formulation

In marginal models, the regression coefficients are considered to be constants and ac-

quire population-average interpretations. Random effects models (Laird and Ware,

1982) are differentiated from marginal models by the inclusion of regression coeffi-

cients specific to each cluster. The variability in regression coefficients between clus-

ters represents the natural heterogeneity between clusters due to unmeasured factors,

so the regression parameters measure the direct influence of covariates on the expected

outcome for specific clusters.

The typical specification of a random effects model has two components:
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1. A regression model for the expected outcome, conditional on random effects is

specified

µij = E(Yij |Xij, bi) = h−1(β0 + b0i +XT
ijβ1 +DT

ijb1i), ∀ i, j (2.22)

where bi = (b0i, b
T
1i)

T is a (qb + 1) × 1 vector of random effects and Dij is qb-

dimensional subset of Xij . Thus, a subset of regression coefficients is assumed

to vary between clusters. Conditional on bi, the clustered responses, Yij , are

assumed to be independent and have densities which belong to the exponential

family of distributions.

2. The random effects are assumed to share a common underlying multivariate dis-

tribution with zero mean and density function f(bi). Also, the random effects are

assumed to be independent of covariates, i.e. X∗i ⊥ bi ∀ i.

Model (2.22) is known as the Generalised Linear Mixed Model (GLMM). In the most

general scenario Dij = Xij , which means that each cluster has different regression

coefficients for all covariates. Usually the vector of the random effects, bi, is assumed

to follow a multivariate Normal distribution, bi ∼ MVN(0,G), where G is a (qb +

1) × (qb + 1) variance-covariance matrix with elements to be estimated. Contrary to

marginal models where the marginal mean is modelled separately from the within-

cluster correlation, in random effects models the correlation among the responses in

the same cluster arises from the shared random effects.

A frequently used random effects model is the random intercepts regression model

Yij = β0 + bi + β1Xij + εij, i = 1, . . . , K, j = 1, . . . , Ni, (2.23)

where bi ∼ N(0, σ2
b ) and εij ∼ N(0, σ2

ε ). The random effects, bi, i = 1, . . . , K

are independent between each other and independent from the error terms εij . The

fixed effect β0 corresponds to the population average when Xij = 0; bi represents the

deviation of the cluster-specific average from the overall mean. Usually σ2
ε is known as

the ‘within-cluster variance’ and σ2
b as the ‘between-cluster variance’.

It is of interest to consider the covariance matrix and subsequently the correlation

matrix of the responses in cluster i for the random intercepts model. The diagonal and
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off-diagonal elements of the covariance matrix are, respectively:

var(Yij) = var(bi + εij) = var(εij) + var(bi) = σ2
ε + σ2

b ,

cov(Yij, Yik) = cov(bi + εij, bi + εik) = var(bi) = σ2
b .

The correlation matrix has common off-diagonal elements, ρ =
σ2
b

σ2
ε+σ2

b
. This observa-

tion serves as a justification of the fact that the exchangeable correlation model (often

used when modelling the covariance structure in marginal linear models for clustered

data) arises from a random intercepts model.

Random effects models are also known as ‘multilevel’ or ‘hierarchical’ models

because of the underlying hierarchical structure of the model. For example, one can

think of the linear random intercepts model (2.23) as a model formed in two levels or

stages. The first stage, which refers to the measurement level is Yij = βi+β1Xij + εij;

in the second stage, which corresponds to the cluster level, the cluster-specific intercept

is partitioned into a fixed part and random part, β0i = β0 + bi, where β0 is the overall

intercept and bi ∼ N(0, σ2
b ). Terms εij and bi are known as level-1 and level-2 residuals

respectively.

2.5.2 Estimation

Considering the general random effects model in equation (2.22), the parameters of

main interest are the vector of fixed regression coefficients and the variance parameters

in the distribution of random effects. Interest might also lie in estimating the cluster-

specific parameters bi. These can be often used to detect groups of clusters that evolve

differently over time, to detect special cluster profiles (for example outlying clusters)

or to make predictions about cluster-specific evolutions.

There are three approaches to obtain inference for random effects models. The

first, ‘Conditional likelihood’, is used when interest lies only in regression coefficients

that do not have a random part. The underlying principle in conditional likelihood

estimation is that the random effects bi are regarded as nuisance effects and only the

part of the data which does not contain information about bi is used to make inference

about the subset of regression coefficients which only have a fixed part. Such inference

is called ‘conditional inference’. The second, maximum likelihood estimation, can be

used to estimate the parameters of main interest, while estimates for the random effects

can be obtained using special methods such as ‘Empirical Bayes’. The third approach



2.5. Random effects models 42

is to implement a fully Bayesian approach where prior distributions are specified for

the parameters of main interest and the random effects.

Conditional inference

In the conditional likelihood approach (McCullogh and Nelder, 1989, Section 7.2), bi

are considered ‘nuisance’ or ‘incidental’ parameters that need to be conditioned out of

the problem. They may be considered as nuisance in the sense that, although they are

necessary for the assumed model to make sense, their value is not of main interest to the

researcher. The likelihood of the responses, (Y ∗1 , . . . ,Y
∗
k ), is maximised conditional

on the sufficient statistics of bi. Conditional likelihood has two important advantages:

first, no distributional assumptions are needed for bi and second, it does not require the

condition of independence between the random effects and covariates to be true.

Although conditional inference simplifies the estimation procedure by suppress-

ing the complexity that arises from defining the distribution of bi, it also has some

important limitations. All information about bi is lost. More importantly, the covariate

effects of any cluster-constant covariates cannot be estimated. Also, it is not possible

to estimate the fixed part of regression coefficients which have a random part. Consider

for example, a random intercepts model with a single cluster-varying covariate X and

a vector of cluster-constant covariates S

E(Yij|Xij, bi) = h−1(β0 + bi + β1Xij + β2Si).

Inference using conditional likelihood (which in this case conditions on the sufficient

statistics (
∑N

j=1 Yij) for bi) only allows estimation of β1 which is the within-cluster

effect of X . By conditioning out of the problem the random effects bi, all information

on β0 and β2 is also lost (see, for example, Goetgeluk and Vansteelandt, 2008).

An application of conditional inference, conditional logistic regression, is fre-

quently encountered in case-control studies. Consider for example a case-control study

of 100 matched pairs (200 subjects) and a single risk factor of interest. The number

of parameters to be estimated adds up to 101, since there exist 99 dummy variables

for each matched pair, plus the intercept term and one parameter for the risk factor

of interest. Ordinary logistic regression is unsuitable in this case because of the large

number of parameters compared to observations. As often estimating or modelling the

baseline risk is not of direct scientific interest, the problem can be alleviated through
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conditional inference. The pair-specific parameters are considered to be nuisance and

are integrated out of the problem by conditioning on their sufficient statistics; only the

effect of the risk factor is estimated.

Several authors (see, for example, Neuhaus and Kalbfleisch, 1998; Neuhaus and

MCculloch, 2006) studied the connection between conditional likelihood and estima-

tion of within-cluster effects in the context of cluster confounding. This relation is

further discussed in Section 2.8.

Maximum likelihood estimation

MLE can be used when bi is also of interest, apart from the fixed part of the regression

coefficients. Contrary to the conditional inference approach where the within-cluster

effect of cluster-varying covariates can be estimated by utilising only longitudinal in-

formation (i.e. information from clusters where the covariates vary), in the maximum

likelihood approach also cross-sectional information (i.e. information from clusters

where X does not vary within-clusters) is used to make inferences about β in model.

The underlying idea is that knowledge about a cluster’s regression coefficients can be

informed by the variability of the regression coefficients across the population. So, the

terms bi are assumed to be a sample of unobservable variables from a distribution.

The distribution of random effects is usually assumed to be a multivariate Normal

distribution with mean zero, covariance matrixG and density f(bi | G). The vector of

unknown parameters to be estimated is denoted by δ and includes the fixed effects β

and the variance elements inG.

The likelihood contribution of cluster i (suppressing dependence on covariates) is

obtained by integrating over the distribution of the random effects, bi:

f(Y ∗i | δ) =

∫ Ni∏
j=1

f(Yij | bi,β)f(bi | G) dbi, i = 1, . . . , K. (2.24)

So, the likelihood is:

L(δ | Y ∗1 , . . . ,Y ∗K) =
K∏
i=1

f(Y ∗i | δ) =
K∏
i=1

∫ Ni∏
j=1

f(Yij | bi,β)f(bi | G) dbi. (2.25)

A key issue in the evaluation of the likelihood function in expression (2.25) is the cal-

culation of the K integrals of the form (2.24). Analytic expressions for the likelihood

contribution of cluster i exist only in limited cases. In a linear mixed model, for ex-

ample, the contribution of each cluster in the likelihood is the density of a multivariate
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Normal distribution with meanX∗iβ and variance Vi = D∗Ti GD
∗
i + Σi, where matri-

cesX∗i andD∗i are the Ni × (q + 1) and Ni × (q + 1) design matrices for the (q + 1)-

and (qb + 1)-dimensional vectors β and bi, respectively (recall that the first column of

X∗i andD∗i is a column of units). Also, matrix Σi is the covariance matrix of the error

terms in the linear regression model and usually Σi = σ2INi . Estimation can then be

completed by maximising the likelihood or the restricted likelihood.

In general, for discrete responses no analytic expressions exist for the integrals

in equation (2.24) and numerical approximations are required for the evaluation of the

K integrals involved. Popular methods for the approximation of the integral in (2.24)

are the Gaussian Quadrature and Adaptive Gaussian Quadrature. We also note that

the original formulation of REML, as it was described in Section 2.4.1, only applies

to LMMs; the extension to GLMMs is not straightforward. Alternative REML-type

estimators have been used for GLMMs (Liao and Lipsitz, 2002; Bellio and Brazzale,

2011).

Once the issue of the evaluation of the likelihood function has been addressed,

the resulting likelihood function needs to be maximised to obtain maximum likelihood

estimates. By setting the derivative of the log-likelihood equal to zero, score equations

for δ are obtained. The Expectation-Maximisation (EM) algorithm, popularised by

Dempster et al. (1977) as a computing algorithm for incomplete data settings, finds

an application in solving the score equations for δ. In this case, there are no missing

data but it is assumed that the ‘complete data’ for a cluster comprise of the observed

responses Yi and the unobserved random effects bi. Following Diggle et al. (2002, pg.

173-175), the complete-data score functions for β and G have a simple form and are

functions of the unobserved quantities bi. The ‘observed-data’ score functions can be

obtained by taking the expectation of the complete data score equations with respect to

the unobserved random effects bi. The EM algorithm iterates between two steps. The

‘Expectation’ step involves calculation of the expectations in the score functions using

the current parameter estimates. In the ‘Maximisation’ step the score equations are

solved to obtain updated parameter estimates. The expectation step involves integration

to obtain the expectation conditional on bi. When the dimension of bi is one or two,

the integration can be carried out using numerical techniques. For higher dimension of

bi Monte Carlo integration methods are required.
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Apart from the estimation of fixed effects and variance components it might also

be of interest to obtain estimates for the cluster-specific parameters bi. Since these are

assumed to be random variables, Bayesian techniques are usually deployed for such

purposes. The target is to calculate the ‘posterior’ distribution of bi conditional on the

responses, where the unknown parameters (β and G) have been replaced by their ML

or REML estimates. In the Bayesian framework, the distribution of the random effects,

bi, is the prior distribution with density f(bi | G) and f(Y ∗i | bi) is the density function

of the distribution of Y ∗i conditional on bi. The posterior density of bi is given by

f(bi | Y ∗i ,β,G) =
f(Y ∗i | bi) f(bi | G)∫
f(Y ∗i | bi) f(bi | G) dbi

. (2.26)

In the special case of linear responses with Gaussian random effects, the density in

(2.26) is a Normal density and the posterior mean of that Normal distribution is used

as a point estimate for bi. More generally, for non-Gaussian responses the density

in (2.26) is not Normal and the mode of the posterior distribution is used as a point

estimate of bi. The obtained estimates, b̂i are called ‘Empirical Bayes (EB)’ estimates.

Bayesian approach

Although maximum likelihood estimation is convenient in the case of linear mixed

models because of the conjugation of the assumed distribution of the responses and the

distribution of random effects, numerical integration is necessary to obtain likelihoods

when the responses are non-Gaussian. The hierarchical structure of model (2.22) makes

a Bayesian formulation (Zeger and Karim, 1991) for alternative estimation of parame-

ters very appealing. Prior distributions are firstly introduced for the fixed effects β and

the variance components G. Commonly used priors for β are Normal or flat distribu-

tions and for G non-informative priors. Given the specification of the priors, the joint

posterior distribution is

f(β,G, b1, . . . , bK | Y ∗1 , . . . ,Y ∗K) ∝
K∏
i=1

Ni∏
j=1

f(Yij | β, bi)
K∏
i=1

f(bi | G)f(G)f(β).

The Gibbs sampler is used for estimating the desired posterior distributions. Estimates

for β,G and also bi are obtained by drawing samples from their posterior distributions.

The Bayesian approach is easy to implement (although computationally intensive) and

is flexible in changes in the dimension and the distribution of random effects.
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2.6 Conditional models
Conditional models are used to characterise the conditional expectation of the outcome

Yij in terms of subsets of other outcomes and covariates of interest. A special case of

conditional models arises in longitudinal studies where the conditional distribution of

each response Yij is described in terms of previous responses. Such models are known

as transition models. The dependence among the repeated responses arises through the

past responses which are viewed as influencing the one being modelled.

The specification of a conditional model depends on the researcher’s beliefs as to

how the current response might be associated with other responses. A general specifi-

cation of a conditional regression model for the conditional expectation of the current

outcome Yij in terms of all other outcomes and covariates is:

E(Yij|{Yik, k 6= j},Xij) = h−1(β0+XT
ijβ1+Y T

ij′ γ), i = 1, . . . , K, j = 1, . . . , Ni,

(2.27)

where Yij′ denotes the vector of all outcomes except the one being modeled.

Due to the sequential nature of repeated responses, transition models have found

application in longitudinal studies. The number of previous responses upon the current

response is assumed to be associated with is called the order of the model. A transition

model of order s is expressed as

E(Yij|Yij−1, . . . , Yij−s,Xij) = h−1{β0s +XT
ijβ1s +

s∑
r=1

γrfr(Hij)}, (2.28)

where Hij = (Yi1, . . . , Yij−1) denotes the history of observed responses and fr(Hij)

denotes functions (often non-linear) of the history of previously observed responses.

The notation β0s and β1s in equation (2.28) is used to emphasise that, in general, the

value and interpretation of the regression coefficients depends on s.

For example, in a simple first-order stationary transition model the current re-

sponse is modelled only in terms of the previous response

(
∑s

r=1 γrfr(Hij) = γ1f1(Yij−1)) and covariates. So, model (2.28) is simplified to

E(Yij|Yij−1,Xij) = h−1(β0 +XT
ijβ1 + γ Yi,j−1), i = 1, . . . , K, j = 1, . . . , Ni.

Such a transition model is known as ‘auto-regressive model of order 1’.

In fitting transition models such as the ones described by (2.28), past responses

can be treated as additional explanatory variables. If terms fr(Hij) do not depend
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on β, estimation simply proceeds as in standard GLMs for independent responses.

Otherwise, estimation is feasible using a re-weighted least squares algorithm for β and

γ (Diggle et al., 2002, pg. 193). As conditional and transition models are not the main

focus in this work, no further details are provided regarding the estimation methods.

There are certain limitations in the use of transition models and their application is

somewhat limited compared to marginal and random effects models. In general, tran-

sition models have been developed for equally spaced responses; their generalisation

in scenarios with non-equidistant responses or in scenarios with missing data is not

straightforward (Fitzmaurice et al., 2009, pg. 21). Additionally, the regression coeffi-

cients are sensitive to assumptions about the time dependence (Fitzmaurice et al., 2009,

pg. 21) and also their interpretation depends on the order of the serial dependence. A fi-

nal concern is that, if a vector of covariates is known to be associated with the expected

response at all times, then by conditioning on past responses the effect of covariates

might be attenuated.

2.7 Comparison of approaches
The choice between one of the three modeling approaches depends on the scien-

tific question to be answered. In marginal models, regression parameters acquire

population-average interpretation, for random effects models interpretation specific to

each cluster (i.e. conditional on random effects), while for conditional models interpre-

tation conditional on other responses. Arguably, the choice between a marginal and a

random effects approach is subtle (see, for example, Carriere and Bouyer, 2002). On

the other hand, if interest lies in the direct effect of previous responses on the current

one, a transition model would be the obvious choice. We next consider special cases

where marginal regression parameters coincide with the corresponding ones from ran-

dom effects or transition models.

When h(.) is the identity function, it is noted (Diggle et al., 2002, pg. 132; Begg

and Parides, 2003) that fixed effects parameters in random effects models also have a

marginal interpretation. We writeE(Yij |Xij) = βM0 +XT
ijβ

M
1 andE(Yij |Xij, bi) =

βRE0 +b0i+X
T
ijβ

RE
1 +DT

ijb1i for the marginal and random effects models, respectively.

Integrating over the distribution of bi for the random effects model, E(Yij|Xij) =

E{E(Yij | bi)} = E(β0 + b0i + XT
ijβ

RE
1 + DT

ijb1i) = β0 + XT
ijβ

RE
1 and it follows
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directly that βM = βRE .

Similar equivalence in parameter interpretation between marginal and transition

models for the link function other than the identity one does not exist in general (Diggle

et al., 2002, pg. 134). Nevertheless, Diggle et al. (2002, pg. 133) showed that for a

certain formulation of a transition model, the transition model regression parameters

have the same interpretation as the marginal ones. They considered a model with an

auto-regressive error structure:

Yij = βCO0 + βCO1 Xij + εij (2.29)

and

εij = αεij−1 + Zij, Zij ∼ N(0, σ2). (2.30)

Model (2.29) can be expressed as Yij = βCO0 +βCO1 Xij+α(Yij−1−βCO0 −βCO1 Xij−1)+

Zij , which describes a transition model with the current response depending on the

previous one. From equations (2.29) and (2.30) it follows that E(Yij|Xij) = βCO0 +

βCO1 Xij and therefore the parameters of the particular transition model have a marginal

interpretation as well.

For discrete responses, regression parameters in marginal, random effects and tran-

sition models are generally different. Consider, for example, the marginal and random

intercept models, respectively, for logistic regression:

E(Yij|Xij) = logit−1(βM0 + βM1 Xij) (2.31)

and

E(Yij|Xij, bi) = logit−1(βRE0 + bi + βRE1 Xij), bi ∼ N(0, σ2
b ). (2.32)

The marginal expectation E(Yij|Xij) in the random intercepts model can be ob-

tained by integrating over the distribution of the random effects: E{E(Yij|Xij, bi)} =

E{logit−1(βRE0 + bi + βRE1 Xij)} 6= logit−1(βM0 + βM1 Xij). From the last expression,

it follows that there is no equivalence between the marginal regression parameters and

the fixed regression coefficients in a random intercepts model. The interpretation of the

parameters in marginal and random effects logistic models differs as well: the first one

is used to describe the ratio of population odds, while the second to describe the ratio

of the odds for a specific cluster.
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In the case of logistic regression with random intercepts, the relation between

the parameters βRE in model (2.32) and βM in model (2.31) has been established.

Neuhaus et al. (1991) showed that |βM
k | ≤ |βRE

k |, k = 0, . . . , q. The equality holds only

if a parameter’s value is zero. Also, they proved that the difference between βM
k and

βREk increases as the between-cluster variability (defined by σ2
b ) increases. Zeger et al.

(1988) proved that the approximate relationship between βM and βRE is

βM ≈ (c2σ2
b + 1)−1/2(βRE), c = 16

√
3/15π.

In models for count data (log-linear regression), marginal and random effects pa-

rameters can be equivalent in magnitude and interpretation in some cases (Diggle et al.,

2002, pg. 137). The most important one is when a Poisson random intercepts regression

model is considered: E(Yij|Xij, bi) = eβ0+bi+X
T
ijβ

RE
1 , bi ∼ N(0, σ2

b ). The marginal ex-

pectation is obtained by integrating over the distribution of bi:

E(Yij|Xij) =
∫

eβ0+XT
ijβ

RE
1 ebi dbi = eβ0+XT

ijβ
RE
1
∫

ebi dbi = eβ
RE
0 +c+XT

ijβ
RE
1 , where

c is an additive constant coming from the integration. Comparing with the marginal

Poisson model, E(Yij|Xij) = eβ
M
0 +XT

ijβ
M
1 , it is inferred that apart from the intercept

term, the other components of βM and βRE are equal.

2.8 Between- and within-cluster effects
An advantage, as well as a challenge in the analysis of clustered data, is the presence

of cluster-varying (also termed within-cluster) covariates. In estimating the effect of

a cluster-varying covariate, confounding due to cluster-level (observed or unobserved)

characteristics might cause problems for the analysis. Standard methods for regression

analysis imply models that relate the response with the covariates assuming (explic-

itly or implicitly) that the between- and within-cluster effects are equal (Neuhaus and

Kalbfleisch, 1998; Mancl et al., 2000).

We initially consider models whose only random effects are random intercepts,

i.e.

E(Yij |Xij, bi) = h−1(β0 + bi + βT1Xij). (2.33)

Under cluster-level confounding, a subset of X may be correlated with the ran-

dom intercepts, violating a basic assumption of random effects models which states

that covariates must be independent of the random effects. This violation is likely to

jeopardise the validity of GLMMs. Research has focused on assessing the validity of



2.8. Between- and within-cluster effects 50

parameters estimates obtained from GLMMs under such violation and also on devel-

oping methods which are robust to this violation.

Neuhaus and Kalbfleisch (1998) proposed GLMMs which incorporate between-

and within-cluster covariate effects by partitioning covariate X into the between-

cluster component (X̄i = N−1
i

∑Ni
j=1Xij) and the within-cluster component (Xij −

X̄i):

E(Yij |Xij, X̄i, bi) = h−1{β0+bi+β
T
BX̄i+β

T
W (Xij−X̄i)}, bi ∼ N(0, σ2

b ). (2.34)

The between-cluster effect, βB, corresponds to the difference in the expected response

between two clusters whose average covariate value (X̄i) differs by one unit. The

within-cluster effect, βW , indicates that for a given cluster, the expected response in-

creases by βW units, for each unit increase in the deviation from the covariate mean

value (Xij − X̄i) within that cluster. Note that the partitioning of the effect of X into

the between- and within-cluster components can also be applied in marginal models,

leading to marginal rather than cluster specific inference.

Neuhaus and Kalbfleisch (1998) noted that fitting the standard random effects

model (2.33) is equivalent to assuming that the between-cluster effects are the same

as the within-cluster effects, i.e. βB = βW . When this assumption does not hold, it

is known (Scott and Hold, 1982; Neuhaus and Kalbfleisch, 1998; Palta and Yao, 1991)

that the regression coefficient β1 in (2.33) is a weighted average of the between- and

within-cluster coefficients in (2.34). Therefore, when the between- and within-cluster

effects are different, models which assume that these are the same, estimate neither the

between-cluster nor the within-cluster coefficients.

There are two exceptions to the rule above. First, for a cluster-level covariate,

since Xij = Xik ∀ j, k and X̄i = Xij ∀ j, β1 in model (2.33) corresponds to the

between-cluster effect of X . Second, if X is a ‘designed’ within-cluster covariate

(i.e. a cluster-varying covariate where X̄i is the same for all clusters), β1 consistently

estimates the within-cluster effect ofX .

Other methods have also been used for estimating the within-cluster effect of

X under cluster-confounding. For canonical link functions Neuhaus and MCculloch

(2006) suggested using the conditional likelihood method (conditioning on
(∑Ni

j=1 Yij

)
to ‘eliminate’ the random intercepts). Conditional likelihood remains valid when the
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covariates are correlated with the random intercepts, and provides consistent estimation

of the within-cluster effect of X under the effect of observed or unobserved cluster-

level confounders. Neuhaus and MCculloch (2006) describe the method of Neuhaus

and Kalbfleisch (1998) as the ‘poor man’s’ method, when compared to conditional like-

lihood. They note that the poor man’s method provides estimates for the within-cluster

effect of X with little or no bias when the link function is the identity or the logit link

one. They say the poor man’s method can be used as an alternative to conditional like-

lihood when the second cannot be used (e.g. when the link function is non-canonical).

Note that conditional likelihood only uses within-cluster information to estimate the

within-cluster effect of X , therefore it eliminates the effects of any cluster-constant

covariates in the model along with the with the effect of cluster-constant confounders.

Neuhaus and MCculloch (2006) also investigate the performance of standard GLMMs

when some covariates are not independent of the random intercepts. For the case of

a single covariate (X = X), they show (theoretically, for the identity link function

and through simulations for the logit link function) that when X is correlated with the

random intercepts, a GLMM provides inconsistent inference for the intercept term and

the effect of X . They explain that this bias can be seen as arising because of misspeci-

fication of the distribution of random effects.

More recent work includes the conditional GEE (CGEE - Goetgeluk and Vanstee-

landt, 2008) approach. Goetgeluk and Vansteelandt (2008) propose a semi-parametric

model of the form E(Yij | Xij,Vij,Si, bi) = h(β0 + XT
ijβ1 + V T

ij γ + STi δ + bi).

The covariate of main interest is X , while V and S are observed cluster-varying and

cluster-constant confounders, respectively. The method can be used to remove cluster

confounding due to observed confounders by including them in the model but also due

to unobserved cluster-level confounders, bi. Simply viewed, CGEE removes confound-

ing due to unmeasured cluster-level characteristics by making within-cluster compar-

isons (as conditional likelihood) and fits the model of interest (at least for the identity

link function) by using regression of change in the outcome to change in covariates.

Goetgeluk and Vansteelandt (2008) showed that the poor man’s method consistently

estimates the within-cluster effect of X for the identity but not for log link function.

CGEE, on the other hand, provides consistent estimation for the within-cluster effect

ofX under the effect of cluster-constant (observed or unobserved) and cluster-varying
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observed confounders. CGEE provides consistent estimation of the effect ofX for the

identity and log link functions but cannot be applied when the link function is the logit

one. Although the CGEE estimator solves GEE-type estimating equations, it provides

a cluster-specific rather than marginal inference.

Brumback et al. (2010) provide a useful review of methods for the within-cluster

effect of X when the responses are binary. They verify the findings of Neuhaus and

MCculloch (2006) by showing through simulations that bias from the use of the poor

man’s method is small in the case of logit function. So, the method remains useful

due to its ease of implementation but also because it allows for estimation of between-

cluster effects which is not possible under the conditional likelihood approach.

In summary, CL and CGEE are alternatives to using the poor man’s method

when we wish to estimate the within-cluster effect of X in the presence of cluster-

confounding. Both methods assume underlying random effect models in which the

effect ofX is the same in all clusters, i.e. the effect ofX does not have a random part.

For later reference we introduce the concept of a homogeneous effect ofX .

Definition 2.1 The effect of X is said to be homogeneous, if β1 is the same in every

cluster. Otherwise, the effect ofX is said to be non-homogeneous.

The GLMM in equation (2.33) assumes a homogeneous effect ofX . An example

of a random effects model where the effect ofX is non-homogeneous is:

E(Yij |Xij) = h−1(β0 + b0i +XT
ijβ1 +XT

ijb1i). (2.35)

In scenarios where the assumption of homogeneous effect of X is not true, CL

and CGEE methods do not consistently estimate the within-cluster effect of X . We

discuss this issue further in Section 3.12.

2.9 Missing Data
Missing data arise in a repeated measurements context when for one or more experi-

mental units, intended measurements have not been recorded for whatever reason. As

a result, some sequences of measurements are incomplete. Missing data are a com-

monly encountered issue in repeated measures studies. Specifically, the term dropout

is used to describe the scenario where the sequence of intended measurements for an
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experimental unit is terminated prematurely. Dropouts are often referred to as mono-

tone missingness. When intermediate intended measurements are missing, the terms

intermittently missing data or non-monotone missingness are used. In the rest of this

section, we exclusively concentrate on missingness in the response.

Methods of fitting regression models for clustered data were discussed in previous

sections but no reference was made regarding their robustness to missing data. In fact,

the presence of missing observations is often a decisive factor in selecting a method

for analysis. This is because certain missing data mechanisms render some methods

inappropriate. In the next section, we introduce the notation for missing data scenarios

and a unified missing data framework, as it was outlined by Rubin (1976) and Little

and Rubin (1987).

2.9.1 Notation and Definitions

A simple random sample of K clusters is drawn from a population of clusters. We

assume that all complete clusters are of the same size, which we denote by Ncomp.

Whenever the size of a sampled cluster, N , is less than Ncomp then there are further

Ncomp − N members who are missing, i.e. on whom Y and X are not observed.

Depending on the application it may be possible to index the members of each complete

cluster; when not possible we imagine an arbitrary indexing is applied.

Let Yj andXj denote the outcome and covariate vector for member j in the com-

plete cluster. Let Ỹ ∗ = (Y1, . . . , YNcomp)T and X̃∗ = (X1, . . . ,XNcomp). We shall

additionally use subscript i where necessary to denote the cluster (i = 1, . . . , K).

The random process that determines which of the Ncomp members are miss-

ing is called the missing data mechanism (MDM). For each cluster let R =

(R1, . . . , RNcomp)T , where Rj = 1 if member j is observed and Rj = 0 otherwise.

Let the observed and missing parts of Ỹ ∗ and X̃∗ be denoted by Ỹ ∗(R), Ỹ
∗

(R̄)
, and X̃∗(R),

X̃∗
(R̄)

respectively.

The classification of missing data mechanisms by Rubin (1976) and Little and

Rubin (1987) is fundamental to the analysis of incomplete data because is independent

of the statistical framework used to analyse the data. The data are said to be missing

completely at random (MCAR) if P (R = r | X̃∗, Ỹ ∗) = P (R = r) ∀ r; they

are covariate-dependent MCAR if P (R = r | X̃∗, Ỹ ∗) = P (R = r | X̃∗) ∀ r.
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They are missing at random (MAR) if P (R = r | X̃∗, Ỹ ∗) = π(r, X̃∗(r), Ỹ
∗

(r)) ∀ r

for some function π(.); they are covariate-dependent MAR if P (R = r | X̃∗, Ỹ ∗)

= π(r, X̃∗, Ỹ ∗(r)) ∀ r. Note that MCAR is a special case of MAR, and MAR is a

special case of covariate-dependent MAR. If the data are not MAR, then they are said

to be missing not at random (MNAR).

The property of making valid inferences (by using an estimation method) about

the measurements process, without explicitly dealing with the missingness process, is

called ignorability. Whether the missing data structure is ignorable or not, depends on

the chosen method of analysis. In the next sections, we discuss methods for analysing

datasets with missing data.

We may wish to investigate how various covariates are related to the outcome. A

marginal model can be specified

E(Yij |Xij) = h−1(β0 +XT
ijβ1) (2.36)

where h(.) is a link function and β = (β0,β
T
1 )T is a vector of parameters we wish to

estimate. Alternatively, a cluster-specific model can be specified

E(Yij |Xij, bi) = h−1(β0 + b0i +XT
ijβ1 +DT

ijb1i) (2.37)

where bi is a vector of random effects following a zero mean multivariate distribution

with variance matrix G and Dij is a qb-dimensional subset of Xij . The parameters of

main interest are the vector of regression coefficients, β and the variance matrix,G.

2.9.2 Simple methods for missing data

In this section, we briefly review a few simple approaches, the majority of which is

suitable for cases where the measurement and missingness process are independent and

their parameters are separated. These methods are usually easy to implement and can

be used when data are MCAR. Although simple, they suffer from serious drawbacks

and wide use of them is considered bad practice.

The easiest approach to deal with clustered incomplete data is to retain those

clusters for which all intended measurements have been obtained and discard all clus-

ters with missing data. This approach is termed Complete Case Analysis (CCA). The

method is easy to implement as the resulting dataset has the same data structure as the
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hypothetical complete one and therefore any statistical software can be used for anal-

ysis. However, CCA suffers from important drawbacks. An important disadvantage is

the potentially substantial efficiency loss, since a lot of useful information is discarded

along with all the incomplete clusters. In the best case, if the missingness process is un-

related to the measurement process then a complete case analysis will simply be a waste

of data (ethical issues may arise as well). In the worst, if the missingness mechanism

is not MCAR, this approach yields inconsistent parameter estimates.

The second category involves imputation methods which, instead of deleting in-

complete clusters, fill in the missing values to produce a ‘completed’ dataset. One can

distinguish two types of imputation: single and multiple. In single imputation each

missing value is filled in once and a single completed dataset is constructed. In multi-

ple imputation each missing value is filled in more than once to produce a number of

imputed datasets. Parameter estimates are then obtained by combining the estimates

from each dataset. In this section, we concentrate on single imputation approaches.

The simplest imputation-based technique is Last Observation Carried Forward

(LOCF) and is more suited for monotone missingness. It suggests extrapolating the

last observed measurement for a cluster until filling in the intended number of mea-

surements. A possible improvement would be to estimate the ‘trend’ for each cluster

and then complete the cluster not by extrapolating a constant value, but by using the

predicted value from the estimated trend. Another simple imputation technique is un-

conditional mean imputation where a missing value of a variable in a given cluster is

filled in by the average of the observed values of the same variable from other clusters.

It does not use information on a given cluster to complete its missing values.

Other single imputations methods also exist. For example ‘hot deck’ imputation

uses ‘matching’ to fill in the missing values in a cluster by using values from a similar

complete one. Most of the single imputation methods are only valid under the strong

assumption that data are MCAR. Also, even if they provide consistent point estimates,

they routinely fail to provide consistent precision estimators. In fact, the variance of the

estimates is usually underestimated because the artificially filled-in values are treated

as if they were observed.
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2.9.3 Methods for MAR

Here we provide an overview of the methods which provide valid inference when data

are MAR. We distinguish three main categories: likelihood-based methods, imputation-

based methods and modifications of the GEE, focusing on inverse probability weighting

(IPW) methods. Most of the methods subsequently presented are more suited to mono-

tone missingness. Whenever a method, or a modification of it, might also be applicable

in scenarios of non-monotone missingness, this will be indicated. Methods specifically

designed for non-monotone missingness, irregularly spaced observations and ‘outcome

dependent follow-up’ have also been developed. They are beyond the scope of this

thesis though and are not further considered.

Likelihood-based methods

Inference for complete data using likelihood based estimation only requires a correctly

specified model for the joint distribution of the responses. For incomplete data, a model

for the joint distribution of Ỹ ∗ and R is typically required. One possible factorisation

for the likelihood contribution of the ith cluster is

f(Ỹ ∗i ,Ri | X̃∗i ,γ,φ) = f(Ỹ ∗i | X̃∗i ,γ)f(Ri|Ỹ ∗i , X̃∗i ,φ). (2.38)

Often, little is known about the process leading to missing values. Inferences about γ,

which are the parameters of substantive interest, are generally sensitive to the assump-

tions in the model forR, even if the joint distribution of Ỹ ∗ is correctly specified.

In likelihood-based inference the missingness is ignorable under a MAR miss-

ing mechanism, i.e. f(Ri | Ỹ ∗i , X̃∗i ,φ) = f(Ri | Ỹ ∗(R)i, X̃
∗
(R)i,φ). Then the joint

distribution of the responses for the observed data in cluster i can be expressed as

f(Ỹ ∗(R)i,Ri | X̃∗(R)i,γ,φ) = f(Ỹ ∗(R)i | X̃∗(R)i,γ)f(Ri|Ỹ ∗(R)i, X̃
∗
(R)i,φ). (2.39)

Inferences can be based only on the first component, f(Ỹ ∗(R)i | X̃∗(R)i,γ), of the right

hand side of (2.39). So, in practise, when the missingness is ignorable, maximum like-

lihood estimates can be obtained by maximising the likelihood function corresponding

to the distribution of the observed data.

Apart from the assumption that data are MAR, it is also implicitly assumed that

the parameters, γ, of the measurement process and, φ, of the missingness process

are separately parameterised (separability). Fitzmaurice et al. (2009, pg. 411) argue
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that the assumption of separability is less important (than the MAR assumption) and

often reasonable in applications. Also, Diggle et al. (2002, pg. 284) note that if the

parameters are functionally dependent, ignoring the second term in the right hand side

of equation (2.39) might lead to an efficiency loss.

Ignorability under MAR in likelihood-based inference is an important result. All

likelihood-based methods for marginal models and random effects models result in

valid inference, provided that the model for f(Ỹ ∗(R)i | X̃∗(R)i,γ) is correctly specified;

no modelling of the missingness process is required. Likelihood-based methods can be

applied in scenarios of monotone and non-monotone missingness.

As it was seen in Section (2.4.2), maximum likelihood estimation is generally

unattractive for marginal inference when dealing with non-Gaussian outcomes because

of the complexities in formulating the joint distribution of the responses in each clus-

ter. To circumvent this limitation, methods which do not require specification of the

full distribution of the responses have been developed to provide valid inference under

MAR. Some of these methods are reviewed below.

Multiple imputation

In multiple imputation, each missing value is imputed M times (instead of 1) to reflect

the uncertainty in the value. Multiple imputation was introduced by Rubin (1987) and

consists of three main steps. First, an imputation model is assumed and each missing

value is replaced by M predicted ones by drawing samples from the predictive distri-

bution of the missing data given the observed. So, M imputed datasets are constructed.

Second, each imputed dataset is analysed using standard statistical methods (e.g. ran-

dom effect models, GEE), as if the data were complete. Thus, each dataset gives rise

to a set of point and precision estimates. Third, the estimates from the M datasets are

appropriately combined using Rubin’s rules (Rubin, 1987) into a single estimate for

the parameters of interest and corresponding standard errors. If the imputation model

is correctly specified, multiple imputation is valid (i.e. provides consistent parameter

estimation) when the data are MAR (implementations of MI also exist under MNAR

assumptions but these are not frequently used).

The most important part of the imputation procedure is the first step, i.e. produc-

ing the imputed responses. The underlying idea is to impute the unobserved responses

from the conditional distribution of the missing responses given the observed ones us-
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ing an imputation model. This model can be quite flexible, in the sense that it may

include covariates which are not included in the main analysis model (auxiliary covari-

ates). As far as the number of imputation covariates does not affect the stability of the

estimates, all covariates which are envisaged making the MAR assumption plausible

can be included in the imputation model. Two main methods have been proposed for

imputing the unobserved responses: the multivariate Normal approach (MVNI) and the

full conditional specification, often termed the ‘Chained Equations’ approach.

Schafer (1997) suggested joint imputation models for P (Ỹ ∗, X̃∗) where the vari-

ables in the model are assumed to follow a multivariate Normal distribution. MVNI

comes with an elegant theoretical justification and can be applied for monotone and

non-monotone missing patterns. Clearly, the assumption of multivariate normality is

not always plausible. However, Schafer (1997) seems to suggest that even if the mul-

tivariate Normal assumption is clearly false, MVNI can still provide valid inference. It

is not clear whether this statement is true since there exist mixed results suggesting that

MVNI may or may not provide valid inferences when the assumption of multivariate

normality does not hold (e.g. van Buuren et al., 2006; Yu et al., 2007; Lee and Carlin,

2010).

Chained equations (van Buuren, 2000, 2007) impute the missing responses

variable-by variable, by assuming a conditionally specified imputation model for the

variable being imputed conditional on all other variables. For longitudinal data, chained

equations can be applied by considering the responses at different (discrete) time points

as different variables to be imputed. For example, let Yj be the response at time point

j. Y1 is first regressed on all responses at other time points and covariates (including

auxiliary ones). The missing values in Y1 are filled by sampling from the posterior pre-

dictive distribution of Y1. Then Y2 is imputed by specifying a suitable model for a Y2

in terms of all other variables and using the imputed values for Y1. This sequential im-

putation of variables continues until missing values for all variables are imputed. This

procedure consists a ‘cycle’ and is repeated several times (say 10 to 20) to stabilize the

results. Chained equations can be applied for monotone and non-monotone missing

data, but imputing multilevel data is generally not straightforward (White et al., 2011).

The most attractive feature of chained equations is that there is no need to specify

multivariate density for P (Ỹ ∗, X̃∗). Instead, a separate imputation model is specified
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according to the nature of the variable to be imputed (e.g. linear model for a continuous

variable, logistic model for a binary variable etc). The method has been criticised of

lack of solid theoretical background (Goldstein et al., 2009). In particular, the condi-

tional distributions can be incompatible in the sense that no multivariate distribution

exists which yields the specified conditional distributions. Nevertheless, the method

has been seen to perform well in terms of bias and coverage for a number of occasions

through simulations and also to perform adequately in applications when compared to

MVNI (e.g. Lee and Carlin, 2010).

Modified GEE, IPW and Doubly Robust methods

While GEE are known to provide valid inferences under the stringent MCAR assump-

tion, the robustness of the method under the weaker MAR is questionable. Research

has focused on extensions of GEE where the objective is the validity of GEE under

MAR assumptions.

The ‘modified’ GEE approach, is essentially the standard GEE approach comple-

mented by careful modelling of the working correlation structure. It is known that

moment estimation of correlation parameters based on available pairs is generally inef-

ficient. For binary data, Lipsitz et al. (2000) and Fitzmaurice et al. (2001) use ‘Gaussian

estimation’ and ‘conditional residuals’ respectively for the estimation of the correlation

parameters. Both methods perform equally well and the authors’ epitome is that pro-

vided that the correlation structure is correctly specified and the correlation parameters

are correctly estimated, the modified GEE result in negligible bias. More recently, Co-

pas and Seaman (2010) report that the modified GEE can be substantially biased in

certain scenarios and therefore should be used with caution. Also, Seaman and Co-

pas (2009) report that the GEE using Gaussian estimation and conditional residuals did

not perform any better (in their data illustration) in terms of bias, coverage and mean

square error compared to GEE using available pairs. Often, the missingness process

might depend on past response history but also on the measurements of an auxiliary

process. A limitation of the modified GEE is that such auxiliary information cannot be

readily utilised.

A more flexible modification of the GEE involves inverse probability of weight-

ing methods (IPW). Robins et al. (1995) proposed Weighted GEE (WGEE) which

use inverse probability of observation weights to provide valid inference for random
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dropouts. In WGEE, each subject is inversely weighted by the probability of being

observed at that particular measurement occasion. The underlying idea is to up-weight

measurements with a small probability of being observed, so as to compensate for the

missing measurements from similar individuals who actually dropped out.

Similarly to equations (2.14), the WGEE are

K∑
i=1

∂µTi
∂β

V −1
i ∆i(α)(Y ∗i − µi) = 0, (2.40)

where ∆i(α) = diag(Ri1/ψi1, . . . , RiNmax/ψiNcomp) and ψij is the probability of the

response measurement on individual i being observed at time j. Let Hi,j−1 denote the

complete history up to time j − 1. Hi,j−1 may include observed responses, observed

regression covariates and observed auxiliary variables which are not included in the

regression model for outcome; all up to time j − 1. The probability of the response

measurement on individual i being observed at time j, ψij = ψij(α) = p(Rij = 1 |

Hi,j−1) is estimated from an assumed dropout model:

λij(α) = P (Rij = 0|Ri,j−1 = 1,Hi,j−1) (2.41)

and ψij = (1 − λi1) × . . . × (1 − λij). The parameters, α, of the dropout model are

estimated using logistic regressions. When the dropout model is correctly specified and

data are MAR, the solution of equations (2.40) is a consistent estimate of β.

Doubly robust approaches have also been proposed (Bang and Robins, 2005; Sea-

man and Copas, 2009). These methods combine WGEE and imputation methods and

require specification of both a dropout model and an imputation model. They are called

doubly robust or doubly protected because they provide consistent estimation if at least

one of the dropout and imputation models is correctly specified.

Recently, Diggle et al. (2007) (see also Farewell, 2010) proposed a challenging

new framework of analysis of longitudinal data subject to dropout. They proposed

methods where the objective of analysis is to make inferences for the longitudinal fea-

tures of the hypothetical population had nobody dropped out. This method is beyond

the scope of this work and is not further considered.

2.9.4 Methods for MNAR

When data are MNAR, the missingness process is non-ignorable in the sense that the

missingness structure must not be ignored when making inferences about the measure-
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ment process. Under MNAR, methods which are designed to provide valid inference

under MAR assumptions can yield severely biased results. Since the measurement and

missingness process are not independent their joint distribution is needed. One dif-

ficulty is that the observed data alone cannot verify or reject assumptions about the

missing data. Nevertheless, there is an active course of research towards the develop-

ment of methods for non-ignorable missingness.

Two main categories of models have been used; selection models and pattern mix-

ture models. These approaches mainly differ in the factorisation used to specify the

joint distribution of Ỹ ∗i and Ri. Also, shared parameters models have been proposed

and these may be used in a selection or pattern-mixture framework. We overview these

approaches in the next few paragraphs.

Selection Models

Selection models use the factorisation

f(Ỹ ∗i ,Ri | X̃∗i ,γ,φ) = f(Ỹ ∗i | X̃∗i ,γ)f(Ri|Ỹ ∗i , X̃∗i ,φ). (2.42)

This is a natural way of factorising the joint distribution of Ỹ ∗i and Ri into two com-

ponents. The first, f(Ỹ ∗i | X̃∗i ,γ), is the model for Ỹ ∗i if data were not missing. The

second, f(Ri | Ỹ ∗i , X̃∗i ,φ), is the model for the missing data which determines which

parts of Ỹ ∗i are missing. The model for the missing data also imposes an assumption

on the missing data mechanism.

The joint likelihood of Ỹ ∗i and Ri is specified and the selection model is fitted

using an iterative procedure, such as the EM algorithm. Term γ which usually contains

the parameters of main interest is obtained directly from the selection model analy-

sis. Considering the case of dropout, if MNAR is assumed, the dropout model for the

probability of a subject dropping out at a given occasion given that was in the study

in the previous occasion specifies dependence on the current and previous outcomes

(and possibly on other covariates). If MAR is assumed instead, then the dropout model

specifies dependence only on previously observed outcomes (and possibly covariates).

Then selection modelling leads directly to an ignorable likelihood analysis since infer-

ence can be based solely on the first component of equation (2.42).

A source of criticism for selection models is that distributional assumptions about

the missing data cannot be verified (Little, 1995; Little and Rubin, 2002). This issue
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is addressed to some extent by Kenward (1998) who suggested performing sensitivity

analysis by varying the assumptions about the missingness model.

Pattern-mixture models

Pattern-mixture models (Little, 1993, 1994) use the factorisation

f(Ỹ ∗i ,Ri | X̃∗i , δ,ν, ) = f(Ri | X̃∗i , δ)f(Ỹ ∗i | X̃∗i ,Ri,ν). (2.43)

This factorisation of the joint likelihood makes the application of pattern-mixture

models appealing under MNAR assumptions. By their construction, pattern-mixture

models are under-identified (or over-specified). Therefore, assumptions or restrictions

should be made to ensure identifiability. Although this feature could be considered as

a drawback of the method, it could also be considered as a requirement to make the

assumptions made about missingness explicit.

Molenberghs and Verbeke (2006, Chapters 18 and 20) suggest three possible

strategies to deal with the under-identifiability of the model. The first strategy is to

set identifiability restrictions from the beginning and these can be seen as analogous to

the assumptions on the missing data process, when using selection models. Three spe-

cial cases are briefly considered. The simplest identification used is the Complete Case

Missing Values (CCMV), where unavailable information is always borrowed from the

completers. In the second identification, unavailable information is obtained from the

nearest identified pattern and is termed Neighbouring Case Missing Values (NCMV).

The third case is Available Case Missing Values (ACMV), which is equivalent (Molen-

berghs and Verbeke, 2006, pg. 334) to the MAR assumption used in selection mod-

elling.

The second and third strategies are simpler. The subjects are firstly divided into

patterns according to their time of dropout (or their missing data pattern more gener-

ally). In Strategy 2, model simplification is achieved by fitting a separate model in each

pattern. In Strategy 3, the pattern indicator is included in the model as an additional

covariate. We note that in Strategies 2 and 3, untestable assumptions are made about

missingness. In Strategy 1, the assumptions about missingness (as identifiability re-

strictions) are made clear from the beginning. Technical details on implementing these

strategies in practice and choosing between them can be found in Molenberghs and

Verbeke (2006, Chapter 20); these are not discussed further in the context of this work.
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Shared parameters models

Shared parameters models is another category of methods used for MNAR missing-

ness. These combine the usual random effects regression model with a model for

missing data. The two models are linked through shared random effects (Hogan and

Laird, 1997; De Gruttola and Tu, 1994; Wu and Carrol, 1988). Suppressing the depen-

dence on covariates and parameters, shared random effects models use the factorisation

f(Ỹ ∗i ,Ri | bi) = f(Ỹ ∗i | bi)f(Ri | bi)f(bi), where bi is a vector of shared random

effects. Conditional on the shared random effects, the models for the main outcome

and missingness are assumed to be independent. This factorisation is analogous to the

one used in selection modelling. The joint distribution of Ỹ ∗i and Ri is obtained by

integrating over the distribution of the shared random effects. Parameter estimates are

obtained by maximising the log-likelihood function using the EM algorithm.

Similar principles can be applied in pattern-mixture models, using the corre-

sponding factorisation for the joint likelihood. For pattern-mixture models, over-

parameterisation issue can also be circumvented by considering the pattern-specific

parameters as nuisance and treating them as random (Guo et al., 2004).

2.10 Discussion
In this chapter we have introduced marginal, random effects and transition models for

the analysis of clustered data. We have discussed estimation methods and interpretation

of regression parameters in each approach.

One important issue in the analysis of clustered data is missing data. It has been

made clear that missing data, and in particular the assumptions about the missingness

mechanism, are decisive factors regarding the method of analysis to be chosen.

In the next two chapters, we discuss informative cluster size and informative co-

variate structure. We shall often refer to specific sections of the current chapter when

discussing adaptations of existing methods to deal with informative cluster size and

informative covariate structure. We shall discuss missing data and related estimation

methods again in Chapter 5 where we contrast informative cluster size to missing data.
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Chapter 3

Informative cluster size and covariate

structure

3.1 Introduction
In many medical research and audit studies, the data are clustered; for example re-

peated measurements of health status obtained on patients, each one relating to a clin-

ical episode. For each member (clinical episode) of a cluster (patient) an outcome

(health status) and a set of covariates (e.g. treatment) are measured. We may wish to

investigate how the various covariates are related to the outcome by using a marginal

regression model. The cluster size (number of clinical episodes) may vary between

clusters. When the cluster size varies, we might be interested in two types of inference.

In the first, the variability in size is an inherent feature of the data, rather than arising

because some of the data are missing. So, the observed clusters are complete and we

seek to make inference for the ‘observed clusters’. In the second, the variation in cluster

size is viewed as arising through missing data, i.e. some clusters are smaller because

some of their members were not observed. Therefore, the observed clusters are viewed

as incomplete and we seek inference for the ‘complete clusters’.

In this chapter, we are concerned about inference for the observed clusters. When

the cluster size varies, informative cluster size has been defined to arise when the

outcome is conditionally associated with the cluster size given the covariates, i.e.

E(Y | X, N) 6= E(Y | X). We see that informative cluster size can only arise

when 1) for scientific reasons the cluster size is not included as a covariate in the re-

gression model, and 2) the link between the outcome and cluster size does not only
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arise because both are linked to the covariates. We view X as the vector of covariates

of main interest (primary predictors), while N is regarded as a nuisance variable.

When the cluster size is informative Hoffman et al. (2001) and Williamson et al.

(2003) suggest that there are two marginal analyses of possible interest. Williamson

et al. (2003) describe this choice as being between inference for the population of all

cluster members and inference for a typical member of a typical cluster. For example,

in an audit of clinic consultations to examine resource use, inference for the population

of all cluster members (i.e. consultations) might be preferred, as clustering by patient

may not be of inherent interest. Conversely in a study of disease progression, inference

for a typical member of a typical cluster (i.e. a typical episode for a typical patient)

might be of more interest.

We define informative covariate structure to arise when the conditional expecta-

tion of the outcome for a particular member given the covariate values of that member

and the cluster size depends on the values of the covariates of other members of the

same cluster. Informative covariate structure is a generalisation to variable cluster size

of the situation studied by Pepe and Anderson (1994). When cluster size is constant,

they recommended the use of GEE with independence working correlation in this sit-

uation. In the current work, the type of informative covariate structure we shall most

closely consider, is when the expected outcome for a member in a cluster is associated

with the number of members in that cluster where the covariates take certain values.

The method of generalised estimating equations (Liang and Zeger, 1986) is widely

used for the marginal regression analysis of clustered data, due to its robustness against

the misspecification of correlation structure and its relative ease of use. Under informa-

tive cluster size, inference for the population of all cluster members may be obtained

through the application of standard GEE if independence is selected as the working

correlation. To provide inference for a typical member of a typical cluster two meth-

ods were first proposed: the within cluster resampling method termed WCR (Hoffman

et al., 2001) and the inversely weighted by cluster size GEE (CWGEE-Williamson

et al., 2003) also termed WIEE, since it uses the independence working correlation.

Recently, another potentially more efficient method was proposed by Chiang and Lee

(2008), based on an extension of the WCR method. However, these papers only con-

sidered in detail simple cases of informative cluster size, in the sense that the outcome
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depends only on cluster size and covariates and not on the interaction between these.

These papers also primarily considered covariates with simple distributions e.g. cluster

constant.

Other authors (Dunson et al., 2003; Gueorguieva, 2005; Chen et al., 2011) have

developed approaches based on jointly modelling the cluster size and the outcome mea-

surements. These methods are more complex and do not address marginal regression.

Alternatively, joint models for the outcome measurements and the cluster size can be

fitted in the special case where it is known when episodes could in principle occur and

covariate values at these times are available (e.g. Su et al., 2009). In this chapter,

though, we consider more general settings. We also assume that interest does not lie in

modelling the cluster size itself.

In the next section, we introduce the notation for this chapter and provide impor-

tant definitions. In Section 3.3 we present popular examples of informative cluster size

problems encountered in the literature. In Section 3.4 we explain why informative clus-

ter size causes problems to analysis and clarify that simple methods such as including

cluster size alongside the primary predictors in a regression model for the expected

outcome are not appropriate in general. We also explain the limitations of an alterna-

tive approach which assumes a model for the expected outcome in terms of X and N

but then obtains the marginal effect of X by marginalising over the distribution of N .

We next present and discuss the current methodology for marginal and cluster-specific

inference under informative cluster size. In Section 3.6 we formally define informative

covariate structure, additional populations for inference and provide guidance concern-

ing the choice of population for inference. We also propose simple adaptations of the

WIEE to provide unbiased inference for these populations. We comment on possible

strategies for selecting an analysis method when informative cluster size or covariate

structure are possible in Section 3.7. In Section 3.8 we highlight differences between

populations and in Section 3.9 we present simulation studies to assess the performance

of the WIEE. In Section 3.10 we apply the WIEE method to data on AIDS related con-

ditions from the Delta trial of HIV treatment. In Section 3.11 we bring into attention

another recent approach (Huang and Leroux, 2011), which relates to informative co-

variate structure. We discuss issues on the practical application of this approach and

identify areas for future work in Section 3.12. Finally we discuss our findings.
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3.2 Informative cluster size: notation and definitions
In this section we briefly remind the reader of the notation used in settings with clus-

tered data. We also formally define concepts that will appear frequently in the current

and the chapters to follow.

Suppose that an independent random sample of clusters is drawn from a popula-

tion of clusters. On each member of each cluster an outcome Y and a q-dimensional

covariate vector X are measured. For each cluster, let N denote the number of mem-

bers in the cluster, Y ∗ the vector whose jth element is the jth member’s value of Y ,

andX∗ the N × q matrix of covariate values.

When the cluster size varies two populations of members were initially proposed

by Williamson et al. (2003).

Definition 3.1

• The population of all members (M) consists of all members of all clusters in the

population.

• The population of typical cluster members 1 (C1) is the subpopulation of popu-

lation M in which each cluster contributes a single member at random. Thus, the

probability that each member is contributed to the population is N−1. This pop-

ulation provides inference for a typical member of a typical cluster (Williamson

et al., 2003).

Conditional and unconditional expectations of Y may differ across the two pop-

ulations above. In this work, the expectation notation Ep(.) refers to the popula-

tion p (p =M, C1), and E(.) = EM(.) refers to the population of all members.

For population M we write E(Y | X) = EN |XEY |X,N(Y ) and for population C1,

EC1(Y |X) = EN |X [ 1
N
EY |X,N(Y )]/EN |X( 1

N
).

Definition 3.2 Cluster size is non-informative if

E(Y |X = x, N = n) = E(Y |X = x) ∀ x, n. (3.1)

Otherwise cluster size is informative.

This definition was given by previous authors (Hoffman et al., 2001; Williamson

et al., 2003; Benhin et al., 2005; Chiang and Lee, 2008). We define µp(x) =

Ep(Y |X = x) where p = M, C1 according to which population is considered.
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Another important concept in which we shall often refer to relates to whether or

not the distribution of covariates is associated with the distribution of the cluster sizes.

Definition 3.3 X is said to be cluster-size balanced (or size-balanced) if

f(XJ1 | N = n1) = f(XJ2 | N = n2) (3.2)

for all n1 and n2 such that P (N = n1) > 0 and P (N = n2) > 0, where J1 and J2

are independent uniform random variables on {1, . . . , n1} and {1, . . . , n2} and f(A)

denotes the probability density function for a generic random variable A. Otherwise,

X is said to be non-cluster-size balanced (or non-size-balanced).

3.3 Examples of informative cluster size
The issue of informative cluster size is more clearly understood through some examples

from dental, reproductive toxicology and pregnancy studies. Also, informative cluster

size may arise in scenarios of clustering by clinical episodes experienced by patients.

This is the scenario used to illustrate the methodology in the current and the subsequent

chapter.

Dental studies

In dental studies of periodontal (i.e. gum) disease, interest often lies in exploring the

associations between factors (age, dental hygiene, smoking habits, plaque etc.) and the

disease status of the teeth. The teeth (members) in a patient’s mouth consist a cluster.

Individuals with fewer teeth are likely to have worse dental health than individuals

with more teeth because factors associated to deteriorated dental health might also lead

to tooth loss, leading to informative cluster size. Williamson et al. (2003) note that

the particular scenario can also be viewed as a missing data problem: as the number

of teeth in a complete cluster (mouth) is known (excluding supernumerary teeth) any

individuals with fewer teeth can be regarded as clusters with missing teeth.

Reproductive toxicology studies

Reproductive toxicology studies often assess the effect of a toxicant on pups within

litters (e.g. Dunson et al., 2003). A litter (mother) is a cluster and a pup is a member.

It is likely that litters exposed to the effect of a toxicant to produce fewer pups than

unexposed litters. This is because more pups experience foetal resorptions (death of

the foetus at any stage after the completion of organogenesis) under the effect of the
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toxicant, thus reducing the size of the litter. As the maximum number of pups a litter

can produce is unknown, the variability in litter sizes is regarded as an inherent feature

of the data.

Pregnancy studies

Hoffman et al. (2001) mentioned that informative cluster size might arise when investi-

gating how the pregnancy outcome (successful or abortion) is associated with environ-

mental factors, maternal characteristics, ethnic origin and other characteristics. Each

pregnancy is a member and the set of a mothers’s pregnancies is the cluster. Mothers

with higher risk of abortion tend to have more pregnancy-attempts until they reach the

desired family size suggesting that the number of pregnancies might be informative.

Illustration: Secondary analysis of the Delta trial

Informative cluster size may also arise in clinical settings. For example, in a study

of episodes (experienced by patients) of clinical care at the hospital, at each episode

a biological health outcome is obtained alongside information on treatment and other

patient characteristics. We might be interested in the marginal association between

covariates and the measure of health outcome. Cluster size might be informative if the

number of episodes experienced is related to the health outcome measured.

In our data illustration we perform a secondary analysis on a dataset of adverse

events from the Delta trial of HIV therapy. As described in Chapter 1, a cluster consists

of the ARC events experienced by a patient. We are interested in modelling whether

or not an ARC event is of type Oral Candidiasis, in terms of randomisation arm, CD4

count at the time of episode and time since entry in the trial. As the proportion of the

events that are Oral Candidiasis decreases as the number of ARC events per patient

increases, the cluster size might be informative. More details are provided in Section

3.10 where we illustrate the proposed methodology of this chapter.

3.4 Why informative cluster size might cause problems

in analysis

In this section we firstly attempt to explain why the apparently naive solution of adjust-

ing for cluster size in the regression model is not, in general, good practice. We then

explain that adjusting for cluster size and then integrating over the distribution of N to
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derive the marginal effect of X (i.e. not conditional on cluster size) on the expected

outcome can be useful in certain scenarios but has important limitations. From our

experience these two issues seem to cause confusion to analysts and to our knowledge,

have not been discussed by earlier authors. From the considerations in this section it

will become apparent that special methods for informative cluster size problems are

required and these are introduced in Section 3.5.

3.4.1 Adjusting for cluster size

A possible strategy to deal with informative cluster size problems is to include cluster

size alongside the predictors of main interest in a marginal regression model for the

expected outcome

E(Y |X, N) = h−1(γ0 +XTγ1 + γ2N). (3.3)

This approach is generally not desirable for a number of reasons, if interest lies in the

marginal effect (i.e. not conditional on cluster size) ofX on the expected outcome.

IfX is non-size-balanced, the effect ofX conditional onN as in equation 3.3 will

not be equal to its marginal effect. For example, it is likely that unmeasured cluster-

level factors which are linked to Y and N , are also linked to X . We assume it is not

scientifically meaningful to adjust that N , i.e. include N as part ofX .

Even ifX is size-balanced, adjusting for N does not result in parameter estimates

for the model of interest (which is for Ep(Y | X)) in any population, if the effect

of X is not the same for all cluster sizes. The speculated cluster-size-adjusted model

becomes:

E(Y |X, N) = h−1(γ0 +XTγ1 + γ2N +XTγ3N). (3.4)

This model provides an estimate of the effect ofX for each group of cluster sizes. Such

an estimand is not generally useful in applications.

However, there are at least two circumstances in which adjustment for N would

be appropriate. The first arises in volume-outcome studies (Panageas et al., 2007).

This type of studies is used to evaluate whether surgeons who treat a higher number

of patients for a specific condition, demonstrate better outcomes than those who treat

fewer patients. Each patient is seen as a member and a cluster is formed by the patients

treated by a surgeon. The uniqueness of this setting is that the ‘volume’ (number of
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patients) is both a primary predictor and the cluster size. As the ‘volume’ is a main

predictor, for scientific reasons it is appropriate to include cluster size alongside the

other covariates in a regression model.

The second arises when h(.) is the identity link function, X is size-balanced and

the effect of X is the same for all cluster sizes (for example when the effect of X is

homogeneous). In this case it can be easily seen that γ1 in model (3.3), which is the

effect of X conditional on N , coincides with the marginal effect of X . If - as it often

happens in practice - the intercept term is not of direct interest, fitting model (3.3) can

be used to obtain consistent estimates for the marginal the effect of X but not for the

intercept term.

3.4.2 Integrating over the distribution of N

We have established when it may or may not be possible to directly estimate the

marginal parameters of interest from a model that adjusts for cluster size. We now

consider the possibility of deriving the marginal effect of X on the expected outcome

by first considering a model for E(Y | X, N) and then marginalising over the condi-

tional distribution of N givenX . So,

µC1(x) = EC1(Y |X = x) = EC1
N |X [E(Y |X = x, N)]

=
∑
n

E(Y |X = x, N = n)PC1(N = n |X = x)

=
∑
n

E(Y |X = x, N = n)
f(X = x | N = n)P (N = n)∑
j E(Y |X = x, N = j)f(N = j)

(3.5)

for all values ofX = x.

Apart from a model for E(Y | X, N) we also need to specify a model for f(X | N).

The main limitation of this approach is that it relies on the correct specification ofE(Y |

X, N) and f(X | N). Important, but perhaps less of a concern, are computational

difficulties that might arise when a multivariate distribution needs to be specified for

f(X = x | N = n). Finally, even if the ‘true’ model for E(Y | X, N) is linear in

the predictors (for example, as in model (3.3)), EC1(Y | X) will not be of the form

EC1(Y |X) = β0 +XTβ1, in general.

In special cases where the model for EC1(Y | X) is saturated, for example when

X = X is a single binary covariate, models for E(Y | X, N) and f(X | N) are

not required. Instead, estimates for the conditional expectations and probabilities in
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expression (3.5) can be obtained by calculating the corresponding observed averages

and proportions from the sample. When X is binary, the assumed model of interest is

EC1(Y | X) = β0 + β1X . So, µ̂C1(x) is computed for X = 0, 1 and then, β̂0 = µ̂(0)

and β̂1 = µ̂(1) − µ̂(0). In case of concerns about model uncertainty due to rarely

observed values of X , a model for f(X | N) can be specified but the model we end up

with might not then be of the from EC1(Y | X) = β0 + β1X .

3.5 Methods for informative cluster size: current

methodology

3.5.1 Marginal inference

We now present existing estimation methods for marginal inference for population C1.

We use subscripts i and j to denote the cluster and the member, respectively. We assume

a marginal regression model for population C1

µC1(Xij) = β0 +XT
ijβ1,

where h(.) is a link function and β = (β0,β
T
1 )T is a (q + 1)-dimensional vector of

unknown parameters to be estimated.

Within-cluster resampling (WCR)

Hoffman et al. (2001) introduced the concepts of measurement-based sampling and

cluster-based sampling and these relate to the populations for inference defined earlier

(see Definition 3.1, pg. 67). Measurement-based sampling is the one implicitly as-

sumed in a generalised estimating equations approach with independence working cor-

relation matrix and corresponds to population M. Cluster-based sampling corresponds

to sampling one observation from each cluster and leads to an inference about a ran-

domly chosen member of a randomly chosen cluster (population C1). They noted that

when the cluster size is informative, inferences under these two sampling schemes are

generally different. Inference under cluster-based sampling can be obtained using their

proposed Within Cluster Resampling method (WCR).

In WCR a new dataset is created from the original dataset by sampling at random

(with replacement) one member from each of the K clusters. This is done repeatedly

(say Q times), so that Q datasets are created, each containing K members. Since the
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K observations are independent, a generalised linear model is used to estimate β and

var(β) for each of these Q datasets. Let β̂(k) and var(β̂(k)) denote the estimates for β

and var(β) in the kth resampled dataset (k = 1, . . . , Q). Then these Q estimates are

averaged:

β̂WCR =
1

Q

k∑
l=1

β̂(k)

and

var
√
N(β̂WCR − β) =

1

Q

Q∑
k=1

var(β̂(k))− 1

Q

Q∑
k=1

(β̂(k) − β̂WCR)(β̂(k) − β̂WCR)T .

As each cluster contributes one member to each estimate regardless of its size,

it is apparent that the parameter estimated is that for the population of typical cluster

members 1. Provided the marginal regression model µC1(X) = h−1(β0 + XTβ1)

is correctly specified, the WCR estimator is a consistent estimator of β. This is in

contrast with a standard application of GEE, where large clusters are considered to be

more important in the estimation of regression parameters. So, population of typical

cluster members 1 corresponds to an inference for a randomly chosen measurement

from a randomly chosen cluster.

Inversely weighted by the cluster size GEE (CWGEE)

In the same spirit, when the cluster size is informative, Williamson et al. (2003) sug-

gested that there are two marginal analyses of possible interest: one for the population

of all members and one for the population of typical cluster members 1. Compared to

the definitions of Hoffman et al. (2001), population of all members corresponds to an

observation-based sampling scheme, whereas population of typical cluster members 1

to cluster-based sampling.

WCR method is computationally intensive. CWGEE (or weighted independence

estimating equations-WIEE) proposed by Williamson et al. (2003), provides an esti-

mator that is asymptotically equivalent to WCR (as K,Q → ∞) but avoids the Monte

Carlo element of WCR. The CWGEE are
K∑
i=1

(
∂µC1

i

∂β

)T
1

Ni

(V I
i )−1(Y ∗i − µC1

i ) = 0. (3.6)

Note that V I
i is the working covariance matrix based on an independence working

correlation and the inclusion of the termN−1 means that clusters are inversely weighted
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by their size. If the marginal model µC1(X) = h−1(β0 +XTβ1) is correctly specified,

the solution to equations (3.6) is a consistent estimator of β.

If, instead, marginal model µ(X) = h−1(β0 +XTβ1) is correctly specified, infer-

ence can be made for population M by deletingN−1
i from equations (3.6) and replacing

µC1
i by µi. Doing this gives the standard GEE (equations (2.14)) with independence

working correlation. Note that using a non-independence working correlation in equa-

tions (3.6) will not give unbiased inference for population M when cluster size is infor-

mative.

Parameter estimates, β̂, are iteratively estimated, as in (2.17). Under mild regular-

ity conditions, it is proved that β̂ follows a multivariate Normal distribution with mean

β and variance consistently estimated by(
K∑
i=1

(
∂µC1

i

∂β

)T
(V I

i )−1∂µ
C1
i

∂β

T
)−1( K∑

i=1

(
∂µC1

i

∂β

)T
(V I

i )−1var(Y ∗i )(V I
i )−1∂µ

C1
i

∂βT

)

×

(
K∑
i=1

(
∂µC1

i

∂β

)T
(V I

i )−1∂µ
C1
i

∂βT

)−1

.

Williamson et al. (2003) carried out simulation studies to compare the finite sam-

ple properties of WCR and WIEE. They concluded that for large sample sizes both

methods perform equally well in terms of bias and efficiency. For small samples sizes

WCR provides parameter estimates with small but noticeable bias, whereas WIEE ex-

hibits negligible bias.

Williamson et al. (2003) also extended the approach of Prentice (1988) for ob-

taining estimates for the correlation parameters, ρ, when the cluster size is informa-

tive and the target of inference is population C1. Compared to equation (2.18), in

Williamson’s proposed estimating equations for ρ, the contribution of each cluster is

inversely weighted by the number of distinct pairs in the cluster. Notation is retained

as in equations (2.18). The Williamson’s estimating equations for ρ are:

Uρ(β,ρ) =
K∑
i=1

1(
ni
2

) ∂ηTi
∂ρ

H−1
i (Zi − ηi) = 0. (3.7)

Estimates for ρ are obtained iteratively, as in equation (2.19), but these estimates are

not part of the iterative procedure to compute β̂, since equations (3.6) use independence

working correlation.
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3.5.2 Comparison of populations: a simple hypothetical example

We now wish to contrast the methods (and populations for inference) discussed in this

section in the context of an example from a hypothetical toxicology study. Suppose

that we are interested in the effect of a toxin (X) on the average weight (Y ) of pups

from a typical mother (litter). So, we are interested in inference for population C1.

Toxin is a mother-specific covariate (X = 0 and 1 for unexposed and exposed litters,

respectively).

For simplicity we assume that there are only two ‘types’ of mothers. The mother’s

type is unobserved, e.g. it is a genetic characteristic. Mothers of type 1 produce heavy

pups and mothers of type 2 produce light pups. We also assume that because of a

characteristic inherent to the type of the mother, type-1 mothers are affected by the

effect of the toxin; this results in foetal resorptions and therefore reduced litter size. On

the other hand, because of a different inherent characteristic, type-2 mothers are not

affected by the effect of the toxin. So, the effect of the toxin on the average pup weight

can be seen to be different for each type of mother.

It is useful to consider the quantities to be estimated when we seek inference for

population M and C1, respectively. In the absence of the toxin, both types of mothers

contribute approximately equally in the estimation for both populations, so EM(Y |

X = 0) is very similar to EC1(Y | X = 0). However, when the toxin is present

EM(Y | X = 1) is predominantly estimated from mothers of type 2 because mothers of

type 2 produce more pups than mothers of type 1 in the presence of the toxin. Therefore,

EM(Y | X = 1) can be seen to be lower than EC1(Y | X = 1) and consequently

biased since we are interested in inference for a typical pup of a typical mother.

In relation to Section 3.4.1, adjusting for the cluster size, i.e. the number of pups

in the litter (using, for example, model (3.4)) provides an estimate of the effect of toxin

conditional on the number of pups. From an epidemiological point of view, such an

inference might not be of scientific interest.

3.5.3 Equivalence of covariate effects in populations M and C1 in

special cases

In their simulation studies, Hoffman et al. (2001) considered scenarios with a binary

outcome and a binary cluster-constant and size-balanced covariate (exposure). As it
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can be seen in their Table 3, estimates for the parameters in population M and C1 only

differ for the intercept term; estimates for the exposure effects are very similar.

This similarity of the exposure effects for populations M and C1, need not be the

case in general. For example, in the simulation study of Williamson et al. (2003) for

binary outcomes, covariate X is also cluster-constant but non-size balanced; exposed

clusters are more likely to have a smaller cluster size. Their Table 1 shows that not

only the intercept term, but also the exposure effect differs between populations M and

C1. Also, the real-data analyses of Hoffman et al. (2001) and Williamson et al. (2003)

show differences between the estimates in the slope terms for populations M and C1

(although these differences are not statistically significant).

Neuhaus and MCculloch (2011) briefly comment on the simulations results of

Hoffman et al. (2001) and Williamson et al. (2003) and they seem to infer that only the

intercept term and not the exposure effects will differ between the two populations. In

our view, this is not true in general (see, for example, Section 3.5.2).

It helps understanding the rational behind the results in the simulations and illus-

trations of Hoffman et al. (2001) and Williamson et al. (2003), and also the comment

of Neuhaus and MCculloch (2011), if we start by considering a scenario as follows.

Suppose that cluster size is informative, the link function is the identity one and X

is size-balanced. Also, suppose that the effect of X is the same for all clusters and

therefore for all cluster sizes. We assume that a model for E(Y | X, N) of the form

(suppressing dependence on i and j):

E(Y |X, N) = γ0 +XTγ1 + γN , (3.8)

is true. Each cluster size is allowed to have a different intercept. We instead postulate

the ‘pragmatic model’ of interest Ep(Y |X) = βp0 +XTβp1 .

For population M we write:

EM(Y |X) = EN |X [EY |X,N(Y )] = EN [EY |X,N(Y )], because N ⊥X

= EN(γ0 +XTγ1 + γN) = γ0 + E(γN)︸ ︷︷ ︸
βM0

+XT γ1︸︷︷︸
βM1

. (3.9)
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For population C1 we write:

EC1(Y |X) =
EN |X

[
1
N
EY |X,N(Y )

]
EN
[

1
N

] = EN |X

[
1
N
EY |X,N(Y )

]
EN |X

[
1
N

] , because N ⊥X

=
EN
[

1
N

(γ0 +XT γ1 + γN)
]

EN
(

1
N

) = γ0 +
EN
[

1
N
γN
]

EN
[

1
N

]︸ ︷︷ ︸
βC1
0

+XT γ1︸︷︷︸
βC1
1

.(3.10)

To summarize, it follows from expressions (3.9) and (3.10) that when the condi-

tions:

A.1. The link function is the identity one.

A.2. The effect ofX is the same in all clusters,

A.3. X is size-balanced,

are satisfied, the intercept parameters will differ between populations M and C1 but the

exposure effects will be the same, i.e. βM0 6= βC1
0 but βM1 = βC1

1 .

If Condition (A.1) is not satisfied, then the models for Ep(Y | X) might not be

in the same form as in model (3.8). This is known as the problem of non-collapsibility.

Nevertheless, it is worth noting that for the pragmatic model Ep(Y | X) = h−1(β0 +

XTβ1), it has been seen in simulation studies (Hoffman et al., 2001; Benhin et al.,

2005) that if Condition (A.1) does not hold (when the link function is the logit one) but

A.2 and A.3 are true, the estimates for βM1 and βC1
1 are very similar.

Condition (A.2) is not satisfied, if there is an interaction between N and X in

the model for E(Y | X, N) i.e. the assumed true model for E(Y | X, N) is of the

form E(Y | X, N) = γ0 + XTγ1 + γ0N + XTγ1N . It can be easily seen that not

only the intercept terms but also the other regression coefficients will be different for

the parameters in populations M and C1. This is so even if X is cluster-constant and

Conditions (A.1) and (A.3) are true.

If Condition (A.3) is not satisfied,EM(Y |X = x) andEC1(Y |X = x) will not

be equal for all values of x, in general. In this case, as we explain in detail in Section

3.6, inference for population C1 does not provide useful parameter estimates. Instead,

for scenarios where X is categorical cluster-varying and non-size balanced we define

further populations for inference for typical cluster members (see Definition 3.4). We
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also propose corresponding estimators which result in more interpretable parameter

estimates than the ones in population C1.

It is important to emphasise that when conditions (A.1-A.3) are true and the clus-

ter size is non-informative, CWGEE will be less efficient than IEE in estimating β1

by fitting a model for EC1(Y | X). This is because in using CWGEE all clusters re-

ceive the same total weight in the estimation even if larger clusters are naturally more

informative than the smaller ones.

3.5.4 Cluster-specific inference and the joint modelling approach

Dunson et al. (2003) developed a Bayesian approach based on joint modelling the clus-

ter size and the main outcome with shared random effects to provide cluster-specific

inference when the cluster size is informative.

Joint models are specified for Y andN with a continuation ratio (CR) probit model

for the latter. For simplicity we assume random intercepts models:

E(Yij |Xij, bi) = h−1(β0 +XT
ijβ + λ1bi) (3.11)

and

P (Ni = k |X∗i , bi) = F (δk−XT
ikα−λ2bi)

k−1∏
t=1

{
1− F (δt −XT

itα− λ2bi)
}
, (3.12)

k = 1, . . . , Nmax−1, whereNmax is the maximum cluster size in the sample of clusters,

F denotes the cumulative density function of the standard Normal distribution and

the terms δ = (δ1, . . . , δNmax−1) represent cut-points. The random effects bi follow a

zero mean Normal distribution. Dependence between cluster size and main outcome is

accommodated through the shared random effects, bi.

In their illustration, Dunson et al. (2003) consider a toxicology study where pups

are clustered within litters. The target is mainly to estimate the effect of the toxin on a

typical pup’s weight. Gueorguieva (2005) also considers the joint modelling approach

from a frequentist viewpoint, using maximum likelihood estimation, where the random

effects for the two models are correlated rather than shared.

More recently, Chen et al. (2011) investigated the robustness of such joint models

to misspecification of the cluster size model, assuming that the distributions of random

effects and errors terms are correctly specified. They consider two ‘types’ of misspeci-

fication of the cluster size model: (1) misspecification of the distribution for the model
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forN and (2) misspecification of the functional form of random effects in the model for

N . The distribution of N in the cluster size model is misspecified when, for example, a

Poisson or Negative Binomial model instead of a CR model when the CR model is the

correct one. They found that using an incorrect distribution for the cluster size model

may lead to small or moderate biases. Misspecification of the functional form of the

random effect in the cluster size model (for example misspecification of the polynomial

form) results in nearly unbiased estimation. The efficiency loss, compared to a cluster

size model that correctly specifies the functional form of the random effects, was found

to be small.

Neuhaus and MCculloch (2011) examined the performance of GLMMs when the

cluster size is informative. They assumed that the random effects, shared by outcome

and cluster size model, are independent of the covariates and also that the response is

independent of the cluster size conditional on the shared random effects. They focused

on the performance of maximum likelihood estimation for a GLMM when ignoring

the informative cluster sizes. They showed theoretically that for linear mixed models

(LMMs), ignoring informative cluster size results in consistent estimates for the effects

of covariates uncorrelated to the random effects, but biased estimates for the effects of

covariates correlated with the random effects. Similar results hold for GLMMs in gen-

eral. Based on simulation results, Neuhaus and MCculloch (2011) suggested that the

effects of covariates uncorrelated with the random effects are estimated with little or no

bias for regression parameters corresponding to covariates independent of the random

effects but with bias otherwise. For example, in models with random intercepts only,

fitting a random intercepts model ignoring informative cluster sizes, may provide a bi-

ased estimate for the intercept term but nearly unbiased estimates for the other regres-

sion parameters. Finally, they demonstrated how the bias observed in GLMMs when

ignoring informative cluster sizes can be seen as arising because of misspecification of

the distribution of random effects.

There are two additional issues regarding the use of the joint modelling approach

of Dunson et al. (2003) worth noting. First, contrary to the case of marginal inference

under informative cluster size, inference for the populations for typical and all cluster

members has not been distinguished. This is because when X ⊥ b and the assump-

tion of conditional independence of Y and N given b holds, then conditional on b the
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cluster size is not informative and consequently µ(x, b) = E(Y | X = x, b) is the

same in populations M and C1 ∀ x. Second, although the method of Dunson et al.

(2003) has been proposed as a method for observed cluster inference, it can be seen

to have similarities with shared parameters models for the outcome and missingness

process under MNAR assumptions (see Chapter 2, Section 2.9.4) and hence provides

cluster-specific inference for the complete clusters, in general. Under certain assump-

tions about the missingness process, the complete-cluster inference coincides with the

observed-cluster one. We elaborate on these two issues in Chapter 5, Section 5.4.

Finally, we remind the reader that when the random effects are not independent

of the covariates, estimation of covariate effects can be biased (see Section 2.8 and

Neuhaus and MCculloch, 2006). This issue is further discussed in Section 3.12.

For the rest of this chapter we primarily focus on methods for marginal infer-

ence. We shall not consider cluster-specific inference under informative cluster size

until Chapter 5. In the next section we define informative covariate structure and

demonstrate how this may cause problems in marginal regression.

3.6 Informative covariate structure and new methodol-

ogy

3.6.1 Additional notation and further definitions

We retain the notation from Section 3.2 whilst introducing additional quantities. For

simplicity we omit the indicator, i, for the cluster. Denote the cluster-varying compo-

nents of X (i.e. the components of X that can vary between members of the same

cluster) asX(1) and the cluster-constant elements asX(2). So,X = (X(1),X(2)). Let

Λ, Λ(1) and Λ(2) denote the sample spaces of X , X(1) and X(2), respectively, i.e. the

sets of possible values ofX ,X(1) andX(2). For each cluster, let B = 1 if the columns

of X∗ include all the elements of Λ, i.e. if all possible values of X are realised in the

cluster; B = 0 otherwise. For each member of a cluster, Z denotes the total number

of members in that cluster who share the same value of X as the member in question.

Finally, although N , B and X∗ are cluster-level variables, we also use these symbols

to refer to member-level variables: the values of N , B and X∗ for a member are equal

to the values of N , B andX∗ of the cluster to which it belongs.
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We define two additional populations of members that may be of interest depend-

ing on the research objective.

Definition 3.4

• The population of typical cluster members 2 (C2) is the subpopulation in which

each cluster contributes at random, for each distinct value of X represented in

the cluster, a single member with that value ofX . Thus, the probability that each

member is contributed is Z−1.

• The population of typical cluster members 3 (C3) is the subpopulation in which

each cluster with B = 1 contributes a single member at random for each distinct

covariate value present in that cluster. Thus, the probability that each member is

contributed is BZ−1. This population is only defined if Λ(1) is finite.

Note that populations C2 and C3 depend on the choice of covariatesX whereas M and

C1 do not.

In line with the definitions in Section 3.2 the expectation notation Ep(.) refers to

the population p (p =M, C1, C2, C3), and E(.) = EM(.). For a given member with

X = x in a given cluster, let Zx denote the total number of members in that cluster

withX = x. Formally, for population C2 we write

EC2(Y |X = x) =
EN,Zx|X,Zx≥1

[
1
Zx
EY |X,Zx,N(Y )

]
EN,Zx|X,Zx≥1

(
1
Zx

) . (3.13)

EC3(Y | X = x) is defined analogously, by replacing the condition Zx ≥ 1 in equa-

tion (3.13) with the condition B = 1.

Definition 3.5 The covariate structure is non-informative if

E(Y |X,X∗, N) = E(Y |X, N). (3.14)

Otherwise, the covariate structure is informative.

Note that informative covariate structure may occur even if all clusters are of the same

size, and also that the combination of informative covariate structure and informative

cluster size is possible.
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We define µp(x) = Ep(Y | X = x) where p = M, C1, C2, or C3 according

to which population is considered. If (3.1) and (3.14) hold, then µp(x) will be the

same for all four populations ∀ x. Where either (3.1) or (3.14) does not hold, the four

populations may differ, but there are some scenarios where either some populations are

equivalent or where populations differ but µp(x) would be equal:

• If E(Y |X, N) = E(Y |X), i.e. cluster size is non-informative, µM(x) =

µC1(x) ∀ x.

• If E(Y |X, Z,N) = E(Y |X), then µM(x) = µC1(x) = µC2(x) ∀ x.

• If E(Y |X, Z,B,N) = E(Y |X, Z,N), then µC2(x) = µC3(x) ∀ x.

• As a consequence of the three items above, if E(Y |X, Z,B,N) = E(Y |X),

then µp(x) is the same for all four populations ∀ x.

• If Z = 1 for all members, for example if X is continuous, then populations M

and C2 are the same.

• If B = 1 for all members, then populations C2 and C3 are the same.

• If X is cluster-constant, then Z = N for all members, and populations C1 and

C2 are the same.

3.6.2 Selection of population for inference - a hypothetical example

We provide guidance on the choice of which of the four populations is most suitable

according to the research objectives, building on earlier work by Williamson et al.

(2003) on the choice between the populations M and C1. We focus on the hypothetical

example of clustering by patient, each member corresponding to a clinical episode of

care in hospital for a certain medical condition whilst Y represents a measure of health

outcome from the episode, such as length of stay in hospital or a biological measure

of health at discharge from hospital. Suppose that the higher is the value of Y , the

worse is the outcome. The binary covariate of interest, X , represents a characteristic

of the episode such as whether a treatment had been received for the episode before

admission to hospital, or whether the condition appeared severe at admission. Let

X = 1 denote severe and X = 0 non-severe. The distribution of X at a given episode
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may be associated with the total number of episodes. For example, if X measures

severity at admission, then it may be that patients with initially severe episodes also

have more episodes due to common underlying factors. Similarly, the relationship

between Y and X may differ according to the total number of episodes so that there is

informative cluster size. The relationship between Y andX may differ according to the

proportion of episodes that are severe at admission due to common underlying factors,

leading to informative covariate structure.

We first consider the simple regression of Y on the binary indicatorX . For popula-

tion M, µM(x) is the average of Y over all the episodes for whichX = x. Each episode

is viewed as equally important, and so patients with a greater number of episodes with

treatment x are considered more important in estimating µM(x). For population C2,

µC2(x) is the average of Y over patients who experienced X = x treating patients

equally, as only one episode with X = x is included per patient, so that µC2(x) can

be thought to correspond to the conditional expectation for a typical patient. In par-

ticular, µC2(x) is not unduly influenced by the possibly small number of patients with

many episodes and poor health outcomes as would be µM(x). Inference for population

M allows statements such as “On average better outcomes were seen for episodes with

treatment before admission”. This population and this type of statement will be of inter-

est should Y represent the length of stay in the hospital and X indicates pre-admission

treatment and the analysis is conducted by health economists to examine patterns of

resource use across the health service. The experience of individual patients is not of

direct interest as costs are modelled at the aggregate level. Inference for population C2

allows statements such as “The outcome for an episode rated severe at admission in a

typical patient experiencing such an episode was worse on average than the outcome

for an episode rated non-severe in a typical patient experiencing a non-severe episode”.

This population and this type of statement will be of interest, should Y represent a mea-

sure of health at discharge and X the severity of disease at admission and the analysis

is performed to examine how factors are linked to health at discharge for the typical

patient.

Population C3 is restricted to patients who experience all values of X , which here

means they experience both episodes rated severe and non-severe at admission. µC2(x)

and µC3(x) may differ if patients who experience one or more episodes rated severe at
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admission more often have other underlying health problems which persist over time.

In this scenario whilst µC2(1) and µC3(1) might be similar, µC2(0) might be lower

(meaning better health at discharge) than µC3(0), as µC3(0) is estimated only from pa-

tients with other underlying problems. Population C3 would be an unnatural choice if

our interest lies separately in µp(0) and µp(1) but if we are interested in the effect of X,

e.g. µp(1)− µp(0), then this population could be selected to remove ‘cluster confound-

ing’ (Neuhaus and Kalbfleisch, 1998; Ten Have et al., 1995) through estimating what

can be seen as a within-cluster effect of X, conditional on experiencing episodes with

both X = 0 and X = 1. In our example, confounding by patient characteristics that do

not vary with time, such as other persistent underlying problems, is removed through

the ‘matching’ of episodes with X = 0 and X = 1 by patient.

For population C1, µC1(x) is the average of Y over episodes with X = x but with

weighting according to the proportion of the episodes experienced by the patient for

which X = x. In our view this is somewhat unnatural, and we cannot identify any

scenarios when such inference is likely to be of direct interest, except when µC1(x) =

µp(x) for another population p.

We have considered only the simplest regression model with a single binary factor

X . In realistic scenarios we will generally wish to remove confounding by measured

factors by including them alongside the factor(s) of primary interest in the covariate

vectorX and fitting a regression model for µp(x). If the confounders are patient char-

acteristics that do not vary with time and inference for a population of typical episodes

experienced by a typical patient is required, then the analyst has a choice of two ways

of removing the confounding. Either the analyst fits a model for µC2(x), or X(2) is

excluded from X and the analyst fits a model for µC3(x(1)), a model conditional only

on X(1), which provides a within-cluster effect of X(1) for patients who experience

events with all values x(1) ∈ Λ(1). The latter approach removes cluster confounding by

measured or unmeasured time-invariant patient characteristics but involves discarding

all data from patients who do not experience all possible values of X(1). If a large

proportion of data is discarded to provide inference for population C3 and unmeasured

patient confounders are not of great concern, then C2 will typically be preferred.

Populations C2 and C3 depend on the choice of X , and in some scenarios these

populations may be equivalent to other populations or be empty. In the most complex
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scenarios where either the covariates of interest or confounders are continuous cluster-

varying then populations C2 and M are equivalent and population C3 is empty; Popu-

lation C1 then is the only typical cluster member population distinct from population

M.

3.6.3 Estimation through weighted independence estimating equa-

tions

We now present estimation methods for the proposed populations for inference. We

choose one of the four populations and assume that for this population, p,

µp(X) = h−1(β0 +XTβ1), (3.15)

where h is a known link function and β = (β0,β
T
1 )T is an unknown (q+1)-dimensional

parameter. We write µij = h−1(β0 +XT
ijβ1) and µi = (µi1, . . . , µiNi)

T . The weighted

estimating equations can be written in matrix form, dropping the superscript p for no-

tational simplicity, as
K∑
i=1

∂µTi
∂β

WiV
−1
i (Y ∗i − µi) = 0, (3.16)

where K is the number of clusters in the sample and Vi is the diagonal matrix with

jth element equal to the assumed variance function v(µij) = var(Yij | Xij). Wi is a

Ni×Ni diagonal matrix whose jth element provides a weight for the jth measurement

in cluster i. It depends on the target population of inference. As mentioned earlier,

for µM , i.e. for estimation in population M, one should use Wi = INi , whereas for

µC1, i.e. for population C1, Wi = diag (N−1
i , . . . , N−1

i ). We add to this that for µC2,

Wi = diag(Z−1
i1 , . . . , Z

−1
iNi

) and for µC3,Wi = diag(BiZ
−1
i1 , . . . , BiZ

−1
iNi

).

To illustrate the differences between these W matrices, consider again the exam-

ple of patients, hospital episodes and a single binary covariate X . Suppose that two pa-

tients have N = 5 and N = 3 episodes, respectively, and the covariate values for these

episodes areX∗ = (0, 0, 0, 0, 1) andX∗ = (0, 0, 0), respectively. To estimate the effect

of X in population M such patients would have their episodes weighted by (1,1,1,1,1)

and (1,1,1), respectively. For population C1 the weights are (1/5,1/5,1/5,1/5,1/5)

and (1/3,1/3,1/3), respectively. For population C2 they are (1/4,1/4,1/4,1/4,1) and

(1/3,1/3,1/3); and for population C3, (1/4,1/4,1/4,1/4,1) and (0,0,0).
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Assuming equation (3.15) is correctly specified and standard regularity conditions

apply, β̂ is asymptotically Normally distributed with mean β and with variance consis-

tently estimated by

VR =

(
K∑
i=1

∂µTi
∂β

WiV
−1
i Wi

∂µi
∂βT

)−1( K∑
i=1

∂µTi
∂β

WiV
−1
i var(Y ∗i )V −1

i Wi
∂µi
∂βT

)

×

(
K∑
i=1

∂µTi
∂β

WiV
−1
i Wi

∂µi
∂βT

)−1

, (3.17)

where var(Y ∗i ) = (Y ∗i − µi)(Y ∗i − µi)T . This is proven in Appendix A.1. Consistent

estimates of β are iteratively obtained using a Fisher scoring algorithm, as in equation

(2.17). The sandwich or empirical estimator of VR is obtained by substituting a consis-

tent estimate for β in (3.17). This is the variance estimator we use in our simulations

and data analysis.

We used the software R. The function geese from the package geepack was used,

which allows for weights that vary within clusters. In STATA, weights that vary within

clusters cannot be incorporated in the GEE function xtgee. However, to obtain inference

for populations C2 and C3 the survey analysis functions (svy prefix commands) can

be used instead. These use a different (but also valid) variance estimator based on a

jacknife procedure.

3.7 Strategies for Practical Implementation
If the cluster size and covariate structure are non-informative, then methods such as the

standard GEE with a realistic working correlation matrix can be used, and would be

expected to have greater efficiency than WIEE. Consequently, the analyst may wish to

use standard methods if the cluster size or covariate structure are thought unlikely to be

informative a priori, and otherwise use WIEE.

In practise, the analyst would have to make a decision of whether the cluster size

and/or covariate structure are informative and then use the appropriate method of anal-

ysis. We propose a number of simple exploratory strategies can be of use to help the

applied statistician decide whether the cluster size and/or the covariate structure are

informative.

In an initial exploratory analysis, the mean of the response can be calculated for

each cluster size in the sample. If the distribution of the cluster size is skewed and
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therefore some cluster sizes appear infrequently, the cluster sizes can be grouped into

a small number of equally sized groups (e.g. small, medium, large) and the mean

response calculated for each cluster size group. An association of smaller (larger) clus-

ter sizes with lower (higher) outcomes on average can be a first indication that the

cluster size is informative. As a second step, we propose carrying out an initial re-

gression where the cluster size, N , is included alongside the covariates of interest X

in a marginal model for the expectation of Y . If the regression model of interest is

µp(X) = h−1(β0 +XTβ1) for a known link function h and selected population p we

propose first to fit the model

E(Y |X, N) = h−1(γ0 +XTγ1 + γ2N) (3.18)

using unweighted independence estimating equations, i.e. the WIEE in (3.16) with

W = IN . Assuming (3.18) is of the correct form then γ2 6= 0 corresponds to informa-

tive cluster size. A Wald test of γ2 = 0 may be performed. Interactions betweenX and

N can be tested to conclude whether the effect ofX is likely to be different in clusters

of different sizes.

When the covariate of interest (exposure) is cluster-varying then the covariate

structure can also be informative, whether the cluster sizes vary or not. As for in-

formative cluster size, simple strategies can be used to help the analyst decide whether

the covariate structure is informative. One way to test for informative covariate struc-

ture would be to include the cluster-mean of the exposure (and also the cluster size, if

it varies) alongside the exposure and other covariates in a model for the expected out-

come. A significant effect of the term corresponding to the cluster mean of the exposure

would be an indication for non-informative covariate structure.

A final approach would be to apply the WIEE with weighting for different popula-

tions, as suggested by Benhin et al. (2005) to investigate whether cluster size and/or co-

variate structure are informative. If the parameter estimates are all similar, then this pro-

vides some evidence that the cluster size and covariate structure are non-informative,

and therefore standard GEE methods could be used.
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3.8 Comparison of populations
Next we compare regression parameters for different populations across a range of

scenarios. We examine the performance of our proposed estimation method through

a simulation study in the next section. We consider binary and normally distributed

Y and a binary cluster-varying covariate X. We choose to induce informative cluster

size and/or covariate structure through an underlying ‘susceptibility’ that does not vary

within the cluster. Data for each cluster are generated independently. For cluster i:

1. The underlying susceptibility Ui is generated from Ui ∼ N(0, 0.52).

2. The cluster size Ni depends on Ui, Ni|Ui ∼ Poisson{exp(α0 + α1Ui)}+ 1.

3. X is a cluster-varying covariate and Xi1, . . . , XiNi
are independently generated

fromXij|Ui ∼ Bernoulli{λ0+λ1logit−1(Ui)}. If λ1 = 0 thenX is size balanced,

while if 0 < λ1 ≤ 1 it is non-size balanced.

4. Yi1, . . . , YiNi are independently generated from Yij | Ui, Xij ∼ Bernoulli{logit−1(ηij)}

for binary responses and N(ηij, 1) for continuous responses, where ηij =

γ0 + γ1Xij + γ2Ui + γ3UiXij . Parameter γ2 controls the degree of associa-

tion between the susceptibility (and consequently cluster size) and the outcome

when X = 0, while γ3 controls the magnitude of the interaction between the

susceptibility and the covariate.

The parameters for the cluster size model are selected to be α0 = α1 = 1 and these

result in a mean cluster size of approximately 4. As α1 6= 0, when γ2 6= 0 or γ3 6= 0 the

cluster size is informative. Note that, when the cluster size is informative, the variance

in the underlying susceptibility terms U governs the ‘degree’ of informativeness: the

higher it gets the more informative the cluster size becomes. This variance was kept

constant (0.25) for all scenarios considered in this section. We select γ0 = 1 and γ1 = 1,

and γ2 and γ3 are varied across scenarios. For size balanced X we select λ0 = 0.4 and

λ1 = 0, while for non-size balanced λ0 = 0 and λ1 = 1. When X is non-size balanced,

the covariate structure is informative if either γ2 6= 0 or γ3 6= 0.

For each population, p, the analysis model is of the form µp(X) = h−1(β0 +β1X),

with h being the logit link for binary Y and the identity link function for continuous

Y . The true values of β0 and β1 for the four populations for inference are calculated
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using numerical integration. Details are provided in Appendix A.2 and an example of

the numerical integration using R-code is provided in Appendix A.3.

For γ3 = 0 and non-size balanced X , Figure 3.1 shows the true values of β0, β1

and β0+ β1 for each population as γ2 is varied and Y is either Normal or binary (top

and bottom graphs respectively).

For Normal Y (top graphs), Ep(Y |X = x) = γ0 + γ1X + Ep(U |X = x)γ2,

and the graph of Ep(Y |X = x) against γ2 is a straight line with slope Ep(U |X = x).

Let PM(0) (and PM(1)) denote the subpopulation of population M composed of the

members with X = 0 (and X = 1). Similarly, let PC1(0), PC2(0) and PC3(0) (and

PC1(1), PC2(1) and PC3(1)) denote the subpopulations of C1, C2 and C3 with X = 0

(and X = 1). Although U is a cluster-level variable, we also use U below to denote a

member-level variable: the value of U for a member is equal to the value of U of the

cluster to which it belongs. We consider Ep(Y |X = 0) and Ep(Y |X = 1) in turn.

Ep(Y |X = 0): It is not immediately clear whether EM(U |X = 0) should be

greater or less than zero. Smaller clusters tend to have smaller values of U and have a

higher proportion of members with X = 0, while larger clusters have smaller propor-

tion of members with X = 0 but of course contain more members. In this scenario the

contribution of members with X = 0 from larger clusters outweighs the corresponding

contribution from smaller clusters, so EM(U |X = 0) > 0 and the slope in the graph

of EM(Y |X = 0) against γ2 is positive. Each cluster contributes only one member to

PC1(0). As smaller clusters have a higher proportion of members with X = 0, rel-

ative to PM(0), PC1(0) contains more members from smaller clusters. Since smaller

clusters tend to have smaller values of U , EC1(U |X = 0) ≤ EM(U |X = 0). We

would also expect EC2(U |X = 0) ≤ EM(U |X = 0). We would however expect

EC2(U |X = 0) ≥ EC1(U |X = 0) because larger clusters have proportionately fewer

measurements with X = 0, and so are less likely than smaller clusters to contribute a

measurement with X = 0 to PC1(0), whereas they are very likely to contribute one to

PC2(0). Thus PC2(0) contains proportionately more measurements from big clusters

than PC1(0), and big clusters tend to have higher values of U . PC3(0) is derived only

from clusters that contain bothX = 0 andX = 1. Such clusters are rare among smaller

clusters (with smaller U ) because the size restricts the likelihood of both values of X

occurring and because for small U the proportion of members with X = 0 is high, so
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that many clusters have no member with X = 1. Indeed, in our scenarios PC3(0) is

dominated by members from large clusters, with consequently high values of U , such

that the expectation EC3(U |X = 0) is higher than in any other population, and so this

population has the steepest slope of Ep(Y |X = 0) against γ2.

Ep(Y |X = 1): It is clear that EM(U |X = 1) > 0, as bigger clusters and those

with a greater proportion of members with X = 1 (both of which tend to have a higher

value of U ) contribute more measurements. For the same reasons we would expect

EC1(U |X = 1) ≤ EM(U |X = 1) and EC2(U |X = 1) ≤ EM(U |X = 1). Indeed,

this results in a very large positive slope in the graph of EM(Y |X = 1) against γ2,

and less steep slopes for populations C1 and C2. We would expect EC1(U |X = 1) ≥

EC2(U |X = 1) because clusters with low values of U tend to have a lower proportion

of measurements with X = 1. They will therefore tend not to contribute to PC1(1),

but will contribute to PC2(1) unless they have no measurements with X = 1. As with

X = 0, it is not entirely clear how EC3(U |X = 1) will compare to other populations.

In this scenario, it is comparable to EC1(U |X = 1).

When γ3 6= 0 (graphs not shown), Ep(Y |X = 0) remains unchanged, whereas

Ep(Y |X = 1) = γ0 + γ1 + Ep(U |X = 1)γ3 + Ep(U |X = 1)γ2 and so the slope of

the graph of Ep(Y |X = 1) against γ2 is the same as for γ3 = 0, but the expectation is

increased by Ep(U |X = x)γ3.

When the responses are binary, the relationship between Y and U is not linear

and this introduces additional complexities to the explanations above. In particular,

Ep(Y |X = x) = Ep
{

logit−1(γ0 + γ1x+ γ2U) | X = x
}

. Therefore, the whole dis-

tribution of U |X = x, rather than simply its mean, affects the expectation of Y for

each population for inference. As can be seen in the bottom three graphs in Figure 3.1,

the patterns observed are analogous to those of the top graphs in Figure 3.1, but the

relationship between Ep(Y |X) and γ2 is now non-linear, and indeed the graphs exhibit

stationary points.
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3.9 Simulation studies
To investigate the performance of our proposed estimation methods in terms of bias and

coverage we conducted a simulation study using the same data generating mechanism

as described in the previous section, for moderate sample sizes. Each simulated dataset

contained 200 clusters and for each different scenario we generated S=2000 simulated

datasets. We used the estimation methods described in Section 3.6.3 to fit the models

and obtain 4 sets of parameter estimates of β in each simulation. We considered two

sets of scenarios. The first set corresponds to a scenario where both the cluster size

(α0 = α1 = 1) and covariate structure (λ0 = 0;λ1 = 1) are informative. In the second

scenario, the cluster size is non-informative (α0 = 1.5;α1 = 0) and the covariate

structure is informative. Note that informative covariate structure might also arise when

the cluster size is constant.

In Tables 3.1 and 3.2 we present mean estimated values of the parameters from

the estimation methods over the 2000 simulated datasets and their empirical standard

errors (ese), i.e. the square root of the variance of the 2000 estimates, for the case of

binary responses. Specifically,

β̂k =
1

S

S∑
s=1

β̂k,s, ese(β̂k) =

(
1

S(S − 1)

S∑
s=1

(β̂k,s − β̂k)2

)1/2

, k ∈ 0, 1

where β̂k,s is the estimated parameter value in the sth simulated dataset. Average stan-

dard errors based on the proposed variance estimators can be calculated using

se(β̂k) =
1

S

S∑
s=1

[var(β̂k,s)]1/2, k ∈ 0, 1,

where var(β̂k,s) is the variance of the parameter estimate in the sth simulated dataset,

using the proposed variance estimator. Coverage probabilities for a 95% confidence

interval are given by

cover(βk) =
1

S

S∑
s=1

I(βk ∈ [β̂k,s − z0.95 se(β̂k,s), β̂k,s + z0.95 se(β̂k,s)]),

where z0.95 is the 95th percentile of the Normal distribution and βk is the true value of

the parameter for a given population for inference.

The mean estimates in both scenarios are in agreement with the corresponding

true value computed using numerical integration, demonstrating that our estimation
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γ2 = 1, γ3 = 1

p TRUE(β0, β1) β̂0(ese(β̂0)) β̂1(ese(β̂1)) cover(β̂0,β̂1)

M (1.000,1.234) 1.00(0.12) 1.24(0.21) (0.943,0.945)

C1 (0.838,1.079) 0.84(0.14) 1.09(0.25) (0.945,0.940)

C2 (0.952,0.927) 0.96(0.13) 0.93(0.23) (0.948,0.944)

C3 (1.059,0.866) 1.07(0.16) 0.88(0.25) (0.953,0.953)

γ2 = 1, γ3 = 0

M (1.000,1.203) 1.00(0.12) 1.22(0.20) (0.943,0.948)

C1 (0.838,1.191) 0.84(0.14) 1.21(0.24) (0.945,0.938)

C2 (0.952,1.053) 0.96(0.14) 1.07(0.23) (0.948,0.945)

C3 (1.059,0.970) 1.07(0.16) 0.98(0.26) (0.953,0.945)

γ2 = 0, γ3 = 1

M (1.000,1.202) 1.01(0.12) 1.21(0.21) (0.951,0.951)

C1 (1.000,1.029) 1.01(0.14) 1.04(0.24) (0.950,0.950)

C2 (1.000,1.005) 1.01(0.13) 1.02(0.24) (0.950,0.949)

C3 (1.001,1.028) 1.01(0.15) 1.04(0.26) (0.953,0.946)

Table 3.1: Binary responses: Parameter estimates, empirical standard errors and cover-
age for the four populations for inference when cluster size is informative (α0 = α1 =
1) and covariate structure is informative (λ0 = 0;λ1 = 1 i.e. X is non-size balanced).



3.9. Simulation studies 94

γ2 = 1, γ3 = 1

p TRUE(β0, β1) β̂0(ese(β̂0)) β̂1(ese(β̂1)) cover(β̂0,β̂1)

M (0.838,1.079) 0.84(0.10) 1.09(0.16) (0.952,0.953)

C1 (0.838,1.079) 0.84(0.11) 1.09(0.17) (0.949,0.958)

C2 (0.924,0.825) 0.93(0.11) 0.83(0.18) (0.948,0.948)

C3 (0.951,0.759) 0.95(0.12) 0.77(0.19) (0.947,0.946)

γ2 = 1, γ3 = 0

M (0.838,1.079) 0.84(0.10) 1.08(0.16) (0.952,0.953)

C1 (0.838,1.079) 0.84(0.11) 1.09(0.19) (0.949,0.958)

C2 (0.924,0.825) 0.93(0.11) 0.83(0.18) (0.948,0.948)

C3 (0.951,0.759) 0.95(0.12) 0.77(0.19) (0.947,0.945)

γ2 = 0, γ3 = 1

M (1.000,1.029) 1.00(0.10) 1.03(0.17) (0.942,0.943)

C1 (1.000,1.029) 1.00(0.11) 1.04(0.18) (0.944,0.951)

C2 (1.000,0.939) 1.00(0.11) 0.94(0.19) (0.951,0.953)

C3 (1.000,0.916) 1.00(0.12) 0.92(0.19) (0.952,0.949)

Table 3.2: Binary responses: Parameter estimates, empirical standard errors and cover-
age for the four populations for inference when cluster size is non-informative (α1 = 0)
and covariate structure is informative (λ0 = 0;λ1 = 1).
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methods are approximately unbiased. We also present estimated coverage probabilities

for 95% confidence intervals based on our sandwich variance estimator. These are in

the range 94-96% across all scenarios. For set 2, note that since cluster size is non-

informative, inference would be for populations M, C2 and C3 depending on the objec-

tives of the analysis. Since cluster size is non-informative inference for population C1

coincides with inference for population M. As shown in Table 3.2, parameter estimates

for population C1 are approximately equal to those for population M. The empirical

standard errors though, are in all cases higher when inference is for population C1.

3.10 Illustration: secondary analysis of the Delta trial
To illustrate the proposed methodology we examine the relation amongst all AIDS

related condition (ARC) events recorded between whether or not the event is one of the

most prevalent ARC event types (Oral Candidiasis) and the covariates randomisation

arm (RA), CD4 count (most recent to the event) and time of the event since entry in

the trial. Each cluster is composed of all the ARC events reported during a patient’s

follow-up. There were 979 clusters, i.e. patients with sufficient information and at least

1 ARC event during follow-up. The median number of events was 2, the range 1-15.

For exploratory analysis we categorised cluster size into small (1 event), medium

(2-3) and large (4-15), where each of these groups contains roughly equal number of

clusters. As the total number of ARC events experienced by the patient increases the

percentage of events that are Oral Candidiasis decreases, from 27% in patients with 1

event, to 22% in patients with 2 or 3 events, and to 15% in those with 4 or more. This

is a first indication that the cluster size might be informative.

Of our covariates, randomisation arm is cluster-constant, CD4 count and time are

cluster-varying. The average CD4 count at the time of event for small, medium and

large clusters was found to be 165, 121 and 67 respectively, which suggests that CD4

count is non-size balanced. The corresponding averages for time (days) were 402, 465

and 489. To illustrate our methods we categorised CD4 as low [0, 20], medium (20, 80]

or high (80+), these categories being chosen to make roughly equal number of events

fall into each category. Similarly time was categorised as Start ([0, 12] months), Middle

((12, 24] months) and End (24+ months), where the categories contain roughly equal

numbers of events. Since the cluster-varying covariates CD4 and Time appear to be
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Step 1 Step 2

Set Covariates Test for N Test for interactions with N

βN p-value p-value

M1 RA -0.092 <0.001 0.39

M2 CD4 -0.044 0.041 0.52

M3 Time -0.051 <0.001 <0.001

M4 RA, CD4 -0.076 0.042 0.33

M5 RA, Time -0.086 <0.001 <0.001

M6 RA, CD4, Time -0.086 <0.001 0.024

Table 3.3: Testing for informative cluster size in the data example from Delta Trial.

Step 1: Test for the coefficient of N . Step 2: Joint Wald test for all interaction terms

between N and covariates.

non-size-balanced it is likely that the covariate structure is also informative.

Let Ni denote the number of events experienced by patient i, and let j index these

Ni events. Let Yij = 1 if the ith patient’s jth event was Oral Candidiasis, and Yij = 0

otherwise. We fit models including each covariate alone, each adjusted for randomisa-

tion arm, and finally a ‘fully adjusted’ regression model

logit{Ep(Y )} = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6, (3.19)

where X1 and X2 are the indicator variables of randomisation to the drug combinations

AZT+ddl and AZT+ddC respectively, X3 and X4 are indicators that the CD4 count

is medium or high respectively and finally X5 and X6 are indicators that the time is

middle or end respectively.

For each set of covariates in the second column of Table 3.3 we tested whether

cluster size is informative using the strategy described in Section 3.7. That is, we firstly

fitted a model including cluster size, N , alongside the covariates in each model and

performed a Wald test for the coefficient of cluster size. For example, for the set of

covariates M1 the model considered was

logit{Ep(Y )} = β0 + β1X1 + β2X2 + βNN and it was fitted using unweighted GEE

with independence working correlation. For each of the models considered for the

set of covariates M1-M6 we present the term corresponding to cluster size and the



3.10. Illustration: secondary analysis of the Delta trial 97

associated p-values in the third and fourth columns of Table 3.3, respectively. The

main effect of cluster size (βN ) was found significant (p < 0.05) and negative in every

case, suggesting that, adjusting for covariates, the prevalence of Oral Candidiasis is

lower in smaller clusters. Secondly, in each of the models considered in the first step,

we added all interaction terms between cluster size and the covariates at once and tested

them jointly using a Wald χ2 test. For example, for the set of covariates M1, the model

considered was logit{Ep(Y )} = β0 + β1X1 + β2X2 + βN0N + βN1NX1 + βN2NX2,

and similarly for the other sets of covariates. The p-values from the joint Wald tests

for the interaction terms are presented in the fifth column of Table 3.3. The interaction

between cluster size and time was found significant. These results indicate that the

cluster size is probably informative.
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In Table 3.4 we present odds ratios and confidence intervals for three populations

for inference, obtained by fitting the models described above by the estimation methods

described in Sections 3.5 and 3.6.3. In addition, for comparison we fit the models using

the standard GEE [GEE(EX)] with exchangeable working correlation. We present an

estimate of the prevalence of Oral Candidiasis among ARC events in each subcategory

of each covariate and for each population. For population M this prevalence is simply

the proportion of Oral Candidiasis events. For population C2 our estimates of the preva-

lence of Oral Candidiasis according to each covariate are calculated by considering that

covariate alone, i.e. using weights as if fitting a model including only that covariate.

We do not include population C3 in our analysis because there are no events in the final

time interval with high CD4, and so there are no data to estimate the parameters of the

fully adjusted model.

The estimated odds ratios for the three populations are broadly similar in magni-

tude for randomisation arm and CD4, but different for the effect of time, the factor seen

to interact with cluster size in our initial exploration. Note that for the randomisation

arm adjusted inference for populations C1 and C2 coincides since randomisation arm is

a cluster-constant variable (see Section 3.6). The standard GEE provide inference sim-

ilar to that for the population of all members. This is because the correlation parameter

was estimated to be approximately 0.15 for all the models. The GEE with exchangeable

working correlation will provide similar parameter estimates to the GEE with indepen-

dence working correlation when the correlation parameter value is modest, at least for

the range of cluster sizes considered here.

In all populations we conclude that the prevalence of Oral Candidiasis among ARC

events is not linked to randomisation arm but seems higher in events with a higher CD4

count and earlier follow-up time. This association with time is weaker for a typical

event of a typical patient than among all events, a feature that remains after adjust-

ment for randomisation arm and CD4. We have learnt that whilst Oral Candidiasis is a

very common event at early follow-up times, at the ‘aggregate level’, i.e. considering

all events, its prevalence declines sharply and at later times it represents only a small

proportion of all the events diagnosed and so requiring a clinical response. However,

considering the experience of a typical patient, the decline in prevalence over time is

less marked, and it remains a relatively common event diagnosis. As revealed by our
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initial analysis exploring the interaction between cluster size and time, the difference

in findings across populations arises because at later times there are some patients with

several events where Oral Candidiasis is not diagnosed, and these patients dispropor-

tionately affect inference for all events.

3.11 A related recent approach
We have documented the work in Sections 3.6-3.10 in reports to the Department of

Statistical Science, UCL. We have also presented part of it at the International Society

of Clinical Biostatistics (ISCB) conference held in Prague in August 2009 (Pavlou

et al., 2009) and at an open seminar at MRC-CTU. It later became evident that Huang

and Leroux (2011) were independently developing similar methods.

They use slightly different terminology. They define informative covariate dis-

tribution to arise when the covariate of interest is categorical cluster-varying and the

expected outcome is related to the probability of a member having a certain covariate

level. We interpret non-informative covariate distribution to mean that

f(Y |X,X∗, N) = f(Y |X, N).

Otherwise, we say that the covariate distribution is informative.

This definition can be seen to be similar to our definition of informative covariate

structure (see Definition 3.2, pg. 67) which is defined in terms of expectations rather

than probability distributions. Huang and Leroux (2011) clarify that the covariate of

interest might be (i) a characteristic inherent to the cluster under study or (ii) a treatment

applied to it. They present their exposition for scenarios where the covariate of interest

is binary and is termed ‘exposure’. They clarify that the extension to the case of a

categorical covariate is straightforward. They consider methods for non-manipulable

and manipulable exposure. We briefly describe these below.

3.11.1 Non-manipulable exposure

When the exposure is non-manipulable, the covariate of interest is assumed to be an

inherent characteristic of the cluster under study. Huang and Leroux (2011) proposed

two estimators, DWGEE1 and DWGEE2, to provide inference for a further population

of typical cluster members where each cluster contributes one member at random for

each value of X .
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Firstly, when all values of the exposure are realised in every cluster they propose

the DWGEE1 estimator to provide consistent estimation of the effect of the exposure.

For member j of cluster i we define Zij to denote the number of members in cluster

i with the same exposure level as member j. DWGEE1 are weighted independence

estimating equations where each cluster member is inversely weighted by Zij . The

DWGEE1 estimator can be seen to be identical to the WIEE-C3 (and also WIEE-C2)

estimator we proposed in Section 3.6.3.

Secondly, when not all clusters include all exposure levels, Huang and Leroux

(2011) propose DWGEE2, which requires parametric modelling of the number of mem-

bers in each cluster with certain exposure levels. We let Zi,x denote the number of

members in cluster i with X = x and ZiXij (or Zij as above for simplicity) the num-

ber of members in cluster i with exposure level equal to Xij . Let L denote a vector

of observed cluster-level covariates which are assumed to describe the frequency dis-

tribution of Zi,x. DWGEE2 is analogous to the DWGEE1 estimator, but member j in

cluster i is inversely weighted by the expected (rather than the observed) value of Zij .

The expected value of Zij is obtained by fitting (separately for each level of exposure) a

model for Zi,x in terms of L. If there exists a natural maximum value for Zi,x, then Zi,x

is modelled using binomial regression; otherwise Poisson regression can be used. The

necessary condition for the validity of DWGEE2 is that conditional on L the covariate

distribution is not informative, i.e. f(Y |X,X∗, N,L) = f(Y |X, N).

So, the DWGEE2 are
K∑
i=1

∂µTi
∂β

ΠiV
−1
i (Y ∗i − µi) = 0, (3.20)

where K is the number of clusters in the sample and Vi is the diagonal matrix with

jth element equal to the assumed variance function v(µij) = var(Yij | Xij). Πi is a

Ni×Ni diagonal matrix whose jth diagonal element, πij , is the inverse expected value

of Zij . Consistent estimates, π̂ij , for πij , are substituted in Πi. If the model for πij

is correctly specified, equations (3.20) provide consistent parameter estimation for a

further population for inference which does not coincide with populations C1, C2 or

C3, in general. We discuss further this population for inference in Section 3.12.1.

3.11.2 Manipulable exposure

Huang and Leroux (2011) also considered the scenario where the covariate of inter-
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est (previously termed exposure) is not a characteristic inherent to the cluster, but a

treatment applied to it. The expected outcome may be related to the probability of a

member of a cluster receiving the treatment and ignoring this dependence may lead

to biased estimation of the treatment effect. For example, when patients are clustered

within clinics, factors may relate to the probability of a patient receiving the treatment

and the potential health outcome for the patient. This issue is known as ‘informative

treatment propensity’ and use of inverse probability of treatment has been used for the

type of informativeness (Robins et al., 2000). Huang and Leroux (2011) extended the

inverse probability of treatment approach for scenarios where not only the treatment

propensity, but also the cluster size might be informative. Such a scenario would arise

if the size of the clinic to which a patient belongs, is related to the patient’s potential

outcome.

Let Y denote the outcome for a member and T the treatment indicator. For t = 0, 1

let also D(t) denote the binary indicator of receiving treatment t and Y (t) the potential

outcome given treatment t. W denotes a vector of variables that define treatment allo-

cation so thatD(t) ⊥⊥ Y (t) |W . Also, let S be a subset ofW which is included in the

speculated regression model. The target is to estimate the potential effect of the treat-

ment on outcome, adjusting for other covariates of interest, S, for a typical member of

a typical cluster. The relevant regression model is:

E(Y | T,S) = h−1(TβT + STβS)

and the parameters of interest are βT and βS .

Let θij = θ(Tij,Wij) = P (Tij = t | Wij) denote the probability that a member

receives treatment t. The proposed estimating equations, DWGEE3, are
K∑
i=1

1

Ni

∂µTi
∂(βT ,βS)

ΘiV
−1
i (Y ∗i − µi) = 0, (3.21)

where Θi is aNi×Ni diagonal matrix whose jth element, θij , is the probability that the

jth member receives the treatment Tij . Consistent estimates, θ̂ij , for θij , are substituted

in Θi. If the model for θij is correctly specified, equations (3.21) provide consistent

parameter estimation of the potential treatment effect for a typical member of a typical

cluster. Huang and Leroux (2011) noted that in the case where all clusters have both

treatments, Zij is a consistent estimate of the member specific weight Ni θ(Tij,W ), so

the DWGEE1 method remains valid, although potentially less efficient than DWGEE3.
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3.12 Use of DWGEE1/2 and future work

3.12.1 DWGEE2: use and limitations

Both DWGEE1 and DWGEE2 aim to estimate the within-cluster effect of the exposure.

Huang and Leroux (2011) state that when not all exposure levels are present in all

clusters there are two possible populations for inference. The first is the one where

attention is restricted to clusters which contain all levels of exposure and for the analysis

the rest of the clusters are discarded. The DWGEE1 method provides inference for this

population.

The DWGEE2 method seeks inference for the second population which is not well

defined by Huang and Leroux (2011). We interpret inference using DWGEE2, as one

which aims to answer the question: “What would have been the within-cluster effect

of the exposure if in clusters with one level of exposure only, the other level had been

realised as well?”. Clearly, it is assumed that the exposure levels which are not present

could have been observed but they are actually missing. So, DWGEE2 can be regarded

as a method for complete-cluster inference where the observed-cluster members are

up-weighted to represent both themselves and missing members from clusters with the

same value ofL but also down-weighted as if there existed only one member with each

exposure level in every cluster. Introducing the weights, precisely serves the purpose

of creating a pseudopopulation of complete clusters where all clusters experience all

levels of exposure. Importantly, this pseudopopulation depends on the choice of L.

3.12.2 Practical application

In real scenarios, the applicability of DWGEE2 can be limited, mainly because of the

restrictive nature of the covariates in the model for Zi,x. In the absence of suitable

cluster-constant auxiliary variables application of DWGEE2 is not feasible.

Huang and Leroux (2011) neither provide guidance for the choice of suitableL nor

comment on methods for assessing the appropriateness of the model for Zi,x. In their

data illustration, gender and cluster size are used as predictors in the model for Zi,x, but

this choice is not explained. Arguably, the choice of the set of covariates in L, can be

based on exploratory analysis. To examine whether a covariate is suitable to be included

in L, a reasonable strategy would be to examine the distribution of each candidate

auxiliary variable at the different levels of the exposure. Any imbalances would indicate
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that such a covariate is a potential confounder of the effect of the exposure and is

suitable to be included in L. For practical application, we propose (as Huang and

Leroux (2011) did in their data application) that N is included as a predictor in the

model for Zi,x since is inherently related to Zi,x (e.g. Zi,x ≤ Ni).

Another issue which may cause problems in the application of DWGEE2 is the

presence of unusually small/large weights or variable weights which may lead to un-

stable parameter estimates (Joffe et al., 2004). One way to protect against the first is to

exclude clusters with unusually large or small weights or ‘trim’ the extreme weights.

In the application of DWGEE2, it is not clear whether L is allowed to involve

covariates from the regression model for Y . There is a greater issue of whether to

include cluster-constant covariates in the main regression model as part of X , or use

them to construct the weights, i.e. as part of L. This issue is not discussed by Huang

and Leroux (2011). In analogy with marginal structural models, one reason for using

such covariates in L rather than including them in X , is to aid variable selection of

X (structural part of the model) and also to produce a more meaningful model which

only includes covariates, X , of main interest and not nuisance covariates. For the case

of non-manipulable exposure, it is of interest to investigate whether cluster-varying

auxiliary variables can contribute to L (e.g. through a cluster-level summary) as this

may broaden the range of scenarios where DWGEE2 can be applied.

The extension of DWGEE1, DWGEE2 and DWGEE3 to scenarios where X is

continuous remains an open question. For practical application we proposed categoris-

ing the continuous covariate, to make the application of DWGEE1 feasible. Such an

approach was used in our illustration in Section 3.10. Two issues arise from using this

approach. First, the selection of number of categories and the ‘cut-off’ points is sub-

jective. Second, collapsing the values of a continuous covariate into a categorical one

involves discarding useful information, thus reducing the precision of the parameter

estimates. In response to the second issue, a possible solution would be to use a sen-

sible categorisation to obtain the weights but use the original values of the continuous

covariate when applying the WIEE. In this way, the information in X is fully utilised

and the members receive suitable weights. The underlying assumption is that for the

subcluster formed by members of a cluster in the same category, the covariate structure

is non-informative. Whether this assumption is satisfied depends on the selection of
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categories.

3.12.3 Choice of method

When all levels of exposure are realised in all clusters, a recommended approach would

be to use WIEE-C3 (DWGEE1). When not all exposure levels are present in all clusters

the analyst has two possible choices of method: WIEE-C3 (DWGEE1) or DWGEE2.

We aim to estimate the within-cluster effect of the exposure in all clusters and the

choice of method can be based on the efficiency/bias trade-off.

We first assume that the effect of the exposure is homogeneous (i.e. the effect

of the exposure is the same in all clusters, see also Definition 2.1, pg. 52). If the

proportion of clusters with missing exposure levels is small, we suggest using WIEE-

C3 since it does not require any assumptions about the missingness mechanism and

can remove confounding due to measured or unmeasured cluster-level confounders. If

a large proportion of clusters have missing exposure levels, application of DWGEE1

can be inefficient. If the analyst is prepared to make assumptions about the missingness

of exposure levels, DWGEE2 may then be considered (subject to availability of suitable

cluster-level auxiliary variables).

If the effect of the exposure is non-homogeneous, WIEE-C3 will only provide

consistent estimation if all clusters contain all levels of exposure; otherwise, estimation

using WIEE-C3 will generally be inconsistent. When cluster-level auxiliary variables

are available, the analyst may use DWGEE2 where L must be chosen by thinking of

what can predict missingness of exposure levels.

If confounding is due to cluster-level confounders, these are observed and we wish

to estimate the effect of the exposure adjusting for these confounders in a regression

model, a further possibility would be to include these confounders inX and seek infer-

ence for population C2. If the effect of the exposure is assumed to vary between differ-

ent clusters, we may fit a regression model for the expected outcome in population C2,

adjusting for the cluster-level confounders and their interactions with exposure. Ar-

guably, application of WIEE-C2 would lead to more complex models for the expected

outcome compared to the application of DWGEE2, in which the observed confounders

are only used to obtain the weights and are not part ofX .
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3.12.4 Relation of DWGEE1/2 to methods estimating the within-

cluster effect of the exposure

Informative covariate distribution can be seen to be strongly related to cluster-

confounding (Palta and Yao, 1991; Neuhaus and Kalbfleisch, 1998; Neuhaus and MC-

culloch, 2006; Goetgeluk and Vansteelandt, 2008; Brumback et al., 2010). DWGEE1/2

are naturally viewed as methods to estimate the within-cluster effect of the exposure.

However, as discussed in Section 2.8, there are alternative methods to estimate the

effect of the exposure under cluster-confounding by using only within-cluster compar-

isons. These are:

1. GLMMs which separate between- and within-cluster effects (GLMMBW-Neuhaus

and Kalbfleisch, 1998),

2. Conditional GEE (CGEE-Goetgeluk and Vansteelandt, 2008),

3. Conditional likelihood (CL-Neuhaus and MCculloch, 2006).

There are two important issues to consider when choosing a method: whether the

effect of the exposure is homogeneous and whether the cluster size is informative.

DWGEE1 provides marginal inference and is valid when the cluster size is infor-

mative. If all values of the exposure are present in every cluster, it does not require the

condition of homogeneous exposure effect to be true. When the within-cluster effect

is different for every cluster, it estimates what can be seen as an ‘average’ within-

cluster-effect, where each cluster contributes equally to the estimation. It requires the

exposure to be categorical. If not all values of the exposure are present in each cluster,

then DWGEE2 can be used instead, subject to availability of auxiliary variables which

adequately predict missingness of exposure levels.

In the special case where the link function is the identity one, the exposure effect

is homogeneous, and the exposure is categorical and all clusters contain all values of

the exposure, all four methods (DWGEE1, GLMMBW, CGEE and CL) can be used to

estimate the effect of the exposure. However, DWGEE1 is expected to be less efficient

than the other methods, because in DWGEE1 all clusters are equally weighted in the

estimation even if some are smaller or less informative than others.

GLMMBW, CGEE and CL provide cluster-specific inference under cluster-

confounding and do not require the exposure to be categorical, as does DWGEE1/2.
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Nevertheless, GLMMBW, CGEE and CL can be used to estimate the within-cluster

effect of the exposure under the condition of homogeneous exposure effects. When

the effect of the exposure is not homogeneous, we do not expect any of these meth-

ods to consistently estimate the within-cluster effect of the exposure. Adaptation of

these methods for such scenarios requires further investigation. As part of future work,

it is of interest to investigate the performance of GLMMBW, CGEE and CL under

cluster-confounding and also informative cluster size. We would expect these methods

to provide consistent estimation for the within-cluster effect of the exposure when the

cluster size is informative but only affects intercept term (see Section 3.5.3, pg. 75).

3.13 Discussion
In this chapter we have investigated existing methods for informative cluster size and

also considered informative cluster size in more general scenarios than previous au-

thors. We have defined informative covariate structure and additional populations for

inference with corresponding estimation methods.

We initially explained that adjusting for cluster size in a marginal regression model

for the expected outcome is not in general a good approach to deal with informative

cluster size, except in scenarios where cluster size is a predictor of scientific interest

such as in volume-outcome studies. We have also investigated an approach where a

model for the expected outcome conditional on cluster size and covariates is assumed,

but then the ‘marginal effect’ of covariates can be obtained by marginalising over the

distribution of the cluster size. We identified limitations in using such an approach but

also noted that it can be useful in certain scenarios and therefore can be considered for

further investigation. From these two considerations it becomes apparent that special

methods are needed to deal with informative cluster size.

We have examined informative cluster size in more general scenarios than previ-

ous authors (Hoffman et al., 2001; Williamson et al., 2003; Benhin et al., 2005). We

questioned the suitability of the population of typical cluster members 1 proposed, clar-

ifying that it can only be useful in simple cases where the covariates are cluster-constant

or cluster-varying but size-balanced. For these cases, we identified scenarios where the

covariate effects can be equal in inference for populations M and C1, and listed condi-

tions under which the intercepts as well as the covariate effects can be different between
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the two populations.

Importantly, we have extended the field of research beyond informative cluster

size to informative covariate structure. We defined additional populations (C2 and C3),

inference for which is more interpretable than inference for population C1. Under in-

formative covariate structure standard methods such as GEE with a realistic working

correlation do not provide consistent estimation for any well-defined population for in-

ference. Whilst informative cluster size is known to occur widely in medical research,

by contrast we are unaware of how commonly the problem of informative covariate

structure occurs, and how commonly it is considered when clustered data are analysed.

Our proposed method of estimation by weighted independence estimating equations

(WIEE) is easy to implement in standard statistical software. We hope to see our pro-

posed methodology implemented across a range of study types, in particular so that the

relative merits of the possible populations for inference in different practical situations

can be better understood.

We emphasise that the choice between populations C2 and C3 depends on the

choice of which covariates to investigate. In scenarios where it is wished to remove

confounding by adjusting for many covariates, and particularly cluster-varying covari-

ates, population C2 will become very similar to population M and population C3 may

be (nearly) empty. In such scenarios with many confounders, performing a ‘cluster-

level’ analysis can be problematic. Categorising continuous covariates may allow a

cluster-level analysis but will clearly involve some loss of information.

Huang and Leroux (2011) independently identified the issue of informative covari-

ate structure (in their terminology, informative covariate distribution). They have pro-

posed an estimator (DWGEE1) which is identical to our WIEE for inference for popula-

tion C3. They also considered further estimators (DWGEE2, DWGEE3) which require

models for the frequency distribution of the covariate of interest (exposure). The va-

lidity of DWGEE2 and DWGEE3 relies on the correct specification of the frequency

distribution of the exposure. In our view, DWGEE2 is a method for complete-cluster

inference where the target is to estimate the within-cluster effect of the exposure and

all complete clusters contain all levels of exposure. For scenarios where the all clusters

contain all values of the exposure, DWGEE1 consistently estimates the within-cluster

effect of the exposure, regardless of whether the effect of the exposure is homogeneous
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or not. When not all clusters contain all values of the exposure and the effect of the ex-

posure is not homogeneous DWGEE1 does not consistently estimate the within-cluster

effect of the exposure. In this scenario, if the analysts are prepared to make assumptions

about the missingness of exposure levels, then they may consider use of DWGEE2/3

(subject to availability of suitable auxiliary variables).

In this chapter, we have focused on applications involving outcome measurements

concerning repeated episodes, in contrast to previous authors of papers regarding in-

formative cluster size. We acknowledge that for such longitudinal data there may alter-

natively be interest in directly modelling the risk of episodes of different types. Take

for example our illustrative application to data from an HIV trial; we are aware that

the risk of particular adverse events could be modelled directly through using hazard

models (Prentice et al., 1978). By applying our method here, we are assessing the char-

acteristics of adverse events given that they have happened, and such a model could be

complemented by a model for adverse events of any type (Hachen, 1988; Ghilagaber,

1998). More generally we acknowledge that there is often interest in formulating a

model for the cluster size, as forms part of those approaches that jointly model size and

outcome measures (Dunson et al., 2003; Gueorguieva, 2005), or in answering ‘causal’

questions concerning what might happen were clinical practice to change.

In many longitudinal studies concerning episodic data, as well as cross-sectional

studies such as in dental research, informative cluster size and/or covariate structure

may arise and standard methods may be appreciably biased. The methods we present

provide easily implementable ways to perform unbiased regression analysis for well-

defined populations of interest.
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A.1 Proof of consistency and asymptotic Normality
Here we prove that the estimator that solves equations (3.16) is consistent and asymp-

totically Normally distributed when equation (3.15) holds and standard regularity con-

ditions are satisfied. We also show that the variance estimator given by equation (3.17)

is a consistent estimator of the variance of this parameter estimator. We assume that

the maximum cluster size, Nmax, is finite. This proof is for population C2, but it can be

adapted for the other populations. For population C2 the true value of β is the solution

to

EIJ [
∂µIJ
∂βT

V −1
IJ (YIJ − µIJ)] = 0, (A-1)

where µij = h−1(β0 +XT
ijβ1), Yij ,X ij , and Vij are the observed values of Y ,X , and

the assumed variance for the jth measurement in cluster i, and (I, J) is a randomly cho-

sen measurement in population C2. Since the probability that a particular measurement

is chosen (when population C2 is formed from the overall population of all members -

see Section 3.6) is inversely proportional to Z, then (A-1) can be written

EI [

NI∑
j=1

1

ZIj

∂µIj

∂βT
V −1
Ij (YIj − µIj)] = 0. (A-2)

Now (A-2) can be written

EI [
Nmax∑
j=1

RIj

Z̃Ij

∂µ̃Ij

∂βT
Ṽ −1
Ij (ỸIj − µ̃Ij)] = 0, (A-3)

where Rij = 1 if Ni ≥ j and Rij = 0 otherwise, and Z̃ij , µ̃ij , Ṽij and Ỹij are equal to

Zij , µij , Vij and Yij if Rij = 1 and are equal to any non-zero value if Rij = 0.

Then (A-3) can be written

EI [Ã(X̃I ,β)(ỸI − µ̃I(X̃I ,β))] = 0,

where Ỹi = (Ỹi1, ..., ỸiNmax), µ̃i = (µ̃i1, ..., µ̃iNmax), X̃i = (X̃i1, ..., X̃iNmax), and

Ã(X̃I ,β) =
∂µ̃I

∂βT
W̃IṼ

−1
I

where Ṽi = diag(Ṽi1, ..., ṼiNmax) and W̃I = diag(RI1Z̃
−1
I1 , ..., RINmaxZ̃

−1
INmax

).

It follows from Tsiatis (2006, pg. 54-57), that the solution β̂ to the estimating

equations, where K is the number of clusters in the sample,

K∑
i=1

Ã(X̃i,β)[Ỹi − µ̃i(X̃ i,β)] = 0 (A-4)
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is asymptotically Normally distributed with mean equal to the true value of β and

variance

E(ÃD̃)−1E(ÃṼ ÃT )E(ÃD̃)−1T , (A-5)

where

D̃(X̃,β) =
∂µ̃(X̃,β)

∂βT
.

Finally, we show equivalence between these estimating equations and the weighted

independence equations we proposed in Section 3.6.3. It is easy to see that

Ã(X̃,β) =

 A(Xi,β) 0K×(Nmax−Ni)

0(Nmax−Ni)×Ni 0(Nmax−Ni)×(Nmax−Ni)

 (A-6)

where A(X i,β) = ∂µi
∂βT
WiV

−1
i , Wi = diag(Z−1

i1 , . . . , Z
−1
iNi

), and 0a×b denotes an

(a× b) matrix of zeros. Hence (A-4) can be written

K∑
i=1

A(Xi,β)[Y ∗i − µi(Xi,β)] = 0

which is identical to (3.16).

Tsiatis (2006, pg. 56-57) also states that the variance in (A-5) can be estimated

by a sandwich variance estimator, and by examining D̃ and Ṽ as we examined Ã in

(A-6) it can be shown that indeed the sandwich estimator we proposed in (3.17) is also

identical to this estimator.

A.2 Computation of true regression parameter values
Here we outline the procedure we used to compute the true parameter values for the

scenarios examined in Sections 3.8 and 3.9 for the population of all members and the

three populations of typical cluster members. Let fA(.) denote the probability density

(or distribution) function for a generic random variable A. Then, for population C1,

EC1(Y | X = x) =

∫
h−1[E(Y | X = x, U = u)]fU(u | X = x) du

=

∫
h−1[E(Y |X = x, u)]fX(x | U = u)fU(u) du∫

fX(x | U = u)fU(u) du
. (A-7)

For population M we define Zx to be the number of members with X = x in the

cluster. Now,

EM(Y |X = x) =

∫
E(Zx | U = u)h−1[E(Y | X = x, U = u)]fU(u) du∫

E(Zx | U = u)fU(u) du
, (A-8)
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and E(Zx | U = u) = E(N | U = u)fX(x | U = u). The integrals with respect to U

in equations (A-7) and (A-8) were approximated using numerical quadrature with 200

quadrature points.

For populations C2 and C3 we further define probabilities for inclusion of a mea-

surement in a population given the value, u, of U . These probabilities depend on the

size of a cluster with U = u. For population C2 we let pinx (u) denote the probabil-

ity that a cluster with U = u includes at least one measurement with X = x and

pinx (u) =
∑

N fN(n|u)[1 − P (X = x|U = u)n]. For population C3 at least one mea-

surement with X = 0 and one with X = 1 has to be included in the cluster and the

probability of this occurring is denoted by pin01(u) =
∑

N fN(n|u)[1 − (1 − P (X =

0|U = u))n − (1− P (X = 1|U = u))n]. Then,

EC2(Y |X = x) =

∫
pinx (u)h−1[E(Y |X = x, U = u)]f(u) du∫

pinx (u)f(u) du
, x = 0, 1 (A-9)

and

EC3(Y |X = x) =

∫
pin01(u)h−1[E(Y |X = x, U = u)]f(u) du∫

pin01(u)f(u) du
, x = 0, 1. (A-10)

Again, the integrals with respect to U in equations (A-9) and (A-10) were approximated

using numerical quadrature with 200 quadrature points. For each quadrature point,

pinx (u) and pin01(u) were computed using Monte Carlo integration over the distribution

of N by simulating 10000 cluster sizes for each value of u.

A.3 R-code for the computation of true regression pa-

rameter values
We here present an R-software implementation of the general procedure described in

Appendix A.2. The code presented is an example of the code used for the computation

of the true parameter values in Section 3.8. In particular it was used to compute of true

parameter values of the ‘analysis model’ in each population for inference, assuming

that the data were generated under the procedure described in page 88 for Gaussian

responses and non-size-balanced X .

# u is a vector of 200 quadrature points

u <- qnorm(seq(0.0025, 0.9975, 0.005)) * 0.5

px1 <- expit(u)
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pin0 <- rep(0, length(u))

pin1 <- rep(0, length(u))

pin01 <- rep(0, length(u))

exp.numx0 <- rep(0, length(u))

exp.numx1 <- rep(0, length(u))

# Nclust is the number of the simulated clusters for

# the Monte Carlo integration at each quadrature point

Nclust <- 1e4

for (i in 1:length(u))

{n <- rpois(Nclust, exp(a0+a1*u[i]))+1

pin0[i] <- mean(1 - px1[i]ˆn)

pin1[i] <- mean(1 - (1-px1[i])ˆn)

pin01[i] <- mean( 1 - px1[i]ˆn - (1-px1[i])ˆn )

exp.numx0[i] <- (1-px1[i]) * mean(n)

exp.numx1[i] <- px1[i] * mean(n)

}

# beta0.x and beta1.x are the true values of beta_0 and

# beta_1 for populations M,C1,C2 and C3 respectively

beta0.m <- mean(exp.numx0*(g0+g2*u))/mean(exp.numx0)

beta0.c1<- mean((g0+g2*u)*(1-px1))/mean(1-px1)

beta0.c2<- mean((g0+g2*u)*pin0)/mean(pin0)

beta0.c3<- mean((g0+g2*u)*pin01)/mean(pin01)

beta1.m <- mean(exp.numx1*(g0+g1+g2*u+g3*u))/mean(exp.numx1)

-beta0.m

beta1.c1<- mean((g0+g1+g2*u+g3*u)*px1)/mean(px1)-beta0.c1

beta1.c2<- mean((g0+g1+g2*u+g3*u)*pin1)/mean(pin1)-beta0.c2

beta1.c3<- mean((g0+g1+g2*u+g3*u)*pin01)/ mean(pin01)-beta0.c3
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Chapter 4

Efficient estimation methods when the

cluster size is informative

4.1 Introduction
In the previous chapter we introduced informative cluster size, as this was defined by

previous authors. When the cluster size is informative, inference might be for the pop-

ulation of all members or the population of typical members 1. We also defined in-

formative covariate structure and two populations for inference, additional to the ones

previously considered. Marginal inference for the population of all members and the

three populations of typical cluster members can be obtained using weighted indepen-

dence estimating equations.

Williamson et al. (2003) provide a useful discussion regarding the use of a WIEE

or IEE with a realistic correlation structure when the cluster size is informative. Appli-

cation of GEE with a non-diagonal correlation matrix may increase the efficiency of the

parameter estimates compared to independence, by recognising the correlation among

the members of each cluster. They note that when the cluster size is informative, use of

non-diagonal correlation structures generally causes bias because the weight attributed

to each member is altered, the total weight attributed to the cluster is altered and the

result is inference for none population for inference.

To provide inference for population C1 a potentially more efficient method

(MWCR) was proposed by Chiang and Lee (2008), based on the WCR method. When

the minimum cluster size,m, is greater than 1, the authors proposed randomly sampling

m members from each cluster and then applying the GEE with a realistic working cor-
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relation to each resampled dataset. As the intracluster correlation is accounted for,

efficiency may be gained.

Previous authors focused primarily on simple cases of informative cluster size,

in the sense that the covariates of interest were either cluster-constant or cluster-size

balanced (see Definition 3.3, pg. 68). These authors also focused on scenarios in

which the expected value of the outcome depends on cluster size and covariates but

not on interactions between the two. In this work we consider more general scenarios

where the covariates involved are cluster-varying and non-size balanced. We explain

why MWCR may lead to biased inference in these cases, a fact that is not clear in

the original presentation of the method (Chiang and Lee, 2008). Furthermore, bias in

MWCR can arise from realistic choices of the working correlation.

In addition, we derive an alternative estimator that is suitable in certain situa-

tions and which has the potential to be more efficient than WIEE. We call this method

WRGEE because it may be used with a realistic(R) working correlation, rather than re-

quiring the use of the independence working assumption. We compare the performance

of WRGEE to MWCR for scenarios where they are both unbiased and also show how

WRGEE can give unbiased inference with moderate efficiency gains relative to WIEE

in certain scenarios where the MWCR method is biased.

In the next section we introduce the standard notation used in GEE, present the

MWCR method and explain why bias can occur with MWCR in some scenarios. In

Section 4.3 we present the WRGEE method. In Section 4.4 we use simulation studies

to compare the performance of the methods in terms of bias and relative efficiency.

We apply the methods to AIDS related conditions data from the Delta Trial of HIV

treatment in Section 4.5. Finally, we discuss our results and possible future extensions

of the methodology.

4.2 Existing methods of estimation

4.2.1 Standard GEE and notation

In this chapter we use a slightly different notation from the one used when introducing

GEE in Section 2.4.3. We start by introducing the additional notation. As before, a

marginal regression model µ(X) = h−1(β0 +XTβ1) is specified, where h is a known

canonical link function and β = (β0,β
T
1 )T is a (q+ 1)-dimensional vector of unknown
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parameters of interest.

We consider the GEE1 of Liang and Zeger (1986) as described by equations (2.14).

In this chapter, the working correlation structure is assumed to be either independence,

exchangeable, auto-regressive or fixed. Depending on this choice, the actual working

correlation may involve unknown parameters ρ that need to be estimated. Let ρ̂ denote

the estimate of ρ. We assume that ρ̂ converges to a value ρ0 as K → ∞. Let R̂i

and Ri denote the working correlation matrix for cluster i evaluated at ρ̂ and at ρ0,

respectively. Note that R̂i and Ri can depend on observed variables which may or

may not be included in X∗. For example, for an auto-regressive working correlation

structure, they will depend on the times of observation of the members in the clusters,

and time may or may not be included as a variable in the analysis model.

If cluster size is non-informative, E(Y | X) and EC1(Y | X) are the same, i.e.

the expectation of Y givenX is the same in the populations of all members and typical

members 1. If, furthermore, the marginal model µ(X) = h−1(β0 +XTβ1) is correctly

specified, then under regularity conditions the solution β̂ to the following GEE is a

consistent asymptotically Normally distributed estimator of β:

K∑
i=1

U(β;Y ∗i ,X
∗
i ) =

K∑
i=1

∂µTi
∂β

V̂ −1
i (Y ∗i − µi) = 0, (4.1)

where V̂i = A
1/2
i R̂iA

1/2
i φ is the working covariance matrix for cluster i and Ai

is the Ni ×Ni diagonal matrix whose jth diagonal element is v(µij).

Let rilj denote the (l, j)th element of R−1
i , and let ri+j =

∑N
l=1 rilj and ri++ =∑N

j=1 ri+j . Let r̂ilj , r̂i+j and r̂i++ denote the analogous quantities for R̂−1
i .

In preparation for Section 4.2.3, it will be useful to consider the special case in

which the identity link function h−1(θ) = θ is used and there are no covariates. In this

case, β0 is just the population mean of Y . Equation (4.1) then becomes

K∑
i=1

U (β0;Y ∗i ) =
K∑
i=1

Ni∑
j=1

1

φ
r̂i+j(Yij − β0) = 0,

to which the solution is β̂0 =
∑K

i=1

∑Ni
j=1 r̂i+jYij/

∑K
i=1 r̂i++. Thus, β̂0 is a

weighted average of the Yij’s in which the total weight given to the measurements

in cluster i is r̂i++.
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Recall that when cluster size is informative, estimating equations (4.1) will not,

in general, give consistent estimation for either population M or C1. We previously

defined µ(X) = E(Y | X). This is the expectation of Y in the population of all

members and recall that is no longer equal to the expectation in the population of typical

members 1. Define, analogously, µC1(X) = EC1(Y |X) for the population of typical

cluster members 1.

4.2.2 A more efficient method for the population of typical cluster

members

The MWCR method, proposed by Chiang and Lee (2008), is a modification of the

WCR method and, like it, provides inference for the population of typical cluster mem-

bers 1 (population C1). It can be more efficient than WCR when m, the size of the

smallest cluster that appears in the dataset, is greater than 1. As it is evident from its

asymptotic equivalence to WIEE, WCR effectively uses an independence working cor-

relation. MWCR, on the other hand, allows a non-independence working correlation to

be used. We now describe MWCR.

For any subcluster s composed of m elements from cluster i, let V̂i(s), Y ∗i(s) and

µC1
i(s) denote, respectively, the submatrix of V̂i and the subvectors of Y ∗i and µC1

i corre-

sponding to those m members. There are two versions of the MWCR method, the first

of which is more intuitively understandable but also more computationally intensive.

The first resembles WCR; the second, WIEE.

In the first version of MWCR, Q datasets are created from the original dataset by

each time sampling at random (and without replacement) m members from each of the

K clusters. So, each dataset consists of K clusters each of m members. For each of

these Q datasets, β is estimated using the standard GEE (equations (4.1)) with V̂i and

Y ∗i replaced by the appropriate submatrix/subvector V̂i(s) and Y ∗i(s) and µi replaced by

µC1
i(s). The resulting Q estimates of β are then averaged.

Since each cluster contributes m members to each estimate of β regardless of its

size, the parameter estimated is that for the population of typical cluster members 1.

Also, since the intracluster correlation is accounted for, MWCR may give increased

efficiency relative to WCR.

The second version of MWCR is asymptotically equivalent to the first version (as
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K,Q→∞), but avoids the Monte Carlo element. In this second version, β is estimated

as the solution to weighted GEE

K∑
i=1

1

∆i

∆i∑
s=1

(
∂µC1

i(s)

∂β

)T

V̂ −1
i(s)(Y

∗
i(s) − µC1

i(s)) = 0 (4.2)

where ∆i =

 Ni

m

 denotes the number of subclusters of size m that can be formed

from cluster i (no subcluster can contain the same member more than once) and these

∆i subclusters are indexed s = 1, . . . ,∆i. The correlation parameters ρ are estimated

using the method outlined in Williamson et al. (2003). The weighted GEE (4.2) can

be seen to be the sum of the contributions to standard GEE from each of the subclus-

ters, with each subcluster inversely weighted by the number of subclusters that can be

formed from its cluster. This weighting ensures that each of the K clusters contributes

equally to the GEE, regardless of its size.

An easily computed variance estimator for β̂ is given byH−1BH−1, where

H =
K∑
i=1

1

∆i

∆i∑
s=1

(
∂µC1

i(s)

∂β

)T

V̂ −1
i(s)

∂µC1
i(s)

∂βT
and

B =
K∑
i=1

1

∆i

∆i∑
s=1

(
∂µC1

i(s)

∂β

)T

V̂ −1
i(s)(Y

∗
i(s) − µC1

i(s))(Y
∗
i(s) − µC1

i(s))
T V̂ −1

i(s)

∂µC1
i(s)

∂βT

are evaluated at β̂ and ρ̂. This variance estimator was not clearly described by

Chiang and Lee (2008).

4.2.3 Bias in MWCR for general covariate patterns

Chiang and Lee (2008) focus on scenarios where the covariates X are either cluster-

constant or cluster-size balanced. In these special cases MWCR gives consistent es-

timation, but only with certain choices of working correlation. In general, MWCR is

biased, a fact which is not evident in their paper. Here we state conditions under which

equations (4.2) are consistent estimating equations for β.

We assume a correctly specified marginal model µC1(X) = h−1(β0 + XTβ1)

for population C1. Consider the following sampling mechanism for members which

leads to population C1. A cluster is chosen at random from the population of clusters,

a subcluster of size m is sampled at random (without replacement) from this cluster

and, finally, a member is chosen at random from this subcluster. Recall that N denotes
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the size of the chosen cluster and X∗ denotes the covariate values for all members of

the cluster. Also Y and X denote the outcome and covariate values for the chosen

member of the chosen subcluster, and X˜ denotes the covariate values for all the other

m− 1 members of the chosen subcluster. LetR˜ denote the working correlation for the

chosen subcluster when ρ = ρ0.

Theorem 1

The solution to the MWCR estimating equations (4.2) is a consistent estimator of β for

population C1 if the following conditions are satisfied:

1. Y ⊥⊥X˜ |X .

2. N ⊥⊥ R˜ |X,X˜.

3. Y ⊥⊥ R˜ | N,X,X˜.

Proofs of all theorems in this chapter are in Appendix B.1. We now discuss

Conditions 1–3 of Theorem 1. Condition 1 is closely related to the assumption that

Y ⊥⊥ X∗ | X , a condition identified by Pepe and Anderson (1994) as necessary

for consistent estimation when cluster size is constant and GEE are used with a non-

independence working correlation. Note that when the cluster size is informative and

X involves cluster-varying and non-size-balanced covariates this condition is violated.

Whether Conditions 2 and 3 are satisfied will depend on the choice of working cor-

relation structure. Condition 2 would not be satisfied, for example, if an auto-regressive

structure were used and the time intervals between members of larger clusters tended

to be longer (or shorter) on average than the intervals between members of smaller

clusters, even after taking into account the values of X in the subcluster. Condition 3

is the requirement that the working correlation for a randomly chosen subcluster be

conditionally independent of the outcome Y of a randomly chosen member from that

subcluster given the size of the cluster to which that member belongs and the covariate

values of the members of the subcluster. It would not be satisfied, for example, if an

auto-regressive structure were used and a member’s Y value tended to be higher (or

lower) in subclusters with longer time intervals between members than in subclusters

with shorter intervals, even after taking into account theX values in the subcluster and
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the size of the cluster from which the subcluster came. However, if an auto-regressive

structure were used and time were one of the covariates X in the analysis model, then

Conditions 2 and 3 would be satisfied. The independence and exchangeable working

correlation structures are guaranteed to satisfy Conditions 2 and 3.

The necessity of Conditions 2 and 3 can be appreciated by considering the special

case introduced at the end of Section 4.2.1: h−1(θ) = θ and no covariates. In this

case, it can be shown, analogously to the result at the end of Section 4.2.1 (see proof

of Theorem 1 for full details), that the population mean β0 is estimated by a weighted

average of the Yij’s in which the total weight given to cluster i is the average, over each

of the ∆i (m×m) submatrices of R̂i, of the sum of the elements of its inverse matrix.

Therefore, if Condition 2 is not satisfied, clusters of different sizes may, on average, be

given different total weights. Likewise, if Condition 3 is not satisfied, two clusters of

the same size but with different expectations for Y will receive different total weights.

If Conditions 1–3 are not satisfied, MWCR may not give consistent estimation

of β. For this reason, one is restricted in the choice of possible working correlation,

a restriction that limits the potential for improving efficiency by using MWCR rather

than WIEE. Note that Conditions 1 and 3 would be required for unbiased estimation

when using a non-independence matrix even if cluster size were non-informative.

4.3 Weighted GEE for informative cluster size

In this section we develop an alternative efficient method (WRGEE) for certain scenar-

ios where cluster size is informative. WRGEE allows a realistic working correlation to

be used and then employs weighting to provide unbiased inference for either popula-

tion M or C1. The motivation for incorporating the correlation is to increase efficiency.

Such an approach is mentioned briefly by Williamson et al. (2007). They assert that

there will be little gain in efficiency because the additional scaling weights required to

weight each cluster appropriately for the selected population ‘cancel out’ the effects of

the working correlation matrix. We demonstrate later through simulation studies that

this is not always true. We present the method in general terms and then demonstrate

that it is unbiased in two particular scenarios.
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4.3.1 The method

A population p is selected (p = M or C1) and a marginal regression model proposed,

µp(X) = h−1(β0 +XTβ1), (4.3)

where µM(X) = µ(X). The method we propose has three steps:

1. Estimate β in the marginal model specified in equation (4.3) by solving the IEE

(when p =M) or the WIEE (when p =C1, see equations 3.16).

2. Choose a working correlation structure. Use the residuals from the model in

Step 1 to estimate unknown parameters ρ (if any). If p =C1, the estimate, ρ̂, of

ρ is estimated by applying the method of Williamson et al. (2003); if p =M, the

method of Prentice (1988) can be used.

3. Solve the weighted GEE (WRGEE)

K∑
i=1

UW
i (β;Y ∗i ,X

∗
i ) =

K∑
i=1

∂µpTi
∂β

V̂ −1
i

spi
r̂i++

{Y ∗i − µ
p
i } = 0, (4.4)

where sC1
i = 1 and sMi = Ni. The value of ρ̂ used in equation (4.4) is that

obtained at Step 2.

A sandwich estimator of the variance of β̂ is(
K∑
i=1

spi
r̂i++

∂µpTi
∂β

V̂ −1
i

∂µpi
∂βT

)−1( K∑
i=1

(spi )
2

r̂2
i++

∂µpTi
∂β

V̂ −1
i (Y ∗i − µ

p
i )(Y

∗
i − µ

p
i )
T V̂ −1

i

∂µpi
∂βT

)

×

(
K∑
i=1

spi
r̂i++

∂µpTi
∂β

V̂ −1
i

∂µpi
∂βT

)−1

.

Note that equations (4.4) reduce to equations (3.6) when p =C1 and the independence

working correlation is used. So, WIEE are a special case of WRGEE.

4.3.2 Unbiased estimation under certain scenarios

Whilst the estimator from the WRGEE method is in general biased, we now show that

it is consistent under certain conditions in the case of cluster-constant covariates and

in another special case considered by other authors (Chiang and Lee, 2008). In this

section we omit the subscript i denoting the cluster.
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4.3.2.1 Scenario 1: cluster-constant covariates

Theorem 2.

WhenX is cluster-constant, equation (4.3) is true and the conditions

1. Y ∗ ⊥⊥ R | N ,X and

2. either (a) E{Yj | X, N} = E{Y1 | X1, N} ∀ j or (b) ER(r+j/r++ |

X1, N) = N−1 ∀ j.

are satisfied, the solution to WRGEE estimating equations (4.4) is a consistent estima-

tor of β for the selected population (p=M or C1).

We now discuss Conditions 1–2 of Theorem 2. Condition 1 is similar to Condi-

tion 3 of Theorem 1, but the working correlation and outcome refer to the whole cluster,

rather than to a selected subcluster within that cluster. Condition 1 might not be sat-

isfied, for example, if an auto-regressive correlation structure is selected (just as such

a structure may violate Condition 3 of Theorem 1 — see Section 4.2.3). As pointed

out in Section 4.2.3, Condition 1 is an implicit assumption of the standard GEE. Con-

dition 2(a) is the requirement that the ‘position’ of a member within a cluster does not

affect its expected outcome. It could be violated, for example, in a dental study with

plaque as outcome and covariates that take the same value for all teeth in the same

mouth, as it may be more likely for molars than incisors to have plaque. Condition 2(b)

is satisfied when the selected working correlation is exchangeable. If Condition 2(a)

is satisfied, the choice of the working correlation is unrestricted; otherwise, exchange-

able is the only safe choice to avoid bias. Note, however, that using an exchangeable

working correlation makes WRGEE reduce to WIEE, and so there will be no gain in

efficiency.

4.3.2.2 Scenario 2: cluster-size balanced covariates, linear regression, and no

interaction between cluster size and covariates

In the simulation scenarios considered by Chiang and Lee (2008) it was assumed that

E(Y ∗ |X∗, N) = θ01 +X∗θ1 + γN1, (4.5)

where θ0, θ1 and γN are unknown parameters and X is cluster-size balanced (recall

that 1 denotes an N × 1 vector of units). Note that equation (4.5) implies that the
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expected outcome depends on X and N but not on interactions between the two. If

equation (4.5) is true, the marginal model µp(X) = βp0 +XTβp1 is correctly specified

for both populations (p =C1 and M), and because the relation between Y andX is the

same irrespective of the cluster size N and also because X is cluster-size balanced,

βC1
1 = βM1 = θ1. For this reason βp1 may be estimated by fitting a standard GEE with

a separate intercept term for each cluster size, but we assume here that interest lies in

both βp0 and βp1 .

Theorem 3.

WhenX is cluster-size balanced and E(Y ∗ |X∗, N) = θ01 +X∗θ1 + γN1, the solu-

tion to the WRGEE estimating equations (4.4) with identity link function is a consistent

estimator of βp for the selected population (p =M or C1) if the following conditions

are satisfied:

1. Y ∗ ⊥⊥ R |X∗, N .

2. Either (a) E(Xj | N) = E(X1 | N) ∀ j or (b) ER(r+j/r++ | N) = N−1 ∀

j.

3. X∗ ⊥⊥ R | N .

Conditions 1–2 are similar to Conditions 1–2 of Theorem 2. Condition 1 is also

analogous to Condition 3 of Theorem 1 and relates to the choice of the working corre-

lation structure, as explained at the end of Section 4.2.3. Condition 2(a) is similar to

Condition 2(a) of Theorem 2, with the difference that the expectation in Condition 2(a)

of Theorem 3 refers to the covariates rather than the outcome, and is interpreted in a

similar manner. Condition 3 is the requirement that the working correlation be condi-

tionally independent of the covariate values of all the members in the cluster given the

size of the cluster. It would not be satisfied, for example, if an auto-regressive structure

were used, time were one of the covariates in the analysis model, and the times of the

members differed between clusters of the same size. However, Condition 3 might be

satisfied if time were not one of the covariates in the analysis model.
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4.3.3 Adaptation of WRGEE for non-size balanced categorical co-

variates and informative covariate structure

For non-size-balanced cluster-varying categorical covariates, we propose an adapta-

tion of the WRGEE based on weighting separately for each value of X in the cluster.

Steps 1 and 2 of Section 4.3.1 remain the same. However, before implementing Step

3, the working correlation estimated at Step 2 is modified in the following way. For

each i and each j 6= k, the (j, k)th element of working correlation matrix R̂i is set

to zero whenever Xij 6= Xik. Thus, members of cluster i with different values of

X are assumed to be independent; members with the same X are assumed to have

the correlation estimated at Step 2. Equation (4.4) is also modified, replacing r̂−1
i++

by diag(w(Xi1), . . . , w(XiN)), where w(X) is defined as follows. Let Lx denote the

number of members in the cluster withX = x and let r̂++(x) denote the sum of the el-

ements of the submatrix of R̂−1 composed of the rows and columns that correspond to

members withX = x. Then w(x) = Lx{Nr̂++(x)}−1. Similarly, efficient estimation

for population C2 can be obtained by substituting sC2
i = 1 and w(x) = {r̂++(x)}−1 in

equation (4.4). This adaption of WRGEE we call WBGEE. As this method, apart from

the variance estimation, corresponds to splitting clusters into subclusters based on X

and then applying the WRGEE to these subclusters as if they were independent clusters

with cluster-constant covariates, it is unbiased by the argument in Section 4.3.2.1. Note

that when the working correlation structure is exchangeable, WBGEE reduce to WIEE.

Finally, WBGEE may be adapted for inference when using the DWGEE2 of

Huang and Leroux (2011). We term this adaptation DWBGEE2. Since DWGEE2 also

refers to categorical covariates, it is straightforward to apply similar ideas as in WBGEE

to increase efficiency by using a non-diagonal correlation matrix. The weights should

be selected to reflect the expected rather than the observed number of members with

X = x (see Section 3.11.1). As with WBGEE, DWBGEE2 method is expected to

provide moderate efficiency gains compared to DWGEE2 since the covariates within

each stratum defined by the levels of exposure are cluster-invariant.

Some of the R-functions used to fit the models considered in Sections 4.2.24.3 are

included in Appendix B.3.
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4.3.4 Practical application

If there are several covariates in the model, including cluster-constant, cluster-varying

size balanced and cluster-varying non-size balanced, then the block-diagonal method

outlined in the previous subsection should be followed, basing the blocks on the cluster

varying non-size-balanced covariate alone. This will limit the potential efficiency gain

from specifying a realistic working correlation relative to WIEE. When the non-size-

balanced covariate is continuous cluster-varying and there are no common values of the

particular covariate within a cluster then the correlation matrix will be diagonal and our

method reduces to WIEE. If inference for population C2 or C3 is required, we propose

first categorising the non-size-balanced covariate. Subsequently we can use either ap-

propriately weighted WIEE for populations C2 or C3, or WBGEE for populations C2

or C3, where the blocks are constructed based on the categorised covariate.

4.4 Simulation study and comparison of methods
We aim to assess the performance of MWCR and WRGEE in terms of bias and effi-

ciency for four sets of scenarios where cluster size and/or covariate structure are infor-

mative. We simulated clustered normal responses Y and a binary cluster-varying scalar

covariate X . We induced informative cluster size through an underlying ‘susceptibil-

ity’ that did not vary within the cluster. Each simulated dataset contained 100 clusters.

Data were generated independently for each cluster as follows. For cluster i:

1. Generate Bi ∼ N(0, 0.52) to be the underlying susceptibility.

2. GenerateNi ∼ Poisson{exp(α0 +α1Bi)}+m, wherem is the minimum cluster

size.

3. Generate Xij ∼ Bernoulli{λ0 + λ1logit−1(Bi)} independently for j =

1, . . . , Ni. Note that if λ1 = 0 then X is size balanced, while if 0 < λ1 ≤ 1

it is non-size balanced.

4. Calculate the linear predictor ηij = γ0 + γ1Xij + γ2Bi + γ3BiXij , and denote

ηi = (ηi1, . . . , ηiNi)
T . Parameter γ2 determines the association between the un-

derlying susceptibility (and consequently cluster size) and the outcome, while γ3

determines how this association changes with X .
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5. Finally, generate Y ∗i ∼ MVN(ηi,Σ), where Σ is an exchangeable or AR-1

correlation matrix with parameter (pairwise correlation or autocorrelation) ρ.

We selected γ0 = γ1 = γ2 = 1 and either γ3 = 0 or γ3 = 1. We selected ρ = 0.2,

0.5 or 0.8, which correspond to small, medium or high correlation/autocorrelation. For

each scenario we generated 2000 simulated datasets. When α1 6= 0 and either γ2 6= 0

or γ3 6= 0, the cluster size is informative. For size balancedX we selected λ0 = 0.4 and

λ1 = 0 and for non-size balanced λ0 = 0 and λ1 = 1. For each population p (p =M, C1,

C2 or C3) the correctly specified analysis model is of the form Ep(Yij) = βp0 + βp1Xij .

The true values of βp0 and βp1 were calculated using numerical integration.

We applied the WIEE, WRGEE, and MWCR methods. For scenarios where

WRGEE and/or MWCR were unbiased we calculated their efficiency relative to WIEE.

For four sets of scenarios we present the mean estimated values of the parameters over

the 2000 simulated datasets and their empirical standard errors (ese), i.e. the square root

of the variance of the 2000 estimates. We also present coverage probabilities. For the

WRGEE and MWCR methods the working correlation selected was the same as that

used to generate the data at step 5 above, though we note this is not generally the cor-

rect correlation, because at step 5 the term ηi gives E(Y ∗i |Bi,X
∗
i ) but our regression

models condition only on X .

We considered four sets of scenarios. The first set was designed to illustrate bias

and relative efficiency of the WRGEE and MWCR methods, primarily focusing on in-

ference for population C1, as this is the only possibility for MWCR. We also considered

inference for population M using WRGEE. The second set was chosen to illustrate the

WBGEE method, as presented in Section 4.3.3. To demonstrate the possible efficiency

gains relative to WIEE from WBGEE, we selected a larger minimum cluster size and

AR-1 correlation (there is no efficiency gain under exchangeable correlation) in this

second set of scenarios. The third set corresponds to a scenario of informative covari-

ate structure, constant cluster size, and AR-1 (auto-regressive) correlation. We aim to

show that standard GEE with AR-1 working correlation are biased (for population M)

and WBGEE maybe used to increase efficiency (for populations M, C2 or C3) com-

pared to WIEE. Finally, we considered a set of scenarios where we demonstrated the

possible efficiency gains of WRGEE in scenarios with cluster-constant covariates.
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Set 1: The correlation structure at step 5 above was exchangeable and the mini-

mum cluster size was m = 2. The parameters for the cluster size model were selected

to be α0 = α1 = 1 and these resulted in a mean cluster size of approximately 4. As

shown in Table 4.1, MWCR and WRGEE methods were biased when X was non-size

balanced. Both MWCR and WRGEE led to unbiased inference with increased effi-

ciency relative to WIEE when X was size-balanced and γ3 = 0, which is similar to

Scenario 2 in Section 4.3.2.2. In this special case, WRGEE gave greater efficiency

gains than MWCR. For the case of size-balanced X and γ3 = 1 the only unbiased

method with increased efficiency relative to WIEE, was MWCR. Analogous simula-

tion results for population M are presented in Table 4.2. Results are shown from the

application of IEE, WRGEE and the standard GEE with exchangeable working cor-

relation matrix (GEE(EX)). When X was size-balanced and γ3 = 0, only WRGEE

provided unbiased inference with increased efficiency. We note that in this particular

scenario GEE(EX) provided unbiased estimates for the slope term. For all other cases

WRGEE and GEE(EX) resulted in biased parameter estimates.

Set 2: X was non-size balanced cluster-varying, the parameters for the cluster size

model were selected to be α0 = α1 = 1.5, the correlation structure at step 5 was AR-1,

and the minimum cluster size was m = 5. As shown in Table 4.3, WBGEE led to

unbiased inference with efficiency gains of up to 14% for all populations for inference,

relative to WIEE. As it was seen in Set 1, both WRGEE and MWCR are biased when

X is non-size balanced and, therefore, results from applying these methods are not

presented in Table 4.3.

Set 3: The cluster size was constant n = 10, X was cluster-varying and λ0 = 0,

λ1 = 1. So, the distribution of X was associated with the distribution of the outcome

Y . The correlation structure at step 5 was AR-1. This is a case of pure informative

covariate structure and can be viewed as a violation of the assumptions imposed by

Pepe and Anderson (1994), regarding the use of non-diagonal correlation matrices. The

populations for inference could be population M, C2 or C3 (inference for population

C1 coincides with that for population M since the cluster size is constant). As shown

in Table 4.4 the standard GEE with an AR-1 correlation structure (GEE(AR)) were

biased for population M, as expected, while WBGEE provided unbiased inference with

moderate efficiency gains, for populations M and C2.
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Set 4: X was cluster-constant and non-size balanced and the correlation structure,

AR-1. The minimum cluster size was m = 5 and the parameters for the cluster size

model, α0 = α1 = 1. As shown in Table 4.5, the WRGEE led to unbiased inference

with small efficiency gains for populations M and C1.

In summary, we have demonstrated that WRGEE and WBGEE can be used in

certain scenarios to give unbiased inference with moderate efficiency gains compared

to WIEE and that the variance estimator leads to roughly 95% coverage. We would

expect slightly greater efficiency gains, had the working correlations been correctly

specified. The variance estimator we have presented for the MWCR method is also

seen to have good coverage when that method is unbiased.

Similar simulation studies were carried out also for binary responses with a

cluster-constant covariate (as in Set 4) or a cluster-varying categorical non-size bal-

anced covariate (as in Set 2). The results are generally consistent with those (reported

above) for the corresponding sets of scenarios for Normal responses. Details for the

simulation procedure and tables of results for Set 2 can be found in Appendix B.2.
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No Interaction: γ3 = 0

X non-size balanced X size balanced

TRUE (βC1
0 , βC1

1 ) = (0.88, 1.23) TRUE (βC1
0 , βC1

1 )=(1.00,1.00)

ρ Method β̂0(ese(β̂0)) β̂1(ese(β̂1)) CV(β̂0,β̂1) β̂0(ese(β̂0)) β̂1(ese(β̂1)) CV(β̂0,β̂1) RE(β̂0,β̂1)

0.2

WIEE 0.88(0.099) 1.23(0.115) (0.95,0.95) 1.00(0.093) 1.00(0.112) (0.95,0.94) −

WRGEE 0.96(0.092) 1.09(0.089) − 1.00(0.088) 1.00(0.087) (0.94,0.95) (1.12,1.68)

MWCR 0.92(0.096) 1.15(0.104) − 1.00(0.090) 1.00(0.101) (0.95,0.95) (1.05,1.22)

0.5

WIEE 0.88(0.111) 1.23(0.118) (0.95,0.95) 1.00(0.105) 1.00(0.113) (0.96,0.95) −

WRGEE 0.98(0.099) 1.04(0.070) − 1.00(0.098) 1.00(0.069) (0.95,0.95) (1.15,2.66)

MWCR 0.95(0.103) 1.08(0.087) − 1.00(0.100) 1.00(0.084) (0.95,0.95) (1.10,1.80)

0.8

WIEE 0.88(0.122) 1.23(0.122) (0.95,0.94) 1.00(0.115) 1.00(0.113) (0.95,0.95) −

WRGEE 0.99(0.107) 1.01(0.045) − 1.00(0.106) 1.00(0.044) (0.95,0.95) (1.16,6.88)

MWCR 0.97(0.110) 1.04(0.058) − 1.00(0.107) 1.00(0.054) (0.95,0.95) (1.15,4.30)

With Interaction: γ3 = 1

X non-size balanced X size-balanced

TRUE (βC1
0 , βC1

1 ) = (0.88, 1.35) TRUE (βC1
0 , βC1

1 ) = (1.00, 1.00)

ρ Method β̂0(ese(β̂0)) β̂1(ese(β̂1)) CV(β̂0,β̂1) β̂0(ese(β̂0)) β̂1(ese(β̂1)) CV(β̂0,β̂1) RE(β̂0,β̂1)

0.2

WIEE 0.88(0.099) 1.35(0.139) (0.95,0.96) 1.00(0.093) 1.01(0.138) (0.95,0.94) −

WRGEE 0.95(0.092) 1.21(0.105) − 0.94(0.089) 1.14(0.109) − −

MWCR 1.95(0.096) 1.21(0.121) − 1.00(0.089) 1.00(0.120) (0.95,0.95) (1.06,1.32)

0.5

WIEE 0.88(0.111) 1.35(0.142) (0.95,0.95) 1.00(0.105) 1.01(0.138) (0.94,0.95) −

WRGEE 0.96(0.101) 1.19(0.092) − 0.93(0.099) 1.16(0.095) − −

MWCR 0.98(0.104) 1.14(0.105) − 1.00(0.099) 1.00(0.103) (0.95,0.95) (1.10,1.77)

0.8

WIEE 0.88(0.122) 1.35(0.144) (0.95,0.95) 1.00(0.113) 1.01(0.140) (0.95,0.94) −

WRGEE 0.97(0.108) 1.18(0.074) − 0.93(0.108) 1.18(0.079) − −

MWCR 1.01(0.110) 1.08(0.083) − 1.00(0.108) 1.00(0.080) (0.95,0.94) (1.14,2.95)

Table 4.1: Set 1(a). Application of WIEE, MWCR and WRGEE for population C1.

The cluster size is informative and the working correlation is exchangeable.

a Relative efficiency compared to WIEE
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No Interaction: γ3 = 0

X non-size balanced X size balanced

TRUE (βM0 , βM1 ) = (1.02, 1.24) TRUE (βM0 , βM1 ) = (1.15, 1.00)

ρ Method β̂0(ese(β̂0)) β̂1(ese(β̂1)) CV(β̂0,β̂1) β̂0(ese(β̂0)) β̂1(ese(β̂1)) CV(β̂0,β̂1) RE(β̂0,β̂1)

0.2

IEE 1.02(0.097) 1.24(0.109) (0.95,0.95) 1.15(0.096) 1.00(0.105) (0.96,0.94) −

WRGEE 0.96(0.092) 1.07(0.092) − 1.15(0.094) 1.00(0.092) (0.95,0.94) (1.03,1.30)

GEE(EX) 1.00(0.091) 1.06(0.092) − 1.02(0.085) 1.00(0.085) ( −,0.95) (− ,1.49)

0.5

IEE 1.02(0.112) 1.24(0.118) (0.95,0.95) 1.15(0.111) 1.00(0.106) (0.96,0.95) −

WRGEE 0.98(0.099) 1.03(0.073) − 1.15(0.108) 1.00(0.075) (0.95,0.94) (1.06,1.99)

GEE(EX) 1.00(0.099) 1.02(0.073) − 1.01(0.096) 1.00(0.068) ( − ,0.95) (− ,2.37)

0.8

IEE 1.02(0.121) 1.24(0.121) (0.95,0.94) 1.15(0.124) 1.00(0.106) (0.96,0.94) −

WRGEE 0.99(0.107) 1.01(0.047) − 1.15(0.114) 1.00(0.048) (0.95,0.94) (1.08,4.86)

GEE(EX) 1.00(0.106) 1.00(0.047) − 1.00(0.105) 1.00(0.044) ( − ,0.95) (− ,5.85)

With Interaction: γ3 = 1

X non-size balanced X size-balanced

TRUE (βM0 , βM1 ) = (1.02, 1.51) TRUE (βM0 , βM1 ) = (1.15, 1.16)

ρ Method β̂0(ese(β̂0)) β̂1(ese(β̂1)) CV(β̂0,β̂1) β̂0(ese(β̂0)) β̂1(ese(β̂1)) CV(β̂0,β̂1) RE(β̂0,β̂1)

0.2

IEE 1.02(0.098) 1.51(0.145) (0.94,0.95) 1.15(0.096) 1.16(0.135) (0.96,0.95) −

WRGEE 1.11(0.101) 1.32(0.123) − 1.09(0.090) 1.31(0.137) − −

GEE(EX) 0.98(0.918) 1.19(0.108) − 0.96(0.089) 1.18(0.110) − −

0.5

IEE 1.02(0.111) 1.51(0.149) (0.95,0.95) 1.15(0.111) 1.16(0.136) (0.96,0.95) −

WRGEE 1.12(0.113) 1.31(0.111) − 1.08(0.104) 1.32(0.125) − −

GEE(EX) 0.98(0.100) 1.18(0.093) − 0.94(0.098) 1.18(0.096) − −

0.8

IEE 1.02(0.124) 1.51(0.152) (0.95,0.95) 1.15(0.124) 1.16(0.136) (0.96,0.94) −

WRGEE 1.13(0.122) 1.30(0.095) − 1.08(0.116) 1.33(0.110) − −

GEE(EX) 0.97(0.107) 1.16(0.074) − 0.93(0.107) 1.19(0.079) − −

Table 4.2: Set 1(b). Application of IEE, WRGEE and GEE(EX) for the population M.

The cluster size is informative and the assumed correlation structure is exchangeable.

a Relative efficiency compared to WIEE
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Population M

TRUE (βM
0 , β

M
1 ) = (0.883, 1.234)

ρ Method β̂0(ese(β̂0)) β̂1(ese(β̂1)) CV(β̂0,β̂1) RE(β̂0,β̂1)

0.2

IEE 0.88(0.074) 1.23(0.080) (0.947,0.954) -

WBGEE 0.88(0.073) 1.23(0.079) (0.935,0.949) (1.02,1.03)

GEE(AR) 0.97(0.072) 1.06(0.071) - -

0.5

IEE 0.88(0.081) 1.23(0.082) (0.942,0.949) -

WBGEE 0.88(0.079) 1.23(0.078) (0.939,0.947) (1.05,1.10)

GEE(AR) 0.99(0.075) 1.04(0.054) - -

0.8

IEE 0.88(0.096) 1.23(0.085) (0.943,0.947) -

WBGEE 0.88(0.092) 1.23(0.080) (0.945,0.942) (1.08,1.12)

GEE(AR) 1.00(0.086) 1.01(0.033) - -

Population C2

TRUE (βC2
0 , β

C2
1 ) = (1.00, 1.01)

ρ Method β̂0(ese(β̂0)) β̂1(ese(β̂1)) CV(β̂0,β̂1) RE(β̂0,β̂1)

0.2
WIEE 1.00(0.074) 1.01(0.072) (0.943,0.950) -

WBGEE 1.00(0.074) 1.01(0.071) (0.941,0.946) (1.00,1.03)

0.5
WIEE 1.00(0.080) 1.01(0.067) (0.952,0.939) -

WBGEE 1.00(0.079) 1.01(0.064) (0.944,0.943) (1.03,1.11)

0.8
WIEE 1.00(0.093) 1.01(0.053) (0.950,0.941) -

WBGEE 1.00(0.090) 1.01(0.050) (0.947,0.944) (1.06,1.11)

Table 4.4: Set 3. Application of WBGEE for populations M and C2. The cluster size

is constant, the covariate structure is informative and the assumed correlation structure

is AR-1.
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Population M

TRUE (βM
0 , β

M
1 ) = (1.057, 1.262)

ρ Method β̂0(ese(β̂0)) β̂1(ese(β̂1)) CV(β̂0,β̂1) RE(β̂0,β̂1)

0.2
WIEE 1.06(0.099) 1.26(0.136) (0.945,0.946) -

WRGEE 1.06(0.099) 1.26(0.135) (0.946,0.947) (1.00,1.01)

0.5
WIEE 1.06(0.112) 1.26(0.153) (0.941,0.939) -

WRGEE 1.06(0.110) 1.26(0.150) (0.936,0.944) (1.02,1.03)

0.8
WIEE 1.06(0.136) 1.26(0.187) (0.943,0.939) -

WRGEE 1.06(0.132) 1.26(0.180) (0.942,0.946) (1.06,1.08)

Population C1

TRUE (βC1
0 , β

C1
1 ) =(0.883,1.235)

ρ Method β̂0(ese(β̂0)) β̂1(ese(β̂1)) CV(β̂0,β̂1) RE(β̂0,β̂1)

0.2
WIEE 0.88(0.093) 1.24(0.125) (0.937,0.946) -

WRGEE 0.88(0.093) 1.24(0.124) (0.937,0.945) (1.00,1.01)

0.5
WIEE 0.88(0.106) 1.24(0.144) (0.942,0.943) -

WRGEE 0.88(0.104) 1.24(0.142) (0.941,0.946) (1.01,1.03)

0.2
WIEE 0.88(0.130) 1.24(0.178) (0.945,0.951) -

WRGEE 0.88(0.127) 1.24(0.172) (0.941,0.948) (1.04,1.07)

Table 4.5: Set 4. Application of WRGEE for populations M, and C1. The cluster size

is informative, X is cluster-constant non-size-balanced and the assumed correlation

structure is AR-1.

4.5 Illustration
The Delta trial dataset is used for the illustration and comparison of methods presented

in this chapter. In Chapter 3 we modelled whether or not an ARC event was Oral

candidiasis, in terms of randomisation arm, CD4 count and the time of the event since

entry in the study. In this illustration we investigate how the immune status of a patient

(of which CD4 count is an indicator), at times of ARC events, changes over time and

whether it differs between the treatment arms.

Since CD4 count had a skewed distribution we modelled its square root, Y . Events

are clustered by patient and we let N denote the number of events experienced by a pa-
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tient. Let subscript i denote patient and let j index the Ni events experienced by patient

i. Let X1 and X2 be indicator variables of randomisation to the drug combinations

AZT+ddC and AZT+ddI respectively (cluster-constant) and T be the time to the event

from entry in the study in units of 60 days. As interactions between T and X1 and X2

were found non-significant the model we considered was

E(Yij) = β0 + β1X1i + β2X2i + β3Tij + β4T
2
ij. (4.6)

MWCR may only be applied to datasets where the minimum cluster size is 2 or

more. Whilst a thorough examination of immune status at the time of events would

clearly involve all events, for the purposes of comparison between methods, in our

illustration we excluded all patients with one episode. After excluding these clusters

of size one, 657 clusters remained; the maximum cluster size was 15 and the median

3. Among the 657 clusters 32% were of size 2 (cluster size group 1), 39% of size 3 or

4 (group 2) and 29% of size 5 to 16 (group 3). The mean square root CD4 count was

9.25, 8.01 and 6.2, for groups 1, 2 and 3 respectively. This is an initial indication that

the cluster size might be informative; patients with more episodes tend to have lower

CD4 count than patients with fewer episodes.

We fitted a regression model analogous to model (4.6) but for population M and

including cluster size alongside the covariates of main interest:

E(Yij) = β0 + β1X1i + β2X2i + β3Tij + β4T
2
ij + βNNi. We used independence esti-

mating equations to fit this model. The effect of cluster size was found significant

(β̂N = −0.47, se(β̂N) = 0.09, p < 0.001), supporting the initial indication for infor-

mative cluster size. We tested for interactions between the cluster size and covariates

and these were not found statistically significant.

Model (4.6) was fitted using WIEE and MWCR. WIEE method is known to pro-

vide consistent inference. So, although the true value of parameters is unknown, pa-

rameter estimates and standard errors from MWCR and WRGEE are compared to the

corresponding ones from WIEE to assess the evidence of bias in MWCR and WRGEE

and possible efficiency gains. MWCR and WRGEE were applied using either (a) ex-

changeable working correlation (MWCR(EX),WRGEE(EX)) or (b) an auto-regressive

type working correlation with lag 1 we denote AR-1. This choice (b) is the auto-

regressive correlation corresponding to treating consecutive events as occurring one
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time unit apart, e.g. at times 1, 2, and 3 if cluster size is 3. We considered the applica-

tion of MWCR with the more conventional auto-regressive correlation structure based

on the actual times of episodes, but this was not possible because of computational

problems. Specifically, because of the highly irregular times of the episodes, for many

clusters the working correlation matrix was non-invertible.

The results from the application of the methods are presented in Table 4.6. In-

terestingly, CD4 count at ARC events is on average higher for a typical patient who

receives the combination treatment AZT+ddI, compared to a typical patient receiving

AZT alone. Also, as it would be expected, CD4 count at ARC events for a typical

patient decreases over time.

In terms of the performance of MWCR(EX) and MWCR(AR-1), there is some

evidence of bias in the estimation of the effects of T and T 2. In particular, for the effect

of T 2, the difference between the estimates from MWCR and WIEE is approximately

three times the standard error of the estimates when using MWCR(EX) or MWCR(AR-

1). The differences between the estimates from WIEE and MWCR of the effects of

X1 and X2 are negligible. For the intercept term, the difference is small when using

MWCR(EX) and negligible for MWCR(AR-1). For the intercept term and the effect of

T and T 2, the standard errors of the estimates are considerably smaller for MWCR(EX)

and MWCR(AR-1) compared to WIEE.

In our illustration, Condition 2 and 3 of Theorem 1 are satisfied when using

MWCR(EX). Condition 2 is not satisfied for MWCR(AR-1) because the correlations

specified between members of subclusters will typically be smaller for subclusters

from larger clusters than for subclusters from smaller clusters. Condition 3 may not

be satisfied for MWCR(AR-1) if the gaps between ARC events are associated with

the CD4 at events. Condition 1 is not met for either MWCR(EX) or MWCR(AR-1)

because the covariates T and T 2 are not size balanced. The mean time in days from

entry to the trial for events in cluster size groups 1, 2 and 3 (see earlier) was 495, 465

and 502 respectively, indicating some deviation from size balance. We view this as

the main reason for the probable bias in the application of MWCR seen in our results,

as Conditions 2 and 3 were satisfied for MWCR(EX) but the bias seems as large for

MWCR(EX) as MWCR(AR-1).
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Model: E(Yij) = β0 + β1X1i + β2X2i + β3Tij + β4T
2
ij

Method β̂0(se(β̂0)) β̂1(se(β̂1)) β̂2(se(β̂2)) β̂3(se(β̂3)) β̂4(se(β̂4))

WIEE 10.96(0.472) 0.71(0.412) 0.97(0.421) -0.73(0.095) 0.027(0.0053)

MWCR(EX) 11.16(0.353) 0.73(0.414) 0.98(0.426) -0.63(0.065) 0.016(0.0039)

MWCR(AR-1) 10.95(0.369) 0.70(0.410) 0.96(0.423) -0.63(0.071) 0.017(0.0042)

WRGEE(EX) 11.48(0.345) 0.72(0.416) 0.97(0.430) -0.66(0.060) 0.015(0.0036)

WRGEE(AR-1) 11.27(0.348) 0.67(0.414) 0.96(0.422) -0.65(0.076) 0.018(0.0041)

Table 4.6: Application of WIEE, MWCR and WRGEE using data from the Delta trial.

WRGEE(EX) and WRGEE(AR-1) perform similarly to MWCR(EX) and

MWCR(AR-1), i.e. there is some indication of bias in estimating the effects of T

and T 2, but negligible bias in the covariate effects of X1 and X2 and the intercept

term. We now refer to the Conditions of Theorem 3. Arguably, the main reason for

bias from the application of WRGEE(EX) and WRGEE(AR-1) is the deviation of size

balance for T and T 2; Theorem 3 requires size-balanced covariates. Conditions 1, 2

& 3 of Theorem 3 are satisfied when the working correlation is exchangeable. For

the application of WRGEE(AR-1), Conditions 1 and 3 are satisfied since the working

correlation does not vary conditional on N but Condition 2(a) is violated by definition

given the nature of covariates T and T 2.

From the scenarios considered here, it is evident that application of MWCR and

WRGEE might be problematic, at least when dealing with longitudinal data. When the

speculated regression model includes a mixture of cluster-constant and cluster-varying

covariates these special methods may result in non-negligible bias for the covariate

effects corresponding to cluster-varying covariates if these are non-size balanced. Ex-

ploratory analysis should be carried out to assess whether conditions are likely to be

satisfied. When the conditions imposed for the consistency of each method are not

likely to be met, WIEE should be used instead. As noted in Section 4.2.3, some of

the conditions in Theorems 1, 2 and 3 are also requirements for the consistency of

the standard GEE, even if the cluster size were non-informative. However, especially

in longitudinal studies, it may be more likely for these conditions to be violated in

datasets with informative cluster size than in more general scenarios where the cluster

size is non-informative.
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4.6 Discussion
In this chapter we have drawn attention to bias in the MWCR method in scenarios

where the covariates are non-size balanced, a bias which was not mentioned by Chi-

ang and Lee (2008). Importantly, even for size-balanced covariates we clarify that an

exchangeable working correlation is the only safe choice when using MWCR, and we

present a variance estimator which was not clearly described by Chiang and Lee (2008).

We have also proposed weighted GEE (WRGEE), which may be used in certain

simple scenarios to increase efficiency. Compared to MWCR, WRGEE is simpler, does

not require the minimum cluster size to be greater than one, and allows inference for

either the population of all members or that of typical members 1. As with MWCR,

some care is required in the choice of working correlation. Our simulation studies have

shown that relative to WIEE, WRGEE give small efficiency gains when the covariates

are cluster-constant but higher efficiency gains for cluster-varying covariates.

With the aim of increasing efficiency, both MWCR and WRGEE are worthwhile

of consideration alongside methods which use independence working correlation. Nev-

ertheless, analysts should be cautious when using either MWCR or WRGEE as their

consistency relies upon conditions which relate to the selected working correlation and

also the structure of the covariates. We discuss the practical application of MWCR and

WRGEE in the next few paragraphs.

Both MWCR and WRGEE require the covariates to be size-balanced. If the cluster

size is informative and the cluster varying-covariateX is non-size-balanced, Condition

1 in Theorem 1 is violated. For this reason it is important to consider in advance the

likelihood of non-size balanced covariates given the study design and scientific setting.

Where size-balance of covariates is assured, either MWCR or WRGEE may be a good

choice of analysis method, and where non-size-balanced covariates are likely, WIEE

will be a natural choice. In scenarios where non-size-balanced covariates are unlikely,

but possible, it may be appropriate to explore whether deviations from size-balance

have occurred in the data and then select MWCR/WRGEE or WIEE accordingly. One

way to empirically check the size-balance assumption is to plot the cluster size against

the cluster mean of each component of the vector X . Although the definition of size-

balance refers to distributions of X rather than expectations, any clear relationship

in the plot would be an indication of departure from size-balance. Alternatively, the
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cluster size could be regressed on the cluster mean of X . A significant effect of the

cluster mean ofX is evidence against size-balance.

Even when the ‘size-balanced’ assumption holds, the consistency of MWCR and

WRGEE requires the validity of additional conditions, which relate to the choice of

working correlation. For both methods, the relevant conditions are satisfied when the

selected working correlation is exchangeable, which would be a natural choice when

members are unordered within clusters (e.g. pups in litters). In longitudinal-data set-

tings, an auto-regressive working correlation - although a natural choice - can jeopar-

dise the consistency of the methods, if the relevant conditions are not satisfied. In such

longitudinal-data scenarios, MWCR and WRGEE with an auto-regressive correlation

structure (MWCR(AR) and WRGEE(AR)) may provide biased estimation. Choosing,

instead, to use an exchangeable working correlation, even when the true correlation

structure is not exchangeable but rather depends on the times of measurement for the

members, guarantees the consistency of the methods, but not increased efficiency of the

estimates, compared to WIEE. Exploratory simulation studies have shown that, in sce-

narios where the relevant conditions are violated, MWCR(AR) and WRGEE(AR) were

biased, whereas MWCR(EX) and WRGEE(EX) were more efficient than WIEE while

maintaining consistency. The efficiency gain is, however, not guaranteed when the true

correlation differs greatly from exchangeable, although other authors (see, for example,

Park and Shin (1999)) have found that, when cluster size is not informative, the use of

standard GEE with exchangeable correlation can provide more efficient estimates that

IEE when the true correlation is auto-regressive.

The efficiency gains from the application of MWCR/WRGEE are expected to be

small if the covariates involved are cluster-constant. In fact, if the selected working cor-

relation is exchangeable then WRGEE and MWCR reduce to WIEE, therefore no effi-

ciency gains are possible. Given these considerations, the adoption of either WRGEE

or MWCR is not recommended when the covariates are cluster-constant.

When there is a mixture of cluster-constant, cluster-varying size balanced and

cluster-varying non-size balanced covariates, MWCR should not be used; WIEE should

be used instead. As was seen in the data example, even where cluster-varying covari-

ates (T and T 2) have means that differ modestly across cluster sizes, the bias from the

use of MWCR for the effects of these covariates appeared to be appreciable.



B.1. Proofs of Theorems 1, 2 and 3 140

When the cluster-varying covariates are categorical non-size-balanced, the adapted

WRGEE method, WBGEE, may be suitable, but the possible efficiency gains will be

modest, while the consistency conditions which relate to the choice of working cor-

relation are still required. Huang and Leroux (2011) consider further populations for

inference when the cluster size is informative. Both the WRGEE and MWCR methods

could be extended to these populations. Another area for further work is to identify

further scenarios in which the WRGEE method is unbiased or minimally biased.

Though the range of scenarios in which the WRGEE and MWCR methods are

unbiased is somewhat limited, and there are restrictions on the choice of working cor-

relation, these methods are simple to implement. Due to the possibility of increased

efficiency they are worthy of consideration alongside the more generally applicable

methods (WIEE) based on an independence working correlation. The conditions we

have specified for consistent estimation from MWCR and WRGEE can form a use-

ful basis for considering whether these methods are appropriate for each specific data

example.

B.1 Proofs of Theorems 1, 2 and 3
In preparation for the proofs, note that equation (4.1) can be rewritten as

K∑
i=1

U(β;Y ∗i ,X
∗
i ) =

K∑
i=1

Ni∑
j=1

1

φ
gij(Yij − µij) = 0, (B-1)

where

gij =

Ni∑
l=1

∂µil
∂β

v(µil)
−1/2r̂iljv(µij)

−1/2 =

Ni∑
l=1

Xil v(µil)
1/2r̂iljv(µij)

−1/2 (B-2)

is an implicit weighting for the jth measurement. As mentioned in Section 4.2.1, when

h−1(θ) = θ and there are no covariates, gij = r̂i+j .

Proof of Theorem 1.

We show that the expectation of the contribution from a single cluster to estimating

equations (4.2) evaluated at ρ0 and the true value of β equals zero. Hence, estimating

equations (4.2) are consistent.
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Analogously to equation (B-1), equation (4.2) can be written as

K∑
i=1

1

∆i

Ni∑
j=1

∑
s∈Λij

1

φ
g˜ij(s){Yij − µC1

ij } = 0, (B-3)

where g˜ij(s), analogously to gij in equation (B-2), is the implicit weighting for the jth

member of cluster i when it is in subcluster s, and Λij denotes the set of indices of the

∆imN
−1
i subclusters containing the jth member of cluster i. Note that the total weight

given to cluster i in equation (B-3) is ∆−1
i

∑Ni
j=1

∑
s∈Λij

g˜ij(s), i.e. the average of ∆im

values of mg˜ij(s). In the special case where h−1(θ) = θ and there are no covariates, the

average value of mg˜ij(s) is a scalar and is the average, over each of the ∆i (m × m)

submatrices of R̂i, of the sum of the elements of its inverse matrix.

For the sampling mechanism described immediately before Theorem 1, let g˜ de-

note the resulting implicit weighting for the chosen member when it is in the chosen

subcluster (see equation (B-3)). Denote expectations of the distributions of Y , X , X˜
and g˜ under this sampling mechanism by ES(.). Note that ES(Y |X) = EC1(Y |X).

It can be seen that the expectation of the contribution of a single cluster to equa-

tions (B-3) at ρ = ρ0 and the true value of β is φ−1mES
Y,X,X˜ ,g˜,N [g˜{Y − µC1(X)}].

Now,

ES
Y,X,X˜ ,g˜,N [g˜{Y − µC1(X)}] = ES

X,X˜ ,g˜ES
N |X,X˜ ,g˜ES

Y |X,X˜ ,g˜,N [g˜{Y − µC1(X)}]

= ES
X,X˜ ,g˜[g˜ES

N |X,X˜ ,g˜{ES(Y |X,X˜, g˜, N)− µC1(X)}].

From Conditions 2 and 3, respectively, it follows that N ⊥⊥ g˜ |X,X˜ and

Y ⊥⊥ g˜ | N,X,X˜. So,

ES
Y,X,X˜ ,g˜,N [g˜{Y − µC1(X)}] = ES

X,X˜ ,g˜[g˜ES
N |X,X˜{ES(Y |X,X˜, N)− µC1(X)}]

= ES
X,X˜ ,g˜[g˜{ES(Y |X,X˜)− µC1(X)}].

So, using Condition 1,

ES
Y,X,X˜ ,g˜,N [g˜{Y − µC1(X)}] = ES

X,X˜ ,g˜[g˜{ES(Y |X)− µC1(X)}]

= ES
X,X̃,g˜[g˜{EC1(Y |X)− µC1(X)}]

= ES
X,X˜ ,g˜[g˜ × 0] = 0.

Proof of Theorem 2

We shall show that when equation (4.3) is true, the contribution of a cluster to equa-
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tions (4.4) evaluated at ρ0 and the true value of β has the same expectation as its

contribution to the WIEE. Since WIEE are known to be consistent, so will be WRGEE.

Analogously to equation (B-1), we can write the contribution of a cluster to equa-

tions (4.4) as

UW (β;Y ∗,X∗) =
sp

r̂++

N∑
j=1

1

φ
gj{Yj − µp(X1)}.

As X is cluster-constant, Xj = X1, µpj = µp1 and v(µpj) = v(µp1) for all j. So, from

equation (B-2), gj = X1r̂+j . Therefore, assuming Condition 1, we have that at ρ = ρ0

and the true value of β,

EY ∗,R{UW (β;Y ∗,X∗) |X1, N} =

= spX1
1

φ

N∑
j=1

ER

(
r+j

r++

|X1, N

)
[EYj(Yj |X1, N)− µp(X1)]. (B-4)

Assuming Condition 2, it follows from equation (B-4) that

EY ∗,R{UW (β;Y ∗,X∗) |X1, N} =
sp

N
X1

1

φ

N∑
j=1

[E(Yj |X1, N)− µp(X1)].

This does not depend on the choice of working correlation structure, and hence the

WRGEE have the same expectation as the WIEE.

Proof of Theorem 3

For the identity link function, v(µ) = 1. So, from equation (B-2), gj =∑N
l=1Xlrlj . Hence, at ρ = ρ0 and the true value of βp,

EY ∗{UW (βp;Y ∗,X∗) |X∗, N,R} =

= EY ∗

[
sp

φ r++

N∑
j=1

N∑
l=1

Xlrlj{Yj − µp(Xj)} |X∗, N,R

]
.

So, assuming Condition 1,

EY ∗{UW (βp;Y ∗,X∗) |X∗, N,R} =

=
sp

φ r++

N∑
j=1

N∑
l=1

Xlrlj{(θ0 + γN − βp0) +XT
j (θ1 − βp1)} =

=
sp

φ r++

N∑
l=1

Xlr+l(θ0 + γN − βp0). (B-5)
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Therefore,

EY ∗,R{UW (βp;Y ∗,X∗) |X∗, N} = (θ0 +γN −βp0)
sp

φ

N∑
j=1

XjER

{
r+j

r++

|X∗, N
}
.

(B-6)

Now, assuming Condition 3,

N∑
j=1

XjER

{
r+j

r++

|X∗, N
}

=
N∑
j=1

XjER

{
r+j

r++

| N
}
.

So,

EX∗

[
N∑
j=1

XjER

{
r+j

r++

|X∗, N
}
| N

]
=

N∑
j=1

E(Xj | N)ER

{
r+j

r++

| N
}
. (B-7)

Assuming Condition 2, equation (B-7) implies

EX∗

[
N∑
j=1

XjER

{
r+j

r++

|X∗, N
}
| N

]
=

1

N

N∑
j=1

E(Xj | N). (B-8)

It follows from equations (B-6) and (B-8) that

EY ∗,X∗,R{UW (βp;Y ∗,X∗) | N} = (θ0 + γN − βp0)
sp

φN

N∑
j=1

E(Xj | N).

This does not depend on the choice of working correlation structure, and hence the

WRGEE have the same expectation as the WIEE. Since WIEE are consistent, so are

WRGEE.
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B.2 Simulations for binary correlated responses with

informative cluster size
Here we outline a method for generating binary correlated responses and demonstrate

how simulation studies analogous to the ones in Section 4.4 can be carried out for

binary responses.

The Bahadur representation (see Section 2.4.2) may be used for generating corre-

lated binary responses but is computationally unattractive for cluster sizes larger than

3. A relatively simple method to generate correlated binary responses with a desired

correlation structure is provided by Emrich and Piedmonte (1991). Let pij = E(Yij)

denote the marginal expectation for member j in cluster i. Also let ρij = corr(Yij, Yik)

denote the correlation between responses Yij and Yik (note that for binary responses ρij

is not free to vary over [−1,+1] but is restricted by the marginal means).

The steps to generate binary responses with the desired marginal means and cor-

relations (omitting the indicator for the cluster, i, for simplicity) are:

• Solve the equations:

Φ(z(pj), z(pk), αj) = ρj{pj(1− pj)qj(1− qj)}1/2 + pjpk

where z(p) denotes the pth quantile of a standard normal distribution with dis-

tribution function Φ. These equations can be solved for αj using the bisection

method. So, an auxiliary correlation matrix, Σ, with elements α̂j is created.

• Generate a multivariate normal variableZ with the correlation matrix Σ obtained

at the step above.

• Generate Yj =

 1 if Zj ≤ z(pj);

0 otherwise.
.

The binary responses have the desired properties: E(Yj) = pj and corr(Yj, Yk) = ρj .

In analogy to Section 4.4 we performed simulation studies for binary correlated re-

sponses. We here present the results for the Set 2, i.e. for informative cluster size, non-

size-balanced X and AR-1 correlation structure. In Step 2 of the simulation procedure

(pg. 126), the parameters for the cluster size model were selected to be α0 = α1 = 1.
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The minimum cluster size was m = 4. In Step 3 we selected λ0 = 0, λ1 = 1, so X was

non-size-balanced. For the linear predictor in Step 4 we used γ0 = −0.5, γ1 = 0.25,

γ2 = 2 and γ3 = 0. Finally, in Step 5 we used the method of Emrich and Piedmonte

(1991) to induce an AR-1 correlation structure. In each simulation we generated 100

clusters and we repeated this procedure 1000 times.

As shown in Table 4.7, WBGEE led to unbiased inference with efficiency gains of

up to 8% for all populations for inference, relative to WIEE.

Population C1

TRUE (βC1
0 , β

C1
1 ) = (−0.723, 0.864)

ρ Method β̂0(ese(β̂0)) β̂1(ese(β̂1)) CV(β̂0,β̂1) RE(β̂0,β̂1)

0.2

WIEE -0.72(0.159) 0.86(0.182) (0.943,0.951) -

WBGEE -0.72(0.158) 0.86(0.180) (0.945,0.948) (1.01,1.02)

0.4

WIEE -0.72(0.171) 0.86(0.192) (0.946,0.950) -

WBGEE -0.72(0.168) 0.86(0.1185) (0.947,0.949) (1.03,1.07)

Population M

TRUE (βM
0 , β

M
1 ) =(-0.432,0.917)

ρ Method β̂0(ese(β̂0)) β̂1(ese(β̂1)) CV(β̂0,β̂1) RE(β̂0,β̂1)

0.2

WIEE -0.43(0.155) 0.92(0.188) (0.952,0.948) -

WBGEE -0.44(0.154) 0.92(0.186) (0.950,0.948) (1.00,1.02)

0.4

WIEE -0.44(0.165) 0.92 (0.200) (0.941,0.942) -

WBGEE -0.44(0.164) 0.92 (0.192) (0.943,0.942 ) (1.01,1.08)

Table 4.7: Set 2 (binary responses). Application of WIEE and WBGEE for populations

M and C1. The cluster size is informative, X is non-size balanced and the assumed

correlation is AR-1.
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B.3 R functions for the application of the methods

B.3.1 R-function for the application of WRGEE

In the following we present the ‘core’ function used to fit the WRGEE method for

populations M and C1. For simplicity and space-efficiency the code is restricted to the

case of linear regression (with the identity link function). It can be easily adapted to the

case of logistic or poisson regression. Also, the extension to the application of WBGEE

(for the case of cluster-varying categorical exposure) which can provide inference for

populations M, C1, C2 or C3 is straightforward.

wrgee<-function(formula,dataset,corstr="independence",

pop="pc",accuracy=0.00005,inrho=NULL,inphi=NULL){

# dataset : a data-frame which contains the variables in

# columns and the indicator "id" for the cluster

# formula : the regression formula

# corstr : the working correlation structure

# ("independence", "exchangeable" or "ar1")

# pop : the population for inference, "M" or "C1"

# accuracy : the accuracy for the convergence criterion

# inrho : the correlation parameter

# inphi : the scale parameter

#Model frame

mf<-model.frame(formula,dataset)

#Model matrix

mt<-model.matrix(formula,dataset)

#Obtain the number of members per

#cluster using the function "counts"

counts<-function(id){

clus<-rep(0,length(id))

k0<-0

k1<-1

for(i in 2:length(id)) { i1<-i-1

if(id[i]==id[i1]) {k1<-k1+1

if(i==length(id)) {k0<-k0+1

clus[k0]<-k1}}

if(id[i]!=id[i1]) {k0<-k0+1

clus[k0]<-k1

k1<-1
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if(i==length(id)) {k0<-k0+1

clus[k0]<-k1 }}}

clusz<-clus[clus>0]

}

countss<-counts(dataset$id)

#Split the dataset into the clusters.

#Each cluster is defined as a "list"

cluster<-list()

idua<-unique(dataset$id)

for (i in 1:length(idua))

cluster[[i]]<-dataset[dataset$id==idua[i],]

#Fit a GLM to obtain a vector of initial estimates

#for beta (betain)

fit.glm<-glm(formula)

betain<-matrix(unlist(fit.glm$coefficients),ncol=1)

#N is the number of clusters

N<-length(countss)

#p is the number of parameters

p<-length(betain)

#it is the number of iterations

it<-0

#Here starts the main loop until convergence

error<-1

while (error>accuracy){

I0<-0; I1<-0; I2<-0

it<-it+1

X<-list()

Y<-list()

mu<-list()

for (i in 1:N){

#ni is the number of members in the ith cluster
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ni<-countss[i]

#Model frame for each patient

mfi<-model.frame(formula,cluster[[i]])

#X= model matrix for the ith patient

X[[i]]<-matrix(unlist(model.matrix(formula,cluster[[i]])),ncol=p)

#Y= outcome for the ith patient

Y[[i]]<- as.vector(model.response(mfi))

#mu is the linear predictor

mu[[i]]<-as.vector(X[[i]]%*%betain)

D<-X[[i]]

#Working correlation matrix

if (corstr=="independence")

R<-diag(1,ni,ni)

if (corstr=="exchangeable"){

R<-matrix(rho,nrow=ni,ncol=ni); diag(R)<-1}

if (corstr=="ar1"){

R<-matrix(0,ni,ni)

for (j in 1:ni)

for (k in 1:ni){

if (j==k) R[j,k]=1

else R[j,k]=rhoˆabs(j-k)}}

#The inverse correlation matrix

R<-solve(R)

#Weights for the selected population for inference

w.m<-rep(ni/sum(R),ni)

w.c<-rep(1/sum(R),ni)

#Weighted working correlation matrix

if(pop=="pm") R<-R%*%diag(w.m)

if(pop=="pc") R<-R%*%diag(w.c)

#The working covariance matrix

W<-R*phi
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#Estimate of the true covariance matrix

VY<-(Y[[i]]-mu[[i]])%*%t(Y[[i]]-mu[[i]])

I0in<-t(D)%*%W%*%D

I0<-I0+I0in

I1in<-t(D)%*%W%*%(Y[[i]]-mu[[i]])

I1<-I1+I1in

I2in<-t(D)%*%W%*%VY%*%W%*%D

I2<-I2+I2in

}

#Update the estimates for beta in each iteration

betanew<-betain+solve(I0)%*%I1

error<-sum((betanew-betain)ˆ2)

betain<-betanew

}

#Exit this loop when convergence is achieved

#Compute the robust variance estimator

#at the final values of beta

robust<-solve(I0)%*%(I2)%*%solve(I0)

#Return a list of objects form fitting the model

return<-list()

return$beta<-betanew

return$population<-pop

return$vbeta<-robust

return$iterations<-it

return

}

B.3.2 R-function for the application of MWCR

We now present the function used to fit the MWCR method for population C1, for the

case of linear regression with the identity link function. The code can be adapted to

accommodate logistic or poisson regression.

mwcr<-function(formula,dataset,corstr="independence",

accuracy=0.00005,inrho=NULL,inphi=NULL){

# dataset : a data-frame which contains the variables in

# columns and the indicator "id" for the cluster
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# formula : the regression formula

# corstr : the working correlation structure

# ("independence", "exchangeable" or "ar1")

# accuracy : the accuracy for the convergence criterion

# inrho : the correlation parameter

# inphi : the scale parameter

#Model frame

mf<-model.frame(formula,dataset)

#Model matrix

mt<-model.matrix(formula,dataset)

#Obtain the number of members per

#cluster using the function "counts"

counts<-function(id){

clus<-rep(0,length(id))

k0<-0

k1<-1

for(i in 2:length(id)) { i1<-i-1

if(id[i]==id[i1]) {k1<-k1+1

if(i==length(id)) {k0<-k0+1

clus[k0]<-k1}}

if(id[i]!=id[i1]) {k0<-k0+1

clus[k0]<-k1

k1<-1

if(i==length(id)) {k0<-k0+1

clus[k0]<-k1 }}}

clusz<-clus[clus>0]

}

countss<-counts(dataset$id)

#Split the dataset into the clusters.

#Each cluster is defined as a "list"

cluster<-list()

idua<-unique(dataset$id)

for (i in 1:length(idua))

cluster[[i]]<-dataset[dataset$id==idua[i],]

#Fit a GLM to obtain a vector of initial estimates

#for beta (betain)

fit.glm<-glm(formula)
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betain<-matrix(unlist(fit.glm$coefficients),ncol=1)

#N is the number of clusters

N<-length(countss)

#p is the number of parameters

p<-length(betain)

#it is the number of iterations

it<-0

#Here starts the main loop until convergence

error<-1

while (error2>accuracy){

I0=0; I1<-0; I2<-0

it<-it+1

for (i in 1:N){

# ni is the number of members per cluster

ni<-countss[i]

# m is the minimum cluster size in the dataset

m<-min(countss)

# is a matrix with all the combinations (by m) of members

a<-combn(ni,m)

I0in<-0; I1in<-0; I2in<-0

# subcluster is a list which stores the contribution of

# each subcluster

subcluster<-list()

for(j in 1:ncol(a)){

subcluster[[j]]<-cluster[[i]][a[,j],]

#Model frame for subcluster j

mfj<-model.frame(formula,subcluster[[j]])
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#Xj is the matrix of covariates for the jth subcluster

Xj<-matrix(unlist(model.matrix(formula,subcluster[[j]])),ncol=p)

#Yj is the vector of responses for the jth subcluster

Yj<- as.vector(model.response(mfj))

#eta=the linear predictor

etaj<-as.vector(Xj%*%betain)

#muj=expected value for Yj

muj<-etaj

Dj<-Xj

#R is the working correlation matrix

if (correlation=="independence") R<-diag(m)

if (corstr=="exchangeable"){

R<-matrix(rho,nrow=m,ncol=m); diag(R)<-1}

if(correlation=="ar1"){

R<-matrix(0,m,m)

for (l in 1:m)

for (k in 1:m){

if (l==k) R[l,k]=1

else R[l,k]=rhoˆabs(l-k)}

}

#Vj is the inverse covariance matrix

Vj<-R*phi

Vj<-solve(Vj)

VYj<-(Yj-muj)%*%t(Yj-muj)

I0inj<-t(Dj)%*%Vj%*%Dj

I1inj<-t(Dj)%*%Vj%*%(Yj-muj)

I2inj<-t(Dj)%*%Vj%*%(Yj-muj)

#Sum the contributions from each subcluster

I0in<-I0in+I0inj

I1in<-I1in+I1inj

I2in<-I2in+I2inj

}
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#Sum the contributions from each cluster

I0<-I0+1/ncol(a)*I0in

I1<-I1+1/ncol(a)*I1in

I2<-I2+1/ncol(a)ˆ2*I2in%*%t(I2in)

}

#Update the estimates for beta in each iteration

betanew<-betain+solve(I0)%*%I1

error<-sum((betanew-betain)ˆ2)

betain<-betanew

}

#Exit this loop when convergence is achieved

#Compute the robust variance estimator

#at the final values of beta

robust<-solve(I0)%*%(I2)%*%solve(I0)

#Return a list of objects form fitting the model

return<-list()

return$beta<-betanew

return$vbeta<-robust

return$iterations<-it

return

}
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Chapter 5

Contrasting informative cluster size

and missing data

5.1 Introduction
When making marginal inference for clustered data with varying cluster size, there are

several populations of potential interest. First, there is the population of all members

of all clusters. Second, there are the populations of typical members of all clusters (see

Definition 3.1, pg. 67 and Definition 3.4, pg. 81). Third, it is possible to regard the

observed clusters as incomplete and seek inference for the population of all members

of all complete clusters. The problem then becomes one of missing data. Alternatively,

we may seek cluster-specific inference for the observed or the complete clusters by

fitting random effects models.

As an example, consider a study in which patients in poor health diagnosed with a

certain condition attend for health check-ups. At each check-up various outcomes can

be obtained such as health of the patient or cost of consultation. Also, covariates are

obtained; patient sex and age, treatments taken etc. Each check-up can be thought of as

a member, and the check-ups for a patient form a cluster. We may wish to investigate

how the various covariates are related to the outcome by using a marginal regression

model, so that if Y is a measure of health and the covariates determine a vectorX , then

we wish to write down a model such as

E(Y |X) = h−1(β0 +XTβ1) (5.1)

for a known link function h and unknown parameters β = (β0,β
T
1 )T which we wish to
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estimate.

The size of the cluster, N , i.e. the number of cluster members, may vary. In our

example the number of check-ups performed for the patient may vary. In this case when

considering marginal inference, a population for inference must be specified. The pop-

ulation of all members of all clusters (population M) consists of all members, so here

simply all check-ups. By contrast, the population of typical members of all clusters

(population C1) can be viewed informally to arise from every cluster contributing ex-

actly one member with equal probability, so that here one check-up is taken per patient.

If cluster size is constant, inference for the two populations is the same. Otherwise,

they may be different, because larger clusters contribute more members than smaller

clusters do to the first population, but each cluster contributes only one member to the

second expectation regardless of its size.

A third type of inference is of interest, if the variation in cluster size is considered

to result from missing data, that is, all clusters are actually of equal size and the reason

why some observed clusters are smaller is that not all of their members have been ob-

served. From this perspective, there are incomplete clusters and complete clusters, and

we want to make inference for the population of all members of all complete clusters

(population A) based on the data from our sample of incomplete clusters. That is, we

want to know the expectation of Y given X = x for a member drawn at random from

the population of all members of all complete clusters. Note that where the variation

in cluster size has not arisen from missing data then this hypothetical population will

generally not be of interest; for example, when each member is a sexual partnership in

the last year, and the cluster is the individual involved in these (Copas et al., 2009).

To see how the populations may differ, continuing with our example, consider

that patients in poor health diagnosed with a certain condition are encouraged to attend

for monthly health check-ups over the subsequent year. Whilst all patients attend the

first check-up, over time some patients drop out of care and are not seen again, so

that the number of check-ups varies between patients. We assume that dropout occurs

because the patients perceive themselves to be cured of the initial condition because

their health has returned to a good level before dropout and remains good after dropout.

So, inference for the three populations will be generally different.

Inference for population A could be selected to assess how patient characteristics
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are linked to health whether under care or dropped out. Inference for population M

could be selected to assess how patient characteristics are linked to the cost of check-

ups, aggregating over patients. Inference for population C1 could be selected to assess

how patient characteristics are linked to their typical health level whilst under care.

Inference for the three populations will differ because the average measure of health is

higher in population A than in population C1 as health is good after dropout. If health

were assessed in population M, then the average level would be lower even than in

population C1 because patients with slow recovery from diagnosis have more check-

ups and have poorer health. Unless inference for the three populations is this same, the

marginal model above in (5.1) may not apply to all three populations or, if it does, the

true parameter values may be different.

Further populations may be selected for inference where the expectation of the

outcome given the covariates for the member is related to the covariates values of other

members in the same cluster. This has been termed informative covariate structure and

discussed in Chapter 3, Section 3.6. In Chapter 3, Section 3.12 we have also discussed

how the methods of Huang and Leroux (2011) can be seen as providing inference for

the complete clusters. We shall not discuss informative covariate structure further in the

current chapter. The approaches discussed in Sections 5.3.2-5.3.5 and also in Section

5.4 are not useful if the covariate structure is informative.

Missing data methods are well known by statisticians; methods for informa-

tive cluster size are less well known. A number of authors (Hoffman et al., 2001;

Williamson et al., 2003) have referred to the relation between informative cluster size

and missing data mechanisms, but have not made clear what this relation is. The tar-

get of this chapter is to clarify this relation by considering methods for inference for

the complete and observed clusters. We aim to provide intuition about why different

methods are generally needed for the two types of inferences. We also describe missing

data mechanisms under which methods for observed-cluster inference can be seen as

special cases of the methods proposed for complete-cluster inference.

For settings of clustered-data where clusters are considered to be incomplete the

notation was introduced in Section 2.9. We define additional notation and describe

a special missing data mechanism in Section 5.2. These additional definitions will

aid comparisons between complete- and observed-cluster inference and also provide
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insight into how the two types of inference can be equivalent. We start by consider-

ing marginal inference in Section 5.3. We briefly describe the most frequently used

methods for complete- and observed-cluster marginal inference. We investigate which

Missing Data Mechanisms (MDMs) may or may not lead to informative cluster size

and importantly identify special MDMs where the complete-cluster inference can be

equivalent to one for the observed clusters. We discuss the implications of the choice

of method for analysis. In Section 5.4 we make analogous comparisons for cluster-

specific inference. Importantly, we clarify that the method of Dunson et al. (2003)

where the main outcome and the cluster size are modelled jointly (with shared random

effects for the two models) should be generally considered as a method for complete-

cluster inference.

5.2 Notation and definitions
Depending on the application it may be possible to index each member within every

cluster, in which case we say the members are ordered, and otherwise we say the mem-

bers are unordered. For example if members are check-ups for patients at planned times

then these are indexed by time, but for pups in litters there is no ‘natural’ indexing and

these are unordered. If members are unordered then they must be exchangeable within

clusters, if they are ordered then they may or may not be exchangeable.

For a given cluster let N denote the number of observed members in the clus-

ter. Depending on the application it may be possible to index members but if not, we

imagine an arbitrary indexing is applied. Let D = (D1, D2, ..., DN)T denote a vec-

tor of indices for those N members. In many applications D will equal (1, . . . , N)T .

When members are unordered within clusters an arbitrary indexing is applied in which

case D = (1, 2, . . . , N)T . However, as explained later, if members are ordered and

the observed cluster represents the observed part of a larger complete cluster, then D

may take other values. Let Yj and Xj denote the outcome and covariate vector for

the jth member of the cluster. Yj and Xj are observed if and only if D includes j.

Some or all elements of Xj may be known even if D does not include j, for example

if these are cluster-constant or if they are determined by the indices of the members.

Let Ỹ ∗(R)i = (YD1 , ..., YDN )T , and X̃∗(R)i = (XD1 , ...,XDN )T . We use i to index the

cluster and K to denote the number of clusters. We assume that (Ni,Di, X̃
∗
(R)i, Ỹ

∗
(R)i),
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(i = 1, ...K) are i.i.d. observations from the joint distribution of (N,D, X̃∗(R), Ỹ
∗

(R)).

In Chapter 3 we defined the population of typical members of all clusters (C1)

to be the subpopulation of the population of all members of all clusters (M) in which

each cluster contributes a single member at random. Whilst this provides an intu-

itive way to consider inference for observed clusters, we here present an alternative

definition. Let Hi (i = 1, ..., K) be independent discrete random variables with

P (H = j | N,D, X̃∗(R), Ỹ
∗

(R)) = 1/N if D includes j and zero otherwise. So, Hi

represents the index of a randomly selected member of the ith observed cluster. Infer-

ence for the population of typical observed members means estimating the parameters

of a model for either f(YH | XH) or E(YH | XH). Population C1 provides inference

for a typical member of a typical cluster which is the focus of the paper by Williamson

et al. (2003), though those authors did not provide a formal definition as just described.

Inference about population M means estimating the parameters of a model for the fol-

lowing distribution ∑
d

P (D = d)
N∑
j=1

f(Ydj |Xdj)/E(N)

or its expectation.

It may be the case that the observed clusters each arose from a correspond-

ing complete cluster containing Ncomp members. Let Ỹ ∗ = (Y1, ..., YNcomp)T , and

X̃∗ = (X1, . . . ,XNcomp)T denote the vector of outcomes and matrix of covariates

for a complete cluster. For each cluster let R = (R1, . . . , RNcomp)T , where Rj = 1

if the jth member of the complete cluster is observed and Rj = 0 otherwise. So,

N =
∑Ncomp

j=1 Rj and D = {j : Rj = 1}. Let D = (D1, ..., DNcomp−N)T denote the

subvector of (1, . . . , Ncomp)T composed of the indices of the missing members, and let

Ỹ ∗
(R̄)

= (YD1
, ..., YDNcomp−N

) and X̃∗
(R̄)

= (XD1
, . . . ,XDNcomp−N

). So, Ỹ ∗ can be par-

titioned in Ỹ ∗(R) and Ỹ ∗
(R̄)

, and similarly for X̃∗. We assume that N > 0 for all clusters,

so that there are not additional complete clusters in which no members are observed.

Making inference for the complete clusters means either assuming that f(Yj |

Xj) = f(Y1 | X1) ∀ j and estimating parameters of a model for f(Yj | Xj) or

assuming that E(Yj |Xj) = E(Y1 |X1) ∀ j and estimating parameters of a model for

E(Yj | Xj). Whether this model is estimable from the observed data depends on the

assumed missingness mechanism (see Chapter 2, Section 2.9).
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Recall that the missingness process is said to be monotone, if there exists a per-

mutation (k1, . . . , kNcomp) of (1, . . . , Ncomp) for which P (Rkj+1
= 0 | Rkj = 0) = 1

∀ j. Without loss of generality, we shall assume that if the missing process is mono-

tone then the members have been ordered so that (k1, . . . , kNcomp) = (1, . . . , Ncomp),

and hence for every cluster D = (1, . . . , N)T . When the process is monotone, N is

a 1-1 function of R and so P (R | X̃∗, Ỹ ∗) defines P (N | X̃∗, Ỹ ∗) and vice versa.

When members are unordered within clusters then the missingness process is consid-

ered monotone. Where members are ordered, missing data may be monotone such as

dropout in a longitudinal scenario or non-monotone as in data for teeth.

Even if, in reality, the observed clusters are not generated from complete clusters,

it is still possible to pretend that they were, to assume a form for the missingness process

(e.g. MAR), and then make inference for these hypothetical complete clusters. In this

situation,D = (1, ..., N)T and missingness is monotone.

For the purposes of relating methods of observed-cluster inference to complete-

cluster inference we identify a special MDM. We define the equal-probability MDM to

arise when within a complete cluster all members have the same probability of being

missing. More formally, this arises when P (Rj = 1 | X̃∗, Ỹ ∗) = N/Ncomp ∀ j.

The equal-probability MDM can be seen to operate in two stages. Firstly, the num-

ber of observed members, N , is assigned to each of the complete clusters. Secondly, in

each of the complete clusters, N members are sampled using simple random sampling

to create the observed clusters. In Section 5.3.1 (under the subheading ‘Inverse proba-

bility weighting’) we clarify that if the information that determines N is part ofX , i.e.

P (N | X̃∗, Ỹ ∗) = P (N | X̃∗), then the MDM is covariate-dependent MCAR.

5.3 Marginal inference: complete versus observed clus-

ters

5.3.1 Methods for complete cluster inference

Research into the marginal analysis of incomplete data has addressed both the condi-

tions under which standard methods are consistent despite the missing data and also the

development of methods which model the missingness process by assuming a certain

missing data mechanism. These were discussed in Chapter 2, Section 2.9.



5.3. Marginal inference: complete versus observed clusters 160

For purposes of comparison with methods for observed-cluster inference, we first

briefly review methods which can be used to obtain complete-cluster marginal infer-

ence, focusing on scenarios where members are unordered within clusters. In doing

this we gain insight of whether these methods may or may not provide an inference

which also applies to the observed clusters. This largely depends on the assumed MDM

and whether the members within clusters are exchangeable or not.

We define µA(x) = E(Yj | Xj = x) ∀ j, to be the marginal expectation of the

outcome given covariates in the complete clusters. The assumed model is

µA(x) = h−1(β0 + xTβ1) (5.2)

where function h(.) is the link function.

Inverse probability weighting

Inverse probability weighting (IPW) is commonly applied when MAR is assumed. Typ-

ically, it requires a model for ψj = P (Rj = 1 | X̃∗, Ỹ ∗), j = 1, . . . , Ncomp. Possi-

ble forms for this model include logistic regression and probit regression (see Section

2.9.3).

For monotone MAR data, ψj can be written as ψj =
∏j−1

k=1(1 − λk), where λk =

P (N = k | N ≥ k − 1,X1,Y1, . . . ,Xk,Yk) and a model can be specified for λk. If

members are ordered, one may assume, for example,

h(λk) = γk +XT
k θk1 + Ykθk2. (5.3)

On the other hand, under an equal-probability MDM it will not generally be nat-

ural to include Yk or cluster-varying elements of Xk in the model for λk. However,

missingness may depend on observed or unobserved cluster-constant information, S,

i.e. P (N | Ỹ ∗, X̃∗,S) = P (N | S). We distinguish three cases of interest:

1. If S is observed and is part of X , the MDM specified is covariate-dependent

MCAR, in which case the standard GEE would provide consistent estimation.

2. If S is observed but for scientific reasons is not part of X , then the MDM is not

covariate-dependent MCAR. In this case one may model missingness by assum-

ing a model for N in terms of S:

h(λk) = γk + STθk. (5.4)
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The probability of each member being observed is E(N | S)/Ncomp. The in-

verse probability weights for each observed member will be Ncomp/E(N | S)

or equivalently 1/E(N | S). Estimates of E(N | S) can be obtained using

consistent estimates of θk and γk from fitting (5.4).

3. If S is unobserved, then a model such as (5.4) cannot be specified. In this case an

alternative IPW approach which avoids specifying a model for missingness can

be applied. The probability of observation for each member, conditional on N ,

is N/Ncomp. Consequently the observed members are weighted by Ncomp/N , or

equivalently 1/N .

Multiple imputation

Multiple imputation (MI) is another approach commonly applied when MAR is as-

sumed. The missing members are imputed from an assumed model for the complete

data, whose parameters are estimated from the observed data (using Multivariate Nor-

mal Imputation or Chained equations). Auxiliary information (i.e. variables which are

not part X) could be used in the imputation model. Hot-deck imputation may also be

used, where data for a missing member are imputed from another observed member

which is judged similar to the member to be imputed.

For monotone ordered MAR data, resulting for example from dropouts in a lon-

gitudinal study, MI would impute the missing members using information on observed

outcomes and covariates from members which have been observed.

Under an equal-probability MDM and informative cluster size, it is not reasonable

to use information from large clusters to impute members in small clusters, because

these are considered to be inherently different. Assuming that the members within a

complete cluster are exchangeable, a hot-deck-type imputation which imputes missing

members from a given cluster using information from other members of the same clus-

ter (or members from other equally sized clusters) could be appropriate, although this

is not an approach we would recommend in practice.

For marginal inference, the imputed datasets can be analysed using GEE and the

estimates are combined using Rubin’s rules.
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Selection models

A selection modelling approach for MNAR monotone data would specify, for example,

a model for λk analogous to the one in equation (5.3) by adding a term Yk+1θ3k. Under

an equal-probability MDM, dependence should only be specified in terms of cluster-

constant covariates and not in terms of outcomes. In the selection modelling framework

this can be achieved by specifying dependence on random effects shared by the model

for missingness and main outcome, but such an approach would provide cluster-specific

inference. We further discuss the shared random effects approach in Section 5.4.

Pattern-mixture models

Pattern-mixture models (PMMs) are less commonly applied. A model for Y in terms of

X in the complete cluster for each missingness pattern is specified and fitted. Typically,

untestable restrictions are used to ensure identifiability.

For monotone dropouts, PMMs can be applied as a suitable approach to sensitivity

analysis (Molenberghs and Verbeke, 2006). This is because they use identifiability re-

strictions which make explicit the links between the distribution of (X, Y ) for members

who have dropped out and members who have not dropped out and belong to different

missingness pattern.

Under an equal-probability MDM, the special hot-deck MI considered earlier in

this section could be viewed as a PMM with the sole identifiability restriction that the

distribution of (X, Y ) for missing members in a given cluster is the same as the distri-

bution of (X, Y ) for the observed members within the same cluster (or the distribution

of (X, Y ) for observed members in other, equally sized clusters).

5.3.2 Methods for observed-cluster inference

Research into methods for observed-cluster inference has primarily focused on condi-

tions under which standard methods for clustered data are consistent, or only minimally

biased asymptotically, and adaptations of these methods to provide consistent estima-

tion if these conditions are not met. These methods were seen in detail in Chapter

3.

If our interest is in marginal regression, then the model of interest is either for the

expectation of Y givenX in the population of typical cluster members 1,

µC1(x) = E(YH |XH = x) = h−1(β0 + xTβ1) ∀ x (5.5)
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or in the population of all cluster members,

µM(x) = E(NYH |XH = x)/E(N |XH = x) = h−1(β0 + xTβ1) ∀ x. (5.6)

Note that these models allow order effects, i.e. we do not need to assume that E(Yj |

Xj) = E(Y1 |X1) ∀ j as we did in (5.2).

Commonly used methods for marginal observed-cluster inference under informa-

tive cluster size for population C1 and M are CWGEE (Williamson et al., 2003) and

standard GEE with independence working correlation, respectively (see Section 3.5.1).

5.3.3 Missing data mechanisms and informative cluster size

If each of the observed clusters arose from a complete cluster of common size, then

informative cluster size (ICS) can arise from a MDM which may be MAR or MNAR

but not MCAR. Consider our introductory example, a longitudinal setting with varying

cluster size due to dropout. Dropout may be MAR, occurring with high probability

after the first check-up with a high value of Y (health) given X (a vector of patient

characteristics such as sex and time). In this case, smaller cluster sizes will be linked to

higher values of Y given X and hence ICS. Analogously, if dropout occurs with high

probability once the patient perceives that health has reached a high level, between

check-ups, then this will also lead to ICS but is an example of an MNAR mechanism.

Note that it is possible to have non-informative cluster size, i.e. µM(x) =

µC1(x) ∀ x, but µA(x) not equal to µM(x) = µC1(x). For example, assume that

Y is binary taking values 0 (poor health) and 1 (good health). Also assume the MDM

is MNAR, and for every patient dropout occurs between check-ups and just before the

first check-up at which Y = 1 would have been observed. Then, µC1(x) = µM(x) = 0

and the cluster size is non-informative, but µA(x) > 0.

If the marginal model in equation (5.2) is correctly specified for the complete

clusters and either

1. P (Rj | Ỹ ∗, X̃∗) = P (Rj |Xj) (note that MCAR is a special case of this) or

2. a) P (Rj | Ỹ ∗, X̃∗) = P (Rj | X̃∗)

b) Pepe and Anderson’s condition (see equation 2.15)

are satisfied, then the marginal models in equations (5.5) and (5.6) are correctly speci-

fied for populations C1 and M, respectively and µM(x) = µC1(x) = µA(x) ∀ x.
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Under Condition 1, since the information that determines missingness is part of

X , then conditional on X the distribution of Y is independent of R (see also Little,

1995 and Hedeker and Gibbons, 2006, pg. 281-285). So, the subpopulation of members

with X = x from observed clusters is a simple random sample of the subpopulation

of members withX = x from the complete clusters. Therefore, µA(x) = µM(x) ∀ x.

Under Condition 2(a), Y ⊥⊥ R | X̃∗, so f(Y | R, X̃∗) = f(Y | X̃∗) = f(Y | X̃∗(R))

and therefore E(Y | X̃∗) = E(Y | X̃∗(R)). Using this result and Condition 2(b) it

follows that E(Y | X̃∗(R)) = E(Y | X̃∗) = E(Y | X), therefore µA(x) = µM(x) ∀

x.

As a consequence of Condition 1, the number of members in the observed clusters,

N , which is determined by R, is also independent of Y given X . So, f(Y | X, N) =

f(Y | X), the cluster size is not informative and µC1(x) = µM(x) ∀ x. Similarly,

under Condition 2(a), Y ⊥⊥ N | X̃∗ and consequently E(Y | N, X̃∗) = E(Y | X̃∗).

Using Condition 2(b) and the result from Condition 2(a), E(Y | X, N) = E(Y |

X̃∗, N) = E(Y | X̃∗) = E(Y | X). Hence, µC1(x) = µM(x) ∀ x, also. Note that

Conditions 1 and 2 are also sufficient conditions for the consistency of the standard

GEE which, under any of these conditions, can be used to provide inference for any of

the three populations.

Hoffman et al. (2001), Williamson et al. (2003) vaguely stated that MCAR is

equivalent to non-informative cluster size. We have seen that under related condi-

tions, of which MCAR is special case, the cluster size is non-informative and also

µM(x) = µC1(x) = µA(x) ∀ x. We have also seen that the cluster size might not be

informative under a wider range of MDMs including MNAR mechanisms.

5.3.4 Failure, in general, of methods for complete cluster inference

to provide observed-cluster inference

In general, it cannot be expected that under a MAR mechanism µA(x) = µC1(x) or

µA(x) = µM(x) ∀ x. Hence, standard IPW and MI which are known to provide con-

sistent estimation for complete-cluster inference, i.e. for µA(x), under a MAR mecha-

nism, will fail to provide inference for the observed clusters, i.e. for either µC1(x) or

µM(x).

Consider again the longitudinal example, and the MAR mechanism whereby drop-
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out occurs with high probability after the first check-up with a high value of Y (health)

given X (e.g. sex and time). Standard MI would impute the values of (X, Y ) for

members after dropout for each patient, using the values seen after the time of dropout

in other patients who did not dropout and had similar measures of health before the time

of dropout. Since good health is maintained once it is achieved, these imputed values

will be high, reflecting the values that would have been observed without dropout. This

imputation approach will not provide inference for population M because on average

across all patients such imputed values will be higher than those observed (i.e. before

dropout). It will also not provide inference for population C1 because for each patient

the values imputed after dropout will be higher than those observed, i.e. before dropout.

Using similar arguments it can be seen that standard IPW methods will also not provide

inference for neither population C1 nor population M.

5.3.5 Inference for population C1 using methods for complete-

cluster inference

In Section 5.3.4 we have seen that standard methods for complete-cluster inference

under MAR missing data when the members are ordered and not exchangeable, are not

suitable methods to obtain inference for population C1. However, in Section 5.3 we

described how the approach of Williamson et al. (2003) of weighting by 1/N (recall

that we assume N > 0) can be seen as an IPW method for complete-cluster inference

assuming the probabilities of observation for each member within a given cluster are

equal. Under this equal-probability MDM, µA(x) = µC1(x) ∀ x. This can be seen

because in order to form population C1, each cluster contributes one of its observed

members at random. Under such MDM, within each cluster the observed members

have the same distribution of (X, Y ) as the unobserved ones. Hence, the distribution of

(X, Y ) in populations C1 and A will be equal. Therefore, the approach of Williamson

et al. (2003) provides inference which applies both to populations C1 and A.

Similarly, under an equal-probability MDM the special hot-deck imputation ap-

proach seen in the end of Section 5.3.1 provides complete-cluster inference which also

applies to observed-cluster inference for population C1. In particular, this special im-

putation relies on similar principles as WCR (Hoffman et al., 2001) and can be seen as

equivalent to CWGEE (Williamson et al., 2003) as the number of imputations tends to
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infinity.

Often, it will not be reasonable to assume an equal-probability MDM. Neverthe-

less, an IPW method which makes this assumption, correctly specifies a model for

N , and weights each member by 1/E(N) (see Section 5.3.1), will provide observed-

cluster inference for population C1. If insufficient information is available to correctly

specify a model for N under an equal-probability MDM, then the CWGEE method of

Williamson et al. (2003) can be used for observed-cluster inference since it does not

require a model for N . For example, if members are monotone MAR and are ordered,

we may consider using IPW based on a model forR such as the one in equation (5.3) to

obtain inference for the complete clusters. If, contrary to reality, we assume an equal-

probability MDM, and correctly specify a model for N such as in equation (5.4) or

apply CWGEE we obtain inference for the observed clusters.

5.4 Cluster-specific inference: complete versus ob-

served clusters

5.4.1 Methods for complete-cluster inference

If the data are covariate-dependent MAR and a model is correctly specified for Ỹ ∗ in

terms of X̃∗ and fitted by maximum likelihood, it will give consistent estimation. A

random effects model is commonly used:

E(Yij | X̃∗i , bi) = h−1(β0 + b0i +XT
ijβ1 +XT

ijb1i), (5.7)

where the random terms bi are assumed to arise from a zero-mean distribution (com-

monly the multivariate Normal distribution) and bi ⊥ X̃∗i .

If the data are not covariate-dependent MAR, then joint random effect models

based on models for Ỹ ∗ and the missingness pattern R can be fitted. Estimation by

maximum likelihood will be consistent if the models are correctly specified. As these

models share random effects the assumed MDM is MNAR. The model for Ỹ ∗ is spec-

ified as in (5.7) with the same distributional assumptions. The model for R specifies

that P (R = r|X̃∗, Ỹ ∗, b) = f(r, X̃∗(r), b) ∀ r for some function f(.).

In Section 5.3.1 we considered models for R under MAR mechanisms to ap-

ply the IPW approach. Similarly here, the model for R can be specified in terms of
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ψj and λk if these are redefined to be P (Rj = 1|X̃∗, Ỹ ∗, b) and P (N = k|N ≥

k,X1, Y1, . . . ,Xk, Yk, b), respectively.

So, for monotone missing data and ordered members, the term involving Yk in

equation (5.3) is removed, so the model is

h(λk) = γk + θTk1Xk + θTk2b.

For monotone missing data but unordered members we specify

h(λk) = γk + θTk1S + θTk2b, (5.8)

where S is a subvector ofX and it consists of cluster-constant elements ofX .

5.4.2 Methods for observed-cluster inference

The joint modelling approach of Dunson et al. (2003) was presented in Chapter 3, Sec-

tion 3.5.4. The Dunson’s method specifies a model for the joint conditional distribution

of Ỹ ∗ and N given X̃∗ and shared random effects b. It corresponds to the shared

random effects approach for complete-cluster inference under missing data (see, for

example, Diggle et al., 2002, pg. 301-303).

Dunson’s method assumes that X̃∗ ⊥ b in the complete clusters and also that the

missingness depends on X and b and not on Y . It provides inference for the complete

clusters, i.e. it estimates the conditional distribution of Y given X and b for members

of the complete clusters and also the distribution of b in the population of complete

clusters.

Nevertheless, Dunson et al. (2003) presented their method as one for observed-

cluster inference. We identify two scenarios under which the inference from the Dun-

son’s approach also applies to the observed clusters.

Case A: If the conditions:

A.1. N depends on X̃∗ and b but not on Y and

A.2. X is cluster constant,

are satisfied, then Dunson’s method provides complete-cluster inference which coin-

cides with observed-cluster inference.

Under these conditions, the conditional distribution of YH given XH and b (see

Section 5.2 for the definition of YH andXH) is the same as the conditional distribution
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of Y given X and b. Also, XH ⊥ b (recall that X ⊥ b). Furthermore, it is obvi-

ous that the distribution of b in the population of observed clusters is the same as the

distribution if b in the population of complete clusters since N > 0 for all clusters.

The implication of these is that the Dunson’s model which is correctly specified for the

complete clusters, can be considered to also apply to the observed clusters.

Although Dunson et al. (2003) and Chen et al. (2011) applied the method in a

dataset from toxicology studies where X was cluster-constant, they seem to suggest

that X may also be cluster-varying. In our view, in the presence of cluster-varying

covariates, the Dunson’s joint modelling approach does not provide observed-cluster

inference, at least not without additional conditions. In particular, for cluster varying

X we argue that:

Case B: If the conditions:

B.1. N depends on b but not on X̃∗ and Y and

B.2. X1, . . . ,XNcomp are independent and identically distributed within each cluster,

are satisfied, then Dunson’s method provides complete-cluster inference which coin-

cides with the observed-cluster inference.

Under these considerations, again the distribution of YH given XH and b in the

observed clusters is the same as the distribution of Y given X and b in the complete

clusters. Also, XH ⊥ b. So the Dunson’s model also applies to the observed clusters.

Note that the condition XH ⊥ b can be false if Conditions (B.1) and (B.2) do not

hold. For example, if XH is not size-balanced (i.e. if the distribution of XH is not

independent of N ) and the model for N correctly specifies a dependence of N on

cluster-varying elements ofX , this will result in violation of the conditionXH ⊥ b.

In scenarios other than the ones considered in Cases A and B, Dunson’s approach

will provide inference for the complete clusters and this will generally not apply to the

observed clusters.

5.4.3 Equivalence of cluster-specific inference for populations M

and C1

For cluster-specific observed-cluster inference a GLMM such as in (5.7) may be spec-

ified, and if correct, then for a randomly selected member of a randomly selected ob-
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served cluster, YH is independent of N conditional onXH and b.

Analogously to (5.5) and (5.6) we define

µC1(x, b) = E(YH |XH = x, b) ∀ x and

µM(x, b) =
E(NYH |XH = x, b)

E(N |XH = x, b)
= h−1(β0 + xTβ1 + xTb) ∀ x

for populations C1 and M, respectively. Using the condition YH ⊥⊥ N | XH , b (i.e.

cluster size is not informative conditional on b and XH) it can be easily seen that a

correctly specified GLMM applies to both populations M and C1 in the sense that

µC1(x, b) = µM(x, b) = h−1(β0 + b0 + xTβ1 + xTb1) ∀ x.

5.4.4 Marginal inference from a cluster-specific model

When the link function in model (5.7) is the identity one,

E(YH | XH = x, b) = β0 + b0 + xTβ1 + xTb1. Since XH ⊥ b, then E(b |

XH = x) = 0. So, µC1(x) = E(YH | XH = x) = β0 + xTβ1 and the vector of

fixed regression coefficients in cluster-specific inference coincides with the ones from

marginal regression for population C1. Also, for a random intercepts model with the

log-link function, the regression parameters β1 in a marginal (for population C1) and

a cluster-specific model will again be the equal (see also Section 2.7, last paragraph).

For link functions other than the identity and the log-ones, the regression parameters

from a marginal and a random effects model are not equal, in general. Nevertheless,

E(YH | XH) may be obtained by numerical integration over the distribution of b in

E(YH |XH , b).

5.5 Discussion
We have clarified that informative cluster size does not simply correspond to deviations

from MCAR as suggested by previous authors, though covariate-dependent MCAR

does lead to non-informative cluster size. We have also seen that even under MNAR

MDMs, the cluster size may not be informative.

From the viewpoint of different MDMs we have offered insight into why different

methods are used according to whether inference is sought for the observed or com-

plete clusters. Methods designed for complete-cluster inference that assume an equal-

probability MDM can be considered for inference for observed clusters, and those that

have not already been considered for this purpose could be considered further.
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This insight has also provided an important note of caution regarding the use of

joint random effects models (Dunson et al., 2003) if the observed clusters are of interest.

We have seen that the method of Dunson et al. (2003) generally provides inference for

the complete clusters. We identified cases where this inference also applies to the

observed clusters. The necessary conditions are that (i) the model for N only includes

cluster-constant covariates, (ii) the covariates are independent of the random effects

and (iii) the model for the expected outcome only includes cluster-constant covariates

or i.i.d cluster-varying covariates.

The literature on joint random effects models for informative cluster size prob-

lems has not discussed populations for inference nor the link to marginal models.

We have established that a correctly specified random effects model provides cluster-

specific inference which applies to both population C1 and population M. We have also

discussed how marginal inference for population C1 can be obtained from a cluster-

specific model.

In this chapter we have considered scenarios where the covariate structure is non-

informative. In practice informative covariate structure may arise alongside informative

cluster size. In this case, marginal inference for population C1 may be considered

uninformative and other populations could be preferred (Huang and Leroux, 2011).

In cluster-specific inference, informative covariate distribution would correspond to

violation of the assumption of independence between covariates and random effects in

which case other methods could be considered (see Sections 2.8 and 3.12).



171

Chapter 6

Conclusions and further work

In the analysis of clustered data often the cluster size varies. If the variation in cluster

size has arisen because some data are missing, then we may seek inference for the

population of all members of all complete clusters. However, if the variation in cluster

size is an inherent feature of the data, then the observed data are considered to be

complete and we seek inference for the observed clusters.

In this work we primarily focused on methods for observed-cluster marginal infer-

ence when the cluster size or covariate structure are informative. In Chapter 3 we dis-

cussed informative cluster size, introduced the concept of informative covariate struc-

ture and additional populations for inference, and proposed estimation methods for

marginal inference using weighted independence estimating equations. In Chapter 4

we investigated efficient methods for marginal inference under informative cluster size

and informative covariate structure. We discussed an existing efficient method and ex-

plained how bias can arise from the use of this method. We also proposed an alternative

efficient method. We clarified conditions for the consistency of both methods. In Chap-

ter 5 we have examined the relation between missing data and informative cluster size

and attempted to bridge the gap between the two. We have indicated scenarios where

observed- and complete-cluster inference might coincide.

In the next three sections we briefly summarise the most important findings in

Chapters 3, 4 and 5. We note the limitations of the proposed methodology. In section

6.4 we make recommendations for further work, stemming from the considerations in

this thesis.
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6.1 Inference under informative cluster size and covari-

ate structure

Informative cluster size has been defined to arise when the expected outcome, E(Y ),

conditional on covariates, X , is not equal to the expected outcome conditional on co-

variates and the cluster size, N . Early work on marginal inference under informative

cluster size (Hoffman et al., 2001; Williamson et al., 2003) primarily focused on sce-

narios where the covariates are cluster-constant and the effect of X is the same in

all clusters. Hoffman et al. (2001) and Williamson et al. (2003) proposed the WCR

and CWGEE methods, respectively, to provide inference for the population of typical

members 1. Inference for the population of all members can be obtained using the

standard GEE with independence working correlation. We clarified that if X is non-

size-balanced or the effect of X differs between clusters of different sizes, inference

for the population of all members and typical members 1 is different. WhenX is size-

balanced and the effect of X is the same in all clusters, only the intercept terms differ

between populations M and C1; the effect ofX is the same.

Importantly, we have identified another type of informativeness which might arise

when the covariates are cluster-varying. We have defined informative covariate struc-

ture to arise when the conditional expectation of the outcome for a member given co-

variates for that member and the cluster size depends on the covariate values of other

members in the cluster where the member in question belongs. Informative covariate

structure may arise concurrently with informative cluster size, or can solely arise even

when the cluster sizes do not vary. As informative cluster size, informative covariate

structure also causes problems for analysis and standard methods are deemed inappro-

priate.

When the covariate structure is informative and the covariates are categorical we

introduced additional populations for inference and proposed estimation methods us-

ing weighted independence estimating equations. In particular, when the covariate

structure is informative we proposed WIEE for the populations of typical members

2 and 3 (populations C2 and C3). In using WIEE-C2, each cluster member is inversely

weighted by the number of members in that cluster with the same value of X as the

member in question. WIEE-C3 is analogous to WIEE-C2 but is restricted to clusters
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which contain all values of X . WIEE-C3 provides a ‘matched’ analysis and can be

seen as a method which estimates the within-cluster effect ofX by removing the effect

of any measured or unmeasured cluster-level confounders. When a great proportion

of clusters do not contain all values of X , WIEE-C2 may be used instead, if cluster-

confounding due to unmeasured factors is not of great concern.

The WIEE-C3 method consistently estimates the within-cluster effect of X if the

effect of X is homogeneous. If the assumption of homogeneous effects is not true, it

also requires that all clusters contain all values of X . In this case it estimates what

can be seen as the ‘average’ within-cluster effect of X . When the effect of X is not

homogeneous and not all clusters contain all values of X , WIEE-C3 does not con-

sistently estimate the average within-cluster effect of X . For such scenarios Huang

and Leroux (2011) proposed modelling the frequency distribution of X to obtain suit-

able weights which up-weight cluster members to represent both themselves and also

missing members. In terms of estimation, DWGEE2 are analogous to WIEE-C2 but

each cluster member is inversely weighted by the expected (rather than the observed)

number of members in that cluster with same value of X as the member in question.

So, a pseudo-population of complete clusters is created, where all clusters contain all

values of X . If the model for the frequency distribution of X is correctly specified,

then DWGEE2 method consistently estimates the within-cluster effect of X , even if

the effect ofX is not homogeneous.

Importantly, the DWGEE2 method can only be applied when auxiliary cluster-

level covariates are observed. Huang and Leroux (2011) performed simulation studies

with a single binary exposure. When the effect of the exposure is not homogeneous and

about 10% of the clusters do not experience both exposure levels, WIEE-C3 has been

seen to provide little bias. As auxiliary cluster-constant covariates might not always be

available or suitable, application of DWGEE2 may not be feasible in practise. There-

fore it is important to investigate the amount of bias from the use of WIEE-C3 under

non-homogeneous exposure effects for a wider range of scenarios (e.g. larger propor-

tion of clusters with missing exposure levels, categorical exposure with more than 2

categories etc.).

Table 6.2 is a summary of the weighting methods considered or developed in

Chapter 3.
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Method Issue - Nature of exposure

Informative Cluster Size - cluster-constant or cluster-varying size-balanced exposure

IEE Recommended when modelling costs at the ‘aggregate level’ (health economics).
WIEE-C1 The experience of the typical patient is of direct interest.

Informative Covariate Structure - cluster-varying categorical exposure

IEE Recommended when modelling costs at the ‘aggregate level’ (health economics).
WIEE-C1 Not intuitive/useful. Does not deal with cluster confounding. Not recommended.
WIEE-C2 More intuitive inference than population C1. Recommended when all exposure levels are

present in all clusters; otherwise it does not deal fully with cluster confounding and is not
recommended.

WIEE-C3 Estimates the within-cluster effect of the exposure assuming homogeneous exposure ef-
fects. Deals with cluster-confounding by unobserved cluster-level confounders. Requires
all levels of exposure to be present in all clusters if the effect of the exposure varies across
clusters.

DWGEE2 It consistently estimates the within-cluster effect of the exposure whether this is homo-
geneous or not. It does not require that all clusters contain all levels of the exposure but
it requires a correctly specified model for the frequency distribution of the exposure in
terms of cluster-constant auxiliary variables.

DWGEE3 It provides causal inference for the potential treatment effect when the exposure is a treat-
ment applied to the cluster. It requires a correctly specified model for treatment allocation
in terms of auxiliary variables.

Table 6.1: Weighting methods for informative cluster size and informative covariate
structure

6.2 Efficient marginal inference under informative

cluster size and structure

The WIEE proposed in Chapter 3 for inference for populations M, C1, C2 and C3, but

also the estimators of Huang and Leroux (2011) use independence working correlation.

So, the dependence between repeated outcomes is not fully acknowledged.

In Chapter 4 we have discussed efficient methods for informative cluster size and

covariate structure. MWCR was proposed by Chiang and Lee (2008) as an extension

of WCR to provide consistent estimation with increased efficiency compared to WCR

for the population of typical members 1. We proposed an alternative efficient method,

WRGEE, which uses a non-diagonal working correlation structure and may offer ef-

ficiency gains compared to WIEE. The weights in WRGEE can be selected to obtain

inference for the population of all members or the population of typical members 1. We
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Method Issue - Nature of covariates

Informative Cluster Size - cluster-constant or cluster-varying size-balanced covariates

MWCR Inference for population C1. Small efficiency gains for cluster-constant covariates. Sig-
nificant efficiency gains for cluster-varying covariates. Exchangeable is the only ‘safe’
choice for the working correlation. Caution: additional conditions might be needed un-
der longitudinal-data settings and autoregressive working correlation (see Section 4.2.3,
Theorem 1, Conditions 2 and 3)

WRGEE Inference for either population C1 or population M, using suitable weights. Small ef-
ficiency gains for cluster-constant covariates. Significant efficiency gains for cluster-
varying covariates. Exchangeable is the only ‘safe’ choice for the working correlation.
Caution: additional conditions needed for longitudinal-data settings and autoregressive
working correlation (see Section 4.3, Theorems 2 and 3)

Informative Covariate Structure - cluster-varying non-size balanced covariates

MWCR Biased inference for population C1, due to violation of the ‘size-balanced’ condition. Not
recommended.

WRGEE Biased inference for population C1 and population M, due to violation of the ‘size-
balanced’ condition. Not recommended.

WBGEE Can provide unbiased inference for populations M, C1, C2 or C3. Moderate efficiency
gains. Requires categorical exposure. Uses block diagonal correlation matrices. Under
non-size-balanced covariates and hence informative covariate structure, the most useful
and intuitive inference is for population C2 or C3.

Table 6.2: Use of efficient methods under informative cluster size/structure

also proposed an extension of WRGEE, WBGEE, to obtain efficient inference for pop-

ulation of typical members 2 and 3. WBGEE can also be extended to the populations

considered by Huang and Leroux (2011).

A summary in terms of recommendations for practical use of the MWCR and

WRGEE methods structure is provided in Table 6.2.

Application of MWCR and WRGEE may result in biased inference in certain

scenarios; this bias was not clearly described when MWCR was initially proposed.

We clarify conditions, necessary for consistent estimation when using MWCR and

WRGEE. These conditions relate to the structure of covariates and the choice of the

working correlation structure.

As it is evident from the illustration in Chapter 4, the application of MWCR and

WRGEE might be problematic when dealing with longitudinal data, and these methods

should be used with caution. In scenarios of clustered data where there is no time

or order component among the members of each cluster (such as the ones that arise



6.3. Informative cluster size and missing data 176

in toxicology experiments) the conditions required for consistent estimation are more

likely to be satisfied.

When the covariate structure is informative and inference is required for popu-

lations M, C2 or C3, WBGEE have been seen to provide small efficiency gains over

WIEE. Also, the conditions for the consistency of WRGEE and MWCR limit their

applicability in certain scenarios. It is of interest to investigate possible extensions of

WRGEE and MWCR or alternative efficient methods which cover a wider range of

scenarios and offer more substantial efficiency gains. One possible direction would be

to examine whether the locally efficient estimator of Vansteelandt et al. (2007) remains

valid under informative cluster size.

6.3 Informative cluster size and missing data

Informative cluster size and missing data have similarities, but the connection between

the two has not been made clear in the literature. Methods for missing data are well

known by statisticians; methods for informative cluster size are less known. In Chap-

ter 5 we attempted clarifying the relation between the two. This may offer insight to

researchers as to which method should be used for a given problem.

When the cluster size varies, we may seek inference for the complete or the ob-

served clusters. We investigated which missing data mechanisms may lead to informa-

tive cluster size. Importantly, we identified a special missing data mechanism under

which complete- and observed-cluster marginal inferences coincide. We have also de-

scribed how IPW methods for complete-cluster inference may provide observed-cluster

inference.

For cluster-specific inference, we have identified that the method of Dunson et al.

(2003) provides inference for the complete clusters, in general. We clarified conditions

under which the inference provided also applies to the observed clusters. Importantly

we have explained that, when the cluster size is informative and a random effects model

is correctly specified, inferences for the population of typical members 1 and the pop-

ulation of all members are equivalent.
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6.4 Further work
The work presented in this thesis gives rise to potential further work. The most impor-

tant topics for future work are presented below:

• Extension of methods for informative covariate structure to the case of continu-

ous exposures.

The weighting methods considered/developed in this thesis for informative co-

variate structure are only applicable when the exposure is categorical. An impor-

tant field for further work is their extension to the case of continuous exposure.

The two following extensions of the proposed methods are worthy of further in-

vestigation:

- The continuous exposure can be categorised using meaningful cut-off points and

the weights for populations C2/C3 can be obtained. The WIEE for population

C2 and C3 can be applied using the categorised or the initial continuous version

of the exposure. The last choice assumes that within each category the covariate

structure is not informative.

- An alternative strategy which it is worth further investigation would be to derive

a version of DWGEE2/3 methods for continuous exposure, X . It can be seen

that when L is cluster-constant and the exposure categorical, then DWGEE2 is

equivalent to DWGEE3 where the denominator E(Zx|L, N) can be modelled

as E(Zx|L, N) = NP (X = x|L). For the extension of this idea to the case

of continuous exposure, the denominator NP (X = x|L) can be substituted by

N f(X = x|L), where f(X = x|L) denotes a density. The consistency of this

proposed method relies on the correct specification of the model for the distribu-

tion of X|L. It is expected that this approach can be sensitive to the misspecifi-

cation of the model forX|L and also that the weights might have high variability

resulting in high standard errors of the parameter estimates. These two issues can

be tested using suitable simulation studies.

• Applicability of methods for cluster-confounding in scenarios of informative co-

variate structure.

Informative covariate structure has similarities with what has been termed ‘con-
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founding by cluster’. It is of interest to investigate whether methods proposed for

cluster-confounding can be used when the covariate structure and the cluster size

are informative. There is a wide selection of methods for cluster-confounding

which involves the Conditional Likelihood method (Neuhaus and MCculloch,

2006), the poor man’s method (Neuhaus and Kalbfleisch, 1998) and the Con-

ditional GEE (Goetgeluk and Vansteelandt, 2008). As these methods deal with

cluster-confounding and estimate the within-cluster effect of the exposure, they

are worthy of consideration alongside the weighting methods developed for deal-

ing with the issue of informative covariate structure. These methods do not re-

quire the exposure to be categorical but generally assume non-informative cluster

size and homogeneous exposure effects.

• An alternative DWGEE2: imputing missing exposure levels and outcomes.

In the DWGEE2 method, it is assumed that there are complete clusters which

have all exposure levels but in some of the observed clusters certain exposure

levels have not been observed. The missingness of exposure levels is modelled in

terms of cluster-constant auxiliary covariates, L. An alternative approach would

be to impute the exposure levels and outcomes where the exposure is modelled

in terms of the auxiliary variables, L. The imputation can be carried out us-

ing a fully conditional specification imputation method for clustered data (see,

for example, Nevalainen et al. (2009)). Such an approach may offer increased

efficiency compared to the DWGEE2 and may also be of use in the case of con-

tinuous exposure.

• A more efficient WBGEE for population C3.

When the covariate structure is informative, WIEE-C3 may be the preferred

method of analysis in many scenarios. Nevertheless, its efficiency is reduced

when clusters which do not include all levels of exposure are discarded. The

WBGEE method (proposed in Chapter 4) for population C3 can be used to pro-

vide modest efficiency gains compared to WIEE-C2. The WBGEE method as-

sumes that the subclusters defined by the different levels of the exposure in the

cluster are independent. One way to further increase its efficiency is to allow the

subclusters within a cluster to be correlated. The correlation between the sub-
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clusters of the same cluster can be modelled assuming exchangeability between

the subclusters. Initial simulation results show efficiency gains of up to 60%;

this is a considerable improvement compared to the 15% efficiency gain of the

standard WBGEE. Although the newly proposed method shows potential for sig-

nificant efficiency gains, the conditions required for its consistency need to be

investigated.
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