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A b s t r a c t  

This thesis describes the characteristics and properties of aerosol assisted 

chemical vapour deposition (AACVD) and conventional atmospheric chemical 

vapour deposition (CVD) metal oxide thin films on glass substrates with or 

without metal, Au, Ag, Cu or Al dopants.  Host metal oxide matrices including, 

ZnO and TiO2 with various dopants are known to give specific physical and 

optical properties desired by many industries and have various potential 

properties e.g. thermochromic, photochromic and are known as ‘intelligent 

coatings’.  The AACVD synthesis technique was used singularly or in 

combination with APCVD to achieve thin films on glass substrates either in 

static or dynamic situations with a range of temperatures (300-600 ºC).  

Computational fluid dynamics (CFD), Fluent™ software, was used in a 2-

equation, numerical study of fluid flow, velocity,  particle trajectory, evaporation 

and thermophoretic effects on six combined AACVD/APCVD vertical reactor 

head designs; two designs were then selected as experimental prototypes and 

tested on a pilot rig chosen to more accurately simulate commercial Float glass 

production.  Various functionalities of the thin films were analysed using 

transmittance/reflectance spectroscopy, RZ ink and stearic acid photocatalysis 

tests, resistivity and a variety of analytical techniques including SEM, XRD and 

XPS were used.  The main findings include the effect of noble metal dopants 

(particularly Au and Ag), substrate synthesis temperature, fluid flow and droplet 

size have on the physical and chemical properties such as the morphology, 

crystallinity, water surface contact angle of the host metal oxide matrices. The 

nebulised AACVD droplet size, for solvent systems, are critical for deposition of 

the precursor chemicals onto the surface of the substrate, CFD particle 

trajectory of nebulised AACVD methanol droplets were calculated to be 1 order 

of magnitude too small to overcome the main forces of influence aerodynamic 

drag and at higher synthesis temperature evaporation.   
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C h a p t e r  1 :  P r o p e r t i e s  a n d  C V D  

S y n t h e s i s  o f  M e t a l  O x i d e  T h i n  F i l m s  

Introduction to the Synthesis and Properties of Metal Oxide Thin Films via CVD 

Techniques with and without Dopants 

1 . 0 . 0  I n t r o d u c t i o n   

This thesis describes the incorporation of metal nanoparticles dopants into 

metal host matrices thin films using atmospheric chemical vapour deposition 

(CVD) and aerosol assisted chemical vapour deposition (AACVD) synthesis, 

their characteristic’s, physical properties, linear and non-linear optical properties 

and the simulated fluid flow of synthesis using computational fluid dynamic 

models. 

Noble metal nanoparticle thin films are an intensive area of research due to 

their interesting functional properties including extensive colouration and anti-

microbial properties.  The unknowing use of noble metal nanoparticles dates 

back at least to the 4th and 5th century BC in Egypt1 and China for colouring 

various materials including glass and ceramics.  The Roman soda-lime-silica 

glass Lycurgus Cup, see fig. 1, is one of the most famous examples believed to 

have been manufactured in the 4th century A.D; analysis has revealed that the 

cup contains colloidal alloy of gold (Au - Ag, 40 ppm and 300 ppm respectively).  

The cup is ruby red in transmitted light and green in reflected light- these 

colours arise from the small amounts of embedded Au/Ag alloyed nanoparticles 

which have exceptional ability to colour objects even at very low concentrations.  

The Romans formed these highly coloured objects by adding “for good luck” 

coins into the glass forming melt, these coins dissolved in the high temperature 

of the glass forming process and adventitiously formed alloyed nanoparticles 

embedded within the host bulk glass matrix to form a composite.  The brilliant 

colours of noble metal nanoparticles (in excess of the colouration efficiency of 

the best organic dyes) are due to the surface plasmon resonance (SPR) 

absorption governed by the noble metal nanoparticles morphology, size, shape 

and the dielectric constant of the surrounding medium2.    
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1 . 1 . 0  I n d u s t r i e s ,  a p p l i c a t i o n s  a n d  p o t e n t i a l  

a p p l i c a t i o n s   

Of particular commercial interest are ‘smart’ materials that have been 

engineered to change in a controlled manner under the influence of external 

stimuli. These stimuli can include temperature, force, moisture, electric charge, 

magnetic fields and pH.  Existing ‘smart’ materials include piezoelectric, 

thermoresponsive, shape memory alloys, polychromic, chromogenic and 

halochromic materials. The following section covers some of the many of the 

applications and potential applications for noble metal nanoparticles in the 

glass, electronics, micro-biological and chemical industries.  

1 . 1 . 1  T h e  G l a s s  I n d u s t r y   

The potential applications in the glass industry are the formation of protective 

and durable thin film coatings with noble metal nanoparticles used to give; 

colour, reflectivity and solar control (thermochromic) properties which allow the 

transmission of light but block IR light at a specified temperature.  The most 

common techniques in current use for applying thin film coatings on glass 

include conventional atmospheric pressure chemical vapour deposition (CVD) 

and sputtering techniques7- 9.  Noble metal nanoparticles are of great interest to 

the glass industry for their optical properties, not least of which is the ability to 

colour glass.  Conventional colouring techniques on plate glass float lines are 

commercially expensive, the required pigment must be temperature stable and 

fed directly into the glass-forming mix at the furnace (1400 °C), achieving the 

right tone of colour on the production line takes several tonnes of glass and 

waiting for the pigment/dye to fade from the glass furnace mix also takes 

several tonnes of glass, therefore making the whole process very commercially 

expensive and time consuming.   

1 . 1 . 2  T h e  E l e c t r o n i c s  I n d u s t r y   

1.1 .2 .1  Semiconduc to rs   

The semiconducting industry is seeking new ways of improving the speed and 

miniaturisation of silicon chip technology and noble metal nanoparticles thin 
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99.9%.  Copper oxide nanoparticles (mean size 20–50 nm) are currently 

produced by Nanophase Technologies Corporation for industrial applications 

including long acting antimicrobial and antifungal agents for incorporation into 

polymer products for various applications e.g. wood preservation, marine 

antifouling coatings, optical glass polishing agents, ceramics, colours and 

pigments.  

1.1 .3 .2  D iagnos t i c  Too ls   

The optical properties of noble metal nanoparticles open up vast opportunities 

for sensing and imaging techniques, particularly for Au, in vivo, as this is 

essentially non-cytotoxic.  Some examples are given below.  

1.1.3.2.1 Immunoassay Techniques  

The Carter Wallace home pregnancy testing kit product ‘First Response’ uses a 

thin film of gold nanoparticles and latex nanoparticles within an external 

disposable test sheet.  Au nanoparticles of different sizes reflect light differently 

and a specific hormone present during pregnancy causes the nanoparticles to 

clump together, the bigger gold nanoparticles reflect a distinctive pink colour for 

a positive test.  Gold is also of interest as a possible reagentless 

electrochemical immunoassay technique22. 

1.1.3.2.2 Quantum dots and noble metal  nanodots 

Research in this area for new innovative products that enhance biological 

imaging for medical diagnostics and drug discovery is very active.  Quantum 

dots are semiconductors that emit a vast spectrum of bright colours, when 

irradiated that can be used to identify cells, locate cells and other biological 

activities.  These nanoparticle QD’s offer optical detection up to a thousand 

times brighter than conventional dyes currently used in the majority of biological 

tests and render significantly more information and are significantly more 

resistant to photobleaching.  Recent research, by Zheng et al. has produced 

nearly spectrally pure highly fluorescent water soluble gold nanoparticles 

termed as ‘nanodots’, with discrete size tunable electronic transitions from the 

visible to near infrared region, opening the way for new biological labels, energy 

transfer pairs and light emitting sources in optoelectronics23, see fig. 4.  The 
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1 .1 .4 .1  Ca ta lys is ,  p ro tec t i ve  equ ipment  and  c lo th ing  

Recent research developed by the National Taiwan University transformed CO 

into CO2 at 25 °C by using Au-Ag bimetallic nanoparticles supported by 

mesoporous silica (diameter 2-6 nm) with the potential of incorporating the 

technology into safety masks and possibly the improvement of fuel cells and 

photovoltaics24.  Nanoparticles are used increasingly in catalysis, where the 

large surface area per unit volume of nanoparticle catalyst may, depending on 

structure sensitivity, enhance reactions.  The enhanced reactivity of these 

smaller nanoparticles significantly reduces the quantity of catalytic materials 

required to carry out the necessary reaction.  Particular industries interested in 

his area of research include the oil industry, for refining petroleum and the 

automobile industry for nanoparticles in catalytic converters.  New applications 

for gold nanoparticle catalysts in particular are being explored in an array of 

new areas including the removal of smells and poisonous gases, e.g. carbon 

monoxide from rooms and or factories e.g. air cleaning25, also in pollution 

control in fuel cells26 , in the production of bulk chemicals27 and the detection of 

heavy metals such as mercury in water28.  

Companies such as BASF, Johnson Matthey and 3M have interests in 

developing commercial applications for gold nanoparticle catalysts.  Noble 

metal nanoparticle catalysts have been investigated for both homogeneous and 

heterogeneous catalysis.  Recent research has shown that the shape and 

crystal structure of the nanoparticle leads to different catalytic rates for 

homogeneous catalysis with nanoparticles with more corners and edges having 

higher catalytic rates29.  Mixed composites of Cu and ZnO are widely used as a 

catalyst for the large scale industrial production of methanol and oxidation of 

carbon monoxide; recent work by M. Shahid et al. on the use of single molecular 

precursors for the deposition of Cu–ZnO composite thin films at different 

temperatures, using aerosol assisted vapour deposition (AACVD), showed 

uniform distribution of cubic metallic Cu and hexagonal ZnO phases and could 

be used for nanocatalysis on a structured surface30. 
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1.1 .4 .2  Gas /vapour  sens ing  de tec to rs   

Yang et al. have developed an ordered thin monolayer of silver nanowire 

explosives detector31.  The tightly packed layer of ordered silver needles make 

an ideal chemical binding site and a very sensitive substrate for detecting such 

chemicals as 2, 4-dinitrotoluene (2, 4-DNT), commonly used in land mines and 

given off as vapour and detected by surface-enhanced Raman spectroscopy.  

The thin ordered flexible monolayer of silver nanowires could also be applied to 

surfaces such as glass, flexible plastic polymers and silicon for incorporation 

into various applications including flexible solar cells and light emitting diodes. 

Further research by this group includes using the Langmuir-Blodgett32-36 

assembly technique of floating nanowires on top of a liquid, followed by 

alignment and clumping together through tight compression; monolayers up to 

20 cm2 were formed with individual diameters up to 50 nm across, pentagonal 

cross-section with pyramidal tips.    

1 .1 .4 .3  Summary  o f  i ndus t r ies ,  app l i ca t ions  and  po ten t ia l  

app l i ca t ions   

The applications and potential applications of noble metal nanoparticle thin films 

or monolayers are enormous from detecting cancerous cells with new non-toxic 

Au nanoparticles to highly reflective coatings for the glass industry and potential 

solar control through ‘smart’ domestic windows.  Many industries are focussed 

on overcoming the technical difficulties ahead, especially synthetic control of 

morphology, size, shape, distribution and new products from noble metal thin 

film nanotechnology will likely become commonplace.  One particularly 

noteworthy new direction is the ability to use gold and Fe-doped gold 

nanoparticles for use in magnetic hyperthermia and localised laser heating36.  

These methods are being investigated for the destruction of bacteria and cancer 

cells.  The process uses the fact that small gold and Fe-doped gold 

nanoparticles are magnetic and can be heated by an external alternating field or 

that the gold particle acts as a hot spot for localised laser heating.  Such 

particles and films offer new hope of a new method to fight cancer or 

septicaemia.   
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1 . 2 . 0  S y n t h e t i c  r o u t e s  a n d  t e c h n i q u e s   

There are two main methods for depositing nanoparticle thin films: the ‘top 

down’ method and the ‘bottom up’ method.  The first suffers from the 

disadvantage of requiring large amounts of material to be removed from a bulk 

material to leave the nanostructures e.g. photolithography, electron beam 

lithography and the second requires assembly of nanoparticles from the 

production of reduced ions e.g. nanosphere lithography, which suffers from poor 

monodispersity, due to the need to arrest growth to control the size and 

distribution of nanoparticles.  The synthesis of thin films incorporating noble 

metal nanoparticles thin film can be split into two parts, the synthesis of the 

nanoparticles and the synthesis of the thin film.  The first part of this section, 

1.2.1, addresses the methods of nanoparticle synthesis with some recent 

developments.  The second part of the synthesis section, 1.3.2, examines 

seven thin film synthetic routes and includes examples of each type of route, 

some well known techniques such as dip coating, aerosol assisted chemical 

vapour deposition, sol-gel, magnetron sputtering and some newer types of film 

synthesis including a two-step laser assisted deposition process onto plastics.    

1 . 2 . 1  S y n t h e s i s  o f  n o b l e  m e t a l  n a n o p a r t i c l e s   

The difficulty in synthesising the desired morphology, shape, size, 

monodispersion and distribution size of noble metal nanoparticles for use in thin 

films has created many and varied routes, some of which are discussed below. 

Various mechanisms exist for trying to arrest growth of the nanoparticles for 

selective size distribution and shape, the main ones being the use of 

surfactants/ionic salts to solvate, the use of capping agents e.g. thiols and 

altering the alkyl chain lengths on both metal precursors and 

surfactants/capping agents.  The main synthesis routes to nanoparticles for thin 

film synthesis include the citrate reduction method and the Brust-Schriffin two-

phase redox method; both methods have had recent improvements and 

variations investigated.  Other methods include sonolysis, ultrasound, 

microwave, laser ablation method, micelles and a future possibly 

environmentally friendly alternative of microbial synthesis of nanoparticles.  
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1 .2 .1 .1  C i t ra te  reduc t ion  method   

A standard conventional method of producing Au nanoparticles is the citrate 

reduction of HAuCl4 in water, which was introduced by Turkevitch et al. in 1951 

for forming Au nanoparticle size of ca. 20 nm size37.  A more controlled and 

refined synthesis by Frens in 1973 who varied the ratio of reducing/stabilizing 

agents (trisodium citrate to gold ratio) to obtain some control of nanoparticle 

size (15 to 150 nm)38.  Both methods produce almost spherical particles over a 

tunable range of sizes.  Recent work has demonstrated the strong influence of 

reactant concentrations, temperature and pH on the morphology of the 

nanoparticles and that the reduction can be initiated at room temperature by UV 

exposure and the use of variant reductants such as amino acids, ascorbic acid 

and sodium ascorbate39.  Reduction in the thermal citrate reaction temperature 

tends to increase the size and quality of the nanoparticles creating larger 

particles.  Passivation of the nanoparticles, in particular gold particles, by a high 

citrate concentration appears to keep particle size small whilst lower citrate 

concentrations leads to incomplete coverage of the particles allowing 

aggregation and larger entities to form. 

1.2 .1 .2  The  Brus t  o r  Brus t -Sch i f f r i n  method   

The Brust method offers a simple two-phase redox synthesis route to thermally 

and air stable gold nanoparticles with controlled size (1.5-5.2 nm), reduced 

dispersion and easy repeatable synthesis40.  This method has the advantage of 

isolation and extraction into common organic solvents with no increase in 

decomposition or aggregation.  In a typical example AuCl4
- was phase 

transferred using tetraoctylammonium bromide phase reagent from aqueous 

solvent to an organic solvent and reduced with sodium borohydride (aq) the 

source of electrons.  

1 .2 .1 .3  The  sono lys is  method   

The advantages of the sonolysis method are rapid reaction rate and the ability 

to form very small nanoparticles; however the disadvantages are that metal 

nanoparticles generally have a wide distribution size.  The ultrasound irradiation 

method has been used to produce colloidal suspensions of Au nanoparticles 

with different sizes and shapes41.  The morphology and size distribution were 
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found to be dependent upon the molar concentration of hydrogen 

tetrachloroaurate and the anionic surfactant, sodium dodecylsulfate, 

[HauCl4/[SDS].  Higher concentrations of the anionic surfactant, (2.5 mmol dm-3) 

and high ultrasonic irradiation power (90 W) lead to uniform spherical 

nanoparticles, size 10-20 nm.  Lower concentrations of the anionic surfactant 

and irradiation power lead to nanoparticles with different shapes and forms e.g. 

rod, triangle and disk, with greater coagulation/agglomeration41. 

1.2 .1 .4  The  laser  ab la t ion  method   

Laser ablation is a simple and rapid technique in that it allows some control over 

concentration, size and aggregation of nanoparticles.  The advantages of this 

method are that there is no necessity for removal of excess reagents, e.g. 

surfactants, ions, also of interest and use is the possibility of Au nanoparticle 

synthesis in both aqueous/organic solvents and the possibility of obtaining 

nanoparticle polymer/ sol-gel matrices inclusions42.  Recent work by Amendola 

et al. has shown that it is possible to obtain stable and free Au nanoparticles in 

a one step process with solvents such as dimethylsulfoxide (DMSO), 

tetrahydrofuran (THF) and acetonitrile (CH3CN)42.  The laser ablation was 

obtained with Nd: YAG (Quantel YG981E) laser pulses (1064 nm, 9 ns) on a 

gold plate on the bottom of a solvent/solution containing cell.  Laser ablation 

produced a reduction in particle size and change in morphology due to what is 

believed to be photothermal effects.  The second harmonic of the Nd.YAG laser 

(532 nm, fluences 1-5 Jcm-2, 1Hz, 5-10 mins) produced a reduction in size and 

morphological changes of the nanoparticles in DMSO, THF and CH3CN42.  

Therefore rapid synthesis of Au nanoparticles in organic solvents was achieved 

in minutes and the solutions were found to be stable (hours-weeks) with the 

size distribution influenced by the laser irradiation.  

1.2 .1 .5  The  mic rowave  method   

The microwave (MW) technique normally involves one pot synthesis of 

nanoparticles in solution with metal salts and polymer surfactants using MW 

irradiation.  Various MW techniques have been used including continuous wave 

(CW) pulsed and variable frequency (VF).  MW dielectric heating leads to two 

types of effects thermal and non-thermal.  For thermal effects the heating is 

uniform, rapid and homogeneous, therefore leading to uniform growth, 
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nucleation, crystallinity and small size of nanoparticles.  The advantages of the 

MW method are quick, easy manufacture of nanoparticles with high selectivity 

of size and shape with narrower distributions and less aggregation than 

conventional methods.  Au, Ag, Cu, Pt, Pd and AuPd nanoparticles have been 

produced using MW irradiation43-47.  The morphology, size and shape e.g. 

spherical, triangular plates, sheets, rods, wires, tubes and dendrites of 

nanoparticles have been controlled by altering the parameters of concentration 

of the precursors and reagents usually including metal salts, solvents, ionic 

salts, surfactants and/or capping agents.  The length of carbon chain for both 

surfactants and precursors has been found to have a significant effect on 

morphology of nanoparticles43-47.  

Table 1:  Typical reagents used in Au MW nanoparticle synthesis  

Metal Salts HAuCl4 

Solvents Water 

Alcohols- ethanol, methanol 

N,N-Dimethylformamide (DMF)  

Ethylene glycol (EG)  

N-methyl pyrrolidone (NMP) 

Surfactants Polyvinylpyrrolidone (PVP) 

Tetradecylammoniumbromide (TDAB) 

Capping agents PVP 

Vitamin B2 

Sugars – α-D glucose, maltose, sucrose 

Ionic Salts TOAB 

Reducing Agents Sugars – α-D glucose, maltose, sucrose 

Vitamin B2 

 

Table 2: Typical reagents used in Ag MW nanoparticle synthesis 

Metal Salts AgNO3 

Solvents Alcohols- ethanol, pentanol, hexanol, heptanol, 

octanol  

N,N-Dimethylformamide (DMF)  

Ethylene glycol (EG)  

N-methyl pyrrolidone (NMP) 

Pyridine  

Surfactants Polyvinylpyrrolidone (PVP) 

Capping agents PVP 
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Vitamin B2 

Sodium citrate, Na3C6H5O7 

Dodecylthiol (thiol) 

Ionic Salts Na3C6H5O7 

Reducing Agents Sugars – α-D glucose, maltose, sucrose 

Vitamin B2 

Na3C6H5O7 

 

Table 3:  Typical reagents used in Cu MW nanoparticle synthesis  

Metal Salts Copper (II) octanoate 

Copper (II) myristate 

Cu(NO3)2 

Solvents Alcohols- ethanol, pentanol, hexanol, heptanol, 

octanol  

N,N-Dimethylformamide (DMF)  

Ethylene glycol (EG)  

N-methyl pyrrolidone (NMP) 

Pyridine  

Surfactants Polyvinylpyrrolidone (PVP) 

Capping agents PVP 

Ionic Salts Cetrytrimethylammonium bromide (CTAB) 

Reducing Agents Carbon 

 

The influence of the size of the alkyl chain on Ag precursor fatty acid salts has 

been shown to increase nanoparticle size with increasing alkyl chain length48, 

this general trend appears to breakdown slightly once the length of chain 

reaches a critical size (CH3(CH2)nCOOAg, ≥ n =16)48.  The influence of the 

length of alkyl chain on the copper metal precursor has been shown to alter the 

size of the nanoparticle in alcohol solvents, the alcohol reduction process (Cu2+ 

→ Cu0) and therefore the surface plasmon absorption: the longer the alkyl chain 

on the nanoparticle precursor the smaller the nanoparticle46.  The length of alkyl 

chain on the solvent was found to have no effect on nanoparticle morphology46, 

see table 4:  
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emulsifiers e.g. detergents50.   Inverse micelle synthesis involves the use of 

surfactants with a polar group at one end and an organic group at the other to 

generate small pockets of a water phase in an organic solvent, in which the 

respective groups face the appropriate water/organic phase50-52.  Addition of 

different water volumes linearly affects the size of the micelle generated.  Prior 

to the addition of the reducing agent the metal salt precursor must be added to 

the surfactant, this ensures a good monodispersity is achieved.  Reverse 

micelle synthesis occurs in non-polar solvents where exposure of the 

hydrophilic heads to the solvent is energetically unfavourable.  The hydrophilic 

groups therefore surround the micelle core and the hydrophobic heads remain 

in contact with the non-polar solvent.  Recent research includes the synthesis 

Au nanoparticles using sodium bis-(2-ethylhexyl) sulfoccinate (AOT), isooctane 

as the templating system for producing Au nanoparticles using sulfite as the 

reducing agent53.  Good correlation of the surface plasmon peak was found 

between Mie theory and Au size (commercial gold colloids: 5-10 nm/aq) for the 

reverse micelles53. 

1.2 .1 .7  The  mic rob ia l  method    

The advantages of a microbial synthesis are a reduction in costs for the 

reducing agents and energy for forming Au nanoparticles.  The main drawback 

to the use of intracellular or extracellular synthesis is the very slow reduction of 

aqueous AuCl4 taking typically between 2 and 30 days54, 55.  Metal reducing 

bacterial agents have a much faster rate of gold nanoparticle precipitation, 

typically 30 mins at pH 7 from 1 mM HAuCl4 (aq)56.  Recent work by Konishi et 

al. has used metal reducing bacteria S. algae to precipitate gold nanoparticles 

within 30 mins at pH 1 extracellularly and pH 7 intracellularly57, see fig. 6.  The 

pH of the solution had a major influence on the size of the Au nanoparticle: the 

lower the pH the bigger the particle size.  The Au nanoparticles at pH 1 were 

typically 50-500 nm, some were polyhedral in shape and crystalline; gold 

particles prepared at pH 7 were typically smaller (5-15 nm) than those prepared 

at pH 157.  The microbial technique is still very much in a development stage but 

could offer a possible unique industrial method with interesting nanoparticle 

properties including size and shape.  
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Figure 7: Scheme 1: Methods of making thin films with embedded nanoparticles. 

 

The first route involves synthesis of a host matrix with the addition of 

nanoparticles in a second step.  Example techniques include spin coating and 

dip coating a semiconductor film combined with a nanoparticle solution.  Work 

by Yang et al. demonstrated the typical use of the spin-coating (500-3000 rpm, 

in air, 10-20% relative humidity at 25 °C) method to form highly ordered silica 

host matrix thin films (30-300 nm) with adorned gold nanoparticles from 

precursor solutions and silica wafers in conjunction with post treatment curing 

(vacuum, 180 °C, 5 hrs) or UV irradiation (2 hrs)58.   

The synthesis of a host matrix followed by the application of metal ions in a 

second step, forming metal particles within the film is a second route to 

nanoparticle host matrix thin films.  Example techniques include high-energy ion 

implantation and spin coating with a metal solution followed by either 

photocatalytic reduction or heat treatment59.  Recent work by Kao et al. used 

the spin coat method, (500 rpm for 10 s, 2000 rpm for 15 s) to apply Au 

nanoparticles suspended in toluene to Cu, Ni and Al foil substrates and then 

cured (IR) in a protected atmosphere (90 % N2 - 10 % H2)
60.  Surface coverage 

on Cu substrate was continuous but coverage on Ni and Al substrates was 

intermittent and particularly pronounced with the Al substrate, at lower curing 

temperatures (200-250 °C).  Coverage on the Cu and Ni substrate improved at 
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higher curing temperatures (300 °C).  The fractal like structure of the Au layer 

on the Al substrate was indicative of oxidation demonstrating aluminium’s 

unsuitability as a substrate for Au nanoparticles.  The topography of the films 

was coarser at lower temperatures.  Temperature of the curing process affects 

adhesion, morphology and coating coverage, higher temperatures improve 

adhesion, coating coverage and tended to flatten the surface topography. 

The synthesis of a host matrix and metal nanoparticles in a single step is a third 

route to nanoparticle host matrix thin films.  Example techniques include sol-gel 

using both semiconductor and nanoparticle precursor, liquid-phase deposition 

(LPD), multitarget magnetron sputtering deposition and other techniques 

including chemical vapour deposition (CVD) using separate precursors.  Recent 

research has looked at the incorporation of Cu nanoparticles into amorphous 

silica films and monolithic glasses61, Ag nanoparticles into Al doped ZnO thin 

films62 and Au nanoparticles into ZrO2 thin films63.  The incorporation of Ag 

nanoparticles into aluminium doped ZnO were found to enhance the 

crystallization of the Al doped ZnO phase, providing an interconnecting pathway 

for the reduction of electrical resistivity62.  Au nanoparticles have also been 

incorporated into ZrO2 thin films, upon annealing these Au-ZrO2 thin films 

display a red shift in SPR due to size increase of Au nanoparticles size and a 

blue shift in SPR with increased Au content63.   The liquid phase deposition 

method can be used to deposit composite nanoparticle thin films at low 

temperatures (30-50 °C) from an aqueous solution giving the ability to coat 

sensitive substrates such as plastics.  Ko et al. used the LPD technique to 

incorporate Au nanoparticles into layered thin films of SiO2/TiO2
64.  

Transmission electron microscopy (TEM) revealed that the Au nanoparticles 

were found in both layers with migration of nanoparticles after annealing (500 

°C) to the more crystalline anatase TiO2 matrix.  Magnetron sputtering is a 

physical process that involves the removal of atomised material from a solid due 

to energetic bombardment of the surface layers by ions or neutral particles that 

then deposit onto a substrate65.  Recent work by Liao et al. used the multitarget 

magnetron sputtering technique (600-700 °C), to embed, sandwich and 

multilayer Au nanoparticles in different oxide composite films of ZnO, TiO2 and 

SiO2
66.  Upon thermal annealing, the multilayer films for Au: SiO2, (950 °C for 2 
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hrs) remained intact, while the microstructure broke down for both Au: ZnO and 

Au: TiO2 thin films, (700 °C for 2 hrs). 

The synthesis of layer-by-layer deposition of metal nanoparticles and a host 

matrix material are a fourth synthetic route to thin films.  Example techniques 

include laser ablation and pulsed laser deposition (PLD).  PLD is a technique 

that involves hitting a target precursor solid surface, in a vacuum, with a high 

pulsed laser creating a plume of aerosol particles that are ejected onto an 

opposing surface with the stoichiometry of the surface material kept intact.  

Recent work has involved incorporation of Au nanoparticles into SiO2/TiO2 host 

matrices67, 68 and Ag and Au nanoparticles incorporated into amorphous ZrO2 

host matrix, with XRD and TEM techniques used to analyse distribution 

patterns, interface with the host matrix and mean size69.  Serna et al. 

investigated the optical response of Cu nanoparticles embedded in an 

amorphous Al2O3 host matrix for reactive processes.  The plasmon resonance 

band was found to shift with increasing or decreasing laser fluences, increasing 

laser fluences was found to increase the degree of change from the simple 

metallic Cu nanoparticle form to the sputtered Cu-Al oxide covered Cu 

nanoparticles form70. 

The synthesis of the semiconductor matrix and metal nanoparticles concurrently 

is a fifth route.  Example techniques include aerosol assisted chemical vapour 

deposition (AACVD) and injected jet assisted modified chemical vapour 

deposition.  AACVD involves the generation of multi-component particles for 

deposition from a gaseous plasma of precursors in liquid solution transported by 

gas, e.g. N2.  The main advantages are the capability of depositing a uniform 

thin film onto a heated substrate with noble metal nanoparticles in a single step.  

The main problem with AACVD is that deposition also occurs on surfaces above 

a horizontally laid substrate currently thought to be due to thermophoretic 

effects71.  Another advantage of AACVD is the transport of precursors that are 

not easily volatised by conventional CVD methods.  Recent research by 

Palgrave et al. includes AACVD co-deposition of Au nanoparticles and 

semiconductor host matrices tungsten oxide, WO3, (precursor: [W(OPh6)]) and 

titania oxide, TiO2, (precursor: [Ti(OiPr)4]) onto silica glass to form 

nanocomposite thin films72.  Three properties are of interest for the anatase 

titania/Au thin films, reflection of IR/near IR, the further red shift in the SPR 
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substrate, opening up the possibility of high quality flexible microelectronics with 

Si films on plastic substrates.  

1.2 .2 .1  Summary  o f  th in  f i lm depos i t i on  rou tes   

Thin film deposition routes onto any substrate follow two main pathways: type 

one, one pot synthesis where all components are put onto the substrate at the 

same time e.g. host matrix and the nanoparticle precursor; and type two, two 

step synthesis, host matrix laid on the substrate first followed by the 

nanoparticle reagent or vice versa.    

1 . 3 . 0  P r o p e r t i e s  o f  n o b l e  m e t a l  n a n o p a r t i c l e s  

i n c o r p o r a t e d  i n t o  t h i n  f i l m s   

The main properties of interest for Au, Ag and Cu nanoparticle composite thin 

films include linear and non-linear optical, magnetic, conductivity, catalysis, 

antimicrobial and electrochromic properties.  The theoretical principles that 

describe the nanoparticle matrix interaction are covered by Mie,76 Maxwell-

Garnett76 and Drude76, 77 models.  The main emphases of this chapter are the 

optical main properties, such as photoluminescence, photochromic effects and 

colour.  The refractive index and dielectric constant of the host matrix also play 

a major part in the properties of these thin films.  The properties of 

nanoparticles are either due to the symmetry at the interface or to electron 

confinement that does not scale linearly with size.  Therefore the properties of 

nanoparticle collections of atoms/molecules are neither those of the bulk 

properties or the individual atom/molecule properties but new properties that are 

dependent on size and structure instead of the nature of the 

element/compound.  Nearly all the nanoparticles within a composite thin film are 

located on the surface or just below the surface, one layer below but are 

occasionally found deeply embedded in the interior.  Au and Ag nanostructures 

have absorptions across most of the visible region in contrast to semiconductor 

nanoparticles that have emission spectra across most of the visible region.  The 

new properties exist for noble metal nanoparticles due to electronic confinement 

of the semi-conducting host matrix and surface effects in the metals.  
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1 . 3 . 1  O p t i c a l  p r o p e r t i e s   

1.3 .1 .1  Theore t i ca l  p r inc ip les   

Thin films containing small noble metal nanoparticles show absorption due to 

surface plasmon resonance (SPR) effects resulting in linear and non-linear 

optical properties.  Explanations for the optical properties of small (1 nm) noble 

metal nanoparticles have been put forward including the following deductions by 

Doremus et al. that the radii of noble metal particles become smaller than the 

mean free path of electrons the plasma band broadens, for very small particles 

(<1 nm) the absorption band disappears completely77.  The reduction in mean 

free path causes a reduction in effective optical conductivity of a spherical 

particle increasing ε2 (complex dielectric constant ε* = ε1 – iε2 of the particles) 

which is inversely proportional to conductivity in the Drude model for free 

electrons, see eqn (1).  

Equation 1 

ε2 = Aλ3+ B       

 

Where λ = wavelength of light for free electrons, A = inverse of the mean free 

path of electrons; B = a correction constant  

For noble metal nanoparticles embedded in glass the optical absorption 

reciprocal λ4 dependence of absorption, see eqn. 2.  

Equation 2 

α =  18πQn3ε2/λ     

  (ε1 + 2n2)2 + ε2 
2 

Where α = optical absorption, Q = volume fraction, n = refractive index of the 

host medium.  

Using the Drude model ε2 is too large when compared to experimental results, 

the probable explanation being the effect of surface defects of the noble metal 

nanoparticle skin77.  Therefore for very small noble metal nanoparticles (1 nm) 

where the denominator ε2
2>> (ε1 + 2n2)2 then equation (2) becomes, see eqn. 3.  
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longitudinal plasmon resonances at longer wavelengths.  Longitudinal 

calculations involve increasing the wavelength and intensity maximum i.e. the 

aspect ratio (increase length/width); the transverse plasmon resonance does 

not depend on the aspect ratio and behaves very much like the surface 

plasmon resonance of a sphere.  This allows the tuning of the SPR by alteration 

of the aspect ratio.  

1 . 3 . 2  Q u a n t u m  c o n f i n e m e n t  i n  s e m i c o n d u c t o r  h o s t  

m a t r i c e s   

Quantum confinement of the electrons in the semi-conducting host matrix is 

important; as the particle size decreases below the Bohr radius the electron 

becomes more confined within the particle, leading to an increase in the band 

gap energy, and the valence and conduction bands become quantized.  The 

band gap emission for CdSe is known to shift from red emission, for large 

particles, to a blue emission for small particles82.  Size controls the colour of the 

nanoparticles, therefore control over nucleation and growth of the semi-

conducting nanoparticle is important.  

1 . 3 . 3  T h e  d i e l e c t r i c  c o n s t a n t   

The intensity and position of the SPB depends upon the dielectric constant of 

the surrounding medium and the electronic interaction between nanoparticles 

and stabilising ligands.  The size, morphology, electron density of particles and 

dispersion of the nanoparticles (e.g. the extent of aggregation) depend upon the 

factors affecting the SPB.  The theories of SPB has recently been addressed by 

Moores et al. including the Maxwel-Garnett,76 Debye76 and Mie76 models and 

determination of the dielectric constant with Drude theory into the motion of 

electrons in metals76, 77.  Mie theory is the most used and describes the 

interactions between light and nanoparticles and as a scattering one it divides 

the problem into two sections: the solvable electromagnetic part and the 

material part which requires the determination of the dielectric constant.  The 

problem with Mie theory on its own is that it treats the nanoparticles as simple 

spheres that are too distant to interact with one another.  The dielectric constant 

of the host medium/matrix influences greatly both the plasmon peak and 
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plasmon resonance normally the oscillation frequencies of Au and Ag are in the 

visible region and produce the strong surface resonance absorption.  For 

fundamental reasons the properties of noble metal nanoparticles and semi-

conducting nanoparticles (Quantum dots) differ, semiconductor nanoparticle 

properties are based on the quantum confinement of the electrons and the 

dielectric constant, and the properties of noble metal nanoparticles are based 

on the collective oscillations of electrons, the surface plasmon resonance.  

Therefore a change in size for semi-conducting e.g. CdSe nanoparticles alters 

the optical properties to a greater degree than metal nanoparticles unless the 

anisotropic shapes occur, i.e. different crystal structures, prisms, hexagons, 

nanorods, nanowires, producing a stronger surface electric field on the surface 

of the nanoparticle resulting in a stronger plasmon resonance absorption often 

with multiple “colour modes”.  The surrounding electromagnetic field is 

enhanced by anisotropic shapes and their geometry determines the surrounding 

electric field density and therefore enhances the properties of these noble metal 

nanoparticles, e.g. enhancement of fluorescence, detection sensitivity, Raman 

signals and light scattering84.  Chemically bonded molecules can be detected by 

the effect they have on the electron density on the surface, this shifts the SPR 

maxima, making noble metal nanoparticles several orders of magnitude better 

at detecting these molecules than conventional dyes. 

1 . 3 . 6  T h e  e f f e c t  o f  s i z e  a n d  s h a p e  o n  t h e  S P R  

a b s o r p t i o n   

The shape of very small gold nanocrystals (≤ 20 nm) are naturally disposed 

thermodynamically to the symmetric face-centred cubic (fcc) types but kinetic 

factors of growth and nucleation can be used to control or direct shape during 

synthesis by using different concentrations of surfactants and/or capping agents 

to obtain larger anisotropic shapes85.  Spherical nanoparticles tend to have the 

SPR in the same place just with increasing absorption with increasing size, see 

fig. 11.  Many industries are looking to shift the SPR, particularly Au, into the 

near infrared for a multitude of promising applications.  Therefore control of the 

shape and size of the nanoparticles, particularly anisotropic crystals, is one way 

of achieving this shift e.g. nanorods display two SPRs (associated with 

movement of electrons in transverse and longitudinal directions) and experience 
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Nehl et al. observed Au star shapes exhibited polarization-dependent scattering 

with multiple spectral peaks that were incredibly sensitive to the dielectric 

constant of the surrounding host medium, making these nanoparticles ideal for 

labels for microscopic imaging and localized SPR sensors for low level 

analytes95.   Au star shapes were observed to have a possible transverse SPR 

absorption (586 nm) and a broad longitudinal SPR absorption (773 nm) very 

similar to the longitudinal SPR absorption of nanorod tips.  Single particle 

spectroscopy using a dark field microscopy with epi-illumination and transmitted 

light (halogen light source, inverted optical microscope) was used to observe 

the scattering spectra of the SPR and found to have 3 peaks (647, 700 & 783 

nm).  The position and strength of these broad near infrared peaks were caused 

by the variable tip structures and were polarisable at different angles i.e. 

polarization-dependent, opening the possibility for significant biological 

applications95.  Spherical nanoparticles have a relatively simple transverse SPR 

absorption band typically from 520-590 nm the intensity of which is dependent 

upon on the size of the nanoparticle.  For more complicated shapes, e.g. 

anisotropic shapes the SPR absorption degenerates and splits giving new 

shifted SPR absorptions e.g. the longitudinal SPR absorption of nanorods has 

been observed to have a red shift.  These SPR effects are seen both in solution 

and in thin film form.  The colour is also modified by the medium in which the 

nanoparticle sits and is sensitive to the dielectric constant of the host solvent or 

thin film.  The number of SPR absorption bands appears to be dependent on 

increasing the anisotropic nature of the nanocrystal with the extreme example of 

star shapes, which have many SPR peaks due to the twinning nature and 

number of tips of the nanocrystals.  Research into the effects of morphology, 

size, shape, size distribution and monodispersity have on the SPR absorption 

for Au, Ag and Cu nanoparticles embedded in a thin film is a very active and an 

area to be further explored.  

1 . 3 . 7  P h o t o l u m i n e s c e n c e   

In 1969 Mooradian first reported the photoluminescence of Au nanoparticles96.  

This work has proved pivotal for the SERS community where enormous 

enhancements in Raman sensitivities have been observed even down to the 

single molecule level.  When noble metal nanoparticles absorb energy as 
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Work by He et al. on a MoO3 composite thin film with Au nanoparticles improves 

the UV-light coloration performance of the MoO3 thin film.  Both the MoO3 and 

the Au doped MoO3 thin films are almost transparent before UV-light irradiation; 

these samples turn blue when irradiated with UV light, with broad absorption 

peaks. The Schottky barrier formed at the MoO3/Au interface facilitates the 

separation of photogenerated carriers and therefore the Au nanoparticles 

enhance absorption of MoO3 thin film by 2.5 times103. 

1 . 3 . 9  E l e c t r o c h r o m i c  e f f e c t s  a n d  m i c r o p a t t e r n i n g   

Electrochromism is a reversible, visible change in optical absorption under 

electrochemical oxidation/reduction or when a burst of charge is applied.  The 

energy provided is sufficient to effect the change required.  Tungsten oxide 

(WO3) is currently used in the production of electrochromic ‘smart’ windows and 

rear-view automobile mirrors in various lighting conditions.  The amount of light 

and heat allowed to pass through a ‘smart’ window can be controlled; the colour 

persists until a sufficient form of energy has been supplied to effect the change.  

Au nanoparticles have been investigated by Nah et al. on poly[2-methoxy-5-(2-

ethylhexyloxy)-1,4-phenylenevinylene] (MEHPPV) thin films deposited on 

indium tin oxide (ITO) substrate: two types of the film were synthesized 

(Au/MEH-PPV) by two different deposition conditions of the pulsed-current 

electrodeposition and spin coating to give two different results for the SPR of 

the Au spherical nanoparticles104.  Sample Au1 SPR absorption was 550 nm at 

-20 m/A cm-1 and sample Au2 SPR absorption was 650 nm with a broader 

absorption band at -30 m/A cm-1, see fig. 21.  The colouration of the films was 

different for both controls.  Au1/MEH-PPV was reddish (550 nm) and the 

Au2/MEH-PPV had two SPRs (550 and 650 nm) that were blue after oxidation 

probably due to the longer exposure time of the pulsed current.  The main 

reason for the results would probably be the smaller interparticle Au 

nanoparticle distance in sample Au2 and the effect of  red shifting of the SPR 

absorption.  Control of these types of films could be achieved through the 

density of the Au nanoparticles, e.g. increasing density increase the SPR 

absorption and enhances the electrochromic properties. 
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1 . 4 . 0  M o d e l l i n g  f l u i d  f l o w  f o r  i n - s i t u  s y n t h e s i s  r o u t e s  

The successful incorporation of noble metal nanoparticles into a metal oxide 

host matrix is reliant on the characteristics of fluid flow in the synthesis delivery 

head or reaction chamber.  The fluid flow dictates the uniformity of dispersion 

characteristics and the areas of substrate most likely to grow a thin film and the 

rate of growth with boundary conditions to be taken into account.  One useful 

way to both qualitatively and quantitatively assess the fluid flow regime in a 

CVD synthesis is by modelling the fluid flow using computational fluid dynamics 

(CFD) e.g. ANSYS range of  CFD software.  

1 . 4 . 1  T h e o r e t i c a l  a p p r o a c h  t o  f l u i d  f l o w  m e c h a n i c s  a n d  

C F D  

There are two basic types of fluid flow, streamlined, laminar fluid flow and 

chaotic, turbulent fluid flow with transition points between the two also known as 

aero-dynamic drag in some industries; particular industries require laminar flow, 

e.g. Formula 1 racing cars, airplanes and CVD reactions for thin films with 

uniformity of dispersion and growth and some industries require turbulent flow, 

e.g. chemical industries requiring fast reactions of liquids/gases and 

dishwashers109. 

For laminar flow the motion of the particles of fluid is very orderly with all 

particles moving in straight lines, layers parallel to the walls or physical 

boundaries of the system e.g. pipe walls, reaction chamber sides or river bank. 

Putting an obstacle in the path of a laminar fluid flow does not have a significant 

effect on the pathline taken, the laminar fluid flow will simply follow the curve 

around the obstacle and carry on streaming away in a smooth straight line, e.g. 

a pebble in a slow flowing river or analogous in chemical terms to a reaction 

taking the pathline of least resistance and lowest energy109.  In turbulent flow 

the motion of the fluid is completely irregular and chaotic with all particles 

moving in the same direction and destination as the laminar flow pathline but in 

a chaotic, disorganized way.  Increasing the velocity of the fluid flow in the 

stream to turbulent fluid flow allows chaotic motion to be formed behind the 

pebble e.g. forms swirling eddies109.  The fluid follows an identical but chaotic 

pathline to the laminar flow model; analogous in chemical terms to the 
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1.4 .1 .2  CFD ca lcu la t i ons  fo r  f l u id  f l ow 

Computational fluid dynamic calculations within most software solvers use the 

default setting for viscous flow with a low velocity value for laminar flow111. 

Turbulent flows are characterized by fluctuating velocity fields, momentum, 

energy and species concentration, and cause the transported quantities to 

fluctuate as well111.  Transport equations modelled for all simulations include 

momentum, mass and energy.  The fluctuations that are small scale with high 

frequency are too complicated and computationally expensive to simulate 

directly; therefore the instantaneous governing equations are time-averaged, 

ensembled-averaged, or otherwise manipulated to remove the small scales111. 

The result is a modified set of equations that are less computationally expensive 

to solve.  Additional unknown variables contained in the modified equations are 

required to determine the variables in terms of known quantities111.  There are 7 

basic turbulent models with further variations available within some of the 

models, see table 5111. 

Table 5: List of various CFD turbulent models 

Type of CFD Model Type of Simulation and Equations 

Spalart-Allmaras Solves one transport equation for the kinematic eddy (turbulent) 

viscosity 

κ-ε 

i) Standard 

ii) Renormalization-group (RNG) 

iii) Realizable 

Solves two transport equations for turbulent kinetic energy (κ) and 

dissipation rate (ε).  All three models have similar forms. The major 

differences in the models are the method of calculating turbulent 

viscosity, the turbulent Prandtl numbers governing the turbulent 

diffusion of κ and ε and the generation and destruction terms in the 

ε equation. Calculations common to all models include turbulent 

production, generation due to buoyancy, accounting for the effects 

of compressibility, modelling heat and mass transfer. 

κ-ω 

i) Standard 

ii) Shear-stress transport (SST) 

Solves two transport equations for the turbulence kinetic energy (κ) 

and the specific dissipation rate (ω), which can also be thought of 

as the ratio of ε to κ  

ν2-f Similar to the standard κ-ε model, but incorporates near-wall 

turbulence anisotropy and non-local pressure-strain effects. A 

limitation of the ν2-f model is that it cannot be used to solve Eulerian 

multiphase problems, whereas the κ-ε model is typically used in 

such applications. The ν2-f model is a general low-Reynolds-

number turbulence model that is valid all the way up to solid walls, 

and therefore does not need to make use of wall functions. 

Although the model was originally developed for attached or mildly 
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separated boundary layers it also accurately simulates flows 

dominated by separation. The distinguishing feature of the ν2-f 

model is its use of the velocity scale, v2, instead of the turbulent 

kinetic energy, κ, for evaluating the eddy viscosity., v2 which can be 

thought of as the velocity fluctuation normal to the streamlines, has 

shown to provide the right scaling in representing the damping of 

turbulent transport close to the wall, a feature that κ does not 

provide.  

Reynolds stress model (RSM) 

i) Linear pressure strain 

ii) Quadratic pressure-strain 

iii) Low-Re stress-omega 

The RSM closes the Reynolds-averaged Navier-Stokes (RANS) 

equations by solving transport equations for the Reynolds stresses, 

together with an equation for the dissipation rate. 

For 2D: 5 additional equations 

For 3D: 7 additional equations 

Detached eddy simulation (DES)

i) Spalart-Allmaras (RANS) 

ii) Realizable κ-ε RANS 

iii) SST κ-ω RANS 

The unsteady RANS models are employed in the near-wall regions, 

while the filtered versions of the same models are used in the 

regions away from the near-wall. The LES region is normally 

associated with the core turbulent region where large turbulence 

scales play a dominant role. In this region, the DES models recover 

the respective subgrid models. In the near-wall region, the 

respective RANS models are recovered.  Reynolds-averaged 

Navier-Stokes equations govern the transport of the averaged flow 

quantities with the whole range of the scales of turbulence to be 

modelled 

Large eddy simulation (LES) 

i) Smargorinsky-Lilly subgrid-scale 

ii) WALE subgrid-scale 

iii) Kinetic-energy transport subgrid-

scale 

Filtered time-dependent Navier-Stokes equations in either Fourier 

(wave-number) space or configuration (physical) space. This filters 

out the eddies whose scales are smaller than the filter width or grid 

spacing used in the computations. The resulting equations thus 

govern the dynamics of large eddies. 

Turbulent model choice depends upon the physics of the flow, common practice 

for type of problem to be solved, accuracy required and computational expense.  

The most common turbulent models used are the κ- ε models and the κ-ω 

models, particularly the κ-ε Realizable model which is suitable for most common 

turbulent fluid flow simulations112, 113.  At this point in time, time-dependent 

solutions of the Navier-Stokes equations are unobtainable for high Re number 

turbulent flows down to the small scale of motion.  There are two methods for 

resolving Navier-Stokes equations so small scale turbulent fluctuations are not 

directly simulated, one is Reynolds-averaging and the other is filtering.  

Reynolds-averaged Navier-Stokes (RANS) equations govern the transport of 

the averaged flow quantities with the whole range of the scales of turbulence 

being modelled.  The RANS based approach reduces the computational effort 

and is widely used for engineering applications.  Models which use RANS 
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include Spalart-Allmaras, κ-ε, κ-ω and RSM models.  The Reynolds stresses 

are approximately modelled using the Boussinesq hypothesis114 which relates 

the Reynolds stresses to the mean velocity gradients; the additional turbulent 

stresses are given by augmenting the molecular viscosity with an eddy 

viscosity.  The Spalart-Allmaras, κ- ε and the κ-ω models use the Boussinesq 

hypothesis; the Spalart-Allmaras model resolves one additional transport 

equation for turbulent viscosity, μt; the κ- ε model resolves two additional 

transport equations for the turbulence kinetic energy, κ, and the turbulence 

dissipation rate, ε, the κ-ω model also resolves two additional transport 

equations for κ and the specific dissipation rate, ω and μt is computed as a 

function of κ and ε.  One assumption, which is not quite true, of the Boussinesq 

hypothesis is that μt is an isotropic scalar quantity.  RSM solves transport 

equations for all the Reynold stress tensor terms.  An additional scale-

determining equation (usually for ε) is also required for RSM; therefore five 

additional transport equations are required in 2D flows and seven additional 

transport equations are required in 3D flows.  Most models based on the 

Boussinesq hypothesis perform adequately and the extra computational 

expense of RSM is not justified unless the anisotropy of turbulence is dominant 

e.g. highly swirling flows and/or stress-driven secondary flows. 

LES is an alternative approach in which large eddies are resolved in a time-

dependent simulation using filtered Navier-Stokes equations i.e. models less 

turbulence but resolves more, errors introduced by turbulence modelling can be 

therefore reduced.  Filtering is a mathematical manipulation of the exact Navier-

Stokes equations to remove eddies that are smaller than the size of the filter, 

e.g. the mesh size when spatial filtering is applied.  LES requires significant 

computational effort to accurately resolve the energy containing turbulent 

eddies in both space and time domains, particularly in near-wall regions where 

ever decreasing small scale motion requires resolution, this can be reduced by 

using a coarse mesh but may not be appropriate for the fluid flow problem 

undergoing simulation; highly accurate spatial and temporal discretizations are 

also required.   
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1.4 .1 .3  D isc re te  mode l l i ng :  d rop le t  t ra jec to ry  

Discrete modelling of the forces, e.g. aerodynamic drag, experienced by vapour 

droplets during AACVD synthesis can give statistical information on solvent 

droplet trajectory and the size of droplet required to hit the substrate.  The 

discrete second phase simulations are in a Lagrangian frame of reference.  The 

second phase consists of spherical particles (which may be taken to represent 

droplets or bubbles) dispersed in the continuous phase.  The simulation 

computes the trajectories of these discrete phase entities, as well as heat and 

mass transfer to/from them.  The coupling between the phases and its impact 

on both the discrete phase trajectories and the continuous phase flow can be 

included111. 

Various discrete phase modelling options include111:  

 calculation of the discrete phase trajectory using a Lagrangian 

formulation that includes the discrete phase inertia, hydrodynamic drag, 

and the force of gravity, for both steady and unsteady flows  

 prediction of the effects of turbulence on the dispersion of particles due 

to turbulent eddies present in the continuous phase  

 heating/cooling of the discrete phase  

 vaporization and boiling of liquid droplets  

 combusting particles, including volatile evolution and char combustion to 

simulate coal combustion  

 optional coupling of the continuous phase flow field prediction to the 

discrete phase calculations  

 droplet breakup and coalescence  

Therefore the evaporation model can give statistical analysis of when the 

solvent droplet is most likely to evaporate within an AACVD or AACVD/CVD 

reaction chamber. Other effects that can be simulated and investigated for 

droplet trajectory, via a discrete model, are thermophoretic forces115.    
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1 . 4 . 2  S u m m a r y  o f  C F D  m o d e l l i n g  s i m u l a t i o n s  

CFD modelling simulations are used in this thesis to investigate fluid flow in 

AACVD/CVD combined synthesis designs for the incorporation of noble metal 

nanoparticles into host metal matrices, the effect of thermophoretic force and 

the characteristics of typical solvent droplet trajectory and evaporation for the 

AACVD fluid flow are assessed, see chapter 2.  

1 . 5 . 0  C o n c l u s i o n  o f  c h a p t e r  o n e  

The incorporation of noble metal nanoparticles, Au, Ag and Cu into thin film is 

reviewed. The synthetic routes to gold nanoparticles and the synthesis of thin 

films on glass/silica, metal and plastic substrates, with a range of various host 

matrices, including ZnO, TiO2 and Al2O3, are covered with general introductions 

and examples of current synthesis methods and future applications including 

anti-microbial coatings. The optical properties of noble metal nanoparticles, 

numerical theory, including Mie and Maxwell-Garnet equations are explained 

with particular attention on photoluminescence, photochromic and 

electrochromic properties.  The dielectric effect of the host matrix and the 

influence on the surface plasmon resonance are explored and various analytical 

techniques such as AFM and XRD results to illustrate the properties of both the 

noble metal nanoparticles and the host matrix.  Computation fluid dynamics and 

the various simulation models are reviewed for simulations of fluid flow, particle 

trajectory using solvents (EtOH, water) and the effect of thermophoresis.  The 

following chapters detail work carried out on CFD simulations, chapter 2, of the 

combined AACVD/CVD synthesis deposition head; the experimental work using 

AACVD and combined AACVD/CVD synthesis of metal oxide host matrix thin 

films (ZnO, TiO2) with or without doping of noble metal (Au, Ag, Cu) and/or p-

type metal (Al) nanoparticles onto glass substrates and their characterisation, 

chapters 3-5, e.g. composition, crystal lattice, morphology, resistivity, optical 

properties, size and shape of nanoparticles.  
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Chapter 2 

 

Computational Fluid Dynamic Study of Six AACVD/APCVD Reactor Heads 
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C h a p t e r  2 :  C o m p u t a t i o n a l  F l u i d  D y n a m i c  

S t u d y  o f  S i x  A A C V D / A P C V D  R e a c t o r  H e a d  

D e s i g n s  

2 . 0 . 0  I n t r o d u c t i o n  

This chapter describes the of use standard numerical computational fluid dynamics 

(CFD) code to assess the fluid flow characteristics of six AACVD/CVD combined 

head designs with and without thermophoretic effects.  One design was chosen for 

further evaluation of particle trajectory, droplet size and evaporation of the AACVD 

fluid flow.  This calculational study would provide insight into AACVD reactor 

design for formation of a coater head for use for forming composite thin films with 

nanoparticles embedded in a host oxide matrix.  Following the calculational study 

of a new design of AACVD coater was made and evaluated as described in 

chapter 4 and 5.  All numerical computation of fluid transport includes conservation 

of mass, chemical species concentration, momentum and energy, see appendix 1. 

Gambit™ software was used as a pre-processor to create the geometry, discretize 

the fluid domain into small cells to form a volume mesh or grid and to set up the 

appropriate boundary conditions116, 117.  The flow properties are then specified and 

the problems are solved and analysed by the Fluent™ solver111.  The heat transfer 

theory was used to solve for energy when required in CFD simulations in Fluent™ 

software, see appendix 1118.  The pressure work and kinetic energy terms are often 

negligible in incompressible flows.  For this reason, the pressure-based solver by 

default does not include the pressure work or kinetic energy when solving 

incompressible flow111, 119.  Viscous heating is often negligible when the pressure-

based solver is used; therefore Fluent™’s default form of the energy equation does 

not include them111.  For the inclusion of the species diffusion term due to enthalpy 

transport for the pressure based solver see appendix 1.  The diffusion component 

and therefore the net inlet transport at the inlets are not specified.  The Reynold’s 

number for turbulence for the combined AACVD/CVD head designs was assumed 

to be 3000, see appendix 2. There is a lack of research papers that are applicable 
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for this particular use of CFD in relation to AACVD and CVD fluid flow, droplet 

trajectory and droplet evaporation simulations, this work represents one of the first 

such applications. 

2 . 1 . 0  T u r b u l e n t  M o d e l s  

The turbulent models chosen were the two transport two-equation models; κ-ε 

Realizable model112 and the κ-ω Shear Stress Transport (SST) model120, 121 for 

comparison.  The κ-ε realizable model satisfies certain mathematical constraints on 

the Reynolds stresses for turbulent flows and more accurately predicts the 

spreading rate of planar and round jets and provides superior performance for 

rotation, boundary layers under strong adverse pressure gradients, separation and 

recirculation when compared to other κ-ε models111.  Limitations of the κ-ε 

realizable model are the production of non-physical turbulent viscosities where the 

computational domain contains both rotating and stationary fluid zones e.g. rotating 

sliding parts/meshes due to the inclusion of the effects of mean rotation in the 

turbulent viscosity i.e. extra rotation effect gives superior simulations but multiple 

rotating and stationary flows being assessed together may cause problems111.  The 

κ-ω SST model is a blend of the standard κ-ω model119 in the near-wall region and 

the κ-ε free-stream independence in the far field making this more accurate for 

shear-stress flows such as shockwaves111, 119.  The turbulent kinetic energy, κ, is 

solved for both turbulent models and the dissipation rate, ε, is solved for the κ-ε 

realizable model and the specific dissipation rate, ω, is solved for the κ- ω SST 

model, for mathematical explanations see appendix 1. 

2 . 1 . 2  D i s c r e t e  M o d e l s  

 The thermophoretic model 

The thermophoretic effect was modelled as small particles suspended in a gas that 

have a temperature gradient and subsequently experience a force in the direction 

opposite to that of the gradient, see appendix 1115.  The one assumption made was 

that the particles were spherical and the fluid behaved like an ideal gas. 
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 Droplet trajectory model 

The droplet trajectory was modelled for 16 droplets, due to the limitations of the 

diameter of the inlet, at various sizes (0.1-0.0001 mm) using two solvents (water, 

MeOH) through the AACVD inlet.  Fluid flow (including flow from CVD inlets) was 

assumed to be solved from the previous turbulent modelling and the statistical 

analysis was repeated until a meaningful set of repeatable results were obtained.  

The substrate surface was set to trap droplets that hit the surface and the 

assumption made was that droplets remained and did not then leave the surface.   

2 . 1 . 3  G e o m e t r y  c o n s t r u c t i o n  a n d  m e s h  g e n e r a t i o n  

Geometry and volume mesh generation for the 2D and 3D fluid areas of the 6 

combined AACVD/CVD head designs were generated in the Gambit™ software 

using the ACIS geometry kernel and hybrids of tetrahedral (tet) and hexagonal 

(hex) meshes116, 117.  A hex-dominant mesh usually requires decomposition, and is 

used primarily for prismatic geometries whilst a tet-dominant mesh is appropriate 

for complex geometries and a HexCore mesh is used to lower the cell count and 

improve overall mesh quality, for flow volumes with complexity near the walls and a 

large core region116, 117.  A high quality hex-mesh is preferred over a tet-mesh but 

may not be possible for complex geometries.  The discretization error and false 

numerical diffusion are reduced significantly for a hex-dominant mesh with 

significantly lower cell counts e.g. for a 10 x 10 x 10 cube; hex and tet (cell size of 

1), hex-mesh generates 1,000 cells, tet-mesh generates 7,726 cells116, 117. 

Various mesh types with sub schemes are available within Gambit™ and include 

the following: 

 Hex 

o Map, Submap, Tet Primitive, Cooper, Stairstep 

 Hex/Wedge 

o Cooper 

 Tet/Hybrid 

o TGrid, HexCore 
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The type of mesh and meshing strategy for the geometry problem depends on 

considerations of available time, the required mesh quality, the mesh count and 

physics of the problem116, 117. 

2 . 2 . 0  M e t h o d s  a n d  s i m u l a t i o n s  

Gambit™ software was used to design various AACVD/CVD combination head 

2D/3D models with high resolution hybrid meshes (EquiAngle skew ≤ 0.9)116, 117.  

Fluent™ 2 ddp and 3 ddp software was used to model mass, momentum and 

energy conservation, forces of drag, solvent droplet trajectories (spherical model) 

and turbulent flow using the κ-ε realizable and the κ-ω SST turbulence model 

with/without the discrete thermophoretic model and evaporation model for analysis 

(substrate surface: 600 ºC, solvent droplet: MeOH or water)111, 112, 115, 118, 120, 121.  

The original prototype was assessed using 2D κ-ε realizable modelling simulation 

for various velocities (CVD 10 l/m, AACVD 10–0.1 l/min) and glass substrate 

temperatures (450-600 °C)111.  Five new AACVD/CVD vertical head designs were 

then assessed, with one AACVD inlet and two CVD inlets simulated in Fluent™ for 

flow characteristics, with various AACVD (4.32-17.39 m/s) and CVD (8.32-17.39 

m/s) velocities, two heads were then assessed for particle trajectory from the 

AACVD inlet with/without discrete thermophoretic models and evaporation 

(interaction with continuous phase on various velocities) model, with the previously 

solved flow and turbulence models turned off (assumption: small changes in 

droplet size had no significant effect on the solved flow and turbulent solution)111, 

112, 115, 118, 120, 121.  All velocity and turbulent results were taken from either the 

symmetry or interior plane of the model.   

2 . 2 . 1  O r i g i n a l  A A C V D / C V D  p r o t o t y p e  

The original prototype consisted of three separate AACVD and two CVD synthesis 

chambers and the initial proposal was the optical layering of TCO material and 

other nanoparticle layers as stacks to form ‘optical filters’, see fig. 23.   
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Table 6: Conditions for 2D modelling of original prototype: Droplet size, mm, is varied with substrate 

temperature (°C) the flow rate for the two CVD inlets (l min-1) which are set at the same value and 

the flow rate for the AACVD inlet (l min-1). 

Droplet Size/mm Substrate 

Temperature/ °C 

CVD flow rate/ l min-1 AACVD flow rate/ l min-1 

2.0 600 10 0.6 

1.0 600 10 0.6 

0.1 450 10 0.3 

0.6 

600 10 0.6 

0.09 600 10 0.6 

0.08 600 10 0.6 

0.07 600 10 0.6 

0.06 600 10 0.6 

0.05 600 10 0.6 

0.04 600 10 10.0, 5.0, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1, 

1.0, 0.9, 0.8, 0.7, 0.3, 0.2, 0.15, 0.1  

0.03 600 10 0.6 

0.02 600 10 0.6 

0.01 450 10 0.3 

0.6 

600 10 0.3 

0.6 

0.005 600 10 0.6 

0.001 450 10 0.3 

0.6 

600 10 0.3 

0.6 
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2.2 .1 .2  D iscuss ion  on  the  o r ig ina l  combina t ion  AACVD/CVD 

pro to type  des ign   

The 2D modelling of the original prototype AACVD/CVD prototype head using the 

κ-ε realizable turbulence model indicates that the critical droplet size required to 

reach the surface of the substrate at either 450 or 600 °C was 0.04 mm, an order 

of ten above the actual nebulised size achievable with the current experimental 

equipment (0.005 mm) available at the start of the project. 

2 . 3 . 0  F i v e  c o m b i n a t i o n  A A C V D / C V D  h e a d  d e s i g n s  

Common dimensions for the 5 combination AACVD/CVD model designs;  

 Head designs 1 and 2: main head component, height: 70 mm, width: 120 

mm, depth: 20 mm, pipe components, height: 70 mm, diameter: 3.5 mm. 

surrounding outlet box to substrate surface: height: 10 mm, depth >99 mm, 

width >99 mm. 

 Head design 3: main head component, height: 70 mm, width: 90 mm, depth 

at top: 10 mm, depth at the bottom: 120 mm, pipe components, height: 60 

mm, diameter: 3.5 mm, surrounding outlet box to substrate surface: height: 

10 mm, depth >99 mm, width >99 mm. 

 Head design 4 and 5: main head component, height: 70 mm, width: 90 mm, 

depth top of head: 10 mm, depth bottom of head: 40 mm pipe components, 

height: 70 mm, diameter: 3.5 mm, surrounding outlet box to substrate 

surface: height: 10 mm, depth >99 mm, width >99 mm. 

Fluid flow type for pipe inlets on all 5 head AACVD/CVD designs: central pipe: 

AACVD fluid flow, side pipes: CVD fluid flow, see table 7.   

Table 7: Model head designs  

Head 1 Head 2 Head 3 Head 4 Head 5 

Inlets parallel to 

box head 

chamber 

CVD inlets at 90 

º angle to box 

head chamber 

Inlets parallel to a 

40 º graduated 

head 

CVD inlets at 90 

º angle to a 15 º 

graduated head 

Inlets parallel to a 

15 º graduated 

head 
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 A hex-dominant mesh usually requires decomposition, and is used primarily 

for prismatic geometries. 

 A tet-dominant mesh is appropriate for complex geometries. Usually, size 

functions and boundary layers are used to grade the mesh. 

 A HexCore mesh is used to lower the cell count and improve overall mesh 

quality, for flow volumes with complexity near the walls and a large core 

region. 

2 . 3 . 1  M e t h o d s  a n d  s i m u l a t i o n s  f o r  t h e  5  A A C V D / C V D  h e a d  

d e s i g n s  

CFD Parameters: The Fluent™ 3ddp κ-ε realizable model was used with full 

multigrid (fmg) initialization for 3D modelling.  Reynold’s number was used as a 

guide to the point of turbulence at 3000, (14.42 m/s = 8.32 l/min).  The default 

settings were used, (fluid: air, nearest model to reality, wall materials: aluminium), 

no heat transference models were used for the simulations on fluid flow only; heat 

transference models were used for the evaporation simulation.  First order 

equations were used for better convergence versus second order equation 

accuracy, as the resolution of each mesh was very high and therefore second 

order equations would not bring a significant improvement to accuracy over the 

computational effort required to achieve a minor improvement.  The following fluid 

flow, m/s, regimes were considered, see table 8 and 9.   

Table 8: The main velocity, m/s, scenario’s for the AACVD and CVD inlet fluid flows (air) chosen for 

testing on the 5 head designs, given case numbers 1 to 5. 

Case Number AACVD Flow Rate/ m/s  CVD Flow Rate/ m/s 

1 8.32 14.42 

2 10.00 17.39 

3 17.39 17.39 

4 4.32 8.32 

5* 14.42 8.00 

Key: *Case 5 calculated for head design 4 only. 
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Table 9: Other velocity, m/s, scenarios for the AACVD and CVD inlet flows tested on a number of 

the head designs. 

Head Design  AACVD Flow Rate/ m/s  CVD Flow Rate/ m/s 

1 8.32 8.32 

1, 2 8.32 17.39 

1 4.32 4.32 

1 4.32 8.32 

2, 3 8.32 17.39 

1, 2 8.32 10.00 

3 4.32 10.00 

2.3 .1 .1  F ive  comb ina t ion  AACVD/CVD head  des igns  resu l t s  

The fluid flow (air) model for the five reaction head designs was assessed using 

the κ-ε realizable model and particle trajectory and evaporation model was 

assessed for head design 4 only; using the κ-ε realizable and κ-ω SST model with 

spherical solvent droplets (MeOH and water) at various droplet sizes (0.1-0.0001 

mm), see figs. 27-31 and figs. 142-153 in appendix 3.  The first four fluid flow (air 

models) cases were calculated for all five head designs and the fluid flow (air 

models) case 5 was calculated for head design 4 only, see table 8. 

2.3.1.1.1 React ion head design 1 

The velocity, turbulent intensity, turbulent kinetic energy and dissipation rate results 

for fluid flow cases 1, 2, 3 and 4 for head design 1, see table 8, are displayed from 

the 3D view of the interior plane (plane symmetry of the model) and indicate that 

the AACVD fluid flow of droplets, from the central inlet, is insufficient and that no 

substantial mix occurs between the three fluid flows and a drop off in the velocity 

and turbulent rate for the central AACVD fluid flow occurs; the fig. 27 a-e) and 138 

a-d), 139 a-f), 140 a-g), appendix 3 .  In particular for fluid flow case 4 there is also 

an expected significant drop off in both velocity and turbulent energy/viscosity for 

the central AACVD fluid flow with the contours of turbulent viscosity plot of the 

AACVD fluid flow ‘sat’ in the middle of the head space, see fig. 140 g), appendix 3.  

The velocity and turbulent kinetic energy plots also indicate no significant mixing of 

the three fluid flows and a slight drop off in the velocity turbulent kinetic energy for 
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2.3 .1 .2  D iscuss ion  on  f l u id  f low  (a i r  mode l )  resu l t s  fo r  the  5  

AACVD/CVD head  des igns  

Head designs 1, 2, 3, and 5 appear to have no significant mixing of the three fluid 

flows (air models), CVD and AACVD, and the most probable outcome of synthesis 

would be no inclusion or non-uniform inclusion of nanoparticles into the metal oxide 

host matrix thin film and formation of non-uniform thin film on the substrate surface.  

Head design 4 appears to indicate significant mixing of the three fluid flows and the 

most likely design to produce a uniform thin film with uniform inclusion of 

nanoparticles within the host metal oxide thin film on the substrate surface.  

According to the air modelling the inlet velocity rates most likely to produce even 

mixing of the AACVD fluid flow and the CVD fluid flows was case 5 which had a 

faster inlet velocity rate for the AACVD fluid flow (14.42 m/s) than the CVD fluid 

flow (8.00 m/s).  Reaction head design 4 appeared to have the best fluid flow (air 

model) profile for producing a uniform film with the prospect of nanoparticle 

inclusion and was therefore used to in the calculate particle trajectory and 

evaporation modelling work below. 

2 . 4 . 0  P a r t i c l e  t r a j e c t o r y  a n d  e v a p o r a t i o n  m o d e l  r e s u l t s  

h e a d  4 ,  c a s e  3  

Head 4, Case 3: Heat model used: energy equations turned on, glass substrate set 

to 600 ºC, Discrete phase modelling turned on for particle trajectory modelling of 

solvent droplets (MeOH or water) and substrate surface boundary set to trap if hit 

by droplet (assumption that no droplet escapes once trapped).  

Model parameters for discrete phase, particle AACVD inlet velocity (17.39 m/s), 

point properties include various droplet sizes (0.1-0.0001 mm), flow rate: 0.0001 

kg/s (0.1 g/s), turbulent dispersion set at default, drag laws set to spherical, 

additional discrete model used was thermophoresis and the energy equation was 

used for the evaporation model with the glass substrate temperature set to 600 ºC.  

The surface injection of aerosol droplets at the top of the AACVD inlet gave 16 

droplets per calculation, a statistical result, therefore each calculation with droplet 

sizes with variation in the numbers of trapped, escaped and/or evaporated droplets 
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were repeated 7 times to give 112 droplets and the results were averaged.  

Calculations of droplet sizes with no variation in the results such as 0.1/0.0001 mm 

e.g. where all droplets were either trapped, escaped or evaporated, were not 

necessarily repeated 7 times.  The evaporation model was used with interaction 

with continuous phase turned on, the flow and turbulence models turned off (flow 

and turbulence model were previously solved in earlier calculations and did not 

require repeating for evaporation calculation), main assumption for turning off flow 

and turbulence, at this point, is that the droplet size will not affect the solved flow 

and turbulence model to any significant degree.   

Table 10: Main droplet trajectory sizes/ mm and models, basic turbulence with/without 

thermophoresis and evaporation: chosen for evaluation for head design 4, case 3. 

 κ-ε Realizable Model 

Droplet 

Size/ mm 

Without 

Thermophoretic  

With 

Thermophoretic  

Evaporation 

Model: Without 

Thermophoretic 

Evaporation 

Model: With 

Thermophoretic 

0.0001 √ √ √ √ 

0.001 √ √ √ √ 

0.005* √ √ √ √ 

0.01 √ √ √ √ 

0.02 √ √ √ √ 

0.03 √ √ √ √ 

0.031 √ - - - 

0.032 √ - - - 

0.033 √ - - - 

0.034 √ - - - 

0.035 √ - - - 

0.036 √ - - - 

0.037 √ - - - 

0.038 √ - - - 

0.039 √ - - - 

0.04 √ √ √ √ 

0.1 √ √ √ √ 

Key: - No modelling performed at that droplet size, * average size of nebulised droplet 
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Combined graphs of droplet size versus percentage of droplets trapped, escaped 

and/or evaporated.  

Figure 32: Head 4/Case 3: κ-ε realizable model of droplet size versus percentage of droplets 

(MeOH, 600 °C): trapped, escaped or evaporated: a) κ-ε realizable model with or without 

thermophoresis, b) κ-ε realizable model only, droplet size 0.03-0.04 mm) and c) κ-ε realizable model 

and evaporation model with/without thermophoresis.  

a)       
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b) 

 

c) 
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Figure 33: Head 4/Case 3: κ-ε realizable model of droplet size versus percentage of droplets 

(MeOH, 400 °C): trapped, escaped or evaporated: a) κ-ε realizable model with or without 

thermophoresis and b) κ-ε realizable model and evaporation model with/without thermophoresis.  

a)       

  

b) 

 

-5

5

15

25

35

45

55

65

75

85

95

105

0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095
Droplet size/ mm

P
er

c
en

ta
g

e 
o

f 
d

ro
p

le
ts

/ %

Trapped

Escaped

Trapped with therm

Escaped with therm

-5

5

15

25

35

45

55

65

75

85

95

105

0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095
Droplet size/ mm

P
er

ce
n

ta
g

e 
o

f 
d

ro
p

le
ts

/ %

Trapped

Escaped

Evaporated

Trapped with therm

Escaped with therm

Evaporated with therm



Chapter 2 

Page 94  

 

Figure 34: Head 4/Case 3: κ-ε realizable model of droplet size versus percentage of droplets 

(Water, 600 °C): trapped, escaped or evaporated: a) κ-ε realizable model with or without 

thermophoresis and b) κ-ε realizable model and evaporation model with/without thermophoresis.  
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Figure 35: Head 4/Case 3: κ-ε realizable model of droplet size versus percentage of droplets 

(Water, 400 C): trapped, escaped or evaporated: a) κ-ε realizable model with or without 

thermophoresis and b) κ-ε realizable model and evaporation model with/without thermophoresis.  

a)       

 

b) 
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Figure 36: κ-ε realizable model comparison of MeOH and water droplets for the four simulation 

models, (600 °C).  

a) κ-ε realizable model     

 

b) κ-ε realizable and thermophoretic models 
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c) κ-ε realizable and evaporation models  

 

d) κ-ε realizable, evaporation and thermophoretic models 
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Figure 37: κ-ε realizable model comparison of MeOH and water droplets for the four simulation 

models used (400 °C).  

a)* κ-ε realizable model: * straight lines on a) probably due to one missing data point   

 

b) κ-ε realizable and thermophoretic models 
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c) κ-ε realizable and evaporation models  

 

d) -ε realizable, evaporation and thermophoretic models. 
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Figure 38: κ-ω SST model, head 4, case 3, (MeOH, 600 °C), turbulence model with/without 

thermophoretic effect. 

 

Figure 39: Comparison of κ-ε realizable and κ-ω SST model, (MeOH, 600 °C): a) basic turbulence 

model    

 

-5
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Droplet Size/ mm

P
er

ce
n

ta
g

e 
o

f 
d

ro
p

le
ts

/ %

k-w, Trapped droplets

k-w, Escaped droplets

k-w + therm, Trapped droplets

k-w + therm, Escaped droplets

-5
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Droplet size/ mm

P
er

ce
n

ta
g

e 
o

f 
d

ro
p

le
ts

/ %

k-w, trapped droplets

k-w, escaped droplets

k-e, trapped droplets

k-e, escaped droplets



Chapter 2 

Page 101  

 

b) turbulence and thermophoretic simulations 

 

The agreement between the results for the κ-ε realizable and κ-ω SST turbulence 

modelling is remarkably close, droplet size required to reach substrate, 0.04 mm, 

this gives confidence that the results are repeatable and comparable across these 

two 2-equation models for basic turbulence and thermophoretic effects. 
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Figure 40: κ-ω SST model, head 4, case 3, MeOH, 600 °C, evaporation model with/without 

thermophoretic effect. 

 

MeOH solvent droplet size required to reach the glass substrate surface 0.04 mm 

for evaporation with/without thermophoretic effects.  Thermophoretic effects are 

more significant between 0.01 to 0.04 mm. 
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Figure 41: Comparison of κ-ε realizable and κ-ω SST model, (MeOH, 600 °C): a) evaporation and 

b) evaporation and thermophoretic simulations. 

a)        

 

b) 
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The lack of agreement between the two 2-equation models, κ-ε realizable and κ-ω 

SST for the evaporation effects with or without thermophoresis, may be due to the 

specialized nature of the κ-ω SST model near wall boundaries and the κ-ω SST 

may suit simulations with more complex flows near to the walls e.g. those with 

objects adjacent to the walls or complicated shaped sides than the simpler straight 

forward design simulated here.   The κ-ε realizable evaporation results for this 

system appear to be more believable.  

2 . 4 . 1  D i s c u s s i o n  o n  p a r t i c l e  t r a j e c t o r y  r e s u l t s  

2.4 .1 .1  Case  3 ,  head  4 ,  MeOH a t  600  °C 

The basic turbulence and evaporation simulation results, using the κ-ε realizable 

model for case 3 (all inlets: 17.39 m/s) have indicated a significant difference in the 

size of droplet required to reach the glass substrate surface (0.04 mm to 0.1 mm).  

The addition of the thermophoretic effects did not appear to affect the overall size 

of droplet required to reach the substrate surface but had more effect on droplets 

below the required size.  According to the simulations the main effects on the 

droplets are aerodynamic drag and evaporation.  The point, within the reactor 

head, where the solvent sheath is lost, through evaporation or swept away by 

aerodynamic drag, may well influence whether the nanoparticles reach the 

substrate surface for successful aerosol assisted CVD deposition within other host 

metal oxides being formed through conventional CVD methods.   

2.4 .1 .2  Case  3 ,  head  4 ,  MeOH a t  400  °C 

The basic turbulence and evaporation simulation results, using the κ-ε realizable 

model for case 3 (all inlets: 17.39 m/s) have indicated a small difference in the size 

of solvent droplet required to reach the substrate surface (~0.05 mm for both 

simulations). Indicating that at lower temperatures evaporation is not as influential 

as aerodynamic drag.  The addition of the thermophoretic effects did not appear to 

affect the overall size of droplet required to reach the substrate surface but had 

more effect on droplets below the required size.  The main force of influence would 

therefore be aerodynamic drag for this simulation. 
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2.4 .1 .3  Case  3 ,  head 4 ,  wate r  a t  600  °C  

The basic turbulence and evaporation simulation results, using the κ-ε realizable 

model for case 3 (all inlets: 17.39 m/s) have indicated a small difference in the size 

of solvent droplet required to reach the substrate surface (0.015 mm for basic 

turbulence and 0.01 mm with evaporation). The change in solvent, from MeOH to 

water at this temperature lowers the influence of evaporation and therefore 

aerodynamic drag was the main force of influence for this simulation.  The addition 

of the thermophoretic effects did not appear to affect the overall size of droplet 

required to reach the substrate surface but had more effect on droplets below the 

required size.   

2.4 .1 .4  Case  3 ,  head 4 ,  wate r  a t  400  °C  

The basic turbulence and evaporation simulation results, using the κ-ε realizable 

model for case 3 (all inlets: 17.39 m/s) have indicated a small difference in the size 

of solvent droplet required to reach the substrate surface (0.036 mm for basic 

turbulence and 0.035 mm with evaporation). The change in solvent, from MeOH to 

water at this temperature lowers the influence of evaporation and therefore 

aerodynamic drag was the main force of influence for this simulation.  The addition 

of the thermophoretic effects did not appear to affect the overall size of droplet 

required to reach the substrate surface but had more effect on droplets below the 

required size.   

2.4 .1 .5  Compar ison  o f  wate r  and  methano l  a t  600  °C 

The two equation κ-ε realizable turbulence model has shown that the solvent used 

has a significant effect on the size of droplet required to reach the substrate 

surface at 600 °C, see table 11.    



Chapter 2 

Page 106  

 

Table 11: Comparison of κ-ε realizable model solvent (water, MeOH) droplet trajectory results: 

For the four types of simulations, basic turbulence with/without thermophoresis and evaporation 

model with/without thermophoresis at 600 °C. 

 MeOH Water 

Basic turbulence model 0.043 mm 0.015 mm 

Basic and thermophoresis model 0.046 mm 0.016 mm 

Basic turbulence and evaporation model 0.100 mm 0.010 mm 

Basic turbulence, evaporation and 

thermophoresis model 

0.100 mm 0.010 mm 

The difference between water and MeOH for both the basic model with/without 

thermophoretic effects and the evaporation model with/without thermophoretic 

effects is an order of 10 magnitude greater.  

2.4 .1 .6  Compar ison  o f  wa te r  and  methano l  a t  400  °C 

The two equation κ-ε realizable turbulence model has shown that the solvent 

used has a less significant effect on the size of droplet required to reach the 

substrate surface at 400 °C and the main force of influence at this temperature 

is aerodynamic drag, see table 12.    

Table 12: Comparison of κ-ε realizable model water and MeOH droplet trajectory results: 

For the four types of simulations, basic turbulence with/without thermophoresis and evaporation 

model with/without thermophoresis at 400 °C. 

 MeOH Water 

Basic turbulence model 0.049 mm 0.046 mm 

Basic and thermophoresis model 0.050 mm 0.050 mm 

Basic turbulence and evaporation model 0.050 mm 0.040 mm 

Basic turbulence, evaporation and 

thermophoresis model 

0.050 mm 0.036 mm 

2 .4 .1 .7  κ -ω  SST mode l ,  MeOH a t  600  °C 

The MeOH solvent droplet size required to reach the glass substrate surface for 

both the basic turbulence model and the evaporation model with or without 

thermophoretic effects is very similar (~0.032-0.04 mm), see figs. 42 and 43.  

The thermophoretic effect appears to be less significant for the required size to 

reach the substrate surface. 
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flows between the AACVD and CVD confirmed that too little inlet velocity 

tended to leave the stream of fluid flow sat in the middle of the reactor head with 

a tendency to swirl into an upward direction; where in all probability the 

precursor materials would be deposited near the top, on the inside of the 

reactor walls.  When the AACVD and CVD inlet flows are relatively fast and 

equal (17.39 m/s, 10 l/min) the fluid flow became unstable and there was a 

possibility of the fluid flow switching from side to side.  The most favourable inlet 

velocities for the combined 90 ° vertical reactor head design was when the CVD 

inlet velocity ( 8.00 m/s) was lower than the AACVD inlet velocity (14.42 m/s). 

2 .6 .2  Drop le t  t ra jec to ry  and  evapora t ion  mode l  fo r  head  

des ign  4 ,  case  3  

The numerical 2-equation modelling with the κ-ε realizable model with or without 

the discrete thermophoretic model with both water and MeOH AACVD solvent 

droplets indicated that aerodynamic drag was the main force at 400 °C, the 

thermophoretic effect affects solvent droplet size below the required size to 

reach the heated substrate surface.   At 600 °C the main forces of influence are 

aerodynamic drag and evaporation, the more volatile the solvent the more 

evaporation influences the size of droplet required to reach the heated substrate 

surface.  The thermophoretic effect affects droplets that are smaller than the 

required size to hit the surface and is not the main force of influence.  The 

droplet size/diameter is one of the most important factors for reaching the 

substrate surface and the main forces affecting droplet size are aerodynamic 

drag122, turbulence122 and at higher synthesis temperatures evaporation, hence 

the choice of AACVD solvent carrier is also critical.  The work here for this 

system using all four evaporation model parameters, turbulence, aerodynamic 

drag, thermophoresis and evaporation, indicates that a droplet size of 0.1 mm is 

required for the AACVD solvent MeOH and 0.01 mm for water, at 600 °C; the 

difference between the solvents being one order of magnitude. 

Comparison of the evaporation simulations using the κ-ε realizable model and 

the κ-ω SST model for MeOH at 600 °C does indicate similar trends but smaller 

droplet sizes reach the heated substrate using the κ-ω SST model, this may be 

due to the small sample size used or that the κ-ω SST model is a blended 

model that more accurately models nearer complicated boundary walls and 
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inlets than the chosen model of head 4121.  Recent work by Aly et al. found that 

the κ-ε realizable model obtained the best agreement with experimental results 

for modelling droplet break up, aerodynamic drag forces on droplets, droplet 

size/diameter and fluid flow which was also found to be critical to droplet 

dispersion and angle122.   According to recent droplet evaporation work by 

Katoshevski et al. a decrease in droplet size causes the phenomenon known as 

droplet grouping this could also be affecting the AACVD particle trajectory 

paths, as droplets of decreasing diameter group together and follow the inlet 

velocity path; the AACVD droplets may mix less well within the reactor head, 

although this effect may well be small when compared to the effect of 

evaporation at higher synthesis temperatures but droplet grouping is beyond the 

scope of the work presented here123.  The mass and molar fractions of MeOH 

and O2 demonstrate how the mass and concentration of these are more 

prevalent in the areas of fluid flow where mixing of the AACVD and two CVD 

flows has occurred in head design 4. 

2 . 7 . 0  C o n c l u s i o n  f o r  c h a p t e r  2  

2 . 7 . 1  C o m b i n e d  A A C V D / C V D  h e a d  f o r  e x p e r i m e n t a l  

p h a s e  

Based on the modelling results above, head design 4 appeared to be the design 

that had a significant uniform mix of all three fluid flows and therefore had the 

most probable chance of forming a uniform CVD host metal oxide matrix thin 

film with uniform inclusion of AACVD nanoparticles.   Although the average 

experimental AACVD nebulised droplet size is an order of ten below the 

required modelled droplet size (MeOH) to reach the heated substrate surface, 

useful experimental results have been obtained.  There are a large number of 

CFD studies of atmospheric pressure CVD (APCVD) of various materials but 

there have been very few published studies that address how the fundamental 

flow structures, particle trajectory, evaporation and thermophoteric effects are 

observed in atmospheric pressure, APCVD reactors (mainly horizontal reactors) 

and there are no comparable literature results for the combined 90° vertical 

AACVD/APCVD reactor designs described here. 
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2 . 7 . 2  E x p e r i m e n t a l  p h a s e  f o r  A A C V D  a n d  A A C V D / C V D  

c o m b i n e d  s y n t h e s i s  

The following chapters, 3, 4 and 5 detail the results of AACVD synthesis of host 

metal oxides with noble metal nanoparticles, see chapter 3, and the combined 

AACVD/CVD results obtained for prototype 1, see chapter 4 and prototype 2 

(head design 4), see chapter 5. 
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Chapter 3 

AACVD Synthesis of undoped and metal doped ZnO Thin Films 
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C h a p t e r  3 :  A A C V D  S y n t h e s i s  o f  u n d o p e d  

a n d  m e t a l  d o p e d  Z n O  T h i n  F i l m s  

3 . 0 . 0  I n t r o d u c t i o n  

The host matrix and nanoparticle incorporation of dopants within a thin film 

gives coatings with specific physical and optical properties that are desired by 

the glass and semiconductor industries.  There are a number of different types 

of intelligent coatings that are being investigated, these coatings can respond to 

external stimuli such as light intensity or temperature and include 

electrochromic, photochromic and thermochromic thin films124-132.   Zinc oxide 

host matrix thin films on glass are one area of particular interest in thin film 

research, due to their transparent conductive oxide (TCO) properties.  The films 

have exceptionally high transparency yet high electrical conductivity.   

For photovoltaic technologies a transparent conducting oxide requires the 

bandgap > 3 eV for transmission in the short wavelength (UV, 400 nm) region 

i.e. to correspond to the fundamental bandgap of the material and for the free 

carrier plasma resonance absorption to lie in the near-infrared region i.e. the 

long wavelength (IR, 1500 nm) edge to correspond to the free carrier plasma 

resonance frequency133, 134.  TCO’s with a fundamental bandgap > 3 eV are 

insulators at 25 °C in the undoped state.   Degenerately doped TCO’s increase 

the free carrier density sufficiently enough to move the Fermi level into the 

conduction band giving a conducting TCO as the product.  Native point defects 

e.g. oxygen vacancies, or impurities with an ionization energy close to the 

conduction band can provide the source of electrons required for degenerate 

doping.  This requirement limits the number of suitable TCO materials.  Native 

stoichiometric point defects i.e. oxygen vacancies readily exist in metal oxides 

with d10 cations e.g. Indium oxide, zinc oxide, tin oxide and cadmium oxide and 

are easily ionized to produce electrons for donation to the conduction band132.  

There are two main types of doping for TCO’s cationic, on substitutional sites 

within the lattice or anionic e.g. replacing oxygen vacancies with fluorine.  

TCO’s with the n-type host matrix and p-type dopants are the most common.   

The optimization of a doped TCO film is crucial and depends on a number of 

factors, increasing carrier density decreases resistivity but has the detrimental 
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effect of shifting the IR absorption edge towards the visible region, therefore 

narrowing the transmission window, too high a level of ionized impurities or 

impurity atoms can also lead to a decrease in the carrier mobility which can 

have a detrimental effect on the resistivity of the material134.  Another key 

feature of TCO materials is the ability to control the growth orientation relative to 

a surface.  This is particularly marked for materials such as F- doped SnO2 

which has three fold better solar control properties when grown with the 

preferred orientation. 

ZnO is known to have a wurtzite structure (a = 3.25 Ǻ, c = 5.206 Ǻ) with a 

number of alternating planes composed of fourfold coordinated O2- and Zn2+ 

ions stacked alternatively along the c-axis, thus it can be seen as two 

interpenetrating hexagonal closed-packed lattices of Zn and O.  The vacancies 

in the oxygen sites and additional zinc atoms filling the interstitial sites in the 

wurtzite structure influence the electrical properties of ZnO.  Common 

properties of TCO’S like ZnO are high optical transmittance over a wide 

spectrum including the visible region and low resistivity.  Zinc oxide (ZnO) is a 

transparent n-type semiconductor with the necessary wide bandgap (3.3 eV) for 

transmission in the UV-Visible region, free carrier plasmon resonance 

absorption in the near-infrared, a large breakdown strength and a large 

saturation velocity.  Undoped ZnO thin films are usually relatively conductive 

due to variations in composition and the resistivity values can have a large 

range (10-5 Ω cm to 104 Ω cm)135-137.  Doping of ZnO films with n-type dopants 

Al, Ga, In and Ge have been reported to improve the electrical properties138.  Al 

doped ZnO films have been reported with low resistivity values which are 

comparable with indium tin oxide (ITO) films.  Doping of ZnO films with noble 

metal nanoparticles, Au, Ag and metal dopant Cu and Al were investigated for 

possible surface plasmon resonance enhancement of non-linear optical 

properties.   

This chapter describes an investigation into the use of the aerosol assisted 

chemical vapour deposition (AACVD) technique to synthesize new ZnO thin film 

coatings that exhibit high transparency in the visible region of the 

electromagnetic spectrum and high electrical conductivity.  In particular to see 

how AACVD and dopants can affect preferred orientation.  The synthesis and 

formation of ZnO, noble metal doped ZnO and aluminium oxide doped ZnO thin 
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films are reported.  It will be shown that the dopant can direct the preferred 

orientation seen for ZnO films. The ability to be able control preferred growth is 

very important for functional applications. For example surface acoustic wave 

devices prefer c-axis orientated films and application of ZnO TCO materials 

within photovoltaic and LED devices are enhanced at specific orientation 

directions138. 

3 . 1 . 0  E x p e r i m e n t a l  M e t h o d s  

3 . 1  G e n e r a l  e x p e r i m e n t a l  

3 . 1 . 1 .  S t a n d a r d  r e a g e n t s  a n d  c o n d i t i o n s  

The host matrix precursor used for the investigation into the properties of ZnO 

thin films with and without the addition of the p-type dopant, Al and noble metal 

nanoparticles was [Zn(acac)2] ~0.02 mol dm-3.  The most probable route for 

decomposition of the [Zn(acac)2] precursor would be oxidative thermolysis 

within the reaction chamber.  The metal precursors selected for incorporation 

into ZnO host matrix thin films included auric acid (HAuCl4, 5.1 x 10-3 mol dm-3) 

as a precursor to gold, silver nitrate (AgNO3, 9.9 x 10-3 mol dm-3) as a silver 

former and Copper (II) acetylacetonate, (Cu(acac)2, Cu(C5H7O2)2, 7.6 x 10-3 mol 

dm-3).  The aluminium dopant precursor selected was Al(NO3)3, 2.14 x 10-3 mol 

dm-3.   

3 . 1 . 2 .  A n a l y t i c a l  a n a l y s i s  

Scanning electron microscopy (SEM) analysis was carried out on a field 

emission JEOL 6301F instrument for both morphology and elemental analysis 

using the Energy Dispersive X-ray (EDX) analysis with uncoated and 

carbon/gold coated samples.  SEM images used accelerating voltages from 5–

20 kV.  EDX analysis (typical voltage 20 kV with Cobalt as the standard element 

atomic ratio) was quantified using Oxford Link ISIS system.  X-ray diffraction 

(XRD) analysis was carried out using a Bruker D8 discover reflection 

diffractometer with Cu Kα radiation (λ = 1.5406 Å) in reflection mode with 

glancing angle incidence beam of 1.5° or 5°.  UV/Visible spectroscopy was 

carried out using a Helios Alpha Double Beam UV Spectrometer that allowed 
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direct comparison between the thin film and the glass substrate.  Spectra were 

collected in the range between 300-1000 nm.  Visible/IR transmittance and 

reflectance spectroscopy was carried out using A Zeiss miniature monolithic 

spectrometer (range 380–1150 nm) connected to a PC.  Sheet 

resistivity/conductivity measurements were carried out using a 2-point-probe 

method for resistance (Ω). 

3 . 1 . 3 .  T h i n  f i l m  g r o w t h  

All synthesis was carried out using an aerosol assisted chemical vapour 

deposition technique with an ultrasonic nebuliser (Pifco xj 40 KHz).  The general 

synthesis procedure involved dissolving precursors in methanol (50 ml) that 

were then nebulised to form an aerosol mist within either a glass or plastic 

bottle.  The aerosol mist was transported by an inert gas (N2) to a cold wall 

reaction chamber, where two clean parallel plates, 8 mm apart, of silica (50 nm) 

coated Float glass (dimensions 145 x 45 x 3 mm), previously cleaned with 

appropriate solvents (water, methanol or acetone) and dried in air, were heated 

(250-450 ºC), using a graphite block controlled by a thermostat (Tempatron 

TC4800), monitored by a Pt-Rh thermocouple.  The aerosol droplets were then 

swept by a carrier gas into the reaction chamber where they were evaporated 

and a film deposited on the glass substrate.  The reaction chamber was vented 

into the extraction system of a fume cupboard.  The inert gas flow was allowed 

to continue for 10 min after either all the precursors had been used or 2 h had 

passed.  The substrates and films were allowed to cool to room temperature in-

situ and were stored in air.  

3 . 2 . 0  R e s u l t s   

3 . 2 . 1  S y n t h e s i s  a n d  c h a r a c t e r i z a t i o n  

The ZnO films with and without additional phases were well adhered to the 

substrate, passed the Scotch tape test and could not be easily scratched with 

anything other than a hard surface (brass and steel). 
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3 . 2 . 2  V i s i b l e  a p p e a r a n c e  a n d  o p t i c a l  c h a r a c t e r i z a t i o n  

Zinc oxide n-type semiconducting films were synthesized as either undoped thin 

films at substrate temperatures of 400-600 °C or doped host matrix thin films 

with either Al2O3 or noble metal dopants Au, Ag, Cu at 400 °C from the AACVD  

of zinc acetylacetonate solutions.  The macroscopic appearance by eye of all 

the films was transparent at thickness <1μm, with the films becoming white and 

opaque at a thickness above 4 μm; some of the films, especially the thinner 

ones displayed optical interference patterns that were indicative of areas of non-

uniform thickness.  The one exception was the ZnO thin film formed in the 

presence of copper, which was opaque and highly coloured (royal to navy blue).  

There appears to be a broad absorbance peak (600 nm) for Cu(CuO/Cu2O) 

doped ZnO thin film sample deposited at 400 °C. 

Transmittance results for undoped 400 nm thick ZnO thin films grown at 400 °C 

in the visible region were around 85%, scaled with thickness and were 

reproducible over sequential samples.  The reflectance of these films rose to a 

maximum of ~20% in the infrared region (1500 nm) and similar results for 

transmittance were obtained for the ZnO film grown at 450 °C.  Transmittance 

results for the visible region are >70% for the 500 nm thick ZnO-Al2O3 

composite thin film grown at 400 °C.  Transmittance for ZnO films incorporating 

Au and Ag doped ZnO thin films, even at very low incorporation levels, were 

lowered in the visible region compared to the undoped films.  Reflectance 

results for both dopants lower reflectance in the IR region.  The ZnO: Cu doped 

ZnO film at a thickness of 2 μm was very opaque (>85% film area) with visible 

transmission below 20%. 

3 . 2 . 3  S E M  a n d  E D X  a n a l y s i s  

3 . 2 . 3 . 1  U n d o p e d  f i l m s  

The main purpose of the microscopy study was to see how temperature and 

addition of a secondary reagent to the AACVD precursor solution affected the 

morphology of the zinc oxide films deposited. 
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Table 19: EDX analysis for Cu doped ZnO thin film, 400 °C 

Element Weight% Atomic% 

O  20.64 45.83 

Cu  39.67 22.18 

Zn  24.13 13.11 

The SEM surface analysis demonstrates the effect that synthesis temperature 

has on morphology, shape and thickness.  Higher synthesis temperatures gave 

more defined nanoparticles.  There is also an increase of white opaque areas of 

film with increasing synthesis temperature which correlates to an increase in 

film thickness.  Film thickness also appears to increase towards the exhaust 

vent of the AACVD reaction chamber.  EDX analysis confirmed the presence of 

Zn and O for the undoped ZnO thin films (400/450-500 °C). The attempted 

doped Al (Al2O3) ZnO thin film produced several different morphologies, 

spherical (~100 nm) or oblong/rice shaped (~300 nm) and a cubic (~1 μm) area.  

EDX comparisons of the four different areas give a range (1.15 to 3.35 at. %) of 

Al present.  SEM morphology analysis of the noble metal into the ZnO host 

matrix film revealed interesting effects.  Au was minimally incorporated into the 

substrate plate ZnO thin film, according to EDX, but still had a significant effect 

on morphology producing intertwined and agglomerated oblong ZnO 

nanoparticles, almost acting like a surfactant template.  Ag was incorporated 

again at a low atomic % level, but definitely had an effect on the morphology of 

the ZnO nanoparticles which were spherical and well defined.  Incorporation of 

Cu or copper oxide nanoparticles produced less well defined spherical 

nanoparticles with some agglomeration.  

The variation in metal dopant incorporated in the films was somewhat 

surprising.  Based on the molar ratios used in the reaction it was expected that 

between 5 and 10 at.% would be found in the films.  The silver and gold were 

found to present at much lower levels.  This can be explained by the fact that 

under similar conditions both precursors can generate nanoparticles that are 

difficult to incorporate into films due to aerodynamic drag and/or thermophoretic 

effects.  The copper based precursor readily formed copper oxide in the 

process and this deposition seems to be kinetically faster than that of zinc 

oxide, whilst the corresponding aluminium oxide deposition is slightly slower 

than that for ZnO. 
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3 . 2 . 4  X - r a y  d i f f r a c t i o n  a n a l y s i s  

3 .2 .4 .1 .  A f fec t  o f  tempera tu re  

XRD analysis was carried out on the ZnO films formed at substrate 

temperatures of 400-600 °C.  ZnO thin films deposited at temperatures 400-500 

°C, showed a very distinct preferred crystal lattice orientation in the (002) 

direction.  This orientation has been reported as the most electrically conductive 

orientation for ZnO.  The preferred (002) crystal lattice orientation appears to be 

lost at films grown at above 500 °C and replaced with the expected random 

orientation pattern for hexagonal ZnO, see fig. 55 a).  The ZnO thin film 

preferred crystal lattice orientation at lower temperatures could be expected due 

to the natural predilection of the interpenetrating hexagonal close packed lattice 

and the wurtzite structure.  There are reports in the literature125 theorizing that 

small amounts of ZnO have a catalytic effect, in this case a directional catalytic 

effect, almost like a pro forma laying down a template for the nanoparticles to 

line up with during AACVD synthesis.  

3.2 .4 .2  A f fec t  o f  dopan t  

Two XRD patterns were analysed from the ZnO: Al2O3 film grown at 400 °C.  A 

comparison with the undoped ZnO XRD pattern grown at 400 °C with two XRD 

scans of an Al doped ZnO film grown at the same temperature clearly showed a 

marked change in preferred crystal lattice orientation, from the (002) direction in 

the ZnO film to the (101) direction in the composite, see fig. 55 b).  The XRD 

pattern for the repeat film of the ZnO: Al2O3 composite clearly displays a 

shoulder on the (101) peak corresponding to the (002) direction whereas the 

first sample has no such shoulder, a probable explanation is that there is a 

difference in the thickness of the film between the two areas scanned.  This has 

caused a slightly more complex crystal lattice orientation in the second film, 

although the (101) direction still predominates.  In neither film was the pattern 

for Al2O3 clearly observed, probably because it is present in such low amounts 

(ca 2-3 mol%).  Although the alumina was present in small amounts and from 

EDX was found to be inhomogeneously distributed, X-ray analysis did not pick 

up this variation because the spot size was too large; furthermore areas of 
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different alumina concentration could not be used to account for the variation of 

preferred orientation.    

Metal, Au, Ag and Cu precursors were introduced in the same solution as 

[Zn(acac)2] to attempt to produce noble metal doped ZnO films. The use of auric 

acid in the initial solution formed a ZnO film that had a complex preferred crystal 

orientation in the (002) and (101) direction, see fig. 55 c).  The introduction of 

silver nitrate to the initial solution formed a ZnO film with a preferred crystal 

orientation in the (002) direction, see fig. 55 c).  Cu, as copper oxide, 

nanoparticle incorporation into ZnO host matrix showed a preferred crystal 

orientation in the (002) direction for the top substrate plate and a random crystal 

orientation in the bottom substrate plate, see fig. 55 d).  The copper phase was 

present in sufficient amounts to allow identification as cubic Cu2O.  This was 

surprising as the copper is formally reduced in the deposition, with no readily 

identifiable reducing agent.    

Figure 55: XRD patterns: AACVD ZnO films of [Zn(acac)2] (MeOH, 400 °C and 500 °C): (a) 

XRD: ZnO AACVD films, (MeOH, 400 °C and 500 °C). (b) XRD: Undoped and Ag doped 

AACVD films (MeOH, 400 °C (red and green lines)), (c) XRD: ZnO undoped and doped Au and 

Ag AACVD film (MeOH, 400 °C); (d) XRD: ZnO undoped and Cu doped AACVD film (MeOH), 

(BP = bottom substrate plate, TP = top substrate plate).  
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3 . 3 . 0 .  D i s c u s s i o n  o f  A A C V D  Z n O  f i l m s  

The ideal ZnO thin film, doped or undoped, should display a strong 

transmittance (≥ 70%) in the visible region and either a strong reflectance (≥ 

70%) in the near IR region or high electrical conductivity.  Undoped ZnO thin 

films (400-450 °C) and the Al (Al2O3) doped ZnO film achieved the 

transmittance criterion (>70%) but failed to achieve the reflectance criterion 

(>40%).  Au and Ag doped ZnO thin films (nanoparticle <1% at. wt.%) appeared 

to have a slight detrimental effect on transmission in the visible region when 

compared to undoped ZnO films.  Reflectance results for Au and Ag dopants 

indicate that incorporation into a ZnO host matrix thin film is detrimental to the 

percentage reflectance.  ZnO thin films were deposited at a range of 

temperatures (400-500 °C), films grown below 500 °C showed a distinct 

preferred crystal lattice orientation in the (002) direction which has been 

reported as the most electrically conductive orientation for ZnO.  At 500 °C XRD 

analysis showed the random orientation pattern for hexagonal ZnO and the 

preferred crystal lattice orientation of lower temperatures disappeared. 

Comparison of these results with the literature has shown the preferred (002) 

crystal lattice orientation to be at higher temperatures for undoped ZnO thin 

films using a sol-gel method where the ZnO film was annealed (~500) on quartz 

and sapphire substrates139 and for flame CVD (>500 °C), on quartz 

substrates136, and for the atmospheric pressure CVD (500-600 °C) technique on 

Pyrex glass substrates140 which is the complete opposite of the results reported 

here for AACVD- where preferred orientation was only seen at lower substrate 

temperatures.  Furthermore the use of aluminium nitrate in the initial precursor 

solution forms a composite film in which the predominant phase is ZnO, but that 

this ZnO shows strong (101) growth.   

The lowest sheet resistivity value (52.4 kΩ) for a ZnO thin film was when Au 

nanoparticles had been attempted as inclusions to the host matrix.  The EDX 

stoichiometric analysis shows that small amounts of Au nanoparticles were 

incorporated into the film, the morphology had changed, indicating the effect 

shape and distance between ZnO nanoparticles had on the mean free path for 

conductance.  Therefore no ZnO films with or without dopants have the low 

resistivity required for good conductivity.  There are four main technical 

difficulties with AACVD synthesis, effects of aerodynamic drag and 
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thermophoresis, low particle incorporation into the thin film and deposition time.  

One of the main issues includes thermophoresis effect141, 142, drag, gravity and 

Brownian forces that occur in the reaction chamber due to the temperature 

gradient in both laminar and turbulent gaseous flow.  The result is that 

deposition also occurs on the elevated surfaces above the actual surface that 

requires coating.  There is also the technical difficulty of low particle 

incorporation due to the nebulized aerosol mist delivery system used for 

AACVD.  The affinity of the raw material precursors for the solvent vapour state 

and the rate of evaporation of the solvent affects the amount of host matrix, 

transition metal dopants and noble metal nanoparticles deposited onto the 

desired surface.  Precursors with a low affinity for the vapour state of the carrier 

solvent have difficulty forming the aerosol mist and tend to deposit precursor 

material on the inside of the nebuliser bottle and carrier tubes.   

3 . 4 . 0  S u m m a r y  o f  A A C V D  Z n O  f i l m s  

The majority of the undoped and doped ZnO host matrix thin films were highly 

transparent the transparency was lowered when higher temperatures (> 450 °C) 

were used or where film thickness increased (≥ 1 μm) with the exception of the 

Copper oxide doped ZnO film which was highly coloured and mainly opaque. 

Undoped and noble metal doped ZnO host matrix films had mainly spherical 

shaped morphology, which became more pronounced with dopants.  

Transmittance results for all undoped and doped ZnO thin films was sufficient to 

pass the criterion required for glass but inclusion of any dopants including Au, 

Ag and Al2O3 dopants appear to have a detrimental effect on the reflectance 

criterion.   The attempted Al (Al2O3) doped ZnO film had varying morphology 

from spherical to cubic.  The XRD pattern at lower temperatures (< 500 °C) 

showed a strong preferred (002) crystal lattice orientation for undoped and 

noble metal nanoparticle doped ZnO films not previously reported in the 

literature for these temperatures.  The undoped ZnO film at 500 ºC exhibited a 

random crystal orientation pattern for hexagonal ZnO.  The Al (Al2O3) doped 

ZnO thin film crystal lattice orientation had a (101) preferred direction in contrast 

to majority of the other ZnO films which displayed a strong preference for the 

(002) direction.  The sheet resistivity values were high for nearly all the ZnO thin 

films and therefore these films were not conductive.  Thermophoretic effects 
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have always been thought to be the main obstacle for incorporation of 

nanoparticles in high concentrations into the host matrices for ZnO thin films but 

aerodynamic drag, see chapter 2, is the more likely to be the main force 

responsible for the low particle incorporation into these host matrices.  
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Chapter 4 

 

AACVD/APCVD Synthesis of TiO2 Films: Prototype 1
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C h a p t e r  4 :   A A C V D / A P C V D  S y n t h e s i s  o f  

T i O 2  F i l m s :  P r o t o t y p e  1  

4 . 0 . 0  I n t r o d u c t i o n    

Titania films are of interest because of their potential and known uses as self-

cleaning, photocatalytic, solar control and gas sensing coatings.  There are two 

types of photocatalysis for titania films, involving photo-induced redox reactions 

(UV irradiation) and photo-induced hydrophilic inversion of TiO2.  The 

photocatalytic properties of titania are related to the crystal phase, grain size, 

morphology and band gap (3.1-3.3 eV), with smoother morphology possibly 

being the key to easier migration route for the photo electron hole pairs to reach 

the surface, for the OH. radical cascade process to reduce/oxidise organic 

species143.  Surface contact angle formed with water droplets also influences 

the self-cleaning property of titania films e.g. on archetypal glass with rougher 

surfaces being reported as more beneficial for superhydrophilic properties144.  

The most common phases of TiO2 are rutile, which exhibits a slightly lower 

band gap (~3.0 eV) and can be irradiated by shorter wavelengths of light than 

the anatase phase with a slightly larger band gap of ~3.2 eV.  The anatase 

phase has superior photocatalytic properties, due in part to the superior e- h+ 

mobility.  Anatase-rutile mixtures appear to enhance electron pair separation, 

with the rutile phase trapping conduction electrons and improving photocatalytic 

activity145.   

Doping has been used to improve titania’s properties in particular metal doping 

has been used to achieve a batho-chromic shift, a decrease in the band gap or 

introduction of intra-band gap states which result in more visible light 

absorption.  Traditional doping with typical n-type dopants e.g. nitrogen have 

been one of the most common methods for titania film property enhancement 

with nitrogen interstitial doping favouring photocatalytic activity over 

substitutional146, 147.  Typical n-type dopants have an excess of electrons e.g. 

Group 15 of the periodic table, P, N, and As that can be donated to the 

conduction band.  Noble metal dopants Au, Ag and Cu are of great interest due 

to the surface plasmon resonance effect, the oscillation of conduction electrons 

in resonance with the electromagnetic field in thin films producing waves 
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travelling at the metal-surface interface and the donation of electrons into the 

conduction band which have been shown to enhance optical, physical and 

chemical properties of titania films such as photocatalytic activity.    

The following chapter looks at the possible effects of the noble metal Au, Ag 

and Cu dopants on the physical and optical properties such as colour, 

morphology, transmittance/reflectance, surface contact angle and crystal lattice 

orientation on TiO2 host matrix films.  The titania films were synthesized using a 

combined AACVD/APCVD technique and analysed using a range of techniques 

such as UV-VIS spectroscopy, XRD, SEM, EDX, EDS, XPS and Raman to 

assess the possible influence “dopants” could have on physical, optical and 

chemical properties of these TiO2 films.  The titania films in chapter 4 are 

referred to as being doped even though the level of dopant, if present, may be 

below levels of detection for ease of understanding the thread of work and 

because the dopants were found to have such a profound effect on physical, 

optical and chemical properties such as morphology, water contact angle and 

colour.   

4 . 1 . 0  E x p e r i m e n t a l  M e t h o d s  

4 . 1  G e n e r a l  e x p e r i m e n t    

4 . 1 . 1  S t a n d a r d  r e a g e n t s  a n d  c o n d i t i o n s  

The host matrix precursor used for the formation of the TiO2 films with or 

without the addition of noble metal and/or p-type dopants were titanium 

tetraisopropoxide (TTIP, 10 l/min) for CVD synthesis.  The noble metal 

precursors selected for incorporation into the AACVD/APCVD synthesis were 

HAuCl4 (0.01 - 5.1 x 10-3 mol dm-3), AgNO3 (0.02-3.5 x 10-2 mol dm-3), 

Cu(acac)2 (7.6 x 10-3 mol dm-3) and pre-formed Au nanoparticles [citrate 

method, citrate (0.4 mol dm-3), HAuCl4 (0.01 mol dm-3), water 50 ml, see 

chapter 1].  
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4 . 1 . 2  A n a l y t i c a l  A n a l y s i s  

Scanning electron microscopy (SEM) analysis was carried out on a thermal field 

emission Philips XL30 instrument for both morphology and elemental analysis, 

using the Energy Dispersive Spectroscopy (EDS) analysis (EDAX Phoenix 

system), with uncoated/coated carbon/gold/platinum samples. SEM images 

used accelerating voltages from 10 to 30 kV and were captured at various 

magnifications (2-5 x 105 x).  The voltage was reduced to 10kV (working 

distance: 10 mm) for surface sensitive work with the back scattered electron 

(BSE) detector.  High resolution X-ray diffraction (HRXRD) analysis was carried 

out using a MRD diffractometer in reflection mode with Cu Kα radiation (λ =1.54 

Ǻ) with a glancing angle incidence beam of 1.5.  Visible/IR transmittance and 

reflectance spectroscopy was carried out using a Hunterlab, Ultrascan XE, 

colour measurement spectrometer (range 360–750 nm) connected to a PC. 

Raman analysis was carried out using a Renishaw InVia Raman microscope 

System using a HeNe laser (excitation wavelength: 514.5 nm) calibrated 

against Neon emission lines, (x50 microscope objective, 10 s exposure).  XPS 

analysis was carried with Kratos Axis 165 by using monochromated Al Kα X-ray 

source at 100 W (1486.6 eV).  XPS surface analysis were carried out for 

undoped and doped TiO2 films and analysed from 4-7 different points with 

analysis area < 1 mm2.  Low-resolution survey scans were used for elemental 

identification (10 mins).   High-resolution scans of Ti 2p3/2, Cu 2p, O 1s and C 

1s peaks were recorded at a pass energy of 20 eV (3.5 mins).  All the binding 

energies were referenced to the C 1s peak at 283.0 Ev and the etching was 

performed using an argon ion beam.   

Water surface contact angles were measured using an FTA-1000B-23A-141 

Automated Drop Shape Analyser, 3 μL water droplets were used to minimise 

any gravitational effects.  The water droplet images were analysed using a 

circular fitting method to obtain the contact angles on the surface.  The surfaces 

were tested from a range of areas over the substrate plate.  The water slip 

angle was measured by noting the angle to the horizontal at which a water 

droplet of known volume moved on the surface.  Photographs were recorded 

using a video camera on the FTA-1000 instrument system to monitor the 

wetting process on the surface. 
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4 . 1 . 3  T h i n  f i l m  g r o w t h  

All synthesis was carried out using an experimental rig consisting of a 

combination of CVD and AACVD synthesis technique; conventional thermal 

chemical vapour deposition and aerosol assisted chemical vapour deposition 

technique with bubbler, and nebuliser.  The CVD synthesis procedure involved 

the evaporation of TTIP using a bubbler (160-170 °C) with a hotplate (~160 °C) 

and heated transport pipes (200 °C) to prevent condensation and the AACVD 

synthesis involved dissolving precursors in methanol (50 ml) that were then 

nebulised by an ultrasonic humidifier (Ultra-Neb 2000, DeVilbliss) with 

appropriate ultrasonic wave frequency (1.63 MHz) to form an aerosol mist within 

a plastic container.  The CVD vapour was transported by inert gas, N2, 

controlled by a gas flow meter (molar ratio rate:  10), the aerosol mist was 

transported by compressed air (0.3-0.6 l/min), to a 3 slot combined 

AACVD/CVD cold wall reaction chamber (synthesis head), see fig. 23, chapter 

2.   

One clean plate of silica (50 nm) coated glass (dimensions ~207 x 85 x 3 mm), 

previously cleaned with appropriate solvents (water, methanol or acetone) and 

dried in air, was heated (400-600 ºC), using a graphite block controlled by a 

thermostat, monitored by a Pt-Rh thermocouple attached to a conveyor belt for 

automated substrate movement.  The substrate was either left stationary (1-3 

mins) on the conveyor belt or passed forwards and backwards (8-20 passes) 

under the combination AACVD/CVD synthesis head.  The vapour and aerosol 

droplets were then swept by a carrier gases into the reaction chamber where 

the vapour and aerosol droplets were evaporated and a film deposited on the 

Float glass substrate.  The experimental rig chamber was vented into the inbuilt 

extraction system.  The inert gas and compressed air flow was allowed to 

continue for 10 min after either timed stationary synthesis or a number of 

dynamic passes underneath the head had been counted.  The substrates and 

films were allowed to cool to room temperature in-situ and were stored in air.  

4 . 2 . 0  R e s u l t s   

4 . 2 . 1  S y n t h e s i s  a n d  c h a r a c t e r i z a t i o n  
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The TiO2 films with and without additional phases were well adhered to the 

substrate, passed the Scotch tape test and could not be easily scratched with 

anything other than a hard surface (brass and steel).  The films were grown 

using a new combined AACVD/APCVD coater head that was designed and built 

on the basics of the standard numerical 2-equation CFD code (κ-ε Realizable 

and κ-ω SST models) study for a fluid flow that was reported in chapter 2. 

4 . 2 . 2  V i s i b l e  a p p e a r a n c e  a n d  o p t i c a l  c h a r a c t e r i z a t i o n  

Titanium oxide films were synthesized as either undoped thin films at substrate 

temperatures of 400-600 °C from the CVD of titanium tetraisopropoxide (TTIP) 

or doped TiO2 host matrix thin films with noble metal dopants Au, Ag, Cu at 

400-600 °C from the AACVD of auric acid, silver nitrate and copper 

acetylacetonate solutions.  The macroscopic appearance by eye of all the films 

was transparent at thickness < 1μm, with the films becoming white and opaque 

at a thickness above 4 μm.  The static films exhibited optical interference 

patterns that were indicative of areas of non-uniform thickness whilst the 

dynamic films mainly displayed uniform surfaces at lower synthesis 

temperatures (400°C) and non-uniform surfaces for films synthesised at higher 

temperatures (500-600 °C); which tended to exhibit optical interference patterns 

that were indicative of areas of non-uniform thickness.   

4 . 2 . 2 . 1  T r a n s m i t t a n c e  a n d  R e f l e c t a n c e  a n a l y s i s  

The comparison of the films synthesised statically (1-3 mins) and dynamically 

(8-20 passes under the prototype head) at 400 °C and 600 °C with either 0.3 or 

0.6 l/min AACVD flow rates are compared below.  Transmittance and 

reflectance analysis was repeated to ensure conformity of the results.  

4.2.2.1.1 Stat ic  f i lm resul ts 

Cu and Au doped static films at 400 °C with a AACVD flow rate of 0.3 l/min 

showed an increase in transmittance (80-85%) when compared to the TiO2 

CVD control film (65%), Ag gave the same transmittance value (65%), see fig. 

56 a).  The reflectance values for Au, Ag and Cu doped TiO2 films (20-30%) 

were above the TiO2 control value (20%) but the reflectance value for the Au 
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doped film dropped towards the TiO2 film control value (20%) in the near 

infrared region, see fig. 56 a).  The transmittance values for all the doped TiO2 

films (60-80%) at 400 °C with an AACVD flow rate of 0.6 l/min were lower than 

the TiO2 control film (80-85%), see fig. 56 b).  The reflectance values for the 

doped TiO2 rose or fell slightly (10-30%) when compared to the undoped TiO2 

films due to interference patterns but were not significant for reflectance 

properties in the infrared region, see fig. 56 b).  The thickness of the static Au 

doped TiO2 film (400 C, 0.6 l/min) using the Swanepoel method148 was 138±9.6 

nm.    

Figure 56: Comparison of T/R %: static films with AACVD flow rates: 0.3 and 0.6 l/min, 400 °C: 

a) static film, 400 °C, AACVD flow rate: 0.3 l/min, b) static film, 400 °C, AACVD flow rate: 0.6 

l/min. 
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b) 

 

The transmittance values (400-500 nm) for doped TiO2 films (60-70%) at 600 °C 

with an AACVD flow rate of 0.3 l/min showed a decrease when compared to the 

control TiO2 film (75-80%). The films doped with pre-formed Au nanoparticles 

showed a significant increase in transmittance at wavelengths ≥ 480 nm, see 

fig. 57 a). The transmittance values (400-500 nm) for Au doped TiO2 films (30-

60%) with an AACVD flow rate of 0.6 l/min showed a drop that increased with 

increasing time underneath the prototype head due to the increasing thickness 

of the film; the Ag doped TiO2 film had a similar transmittance value (400-500 

nm) as the TiO2 control film, see fig. 57 b). 
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Figure 57: Comparison of T/R %: static films with AACVD flow rates: 0.3 and 0.6 l/min, 600 °C: 

a) static film, 600 °C, AACVD flow rate: 0.3 l/min, b) static film, 600 °C, AACVD flow rate: 0.6 

l/min. 

a)       
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4.2.2.1.2 Dynamic Resul ts 

The transmittance value increases for Cu and Au doped films (70-85%) when 

compared to the TiO2 control between 400–550 nm, whereas the Ag doped film 

has comparable transmittance values with the TiO2 control (60-70%) with an 

AACVD flow rate of 0.3 l/min, order of increasing transmittance >Cu>Au>Ag, 

see fig. 58 a).  Reflectance values for the Cu, Ag and Au doped films increase 

in the infrared (20–30%) when compared to the TiO2 control (>20%) with an 

AACVD flow rate of 0.3 l/min, order of increasing reflectance Au>Ag>Cu, see 

fig. 58 a).  The transmittance values of the Cu (60-75%), Ag (70-80) and Au (55-

65%) doped TiO2 films decrease when compared to the TiO2 control (70-85%) 

between 450–550 nm when the AACVD flow rate is raised to 0.6 l/min, order of 

decreasing transmittance (Ag>Cu>Au), see fig. 58 b).  The reflectance values 

appear to be better than the TiO2 control although all three doped films 

reflectance values drop rapidly in the infra-red region in the order of decreasing 

reflectance Ag<Cu<Au, see fig. 58 b). 

Figure 58: Comparison of T/R %: dynamic films (8-10 passes) with AACVD flow rates: 0.3 and 

0.6 l/min, 400 °C: a) dynamic, 400 °C, 8 passes, 0.3 l/min, b) dynamic, 400 °C, 8 to 10 passes 

0.6 l/min [Cu (8 passes), Ag (8 passes), Au (10 passes)]. 
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b) 

 

Transmittance values (400-500 nm) of the Ag, Au and Au pre-formed 

nanoparticle doped films (65-80%) have decreased when compared to the 

control TiO2 film (70-90%) with the increase in temperature (600 °C) the 

dopants have had a negative effect on transmittance for an AACVD flow rate of 

0.3 l/min, see fig. 59 a).  The reflectance values for the Ag, Au and Au pre-

formed nanoparticle doped TiO2 films are above the TiO2 control for a AACVD 

flow rate of 0.3 l/min but the improvement was not significant enough to be 

useful as a reflection coating, see fig. 59 a).  Transmittance values (400-500 

nm) for Au and Ag doped films worsen when a flow rate of 0.6 l/min is used 

when compared to the TiO2 control, see fig. 59 b) and the reflectance values 

are better than the TiO2 control but not significantly different when compared to 

the results from the 0.3 l/min AACVD flow rate, see fig. 59 a-b).   
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Figure 59: Comparison of T/R %: dynamic films (8 passes) with AACVD flow rates: 0.3 and 0.6 

l/min, 600 °C: a) Dynamic, 600 °C, 8 passes, 0.3 l/min, b) Dynamic, 600 °C, 8 passes, 0.6 l/min. 
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The transmittance values (400-500 nm) for the dynamic doped films at 600 °C 

with the increased number of passes (20) show some interference patterns for 

the Ag dopant and lower transmittance values for the Au and pre-formed Au 

nanoparticle dopants than the TiO2 control with a 0.3 l/min AACVD flow rate, 

see fig. 60 a).  The reflectance values for the pre-formed Au doped TiO2 are 

higher than the TiO2 control but the Au doped film values are lower than the 

TiO2 control, see fig 60 a). Increasing the number of passes appears to 

detrimentally affect the transmittance and reflectance values for the doped TiO2 

films with a 0.3 l/min AACVD flow rate.  Increasing the AACVD flow rate from 

0.3 to 0.6 l/min reverses this trend making the Au and Ag doped TiO2 films more 

comparable to the TiO2 control film; there is a significant improvement and a 

shift in the transmittance value with the Au dopant (90% at  about 440 nm) 

compared with the TiO2 control (90% at 500 nm) and some improvement with 

the reflectance values when compared to the TiO2 control, the Ag doped TiO2 

film shows a decrease in both transmittance and reflectance values when 

compared to the TiO2 control, see fig. 60 b).  

Figure 60: Comparison of T/R %: dynamic films (20 passes) with AACVD flow rates: 0.3 and 0.6 

l/min, 600 °C: a) dynamic, 600 °C, 20 passes, 0.3 l/min, b) dynamic 600 °C, 20 passes 0.6 l/min 

a)       
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b) 

 

4.2.2.1.3 Comparison of  Stat ic and Dynamic Fi lms 

4.2.2.1.3.1 Comparison of  AACVD f low rates 

Comparison of the transmittance and reflectance analysis for thin films 

synthesised at different AACVD flow rates (0.3 and 0.6 l/min), see fig. 61 a-b) 

and 62 a-b). 

The dynamic Au doped TiO2 film at 400 °C gave a better reflectance value 

(30%) than the equivalent static film (18-30%) but a poor transmission value 

(55%) whereas the static film under these conditions has a much better 

transmission value (70-80%), see fig. 61 a).  The Cu static and Ag dynamic 

doped TiO2 films have higher transmission values (65-85%) than Au doped TiO2 

films  (55 -80%) at 400 °C with 0.6 l/min AACVD flow rate, see fig. 61 b).  For 

the Au doped TiO2 films at 600 °C a higher AACVD flow rate, 0.6 l/min, appears 

to lower the transmission values and the Ag doped film appears to have a 

higher transmission value, see fig. 62 a-b). 
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Figure 61: Comparison of static and dynamic films at 400 °C, AACVD flow rates: 0.3 and 0.6 

l/min:  

a) films at 400 °C, AACVD: 0.3 l/min,   

 

b) films at 400 °C, AACVD: 0.6 l/min 
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Figure 62: Comparison of static and dynamic films at 600 °C, AACVD flow rates: 0.3 and 0.6 

l/min: a) films at 600 °C, AACVD: 0.3 l/min, b) films at 600 °C, AACVD: 0.6 l/min 

a)       

 

b) 
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reflectance values at 400 °C, see fig. 63 a).  At 400 °C the faster AACVD flow 

rate, 0.6 l/min, does give better transmittance values for the Ag doped TiO2 

films but reflectance values drop, see fig. 63 b).  The static Cu doped TiO2 films 

at 400 °C gave better transmission values than the dynamic films but the 

reflectance values were <30% for all films and an increased AACVD flow rate, 

0.6 l/min, also lowered the transmittance values, see fig. 63 c).  At 600 °C the 

slower AACVD flow rate gave better transmittance values for the Au doped TiO2 

films but the higher AACVD flow the rate gave better transmission values for the 

Ag doped TiO2 films, reflectance values were low for both Au and Ag doped 

TiO2 films, see fig. 63 d) and e).   

Figure 63: Comparison of Au and Ag doped static and dynamic films, AACVD flow rates: 0.3 

and 0.6 l/min, 400 and 600 °C: a) Au doped films at 400 °C and 0.3, 0.6 l/min, b)  Ag doped 

static and dynamic films at 400 °C and 0.3, 0.6 l/min, c) Cu doped static and dynamic films at 

400 °C and 0.3, 0.6 l/min, d) Au doped static and dynamic films at 600 °C and 0.3, 0.6 l/min, e) 

Ag doped static and dynamic films at 600 °C and 0.3, 0.6 l/min. 

a) Au, static/dynamic, 400 °C    
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b) Ag, static/dynamic, 400 °C 

 

c) Cu, static/dynamic, 400 °C 
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d) Au, static/dynamic, 600 °C    

 

e) Ag, static/dynamic, 600 °C 
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combined AACVD/CVD technique.  The overall effect of an elevated 

temperature (600 °C) appeared to give higher transmittance values but a 

detrimental effect on the reflectance values in the infra-red, see fig. 64 a-c) and 

d). Static films at an elevated temperature for both Ag and Au doped films 

tended to give the best transmittance values, the dynamic films at elevated 

temperature produced worse transmittance results but improved reflectance 

values.  The Au doped TiO2 films at 400 °C appear to be have interference 

waves which are indicative of a thick uneven area of film as well as high 

transmission values in the visible region, see fig. 64 a-c).  Lower temperatures 

(400 °C) for both Au and Ag dynamic results in 3 out of the four results 

displayed a higher reflectance value, see fig. 64 a-c), than the equivalent 

dynamic result and the dynamic at higher temperatures, see fig. 64 a-b) and d), 

(3 out of 4 results) displayed higher reflectance but not quite as good as the 

static films at lower temperatures. 

Figure 64: Comparison of Au and Ag doped TiO2 films AACVD flow rates and temperature: a) 

Au doped TiO2 film with AACVD flow rate of 0.3 l/min, b) Ag doped TiO2 film with AACVD flow 

rate of 0.3 l/min, c) Au doped TiO2 film with AACVD flow rate of 0.6 l/min, d) Ag doped TiO2 film 

with AACVD flow rate of 0.6 l/min. 

a) Au, 0.3 l/min (400-600 °C)    
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b) Ag, 0.3 l/min (400-600 °C) 

 

c) Au, 0.6 l/min (400-600 °C)    
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d) Ag, 0.6 l/min (400-600 °C) 

 

Comparison of the film thicknesses, using the Swanepoel method148, reveals 

that static films synthesised at a higher temperature are thicker, (≈35-90 nm) 

reflecting the increased crystallinity of the films.  The Ag dynamic films at 600 

°C appear to have less variation in thickness with the film increasing by 

approximately 25 nm from 8 to 20 passes under the reaction chamber head, 

see table 20.    

Table 20: Comparison of TiO2 film thickness, calculated with the Swanepoel method: The 

reagents used for the synthesis of the TiO2 films were TTIP, HAuCl and AgNO3, static film 

deposition times were 1 min at 400 °C and 600 °C and dynamic films were deposited with 8 or 

20 substrate passes under the reaction head at 600 °C. 

TiO2 Film Conditions Maximum Film 
Thickness*/ 
nm 

Dopant Temperature 
/ °C 

Static or Dynamic AACVD Flow 
Rate/ l/min T% R% 

Au 400 Static 0.3 80 31 163.3 ± 6.7  
Au 400 Static  0.6 80 30 138.0 ± 9.6 
Ag 400 Static  0.3 72 29 190.4 ± 42.6 
Ag 400 Static  0.6 70 21 226.6 ± 55.8 
Au 600 Static  0.3 80 29 174.4 ± 31.2 
Ag 600 Static  0.3 72 29 200.5 ± 46.8 
 
Pre-formed Au 600 Dynamic: 8 passes 0.3 83 31 181.9 ± 29.5 
Ag 600 Dynamic: 8 passes 0.3 87 25 161.6 ± 8.2 
Ag 600 Dynamic: 20 

passes 
0.3 85 26 184.8 ± 30.8 

* errors calculated from the Swanepoel method 
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4.2.2.1.4 Summary of  t ransmit tance and ref lectance resul ts 

A higher synthesis temperature can improve transmission but lower reflectance 

values; a higher AACVD flow rate can improve transmission but detrimentally 

effect reflectance. Static films can give better transmission and in some cases 

better reflectance values but the film is thick and uneven.  Au appears to be a 

better dopant at a lower AACVD flow rate for transmission values whereas Ag 

doped TiO2 film appears to be better at a faster AACVD flow rate for 

transmission values.  A number of static films displayed interference fringes, 

sinusoidal wave forms due to the thickness of the film and therefore film 

thickness was calculated, using the Swanepoel method148.  For the static films 

the increase in temperature and crystallinity appears to be linked to an increase 

in film thickness and for the one comparable set of dynamic results (Ag, 600 °C, 

0.3 l/min) displayed approximately a 20 nm (±6.7-55.8 nm)148 increase in film 

thickness and crystallinity has been calculated when the number of passes 

under the reaction head was increased from 8 to 20.  Comparison of the film 

thicknesses reveals that static films synthesised at a higher temperature are 

thicker, (≈35-90 nm) reflecting the increased crystallinity of the films.  To a 

lesser extent the dynamic film thickness also appears to increase with 

increasing crystallinity.  All film synthesis was repeated and re-tested for 

transmittance and reflectance analysis and the results were found to be 

repeatable.   

4 . 2 . 3  S E M  a n d  E D X  a n a l y s i s  

The results from the dynamic and static substrate samples of the AACVD/CVD 

synthesis technique doped and undoped titania thin films produced highly 

transparent clear films with visible transmission >85% at various temperatures 

(400 - 600 ºC).  Undoped titania films were synthesized at 400 °C and 600 °C 

as static films (1 or 3 min) and then the glass substrate was passed under the 

reaction chamber head (8 dynamic passes) at 400 °C and 600 °C to act as 

controls for doped titania films.  The morphology of titania thin films were found 

to be influenced by the attempted addition of Au, Ag and Cu dopants.  
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massive structures, particularly on the columnar structures seen at 1 minute 

intervals and for dynamic films increasing the number of substrate passes (20 

passes) under the reaction chamber head has a similar effect of creating more 

agglomerated massive structures already seen at a lower number of passes (8-

10 passes). The morphologies observed for static and dynamic TiO2 films 

formed at 400-600 °C are affected by the fluid flow, see chapter 2, time duration 

(1-3 mins) for static films and/or number of passes (8-20) for dynamic films 

under the reaction chamber head, the dopant and synthesis temperature.  The 

fluid flow for prototype head 1 was demonstrated to be ineffective at mixing the 

AACVD fluid flow with the two APCVD fluid flows, in part due to the inner 

separating walls between these three flows, the consequence of the ineffective 

mixing of prototype head 1 can be seen in the TiO2 films synthesised above and 

the differences in non-uniform surfaces are particularly apparent in the static 

film morphology, see chapter 2.  For static films an increment in the duration of 

time (1-3 mins) and for dynamic films an increment in the number of passes (8-

20) correlates to an increase in the thickness of the film.  The Ag doped films 

appear to cause particularly thick films on the static samples (>200 nm) 

according to the Swanepoel calculations and lower the maximum transmittance 

seen (~70%) at both 400 °C and 600 °C.  The effect of any dopant can be more 

clearly seen at higher temperatures (600 °C) and particularly with static films; a 

moving substrate lessens the overall effect on the microstructure.  An increase 

in synthesis temperature correlates to an increase in the crystallinity of the film.  

The differences and effect on the morphology that could be expected to be 

observed by using different solvent systems was negated by using the same 

solvent, methanol, throughout the synthesis of these films. 

4 . 2 . 4  X P S  a n a l y s i s  

XPS analysis was carried out on TiO2 films formed in the presence of Cu, Ag 

and Au dopants (400-450 °).  All dopants were below detectable limits except 

for one Cu doped film at 400 °C were a small amount was detected.     
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4.2 .4 .1  XPS ana lys is  o f  doped  T iO 2  f i lm,  450  °C  

The XPS spectra of a TiO2 film formed in the presence of Au dopant exhibited 

no Au, the composition after etching (3.5 mins) was titania, (Ti: 38 at.%, O: 59 

at.%) with carbon contamination present (C: 2.8 at.%) at the surface.  No Au 

was seen on the spectra, even with slow acquisition of the gold 3d peak region, 

see fig. 97. 

Figure 97: XPS depth profile of titania film with Au dopant, 450 °C. 

 

 

The XPS spectra of other TiO2 thin films formed in the presence of Ag and Cu 

at 450 °C exhibited no detectable dopants, after etching (30 s), the composition 

of two titania films with Ag dopants was titania (Ti ~33 at.%, O ~59 at.%) and 

the composition of the remaining Cu doped TiO2 was also titania (Ti: 32 at.%, 

O: 58 at.%).  The binding energies determined from the high-resolution XPS 

measurements (peak positions: 456.0 eV for Ti 2p3/2 and 528.0 eV for O 1s) 

were in fair agreement with published values for TiO2
152, 155. 
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4.2 .4 .2  XPS ana lys is  o f  Cu  doped  t i tan ia  f i lms ,  400  °C  

The XPS spectra of TiO2 thin films formed in the presence of Cu, at 400 °C 

exhibited typical titania and only one sample contained Cu dopant but at too low 

a level to ascertain the oxidation state, see tables 21, 22, 23. 

Table 21: Type of Cu doped titania samples at 400 °C. 

Sample Number Static/ 1 min  

or  

Dynamic/ 8 substrate passes 

AACVD Flow Rate/ l/min  

1 Static  0.3 

2 Dynamic 0.3 

3 Static 0.6 

4 Dynamic 0.6 

Table 22: XPS analysis of the composition of Cu doped titania films, 400 °C. Before etching 

Sample C  Cu O Ti [O] / [Ti]

1 centre 42 0.55 41 17 2.5 

1 side 35 -- 46 20 2.3 

2 37 -- 42 21 1.9 

3 centre 39 -- 42 19 2.2 

3 side 40 -- 40 20 2.1 

4 44 -- 37 19 2.0 

Table 23: XPS analysis of the composition of Cu doped titania films, 400 °C. After etching (~2 

mins) 

Sample C  Cu O Ti [O] / [Ti]

1 centre 15 -- 56 30 1.9 

1 side 14 -- 57 29 1.9 

2 7 -- 58 36 1.6 

3 centre 13 -- 55 32 1.7 

3 side 14 -- 53 33 1.6 

4 3.3 -- 59 38 1.5 

 *Carbon contamination probably originated from the coating or handling. 

The binding energies determined from the high-resolution XPS measurements 

for the peak position of Cu 2p was 933.0 eV. 

4.2 .4 .3  Summary  o f  XPS Ana lys is  

Nearly all TiO2 films formed in the presence of Au, Ag and Cu (400-450 °) only 

exhibited TiO2, only one Cu doped TiO2 (400 °C) exhibited Cu but at too low a 

level to ascertain the oxidation state. 
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4.2 .5 .3  Summary  o f  ХRD ana lys is  

The dominant anatase form of titania was exhibited on every diffractogram apart 

from one static TiO2 film formed in the presence of Au at 600 ºC. According to 

the ХRD diffractograms; the dopants Au, Ag and Cu appeared to have little 

effect on the form of titania observed.  This is in direct contrast to the work of 

many people were mixtures of anatase/rutile and brookite were seen particularly 

at lower synthesis temperatures (<600 °C)155-161; this includes work by Hyett 

and Edusi where anatase/rutile mixtures were seen from a similar precursor 

set157.  However the work of Siefried et al., 2000, found that at about 400 °C, 

anatase was dominant, at 700 °C anatase with some rutile phase was found 

and ≥1000 °C only the rutile phase was observed153 this is due to the rutile 

phase being thermodynamically stable; the anatase phase is metastable and 

usually observed for thin films with thicknesses below 10 µm162, or particles >30 

nm163. 

4 . 2 . 6  R a m a n  a n a l y s i s  

Raman spectra analysis was carried out for TiO2 films formed in the presence of 

Cu, Ag and Au at 400 °C and TiO2 films formed in the presence of Ag, Au and 

pre-formed Au at 600 °C.  Typical peaks for the anatase phase were observed 

for all samples, except for the Cu film, 400 °C, were no peaks were observed.  

4 .2 .6 .1  Compar ison  o f  Raman spec t ra  fo r  T iO 2  f i lms ,  400  °C 

Raman spectra for both static and dynamic TiO2 films, formed in the presence 

of Cu, Ag and Au, at 400 °C, display typical wavelengths for the anatase phase 

of titania, peaks (144, 197, 394, 512, 635 cm-1), see fig 104 a-b) and table 24. 

Dynamic TiO2 film formed in the presence of Cu dopant displayed no spectra 

attributable to titania, see fig. 104 b). 
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Figure 104:  Comparison of Raman spectra of static and dynamic TiO2 films formed in the 

presence of Au, Ag and Cu at 400 °C: a) static (1 min) and b) dynamic (8 passes) titania films in 

the presence of Au, Ag and Cu at 400 °C. 

a) Static (1 min)       
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Table 24: Raman peak phase values for dynamic TiO2 films formed in the presence of Au, Ag 

and Cu at 400 °C: 

Static 
Dopant 

Peak 
1 /cm-1 

Phase 
A/R 

Peak 
2 /cm-1 

Phase 
A/R 

Peak 
3 /cm-1 

Phase 
A/R 

Peak 
4 /cm-1 

Phase 
A/R 

Peak 
5 /cm-1 

Phase 
A/R 

Cu 145 A 196 A 394 A 514 A 635 A 
Ag 143 A 193 A 394 A 512 A 635 A 
Au 143 A - - - - - - 633 A 
 
Dynamic 
Dopant 

Peak 
1/cm-1 

Phase 
A/R 

Peak 
2/cm-1 

Phase 
A/R 

Peak 
3/cm-1 

Phase 
A/R 

Peak 
4/cm-1 

Phase 
A/R 

Peak 
5/cm-1 

Phase 
A/R 

Cu - - - - - - - - - - 
Ag 143 A 193 A 394 A 514 A 635 A 
Au 143 A 198 A 391 A 514 A 637 A 

A = anatase, R = Rutile, - no TiO2 film or peak detected 

4 .2 .6 .2  Compar ison  o f  Raman spec t ra  fo r  T iO 2  f i lms ,  600  °C 

Raman spectra for both static and dynamic TiO2 films formed in the presence of 

Ag, Au and pre-formed Au, at 600 °C display typical wavelengths for the 

anatase phase of titania, peaks (144, 197, 394, 512, 635 cm-1), see fig. 105 a-b) 

and table 25. 

Figure 105: Comparison of Raman spectra of static and dynamic TiO2 films formed in the 

presence of Au, Ag and Cu at 600 °C: a) static (1 min) and b) dynamic (8 passes)  titania films 

formed  in the presence of Ag, Au and pre-formed Au at 600 °C. 

a) Static (1 min)       

 

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

Wavelength/ cm-1

In
te

n
s

it
y

 (
a

.u
.)

Ag

Au

Pre-formed Au



Chapter 4 

Page 194  

b) Dynamic (8 passes) 

 

Table 25: Raman peak phase values for the titania films formed in the presence of Ag and Au at 

600 °C. 

Dynamic 
Static 

Peak 
1/cm-1 

Phase 
A/R 

Peak 
2/cm-1 

Phase 
A/R 

Peak 
3/cm-1 

Phase 
A/R 

Peak 
4/cm-1 

Phase 
A/R 

Peak 
5/cm-1 

Phase 
A/R 

Ag 143 A 194 A 394 A 512 A 637 A 
Au 143 A 193 A 394 A 512 A 637 A 
P-Au 142 A 196 A 396 A 514 A 637 A 
 
Dynamic 
Dopant 

Peak 
1/cm-1 

Phase 
A/R 

Peak 
2/cm-1 

Phase 
A/R 

Peak 
3/cm-1 

Phase 
A/R 

Peak 
4/cm-1 

Phase 
A/R 

Peak 
5/cm-1 

Phase 
A/R 

Ag 143 A 193 A 394 A 514 A 638 A 
Au 143 A 193 A 394 A 514 A 635 A 

A = anatase, R = Rutile 

The Raman band frequencies for these titania films (400-600 °C) are assigned 

the following vibration modes: 

 143 ±2 cm-1  Eg   phononic mode (v6) 

 195 ±3 cm-1  Eg  phononic mode (v5) 

 393 ±3 cm-1  B1g  phononic mode (v4) 
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 635 ±4 cm-1  Eg  phononic mode (v1) 
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The change in intensity of the Raman bands could be related to the thickness of 

the film or the crystallinity of the film but these dynamic films appear to be more 

uniform than static films and therefore the dopant used may have affected the 

intensity of the bands.   

4.2 .6 .3  Summary  o f  Raman ana lys is  

Raman spectra for TiO2 films formed in the presence of Cu, Ag, Au, (400 °C) 

and Ag, Au and pre-formed Au, (600 °C) exhibit typical anatase phase peaks21, 

146-147, 156-161.  According to the work by Yee Hong Chee, et.al. the anatase 

phase should be dominant up to a synthesis temperature of about 700 °C but 

the rutile phase should still be formed between the temperature range of 420-

700 °C; there is no apparent evidence of the rutile phase being formed at the 

higher temperatures here156.  The AACVD/CVD prototype reaction chamber 

head used does not confine the substrate within a confined or enclosed space, 

all gaseous vapours, at standard atmospheric pressure, are allowed to vent to a 

much larger area; the duration of the substrate under the reaction chamber is 

also short; resembling the production process more accurately and therefore 

the conditions required for the formation of the rutile phase, even at higher 

temperatures, may not be supported.  The presence of Au or Ag metallic/oxide 

phase was not expected as they are poor Raman scatterers.  The presence of 

Cu oxide either as CuO164-170, Cu2O
166-174 or Cu3O2

169, 170 was also not 

detected165-174. 

4 . 2 . 7  C o n t a c t  A n g l e  A n a l y s i s  

A surface water contact angles > 90° are classed as hydrophobic and surface 

contact angles < 90° are classed as hydrophilic175-178.  Thin film coatings with 

either a superhydrophilic (θ: <10°) or superhydrophobic (θ~≥ 150°) surface 

contact angle are of interest as self-cleaning surfaces.  There are two main 

models used to describe the wetting behaviour of hydrophobic surfaces, the 

Wenzel175 and Cassie–Baxter models144, 176, 177.  Titania films often become 

superhydrophilic, (θ < 10°), when exposed to ultraviolet (UV) light, a 

phenomenon termed photoinduced superhydrophilicity (PSH)1775-185 and the 

morphology of the film may also influence superhydrophilicity, particularly if it 

has rough surfaces144. 
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The change in contact angle when exposed to 254 nm UVA irradiation was 

measured on undoped and Au, Ag and Cu doped titania films at 400 °C and on 

undoped and Au, pre-formed Au and Ag doped films at 600 °C.   

4 .2 .7 .1  Con tac t  ang les  o f  T iO 2  f i lms  a t  400  °C 

The TiO2 control and TiO2 films formed in the presence of Au and Ag at 400 °C 

did not have contact angles (< 15 °) that dropped sufficiently after irradiation 

(254 nm) for superhydrophilicity to be exhibited, see fig. 106.  The titania films 

formed in the presence of Au and Ag at 400 °C appear to have a detrimental 

effect on the contact angle observed for titania.  Water surface contact angles 

were measured 3 to 5 times to achieve an average with standard deviation 

(Stdv), the largest variations of Stdv were exhibited by static films,  see table 26. 

Figure 106: Comparison of doped and undoped titania thin films average contact angles (400 

°C) before and after irradiation at 254 nm. 
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Figure 108: Comparison of doped and undoped titania thin films surface contact angles (600 °C) 

before and after irradiation at 254 nm. 
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superhydrophilic properties (contact angle ≤10°), see table 27.  Therefore the 

presence of the Au precursor, HAuCl4, did not adversely affect the contact 

angle normally exhibited by undoped TiO2 films. 

4.2 .7 .3  Summary  o f  con tac t  ang le  resu l t s  

The titania thin film coatings change from being hydrophobic to hydrophilic after 

irradiation, apart from one static control film at 600 °C and have the 

superhydrophilic property necessary for self-cleaning glass, addition of Au and 

Ag (400 °C) and Au, preformed Au and Ag (600 °C) did not exhibit any 

significant enhancement of this property, however addition of Cu or titania films 

formed in the presence of Cu, at 400 °C, did show a possible slight 

enhancement.   

4 . 3 . 0  D i s c u s s i o n  o f  p r o t o t y p e  1  A A C V D / C V D  r e s u l t s    

The results from the dynamic and static substrate samples of the AACVD/CVD 

synthesis technique doped/undoped titania thin films produced highly 

transparent clear films with visible transmission (>85%) at various temperatures 

(400 - 600 ºC).  The morphology of titania thin films were found to be influenced 

by the attempted addition of dopants but had no apparent influence over the 

preferred anatase form of titania except for one Au titania film synthesized at a 

lower temperature (400 ºC).  Control samples for dynamic films (400 ºC) 

showed plate structures with smaller granular/spherical areas and the static 

samples were granular/spherical and agglomerated in shape.  

Plate structures were seen for dynamic thin film samples with Au, Ag, Cu and 

Al, dopants at 400, 450 ºC, all dopants were below detection level, whereas 

spherical structures (100-800 nm) where observed for static substrate samples 

at 400 ºC and one sample that contained Au nanoparticles had uniform 

spherical structures (50–100 nm) with bright spots.  Control samples for 

dynamic films (600 ºC) showed angular grain structures (100–150 nm) and 

static films were agglomerated angular in shape with larger embedded Neolithic 

spear structures (400 nm).  Au and Ag dopants for both dynamic and static films 

had angular structures (50-500 nm) with agglomeration and angular fractal floret 

structures forming in the static samples with increasing film thickness (402–

1875 nm).  The titania thin film coatings formed in the presence of Au, 
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preformed Au and Ag at 600 °C did not exhibit any significant enhancement of 

superhydrophilicity, however titania films formed in the presence Cu, at 400 °C, 

did show a possible slight enhancement.  XRD and Raman spectra for TiO2 

films formed in the presence of Cu, Ag, Au, (400 °C) and Ag, Au and pre-formed 

Au, (600 °C) mainly exhibit typical anatase phase peaks.  The anatase phase is 

often seen as the majority phase for TiO2 ≤ at 500 ◦C for short sinter periods; 

the rutile phase becomes dominant at higher temperatures or when TiO2 is 

sintered for longer and at higher temperatures153, 156.  However this is in 

contrast to all the TiO2 thin films synthesised here at 600 °C; all of which 

exhibited the anatase phase as the dominant phase whether they were 

synthesised under a static reaction chamber head or as a moving substrate.  No 

dopant, Au, Ag or Cu metallic/oxides were detected with Raman.  XPS spectra 

for nearly all TiO2 films formed in the presence of Au, Ag and Cu (400-450 °C) 

only exhibited TiO2, only one Cu doped TiO2 (400 °C) exhibited Cu but at too 

low a level to ascertain the oxidation state. 

4 . 4 . 0  C o n c l u s i o n  o f  C h a p t e r  4  

No TiO2 film synthesised had significant amounts of any dopants present apart 

from one static Au doped titania film (400 ºC, 3 mins) and nearly all dopants 

were below the analytical detection level but the morphology was affected by 

dopants and film thickness, even when the dopant was not detected in the film 

although the influence of the dopant lessened with a moving substrate.  

Increasing either substrate time (3 mins) for static films under the reaction 

chamber head or increasing the number of passes for dynamic films under the 

reaction chamber head exaggerated the agglomeration and size of the 

microstructure seen at lower time intervals (1 min) or at a lower number of 

passes (8-10 passes).  A slight enhancement of superhydrophilicity was seen 

for one TiO2 film formed in the presence of Cu, at 400 °C, all other films formed 

in the presence of dopants showed no enhancement of this property.  XRD and 

Raman spectra exhibited typical peaks for the anatase phase of titania.  XPS 

spectra exhibited typical titania composition and only detected one very low 

level Cu dopant (400 °C).  Dopants of Au and Cu were only detected in static 

films at 400 °C, higher temperatures and moving substrate appear to negate 

any success of inclusion of these noble metal nanoparticles using this particular 
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design of AACVD/APCVD combined synthesis technique.  The following 

physical and chemical parameters fluid flow, moving substrate, synthesis 

temperature and the presence of dopants during the reaction all affect the 

morphology observed in the TiO2 films synthesised with prototype reaction head 

1.  Fluid flow due to the negligible mixing of the AACVD and two APCVD fluid 

flows and the dopants, Au, Ag appear to have the greatest effect on the 

microstructure.  The effect of the solvent on the microstructure has been 

negated by using methanol throughout the synthesis of the TiO2 films.  Low or 

negligible incorporation of the dopants were the probable consequence of the 

size of the droplets formed by the nebuliser; the droplets were of an order of 1 

magnitude too small to overcome the main forces and effects of aerodynamic 

drag and at higher synthesis temperatures evaporation, see chapter 2. 

The following chapter, 5, investigates a new model of the AACVD/APCVD 

technique designed using computational fluid software for a more successful 

result of including noble metal dopants within the TiO2 host matrix film. 
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Chapter 5 

Combined AACVD/APCVD Synthesis of TiO2 Films: Prototype 2 
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C h a p t e r  5 :  A A C V D / A P C V D  S y n t h e s i s  o f  

T i O 2  F i l m s :  P r o t o t y p e  2  

5 . 0 . 0  I n t r o d u c t i o n  

This chapter looks at the second prototype for synthesizing metal oxide thin films 

on glass designed using computational fluid dynamic (CFD) software, see chapter 

2.  Titania is used again as the host metal oxide matrix and the films synthesised 

are investigated for their physical, optical and chemical properties, particularly the 

effect of dopants, metal Au, Ag, Cu and Al dopants on the properties such as 

colour, morphology, transmittance/reflectance, surface contact angle, crystal lattice 

orientation and photocatalytic activity on TiO2 host matrix films.  Al was included as 

a dopant to see if inclusion was possible within the host matrix film using this 

combined reaction head for possible future work with ZnO. The titania films were 

synthesized using a combined AACVD/APCVD technique and analysed using a 

range of techniques such as UV-VIS spectroscopy, XRD, SEM, EDX, FTIR and 

Raman to assess the possible influence dopants could have on physical, optical 

and chemical properties of these TiO2 films.  The results were then compared to 

literature for many of the well known metal oxide host matrix film synthesis 

techniques including APCVD, FACVD, Sol-gel (sintering/annealing), LPCVD, 

PECVD, MOCVD and CVD.   

The titania films in chapter 5 are referred to as being doped even though the level 

of dopant, if present, may well be below levels of detection for ease of 

understanding the thread of work and because the dopants were found to have 

such a profound effect on physical, optical and chemical properties such as 

morphology, photocatalysis and colour.   
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5 . 1 . 0  E x p e r i m e n t a l  M e t h o d s  

5 . 1  G e n e r a l  E x p e r i m e n t  

5 . 1 . 1  S t a n d a r d  r e a g e n t s  a n d  c o n d i t i o n s  

The host matrix precursor used for the formation of the TiO2 films with or without 

the addition of metal dopants were titanium tetraisopropoxide (TTIP, 10 l/min) for 

CVD synthesis.  The metal precursors selected for incorporation into the 

AACVD/CVD synthesis were HAuCl4 (0.01 mol dm-3), AgNO3 (0.12–3.5 x 10-2 mol 

dm-3), Cu(acac)2 (1.6 x 10-2 mol dm-3) and Al(acac)3 (1.6 x 10-2 mol dm-3). 

5 . 1 . 2  A n a l y t i c a l  a n a l y s i s  

Scanning electron microscopy (SEM) analysis was carried out on a thermal field 

emission Philips XL30 instrument for both morphology and elemental analysis, 

using the Energy Dispersive Spectroscopy (EDS) analysis (EDAX Phoenix 

system), with uncoated/coated carbon/gold/platinum samples. SEM images used 

accelerating voltages from 10 to 30 kV and were captured at various 

magnifications (2-5 x 105 x), samples were coated with thin layer of Pt.  The voltage 

was reduced to 10 kV (working distance: 10 mm) for surface sensitive work with 

the back scattered electron (BSE) detector.   

High resolution X-ray diffraction (HRXRD) analysis was carried out using a MRD 

diffractometer in reflection mode with Cu Kα radiation (λ =1.540 Ǻ) with a glancing 

angle incidence beam of 5 or 1.5°.  Visible/IR transmittance and reflectance 

spectroscopy was carried out using a Hunterlab, Ultrascan XE, colour 

measurement spectrometer (range 360–750 nm) connected to a PC.  Raman 

analysis was carried out using a Renishaw InVia Raman microscope System using 

a HeNe laser (excitation wavelength: 514.5 nm) calibrated against Neon emission 

lines, (x50 microscope objective, 10 s exposure).   

Water surface contact angles were measured using an FTA-1000B-23A-141 

Automated Drop Shape Analyser, 3 μL water droplets were used to minimise any 
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gravitational effects.  The water droplet images were analysed using a circular 

fitting method to obtain the contact angles on the surface. The surfaces were 

tested from a range of areas over the substrate plate.  The water slip angle was 

measured by noting the angle to the horizontal at which a water droplet of known 

volume moved on the surface.  Photographs were recorded using a video camera 

on the FTA-1000 instrument system to monitor the wetting process on the surface.  

Resazurin (Rz) and dichloroindophenol (DCIP) indicator inks were used to assess 

Photocatalytic activity and prepared in the same way as formulated by Mills and 

McGrady187.  The ink consisted of 3 g of a 1.5 wt.% aqueous solution of HEC 

polymer, 0.3 g of glycerol and 4 mg of Rz redox dye.  Test films were washed in 

distilled water, subsequently rinsed with isopropanol and photocatalytically cleaned 

after 1 h of 254nm irradiation.  The photocatalytic reductions were monitored via 

UV–visible absorption spectroscopy. Measurement of the photo-oxidation of an 

applied saturated solution of stearic acid (methanol) to film samples was analysed 

using a Perkin Elmer Spectrum RX1 FTIR spectrometer (2800-3000cm−1).  

Photocatalytic activity was also assessed using the more conventional stearic acid 

test, a saturated solution (methanol) applied to the film surface and was then 

allowed to evaporate, the film surface was irradiated (254 nm) and analysed using 

FTIR (1 hr, at 15 min intervals). 

5 . 1 . 3  T h i n  f i l m  g r o w t h  

All synthesis was carried out using an experimental rig consisting of a combination 

of APCVD and AACVD synthesis techniques; conventional atmospheric chemical 

vapour deposition and aerosol assisted chemical vapour deposition technique with 

bubbler, and nebuliser.  The CVD synthesis procedure involved the evaporation of 

TTIP using a bubbler (160-170 °C) with a hotplate (~160 °C) and heated transport 

pipes (200 °C) to prevent condensation and the AACVD synthesis involved 

dissolving precursors in methanol (50 ml) that were then nebulised by an ultrasonic 

humidifier (Ultra-Neb 2000, DeVilbliss) with appropriate ultrasonic wave frequency 

(1.63 MHz) to form an aerosol mist within a plastic container.  The APCVD vapour 

was transported by inert gas, N2, controlled by a gas flow meter (molar ratio rate:  

10, derived from the Antoine equation), the aerosol mist was transported by 
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5 . 2 . 0  R e s u l t s  

5 . 2 . 1  S y n t h e s i s  a n d  c h a r a c t e r i s a t i o n  

The TiO2 films formed by AACVD/CVD prototype 2 reaction head with and without 

additional phases were well adhered to the substrate, passed the Scotch tape test 

and could not be easily scratched with anything other than a hard surface (brass 

and steel). 

5 . 2 . 2  V i s i b l e  a p p e a r a n c e  a n d  o p t i c a l  c h a r a c t e r i s a t i o n  

Titanium oxide films were synthesized as either undoped thin films at substrate 

temperatures of 400-600 °C from the APCVD of titanium tetraisopropoxide (TTIP) 

or doped TiO2 host matrix thin films with noble metal nanoparticle dopants Au, Ag, 

Cu at 400-600 °C from the AACVD of auric acid, silver nitrate, copper 

acetylacetonate and aluminium acetylacetonate solutions.  The macroscopic 

appearance by eye of all the films was transparent at thickness < 1 μm, many of 

the films synthesised below 500 °C were coloured, eventually turning opaque in 

areas where the film thickness (>4 μm) increased with the number of passes 

underneath the reaction chamber head.  The films synthesised at lower substrate 

temperatures (<500 °C) displayed a very uniform surface with little or no optical 

interference patterns that were indicative of areas of non-uniform thickness.     

5.2 .2 .1  Transmi t tance  and  re f lec tance  ana lys is  

The transmittance and reflectance analysis of the undoped and Au, Ag, Cu and Al 

doped TiO2 films synthesised dynamically (10 passes) under the prototype head 

(300-600 °C) with 1.2 l/min AACVD flow rates are compared below.  

5.2.2.1.1 Compar ison of  undoped and doped TiO2 f i lms at  300 °C 

Transmittance values for the Ag and Cu doped TiO2 films (60-70 %) were 

considerably less than the undoped TiO2 film (90%).  The transmittance values of 

one Au doped TiO2 film was comparable to the TiO2 control but the second Au 

doped TiO2 film sample transmittance value dropped <70 % (350-425 nm) and 
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then rose at 500 nm (90%), see fig. 110.  Reflectance values did not show a 

particularly strong IR reflectance for any TiO2 film (~30%), see fig. 110. 

Figure 110: Comparison of transmittance/reflectance analysis of undoped and Au, Ag and Cu 

doped TiO2 films, 300 °C. 

 

5.2.2.1.2 Compar ison of  undoped and doped TiO2 f i lms at  400 °C 

The maximum transmittance value for the Cu doped TiO2 film (90%) sample was 

slightly higher than the undoped TiO2 film (85%) with Au and Ag transmittance 

values are comparable to the undoped TiO2 film control, see fig. 111.  Reflectance 

values did not show a particularly strong IR reflectance for any TiO2 film (~30%), 

see fig. 111.  The shape of the spectra is due to interference patterns indicating 

different areas of film thickness.  

 

 

0

10

20

30

40

50

60

70

80

90

100

350 400 450 500 550 600 650 700 750
Wavelength/ nm

T
 &

 R
 %

Control T% Control R%
Au T% No.1 Au R% No.1
Au T% No.2 Au R% No.2
Ag T% No.1 Ag R% No.1
Ag T% No.2 Ag R% No.2
Cu T% No.1 Cu R% No.1
Cu T% No.2 Cu R% No.2



Chapter 5 

Page 210  

Figure 111: Comparison of transmittance/reflectance analysis of undoped and Au, Ag and Cu 

doped TiO2 films, 400 °C. 

 

 

5.2.2.1.3 Compar ison of  undoped and doped TiO2 f i lms at  500 °C 

Interference patterns are displayed on all transmittance and reflectance values for 

undoped and Au, Ag and Cu doped TiO2 films formed at 500 °C, the shape of the 

spectra could be due to reflection of very uniform films, see fig. 112.  

Transmittance values for the Ag and Cu TiO2 films (70 and 65 % respectively) were 

higher than the undoped and Au doped TiO2 films (55 %) in the 350-450 nm range, 

see fig. 112.  Reflectance values did not show a particularly strong IR reflectance 

for any TiO2 film (~30%), see fig. 112. 
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Figure 112: Comparison of transmittance/reflectance analysis of undoped and Au, Ag and Cu 

doped TiO2 films, 500 °C. 

 

The average film thickness’s were calculated for the undoped (184.3 nm) and 

doped Au (224.5 nm), Ag (167.6 nm) and Cu (193.0 nm) TiO2 films (500 °C) using 

the Swanepoel method148.  

5.2.2.1.4 Compar ison of  undoped and doped TiO2 f i lms at  600 °C 

Interference patterns are displayed on all transmittance and reflectance values for 

undoped and Au, Ag, Cu and Al doped TiO2 films, 600 °C, indicating a change in 

thickness of the film across the substrate, see fig. 113 a-b).  The Ag doped TiO2 

maximum transmittance value (~90%) appears slightly higher than the undoped 

TiO2 film (~85%), all other dopants had slightly lower transmittance values, Au 

(~80-90%), Cu and Al (~75-85%), see fig. 113 a-b).  Reflectance values did not 

show a particularly strong IR reflectance for any TiO2 film (~30%), see fig. 113 a-b). 
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The average film thickness’s were calculated for the undoped (165.7 nm) and 

doped Au (165.6 nm), Ag (168.7 nm), Cu (215.4 nm) and Al (214.6 nm) TiO2 films 

(600 °C) using the Swanepoel method148.  

5.2.2.1.5 Summary of t ransmit tance and ref lectance resul ts 

The Au doped TiO2 film, at 300 °C, had the only comparable T% value to the TiO2 

control.  The transmittance value for the Cu doped TiO2 film (90%) sample was 

slightly higher than the undoped TiO2 film (85%) with Au and Ag transmittance 

values are comparable to the undoped TiO2 film control.  The Ag and Cu doped 

TiO2 films at 500 °C appear to have higher transmission values than the control, 

whereas only the Ag doped TiO2 film has a higher transmission at 600 °C, see 

table 28.   

Table 28: Comparison of Transmittance values (300-600 °C). 

 Maximum T% Values 

Film sample 300 °C 400 °C 500 °C 600 °C 

Control 90 85 55 85 

Au 90 85 55 80-90 

Ag 65 85 70 90 

Cu 70 90 65 75-80 

Al - - - 75-85 

- Al films not synthesised at these temperatures 

The results for transmittance values appears to display that not only does the 

presence of a dopant effect the T% value but synthesis temperature, with films 

synthesised at 500 °C having the most detrimental effect.  Interference patterns are 

displayed on all transmittance and reflectance values for undoped and doped Au, 

Ag, Cu and Al doped TiO2 films across separate portions of the substrate, 500-600 

°C, indicating a relatively non-uniform film across the substrate.  Reflectance 

values did not show a particularly strong IR reflectance for any TiO2 film (~30%) for 

the whole temperature range studied (300-600 °C).  A range of film thickness 

calculations (165.7-224.5 nm) were calculated from the interference patterns for 

the TiO2 films synthesised at 500 °C and 600 °C. 
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different to results reported in literature with large agglomerated platelets 

dominating the surface159, 189; for e.g. the morphology found in Hyett et al. CVD 

work on mixed anatase/rutile phase titania films showed much less agglomeration 

with smaller angular structures159.  Comparison of similar Al doped TiO2 films by 

Kuo et al. (350-500 °C) displayed very different morphologies, e.g. agglomerated 

granular structures which are very unlike the large plate structure morphology 

displayed in this work191.  Recent work by Kim et al. with TiO2 films, on an alumina 

substrate, at higher synthesis temperatures (500 °C, deposition time: 10 mins) 

have columnar prismatic facets that are much in tune with what is observed with 

static films in chapter 4, see chapter 4151.  Other recent work by Kuo et al. using Al 

as the dopant (350-500 °C) had agglomerated granular structures unlike the large 

plate structure morphology displayed in this work191. 

5.2 .3 .5  Summary  o f  the  SEM and  EDX ana lys is  

TiO2 films undoped and formed in the presence of dopants at lower temperatures 

(<500 °C) appear to have very uniform fine structures with very similar morphology. 

TiO2 films formed in the presence of Au, Ag, Cu and Al dopants at 500 °C had very 

similar large platelet, conglomerated type structures that differed from the smaller 

more angular, aggregated structures seen in the undoped TiO2 film; all dopants 

had a very similar effect on the morphology. At 600 °C the dopants used had a 

profound effect on the morphology with Au and Ag producing very different 

morphologies from the undoped TiO2 film and the TiO2 films formed in the 

presence of Cu and Al displayed very similar large platelet conglomerated 

structures also seen at 500 °C and for dynamic films in chapter 4, see chapter 4. 

The Au dopant was detected by EDX, at 400 °C, but no other dopants were 

detected using EDX analysis for the rest of the temperature range (300-600 °C). 

5 . 2 . 4  X - r a y  d i f f r a c t i o n  a n a l y s i s  

X-ray diffraction analysis was carried out on both undoped and doped Au, Ag, Cu 

and Al TiO2 films (300-600 °C).  The tetragonal form of anatase titania was 

exhibited on every film (400-600 °C), all other films below 400 °C exhibited no 

crystallinity.  All crystallite orientations have an opportunity to produce diffraction 
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(200) and (211) with a high angle low intensity peak at 500 °C corresponding to 

(220), Cu (300-400 °C) films were not crystalline and the greatest intensity 

occurred with Cu at 600 °C. 

5.2 .4 .5  Summary  o f  XRD ana lys is  

The dominant tetragonal anatase form of titania was exhibited on all diffractograms 

for undoped and doped Au, Ag, Cu and Al TiO2 films (400- 600 ºC).  TiO2 films 

formed below 400 °C were not crystalline.  According to the ХRD diffractograms; 

the dopants Au, Ag, Cu and Al appeared to have little effect on the form of titania 

observed.  Notably no Rutile was formed even at 600 °C.  This is in direct contrast 

to the work of Hyett and Edusi where anatase/rutile mixtures were seen from a 

similar precursor set157-160. 

5 . 2 . 5  R a m a n  A n a l y s i s  

Raman spectra analysis was carried out for TiO2 films formed in the presence of 

Au, Ag and Cu (400 °C, 600 °C).  Typical peaks for the tetragonal anatase phase 

were observed for all samples, see figs. 125, 126, tables 29 and 30.  

5.2 .5 .1  Au ,  Ag  and  Cu  doped  T iO 2  f i lms ,  400  °C  

Raman spectra for dynamic TiO2 films (10 passes), formed in the presence of Au, 

Ag and Cu, at 400 °C, display typical wavelengths for the tetragonal anatase phase 

of titania, peaks (144, 197, 394, 512, 635 cm-1), see fig. 125 and table 29.  

Table 29: Raman band frequencies for dynamic (10 passes) undoped and Au, Ag and Cu doped 

TiO2 films, (400 °C) 

Dopant Band 
1/cm-1 

Phase 
A/R 

Band 
2/cm-1 

Phase 
A/R 

Band 
3/cm-1 

Phase 
A/R 

Band 
4/cm-1 

Phase 
A/R 

Band 
5/cm-1 

Phase 
A/R 

Au 147 A - - - - - - 639 A 
Ag 147 A 203 A 396 A 519 A 640 A 
Cu 145 A - - 400 A 517 A 640 A 

Key: A = anatase, R = Rutile, - spectrum weak due to thin film 
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Figure 125: Comparison of Raman spectra for Au, Ag and Cu doped dynamic TiO2 films (10 

passes), 400 °C 

 

5.2 .5 .2  Au ,  Ag  and  Cu  doped  T iO 2  f i lms ,  600  °C  

Raman spectra for dynamic TiO2 films formed in the presence of Ag, Au and Cu at 

600 °C display typical wavelengths for the tetragonal anatase phase of titania, 

peaks (144, 197, 394, 512, 635 cm-1), see fig. 126 and table 30. 

Table 30: Raman band frequencies for dynamic (10 passes) undoped and Au, Ag and Cu doped 

TiO2 films, (600 °C) 

Dopant Band 
1/cm-1 

Phase 
A/R 

Band 
2/cm-1 

Phase 
A/R 

Band 
3/cm-1 

Phase 
A/R 

Band 
4/cm-1 

Phase 
A/R 

Band 
5/cm-1 

Phase 
A/R 

Au 144 A 200 A 400 A 519 A 644 A 
Ag - - - - - - - - - - 
Cu 144 A 200 A 398 A 519 A 639 A 

Key: A = anatase, R = Rutile, - No spectrum/peak found 
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Figure 126: Comparison of Raman spectra for Au, Ag and Cu doped dynamic (10 passes) TiO2 

films (600 °C). 
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intensity trend at 600 °C is probably the same but unfortunately no Ag spectra 

could be ascertained on the sample.  

5.2 .5 .3  Summary  o f  Raman ana lys is  

Raman spectra for TiO2 films formed in the presence of Cu, Ag, Au, (400 °C) and 

Ag, Au and Cu, (600 °C) exhibit typical anatase phase peaks146, 147, 161.  According 

to the work by Yee Hong Chee, et al. the anatase phase should be dominant up to 

a synthesis temperature of about 700 °C but the rutile phase should still be formed 

between the temperature range of 420-700 °C; there is no apparent evidence of 

the rutile phase being formed at the higher temperatures here156.  The 

AACVD/CVD prototype reaction chamber head used does not confine the 

substrate within a confined or enclosed space, all gaseous vapours, at standard 

atmospheric pressure, are allowed to vent to a much larger area; the duration of 

the substrate under the reaction chamber is also short; resembling the commercial 

production process more accurately and therefore the conditions required for the 

formation of the rutile phase, even at higher temperatures, may not be supported.  

The XRD spectra were much more amorphous in nature whereas the Raman 

spectra are easier to identify with the anatase phase.  The presence of Au or Ag 

metallic/oxide phase was not expected as they are poor Raman scatterers.  The 

presence of Cu metallic/oxide either as Cu, CuO164-170, Cu2O
166-174 or Cu3O2

169, 170 

was also not detected165-190. 

5 . 2 . 6  C o n t a c t  a n g l e  a n a l y s i s  

5.2 .6 .1  Undoped  and  doped Au,  Ag  and  Cu T iO 2  f i lms ,  400-600  

°C 

Both the undoped and Au, Ag and Cu doped TiO2 films at 400 °C had very similar 

contact angles (θ~80°) before irradiation, after irradiation the Au and Ag doped 

TiO2 films contact angles (θ~37°) were slightly less than the undoped TiO2 control 

(θ~40°) and the Cu doped TiO2 film contact angle (θ~55 °) was significantly larger 

than the control, see fig. 127 a).  Similar trends were observed for the contact 

angles (θ>80°) before irradiation for the undoped and Au, Ag and Cu doped TiO2 
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films at 500 °C, see fig. 127 b).  When compared to the results at 400 °C there was 

a significant drop in contact angle after irradiation for both the undoped TiO2 film 

(θ~30°) and Au, Ag and Cu doped TiO2 films (θ = 24°, 26° and 30°, respectively) at 

500 °C, see fig. 127 b).  At 600 °C the contact angles for the undoped and Ag, Cu 

doped TiO2 films before irradiation were >105°; the contact angles for the Au and 

Al doped TiO2 films before irradiation were ~85-90°.  After irradiation there was a 

much more significant drop in contact angle compared to the initial non-irradiated 

results for all TiO2 films formed at 600 °C, with the Al doped TiO2 film contact angle 

of ~14° the lowest angle and in line with the undoped control (θ = 15°).  The Au 

and Ag doped TiO2 film contact angles after irradiation were about 20° and the Cu 

doped TiO2 film was 30°, see fig. 127 c).  The most obvious trend was the 

decrease in irradiated contact angle with increasing temperature, see table 31. 

The titania films either undoped or doped exhibit hydrophilic behaviour when 

irradiated but do not exhibit the expected superhydrophilicity often seen for many 

irradiated titania films (≤10°).  Increasing crystallinity of the microstructure 

corresponds to a decrease in the irradiated hydrophilic contact angle and an 

increase in the non-irradiated hydrophobic contact angles.  Water surface contact 

angles were measured 3 to 5 times to achieve an average with standard deviation 

(Stdv), the largest variations of Stdv were exhibited by static films, see table 32. 

Table 31: Comparison of irradiated θ    

 Irradiated Contact Angle, θ/°

Temperature/ °C Control  Au Ag Cu Al 

400 40 37 37 55 - 

500 30 24 26 30 - 

600 15 20 20 30 14

- no film made with this dopant at this temperature 
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Figure 127: Comparison of contact angles, θ, for undoped TiO2 and TiO2 films formed in the 

presence of Au, Ag and Cu (400-600 °C). 

a) 400 °C       

 

b) 500 °C 
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c) 600 °C 

 

Table 32: Average water surface contact angles (θ) for TiO2 films grown at 400 °C, 500 °C, 600 °C. 

Conditions and Dopants Contact Angle before irradiation/º Contact Angle after irradiation/º, 254 nm

Average Stdv Average Stdv 

600 ºC Control 111 17 15 6

Au 87 5 21 2

Ag 109 5 21 0

Cu 114 1 31 2

Al 90 12 14 2

500 °C Control 91 3 29 12

Au 84 1 24 1

Ag 86 1 26 1

Cu  84 2 30 3

400 °C Control 81 1 42 7

Au 81 6 37 9

Ag 84 2 37 7

Cu 82 2 54 11
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5.2 .6 .2  Summary  o f  con tac t  ang le  ana lys is  

The undoped and doped TiO2 films non-irradiated contact angles at lower 

synthesis temperatures (400-500 °C) gave very similar hydrophobic results 

(θ~80°)157, 192, however an increase in synthesis temperature (600 °C) increased 

the observed contact angle (θ>105°) becoming superhydrophobic, a result also 

seen in the recent work by Edusi (Edusi, et al., 2011)157.  Typical Float glass e.g. 

Pilkington Activ™, would be expected to have a water contact angle of about 

70°178, 193, 194.  The synthesis temperature and the dopant both have an effect on 

the irradiated value for the contact angle; increasing temperature reflects a 

decrease in the TiO2 irradiated contact angle (θ≤15°) as seen in many other 

examples of TiO2 thin film synthesis178, 180, 182, 183, 185, 193-203.   

The irradiated contact angle for the Cu doped TiO2 films appear to not go below 

30°, even when synthesis temperature is increased (600 °C), therefore this dopant 

appears to be detrimental for the superhydrophilic properties of TiO2 films.  At 

lower synthesis temperatures (400-500 °C) Au and Ag dopants either appear to 

enhance or at least have no significant negative effect on the superhydrophilicity of 

TiO2 films, at higher temperatures (600 °C) the irradiated contact angles rose 

slightly for Au and Ag doped TiO2 films (θ~20°), this is in contrast to other TiO2 

synthesis results in the literature where the irradiated contact angles for Ag and Au 

doped TiO2 drops ≤ 15°192, 193.  The Al dopant, if present, also appeared to have no 

detrimental effect on the irradiated contact angle of TiO2 film.  When compared to 

other literature results the type of dopant used on a dynamic moving substrate 

appears to have a more significant effect on the non-irradiated and irradiated 

contact angle than seen in other TiO2 low concentration doped films synthesised 

by either static substrate CVD methods157, 178, 182, 194-199, 201, Sol-Gel (Dip-Coating or 

Spray Pyrolysis via annealing/calcining)179, 185, 192, 193, 202, 203, radical-enhanced 

atomic layer deposition (RE-ALD)200 or Magnetron Sputtering199.  The increase in 

synthesis temperature correlates to an increase in the crystallinity of the film and 

the lower, more hydrophilic, surface water contact angles observed upon irradiation 

(254 nm). 
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5 . 2 . 7  P h o t o c a t a l y t i c  a n a l y s i s  

5.2 .7 .1  Resazur in  in te l l i gen t  ink  ana lys is  

The Photocatalytic activity of the films was also qualitatively measured using a 

resazurin-based (Rz) intelligent ink204, 205.  The intelligent ink was then spray-

coated evenly over the surface of the thin-films.  The arrays were subsequently 

irradiated under 365 nm UVA light in-between regular intervals of flat-bed digital 

scanning.  The redox dye in the intelligent ink is photo-reduced in a two-step 

mechanism from resazurin (Rz), royal blue, to resorufin (Rf), pink, to bleached 

intermediates, colourless; these reductions were monitored via UV-visible 

absorption spectroscopy.  If a film rapidly turned the ink pink and then colourless, it 

was highly photoactive, and if it took longer, it was less photoactive.  A comparison 

between reaction rates of undoped and doped Au, Ag, Cu and Al TiO2 films were 

made for the synthesis temperature range (400-600 °C).  Changes at λ ~630 nm 

are indicative of complete Rz conversion to Rf and changes at λ ~510 nm are 

indicative of a maximum formation of the Rf intermediate204, 205.   

5.2.7.1.1 Compar ison of  the change of  absorbance at  600 nm, 

Abs6 0 0  

The comparison of the change of absorbance at 600 nm (Abs600), at lower 

synthesis temperatures (400, 500 °C), follow an almost expected set of results, see 

figs. 129 a-a) i, ii b-b) i, ii where the Ag doped TiO2 films have the fastest observed 

absorbance changes but the results at a higher synthesis temperature (600 °C) 

appear to have very different absorbance trends, see fig. 129 c-c) i, ii: 

Abs600 trends:  

 400 °C Ag >Cu >Au >control    

 500 °C Ag >Au >Cu >control  

 600 °C Cu >Al >Ag >control >Au  
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The first-order plots give the following rate constants, k1, (s
-1), see table 33. 

Table 33: Table of rate constants, k1, (s
-1) for undoped and Au, Ag, Cu and Al doped TiO2 films, 

400-600 °C first-order rate plots. 

TiO2 

Film 

Rate constant (s-1)  

at 400 °C 

Rate constant (s-1)  

at 500 °C 

Rate constant (s-1)  

at 600 °C 

Control 1.46 x 10-2 1.50 x 10-2 1.16 x 10-2 

Au 1.40 x 10-2 1.05 x 10-2 1.38 x 10-2 

Ag 6.45 x 10-3 2.68 x 10-3 1.15 x 10-2 

Cu 9.04 x 10-3 1.12 x 10-2 5.19 x 10-3 

Al - - 8.05 x 10-3 

– no Al doped TiO2 films made at this temperature 

The rate constants, k1, (s-1) reported here are a relative measure they are not 

fundamental constants and will vary with light intensity and sample orientation.  

The results for the change in absorbance at 600 nm shows that both temperature 

and dopant have an effect on the order of fastest observed decrease. 

5.2.7.1.2 Compar ison of  UV-Vis absorbance, 400-600 °C 

A comparison of UV-Vis absorption spectra for undoped and doped Au, Ag, Cu and 

Al TiO2 films are described below for the synthesis temperature range 400-600 °C.  

The Rz indicator reaction has a characteristic decreased absorbance transition 

from Rz (royal blue; λmax ≈608 nm) to Rf (pink; λmax ≈584 nm) for 

photomineralisation of the Rf intermediate; therefore a peak shoulder shift within 

the red part of the spectrum to lower wavelengths signifies the transition from Rz to 

Rf 204, 205. 

5.2.7.1.2.1 UV-Vis absorbance, 400 °C 

Comparison of UV-Vis absorption spectra for undoped and Au, Ag and Cu doped 

TiO2 films (400 °C) are described below, see fig. 130 a-d).  The undoped TiO2 film 

has a substantial decrease in absorption in the red part of the spectrum within 1.75 

mins, the only doped film to come close to this result is the Ag doped film, at 4 

mins, films formed in the presence of Au (12.5 mins) and Cu (10 mins) appear to 

increase the time required for photomineralisation. 
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activity above the control all other dopants appear to have a detrimental effect 

on activity when compared to the undoped TiO2.  Interestingly once the 

synthesis temperature drops to 500 °C the dopant used appears to have a 

greater effect with the Au dopant appearing to enhance the molecule 

destruction rate more than Ag, a result also seen in the 400 °C films.  Extra 

absorbance peaks are observed with doped TiO2 films mainly synthesised at 

400 °C, these do not occur to the same degree with TiO2 films synthesised at 

higher temperatures.  This could be evidence of SPR peaks but the absorbance 

of the host matrix and/or the absorbance shift seen for the Rz to Rf conversion 

could well be masking this effect at higher temperatures or a reflection of the 

fact no dopants were included into the TiO2 host matrix in any significant 

quantity at higher temperatures (≥ 500 °C).   

Recent work by Kundu et. al, 2011, confirmed that the rate of photocatalysis is 

dependent upon film thickness and the addition of noble metal dopants Au/Ag 

did not give conclusive evidence of an enhancement of photocatalytic activity 

when compared to plain anatase glass161.  At higher synthesis temperatures 

(≥600 °C) the work here appears less dependent on film thickness whereas the 

thickness of the film at lower temperatures does appear to have a greater effect 

on photocatalytic behaviour.  The effect of the addition of dopants is more 

discernible at higher synthesis temperatures.  Ag, Au do appear to have an 

enhancement effect upon the photocatalytic rate161. 

Therefore generally photocatalysis of TiO2 films at: 

 Higher synthesis temperatures is dopant dependent 

 Lower synthesis temperatures is film thickness dependent 

However these are very generalised statements for this specific set of results. 

5.2 .7 .2  S tear i c  ac id  tes t  

The analysis of the photodegradation of stearic acid is a convenient method for 

determining a relative rate of photocatalytic activity of a film206-210.  
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Equation 6 

The overall reaction corresponds to: 

 

 

 

A solution of stearic acid (C17H35COOH, 0.1M) in methanol was used to deposit 

a coating of stearic acid by evaporation onto the titania films.  The titania films 

were irradiated with a UV lamp (254 nm, BDH, 2x8 germicidal lamp) at 15 min 

intervals for 1 hr and IR absorption spectroscopy was used to assess the 

concentration of stearic acid on the surface of the undoped and doped Au, Ag, 

Cu and Al TiO2 films (400-600 °C).  The lamp wavelength of 254 nm (4.88 eV) 

ensures that the radiation exceeds TiO2 band gap (3.2 eV).  Rates of catalysis 

(molecules cm-2 s-1) were calculated when the stearic acid decay profile fitted an 

appropriate rate law187, 194, 211, 212.  Typical stearic acid absorptions are given 

below, see table 34. 

Table 34: Stearic acid IR absorptions. 

Type of vibration Absorption/ cm-1 

C–H Stretch CH3 2958 

symmetric C–H stretch CH2 2923 

asymmetric C–H stretch CH2 2853 

Integration of the peaks gives an approximate concentration of stearic acid on 

the surface.  An integrated area of 1 cm−1 between 2800 and 3000 cm−1 

corresponds to approximately 9.7×1015 molecules cm−2, 211.  The stearic acid 

zero-order rate of decay can then be measured by the decrease in 

concentration over time.  The data is given in terms of the raw IR data plotted to 

show the decrease in integrated area over 1 hr.   

5.2.7.2.1 Comparison of  photocatalyt ic absorbance, 400 °C 

The absorbance of undoped and doped Au, Ag and Cu TiO2 (400 °C) films were 

compared.  The area under the curve corresponds to the amount of stearic acid 

C17H35COOH    +   26O2 18CO2   + 18H2O
TiO2/hv
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dopant to the Ag doped film decreased the destruction rate192.  Other work by 

Page et al., 2007, also demonstrated that Ag doped TiO2 films (Sol-gel, 

annealed 500 °C) are more photocatalytically active than undoped TiO2 films 

[zero-order rate: 5.85 x 1012 molecules cm-2 min-1, (9.75 x 1010 molecules cm-2 s-

1)]211.  There are many examples of photocatalytically enhanced TiO2 films by 

the use of Ag as a dopant and the work here confirms that in general Ag does 

enhance this physical property190, 192, 193, 213- 215.  Hence the CVD films here have 

amongst the fastest rate of photodegradation of RZ and stearic acid reported in 

the literature. 

5.2.7.2.5 Summary of  photocatalysis analysis 

The photoreduction of the Rz indicator ink is reduced irreversibly and should be 

less likely to be affected by the presence of oxygen.  The Rz indicator ink kinetic 

results in the form of the relative change in absorbance (λ = 600 nm) as a 

function of irradiation time, see figs. 133, a), b) and c), appear to be first order 

(rate constant = k) but this is subject to light intensity, sample orientation and 

possibly the direct reaction of O2 with photogenerated e- therefore the results 

should be treated as a measure of relative efficiency.  The first order kinetics 

appear to support the results found by Mills (Mills et al., 2008) that the rate-

determining step is the diffusion of oxidised Rz dye to the titania surface187.  For 

the Rz ink indicator results synthesis temperature affects photocatalytic rate; the 

general trend indicates that higher synthesis temperatures corresponds to an 

increase in photocatalytic activity, dopants do have an effect with the Ag doped 

TiO2 (600 °C) appearing to have the greatest effect on molecule destruction rate 

(4.08 x 1012 cm-2 s-1).  The RZ results also indicate that the rate of 

photocatalysis at higher synthesis temperatures is dopant dependent and the 

lower synthesis temperatures is film thickness dependent.  There may also be 

some evidence for the presence of SPR at the lower synthesis temperatures 

(400-500 °C). 

For the stearic acid destruction results higher synthesis temperatures (500-600 

°C)  increased the photocatalytic activity and dopants appeared to have a more 

significant effect particularly the Ag and Al dopants which displayed the fastest 

zero-order destruction rates (4.48 x 1012 cm-2 s-1, 6.27 x 1012 cm-2 s-1,  

respectively).  The choice of 254 nm lamp (4.88 eV) ensured that the energy 
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exceeded the TiO2 band gap (3.2 eV), a 365 nm lamp (340 eV) supplies energy 

that falls on the O2-Ti4+ boundary which is not as effective at electronic 

excitation as energy supplied above the boundary192.  Direct comparison with 

literature results for photocatalytic indicator ink tests are not always useful as 

these indicators are known to be sensitive to the amount of oxygen presence 

e.g. stearic acid and the amount of humidity present e.g. Rz ink, therefore the 

quantitative results stated here are valid for this set of experimental parameters 

but some caution is needed in comparison against other literature187.  

5 . 3 . 0  D i s c u s s i o n  o f  p r o t o t y p e  2  A A C V / C V D  r e s u l t s  

The results from the dynamic substrate samples of the AACVD/CVD synthesis 

technique (300-400°C) undoped/doped Au, Au and Cu titania thin films 

produced highly transparent clear film with a blue hint with visible transmission 

(65-90%).  The transmittance values at 500 °C lost some transmittance (55-

70%) which was regained at the higher synthesis temperature of 600 °C (75-

90%).  Therefore the results for transmittance values appears to display that 

both the presence of a dopant and synthesis temperature have an effect, with 

films synthesised at 500 °C having the most detrimental effect.  Interference 

patterns are displayed on all transmittance and reflectance values for undoped 

and doped Au, Ag, Cu and Al doped TiO2 films, 500-600 °C, indicating a change 

in thickness of the film across the substrate and film thickness calculations 

(165.7-224.5 nm) were calculated (500-600 °C).  Reflectance values did not 

show a particularly strong IR absorbance for any TiO2 film (~30%) for the whole 

temperature (300-600 °C). 

Very fine uniform morphology was observed for TiO2 films undoped and formed 

in the presence of dopants at lower temperatures (<500 °C).  At 500 °C large 

platelet conglomerated morphology was observed for TiO2 films formed in the 

presence of Au, Ag, Cu and Al dopants that differed from the smaller angular, 

aggregated structures seen in the undoped TiO2 film. At 600 °C the morphology 

was significantly different with dopants having a profound effect on the 

morphology with Au and Ag producing very different morphologies from the 

undoped TiO2 film and the TiO2 films formed in the presence of Cu and Al 

displayed very similar large platelet conglomerated structures also seen at 500 
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°C and for dynamic films in chapter 4.  Only one Au dopant was detected by 

EDX, at 400 °C, no other dopants were detected using EDX analysis. 

XRD analysis on all diffractograms exhibited the tetragonal anatase form of 

titania for undoped and doped Au, Ag, Cu and Al TiO2 films (400-600 ºC). TiO2 

films formed below 400 °C were not crystalline.  According to the ХRD 

diffractograms; the dopants Au, Ag, Cu and Al appeared to have little effect on 

the form of titania observed.  Raman spectra for TiO2 films formed in the 

presence of Cu, Ag, Au, (400 °C) and Ag, Au and Cu, (600 °C) exhibit typical 

anatase phase peaks.  As expected the presence of Au or Ag metallic/oxide 

phase was not detected they are poor Raman scatterers and the presence of 

Cu metallic/oxides was also not detected. 

The contact angles at lower synthesis temperatures (400-500 °C) gave very 

similar hydrophobic results (θ~80°), an increase in synthesis temperature (600 

°C) increased the observed contact angle (θ>105°) becoming 

superhydrophobic.  The synthesis temperature and the dopant both have an 

effect on the irradiated value for the contact angle; increasing temperature 

reflects a decrease in the TiO2 irradiated contact angle (θ≤15°).  Cu appears to 

be a detrimental dopant for the superhydrophilic properties of TiO2, as contact 

angles of <30°, were not achievable across the whole synthesis temperature 

range (400-600 °C).  Au and Ag dopants either appear to enhance or at least 

have no significant negative effect on the superhydrophilicity of TiO2 films (400-

500 C) with only a slight detrimental effect seen at higher temperatures (600 °C) 

The Al dopant appeared to have no detrimental effect on the irradiated contact 

angle of TiO2 film.   

The Rz indicator ink photocatalytic results appear to support first-order kinetics 

with mainly Ag doped films appearing to give the greatest enhancement to 

photocatalytic activity.  Both Rz and stearic acid indicator results indicate that 

higher synthesis temperatures corresponds to an increase in photocatalytic 

activity, dopants do have an effect with the Ag doped TiO2 (600 °C) appearing 

to have the greatest effect.  The rate of photocatalysis for doped films at higher 

synthesis temperatures appears to be dependent on the dopant used and the 

lower synthesis temperatures appears to be dependent on film thickness.  

There may also be some evidence for the presence of SPR at the lower 
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synthesis temperatures (400-500 °C).  For the stearic acid destruction results 

higher synthesis temperatures (500-600 °C) increased the photocatalytic activity 

and dopants appeared to have a more significant effect particularly the Ag and 

Al dopants which displayed the fastest zero-order destruction rates  

5 . 4 . 0  C o n c l u s i o n  f o r  c h a p t e r  5  

All films synthesized <500 °C were highly transparent, highly uniform with no 

obvious interference patterns and pale blue in colour. Very fine morphology was 

observed for films synthesised <500 °C.  The effect of both dopants and 

temperature on morphology at higher synthesis temperatures (>500 °C) is 

profound with dopants like Cu and Al reflecting the TiO2 controls with large 

agglomerated plate structures and Au and Ag creating much smaller angular 

nanoparticles.  Only one dopant, Au, in a TiO2 film synthesised at a lower 

temperature (400 °C) was detected by EDX analysis but the effect of the 

dopants on structure was obvious and may well indicate their presence at a 

level not detectable by the analytical methods used here.  XRD and Raman 

analysis confirmed that the presence of dopants or change in synthesis 

temperature did not affect the anatase crystal structure of the TiO2 host matrix. 

At lower synthesis temperatures (400-500 °C) the Au and Ag dopant appear to 

enhance the TiO2 films contact angle properties whereas the Cu dopant 

appeared to have a detrimental effect at all synthesis temperatures, the Al 

dopant appeared to have no significant effect.  The photocatalytic results 

appear to support first-order kinetics with mainly Ag doped films appearing to 

give the greatest enhancement to photocatalytic activity.  Higher synthesis 

temperatures corresponds to an increase in photocatalytic activity, dopants do 

have an effect with Ag dopant (600 °C) appearing to have the greatest effect. 

The rate of photocatalysis for doped films at higher temperatures appears to be 

dependent on the dopant used and the lower synthesis temperatures appears 

to be dependent on film thickness.  There may also be some evidence for the 

presence of SPR at the lower synthesis temperatures (400-500 °C).   
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C h a p t e r  6  

C o n c l u s i o n  

An investigation was carried out using both computational fluid dynamics 

modelling technique (κ-ε realizable, κ-ω SST, discrete thermophoresis) and 

AACVD, AACVD/CVD experimental results into the inclusion of noble metal and 

or n-type nanoparticles in metal oxides such as ZnO.  This was to generate thin 

metal oxide films with new or enhanced physical and chemical properties such 

as photocatalysis, resistivity and colour.  The CFD investigation reveals that the 

main force acting on the formation of such thin films was aerodynamic drag, at 

lower temperatures and aerodynamic drag with evaporation, at higher 

temperatures (600 °C), the more volatile the solvent the more evaporation 

influences the size of droplet required to reach the heated substrate surface and 

not thermophoresis, as previously assumed in some literature.  The 

thermophoretic effect affects droplets that are smaller than the required size to 

hit the surface and is not the main force of influence.  Therefore AACVD droplet 

size in the reaction chamber is crucial in whether or not a dopant reaches the 

surface of the substrate.  The separation of the CVD flow from the AACVD flow 

in the combined synthesis technique caused non-uniformity and complete lack 

of detectable noble metal or metal nanoparticles in the host matrix film.  The 

idea of increasing/decreasing flow rate to increase/decrease the rate of 

inclusion of nanoparticles was dismissed, this simply makes the nanoparticle 

material either leave the reaction chamber at an increased or decreased rate, it 

has no effect on the amount actually hitting the substrate surface and being 

included within the host metal oxide film.  Although the average experimental 

AACVD nebulised droplet size is an order of ten below (0.005 mm) the required 

modelled droplet size (0.04 mm) to reach the heated substrate surface at lower 

synthesis temperatures (400 °C) and two orders of ten below the required 

droplet size (0.1 mm) for higher synthesis temperatures (600 °C), useful 

experimental results have been obtained. 

The experimental work for ZnO thin films was carried out using AACVD (due to 

health & safety concerns of using the AACVD/CVD pilot plant rig, which is far 

more open to the ‘atmosphere’ than a single cold-wall quartz tube reactor within 
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a fume cupboard.  The results for these two metal oxide host matrices inferred 

that temperature was the main factor for inclusion of noble metal or metal 

nanoparticles but even low reaction temperatures did not produce much higher 

inclusion rates, somewhat confirming the results of the CFD investigation that 

the main force is still aerodynamic drag and aerodynamic drag with evaporation 

at higher temperatures.  The work carried out using the AACVD/CVD pilot plant 

rig using titania as the host metal matrix produced interesting results, confirming 

the CFD findings that separated AACVD/CVD flows in the reaction chamber 

produce non-uniform films with little or no detectable inclusion of noble metal or 

p-type dopants.  The faster two different synthesis raw material flows can be 

mixed the better the result, especially for dynamically moving substrates, this 

leads to uniform, reproducible results at set substrate synthesis temperatures 

(300-600 °C).  The second AACVD/CVD prototype tested, designed via CFD, 

produced highly, uniform, blue transparent titania host films with or without 

doping.  There was also some very small detectable dopant inclusion, Au, at 

400 °C, in one film, also indicating the small influence substrate reaction 

temperature has over the likelihood of nanoparticle dopant inclusion within this 

system.    

The AACVD films were mainly non-uniform indicating the difficulty of relying on 

any of the results being reproducible at a pilot plant or production type level for 

Float glass.  The ZnO host matrices had no inclusion of dopants or very low 

level of included dopants; the only films to really buck the trend were the mainly 

opaque ZnO host matrix films with Cu as the dopant, present as copper oxide 

(Cu2O).  Undoped and noble metal doped ZnO produced thin films with a strong 

preferred (002) crystal lattice orientation, this orientation is known to enhance 

conductivity, the addition of Al, as Al2O3, produced a preferred crystal lattice 

growth along the (101).  In the main ZnO undoped or noble metal doped 

produced spherical morphology; the Al dopant produced a range of 

morphologies. 

TiO2 was used as a test model for inclusion of noble metal and/or p-type 

dopants for the development of AACVD/CVD reaction head chambers primarily 

for a moving substrate, the first prototype had separate chambers for both the 

AACVD and CVD gas flows, the second prototype, based on CFD design 

allowed these gas flows to mix as soon as practicable.  Neither prototype 
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proved particularly successful at including any nanoparticles introduced through 

the AACVD system on a regular or uniform basis.  This was an expected result 

after the CFD results indicated that the droplet size required to reach the 

substrate surface was in the order of 10 magnitude too small, aerosol drag at 

lower temperatures and aerosol drag plus evaporation were the over-riding 

forces that any AACVD reaction head, open to the atmosphere, as these 

prototypes would be on a Float glass line.  Simply put AACVD, with methanol as 

the solvent, produces droplet sizes that are too small to overcome aerosol drag 

and evaporation using the nebuliser system available for this work. 

For prototype 1, no TiO2 film synthesised had significant amounts of any 

dopants present apart from one static Au doped titania film (400 ºC, 3 mins) and 

nearly all dopants were below the analytical detection level but the morphology 

and film thickness appeared to be affected by dopants.  Increasing either 

substrate time for static films or increasing the number of passes for dynamic 

films under the reaction chamber head exaggerated the agglomeration and size 

of the microstructure seen.  Columnar fractal microstructures were seen for 

static films.  A slight enhancement of superhydrophilicity was seen for one TiO2 

film formed in the presence of Cu, at 400 °C, all other films formed in the 

presence of dopants showed no enhancement of this property.  XRD and 

Raman spectra exhibited typical peaks for the anatase phase of titania.  XPS 

spectra exhibited typical titania composition and only detected very low level of 

Cu dopant (400 °C).  For prototype 2 all films synthesized <500 °C were highly 

transparent, highly uniform with no obvious interference patterns and pale blue 

in colour.  Very fine morphology was observed for films synthesised <500 °C.  

Morphology at higher synthesis temperatures (>500 °C) was affected by 

dopants, Cu and Al exhibiting similar platelet morphology to the TiO2 controls; 

Au and Ag creating much smaller angular nanoparticle microstructure.  One 

dopant, Au, in a TiO2 film synthesised (400 °C) was detected by EDX analysis 

but the effect of the dopants on structure was obvious and may well indicate 

their presence at a level not detectable by the analytical methods used here.  

XRD and Raman analysis confirmed that the presence of dopants or change in 

synthesis temperature did not affect the anatase crystal structure of the TiO2 

host matrix.  Both the RZ and stearic acid photocatalyst test results indicate that 
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photocatalysis appears to be enhanced by Ag in the precursor stream whether 

the element was detectable or not.  
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F u r t h e r  W o r k  

Further work would include the computational fluid modelling of cold-wall static 

reaction chambers for the influence of aerosol drag versus the influence of 

thermophoresis.  Design a complete new AACVD/CVD reaction chamber with 

aerosol drag in mind, probably place the reaction head at different angles to the 

substrate surface and place the AACVD inlets close to substrate surface with an 

enclosing ‘curtain’ type system to encourage the possibility of some inclusion of 

nanoparticles into the main metal oxide host matrix.  Develop the knowledge on 

solvent drop size necessary to reach the substrate surface for different solvents.  

Design a Spray pyrolysis/CVD combination head with CFD.  Experimental work 

would include further AACVD/CVD combined synthesis experiments with SnO2 

and ZnO for the effects of noble metal nanoparticles and/or p-type dopants on 

those metal oxide host matrices morphology and crystal orientation.  

Development and testing of new combination reaction AACVD/CVD and a spray 

pyrolysis/CVD prototypes based on CFD results.  Further experimentation with 

different aerosol nebulizers to produce larger droplet sizes would also be 

advantageous; one of the main obstacles for the AACVD precursors physical 

deposition onto the substrate surface is the critical droplet size, dependent upon 

the solvent system, required.  
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A p p e n d i x  2  

The Reynolds Number 

The Reynolds number is dimensionless that can give an indication of the 

transition point between laminar and turbulent flow for a particular system.  

Laminar flows have a low velocity with a low Re number, turbulent flows have 

low viscosity and high velocity with a high Re number. 

Reynold’s Number 

Equation 26 

Re  = ρνD/µ        (26) 

Where: ρ = fluid density, v = fluid velocity, D = tube diameter, µ = fluid viscosity 

Turbulent flow requires large applied pressures and that can lead to high energy 

losses. Find area of the burred inlet pipe where A = πr2, diameter 4.5 mm 

unburred, burred 3.5 mm, used burred pipe diameter for calculations 

Burred: Area = π.0.001752, A = 9.62 x 10-6 m2 

Conversion of flow rate l/min into m3/s 

1.0 l/min = 1.66 x 10-5 m3/s 

Conversion of flow rate, l/min, into velocity, m/s use the following 

Equation 27 

Velocity, v, m/s = Flow Rate of pipe m3/s      (27) 

    Area of pipe m2 

Convert actual flow rates used from l/min to m3/s: 

0.3 l/min = 5 x 10-6 m3/s, 0.6 l/min = 1.0 x 10-5 m3/s, 1.2 l/min = 2.0 x 10-5 m3/s, 

10.0 l/min = 1.6 x 10-4 m3/s 

For 0.3 l/min flow rate with a burred pipe: 

v = 5 x 10-6 m3/s  = 0.5197 m/s 

  9.62 x 10-6 m2    

v = 0.52 m/s 
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For 0.6 l/min flow rate with a burred pipe: 

v = 1 x 10-5 m3/s  = 1.039 m/s 

  9.62 x 10-6 m2        

v = 1.04 m/s    

For 1.2 l/min flow rate with a burred pipe: 

v = 2.0 x 10-5 m3/s = 2.079 m/s 

  9.62 x 10-6 m2        

v = 2.0 8 m/s   

For 10.0 l/min flow rate with a burred pipe: 

v = 1.6 x 10-4 m3/s  = 17.324 m/s 

  9.62 x 10-6 m2        

v = 17. 32 m/s     

Calculate Reynold’s number for actual flow rates used 0.6 l/min, density of air 

(1.1 kg/m3) with a burred pipe diameter 3.5 mm, a velocity of 1.04 m/s and the 

viscosity, 1.85 x 10-5 Pa s of air at 25 ºC:  

Re = 1.1 kg/m3 x 1.04 m/s x 3.5 x 10-3 m 

   1.85 x 10-5 Pa s       

Re = 216.43 

Calculate Reynold’s number for actual flow rates used 0.3 l/min, density of 

methanol, 791.4 kg/m3 with a burred pipe, diameter 3.5 mm, a velocity of 0.52 

m/s and the viscosity, 1.85 x 10-5 Pa s of air at 25 ºC:  

Re = 1.1 kg/m3 x  0.52 m/s x 3.5 x 10-3 m 

   1.85 x 10-5 Pa s       

Re = 108.22 

Theoretical flow rate from Re number 3000 gives a theoretical velocity for a 

burred diameter of: 

ρvD/µ = 791.4 kg/m3   x  v  x   3.5 x 10-3 m = 3000 

   1.85 x 10-5 Pa s  

 

v = 3000 x  1.85 x 10-5 Pa s      

    1.1 kg/m3 x 3.5 x 10-3 m 

v = 14.42 m/s 
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Convert 14.42 m/s into a flow rate l/min: 

Flow rate of pipe m3/s  = Velocity m/s x Area of pipe m2 

Flow rate   =  14.42 m/s      x  9.62 x 10-6 m2    

Flow Rate =  1.39 x 10-4 m3/s 

Convert m3/s into l/s 

1.39 x 10-4 x 1000 = 0.139 l/s 

Convert l/s into l/min 

0.139 l/s x 60  =  8.342 l/min 

Therefore from calculation a flow of approximately 8.32 l/min should give 

turbulent flow. 

Table 35: Flow rates used for turbulence modelling. 

Theoretical flow rate for 

modelling/ m/s 

Experimental flow rate/ 

l/min 

Significance 

17.39 10.0 Flow rate of CVD inlets with equipment 

14.42 8.34 Re = 3000 

0.52 0.3 Flow rate of AACVD inlet achieved with 

equipment 

1.04 0.6 Flow rate of AACVD inlet achieved with 

equipment 

2.08 1.2 Flow rate of AACVD inlet achieved with 

equipment 
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Figure 153
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