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Abstract

Heavy demands on the development of medical imaging modalities for breast cancer detection have

been witnessed in the last three decades in an attempt to reduce the mortality associated with the

disease. Recently, Digital Breast Tomosynthesis (DBT) shows its promising in the early diagnosis

when lesions are small. In particular, it offers potential benefits over X-ray mammography —

the current modality of choice for breast screening — of increased sensitivity and specificity for

comparable X-ray dose, speed, and cost.

An important feature of DBT is that it provides a pseudo-3D image of the breast. This is of

particular relevance for heterogeneous dense breasts of young women, which can inhibit detection

of cancer using conventional mammography. In the same way that it is difficult to see a bird from

the edge of the forest, detecting cancer in a conventional 2D mammogram is a challenging task.

Three-dimensional DBT, however, enables us to step through the forest, i.e., the breast, reducing

the confounding effect of superimposed tissue and so (potentially) increasing the sensitivity and

specificity of cancer detection.

The workflow in which DBT would be used clinically, involves two key tasks: reconstruction,

to generate a 3D image of the breast, and registration, to enable images from different visits to

be compared as is routinely performed by radiologists working with conventional mammograms.

Conventional approaches proposed in the literature separate these steps, solving each task indepen-

dently. This can be effective if reconstructing using a complete set of data. However, for ill-posed

limited-angle problems such as DBT, estimating the deformation is difficult because of the significant

artefacts associated with DBT reconstructions, leading to severe inaccuracies in the registration.

The aim of my work is to find and evaluate methods capable of allying these two tasks, which

will enhance the performance of each process as a result. Consequently, I prove that the processes

of reconstruction and registration of DBT are not independent but reciprocal.

This thesis proposes innovative numerical approaches combining reconstruction of a pair of tem-

poral DBT acquisitions with their registration iteratively and simultaneously. To evaluate the per-

formance of my methods I use synthetic images, breast MRI, and DBT simulations with in-vivo

breast compressions. I show that, compared to the conventional sequential method, jointly esti-

mating image intensities and transformation parameters gives superior results with respect to both

reconstruction fidelity and registration accuracy.
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Nomenclature

A Forward projection matrix. (First used in Equation 3.39 on page 90).

AT Backward projection matrix. (First used in Equation 3.40 on page 91).

c Speed of light in vacuum. (First used in Equation 2.1 on page 50).

F Fourier Transform. (First used in Equation 3.19 on page 79).

f Objective functional. (First used in Equation 3.41 on page 91).

g Gradient information. (First used in Equation 3.42 on page 91).

H Hessian matrix. (First used in Equation 3.65 on page 96).

h Planck’s constant. (First used in Equation 2.1 on page 50).

I Identity matrix. (First used in Equation 3.66 on page 96).

I0 Incident intensity. (First used in Equation 3.3 on page 71).

IA, IB Transmitted intensities. (First used in Equation 3.3 on page 71).

n0 Intensity of the incoming beam. (First used in Equation 2.5 on page 50).

nA Intensity of the output beam A. (First used in Equation 2.5 on page 50).

nB Intensity of the output beam B. (First used in Equation 2.5 on page 50).

P Projection. (First used in Equation 3.6 on page 73).

R Real number space. (First used in Equation 3.57 on page 93).

D Data discrepancy functional. (First used in Equation 3.58 on page 93).

I Interpolation operation. (First used in Equation 4.1 on page 100).
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L Lagrangian functional. (First used in Equation E.5 on page 220).

M Probability density function (PDF). (First used in Equation 5.29 on page 145).

N Adding noise operation. (First used in Equation 5.30 on page 145).

P Extra penalty functional. (First used in Equation 4.22 on page 111).

R Regularisation functional. (First used in Equation 3.58 on page 93).

S Similarity measurement. (First used in Equation 4.21 on page 110).

T Transformation operation. (First used in Equation 4.9 on page 104).

β B-spline interpolation basis function. (First used in Equation 4.8 on page 102).

δ(·) Dirac delta function. (First used in Equation 3.11 on page 74).

ι, ς Lamé constants. (First used in Equation 4.26 on page 112).

λ Regularisation parameter. (First used in Equation 4.22 on page 111).

ξ Extra penalty parameter. (First used in Equation 4.22 on page 111).

νf ESE to AGD dose conversion factor. (First used in Equation 2.7 on page 62).

ϕ Interpolation basis function. (First used in Equation 4.1 on page 100).

ζ Transformations. (First used in Equation 4.21 on page 110).

a Weight of lines of the ART method. (First used in Equation 3.26 on page 85).

C Relevant radiation contrast. (First used in Equation 2.5 on page 50).

D Quantity absorbed dose. (First used in Equation 2.6 on page 61).

M Unit mass of material. (First used in Equation 2.6 on page 61).

Dg Average Glandular Dose (AGD). (First used in Equation 2.7 on page 62).

E Energy, e.g., photon energy. (First used in Equation 2.1 on page 50).

e Charge of electrons. (First used in Equation 3.1 on page 71).

f Unknown intensities. (First used in Equation 3.26 on page 85).
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me Mass of electrons. (First used in Equation 3.1 on page 71).

p Projection data. (First used in Equation 3.26 on page 85).

R Fixed image. (First used in Equation 4.21 on page 110).

T Moving image. (First used in Equation 4.21 on page 110).

U Voltage. (First used in Equation 3.1 on page 71).

v Electron velocity. (First used in Equation 3.1 on page 71).

X Entrance Skin Exposure (ESE). (First used in Equation 2.7 on page 62).

u Displacement vector. (First used in Equation 6.23 on page 165).

∗ Adjoint operator. (First used in Equation 6.3 on page 160).

� End of proof. (First appears on page 205).

⊗ Convolution. (First used in Equation 4.8 on page 102).

7→ Maps to. (First appears on page 130).

† Moore-Penrose pseudo-inverse. (First appears on page 91).

? Minimised solution. (First used in Equation 3.40 on page 91).

× Multiplication. (First appears on page 50).
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Chapter 1

Introduction

With more than 0.6 million new cases in more economically developed countries each year [4], breast

cancer is the commonest non-skin malignancy carcinoma in women. It is a most baleful disease,

which is also one of the leading causes of female cancer mortality. In the United Kingdom (UK),

where age standardised incidence and mortality are the highest in the world [192], breast cancer is

the most prevalent malignant carcinoma. In 2008, a total of 48,034 new cases have been diagnosed in

the UK despite the fact that it is rare (341 cases) in around half the population (men). In addition,

the lifetime risk of developing breast cancer is 1 in 8 for women and 1 in 1,014 for men using the

Adjusted for Multiple Primaries (AMP) method. According to Cancer Research UK, breast cancer

incidence rates in women have increased by 51% from 0.75‰ in 1977 to 1.22‰ in 2006 [4]. Moreover,

incidence is strongly related to age, with 81% of cases occurring in women of 50-years-old and over.

There are fewer cases within the young age groups; however, it is still the most common cancer in

women under 35. By the age of 35 to 49, over 6,700 women are diagnosed with breast cancer each

year [2].

The normal adult female breast (Figure 1.1) weighs from 30 grams to over 500 grams depending

on personal habitus, age, pregnancy, lactation, menstruation, menopause, and other factors. It

contains an inconstant composition of subcutaneous fatty tissue, fibrous septa, and fibroglandular

elements. The breast is a large modified sebaceous gland that typically consists of 15 to 25 lobes.

These lobes are divided into multiple lobules, and each of the lobules includes 10 to 100 terminal

milk-secreting alveoli or acini. A single lactiferous duct, which exits at each lobule, is formed with

many tiny milk-transporting ductules. In addition, about 15 to 25 such ducts are merged at the

nipple, and the terminal duct and the acinus form the Terminal Duct Lobular Unit (TDLU, Figure

1.1). The vascularity of the intervening connective tissue is reduced in postmenopausal involution of

the breast because the lobular and alveolar structures regress. Eventually only small and occasional

35
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islands of functional breast parenchyma remain, surrounded by dense, scarred connective tissue [275]

[222].
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Figure 1.1: Left: The anatomy of adult premenopause women breast. The breast itself consists mostly of fat,

glandular structures and has no muscular tissue. Around 15 to 25 lactiferous ducts converge at the nipple.

The ribs are numbered from 1 to 6; Middle: The Terminal Duct Lobular Unit (TDLU) and normal duct cell;

Right: The anatomy of adult postmenopausal female breast. The vascularity of the intervening connective

tissue is reduced due to the regression of lobular and alveolar structures. The illustration is reproduced from

Jatoi et al. [129].

The breast anatomy is well documented in many research publications, but the aetiology of

individual breast cancer is still a mystery. Current research has shown that the cause of the disease

is strongly associated with genetic and environmental risk factors across certain populations. Most

breast and ovarian cancers are sporadic, are not inherited, but a small proportion of cases are. These

are the result of inherited predisposition due to mutations in the tumour suppressor genes BRCA1

and BRCA2 [149]. There is a considerable amount of literature on the relationship between mutational

spectra of specific genes and breast cancer heredity. Mutations in a number of genes such as BRCA1,

BRCA2, TP53, CHEK2, and PTEN are now known to cause susceptibility to breast and/or ovarian

cancer [201] [79] [308]. Overall, Ford et al. [79] reported that the majority (81%) of the breast-ovarian
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cancer families was due to BRCA1, with most others (14%) due to BRCA2 by mutation analysis in

237 families, each with four or more cases of breast cancer. They also claimed that the cumulative

risk estimation of breast cancer reached 28% by age 50 and 84% by age 70. A recent research on 300

probands1 by Walsh et al. [308] showed that 17% of them carried previously undetected mutations,

including 12% with genomic rearrangements of BRCA1 or BRCA2, 5% with CHEK2 mutations, and

1% with TP53 mutation.
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Figure 1.2: Four sub-figures above from left to right: Illustration of the normal cells inside the breast,

common microscopic abnormal variations, and breast cancer in situ leading to an invasive cancer; The sub-

figure below: Metastasis of breast cancer. The illustration is reproduced from Breast Cancer Booklet by Cancer

Council Victoria, Australia [3].

Breast cancer is among the most lethal cancers. A lifetime risk of women to contract the disease

is estimated to be 12.5%, higher for women born with mutations in BRCA1 or BRCA2. And many

other risk factors have been studied in the last decade [145] [257] [51] [192] [189] [48] [146] [71]. Linkage and

1proband, a.k.a propositus, is a term used most often in medical genetics and other medical fields to denote the
first member of a family to be diagnosed with a hereditary disease or trait.
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mutation analysis have proved the contribution of genes to breast cancer inheritance; however, there

remains largely unknown aetiology of this type of carcinoma. The magnitude of risk to women with

mutated genes is controversial, and it is studied by geneticists without a verdict yet. Whereas, studies

have shown that risk factors associated with breast cancer could be classified into several extensive

determinants. For instance, there are age, genetic, environmental, and exogenous and endogenous

hormonal factors. In addition, there are reproductive family history factors, and personal behavioural

considerations, e.g., diet, alcohol consumption and low physical activity. Furthermore, long latency

is consistent with a late onset that always relates to chemical carcinogenesis of the human being.

Substantively, breast cancer is a disease of the cells of the breast. In other words certain genes such

as the BRCA1 and BRCA2 control the process of growing new cells. These genes can replace worn-

out cells and heal damaged cells of the breast. Breast cancer may be caused by the mutation of these

genes. The mutation leads to an abnormality of cells growing or multiplying such as developing a

lump that can be benign (not cancerous) or malignant (cancerous). Benign lumps do not propagate

into other parts of the body. In contrast, malignant lumps, which are made up of cancer cells,

may spread to other organs. The spread occurs if no treatment is provided when the cells can be

constrained to their original place at the first developing period. This is called secondary cancer

or metastasis when the cells are transferred to a new place, and continue to grow and to form

another tumour (Figure 1.2). Most invasive breast cancers develop at the epithelial component of

the ducts (about 86% is ductal carcinoma in 2605 cases of invasive breast cancer). And sometimes

they are found at the alveoli of the lobules (about 14% lobular carcinoma in these cases) [29]. When

these atypical cells multiply within the duct, called Ductal-Carcinoma-in-Situ1 (DCIS), the risk of

developing cancer is much higher [23].

There is no known cure for breast cancer; however, this carcinoma can be avoided if precautions

are taken in time. Primary prevention of breast cancer, e.g., hormonal control and dietary inter-

vention, can do little help without a better appreciation of the aetiology of the disease at present.

Secondary prevention, i.e., screening a particular age group of women, can reduce mortality from

breast cancer. However, this will not result in a decrease in incidence and prevalence. Moreover, some

women will develop breast cancer even under aggressive prevention treatment. For these women,

early detection is required to minimise proliferation of the disease and maximise prognosis. Cur-

rently, the detection of breast cancer is enabled using X-ray mammography, and its complements,

e.g., breast Magnetic Resonance Imaging (MRI) and breast ultrasound [224]. The mammogram is

1In situ means to be confined to site of origin and no metastasis, e.g., intra-ductal. Normally, abnormal cells of
breast are confined to the ducts or lobules, and there are two types of in situ, i.e., Ductal-Carcinoma-in-Situ (DCIS)
and Lobular-Carcinoma-in-Situ (LCIS)
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still considered the gold standard for breast screening because it detects both micro-calcification

and masses. A breast MRI or a breast ultrasound may be done in combination with mammogra-

phy; however, neither is a replacement for mammography. Recently, Digital Breast Tomosynthesis

(DBT) gives us a new chance to obtain high-resolution pseudo-3D images of the breast [215]. Timely

decisions can be made between benign and malignant tumours when the lesions are still small by

applying DBT. On the contrary, the distinction is hard to see when the 3D layers are superimposed

as seen in 2D X-ray mammography images. Therefore, DBT has potential value to be utilised as an

additional imaging modality to perform the screening for patients with an abnormal mammogram.

Overall, DBT provides an insight into the fine details of the normal fibroglandular tissues and

abnormal lesions such as lumps, i.e., masses in the breast cancer context, and microcalcifications

by observing a pseudo-3D image. DBT avoids the superposition, which is usually found in X-ray

mammography. In addition, the radiation dose of a single DBT scan (approx. 1.6-1.8 mGy with 25

projections) is comparable to the dose of a two-view mammogram (approx. 1-2 mGy) because the

dose applied to each projection of DBT is much lower than a single mammogram employed [178].

Algorithms to aid the human observer process using DBT involve two key tasks: reconstruction

and registration. Various approaches have been put forward to separate these steps, solving them

sequentially. This can be effective if reconstructing using a complete set of data, e.g., in cone beam

CT, assuming that only simple deformation exists. Unfortunately, the sequential method suffers

from misregistration, on account of the fact that there are significant artefacts associated with DBT

reconstructions. Therefore, in this thesis, we hypothesise that, for DBT in particular, combining the

optimisation processes of reconstruction and registration into a single algorithm will offer satisfactory

for both tasks. Based on this hypothesis, we have devised a mathematical framework to combine

these two tasks iteratively and simultaneously, and have implemented both affine and non-rigid B-

spline registration transformation models as plug-ins. By applying our algorithm to various simulated

data, we demonstrate the success of our method in terms of both reconstruction fidelity and in the

registration accuracy of the recovered transformations. Furthermore, we speculate that the improved

registration accuracy will significantly aid the reading process.
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1.1 Problem Statement

The problem we address is to find and evaluate methods capable of allying the reconstruction and

registration of DBT, which will enhance the performance of each process as a result. Consequently,

we prove that the processes of reconstruction and registration of DBT are not independent but

reciprocal.

We thus propose innovative numerical approaches combining reconstruction of a pair of temporal

DBT acquisitions with their registration iteratively and simultaneously. To evaluate the performance

of our methods we use various digital computing phantom images, 3D uncompressed MRI data sets,

and simulated DBT data sets with in-vivo compression.

1.2 Research Objective

The leitmotif of this thesis is to extract more accurate reconstruction and registration results using

two temporal DBT-like data sets. We show that, in comparison to the conventional sequential

method, jointly estimating image intensities and transformation parameters gives superior results

with respect to both reconstruction fidelity and registration accuracy using affine transformation

model. In addition, we also incorporate non-rigid B-spline transformation model in our simultaneous

method, which shows promising results in recovering non-rigid deformations with preservation of the

reconstruction fidelity.

1.3 Contributions

The key contributions of this thesis will be:

/ a novel method that combines reconstruction and registration iteratively using two temporal DBT-like

data sets [332] [333].

/ a novel method that combines reconstruction and registration simultaneously using two temporal

DBT-like data sets [334] [335] [336] [337].
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1.4 Thesis Structure

Chapter 2 contains clinical necessity and medical physics background on breast imaging and DBT.

Chapter 3 surveys existing reconstruction methods, which are applicable in DBT, such as the Back-

projection (BP) based methods, iterative Algebraic Reconstruction Techniques (ART), and Least-

Squares (LS) estimation based methods. Chapter 4 outlines various aspects of image registration

techniques. In Chapter 5, the method of combining reconstruction and registration iteratively is pre-

sented, with relevant tests. Chapter 6 proposes a novel approach that performs the reconstruction

and registration simultaneously, with experiments and results. Chapter 7, finally, gives a conclusion

of this thesis. The whole structure of this thesis is summarised in Figure 1.3. (The manuscript of

this thesis was prepared using LATEX 2ε
1.)

Abstract

CHAPTER 1: Introduction
CHAPTER 2: An Introduction to Breast Imaging and DBT

CHAPTER 3: Tomographic Reconstruction and Its Applications 
in DBT

CHAPTER 4: Image Registration and Its Applications in DBT

CHAPTER 5: Iterative Reconstruction and Registration

CHAPTER 6: Simultaneous Reconstruction and Registration

CHAPTER 7: Conclusion

From Broad Introduction to 

Specific Chapters
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Figure 1.3: The summarised structure of this Ph.D. thesis.

1LATEX 2ε + PDFLATEX + Texmaker 3.1 under Opensuse 11.3. Some features are only available in the electronic
PDF version, e.g., animation and high-resolution images. In addition, some figures were processed using Microsoft
Office 2007, GraphPad Prism 5, and Inkscape 0.48.
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Chapter 2

An Introduction to Breast Imaging and DBT

The statistics of breast cancer incidence are the primary clinical motivation behind developing new

and improved breast imaging techniques such as DBT. Currently, mammography is the gold stan-

dard among modalities applicable to the screening and diagnosis of breast cancer by clinicians. In

addition, breast magnetic resonance imaging and breast ultrasound are prominent tools for breast

cancer characterisation and staging. In this chapter, we present a comprehensive discussion on these

mainstream techniques and other complementary breast imaging modalities, including breast com-

puted tomography and breast positron emission tomography. Furthermore, previous studies on DBT

demonstrate that this novel imaging technique plays an important role in evaluation and detection

of breast cancer.

2.1 Breast Imaging: An Overview

Surgical treatment has a long history as an invasive cure of breast cancer, but has used imaging

and screening for better investigation only since modern times. The earliest reference of surgical

treatment of breast cancer is The Edwin Smith Surgical Papyrus, which was a series of medical case

presentations written in Egypt between 3000 and 2500 BC [73]. In Europe, around the 18th and 19th

centuries, surgeons proposed an aggressive operative approach to treat breast cancer. The approach

removed part of the breast or the whole breast [129]. Until the beginning of the 20th century, the

diagnosis of breast cancer still relied solely on clinical observations. Thus, many cancers were large

at the time of diagnosis with a high spread of metastases. Without imaging and locating the breast

cancer, surgery was crude, treatment was limited to surgery, and the prognosis was often poor.

Nowadays, breast cancer imaging and screening, which enables us to detect the tumour at the early

stage when it is small, provides guidance to the surgery procedure. We introduce several modalities
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of breast imaging as follows.

2.1.1 Breast MRI

Nuclear Magnetic Resonance Imaging (NMRI) or Magnetic Resonance Imaging (MRI) has been a

valuable tool of imaging structures and functional activities for many parts of the human body since

the early 1980s. However, it was not widespread for breast imaging until 10 years ago. MRI is a

relatively new technology, which has been around for about 40 years, compared with over 100-year

history of X-ray radiography. Breast MRI, a.k.a., MR Mammography (MRM), can palliate the

problem of high mortality rate of breast cancer due to its sensitivity in detecting tumours as small

as 3mm in diameter [136].

The full name of MRI, Nuclear Magnetic Resonance Imaging, describes the technique, which is

fundamentally different from all other imaging techniques. The main concept is that if an atomic

Nucleus is placed within a static Magnetic field, it Resonates when a oscillating Radiofrequency

(RF) wave is applied at the particular frequency. In addition, an Image can be acquired from the

resonance signals while frequency and phase encoding can demystify the space information.

Normally, MRI systems are composed of a number of components. Firstly, there is a strong and

static magnetic field, which is measured by the unit of magnetic flux density, namely, Tesla. Secondly,

the RF transmitter and receiver coils are embedded. Three orthogonal and controllable magnetic

gradient coils, nuclear magnetic resonance spectrometer, and others are also integrated. Some of

these coils are placed layers upon layers within the MRI system with a bore at the centre of the

scanner. These coils create magnetic fields by passing electric currents through solenoids to detect

the energy given off by magnetic induction from the precessing of the atoms. In breast imaging,

optimised electrical signals are generated by tuning the specialised breast RF coils, which are always

bilateral nowadays. Compared to conventional unilateral breast MRI, bilateral imaging obtains the

images of two breasts in one view; thus, it facilitates the assessment of symmetry during screening.

The RF coils resonate at the Larmor frequency of hydrogen at the particular field strength of the

scanner. Therefore, it is not feasible to exchange the breast coil designed for a 1.5 Tesla scanner for

a coil used on a 3 Tesla system [106].

X-ray mammography and breast ultrasound remain the most frequently used techniques for

imaging the breast. However, MRI is a valuable addition to the diagnostic work up of a patient with

a breast abnormality or biopsy-proven cancer. This is due to its high sensitivity and effectiveness in

dense breast tissue. Another advantage of MRI is the validation of breast-conserving surgeries when
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the size evaluation is difficult in mammographic screening or parietal involvement is suspected. High

quality images of the breast can be obtained using dedicated MRI surface coils, as well. Yet the

major drawbacks of breast MRI is the low-to-moderate specificity, which in combination with high

sensitivity can lead to unnecessary biopsy, patient anxiety, and extra cost [205].

Additionally, contrast enhanced breast MRI, which possesses wider clinical applications as an ad-

junct diagnostic procedure, is becoming increasingly important [91]. It is effective for detecting the

carcinoma at preliminary stage and planning early treatments for high-risk women. Also, it is supe-

rior to mammography in demonstrating diffuse and multi-focal tumours. Contrast enhanced breast

MRI has been investigated since late 1980s for the patients with biopsy of proven carcinomas [226].

Consequently, breast cancer detection and diagnosis have been enhanced significantly following the

intravenous administration of contrast material such as Gadolinium Diethylene-Triamine-Pentaacetic

Acid (Gd-DTPA). The increased signal from the blood has been produced after the uptake within

the first 5 minutes.

In 1973, Lauterbur [164] reported the first MRI results in Nature, which resolved the sources of

NMR signals into images. However, the first attempt on a human took place in 1977 [90], and there

have been pioneer studies on breast MRI since the 1980s. McSweeney et al. [194] have demonstrated

that breast cancer significantly depends on different relaxation times in benign and malignant tissues.

Kaiser [135] has reported the initial clinical results of MRI for the female breast, which has indicated

that MRI allows non-invasive detection and diagnosis of benign and malignant diseases of the breast.

In 1986, Dash et al. [55] showed that MRI was superior to mammography in differentiating solid

from cystic lesions and equivalent to mammography in providing information regarding different

parenchymal patterns. In addition, MRI correctly identified 18 of 21 surgically proven carcinomas

of the breast, and mammography identified 19 of these cases. However, the major disadvantage

of MRI was its inability to show calcifications, benign or malignant. The early hope of clinical

breast MRI was that tumours could be discriminated from fibroglandular tissues and benign breast

lesions based on their various signal intensities in T1- or T2-weighted images. Breast cancers possess

higher T1 and T2 values than the normal fibroglandular tissues, and they have lower values than the

benign breast lesions. Therefore, breast cancers are found to be darker than normal fibroglandular

tissues in T1-weighted images but they are brighter in T2-weighted images. Furthermore, there is

significant overlap between the T1 and T2 values of the tumours and benign breast lesions such as

fibroadenomas [241] [68] [194] [315] [106].

Since the middle 1980s, the rare earth element gadolinium (Gd), which was chelated by a molecule

to make Gd-compound non-toxic, has been employed as the contrast agent for MRI [312] [31]. In 1986,
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Heywang-Köbrunner et al. [113] reported the first usage of Gd-chelates to help breast cancer detection

in MRI, and diagnostically difficult cases have benefited greatly from this enhancement of MRI and

its use as a supplement imaging technique [114]. In 1990, Stack et al. [273] suggested that dynamic

contrast-enhanced MRI (DCE-MRI) showed promise in the further characterisation of breast tissue,

particularly for the identification of breast cancer. Subsequently, Heywang-Köbrunner [111] [112] and

his co-workers [115] showed that DCE-MRI could get significant diagnostic gain if it was appropriately

applied and used for selected indications. In addition, the development of commercial biopsy coils

was essential in order to exploit the full potential of DCE-MRI. Degani et al. [57] proposed a novel

method of mapping pathophysiological features that might aid diagnosis and prognosis assessment,

while the high spatial resolution improved the capacity to detect smaller lesions. Kuhl et al. [159]

examined 266 breast lesions with a 2D dynamic MR imaging series and subtraction postprocessing.

They concluded that the shape of the time-signal intensity curve was an important criterion in

differentiating benign and malignant enhancing lesions in DCE-MRI of the breast.

Furthermore, relevant medical image processing, modelling, and analysis techniques have flour-

ished since the development of MRI. Rueckert et al. [245] investigated the free-form deformation

based registration of breast MRI. They combined a global affine model with the local breast motion

modelled by B-splines, which achieved much better results than rigid or affine registration schemes.

Adipose, fibroglandular and skin tissues form the most part of the breast; therefore, breast tissue

deformation modelling is critical in many medical applications. In [250] Samani et al. devised a finite

element based biomechanical method to model the breast, and they obtained good results with rea-

sonable validation using breast MR images. Orel and Schnall [219] reported that the sensitivity of MR

imaging for the visualisation of invasive cancer approached 100%. They also described the potential

pitfalls and limitations of DCE-MRI, and in particular that it is a costly technology. Warner et al.

[310] did a comparison work of breast MRI, mammography, and ultrasound for surveillance of BRCA1

and BRCA2 mutation carriers (196 women, aged 26 to 59 years). The results showed that breast

MRI might be superior to mammography and ultrasound for the screening of women, who had high

risk for hereditary breast cancer. Hata et al. [102] drew the conclusion that DCE-MRI could diagnose

breast cancer as accurately as ultrasonography, and it was more accurate than mammography, and

patterns of time-intensity curves correlated with tumour histology. Kuhl summarised the current

status of the DCE-MRI, and its clinical applications [158] [157]. Saslow et al. [252] published the

American cancer society guidelines for breast screening with MRI as an adjunct to mammography.

Since 2008, several studies, for instance, [213] [170] [346] [53] [258] [214], have been conducted on tissue

segmentation and lesion classification of breast MRI using statistical analysis such as fuzzy C-mean
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(FCM) classification and support vector machines (SVMs). Gal et al. [81] reported a dynamic nonlo-

cal means algorithm to denoise DCE-MRI effectively. More recent research [253] [177] [290] highlights

the validation work for the registration and simulation of mammogram using breast MR images.

2.1.2 Breast Ultrasonography

Ultrasound, which is a cyclic sound pressure with a high frequency, at approximately 20 kilohertz

(kHz), is greater than the upper limit of human hearing [318]. This upper limit varies in different

individuals, but 20 kHz is a useful lower limit to define ultrasound. In addition, applications of ul-

trasound are widely used in many different fields, e.g., to penetrate a medium, measure the reflection

signature, supply focused energy, and others. Ultrasonography, namely sonography, is an imaging

technique that uses high-frequency sound waves to outline a specific part of the body. The echo of

the sound waves produces an ultrasonography sonogram. The most well known application of this

technique is to image foetuses in the human womb, and there are a plenty of other applications such

as breast ultrasonography. Breast ultrasound is a complementary imaging modality, which evaluates

breast lumps that are found through an exam or mammogram if there are some other reasons to

suspect a possible abnormality. Furthermore, it is useful to determine whether a breast lump is

solid or fluid filled. Ultrasound is particularly effective in characterising lesions in dense breasts,

which might not be visible using X-ray mammography. When a mammogram or MRI is not feasible

for the patients with contraindications, e.g., implants inside the body such as a cardiac pacemaker,

ultrasonography provides another option. However, ultrasonography is not a substitutable tool of

cancer screening for mammography or MRI.

Since the early 1950s, breast ultrasonography has been applied to examine and evaluate palpable

breast masses. It is fast, painless, inexpensive and harmless with no radiation, and it has provided

a lower rate of inadequate sample collection than clinically guided biopsy. Additionally, breast

ultrasound guided fine-needle biopsy has a lower risk of pneumothorax, and the ultrasonography can

guide the needle sampling for all palpable lesions.

Despite this, the sensitivity and specificity of breast ultrasonography can vary enormously de-

pending on the experience of the operator and the equipment used. Moreover, about 1% to 2% of

palpable lesions may not be identified [64]. Small lesions close to the chest wall have been found

more difficult to perceive because of the backscatter from the underlying lung. These lesions may

also be masked by the acoustic shadows of a large amount of sound-absorbing fibrous tissue among

the glandular tissue.
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2D ultrasonography has suffered from several disadvantages. For example, 2D ultrasound imag-

ing requires that users mentally combine many images to form an impression of the 3D anatomy

and pathology. Moreover, it has been difficult to relocate anatomic positions and orientations of the

patient. In the past decade, advances in high-performance computing and graphics processing unit

based visualisation make 3D ultrasound imaging (in real time or near real time) a viable technology

[282]. There are four 3D ultrasound imaging methods, namely, mechanical scanning, free-hand scan-

ning with and without position sensing, and 2D array scanning for dynamic 3D ultrasonography,

i.e., 4D ultrasound imaging [282]. An ultrasound-imaging prototype consists of a data acquisition,

a preprocessing step, a segmentation process, a shape descriptor, and diagnosis results. Figure 2.1

shows a typical procedure of 3D ultrasound imaging.

Figure 2.1: The image acquisition process is performed by rotating the transducer 360◦, and the full 3D

volume of the breast is covered. Two images, which are acquired 180◦ apart, are registered to represent the

same 2D image plane in the 3D volume.

In 1951, Wild and Reid [319] employed ultrasonography to detect palpable lumps of the breast

using an A-mode apparatus. They demonstrated the potential usage of ultrasonography for the

differentiation of cystic from solid lesions. From 1970s to 1980s, several researchers such as Jellins et

al. [130], Kobayashi [151], and Cole-Beuglet [49] reported the innovation of small hand-held transducers

with a high frequency range from 7.5mHz to 12mHz. The hand-held transducers enabled rapid

real-time examination of the whole breast. In addition, these studies improved ultrasonography

quality, which allowed the visualisation of impalpable tumours, and distinguished benign lumps from

malignant carcinomas. In the mid-1980s, McSweeney and Murphy [193] proposed the developments

of B-mode scanning and dedicated automated water path scanners. Further research, which was

carried by Stavros et al. [274], showed promising details by analysing the ultrasound features of

both benign lumps and malignant breast carcinomas. Two famous review papers were published by
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Nelson and Pretorius [212], and Fenster et al. [74], which summarised the feasibility and utility of

3D ultrasonography. Many publications showed prominent results on 3D breast ultrasound (BUS)

imaging. The 3D reconstruction, in particular parallel planar reformatted sections, represented a

valuable adjunct to the characterisation of breast masses [242] [313] [10].

Both inter- and intra-modality registration are critical steps for the automatic analysis of 3D

BUS data. Firstly, artefacts and speckle interfere with the automatic analysis of the 3D data, and

preclude the visualisation and volume estimation of internal 3D structures. Secondly, 3D compound-

ing of images from multiple views can improve the data quality and enable high spatial resolution.

However, large distortion significantly limits resolution during the summation of images. Moreover,

hand-induced transducer motion is another reason for artefacts in breast ultrasound images [63].

Furthermore, as breast ultrasound is a complementary technique, it is always combined with other

imaging modalities such as mammography [20] and breast MRI [228] [287]. Therefore, intra-modality

registration is necessary for the correction of motions, which often occur during the imaging of the

breast in vivo. Moskalik et al. [206] presented an early work on the motion correction for the 3D

compound breast ultrasound. Rohling and Berman [240] proposed a fully automatic registration

method, which was robust and accurate using in-vivo 3D BUS data. In [155] Krücker et al. applied

global full affine and local thin-plate warping based registration for both phantom and in-vivo data,

and achieved 0.31mm and 0.65mm average error. Furthermore, Xiao et al. [325] described a B-spline

registration method for 3D free-hand ultrasound data, and the registration accuracy (about 0.19mm)

was evaluated using phantom data. More recent research has focused on sequential registration of 2D

slices of a 3D BUS image (about 0.14mm misregistration) [26] and spatial registration of temporally

separated 3D greyscale and Doppler BUS images [210].

Segmentation plays an important role in breast cancer characterisation, classification, and it fur-

ther assists detection and diagnosis. Gefen et al. [84] applied receiver operating characteristic (ROC)

analysis to ultrasound tissue characterisation, which greatly reduced the need to perform biopsies

of benign breast tumours. In [183] Madabhushi and Metaxas proposed an automated segmentation

scheme for ultrasonic breast lesions. Noble and Boukerroui [216] surveyed segmentation methods

for B-mode ultrasound images. Several studies, for example, [124] [65] [179] [181] [42] [180], have been

carried out into automated methods for computer-aided detection and diagnosis (CAD) in breast

ultrasound.
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2.1.3 X-ray Mammography

Electron kinetic energy, which is converted into electromagnetic radiation, produces X-rays. Figure

2.2 is a schematic diagram of an X-ray tube with the basic components. In a vacuum envelope, a

high voltage source is applied to the two electrodes, namely the cathode and anode. The cathode is

negatively charged, and is the source of electrons. The anode is positively charged, and is the target

of electrons. The electrons, which travel from the cathode to the anode to acquire kinetic energy,

are accelerated by the electrical potential difference, i.e., the voltage measured in Volts (V). The

kinetic energy attained by an electron is proportional to the voltage between the cathode and the

anode [34]. Coulombic forces attract and decelerate the electron, which produce a significant loss of

kinetic energy, and change the trajectory of the electron. Consequently, an X-ray photon, which is

produced according to the conservation of energy, possesses the energy equal to the kinetic energy

lost by the electron. This radiation is also known as bremsstrahlung, a German word for braking

radiation.

X-rays

Water In

UaUh

Water Out

High Voltage Source (30-100kV) Electrons

Tungsten TargetHeated
Tungsten
Filament
Cathode

Vacuum Envelope

Cooling

Copper Anode
Lead Shield Absorbing Most X-rays

Figure 2.2: Scheme of a basic X-ray tube consists of a source and target of electrons, a vacuum envelope,

and connection of the electrodes to a high-voltage source.

The wavelength of an X-ray is of the order of an Ångström (10−10m = 0.1nm). The corresponding

photon energies, which are usually measured in electron Volts (eV) or Joules (J), are of the order of

keV (1eV ≈ 1.602 × 10−19J) [280]. The energy E of a photon with frequency freq and wavelength

wL is

E = h× freq =
hc

wL
, (2.1)
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where h is Planck’s constant (6.626×10−34Js) and c is the speed of light in vacuum (2.998×108m/s),

and hc = 1.2397× 10−6eVm [280].

Figure 2.3 shows the basic principle of mammography through a simple model of a breast [229].

The breast model consists of normal breast tissue and a structure of interest, e.g., a tumour, a

microcalcification, or a normal breast anatomy.

Therefore, the intensities of the X-rays transmitted along the two paths are nA and nB, which

are defined by two X-ray attenuation coefficients µ and µ′ via

nA = n0e
−µz (2.2)

nB = n0e
−µ(z−a)−µ′a, (2.3)

in which n0 expresses the intensity of the incoming beam, and the relevant radiation contrast C is

C =
nA − nB

nA + nB
(2.4)

=
1− e(µ−µ′)a

1 + e(µ−µ′)a . (2.5)

z a

A B

Normal
Breast
Tissue

Structure
of Interest

Figure 2.3: A simple model of breast, which contains normal breast tissue and a structure of interest, shows

various X-ray transmissions in two different paths A and B. The mean number of X-rays transmitted along

the two paths are nA and nB. The thickness of the breast and the structure of interest are denoted by z and

a. Light travels in straight lines in a material of constant refractive index.

The apparatus of mammography has evolved over the last 40 years. Figure 2.4 illustrates a typical
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state-of-the-art prototype system of mammography. It shows the common features of the standard

characteristics that may vary from one manufacturer to another. The mammographic X-ray tubes use

a rotating anode design, and molybdenum is the most common anode material in order to generate

soft X-rays. However, rhodium and tungsten targets are also used. Characteristic X-ray production

is the major reason of using molybdenum and rhodium. The characteristic radiation occurs at

17.5keV and 19.6keV for molybdenum, and at 20.2keV and 22.7keV for rhodium. In addition, the

orientation of the cathode-anode axis is along the chest wall to nipple direction because the anode

self-filtration results in the heel effect. This causes a significant drop in X-ray intensity on the anode

side. Thus, the chest wall of the breast (the thicker part of the breast) is placed on the cathode side

to help equalise the X-ray transmission with greater penetration.

Focal spots, ranging from 0.3mm to 0.4mm, are applied for non-magnification contact imaging

when the objects are close to the sensor surface without intervening optics. On the other hand,

magnification imaging uses a smaller size of the focal spot, e.g., 0.1-0.15mm. The source to image

distance (SID) and source to object distance (SOD) determine the magnification factor (1.5x to 2.0x)

(Figure 2.4). Longer SIDs reduce the influence of the focal spot size on resolution [34].

Normally, filters are used in a mammographic system. For instance, a 0.03mm thick molybdenum

filter with a molybdenum target is named Mo/Mo, or a 0.025mm thick rhodium filter with a rhodium

target is denoted by Rh/Rh. A molybdenum target with a rhodium filter, i.e., Mo/Rh, can be used

as well, but there is generally no Rh/Mo filter combination. The filter reduces unnecessary exposure,

and enhances the contrast sensitivity, and it is tuned to produce an optimised spectrum for specific

breast conditions.

A compression is applied to the breast in order to reduce motion blurring and scattered radiation.

This reduces radiation dose and visibility issues due to overlapping breast tissue. A 10 to 20 Newtons

(22 to 44 pounds) force is typically applied for the compression, and is the main reason for patient

discomfort and concern during mammography scanning.

An anti-scatter grid absorbs the scattered radiation and improves contrast sensitivity, but in-

creases dose. Phosphor screen and film receptor, or digital detector can be deployed for the mam-

mography system. For example, a typical screen-film cassette, which has a sandwich structure,

includes two intensifying screens that are placed inside leaves of both the top and the bottom cas-

sette. In addition, there is a sheet of film base at the centre with emulsion coated between the base

and the screens. Many different types of detectors are used for digital mammography. Figure 2.5

shows an illustrative plot of the phosphor flat panel detector system based on a large glass plate. The

scintillator, which is a key component of the detector, is made of a material that exhibits scintillation.
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Figure 2.4: An illustration of a typical mammography system with gantry. From top to bottom, it consists

of an X-ray tube anode, the focal spot, a filter, a compression paddle, an anti-scatter grid, and a receptor.

Firstly, the X-ray tube anode of the mammography apparatus is made of molybdenum material, or a dual

material anode with an additional rhodium track. Most X-ray tubes have a tungsten material anode; how-

ever, materials such as molybdenum and rhodium are used because they yield a nearly optimal characteristic

radiation spectrum for breast imaging. Secondly, a typical x-ray tube for mammography has two selectable

focal spots for contact imaging and magnification imaging. The nominal size 0.1mm is small in order to

reduce the geometric blurring caused by the magnification. Thirdly, most of the X-ray machines use alu-

minium to filter the x-ray beam to reduce unnecessary exposure to the patient. However, mammography uses

molybdenum or rhodium filter to optimize the spectrum for specific breast conditions. Next, the compression

is essential to reduce the radiation dose and overlapping breast tissues. Furthermore, an anti-scatter grid is

applied to absorb the scattered radiation, and improves the contrast sensitivity. Lastly, phosphor screen and

film receptor, or digital receptor is employed for the mammography system.
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Scintillation is the property of luminescence when the scintillant material is excited by ionising

radiation such as X-ray [317]. CsI(Tl), i.e., caesium iodide doped with thallium, which is one of

the brightest scintillators, absorbs the X-ray photons, and converts their energy into light photons

emission. There are many other materials, which can be used as scintillators such as CdWO4, i.e.,

cadmium tungstate, xenon gas and others.
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Figure 2.5: Left: Schematic of a flat panel detector with CsI(Tl) scintillator, and the amorphous silicon

detector array (a-Si sensor matrix). The individual detector element is optimised for high photon detection

efficiency, and the structure with a Thin-Film Transistor (TFT) readout element is enlarged as illustrated in

the details. Top right: An electron microscope view of the CsI(Tl) needles that constitute the scintillator layer

[83]. The X-ray photons are produced by the X-ray tube, and they go through the patient and the scintillation

layer converts them to visible light photons. Then these visible photons reach the array of photodiodes or

Charge-Coupled Devices (CCDs), and output the electrons. Amorphous silicon or a selenium layer receives

these electrons, and generates the electronic image data. An Analog-to-Digital Converter (ADC), which

converts the voltage to a digital number, is used to produce the digital image. Bottom right: Photo of a flat

panel detector [83].

On the 8th November, 1895, Wilhelm Conrad Röntgen, a German professor at the Julius-

Maximillan University, discovered the X-ray. His original manuscript On a New Kind of Ray (Über

eine neue Art von Strahlen) was published a few days later outlining the essential features of X-ray,

and he was awarded the 1st Nobel Prize for physics in 1901. The first attempt on X-ray examinations

for breast cancer was published in 1913, when a surgeon, Salomon realised a roentgenological and

histological study on 3,000 amputated breasts following mastectomies at Charité University Hospi-
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tal in Berlin [249]. The work demonstrated invasive characteristics of breast cancer including breast

calcifications and occult cancers [101]. This is the fundamental work of mammography, and only few

studies were carried out without much improvement until the 1940s.

From 1947 to 1970, progress was made on roentgenological results associated with clinical cor-

relation. Leborgne [166] did the first accountable research for the wide development of this method.

Many American and European radiologists contributed from 1951, and this is known as the second

period of mammography development. The first article on X-ray breast examinations was published

nearly a hundred years ago. However, the mammography we understand nowadays, using a dedicated

X-ray unit with a molybdenum target and breast compression devices, was developed in 1967 by

Gros and his co-workers in France [93].

During the last 40 years, the third period of mammography development emphasised the value

of this technique for the detection of breast cancer. Since 1970, various breast-screening groups have

been set up [225]. From 1973 to 1978, cosponsored by the American Cancer Society (ACS) and the

National Cancer Institute (NCI), the Breast Cancer Detection Demonstration Project (BCDDP) has

screened asymptomatic volunteer women with mammography and clinical breast examinations. The

project has involved 27 sites in the United States of America (USA). The Bureau of Radiologic Health

has developed protocols to monitor radiation exposure during mammography. Shortly thereafter,

the American College of Radiology (ACR) established the first guidelines for mammography of

asymptomatic women in 1976. In Sweden, two screening programs in Falun and in Malmö started

in 1977 [285]. The Canadian randomised controlled clinical trial was begun to determine if screening

mammography would be beneficial for women under the age of 50 [101]. In the UK, the National

Health Service Breast Screening Programme (NHSBSP) was initiated pursuant to the Forrest Report

published in 1986 [2]. The report recommended NHSBSP to offer three-yearly mammography to

women aged 50 to 64. The routine has established the capability of mammographic screening to

detect more cancers than using physical examination alone. In 1988, the world’s first national breast

screening programme was set up in England. The programme has invited more than 110,700 women

between the ages of 50 and 64 for screening. Since 2004, all UK women aged 50 to 70 who have

registered with a GP are invited for screening every three years. The screening process is organised

by dedicated professionals at special screening sites. Women are offered two view mammography,

both Cranio-Caudal (CC) and Medio-Lateral Oblique (MLO) views, which are now used at every

screen since 2003 [4].

There are on-going discussions and arguments about the limitations of mammography since

its development a century ago. A major limitation is that the detection of breast cancer is not
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trustworthy by mammography, particularly for women with heterogeneously dense breasts. Full-

Field Digital Mammography (FFDM) is a recent development of conventional screen-film X-ray

mammography almost exactly 10 years ago [22]. Compared to traditional Screen-Film Mammography

(SFM), FFDM promises improved image quality with enhanced contrast of dense areas of the breast.

FFDM also facilitates different aspects of medical information technology in mammography such as

image viewing, and the use of Picture Archiving and Communications Systems (PACS). In addition,

FFDM allows the application of Computer-Aided Detection (CAD), and enables the optimisation of

image acquisition, image processing and image viewing steps separately. On the other hand, in SFM,

the film serves simultaneously as the image receptor, display medium and long-term storage [297].

Furthermore, combining FFDM and SFM using double imaging and double reading can improve

the cancer detection. Kopans [153] showed that double reading could reduce the oversight rate by

5%-15%. In [171] Lewin et al. suggested that combining double imaging and double reading was able

to detect 39% more cancers than applying single imaging or single reading mammography.

Studies of the comparison between FFDM and SFM have shown that there is no statistical

significance in cancer detection observed between the two methods, and the recall rate of FFDM and

SFM has been noted with various results by different researchers [173] [58] [148] [339] [100]. Lewin et al.

[173] reported that no obvious difference in cancer detection rate was observed between FFDM and

SFM according to the results of 4,945 paired examinations. Additionally, FFDM led to a significantly

lower recall rate than SFM (11.5%, 568 of 4,945 for FFDM in comparison to 13.8%, 685 of 4,945 for

SFM with P < 0.001 by McNemar’s χ2 tests). Both FFDM and SFM encountered false-negative and

false-positive findings with similar ROC analysis curves (The positive biopsy rate for cancer detection

is 30%, 21 of 69 for FFDM in comparison to 19%, 22 of 144 for SFM). More publications, for example,

[174] [266] [265] [267] [264], showed analogous results in further population-based studies. Skaane et al.

confirmed that cancer conspicuity analysis was equal with both modalities. Nevertheless, they also

observed that the recall rate for digital mammography was slightly higher than that for conventional

mammography. This observation was attributed to a learning curve effect. In 2005, Pisano et al.

[230] compared the diagnostic performance of FFDM and SFM for 49,528 asymptomatic women.

Their results showed that the overall diagnostic accuracy of FFDM and SFM is comparable. In

addition, although FFDM provided only a modest improvement over SFM, FFDM obtained better

accuracy in some subgroups, for example, women under the age of 50, women with dense breasts,

and young premenopausal women. In the UK, between January 2006 and June 2007, a London

population-based screening centre performed 8,478 FFDM and 31,720 SFM examinations [301]. The

results showed that FFDM yielded detection rates at least as high as those for SFM. One recent
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paper by Karssemeijer [142] concluded that a FFDM-CAD combination performed almost as well as

SFM. Furthermore, FFDM-CAD significantly improved the detection of DCIS and microcalcification

clusters (P < 0.01 by Pearson’s χ2 tests), while the recall rate increased. So far, all these studies

have suggested that FFDM can be safely implemented in breast cancer screening programs. FFDM

is a fast-developed imaging modality including emerging tomographic techniques such as DBT.
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2.1.4 Other Breast Imaging Modalities

There are many other less widespread methods of breast imaging, e.g., nuclear imaging, breast

Computed Tomography (CT), thermography, and transillumination, which bring alternative options

for clinical usage in screening, diagnosis, and functional information observation.

Two main nuclear imaging modalities have been applied to the breast, namely scintimammog-

raphy and Positron Emission Tomography (PET). Scintimammography involves injection of a γ-ray

emitting compound ( 99mTc Sestamibi), which selectively accumulates in breast cancer cells. In

addition, a gamma camera is used to detect gamma rays emission when the radionuclide 99mTc

spontaneously decays. In the preliminary study of Taillefer et al. [286], scintimammography showed

a high diagnostic accuracy in detecting breast cancer. It also demonstrated the potential to detect

axillary lymph node involvement as concomitant information. In [147] Khalkhali et al. reported

that the diagnostic accuracy of scintimammography was not affected by breast density; however, the

sensitivity was lower (71%). Development of dedicated high-resolution gamma cameras for breast

imaging may improve the detection of small lesions, but there is no clinical test as yet.

PET imaging utilises short-lived positron emitting compounds, which are some biologically active

molecules. In particular, the 2- 18
F -flouro-2-deoxy-D-glucose (FDG), which is an analogue of glucose

(a sugar), is chosen for PET. FDG traces the tissue metabolic activity in terms of regional glucose

uptake in order to produce an image. FDG spontaneously emits positrons, which then interact with

electrons. The encounter annihilates both positron and electron, producing two 511 keV photons,

at 180 degrees from each other. The PET scanner can measure the absorption of the photons. In

addition, subtle timing in detection can determine the location of the positron emission. Therefore,

the distribution of FDG is resolved in 3D within the patient. In 1991, Wahl et al. [306] published the

first study on PET imaging in breast cancer detection, and reported 100% sensitivity in 10 breast

cancer carriers. However, in this study, all the tumours were larger than 5cm. Other relative studies

conducted by Avril et al. [7] and Wahl et al. [307] using PET in breast cancer detection showed that it

obtained the sensitivities of 80% to 96% and specificities of 83% to 100%. The mean tumour size was

smaller but not comparable to the tumour size detected by mammography or breast ultrasonography.

There are plenty of small-scale studies using scintimammography and PET imaging, especially for

women with known breast carcinomas.

CT is a major tool in diagnostic imaging, but breast CT scanning is inappropriate as a primary

screening test, mainly because there are high radiation dose and intravenous iodide administration

applied. It is a costly examination, as well. Moreover, some studies show that there is no difference in
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breast cancer detection between breast CT and mammography because of the learning curve effect.

However, Boone et al. [27] investigated the dedicated breast CT, which has renewed interest in this

technology.

Thermography, which measures temperature directly to form a thermal map image, has been in-

vestigated extensively for breast cancer detection. Thermography possesses high diagnostic accuracy

for advanced breast cancer; however, it is not sensitive in detecting impalpable carcinomas. Breast

cancer detection by transillumination is a historic method, and it is useful in distinguishing cystic

from solid lesions. Nevertheless, a shortcoming is its incapability in detecting deep lesions and small

tumours [1].

In summary, nuclear imaging and thermography have not contributed significantly to either

breast cancer detection or characterisation, and transillumination is still in the experimental stage.

Breast CT, which demands high levels of ionising radiation dose, is unacceptable for annual screening.

Therefore, mammography is still the most accurate and most widely used modality for breast imaging

and screening with complementary breast MRI and breast ultrasonography.

2.2 Digital Breast Tomosynthesis

Digital Tomosynthesis (DTS), a refinement of conventional geometric tomography, is a technique that

relies upon the reconstruction of a volumetric image from the acquisition of multiple projections over

a limited angular range. Imaging 3D anatomy via a 2D planar image has obvious defects because

overlapping tissues degrade cancer detection quality by decreasing sensitivity and specificity. In

conventional geometric tomography proposed in the 1930s, a focal plane of interest is produced. The

focal plane is formed by moving the screen film (or the detector) and X-ray tube oppositely across the

patient about a fulcrum in between. Consequently, the visibility of structures outside a planar region

of focus, controlled by the location of the fulcrum, is minimised. Any planes above or below the

focal plane are blurred due to the movement of the X-ray tube and detector, yielding a film presents

the least amount of radiographic motion using a linear, circular, or hypocycloidal geometry. A

restriction of conventional geometric tomography is that only a single slice can be acquired per scan.

As a result, the overdosage of radiation makes this impractical to obtain a volume of tomography.

In the early 20th century, Johann Radon [232] [233], an Austrian mathematician, proposed the

mathematical groundwork for a transform consisting of the integral of a function over straight lines.

The transform, named after Radon, has been generalised to three-dimensions, and prompted con-

sideration of non-Euclidean manifolds and higher dimensional space, as well. The Radon transform
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is widely applicable to tomography, and it represents scattering data as an output image associated

with cross-sectional scans of an object. Hence, the inverse Radon transform can reconstruct the

original density of the object from the scattering data, to formulate the tomographic reconstruction.

From 1921 to 1932, Ziedses des Plantes [347], a Dutch researcher, introduced planar tomographic

imaging (Planigraphy) to obtain sections of the body in order to eliminate superimposed shadows.

The technique was popularised by a German researcher Grossmann [94], who invented a commercial

apparatus and successfully applied it to the study of the anatomy of the lungs. In the UK, Barclay

and Twining of Manchester made their contributions to the clinical prominence of tomography [294]

[255]. However, it was not until 1969 that Garrison et al. [82] completed the first full implementation

of Ziedses des Plantes’s concepts by developing a 3D tomography device. Planar tomography has

continued its medical examinations to date, but the introduction of CT has reduced the number of

applications considerably. In [202] Miller et al. concluded that a high quality tomosynthesis image

must be obtained from at least eight different views of forward projections. Further research, which

was carried out by Grant [92] who named the new circular backprojection device tomosynthesis, im-

plied generating an infinite number of arbitrary tomograms. These authors demonstrated that it is

possible to use film as the detector. However, the film-based tomosynthesis system is too cumber-

some for clinical usage, and the development of a tomosynthesis system with an electronic image is

necessary.

Through the 1970s and 1980s, Baily, Crepeau, Lasser, et al. [162] [13] [11] [14] [12] advocated the

use of an image intensifier and a television camera to obtain tomographic images. Different planes

of an object could be displayed on an electronic storage tube by altering the shape and position of

the television raster for each successive television frame. Subsequently, Maravilla et al. [187] [188]

designed an apparatus, which included an analog-to-digital converter and a micro data processing

computer, to obtain tomographic images through retrospective reconstruction. Chakraborty et al.

[37] suggested using a one-dimensional unsharp masking technique to suppress the blur inherent in

tomosynthesis slice reconstructions. This spatial frequency filtering method was implemented more

carefully by Sone et al. [269]. The filter functions were modified to adjust the low frequency and high

frequency residual image information content. Consequently, they evaluated the clinical usage with

various applications such as enhancement of arthrography, angiography, small anatomic structures

imaging, and chest and pulmonary imaging [270] [271]. Changing the detector from screen-film-

based to electronic-based had considerably reduced the engineering requirements of implementing

tomosynthesis systems. However, commercial apparatuses still suffered from noise and distortion at

the edge of the image. Moreover, post-processing was hampered by the analog acquisition system
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and ineffective computing power.
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Figure 2.6: Left: DBT system geometries use isocentric motion and the coordinates; Middle: Both the x-

ray source and detector move in an arc shape oppositely (Grossman geometry); Right: the x-ray source and

detector move parallel to the in-focus tomographic plane oppositely (Twinning geometry).

For many years, tomosynthesis failed to make an impact on the clinical environment. The tech-

nique was hindered by the lack of a large area digital flat-panel detector, which should be capable of

rapid image readout. With the introduction of flat-panel digital imaging systems, in 1997, Niklason

et al. [215] published a landmark work on digital tomosynthesis. They used a digital detector that

was composed of caesium iodide phosphor on an amorphous silicon transistor-photodiode array (CsI

on a-Si). This detector was developed by General Electric (GE) Corporate Research and Develop-

ment at Schenectady, NY. The basic system was a mammographic system (model DMR; GE Medical

Systems, Milwaukee, WI) with the full-field digital image receptor. In addition, results on breast

imaging showed that their DBT system could produce high-quality breast tomosynthesis images.

The DBT system improved the specificity of mammography with visual enhancement for lesion mar-

gin. The conclusion was that digital mammographic systems made DBT feasible to be implemented,

and DBT might improve early breast cancer detection, especially in women with radiographically

dense breasts. The invention of digital detectors has finally satisfied all the necessary properties of

clinically practicable DBT. In addition, these detectors were investigated thoroughly, for instance,

[328] [298] [343] [168] [24], and they could produce high readout rates and exceptional detective quantum

efficiency (DQE). Figure 2.6 shows a schematic illustration of a typical DBT prototype with differ-

ent acquisition geometries. It is feasible and straightforward to modify the existing mammography
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system to adapt the DBT function (Figure 2.7).

Figure 2.7: The most left: Photograph of the latest development of MAMMOMAT r Inspiration (Siemens)

with a 3D tomosynthesis option. Left: One of the earlier developed digital mammography machines (Siemens)

with a tomosynthesis facility. Right: Top view and bottom view of an amorphous selenium detector used for

tomosynthesis imaging. The most right: A FFDM machine (Siemens) with no tomosynthesis function.

A key component in the clinical utility of DBT is the reconstruction algorithm, which can suppress

most of the tissue overlap effect. The overlap effect is the major reason for recalls and additional

imaging in 2D mammography examinations. Furthermore, reconstruction of DBT subsequently

reinforces the object of interest on the focal plane, and occult cancers in mammography can be

differentiable through the elimination of structure noise. In Chapter 3, the detailed survey of various

reconstruction algorithms will be given, and many reviews have been published, for example, [283]

[62] [322] [344]. In [17] Baldwin reported a working on DBT for the educational purpose. Optimisation

of DBT reconstruction is an important ongoing work, and several optimisation strategies will be

outlined in this thesis.

X-ray mammography and DBT are the most suitable techniques for nonpalpable breast cancers

detection, but the risk of carcinogenesis from the radiation dose is of the primary concern. There are

a great number of women receiving mammographic examinations. Therefore, monitoring the dose

is crucial and is required yearly by the federal Mammography Quality Standards Act (MQSA) of

Food and Drug Administration (FDA), USA. The quantity absorbed dose (D) captures the energy

(E) deposited by ionising radiation per unit mass of material (M)

D =
E

M
. (2.6)

In addition, the absorbed dose is defined for all types of ionising radiation. The System International
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(SI) unit of absorbed dose is the gray (Gy). One gray is equal to 1J/kg. The traditional unit of

absorbed dose is the rad (an acronym for radiation-absorbed dose). One rad is equal to 0.01J/kg.

Thus, there are 100rads in a gray and 1rad = 10mGy. For X-rays and γ-rays, the absorbed dose can

be calculated from the mass energy absorption coefficient and the energy influence of the beam [34].
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Figure 2.8: Left: Contrast and dose as a function of kVp (the plot is based on the data published in [34]).

Right: Optimum photon energy (spectrum) of mammography depends on the size and density of the breast

(this plot is reproduced from [272]).

The glandular tissue is the most predisposed site of carcinogenesis; therefore, the preferred dose

index is the Average Glandular Dose (AGD). The amount is dependent upon the depths of glandular

tissues from the entrance of the X-ray beam on the skin. The mid-breast dose, which is the dose

delivered to the plane of tissue in the middle of the breast, was the radiation dosimetry benchmark

until the late 1970s. However, nowadays, the AGD is the standard because the mid-breast dose, which

is normally lower than the AGD, does not account for the variation in breast tissue composition.

The AGD, denoted by Dg, is calculated by

Dg = νfX, (2.7)

where X is the Entrance Skin Exposure (ESE) in roentgens (R), and is the dose to the first 1cm of

the breast tissue. νf is the ESE to average glandular dose conversion factor with units of mGy/R

or mrad/R. In addition, νf is determined by experimental and computer simulation methods. It

depends on radiation quality (kVp and Half Value Layer (HVL)1), materials of the x-ray tube target,

filter material, breast thickness, and tissue composition. An air-filled ionisation chamber measures

1The HVL depicts the penetrability of the photons. It is defined as the thickness of material required to reduce
the intensity of an X-ray or γ-ray beam to be one-half of its initial value.
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the ESE for a given kVp, mAs, and beam quality [34]. In practice, the ESE is measured at each kVp

with the requirement to deliver an exposure of 0.6mRad to the screen-film detector system. Figure

2.8 shows the correlations between ESE and kVp, AGD and kVp. Heddson et al. [105] performed

a study from January 2000 to February 2005 at the Helsingborg Hospital, which noted that the

AGD was 1.1mGy for SFM, and 0.28mGy for FFDM. In 2004, Wu et al. [322] showed that the ESE

was 1.27 times more for DBT than SFM. In addition, the AGD was 1.45 times more for DBT than

SFM with various breast thickness (from 3cm to 8cm) and tube voltage (from 25kVp to 33kVp). In

[184] Maidment et al. reported that the AGD of their tomosynthesis scanning was about 1.5mGy at

35kVp. Furthermore, Diekmann et al. [61] demonstrated a comparable result that there were 1.33

times more doses for tomosynthesis in comparison to a normal digital mammography.
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Figure 2.9: Statistics of scientific publications on tomosynthesis research field indexed by ISI Web of Knowl-

edge and PubMed. Actually, there are some papers on tomosynthesis before 1972 when Grant defined the

term ’tomosynthesis’.

In 2007, Poplack et al. [231] reported that subjectively DBT scans could have comparable or

superior image quality to that of SFM in the diagnostic setting. In addition, DBT possessed the

potential to decrease the recall rate when used adjunctively with FFDM. About half (52 in 99; 52%)

of the findings would not have been recalled when FFDM was supplemented with tomosynthesis.

Gur [96] published a commentary paper that confirmed the clinical potential of DBT. In [221] Park et
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al. showed that DBT could reduce recall rates and improve the selection of patients for biopsy. The

cancer detection rates could be increased using DBT, especially in patients with dense breasts. In

addition, recent research carried out by Good et al. [87] and Gur et al. [97] also found similar results

that DBT could reduce recall rates. However, more research is necessary before defining the optimal

role of DBT in the clinical environment. Recently, Svahn [284] published an article, which indicated

that there were significant differences between the combined modality (DBT with the contralateral

FFDM view) and dual-view FFDM. However, no differences were found between single-view DBT

and dual-view FFDM or between single-view DBT and the combined modality. DBT has been used

in research for many years, yet the first Food and Drug Administration (FDA) approval was issued

in February 2011 (Hologic Seleniar Dimensions™ system). Therefore, unlike FFDM, there are only

few population-based studies on ergonomic and diagnostic performance of DBT.

Furthermore, Contrast Enhanced Digital Breast Tomosynthesis (CE-DBT) is potentially inte-

grating the strengths of both FFDM and DBT imaging techniques ([40] [60] [172]). In addition to the

clinical potential of DBT and CE-DBT, Dedicated Breast Computed Tomography (DBCT) could

also have a role in detecting breast cancer. In [141] Karellas et al. suggested that both of DBCT and

DBT were nascent technologies and there would be many possibilities for improvements.

In order to take a panoramic view of the research on DBT, we have gathered the statistics of

scientific publications indexed by ISI Web of Knowledge℠, Thomson Reuters© and PubMed, Na-

tional Center for Biotechnology Information© (Figure 2.9). The registered papers have started from

1972, when the terminology of tomosynthesis has been defined. Papers, which have been published

or will be published after March of 2010, have not been included due to less accumulated citations

and lower impact. In addition, the statistics have illustrated how the interest on tomosynthesis has

increased over the years. Since 2004, DBT has dominated the scientific publications in the tomosyn-

thesis research field. In total, breast tomosynthesis accounted for 349 (46.3%) of all the 754 released

tomosynthesis papers.

2.3 Conclusions and Discussion

For many years, a number of medical imaging modalities have been investigated to detect and diag-

nose breast cancer. However, unclear aetiology of breast cancer and drawbacks of the conventional

screening methods force us to develop novel medical imaging techniques such as DBT. The objective

is to detect and demonstrate malignant carcinomas at the early stage in a 3D distinct manner. Table

2.1 compares various physical properties of different breast imaging modalities.
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Table 2.1: Comparison of various physical properties in different breast imaging modalities.

Features\Modalities 1 MRI Ultrasound PET

Signal Basis Proton NMR2 Cyclic sound pressure Gamma rays emitting3

Format 3D Multi-slice 2D or 3D 3D or 4D

Breast Compression Mild4 Mild5 Mild

Contrast Injection Required Yes Sometimes Yes

Examination Time Long (30-45min) Long (15-30min) Long (Approximate 45min)

Demonstrates Calcifications No No6 No (PET can detect DCIS)

Effective in Dense Breast Yes No Yes7

Features\Modalities CT Mammography Tomosynthesis

Signal Basis X-ray X-ray X-ray

Format 3D 2D projection Pseudo-3D

Breast Compression Mild Yes Yes (Less than mammography)

Contrast Injection Required No No No

Examination Time Short (17sec-5min) Short (5-10min) Short 12.5/39sec (25/49views)8

Demonstrates Calcifications Yes Yes Yes

Effective in Dense Breast Yes No Yes

Firstly, detection and diagnosis of breast cancer by using MRI has been investigated with plentiful

results. Breast MRI has merits in 3D tomographic results, including sensitivity to tumours inside

dense tissue, and lack of radiation. It is applicable to young premenopausal women. Some advantages

of MRI are offset by its undesirable effects such as low spatial resolution of around 1mm and the

requirement of contrast agent injection, e.g., Gadolinium DTPA. It is complicated to estimate the

rate of uptake of the contrast agent.

Secondly, conventional 2D ultrasound can be targeted or focused on the symptomatic lesion, but

this limits the use of ultrasound and its applications. In addition, it is possible to miss impalpable le-

sions. 3D ultrasonography is rapidly gaining popularity, and it offers several distinct advantages over

conventional ultrasonography. Conventional ultrasonography is very useful for distinguishing breast

1 The data of MRI and mammography were collected from Morris et al. [205] published in 2005. The data of DBT
were obtained from Bissonnette et al. [24] published in 2005. PET data were collected from Kaul and Daguilh [144]

published in 2002 and Pio et al. [227] published in 2006. Breast CT data were summarised according to Yang [338]

published in 2007 and breast ultrasound data were obtained from Park et al. [220] published in 2005.
2 There is mainly water proton with nuclear magnetic resonance.
3 The system detects pairs of gamma rays emitted indirectly by a positron-emitting radionuclide.
4 Mild compression can be used to stabilise the breast.
5 An appropriate amount of breast compression is given. It is varied to see if the lesion will alter in shape, or slip

away from under the probe (commonly happened for fibroadenomas).
6 Ultrasonography is very sensitive in detecting cystic lesions, but it is not as useful in detecting lesions that are

less than 1cm in diameter.
7 PET scanning may be useful in assessing patients with difficult-to-evaluate breasts, e.g., women with dense

breasts, previous surgery or radiation, and breast implants.
8 This typical setting is obtained from [24] with a Siemens DBT apparatus.
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cysts, but 3D ultrasonography has the capacity to demonstrate lesion margins and tomography. 2D

ultrasound merges 3D data into 2D overlapping images. In contrast, 3D images can be reconstructed

from data obtained with a single sweep of the 3D ultrasonography beam across the involved organ.

However, the 3D ultrasonography is more complicated than the conventional ultrasound system, and

it is hard for the operators to manipulate. Moreover, the reconstruction of 3D ultrasonography is

time-consuming because it requires a considerable amount of image manipulations to obtain high

quality results. The data archiving and communication are also more challenging. Compared with

other modalities, ultrasonography provides high specificity, easy manipulation for both operators

and patients, no radiation, low cost and tomographic screening (For 3D ultrasonography only). The

drawbacks are mainly about the low sensitivity and the operator dependency.

Next, the detection and diagnosis of breast cancer have primarily relied on conventional mammog-

raphy for about forty years. Conventional mammography is the most accurate and most widely used

of all the breast imaging modalities. Conventional mammography or SFM exhibits high sensitivity

in fatty breasts, high resolution up to 50µm and low cost. However, limitations of a mammogram

include low sensitivity in dense glandular breast tissue, and low specificity, and they are represented

by both considerable false negatives and false positives. The rate of missed cancers is measured by

the false negatives, which are common in detections of dense breast with low signal-to-noise ratio.

Meanwhile, the cost of high sensitivity of mammography is a relatively large number of results, which

could be regarded as suspicious in patients without disease. In addition, the radiation dose limits

the applicability of mammography, and especially it poses a potential risk for young women with a

genetic predisposition.

Digital mammography or FFDM has been tested extensively for clinical use, and many manufac-

turers have been approved to produce digital units for both clinical screening and diagnosis. Several

research groups have compared SFM with FFDM, and many studies have concluded that digital

mammography offers a significantly lower recall rate. Yet some studies have obtained a higher recall

rate for FFDM because of the learning curve effect. However, FFDM has gained better accuracy

in some subgroups such as women with dense breasts. In addition, the FFDM-CAD combination

has significantly improved the detection of DCIS and microcalcification clusters. Until now, all

the research shows that FFDM can be safely implemented in breast cancer screening programs.

FFDM is a fast-developed imaging modality including novel techniques and detectors, which enable

a technical leap of inspiriting tomographic techniques such as DBT. Other less widespread breast

imaging modalities, e.g., nuclear imaging, breast CT, thermography, and transillumination provide

alternative options for clinical use in screening, diagnosis, and functional information observation.
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Figure 2.10: Comparison between mammography and breast MRI for the same 33-year-old patient with

documented BRCA1 mutation. Left: Screening mammogram (MLO view of the right breast); Upper right:

Pre-contrast T1-weighted breast MRI; Lower right: First post contrast of the dynamic series. The images

are taken from Morris et al. [205].

Figure 2.11: Comparison between breast MRI and breast ultrasound for the same 47-year-old patient. Left:

T1-weighted breast MRI in sagittal view showing two lesions (red and green arrows); Middle: Breast ultra-

sound shows a hypoechoic mass that is taller than wide (red arrow), corresponding to the superior MRI lesion;

Right: Breast ultrasound of shows a hypoechoic mass that is taller than wide (green arrow), corresponding to

the inferior MRI lesion. The images are taken from Morris et al. [205].
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Furthermore, there are numerous benefits offered by DBT, viz., 3D tomographic demonstration

for breast, compatible for mammography specifications, high sensitivity and specificity, high resolu-

tion, and small acquisition lag in compared to mammography. However, prolonged imaging time of

DBT introduces patient motion blur on the images. Additionally, gantry motion leads to a larger

effective x-ray focal spot size, which may degrade the image quality. Moreover, the DBT reconstruc-

tion is an inherent ill-posed inverse problem because of the incomplete sampling of tomosynthesis

scan. Well-posed problems are more common, which means the model parameters and the material

properties are known. On the other hand, inverse problems, which derive these parameters and prop-

erties from observations, are typically ill-posed. We can draw a conclusion that DBT is a promising

breast imaging modality, whereas its reconstruction is still a complicated ill-posed inverse problem.

In summary, developments of prominent digital detectors of FFDM permit the growth of DBT.

Advantages of DBT are concluded as follows. Firstly, DBT eliminates overlapping structures of the

standard digital mammography. Three-dimensional screening brings a much clearer view of lesions

within the breast, and it locates the potential cancer more accurately than SFM or FFDM. Previous

research proves that DBT can make cancer lesions easier to see among dense fibro-glandular tissues

[271]. In addition, DBT combines various forward projections into a pseudo-3D reconstruction that

brings structures into relief. Radiologists can navigate the breast using a 3D image for a more careful

examination [66]. Secondly, DBT needs no longer examination time than normal mammography for

most diagnostic requirements. Actually, the examination time is decreased since only one acquisition,

i.e., CC or MLO, is necessary (two acquisitions might be required at some sites). Furthermore, due

to the interpretation criteria are the same for both mammography and DBT, any radiologist who

is skilled at reading mammography will be able to read DBT studies. The reading is also less

complicated for the radiologist because the superimposed structures are removed. Next, research

also confirms that sensitivity (the ability to detect breast cancers) and specificity (the differentiation

between benign and malignant cancers) are both improved by using DBT. Other merits of DBT are

well addressed in previous studies. For example, the cost of screening (primary and secondary) is

decreased while DBT increases the cancer detection rate. DBT can be utilised as the base platform for

registering and developing other breast imaging studies [154]. It makes a huge improvement for breast

cancer detection and diagnosis, as well. We show some example results of various breast imaging

modalities (Figures 2.10 and 2.11) to provide an intuitive understanding of the advantageous gain

of DBT imaging (Figures 2.12 and 2.13). Eventually, development of DBT could represent a success

in the field of breast cancer imaging in the future. In next two chapters, we will survey two key

components in DBT applications, i.e., tomographic reconstruction and medical image registration.
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Figure 2.12: Comparison between mammography and DBT for the two different patients. Two sub-figures on

the left hand side: Original mammography with in-plane artefacts caused by breast tissues overlapping (yellow

circle) vs. a selected DBT slice (reconstructed) and the lesion is clearly shown in the DBT reconstruction

(red circle); Two sub-figures on the right hand side: Original mammography showing overlapped breast tissues

(yellow circle) vs. a selected DBT slice (reconstructed) showing the lesion clearly (red circle) and the in-plane

streak artefacts are shown (green square). The images are taken from Bick and Diekmann [22].

Figure 2.13: Comparison between mammography and DBT slices. The sub-figure on the left hand side:

Original 2D mammography showing a potential lesion (yellow square); Other sub-figures: The individual

structures that make up the potential lesion can be clearly seen on the separated slices (No. 14, 18, 22, 26

and 30) of 3D DBT, and no lesion is presented in fact. The images are taken from Dallessio [54].
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Chapter 3

Tomographic Reconstruction and Its Applications in DBT

Tomographic image reconstruction is a crucial problem in current research on medical image pro-

cessing. The DBT imaging procedure, which depends on the specified geometry, is considered as a

forward problem to get the DBT data. On the other hand, the reconstruction is an inverse prob-

lem. Essentially, all the tomographic image reconstruction algorithms are applicable to DBT. In

this chapter, we investigate some widely used reconstruction algorithms based on X-ray tomography

with non-diffracting sources. The image reconstruction algorithms can be coarsely divided into two

categories, i.e., the analytical and the iterative methods (Figure 3.1). We provide a brief discussion

on DBT geometry and hardware specifications following by detailed reviews on several analytical

and iterative reconstruction algorithms.

3.1 Forward Problem: Imaging

3.1.1 Forward Radon Transform

Mammography, breast CT, and DBT apparatus utilise X-ray radiation, which is of an electromagnetic

nature, as the energy source. Thermal electrons, which escape from a cathode filament heated to

approximately 2100 oC, generate radiation energy following their entry into the rotating anode. The

energy of the braking radiation in turn depends on the acceleration voltage, Ua, between cathode

and anode, and relates to the electron kinetic energy as

1

2
mev2 = eUa (3.1)

70
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in which the mass of electrons me = 9.109×10−31kg and the charge of electrons e = 1.602×10−19C.

Thus, the electron velocity v can be determined. In medical imaging applications, the value of Ua

falls between 25kV and 150kV.

• Shift‐and‐Add (SAA)

• Analytical Methods 
(Transform‐based Methods)

Shift and Add (SAA)

• Backprojection (BP)

• Filtered Backprojection (FBP)

• Algebraic Reconstruction Techniques (ART) 
• Simultaneous Iterative Reconstructive Technique (SIRT)

• Iterative Methods

• Simultaneous Iterative Reconstructive Technique (SIRT)
• Simultaneous Algebraic Reconstruction Technique (SART) 

• Least Squares Estimation (LS)

• Maximum‐Likelihood Expectation‐Maximization (MLEM) 

Figure 3.1: Detailed classification of the reconstruction algorithms.

The physical mechanism leading to X-ray breast imaging is based on the Lambert-Beer’s Law,

which states the attenuation property of light when it travels through certain material (Figure 2.3).

However, there are two problems with Lambert-Beer’s Law, viz., we need a logarithmic transform

for the X-ray attenuation model and the model consists of numerous inhomogeneous attenuation

coefficients. Firstly, Equations 2.2 and 2.3 can be rewritten as

IA = I0e
−µz (3.2)

IB = I0e
−µ(z−a)−µ′a, (3.3)

where I0 is the incident intensity, and IA and IB are transmitted intensities without and with a

lesion, e.g., a tumour or a microcalcification. z and a are the approximate thickness of the whole

breast and the lesion respectively. In addition, µ and µ′ are the attenuation coefficients of the breast

tissue and lesion. If the inhomogeneous X-ray attenuation is discretely modelled using multiple

attenuation coefficients, that is

IT = I0e
−

∑n
i=1 µiz, (3.4)

and the measured projection is not linearly related to these attenuation coefficients. Therefore, we
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need to perform the logarithmic transform for the X-ray attenuation model and the result is

ln
I0
IT

=

n∑
i=1

µiz; (3.5)

however, in this case, we assume that the X-ray source is monoenergetic and the beam is ideally

small, which can not be true in real applications. Therefore, the Hounsfield unit (HU) scale is

applied to derive linear attenuation coefficients, e.g., 0HU is assigned to water (µwater = 0.21cm−1)

and -1000HU is assigned to air (µair = 0.0cm−1) on this scale [35]. Secondly, as there are multiple

unknown coefficients along the X-ray beam within the breast object, the inhomogeneous attenuation

is modelled by a sequence of discrete partitions. If the breast object is rasterised, i.e., sampled into

discrete rows and columns, we can use a 3D matrix to store the attenuation coefficients (Figure 3.2).

In fact, there are many factors, which affect X-ray attenuation including wavelength of the incident

beam, atomic number, mass density, and thickness of the medium [35].

Figure 3.2: Left: A single X-ray beam is passing through a segment of breast tissue with multiple inhomoge-

neous attenuation coefficients; Right: A 3D matrix of discrete attenuation coefficients can be created.

After the interaction between X-ray photons and breast matter, attenuation can occur. The

same interaction principle can be applied between the radiation and the detector. Therefore, we

measure the X-ray quanta via their interaction products, e.g., emitted photoelectrons, ionised gases.

Many types of detectors have been developed for X-ray imaging such as film cassettes, computed

radiography cassettes, image intensifiers, gas detectors, and digital flat-panel X-ray detectors. The

product of the geometric efficiency and the quantum efficiency gives the overall detection efficiency.

Geometric efficiency is the percentage of the X-ray sensitive area of the detector over the total

exposed area. In addition, the quantum efficiency measures the fraction of absorbed photons and

the ones that contribute to the signal [32].
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The signals, which are measured by the detector, generate the forward projection images in an

analogue or a digital form. In addition, the forward projection can be modelled by the forward

Radon transform, which calculates the line integral of an X-ray beam at a particular angle. We use

f(x, y), which is defined in a limited 2D plane, to describe a 2D distribution of one physical quantity.

Therefore, (x, y) are the points on the 2D plane, and f(x, y) is an arbitrary function in the R2 region.

If L is an arbitrary straight line on the plane, the integration of f(·) along this line L can be written

as follows.

P =

∫
L

f(x, y)dσ (3.6)

where P is defined as the projection of the f(·) function. dσ is the increment along the straight line

L. Furthermore, this straight line L can be determined by two parameters: one is the distance from

the origin to the line L, namely ρ, and the other one is the angle θ between the distance line ρ and

the x coordinate (Figure 3.3). Thus, L can be represented by using

L :

 x = ρ cos θ − σ sin θ

y = ρ sin θ + σ cos θ
, (3.7)

and the integration, i.e., 2D forward Radon transform, can be represented by

P (ρ, θ) =

∫
L

f(x, y)dσ =

∫ ∞
−∞

f
(
(ρ cos θ − σ sin θ), (ρ sin θ + σ cos θ)

)
dσ. (3.8)

In addition, Equation 3.8 can be written in a vector form if we define (x, y) = ρΘ⊥ + σΘ, in

which Θ⊥ = (cos θ, sin θ), and Θ = (− sin θ, cos θ). P (ρ, θ) can be represented by

P (ρ, θ) =

∫ ∞
−∞

f

(
ρ ·
(

cos θ

sin θ

)
+ σ ·

( − sin θ

cos θ

))
dσ =

∫ ∞
−∞

f(ρΘ⊥ + σΘ)dσ. (3.9)

where the σΘ is perpendicular to the vector Θ⊥, and dσ is the increment along the Θ direction.

Therefore, the Equation 3.9 can be rewritten as

P (ρ, θ) =

∫
Θ

f(ρΘ⊥ + σ)dσ. (3.10)

Consequently, in the 2D plane, the integration of the arbitrary function f(·) along the straight

line is equal to its Radon transform. If we know P (ρ, θ) for all ρ and θ, P (ρ, θ) is the 2D Radon
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transform of f(x, y). On the other hand, P (ρ, θ) is the sample of the Radon transform of f(x, y) if

we know P (ρ, θ) for subset of ρ and θ.

L

Θ Θ

Figure 3.3: Schematic illustration of the relationship between x, y, ρ, σ and θ.

Furthermore, if we parameterise the function using x, y instead of σ in Equation 3.8, we can

prove (Details in Appendix A)

P (ρ, θ) =

∫ ∞
−∞

f((ρ cos θ − σ sin θ), (ρ sin θ + σ cos θ))dσ

=

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(ρ− (x cos θ + y sin θ))dxdy, (3.11)

in which the δ(·) function is the Dirac delta function, and it is defined by

δ(x) =

+∞, for x = 0

0, otherwise
, (3.12)

and ∫ ∞
−∞

δ(x)dx = 1. (3.13)

To sum up the 2D based discussion of the forward Radon transform, the forward problem of DBT

imaging can be modelled using the X-ray attenuation function and the forward Radon transform

with 3D extension of the hardware geometry (More discussion in Section 5.2.1).
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3.1.2 DBT Geometry and Hardware Parameters

The geometry of the DBT hardware system defines the size of the forward projections and the

number of rays, which in turn will determine the appearance of the reconstruction. Most modern

DBT machines use Grossman geometry or Twinning geometry (Figure 2.6), and both of them are

cone-beam based geometries (details in Section 5.2.2).

In addition, similar to mammography, mild breast compression is necessary via two parallel

acrylic plates when acquiring the tomosynthesis scan. Two different views are commonly used,

namely Cranio-Caudal (CC: images are taken from a head-to-toe view) and Medio-Lateral Oblique

(MLO: images are taken from an oblique or angled view).

Furthermore, we provide an overview of the hardware parameters of various DBT systems from

some of the most famous manufacturers in Table 3.1. Most of the prototype DBT systems use 0.3mm

X-ray focal spot size, and there are mainly two types of gantry motion (rotation), i.e., continuous

rotation and step-and-shoot rotation. In the continuous rotation type, the gantry possesses a constant

speed of rotation during the whole imaging process, leading to an enlarged X-ray focal spot size along

the rotation direction. On the other hand, in the step-and-shoot rotation type, there is a full stop

whilst acquiring a forward projection. The system developed by University of North Carolina (UNC)

has employed a stationary array of X-ray sources, which avoids the gantry motion.

Table 3.1: DBT imaging system parameters from some of the most famous manufacturers.

Siemens: Mammomat Novation1 GE:Senographe 2000D2 Dexela UVA system3

X-ray kVp, mA ≈28kVp, ≈180mA 25-30kVp, ≈130mA 32kVp, 150mA

Focal spot size 0.3mm+blur due to gantry motion 0.3mm+blur due to gantry motion 0.3mm

Gantry motion Continuous Step and shoot Step and shoot

View numbers 25/49 11 13

Imaging time 20s/39.2s 7s 30s

XCounter system3 UNC: Argus4 Hologic: Selenia5

X-ray kVp, mA N/A ≈28kVp, 10mA 24-39kVp, ≈28mA

Focal spot size N/A 0.2mm 0.3mm+blur due to gantry motion

Gantry motion Continuous Stationary Continuous

View numbers 48 25 11

Imaging time 30s 11.2s 18s

1 Data were collected from Bissonnette et al. [24] published in 2005.
2 Data were collected from Wu et al. [321] published in 2003.
3 UVA: University of Virginia. Dexela and XCounter data were collected by Mr. Spencer Gunn via collaboration

between our UCL CMIC lab and Dexela Ltd. and XCounter AB in 2010. Also refer to Varian MAM-RAD70.
4 Data were collected from Yang and Zhou [331] published in 2008.
5 Data were collected from Ren et al. [235] published in 2005.
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3.2 Inverse Problem: Reconstruction

Image reconstruction of DBT is an inverse problem from a mathematical point of view. In DBT,

a pseudo-3D image of the breast is obtained by acquiring a number of low radiation projection

images. The X-ray tube, which is mounted on a rotating gantry, moves in an arc above the breast.

The individual images are reconstructed into a series of high-resolution slices. Lesions, which are

invisible using conventional mammography due to overlying of dense breast tissue, can become visible

in the DBT reconstruction. In this section, we give an overview on analytical, ART and least squares

based iterative methods of the tomographic reconstruction and its application in DBT.

3.2.1 Analytical Methods

Reconstruction is the soul of the DBT technique. The motivation for developing DBT from digital

mammography is that of superior 3D reconstruction results. The considerable weight of research

into 3D DBT reconstruction has generated multifarious analytical methods, which include tradi-

tional Shift-and-Add (SAA), Image-Stretching-Shift-and-Add (ISSAA) [215], Filtered Backprojection

(FBP) [92] [190] [156] [163] [276] [47], and Convolution Backprojection (CBP) [195] [59]. Although many

reconstruction algorithms have been proposed in the last three decades, few of them have been as

widely implemented and used in real applications as FBP.

3.2.1.1 Shift-And-Add (SAA) and Back-projection (BP) Methods

As mentioned, most modern DBT machines use Grossman geometry or Twinning geometry (Figure

2.6). However, conventional geometry, in which the motion of the X-ray focal-spot is parallel to the

detector, can demonstrate the principle of DBT (Figure 3.4). According to the illustration, DBT

allows us to obtain an arbitrary number of slices of sections through the breast within a relatively

limited number of projection images. After obtaining several individual images, we get the projected

positions on the detector from central points on each image. In addition, we calculate the relative

shift required to bring an object of interest into focus at a certain depth of a section under the breast

surface. A synthetic image of such a section is produced by adding these shifted images together.

Structures on the particular section are reinforced by adding these shifted images and blurring away

structures elsewhere. Essentially, we apply the procedure to all the sections through the whole

breast. This is the principle of the traditional Shift-and-Add (SAA) algorithm [154] and its modified

version, i.e., Image-Stretching-Shift-and-Add (ISSAA) algorithm [215].
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Figure 3.4: Left, line type X-ray source; Middle, circle type X-ray source; Right, schematic of DBT synthesis

(A) and conventional summing up (B). For example, we focus on the red circular object on the tomographic

focal plane. By shifting and adding synthesis method, DBT imaging increases the visibility of objects by

blurring out objects (e.g., the green triangle) from other planes.

The SAA algorithm is valid only when the motion of the x-ray focal-spot is parallel to the detector,

e.g., a linear motion at a fixed height above the detector. It is equivalent to a simple backprojection

[322]. A BP algorithm can accurately incorporate the imaging geometry wherever the x-ray tube is

moved. Both SAA and BP methods are based on the Radon transform. Consequently, both SAA

and BP methods employ the backprojection, which smears back the X-ray acquisitions, i.e., line

integral, back to the image space represented by pixels or voxels (Figure 3.5).

Mathematically, the backprojection f̂(x, y) with full range of angle can be modelled by

f̂(x, y) =

∫ ∞
−∞

∫ π

0

P (ρ, θ)δ(ρ− (x cos θ + y sin θ))dρdθ

=

∫ π

0

P (x cos θ + y sin θ, θ)dθ. (3.14)

Inter-plane artefacts (Figure 3.10), which are caused by the interferences of features located in

other planes, are usually observed in a tomosynthetic reconstruction plane using SAA and BP al-

gorithms. In addition, the out-of-plane artefacts (refer to Hu et al. [122]) caused by limited-angle

acquisition are inevitable. The Equation 3.14 of the simple backprojection intuitively reverses the
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forward projection process; however, the equation results in undesirable distribution of attenuation

values. The non-negative line integration P (ρ, θ) smears back non-negative values not only to the

object but also to the whole image. In other words, areas outside of the object have some positive

values, which cause the inter-plane blurring artefacts. Previous studies, e.g., [152] [8], have proposed

some approaches to remove the inter-plane artefacts. In 2003, Dobbins III and Godfrey [62] sum-

marised the SAA method in use of digital x-ray tomosynthesis. Research carried out by Zhang et

al. [344] [345] performed the comparison between SAA and BP methods with iterative reconstruction

approaches using DBT data. Although many attempts have been done with various clinical data

sets using SAA or BP method, the major drawback is the blurring those applications suffer from.
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Figure 3.5: Left: Three sets of line project the target to three projection views. While only three views are

shown above, a typical CT scan uses hundreds of views at slightly different angles. Right: Backprojection

reconstructs an image by taking each view and smearing it along the path it was originally acquired; however,

the resulting image is a blurry version of the original image. These images are copied from Steven W. Smith

[268].

3.2.1.2 Filtered Back-projection Method (FBP)

The Fourier Slice Theorem is the fundamental to the FBP [138]. It calculates the Fourier transform

of a parallel projection of an image f(x, y) taken at angle θ. In addition, it gives a slice of the

2D Fourier transform F (µ, υ), which is subtending an angle θ with the µ-axis. In other words, the

Fourier transform of P (ρ, θ) gives the values of F (µ, υ) along a radial line B (Figure 3.6). Therefore,

if we change the (x, y) coordinates into (ρ, σ) coordinates, the projection along the σ direction with

the distance ρ is

P (ρ, θ) =

∫ ∞
−∞

f(ρ, σ)dσ. (3.15)
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The Fourier Transform of Equation 3.15 is

Sθ(ω) =

∫ ∞
−∞

P (ρ, θ)e−i2πωρdρ. (3.16)

We can combine Equations 3.15 and 3.16 as follows

Sθ(ω) =

∫ ∞
−∞

[ ∫ ∞
−∞

f(ρ, σ)dσ
]
e−i2πωρdρ. (3.17)

From the Equation A.2 we can derive that

Sθ(ω) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−i2πω(x cos θ+y sin θ)dxdy, (3.18)

because the determinant of the transform Jacobian is 1 and dρdσ = dxdy [121]. If we set µ = ω cos θ

and υ = ω sin θ then

Sθ(ω) = F (µ, υ) = F (ω cos θ, ω sin θ). (3.19)

μ

υ

Figure 3.6: Illustration of the Fourier Slice Transform.

Therefore, from the Fourier Transform of one function f(x, y) at θ1, θ2, θ3 ... θn we can get the

2D Fourier Transform F (µ, υ) of the function f(x, y) on the entire (µ, υ) domain (Figure 3.7).
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F (µ, υ) can be obtained using these F (ω cos θ, ω sin θ) values. Furthermore, f(x, y) can be derived

from the inverse Fourier Transform of F (µ, υ) that is

f(x, y) =

∫ ∞
−∞

∫ ∞
−∞

F (µ, υ)ei2π(µx+υy)dµdυ. (3.20)

μ

υ

θ

P(ρ,θ)

Figure 3.7: Samples in the µ, υ domain and the interpolation to the Cartesian coordinates.

In addition, the discrete form of the Equation 3.20 can be represented as the following if x, y ∈

(−G/2, G/2) and G is a constant

f(x, y) =
1

G2

∑
m

∑
n

F
(m
G
,
n

G

)
ei2π(mxG +ny

G ). (3.21)

In practice, we can only get limited Fourier components, thus

f(x, y) ≈ 1

G2

N/2∑
m=−N/2

N/2∑
n=−N/2

F
(m
G
,
n

G

)
ei2π(mxG +ny

G ) (3.22)

In order to apply the Equation 3.22 we must interpolate these radial points to the points on

a square grid, i.e., Cartesian coordinates (Figure 3.7). N could be arbitrarily defined by an even
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integer, and the spatial resolution in the reconstructed image is determined by the value of N .

Theoretically, by providing as many values of F (µ, υ) that are known on some radial lines (Figure

3.6), we can determine the N2 coefficients that Equation 3.22 requires. Furthermore, the calculation

involves solving a large set of simultaneous equations often leading to unstable solutions. It is more

common to determine the values on the square grid using nearest neighbour or linear interpolations

from the radial points. Since the density of the radial points becomes sparser as one gets farther

away from the centre, the interpolation error also becomes larger. In addition, there is a greater

error in the calculation of the high frequency components than the low frequency ones in an image,

and the error results in some image degradation [138].

DFT Reconstruction Workflow

Frequency
Domain
Filling

θP(ρ, )

θ 
DFT1D

Interpolation 
from Polar to
Rectangular 

Grid

F(μ, ν)
2D DFT 1－f(x, y)

Figure 3.8: Flow chart of the DFT reconstruction procedure in 2D.

Furthermore, the Discrete Fourier Transform (DFT) and its inverse form can be represented as

follows [126]

F (µ, υ) =

M−1∑
x=0

N−1∑
y=0

f(x, y)e−i2π(µxM + υy
N ), (3.23)

and

f(x, y) =
1

MN

M−1∑
µ=0

N−1∑
υ=0

F (µ, υ)ei2π(µxM + υy
N ), (3.24)

and the flow chart of the DFT reconstruction procedure is illustrated in Figure 3.8.

Although the Fourier Slice Theorem provides a straightforward solution for tomographic recon-

struction, it presents some challenges in actual implementation. Firstly, it produces samples in the

Fourier domain, which is not coincident with Cartesian coordinates [121]. These samples have to be
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interpolated or re-gridded to the Cartesian coordinates. Moreover, in the temporal domain, the in-

terpolation error is localised to the small region where the pixel is located. However, each sample in a

2D Fourier space represents certain spatial frequencies both in the horizontal and vertical directions.

Therefore, an interpolation of one sample affects the appearance of the entire image after the inverse

Fourier transform, and the Fourier domain interpolation is highly sensitive. Another disadvantage

of the direct Fourier space reconstruction is the difficulties of performing targeted reconstruction,

which is used to exam fine details of a small region in the object [121]. Because there are some obvious

drawbacks to the direct reconstruction from Fourier space, it is desirable to investigate alternative

implementations of the Fourier slice theorem. The most widely used implementation is the filtered

backprojection algorithm.

Furthermore, while backprojection is conceptually simple, it does not correctly solve the problem.

A single point in the true image is reconstructed as a circular region that decreases in intensity from

the centre. In other words, the point spread function of the backprojection is circularly symmetric,

and it decreases as the reciprocal of its radius. Filtered backprojection is a technique to correct the

blurring encountered in simple backprojection [268].

Figure 3.9 provides an intuitive description of the FBP algorithm, whereby each view is filtered

before the backprojection to counteract the blurring effects. That is, each of the one-dimensional

views is convolved with a one-dimensional filter kernel to create a set of filtered views. These filtered

views are backprojected to provide the reconstructed image, which is a close approximation to the

original image. Kak and Slaney [138] summarised the FBP algorithm as follows

ã Sum for each of the K angles (assuming we have K forward projections) between 0 and 180

degrees to measure the projection P (ρ, θ);

ã Fourier transform it to find Sθ(ω);

ã Multiply it by the weighting function 2π|ω|
K ;

ã Sum over the image plane the inverse Fourier transforms of the filtered projections, i.e., the

backprojection process.

Mathematically, we can prove that FBP can be represented by (Details in Appendix A)

f(x, y) =
1

2π2

∫ π

0

∫ ∞
−∞

[∂P (σ, θ)

∂σ

] 1

x cos θ + y sin θ − σ
dσdθ. (3.25)

Many studies have been done on the selection of the filters in FBP algorithm. The filtering

procedure can be applied in the temporal domain or the frequency domain. Some filters such as

the Ram-Lak filer, the Shepp-Logan filter and low-pass cosine filters are widely used for the FBP
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algorithm. In practice, we need to use the Fast Fourier Transform (FFT) to calculate the DFT.

Furthermore, the discussion above is based on parallel projections, and the reconstruction algorithm

can apply to the fan-beam or cone-beam geometry. Feldkamp et al. [72] solved an approximation of

the FBP based on the 3D cone-beam geometry in 1984. However, the reconstruction results were

too noisy to demonstrate the structure details visually.

-2
-1
0
1
2
3

a.  Using 3 views b.  Using many views

filtered view 1

filtered
view 3

filtered
view 2

Figure 3.9: Filtered backprojection reconstructs an image by filtering each view before backprojection. This

removes the blurring effects in the simple backprojection, and the results in a mathematically exact recon-

struction of the image. Filtered backprojection is the most commonly used algorithm for CT scanner. [268]

Recent studies on FBP are mainly divided into two categories: new filters design and hardware

acceleration, e.g., field-programmable gate array (FPGA), graphics processing unit (GPU) and oth-

ers. Defrise and Clack [56] proposed a shift-variant FBP method, which reconstructed cone-beam

data. In 2003, Louis [182] reported a general approach to derive inversion formulae for 3D cone beam

tomography, and tuned the filtering to reduce the data noise. Mertelmeier et al. [196] published a pa-

per on the filter design for their FBP reconstruction of DBT. In [327], Xu and Mueller [326] suggested

a GPU implementation of the FBP for CT reconstruction. Leeser et al. [167] conducted research into
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an FPGA implementation for parallel-beam backprojection. Kachelrieß et al. [133] showed their work

on a hyperfast parallel-beam and cone-beam backprojection using the cell general purpose hardware,

which might be applicable for tomosynthesis and SPECT reconstruction. Recently, in [329] Yan et al.

adopted GPU programming for high performance DTS reconstruction using commercial PC graphics

hardware. Chen [41] carried out a comparative study on SAA, BP and FBP using DBT data sets

(Figure 3.10).

Figure 3.10: A human breast demonstrating a solitary calcification. Left: Traditional SAA. Middle: BP.

Right: FBP (Hamming and Gaussian filters). The in-plane slices shown here are 7.5mm above the surface

plate. There are some inter-plane artefacts shown in both SAA and BP reconstructions. These artefacts,

which due to the interferences of features in other planes, form the suspicious masses (red circles) and they

are eliminated using the FBP method. Results are collected from Chen’s thesis [41]

In other methods based on transfer functions, particular impulse response functions or point

spread functions are designed according to the imaging geometry and the application. When we

employ the Fourier transform, the convolution process changes into simple multiplication. Therefore,

inversion filtering or its matrix form is applied to reconstruct the whole volume in continuous function

or discrete arrays, and to suppress the inter-plane blurring.

In the early 1990s, Matsuo et al. [190] proposed a reconstruction method that utilised a 3D

convolution process with an inverse filter function. It was derived from the point spread function of

the projection and backprojection geometry analytically. They also designed a digital photosynthesis

system, which was adapted for both phantom experiments and clinical evaluations. Their system

demonstrated superior reconstruction results with fewer artefacts from the outside of the focused

plane. Many studies, e.g., [24] [196], also obtained promising results for DBT reconstruction using

inverse filtering approaches.
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3.2.2 ART Based Iterative Methods

Iterative reconstruction methods provide alternative choices, and they include Algebraic Reconstruc-

tion Technique (ART, Kaczmarz method [134] [88] [109] [137] [67] [5] [132] [299] [150] [138]), Simultaneous

Iterative Reconstruction Technique (SIRT) [85] [109] [108] [161] [123] [279], Simultaneous Algebraic Re-

construction Technique (SART) [6] [207] [131], Multiplicative Algebraic Reconstruction Technique

(MART) [300] [36]. Moreover, Maximum-Likelihood Expectation Maximization (MLEM) and Or-

dered Subsets Expectation Maximization (OSEM) [107] [123] [323] have been employed and accom-

panied with reconstruction techniques. The maximum likelihood method is a general method of

solving reconstruction problems, assuming any distribution of the errors; however, if errors are nor-

mally distributed then the maximum likelihood method is equivalent to least squares. Therefore, in

this thesis, we only considered the simplified model that experimental errors follow a normal dis-

tribution and leave out more general discussion of maximum likelihood techniques. In addition, we

provide a review of ART based reconstruction methods in this section and we will also survey the

reconstruction method based on the least squares estimation in the next section.

3.2.2.1 Algebraic Reconstruction Technique (ART)

In order to clarify the principle of the ART, we superimposed a square grid on an image, i.e., a

target (Figure 3.11). Firstly, f1 to fn represent values of the cells on the square grid, and we need to

reconstruct the values of the cells inside the target. Secondly, pm describes a ray that goes through

the target with a particular view angle. However, the rays, which are different from the rays in

the transform-based method, are lines with a width of τ . In addition, the line integral is named

as a ray-sum in the ART context [138], and pm is the ray-sum measurement of the m-th ray. The

relationship between fn and pm can be expressed as

N∑
n=1

amnfn = pm, (3.26)

in which n = 1, 2, · · · , N , m = 1, 2, · · · ,M , and M is the total number of rays that go through the

target at one angle of view. Furthermore, amn is defined as the weight of the each line with width τ

amn for this cell =
Area of the black triangle

δ2
. (3.27)

In other words, the amn is the weighting factor representing the contribution of the n-th cell
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to the m-th line integral. Most of the values of amn are zero since only a small number of cells

contribute to a given ray-sum.

If M and N are small, we could use conventional matrix theory to invert the system denoted

by Equation 3.26. However, in practice N may be large as 65, 536 for an image sized 256 × 256,

and the typical size of DBT is much larger. M is also of the same magnitude. Then the size of the

amn matrix will be 65, 536×65, 536, which precludes any possibility of using direct matrix inversion.

Furthermore, it costs about 512GB to save the full matrix; even though the matrix is sparse, it still

needs huge storage to save the data.

f f

fn

21

τ
δ

δ

for this cell =
Area of the black triangle

δ2
amn

p
pm

m+1

p
l

l+1
p

Figure 3.11: Square grid on the image.

For large values of M and N , there are attractive iterative methods for solving Equation 3.27.

These iterative methods are based on the vector resolute, i.e., the method of projections, which was

firstly proposed by Kaczmarz [134]. In addition, we can prove that the formula of ART is

fk = fk−1 − fk−1 · am − pm
am · am

am, (3.28)

in which am = (am1, am2, ..., amN ), and am · am is the inner product (or dot product/scalar product)
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of the am with itself. Alternatively, the formula can be rewritten as

fkn = fk−1
n +

pm − qm∑N
n=1 a2

mn

amn, (3.29)

in which

qm = fk−1 · am =

N∑
n=1

fk−1
n amn. (3.30)

The Equations 3.29 and 3.30 suggest that when we project the (k − 1)-th solution onto the k-th

hyperplane, the gray level of the n-th element, whose current value is fk−1
n , is obtained by correcting

its current value by

∆fk−1
n = fkn − fk−1

n =
pm − qm∑N
n=1 a2

mn

amn. (3.31)

Note that while pm is the measured ray-sum along the m-th ray, qm is considered to be the

computed ray-sum for the same ray based on the (k − 1)-th solution for the image gray levels. The

correction ∆fn of the n-th cell is obtained by calculating the difference between the measured ray-

sum and the computed ray-sum. In addition, it normalises the difference by
∑N
n=1 a2

mn. Next, we

assign this value to all the image cells in the m-th ray, and each assignment is weighted by the

corresponding amn
[138].

3.2.2.2 Simultaneous Iterative Reconstruction Technique (SIRT)

According to the Equations 3.29 and 3.31, the ART method can be generally expressed as

fkn = fk−1
n + λ∆fk−1

n , (3.32)

which can be expanded as

fkn = fk−1
n + λ∆fk−1

n

= fk−1
n + λ

pm −
∑N
n=1 fk−1

n amn∑N
n=1 a2

mn

amn. (3.33)

The λ is an ad hoc relaxation factor, which is used to limit large model perturbations, and m

is the iteration number. This type of additive ART method is named Simultaneous Iterative ART
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(S-ART). Similarly, the Multiplicative ART (M-ART) can be formulated as

fkn = fk−1
n

( pm∑N
n=1 fk−1

n amn

)λamn
. (3.34)

Instead of updating the n-th cell using the m-th equation information (each row of the matrix

a consist of amn) in the ART, SIRT method goes through all the equations and then updates the

n-th cell at the end of each iteration. This update for the n-th cell is the average value of all the

computed changes for that cell. Furthermore, the SIRT approach, which possesses the expense of

slower convergence, usually leads to better reconstructions than those produced by the ART. The

SIRT method is expressed as

fkn = fk−1
n + λ

1

Mn

M∑
m=1

∆fk−1
n . (3.35)

It can be expanded as

fkn = fk−1
n + λ

1

Mn

M∑
m=1

∆fk−1
n

= fk−1
n + λ

1

Mn

M∑
m=1

pm −
∑N
n=1 fk−1

n amn∑N
n=1 a2

mn

amn, (3.36)

in which M represents that the projection data can be assembled into an M-dimensional column

vector p, with the element of pm, and m = 1, 2, · · · ,M in the Equation 3.26. In addition, Mn is

the number of non-zero elements in the column vector an. McGaughey and Young [191] made a

conclusion that SIRT generally outperformed ART in providing a match between model and data by

the study of the model estimation as a function of iteration number. They also indicated that ART

was comparable to SIRT with very low relaxation factors. However, ART was found inferior to the

initial backprojection at high relaxation factors, e.g., λ ≈ 0.1. Thus, SIRT would be favoured over

ART if an iterative inversion scheme were warranted for an application. Furthermore, the update was

performed after all projection views were processed in SIRT, which could improve the reconstruction

results. In [25] Bleuet et al. attempted to use an iterative algebraic reconstruction method for

linear tomosynthesis reconstruction with the adapted fan volume sampling scheme, with the X-ray

source moving along a finite straight line. The quality of their reconstructed object was conserved

while the computation time was considerably reduced without any parallelisation of the algorithm.

Wang et al. [309] proposed a fast and memory-saving ART method for DTS reconstruction, which

performed a one step ART iterative reconstruction than two step reconstruction and deblurring
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processes. The weight matrix of ART was calculated offline, and it was saved in a look-up-table

to accelerate the reconstruction. In addition, a Bessel-Kaiser function was applied as the pixel

basis function to improve the reconstruction quality, and the simulation showed that their ART

implementation obtained accurate 3D reconstruction results. Zhang et al. [344] mentioned that

ART had fast convergence speed since only a single projection value was used to update the linear

attenuation coefficients at a time. However, it converged to a least squares solution, which could be

very noisy for severely ill-posed inverse problems, e.g., limited-angle DBT reconstruction.

3.2.2.3 Simultaneous Algebraic Reconstruction Technique (SART)

SART, which combines the best of ART and SIRT, produces a superior reconstruction result with a

fast convergence. The general SART is expressed as

fkn = fk−1
n + λ

∑M
m=1 ∆fk−1

n∑M
m=1 amn

, (3.37)

which can be expanded as

fkn = fk−1
n + λ

∑M
m=1 ∆fk−1

n∑M
m=1 amn

= fk−1
n + λ

∑M
m=1

(
pm−

∑N
n=1 fk−1

n amn∑N
n=1 a2

mn

)
amn∑M

m=1 amn
. (3.38)

In 2006, Zhang et al. [344] [345] published some work on limited-angle cone-beam DBT reconstruc-

tion. They compared the BP method, the SART algorithm, and the maximum likelihood method

using phantoms to evaluate the image quality and reconstruction artefacts. All the experiments were

performed on the second-generation GE DBT prototype system. The system possessed a stationary

CsI phosphor/a:Si active matrix flat panel digital detector with a pixel size of 0.1 mm by 0.1 mm.

In addition, there were 21 projections acquired over ±30o in less than 8secs. The voltage ranged

from 26kVp to 33kVp, and the total mAs of the various views ranged from 44mAs to 150mAs. The

system used an Rh-target/Rh-filter X-ray source at 29kV with no anti-scatter grid, and the AGD

was about 250mrad. The predefined test volume was 14cm by 23cm in area and 5cm in thickness,

and the out-of-plane resolution was set to 1mm. They employed the Contrast-to-Noise Ratio (CNR),

the line profile of features, the Artefact Spread Function (ASF), the Noise Power Spectrum (NPS),

and the Line Object Spread Function (LOSF) to evaluate the contrast, sharpness, and artefacts

quantitatively. They found that the BP method resulted in less noisy tomosynthesis images and
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higher CNR values for masses than the SART. However, the two iterative methods provided greater

contrast enhancement for masses and calcifications and sharper LOSF. In addition, they reduced

inter-plane blurring and artefacts with better ASF behaviours for masses. Furthermore, the BP

method obtained strong blurring artefacts along the X-ray source motion direction and it obscured

the contrast-detail objects. The SART method could remove the superimposed breast structures

and significantly improved specificity of the object with BP results as initialisation.

Van de Sompel and Brady [295] reported a SART reconstruction on basic ellipsoids in 2D and

MR-derived breast phantom in 3D initialized by three different initial guesses, namely Unfiltered

Backprojection (UBP), Filtered Backprojection (FBP), and the Zero Image (ZI). Chan [38] sum-

marised the Computer-Aided Diagnosis (CAD) in breast tomosynthesis and chest CT and compared

conventional mammography with the SART reconstruction of DBT at the 1mm slice intervals.

3.2.3 Least Squares Estimation

Many studies into DBT reconstruction show that the ART-based iterative methods present many

advantages over transform-based methods; however, these iterative algorithms may not be ideally

suitable for the DBT reconstruction. In principle, these iterative algorithms are seemly designed for

reconstructing complete and noisy projection data sets, e.g., in many medical imaging applications

like CT, the forward projection data, which are fully sampled and noisy, can be exactly inverted

in theory, and these iterative algorithms are also able to remove the additive noise. Conversely,

tomosynthesis systems obtain projection data with low noise [261], but they are highly incomplete.

Therefore, many various attenuation distributions should be compatible to the observed forward

projections, and ART-based iterative algorithms make little effort in this situation.

3.2.3.1 Least Squares Approximation

Consider the problem of reconstructing an unknown image f from noisy data p satisfying,

p = Af + ε, (3.39)

where A ∈ Rm×n describes the forward projection process with noise ε. Here A is also known as the

system matrix or forward projection matrix, and Equation 3.39 expresses the fundamental forward

problem.
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Apply a least-squares based unconstrained minimisation approach for the estimate f,

f? = arg min
f

(
f(f) =

1

2
‖Af − p‖2

)
= arg min

f

( 1

2
(Af − p)T (Af − p) =

1

2
(fTAT − pT )(Af − p)

)
= arg min

f

( 1

2
(fTATAf − fTATp− pTAf + pTp)

)
, (3.40)

in which ‖ · ‖2 denotes the Euclidean norm that is the L2-norm.

pT and Af are vectors and the dot product is commutative, and pTAf = pT (Af) according to

matrix associative law, we can simply prove there always holds the equivalent of fTATp ≡ pTAf;

therefore, Equation 3.40 is rewritten as follows,

f? = arg min
f

(
f(f) =

1

2
(fTATAf − fTATp− pTAf + pTp)

)
= arg min

f

( 1

2
(fTATAf − 2fTATp + pTp)

)
. (3.41)

The gradient g(f) of the objective function in Equation 3.41 is derived as below.

g(f) =
∂f(f)

∂f
= ATAf −ATp. (3.42)

According to the first-order necessary conditions (as seen in Appendix B), we can equate the

gradient of the objective function to zero, i.e., ATAf − ATp = 0. Therefore, the minimum norm

solution f? is

f? = (ATA)−1ATp = A†p (3.43)

in which A† = (ATA)−1AT is the Moore-Penrose pseudo-inverse. In addition, A† is equivalent to

the proper inverse of matrix A if it is square and non-singular, i.e., it is invertible; however, we can

always construct the pseudo-inverse regardless if A is not square and/or rank-deficient.

Furthermore, we can define any linear operator using the singular value decomposition (SVD).

Therefore, any matrix A can be written as a product

A = UΣV T , (3.44)
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where the columns of U and V are orthonormal, and the number of non-zeros in the diagonal part

of Σ is equal to the rank r of the matrix A. Thus, if A is square and full-rank, we can rewrite f?

using SVD as follows

f? = A−1p (3.45)

= V Σ−1UT p (3.46)

=

r∑
i=1

ui · p
ςi

vi, (3.47)

in which A−1 is the proper inverse of matrix A, and ui, ςi, and vi are the column vectors of matrix

U , Σ, and V . In addition, the pseudo-inverse A† can be expressed by

A† = UΣ†V T =

r∑
i=1

viu
T
i

ςi
. (3.48)

Regularisation, which was inspired from filtering the contribution of the singular vectors in the

inverse, yields operator approximations to the SVD of the pseudo-inverse. For example,

A†λ = V Σ†λU
T (3.49)

=

λ∑
i=1

viu
T
i

ςi
≈ V Σ†UT (3.50)

in which Σ†λ is

Σ†λ =

 1/ςi if ςi > λ

0 otherwise
(3.51)

and λ is a small threshold. This is also known as truncated SVD (TSVD), in which only the λ

column vectors of U and λ row vectors of V T corresponding to the λ largest singular values Σ† are

calculated, and the rest of the matrix is discarded. Therefore, the filter in TSVD method is

qλ(ς2i ) =

 1 if ςi > λ

0 otherwise
(3.52)

We also define the condition number κ(A) of the matrix A as follows

κ(A) :=
ςmax(A)

ςmin(A)
, (3.53)
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where κ(A) measures the sensitivity of A†p to perturbations in p and A, and for large κ(A) (above

a few thousand) A is called ill-conditioned which is the case for most of the real applications. Small

errors in the data ∆p can be magnified by small singular values ςi (as seen in Appendix C).

Another filter we can apply is

qλ(ς2i ) =
ς2i

ς2i + λ
, (3.54)

which is known as Tikhonov filtering, and the corresponding regularised inverse is

A†λ = (ATA+ λI)−1AT . (3.55)

It is usually impractical to construct the SVD explicitly for a large system; however, we can

obtain the solution using a variational form as follows

f?λ = A†λp = (ATA+ λI)−1AT p, (3.56)

and we can also address the problem as an unconstrained optimisation process, that is

f?λ = arg min
f∈Rn

(
f(f) =

1

2
‖Af − p‖2 + λ‖f‖2

)
. (3.57)

More generally we can consider an optimisation problem with

f?λ = arg min
f∈Rn

(
f(f) = D(Af,p) + λR(f)

)
, (3.58)

in which D and R can be any data discrepancy and regularisation functionals based on a L1-norm, a

L2-norm, a Lp-norm, or a statistical measurement, and λ is the regularisation parameter or damping

factor.

In particular, when

R(f) =
1

2
‖f‖2, (3.59)

it is called Tikhonov (Tychonov) regularisation, which can be any quadratic functional

R(f) =
1

2
‖f‖2Γ =

1

2
fTΓf, (3.60)

where Γ is a matrix. We can consider using the derivative of f in order to impose a penalty on the
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oscillations in the solution, rather than use f to penalise only the magnitude of the solution, that is

R(f) =
1

2
‖f ′‖2, (3.61)

or in discrete form

R(f) =
1

2
‖Df‖2 =

1

2
fTDTDf, (3.62)

in which D is a finite difference matrix implementing the derivative f ′ of f.

One of the drawbacks of using a Tikhonov regularisation is the fast quadratic growth of the

penalty term, which leads to an undesirable solution. Total variation, which is based on the L1-

norm, is an alternative penalty functional

R(f) = |f ′|, (3.63)

and we can implement this in the discrete setting as follows

R(f) = |Df| =
N−1∑
n=1

|fn+1 − fn|. (3.64)

Although iterative reconstruction methods tend to handle noise better than analytical methods

such as FBP, the reconstruction process itself can amplify the noise gradually [256] even though

tomosynthesis projection data possess low noise. Therefore, the merit of total variation regularisation

is that it can suppress the noise in the reconstruction with sharp edges, but there is no direct matrix

inversion as in Equation 3.56.

3.2.3.2 Numerical Optimisation

Optimisation is ubiquitous, and it has been used in many areas including engineering, economics,

operations research, and others. Essentially, the numerical optimisation is a mathematical problem

identifying optimum or optima, which may be expressed in calculus-based formulas. There are plenty

of choices of numerical optimisation schemes, which includes line search methods, trust-region based

methods, gradient (steepest) descent method, conjugate gradient methods, Levenberg-Marquardt

algorithm, Gauss-Newton algorithm, quasi-Newton methods, the simplex method, and other variants

of existing methods. A thorough investigation on numerical optimisation algorithms [21] [304] [30]

[217] showed that the conjugate gradient method, quasi-Newton method and trust-region types of

methods are suitable for solving the large-scale reconstruction problem in Equation 3.56. However,
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line search method, steepest descent method, and Nelder-Mead method are suitable for small-scale

or medium-scale reconstruction problems.

We emphasise the conjugate gradient method and quasi-Newton method in this thesis. The per-

formance of the linear conjugate gradient method is determined by the distribution of the eigenvalues

of the coefficient matrix. By transforming, or preconditioning the linear system, we can make this

distribution more favourable and improve the convergence of the method significantly. The linear

conjugate gradient method was proposed by Hestenes and Stiefel in the 1950s [110]. It is an iterative

method, which was motivated by the alternative to Gaussian elimination that was well suited for

solving large problems. In addition, Fletcher and Reeves [78] introduced the first nonlinear conjugate

gradient method in 1964. It was one of the earliest known techniques for solving large-scale nonlinear

optimisation problems. Over the years, many variants of this original scheme were proposed, and

some were widely used in practice. The key features of these algorithms were that they required no

matrix storage, and they were faster than the steepest descent method [217]. Vogel [304] has shown

that for extremely large and highly structured linear systems, the conjugate gradient method pro-

vided a very efficient solution. In addition, the conjugate gradient method could also be adapted to

solve non-quadratic optimisation problems, and a general non-linear conjugate gradient algorithm is

summarised in Appendix D.

Furthermore, the motivation to develop the quasi-Newton method was the attempt of solving a

long optimisation calculation in the mid 1950s. The quasi-Newton method is one of the most creative

ideas in nonlinear optimisation [217]. Similar to Newton’s methods and the steepest descent method,

the optimisation is supplied with the gradient information of the objective function as the guidance

of the searching direction. The advantages of the quasi-Newton method are: firstly, it possesses rapid

superlinear convergence; secondly, it is designed to prevent the calculation of the Hessian matrix or

its inverse at each iteration that happens in other Newtons methods; thirdly, due to the efficiency

of the quasi-Newton, it makes the development and solution of the large-scale optimisation problems

became reality. Thus, the core of the quasi-Newton theory is the approximation of the inverse Hessian

matrix. The most popular approximation methods used in quasi-Newton algorithms are DFP and

BFGS methods (Appendix D), named using the acronymic combinations of the scientists’ names:

Davidon-Fletcher-Powell and Broyden-Fletcher-Goldfarb-Shanno. In addition, the limited-memory

quasi-Newton methods use a few vectors instead of manipulating fully dense approximation of the

inverse Hessian matrix. There are various limited-memory methods, and the one based on BFGS

is named L-BFGS. Based on the description of the BFGS method, the L-BFGS method, which has

been used in our application, is outlined as follows.
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The objective of BFGS method is to find an appropriate approximation for the inverse Hessian

matrix, that is

Hk+1 = V Tk HkVk + αksksTk , (3.65)

in which

αk =
1

zTk sk
, Vk = I − αzksTk , (3.66)

and

sk = fk+1 − fk, zk = g(fk+1)− g(fk). (3.67)

In addition, the updating at k-th iteration can be formulated using

Hk+1 = V Tk V
T
k−1 · · ·V T0 HinitialV0 · · ·Vk−1Vk

+ V Tk · · ·V T1 α0s0sT0 V1 · · ·Vk
...

+ V Tk V
T
k−1αk−2sk−2sTk−2Vk−1Vk

+ V Tk αk−1sk−1sTk−1Vk

+ αksksTk (3.68)

In order to circumvent storing all these vector pairs of {sk, zk}, L-BFGS method only use infor-

mation from last m iterations that is

Hk+1 = V Tk V
T
k−1 · · ·V Tk−m̂HinitialVk−m̂ · · ·Vk−1Vk

+ V Tk · · ·V Tk−m̂+1αk−m̂sk−m̂sTk−m̂Vk−m̂+1 · · ·Vk
...

+ αksksTk (3.69)

where m is defined by the user according to empirical. In addition, a typical value 3 ≤ m ≤ 20 could

produce satisfactory results, and m̂ = min{k,m − 1}. Therefore, when k > m we can discard the

vector pair {sk−m, zk−m} from storage that is the main difference between L-BFGS and its parent

form BFGS.
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3.3 Conclusions and Discussion

In this chapter, we have surveyed various classical and novel reconstruction methods, which can be

applied to reconstruct DBT volumes with particular geometric setup. The reconstruction algorithms

can be coarsely divided into two categories, namely analytical and iterative methods.

SAA and BP are straightforward reconstruction algorithms, which mathematically line up the

in-focus structures along the X-ray tube motion direction. SAA and BP can reconstruct mass

clearly but with serious blurry artefacts, especially for the edges of the mass. FBP is based on the

traditional SAA algorithm, which obtains breast structures with deblurring techniques. However, the

FBP method is always restricted by the imaging geometry, and the reconstruction efficacy depends

on the filter design for limited angle DBT reconstruction problem with highly incomplete sampled

spatial frequency domain. FBP contains an inverse filtering procedure for the forward projected

images including sampling density information in the frequency domain, and back projects the

filtered images to the spatial domain to create the reconstructed slice. Compared to SAA and BP

algorithms, FBP suppresses out-of-plane blurring with a comparatively fast reconstruction. FBP is

superior for reconstruction of low frequency contents. In addition, it possesses a fast reconstruction,

which is feasible for clinical usage, and currently most industrial vendors use FBP to reconstruct

DBT volumes.

Iterative methods based on ART technique show their promise in reconstructing DBT volumes,

and they are not limited by the imaging geometry. In many studies, SART is favoured for DBT

reconstruction because this block-action strategy has a moderate trade-off between ART and SIRT.

In the traditional ART method, the measurement noise is considerably amplified due to the contin-

ual updating and the intrinsic ill-posed property of this kind of inverse problem. In contrast, the

convergence speed is relatively slow using SIRT reconstruction, which averages over all the rays in all

projections, and the reconstructed results are always over smoothed. Least squares estimation with

proper numerical optimisation provides an alternative way of performing iterative reconstruction.

ART based methods are suitable to reconstruct complete and noisy data sets like fully sampled CT

projection data with noise; however, DBT systems produce highly incomplete projections with low

noise. Therefore, least squares estimation based algorithms outperform ART based methods for DBT

reconstruction in theory. However, in real applications, regularisation is necessary when the data

are not ideal. Many regularisation schemes are well studied in CT, PET and optical tomography

reconstructions, and various Total Variation like (TV-like) regularisation methods [143] [260] [261] are

proposed for DBT reconstruction. Furthermore, there is a trade-off between the data fidelity and
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the regularisation terms, which are represented by data error and image regularity metric respec-

tively (as seen in Figure 3.12). When the regularisation is small, the reconstruction is close to the

available data but may contain evident artefacts because of the noisy or inconsistent data, whereas

large regularisation term outputs smooth images at the expense of fidelity to the data.

Image Regularity Metric

D
at

a 
E

rr
or

Figure 3.12: Diagram of the trade-off between the data fidelity and the regularisation terms represented

by data error and image regularity metric respectively. The plot shows the fidelity and regularity plane

for an undersampled (blue area) versus a completely sampled tomographic system (red area). For completely

sampled systems, a unique image minimises the data error because only one value of the regularity is possible,

whereas many possible candidate volumes correspond to the situation of minimum data error for undersampled

systems. The two curves represent a generic behaviour of standard iterative algorithms for the case of no

regularisation (solid curve) and with regularisation (dashed curve).

In summary, compared to the analytical methods, the iterative methods are conceptually simple

with milder assumptions for the missing data, but always converge slowly and may be trapped by local

minima. On the contrary, FBP method presents fast reconstruction, but the filter design, parameters

tuning are complicated. In our DBT registration and reconstruction framework, we develop a least

squares based approach, which is simple to combine with existing numerical optimisation techniques,

and it could also incorporate different image constraints and various regularisation schemes.
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Chapter 4

Image Registration and Its Applications in DBT

Registration is a major field of research in medical image processing. It searches for the best geomet-

rical transformation mapping points from one image to the corresponding points in another image

[19]. Intra-subject registration maximises correspondences of two or more images, which are acquired

using various imaging modalities or at different time points, from the same subject. Whereas, inter-

subject registration aim to align images of multiple subjects in order to perform population-based

studies on the anatomical variability.

Medical image registration has been used in many clinical and research applications [33] [70] [277]

[185] [169] [18] [116] [348] [223] [292], e.g., image registration can eliminate the effect of patient position

and motion artefacts. Thus, it is often used throughout the imaging, screening and treatment process

to capture, visualise and quantitatively analyse the development of disease.

There are several significant concepts, which must be considered when developing image registra-

tion algorithms. These include image interpolation, the transformation model used, similarity metric

or distance measurement, optimisation, and validation. Firstly, the image processing algorithms of-

ten utilise image interpolation. Particularly, in image registration, interpolation contributes in data

preparation, image resampling, and transformations. Secondly, the transformation model, including

rigid, affine and deformable transforms, parameterises the geometrical deformation field. Distance

measurement provides the metric of similarity between the images, and is the registration basis.

Many criteria are proposed as the basis of aligning two images, and a common classification is as

landmark-based, segmentation-based or intensity-based registration [311] [281]. Next, the registration

process can be viewed as an optimisation problem, and the goal is to minimise an associated objec-

tive function modelled by the distance measurement. Finally, the validation evaluates the accuracy,

robustness, and clinical utility of the registration results. However, the evaluation is difficult because

the correct transformation, i.e., the ground truth, is usually unknown in a real application.
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4.1 Forward Problem: Warping

4.1.1 Image Interpolation

Medical image registration, especially breast image registration using mammography or DBT recon-

structions, seeks align images before their subtraction, for example, in order to find where and how

they differ. To reveal this alignment from the observed images is an inverse problem, and the for-

ward problem is the image warping between these images. Image warping, which implies a particular

transformation model computed during registration, can be validated via comparison with a known

a ground truth. However, in real applications, as a result of different conditions of acquisition, e.g.,

various imaging modalities and temporal variances, normally we have no ground truth.

Interpolation plays an important role in registration. Firstly, it determines the accuracy of my

transformation model, which is essential in the simulation process of the forward problem and in the

recovery steps of the inverse problem. For example, a deficient interpolation can create degenerate

simulations and corrupt the unprocessed raw data (processed mammogram data is ready for display)

[291]. Secondly, an ideal interpolator must be self-consistent, differentiable, and short in spatial

extent. Therefore, a good quality approximation of the ideal interpolator can ease the optimisation

procedure of the registration. In addition, we can apply multi-scale and multi-resolution methods to

avoid local minima. In these methods, we use appropriate interpolation to obtain downsampled and

smoothed images in a pyramid model and step back to the original scale with full resolution as the

registration proceeds.

Essentially, the interpolation represents a continuously defined function using the summation of

discrete weighted and shifted basis functions [291]. It is equivalent to a low-pass filtering process. In

addition, a more generalised interpolation consists of an extra prefiltering step, which allows us to

use many potential basis functions. One definition of interpolation is

I(x) =
∑

k∈Zn
fkϕint(x− k) ∀x = (x1, x2, · · · , xn ∈ Rn), (4.1)

in which I(x) is an interpolated value at coordinate x in n dimensional space. Furthermore, I(x) is

equal to the linear combination of samples fk at integer coordinates k = (k1, k2, · · · , kn) ∈ Zn. From

signal processing theory, the perfect recovery of signal I(x) only occurs when I(x) is band-limited

and its sampling rate satisfies Nyquist-Shannon theorem to avoid aliasing [291]. In addition, the sinc

function, which vanishes at all integers except at the origin, can be used as an ideal basis function,
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i.e., ϕint, to obtain the exact interpolation. However, in real applications, image signals are not

exactly band-limited, sinc interpolation requires infinite samples, and is computationally expensive.

Therefore, we seek an appropriate approximation to the ideal sinc interpolation.

Many interpolation schemes have been proposed in previous studies, e.g., nearest neighbour,

linear, polynomial, and spline-based interpolation. Nearest neighbour and linear interpolation are

described respectively by

ϕ0(x) =

1, for − 1
2 ≤ x <

1
2

0, otherwise
, (4.2)

ϕ1(x) =

1− |x|, for |x| < 1

0, otherwise
. (4.3)

Interpolation that is more complex can be modelled using polynomials and splines. For example,

the cubic polynomial interpolation kernel is

ϕ3(x) =


1− 5

2 |x|
2 + 3

2 |x|
3, for |x| ≤ 1

2− 4|x|+ 5
2 |x|

2 − 1
2 |x|

3, for 1 < |x| < 2

0, otherwise

. (4.4)

Furthermore, spines are piecewise polynomials, which are smoothly connected by joining points,

i.e., knots. In [203] Mitchell and Netravali formulated the spline family using a 2-parameters model.

The cubic interpolation spline family (ϕF) are defined by various %1 and %2:

ϕ3
F(x) =

1

6



(12− 9%1 − 6%2)|x|3 + (−18 + 12%1 + 6%2)x2

+ (6− 2%1),
for |x| ≤ 1

(−%1 − 6%2)|x|3 + (6%1 + 30%2)x2

+ (−12%1 − 48%2)|x|+ (8%1 + 24%2),
for 1 < |x| < 2

0, otherwise

, (4.5)

ϕ3
F(x) :=



Cubic B-spline, %1 = 1, %2 = 0

Duff?s Tensioned B-splines, %1 > 0, %2 = 0

Catmull-Rom Spline, %1 = 0, %2 = 0.5

Cardinal Splines, %1 = 0, %2 < 0

. (4.6)
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The B-spline, which is short for basis spline, has minimum support at a certain order of degree,

i.e., the B-spline has non-zero values for the minimum range of abscissa [247]. Specifically, the

B-spline kernel βn of order n is the n-fold convolution of the B-spline of order 1, i.e.,

βn = β1 ⊗ βn−1, (4.7)

in which

β0(x) =


1, for |x| < 1

2

1
2 , for |x| = 1

2

0, otherwise

. (4.8)
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Figure 4.1: Interpolation examples using a 1D signal. First row: Various interpolation kernels; Second row:

Coarse interpolation using samples (green square) on the original signal; Third row: Fine interpolation using

more samples (zoomed in area of the red box).

Compare with Equation 4.2, β0(x) is almost identical to the ϕ0(x) except β0(x) is symmetrical.

In addition, β1(x) is the same as ϕ1(x) in Equation 4.3, and βn(x) approaches a Gaussian distri-
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bution when n becomes larger. A generalised version of B-splines is Duff?s Tensioned B-splines.

Furthermore, if we employ an additional step of calculating the interpolation coefficients instead of

using fk directly, we can derive the cardinal splines. The Catmull-Rom spline is a particular case

of the cardinal splines, which converge to the sinc function at high orders. Examples of different

interpolation kernels and the results on a simple 1D signal are shown in Figure 4.1.

4.1.2 Transformation Models

In the forward problem of image warping, a transformation model mathematically describes the

transformation between two or more images. In additional, the inverse problem, i.e., registration,

aims to find the transformation mapping any point in the source (or floating or moving) image into the

corresponding point in the target (or reference or fixed) image. In many real applications, a single

transformation model is insufficient to recover all the deformation. However, the combination of

transformations can approach the correct alignment. Parameterised transformation models, which

describe the Degrees of Freedom (DoF) associated with a certain number of parameters, can be

classified as rigid, affine and non-rigid deformable transformations (Figure 4.2). In general, the more

DoF a transform contains, the more complex it is to solve the optimisation problem of registration.

Non-RigidAffineRigid

Taxonomy of Spatial Transforms

Translation Rotation Scaling Shearing Splines

B-Splines
Thin-Plate 

Splines

Elastic Body 
Splines

Translation Rotation

Figure 4.2: Illustration of the taxonomy of spatial transforms.

Rigid transformation, which contains only rotations and translations, is suitable when there are no
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changes in the shape of the structure between the source and the target images. Affine transformation

allows scaling and shearing, which can model more complex problems where the imaging scaling

factors are unknown. In addition, non-rigid transformations define free-form mappings that are

typically constrained by regularisation to a limited and feasible solution space. Rigid and affine

registration is well-validated but non-rigid registration is more complex and difficult to validate [342].

Transformation models can also be defined as global or local transformations (Figure 4.3). A

transformation is called global if it applies to the entire image, and it is local if each subsection of

the image has its own transformation [185].

Original

Global Local

Rigid

Affine

Projective

Curved

Figure 4.3: Examples of 2D transformations.

Mathematically, we can define the rigid transformation using homogeneous coordinates and ar-

gument matrix as

Trigid(x, y, z) =


x′

y′

z′

1

 =


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1




x

y

z

1

 , (4.9)

in which tx, ty and tz are the translation along each axes of the 3D coordinate system. rij are the

rotation coefficients, which are calculated by the multiplication of three separate rotation matrices.

In the 3D affine model, there are 12 parameters, which combine the rigid transformation with

shearing and scaling, that is

Taffine(x, y, z) = Tshearing · Tscaling · Trigid · [x, y, z, 1]T (4.10)
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where [·]T is the transpose of the matrix. The shearing and scaling matrices are

Tshearing =


1 hx hy 0

0 1 hz 0

0 0 1 0

0 0 0 1

 , and Tscaling =


sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1

 . (4.11)

There are other high order global transformations, which are more complex, e.g. the tri-linear

transformation has 24 DoF and the quadratic transformation has 30 DoF. In addition, non-rigid

deformable transformations can model subtle changes between images. These deformable transfor-

mations are described using a linear combination of basis functions or using splines. In particular,

the use of Free-Form Deformations (FFD) based on B-splines for image registration, which was pro-

posed by Rueckert et al. [245], has been successfully applied to many medical image registration

problems. B-splines are locally controlled, i.e., changing one control point only affects the transfor-

mation within a local neighbourhood or region. Therefore, it is more efficient than thin-plate splines

and elastic-body splines. In [245] Rueckert et al. formulated the FFD using a 3D tensor product of

1D cubic B-splines as

TFFD B−spline(x, y, z) =

3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n, (4.12)

in which i = bxδ c − 1, j = byδ c − 1, k = b zδ c − 1, u = x
δ − b

x
δ c, v = y

δ − b
y
δ c, w = z

δ − b
z
δ c,

and φi+l,j+m,k+n are the control points with uniform spacing δ. Furthermore, b·c denotes a floor

operation, which maps a real number to the largest previous integer.

In addition, Bl is the l-th basis function of the cubic B-spline

B0(u) = (1− u)3/6 (4.13)

B1(u) = (3u3 − 6u2 + 4)/6 (4.14)

B2(u) = (−3u3 + 3u2 + 3u+ 1)/6 (4.15)

B3(u) = u3/6. (4.16)
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4.2 Inverse Problem: Registration

Registration is also called image fusion or matching [76]. The goal of registration is to determine

a spatial transformation that brings homologous points among images being registered into corre-

spondence. From the geometrical point of view, image registration uncovers the alignment of two

or more images of the same objects taken at different views, different times or captured by different

modalities.

There are plenty of investigations into rigid registration methods such as [185] [116]. Many studies

have been carried out into non-rigid registration techniques, as well, e.g., [86] [169] [348] [52] [204] [89] [281]

[119]. These studies proposed elastic and fluid models, function expansions and splines, B-splines and

wavelets, radial basis functions, landmark based methods, level sets registration, and the numerical

solution of registration problems. In [33] Brown summarised that there are four key components in

the development of a registration algorithm. Firstly, a feature space, where features to be matched,

are selected in the image pair. Secondly, we have a search space, i.e., range of transformations to be

used. In addition, we need a search strategy to find the optimum transformation within the search

space. Lastly, a similarity metric estimates the optimality of a transformation for the selected feature

set. For instance, the edges in both images are generally good features; the rotation transformation

could be the search space; there are many search strategies such as exhaustive search; and correlation

could be employed as the similarity metric. These four key components can be modified as necessary

for a more complex situation such as changing the rotation transformation to affine transformations.

The choice of the four key components will exercise a great influence on the consequences of the

registration and with many options for each available, the number of combinations is virtually

endless.
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4.2.1 Category of the Image Registration

In previous studies, many criteria, i.e., landmark-based, segmentation-based and intensity-based

methods, were employed as the basis for aligning source and target images. In addition, from the

transformation point of view, the registration can be categorised into parametric image registration

(PIR) and nonparametric image registration (NPIR).

4.2.1.1 Landmark-Based Image Registration

Landmark-based registration (or feature-based registration) uses salient features defined by the user.

The selected features are structures such as points, lines, corners, crossings, and surfaces. The

great advantage of landmark-based registration is the fast registration speed because the selected

landmarks are sparse in the feature space. However, the non-deterministic user defined landmarks

affect the accuracy of the registration results.

4.2.1.2 Segmentation-Based Registration

Segmentation-based methods register the binary structures such as curves, surfaces and volumes,

which are obtained by segmentation. Segmentation-based methods are faster than methods using

full image content because of the reduction of information. Nevertheless, the registration is based

on segmentation pre-processing step, which undermines the precision of alignment results.

4.2.1.3 Intensity-Based Registration

Intensity-based methods deal with image intensity directly. Intensity-based methods require the full

range of image content. Therefore, they are more time-consuming, whereas these intensity-based

methods are generally robust, and involve no user interaction or pre-processing. The cost function

of intensity-based methods is constructed using image intensity of homologous points within source

and target images, and raw intensities of medical images are often smoothed and re-sampled. In

contrast, landmark-based and segmentation-based methods minimise the distance between physical

points.

The merit of landmark-based or segmentation-based methods is the capability of dealing with

both intra-modality and inter-modality registration. However, any errors in feature extraction and

segmentation will propagate through the registration process, and they are inevitable and unrecov-

erable. On the other hand, intensity-based methods form the similarity measurement according to
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the level of shared information between the image intensities [243]. Combinations of landmark-based,

segmentation-based and intensity-based methods have also been proposed.

4.2.1.4 Parametric Image Registration

PIR refers to registration via a specific class of transformation models. For a typical 3D problem, we

have six parameters for the rigid transformation and twelve for the affine transforms. There are many

more parameters associated with B-spline based registration, which are determined by the number

of control points used. In real clinical applications, rigid and affine transforms are applicable to the

registration of anatomical structures such as brain and bones. However, it is insufficient to describe

complex deformation of soft tissues like liver and breast, where we need deformable registration.

Although the affine registration has limited capability to recover significant non-rigid deformation,

it is beneficial in modelling and testing a registration framework using simulated data. In practice,

combining global affine and local non-rigid transformations is generally suitable for tackling most

real registration problems. In summary, parametric models with affine transformations could be

a good starting point for my research on combining reconstruction and registration in DBT, and

deformable transformations can then be substituted at a later date once the framework has been

developed.

4.2.1.5 Non-Parametric Image Registration

In the case of NPIR, we have a dense displacement field, which describes the transformation at every

intensity point [243]. Additionally, in NPIR, we could use both small and large deformation models,

which involve solving Partial Differential Equations (PDEs) that are associated with the displacement

field. For instance, the large deformation models, the displacements can be described using a time

dependent velocity field [243]. Thus, the forces, which govern the physical process of mimicking

stretch of an elastic material, relax over time. Optical flow [120] and elastic models [15] are widely

used small deformation models. The viscous fluid model [44], which is a typical large deformation

model, enforces the topological properties on the deformation by constraining the transformation to

be smooth. In contrast, the PIR model is controlled by a set of parameters, which possess much

fewer dimensions in the search space. To sum up, the NPIR has plenty of flexibility to describe the

transformations, but it is generally computationally expensive compared to the PIR model.
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4.2.2 Solving the Image Registration Problem

4.2.2.1 Distance Measures

The similarity criterion measures differences in values at specific pixel/voxel locations between the

two images. Brown [33] reported that the differences were measured as volumetric differences. Typ-

ically, value changes are the differences in intensity or radiometry. However, more generally, the

concept of volumetric is proposed in order to include the wide variety of existing sensors whose

values are not intensities.

Intensity-based methods minimise a cost function that measures the similarity between the image

intensity of corresponding points of source and target images. The similarity computation is straight-

forward for the registration between source and target images, which are acquired by using the same

imaging modality. However, it is more complex to deal with multi-modality image registration. The

most commonly used similarity measurements are Squared Sum of Intensity Differences (SSD), Cor-

relation Coefficient (CCoe), Mutual Information (MI), and Normalised Mutual Information (NMI),

which are represented as follows.

SSD =
∑

(R(x, y, z, t0)− T(T (x, y, z), t1))2; (4.17)

CCoe =

∑
(R(x, y, z, t0)− R̄(t0))(T(T (x, y, z), t1)− T̄(t1))√∑

(R(x, y, z, t0)− R̄(t0))2
∑

(T(T (x, y, z), t1)− T̄(t1))2
, (4.18)

in which R(·) and T(·) are the fixed and moving images, and R̄(·), T̄(·), T , t0, and t1 represent the

average image intensities, spatial transformation, and imaging time respectively. In addition, x, y,

and z are the 3D coordinates of the image pixels.

Mutual information is based on the concept of information theory and expresses the amount of

information that one image R contains about a second image T [244]

MISimilarity(R,T) = H(R) + H(T)−H(R,T), (4.19)

where H(R), H(T) denote the marginal entropies of R, T. H(R,T) denotes their joint entropy,

which is calculated from the joint histogram of R and T. If both images are aligned, the mutual

information is maximised. Because the mutual information depends on the overlap between two
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images, normalised mutual information is advocated as [244]

NMISimilarity(R,T) =
H(R) + H(T)

H(R,T)
. (4.20)

In 1981, Horn and Schunck [120] proposed the original optical flow registration method, which

assumed that the changes in image intensities are only due to motion. SSD possesses the same basic

assumption that both images are identical when they are registered. It is the optimum measure if

the images are varied by Gaussian noise only [303] [302]. However, SSD is sensitive to outliers, and it

is inappropriate, for instance, when intensities have changed due to the injection of contrast agent.

MI, which is a symmetric similarity measurement, was proposed by Viola and Wells III [303], and

Collignon et al. [50] independently in 1995. Previous research showed that MI was very general

because it made an assumption that a predictable relationship existed between the intensities of the

two images. Additionally, Studholme et al. [277] [278] showed that NMI is more robust than MI for

intermodality brain registrations when overlap changes are substantial.

4.2.2.2 Numerical Optimisation

Medical image registration algorithms usually estimate the transformation either following a data-

driven flow or minimising a certain cost function [76]. Flow methods are very similar to approaches

called optical flow in computer vision, which estimate motion in an image sequence such as a video.

Here, we will focus on registration via optimisation. Generally, the cost function consists of a

similarity measure expressed as follows

ζ? = arg min
ζ

(
f(ζ) = S[ T[Tζ(x)], R(x) ] = S[ IInt1 [Tζ(x)], IInt2(x) ]

)
, (4.21)

in which T[Tζ(x)] and R(x) denote the source image and the target image; however, there are in-

terpolation operators, i.e., IInt1 and IInt2 , processing the images. Here x represents a pixel/voxel

location or coordinates described using lexicographical ordering, and f(ζ) denotes the cost function.

In addition, S is an appropriate similarity measure or distance measure, and Tζ is the transforma-

tion. We minimise the cost function with respect to the transformation parameters ζ. Therefore,

the desired transformation is a solution of this optimisation problem. More accurately, the trans-

formation parameters ζ should be constrained in an admissible region Ωζ
[76]. Furthermore, due

to the ill-posedness inherent in the registration, proper regularisation and additional penalty terms
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have been introduced to alleviate unstable and unfeasible solutions. Consequently, the registration

problem in Equation 4.21 becomes one of minimising the joint functional

ζ? = arg min
ζ

(
f(ζ) = S[ T[Tζ(x)], R(x) ] + λR(Tζ(x)) + ξP(Tζ(x))

)
, (4.22)

s.t. ζ ∈ Ωζ ∈ Rn

where the λ and ξ are the parameters of the regularisation (R) and penalty (P) functions. We can

use any non-linear optimisation techniques (as seen in Section 3.2.3.2 and Appendix D to solve this

problem.

4.2.2.3 Ill-Posed and Regularisation

As mentioned before, registration is an inherently ill-posed inverse problem. Because for every spatial

location x ∈ Ω ∈ Rn, we try to obtain a vector yζ = Tζ(x) ∈ Rn with only scalar information T(yζ)

and R(x) provided. Normally, we use the L2-norms of derivatives of the displacement field u = yζ

to express the regularisation term λR(yζ) in Equation 4.22. However, other regularisation schemes

such as L1-norm based methods can also be applied. Therefore, let K denote a numerical operator

(e.g., a differential operator), and we can use the L2-norm ‖ · ‖22 to describe the regularisation as

R(yζ) =

∫
Ω

‖K[yζ(x)]‖22dx, (4.23)

in which Ω is a feasible spatial boundary of the image. We can use the norm operator, the partial

derivatives based diffusion operator, the gradient and divergence based elastic operator, and the

curvature operator to model the regularisation functional. For example, in 2D, n = 2, and let

K[yζ ] = yζ and yζ = [y1
ζ ; y2

ζ ], then the norm of yζ is

R(yζ) =

∫
Ω

(y1
ζ(x))2 + (y2

ζ(x))2dx. (4.24)

This is the well-known Tikhonov (Tychonov) regularisation.

The diffusion operator, which groups partial derivatives ∇ynζ (x), measures the variation of yζ ,

and the operator has been used in optical flow and demons algorithms, that is

R(yζ) =

∫
Ω

(∇y1
ζ(x))2 + (∇y2

ζ(x))2dx. (4.25)
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In addition, if we define the divergence as ∇ · yζ(x), the elastic operator is

R(yζ) =

∫
Ω

ι 〈∇yζ ,∇yζ〉+ (ι+ ς)(∇ · yζ(x))2dx, (4.26)

in which ι and ς are the Lamé constants [204].

By introducing the second order derivatives ∆ynζ (x), we can derive the curvature based regulariser

as

R(yζ) =

∫
Ω

(∆y1
ζ(x))2 + (∆y2

ζ(x))2dx. (4.27)

Furthermore, the penalty term P(yζ) could contain additional constraints including the deviation

from user-supplied landmarks, volume preservation, and local rigidity [76].

Although the concept of regularisation and penalty terms, which changes the ill-posed problem

into a solvable one, is easy to understand, the implementation needs to be deliberated. Firstly, the

discretisation of the operators needs to be conceived. Secondly, the derivative of the operators needs

to be deduced before substituting them into the optimisation process. In addition, the operators in

higher-dimensional space may require more computational time. The choice of the parameters (λ

and ξ) of these operators considerably affects the results of registration.

4.2.2.4 Validation Methods

In real clinical applications, the ground truth or the real transformations are generally unknown.

However, a registration is not feasible for clinical usage without an effective validation. Maintz and

Viergever [185], and Jannin et al. [127] reported that the registration validation criteria include accu-

racy, reliability, robustness, fault detection, functional complexity, and clinical use. Commonly used

evaluation schemes are Target Registration Error (TRE), Consistency Registration Error (CRE),

visual inspection, image matching criteria, and clinical usefulness. The TRE is expressed as follows.

TRE(x) = ‖T(x)− Twarp(x)‖, (4.28)

in which TRE is calculated at the corresponding anatomical positions of interest [99], i.e., manually

selected landmarks, in the source image T(x) and transformed target image Twarp(x). In addition,

TRE represents the distance after registration between corresponding points or landmarks, which

are not used for calculating the registration transformation [77]. TRE spatially varies across the

image except for simple translational errors. The error images show the spatial TRE distribution,

which is useful in analysing registration achievements. The accuracy can then be expressed by the
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mean, median, Root Mean Square (RMS), 95% or maximum of the regional TRE distribution.

4.3 Registration Algorithms in Breast Imaging and DBT

Registration is widely applied for a better visualisation of lesions on pre-contrast and post-contrast

breast MRI; speckle tracking and image compounding in breast ultrasound images; alignment of

breast PET; and standard mammography images on hybrid machines [95] [263]. Image registration

is a prerequisite to align images taken at different times to isolate small breast lesions, and it is

useful in monitoring breast cancer therapy. Recent research has focused on the more complex voxel

based automatic registration techniques, which can replace semi-automated control point based

methods. In this section, we survey previous registration techniques for breast images and their

novel applications on DBT.

Early breast cancer detection, which requires identification of fine details of temporal pathologi-

cal changes, compares the current image with images captured years before. In addition, diagnostic

breast imaging is a multimodality task because various imaging modalities provide different biomed-

ical information. For example, digital mammography is preferred to detect subtle breast lesions

such as microcalcifications, breast ultrasound can distinguish cysts from solid lesions, and breast

MRI may offer functional information. Recent studies have proposed several 3D X-ray breast imag-

ing techniques such as breast CT and DBT, and the latter modality combines the pre-eminence of

digital mammography and 3D image visualisation.

For pre-contrast and post-contrast breast MRI registration, in 1996, Zuo et al. [349] reported

a voxel based automated rigid registration method minimising the variance ratio between the two

images using a Newton type of optimisation. Kumar et al. [160] proposed an optical flow based

affine registration algorithm, which minimised the sum of squared intensity difference using gradient

descent method. In [103] Hayton et al. used an optical flow based nonlinear registration to con-

sider both global and local transformations. Rueckert et al. [245] published a nonlinear registration

method, which employed FFDs using B-splines, and they used the normalised mutual information

and smoothness penalty within a multi-resolution hierarchical framework, as well. In 2000, Tanner

et al. [288] investigated a non-rigid registration algorithm to register time-series MRI of the breast,

which could result in finding significant volume changes in the region of enhanced lesion. They

also indicated that the contrast-enhanced lesions shrunk substantially in contrast enhanced breast

MRI. Later, Tanner et al. [289] employed Rueckert’s method to assess the registration accuracy

using biomechanical breast models based on Finite Element Method (FEM), and this model could
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predict the displacements of tissue within the breast. Various biomechanical models were selected by

changing the process of mesh generation, boundary condition definition, and tissue elastic property

assumptions. The non-rigid registration performed on the MRI volumes before and after a compres-

sion in a controlled manner, identifying corresponding landmarks that estimated the displacements

independently. In 2003, Rohlfing et al. [239] did some modifications to Rueckert’s work, which

contained a regularisation term to preserve volume. However, Rueckert et al. solved a problem

incorporating global affine transformation with local transformations.

For breast ultrasound registration, Moskalik et al. [206] proposed an affine registration for com-

pound images using control points. Meyer et al. [199] reported a semi-automated method that

iteratively registered images using user specified control points, and maximised the mutual informa-

tion using the Nelder-Mead simplex algorithm. In 2002, Xiao et al. [325] proposed a voxel based

nonlinear registration method with block sampling and matching, which could only deal with lo-

cal transformations. In 2004, Neemuchwala et al. [211] published a paper on an affine registration

method, which identified higher-level invariant features that compared with the minimal spanning

trees.

For intra-modality X-ray mammography registration, Yin et al. [341] presented an automated

method for bilateral breast images alignment, in which a least squares matching method was used.

It contained segmentation procedures for the breast region, the breast border and the nipple that

then served as control points. Image subtraction was applied to evaluate the registration results.

In 1997, Vujovic and Brzakovic [305] described a control point based approach, which determined

several control points on the current and prior mammograms according to the intersection points of

prominent anatomical structures in the breast. They determined the correspondence between these

control points by searching in a local area around the control points of interest. In addition, three

observers evaluated their registration results, one of which was an experienced radiologist. In 1999,

Sanjay-Gopal et al. [251] published a paper on an automated regional registration algorithm, which

identified corresponding lesions on temporal pairs of mammograms. The registration accuracy was

assessed by comparing the average distance with respect to the centroid of the radiologist-identified

regions. In [248] Sallam and Bowyer developed a warping technique for mammographic registration

based on the manually identified control points. In 2001, Hadjiiski et al. [98] improved Sanjay-Gopal’s

regional registration algorithm by introducing a local alignment step. Wirth et al. [320] proposed

a mutual information based method that identified the control points in mammogram pairs, and

they also employed image subtraction to assess the performance of their registration method. In

2003, Engeland et al. [296] noted that mutual information based registration was superior to nipple
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location or centre of the mass based alignment. The mutual information based method also performed

better than the thin-plate spline surface technique and the warping based method that identified

control points on the breast contour and the pectoral muscle. Richard and Cohen [237] reported a

multi-resolution registration method that combined feature based and intensity based constraints in

one mathematical model using free boundary condition. In [118] Hipwell et al. described a novel

validation method for X-ray mammogram registration using real breast MRI, from which convincing

pseudo-mammograms were generated with known 3-D deformations. They illustrated the method

by computing the accuracy for two conventional non-rigid 2D registration algorithms applied to the

pseudo-mammograms. In addition, they showed that the accuracy of these algorithms was close

to the best achievable using a 2D one-to-one correspondence model. However, the new algorithms

incorporated more representative transformation models, which were required to achieve sufficiently

accurate registrations for this application.

Inter-modality (or multi-modality) registration fuses complementary image information, which

can be advantageously used to assist radiologists and clinicians in the diagnostic procedure and

assessment of therapy. Many studies have been proposed to solve multi-modality registration and

invent co-registered multi-modality acquisition systems for breast screening application. Jansson et

al. [128] proposed a method based on the PET instrument, and concluded that PET had clinical

potential in predicting response to chemotherapy in patients with locally advanced breast cancer.

It detected metastatic disease earlier than any other methods. In 2000, Murthy et al. [208] [209]

developed a Positron Emission Mammography (PEM) system, which could produced high-resolution

metabolic images of breast cancer. The system acquired PET images after mammographic imag-

ing, and accurately co-registered images of these two modalities. Malur et al. [186] studied the

efficacy of combining FFDM with free-hand breast ultrasound, and concluded that the combination

of mammography and breast ultrasound was more effective in detecting breast cancer than using

mammography alone especially for the dense breast. In 2004, Elbakri et al. [69] invented a FFDM/ul-

trasound system, in which the ultrasound transducer scanned along the X-ray camera to generate

a 3D reconstruction of the compressed breast volume that precisely co-registered with the digital

mammogram. Piron et al. [228] presented a hybrid biopsy system combining pre-biopsy MRI with

real-time breast ultrasound, which contained a control point based rigid registration of breast MRI

and ultrasound. In [200] Miga presented preliminary work in elastography using an iterative non-rigid

registration method with mutual information to recover the tissue elastic properties. Ruiter et al.

[246] proposed an automated algorithm to register mammograms with breast MRI volumes using a

biomechanical model based on the FEM. The algorithm could recover the 3D position of a lesion
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in the MRI from the lesion location information of mammograms. Based on the studies by Hipwell

et al. [117] [118], Mertzanidou et al. [197] [198] developed an intensity-based approach for registering

mammography and breast MRI, which attained a re-projection error of 3.83mm.

DBT is promising to replace the current gold standard mammography in future screening pro-

cedure, because the geometries of these two modalities are similar and the total X-ray dose usage

of DBT is comparable to mammography. However, it is necessary for radiologists to compare DBT

results with previous mammographic records, which needs a 2D-3D registration of the DBT recon-

structions with earlier mammographic images of the same patient. Furthermore, recent research on

contrast enhanced DBT provides the possibility of capturing functional information [28], and many re-

construction algorithms are reported, including filtered backprojection (FBP) and more complicated

iterative methods. Thus, registration of different temporal DBT reconstruction data and registering

DBT to other breast imaging modalities are also necessary in real clinical applications.

DBT offers the benefits of providing a pseudo-3D reconstruction instead of 2D images using digital

mammography. Therefore, the registration of DBT images with previous mammograms is necessary.

In addition, the temporal intra-modality DBT registration is also crucial in order to determine breast

cancer development, radiotherapy progress, and prognosis. Different image processing methods of

DBT are dependent upon accurate temporal registration. For example, Chan et al. [39] employed

a 3D processing method for breast cancer detection using DBT data sets, while Reiser et al. [234]

manipulated 2D source images separately. Kapur et al. [139] [140] investigated the registration of

cross-sectional images of DBT and breast ultrasound, and this work achieved high co-registration

accuracy. In 2006, Bakic et al. [16] performed the registration on 15 pairs of mammograms and

central tomosynthesis projections of the same breast. The registration compensated for 94% of the

per-pixel intensity differences that existed between the two images before alignment. In [16] Bakic et

al. also developed a multimodality registration method to register a mammogram with individual

DBT source projection images. They analysed the results of registering an MLO mammogram to nine

tomosynthesis source projection images of the same breast, and they achieved 90% compensation

of the per-pixel intensity differences. Although the investigations of Bakic et al. were preliminary,

they showed the success of registering DBT projections with corresponding digital mammograms.

Ren et al. [236] reported a hybrid multi-resolution rigid-body registration method. The method

automatically registered reference chest DTS with on-board1 chest DTS images, in order to guide

patient positioning in radiation therapy, and it might be easily applied to DBT registration. Sinha

et al. [262] published a paper on a 3D alignment technique to register two DBT mammographic

1On-board imaging technology allows the patient to be imaged on the treatment table by a device, which is built
into the radiation therapy apparatus, to ensure the patient and tumour are consistently positioned for treatment.
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volumes using mutual information. They obtained an average misregistration error of 1.8±1.4mm.

In comparison to the in-plane tomosynthesis resolution of 0.1mm, the average registration error of

≈2mm was relatively large. However, it was much smaller compared with the mean and median sizes

(20.2mm and 15mm) of malignant tumours detected in a population-based mammography study and

compares favourably with the out-of-plane resolution of DBT [259].

Ch.4: IMAGE REGISTRATION AND ITS APPLICATIONS IN DBT DBT Reconstruction and Registration



4.4. CONCLUSIONS AND DISCUSSION 118 of 248

4.4 Conclusions and Discussion

In this thesis, we have reviewed the key components of medical imaging registration, and have

provided a survey of many significant aspects on breast imaging registration. To summarise, medical

imaging registration can be classified into different categories (Figure 4.4).

• Dimensionality (2D‐2D, 2D‐3D, 3D‐3D)

• Nature of Registration Basis

• Extrinsic

• Non‐image based (Calibrated coordinate systems)

• Intrinsic

• Non‐invasive with skin markers

• Invasive

• Segmentation based

• Voxel property based

• Landmark based

• Transformation Methods

• Non‐rigid (Curved, elastic, B‐spline etc.)

• Affine, projective

• Rigid

• Transformation Domains (Global or Local)

• Interaction (Automated or Semi‐automated)

• Optimisation Algorithms (Gradient Descent, Quasi‐Newton, Levenberg‐Marquardt and others)

•Modalities

•Monomodal

•Multimodal

•Modality to model

• Patient to modality

• Subject

• Intrasubject

• Intersubject

• Atlas

• Object

• Validation

• Visual inspection

• Image Subtraction

• Euclidean Distance (TRE)

Figure 4.4: Summary of image registration key components and categories.

There are thorough investigations on intra-modality registration methods, and the inter-modality

registration of mammography with other breast imaging modalities are of increasing interest. Inter-
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modality registration improves the accuracy of breast diagnosis using the alignment of visible struc-

tures in different modalities. In addition, it can integrate distinct valuable information from various

modalities. For example, mammography possesses high sensitivity, yet has relatively low specificity,

and we can gather information from other modalities with high specificity such as breast ultrasound.

In recent years automated intensity based registration methods have proved popular for breast image

registration. A prime example is the free-form deformation based non-rigid registration; however hy-

brid registration techniques, which use control points, tissue features and breast boundary, are also

promising. For DBT applications, three types of alignment are necessary including intra-modality,

inter-modality registrations, and the registration of 2D and 3D images. Validation, which is sig-

nificant in the assessment of registration algorithms, is an on-going requirement. Currently, the

validation procedures are mainly based on the distance between geometrical features or manually

selected landmarks, and visual inspection.

In conclusion, breast-imaging registration has a wide variety of clinical applications including

better breast lesion detection and visualisation, tracking breast cancer development, and combining

multi-modality information. However, it is still a challenging task because of the natural non-

rigid property of the breast, the motion and compression during breast imaging acquisition, and

the specificity of different modalities. Moreover, there are two obvious DBT characteristics, which

complicate their registration. The first comprises the reconstruction “streak” artefacts in the in-

plane direction (Figure 2.12). The second is the overall shape of the reconstructed breast, which is

imposed by the compression plates. The compression produces a conflict between aligning the global

box-like shape of the breast and attempting to deform the internal structure to account for rolling

of the breast. Therefore, these factors may create local minima and confound the search for the

global minimum solution. This reinforces my strategy to combine registration and reconstruction

iteratively or simultaneously, which are two novel techniques we are actively pursuing, and they will

be introduced in the next two chapters.
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Chapter 5

Iterative Reconstruction and Registration

In this chapter, we present a new method of performing reconstruction and registration iteratively

in order to use two sets of X-ray (DBT) acquisition data. The iterative process leads to an improve-

ment in the reconstruction, and enables a superior registration of the reconstructed volumes. Using

synthetic images, uncompressed breast MRI, and DBT simulations with in-vivo breast compressions,

we demonstrate that this combined iterative reconstruction and registration approach produces im-

provements in both the reconstructed volumes and the estimated transformation parameters when

in comparison to perform the tasks sequentially. Work from this chapter is based on and extends

[332] [333].

5.1 Motivation

In Chapters 1 and 2, we have discussed the clinical potential of DBT, which can be used to enhance

breast cancer detection by reducing the confounding effect of superimposed tissue associated with

conventional mammography. In addition, the increased volumetric information should enable tempo-

ral data sets to be more accurately compared, a task that radiologists routinely apply to conventional

mammograms to detect the changes associated with malignancy.

Reconstructed 3D DBT images have high in-plane resolution but low out-of-plane resolution

and exhibit reduced superposition of overlying tissue structures as in comparison to conventional

X-ray mammography. Whilst the added depth information offered by DBT has the potential to

enhance detection and diagnosis of breast cancer [154]; the greater volume of data, relative to X-

ray mammography, increases the need for automated tools to aid the reading process. This is of

particular importance if DBT is to be adopted in the high-workload screening context.

There are many tomographic reconstruction techniques, which are applicable to DBT such as
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those discussed in Chapter 3. In addition, we have elaborated on registration methods for DBT

in Chapter 4. However, there is no research combining these two tasks using limited angle DBT.

In this chapter, we address the problem of comparing DBT data by combining reconstruction of a

pair of temporal volumes with their registration iteratively. This is a challenging task due to the

significant artefacts associated with DBT reconstructions. These are generated by the limited field

of view of the acquired images and the correspondingly large null-space in the frequency domain.

Rather than registering the images after reconstruction, we investigate the benefits of combining

both reconstruction and registration, and test the hypothesis that the performance of each task will

be enhanced as a result. Therefore, we propose an iterative method of least squares optimisation for

our combined reconstruction and registration scheme. This also avoids the implicit assumption of

missing data being equal to zero in algorithms such as in FBP.

Breast Tomosynthesis Iteratively Reconstruction-Registration

Multiple Forward & Backward Projection Filter

Forward Projection

Backward Projection
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X-ray

Acquisitions 1
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Transformation
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Repeat for N Projections

Incomplete Optimization
and
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and Estimated
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Multiple Forward & Backward Projection Filter

Forward Projection

Backward Projection
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X-ray

Acquisitions 2

Affine
Transformation

Perspective

Transformation
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Repeat for N Projections

Initial Guess
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K'
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L
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L

L
L
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K'
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and

Truncated Volume

Forward Projection

Forward Projection

Original Volume

Transformed Volume

Reconstruction Optimization Loop 2

Similarity Metric

Transform Parameters

Registration Optimizer

Incomplete Optimization

Output to Registration
and

Registration Optimization Loop

Initial Setup to Simulate X-ray Acquisitions

1

2

Reconstruction Optimization Loop 1
2

3

Transformed
and Update

Figure 5.1: Flow chart of breast tomosynthesis iterative reconstruction-registration method. Blocks from right

to left: 1. Initial setup to simulate X-ray acquisitions; 2. Perform two incomplete reconstruction loops; 3.

Register for the reconstructed volumes and return the transformation parameters to update the fixed volume.
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5.2 Problem Outline

We treat the task of combining reconstruction and registration iteratively as two general inverse

problems, for which we solve the reconstruction by a generic optimisation approach such as the

conjugate gradient algorithm, and we use a non-linear conjugate gradient or an L-BFGS solver for

the registration problem. An overview of this iterative method is shown in Figure 5.1.

5.2.1 Forward and Inverse Problems

5.2.1.1 Reconstruction Part

In Chapter 3, we have discussed the forward and inverse problems of image reconstruction in 2D

space; however, our problem, which combines reconstruction and registration using DBT settings, is

in 3D.

z

x

y

P

Figure 5.2: Forward projection geometry in 3D.

Radon transform based FBP is straightforward to extend to 3D. For example, according to the

3D projection geometry in Figure 5.2, the 3D Radon transform is

P (ρ, θ, ϕ) =

∫∫∫ ∞
−∞

f(x, y, z)δ(ρ− (x cosϕ sin θ + y sinϕ sin θ + z cos θ))dxdydz, (5.1)
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in which θ is the elevation angle and ϕ is the azimuth angle. In addition, we can derive the inversion

formula for the 3D Radon transform, i.e., filtered backprojection, as

f(x, y, z) =
−1

8π2

∫ π

0

∫ 2π

0

[∂2P (ρ, θ, ϕ)

∂ρ2

∣∣∣
ρ=(x cosϕ sin θ+y sinϕ sin θ+z cos θ)

]
sin θdϕdθ. (5.2)

However, in this thesis, we use least squares estimation based iterative methods to solve the

reconstruction because they are straightforward to combine with various optimisation schemes and

regularisation techniques. Therefore, the forward problem of the reconstruction is expressed in

Equation 3.39 that is

p = Af + ε. (5.3)

In addition, we can model the reconstruction problem as Equation 3.58 that is

f? = arg min
f∈Rn

(
f(f) = D(Af,p) + λR(f)

)
. (5.4)

5.2.1.2 Registration Part

Essentially, the forward problem of image registration can be modelled by image warping, which

includes a transformation operation Tζ and an interpolation operation I. Therefore, we can model

the registration procedures as a nonlinear least squares optimisation problem as Equation 4.22 that

is

ζ? = arg min
ζ∈Rn

(
f(ζ) = S[ T[Tζ(x)], R(x) ] + λR(Tζ(x))

)
(5.5)

if no additional penalty constraints P are taken into account, and it is an unconstrained optimisation

problem. In addition, ζ is a vector that describes transformation parameters or deformation fields,

and the problem is nonlinear with respect to ζ. In this Chapter, we use the affine transformation;

however, using our framework it is straightforward to incorporate other high order transformations.

Further investigations for our particular DBT application are discussed in the methodology part of

Sections 5.4.1 and 5.4.2.

5.2.2 Forward and Backward Projectors

According to the flow chart of our reconstruction and registration framework (Figure 5.1), the X-

ray acquisitions are simulated from the forward projections of the test volumes. Three types of test

volumes are employed for our experiments, they are a toroid phantom volume, an uncompressed MRI

Ch.5: ITERATIVE RECONSTRUCTION AND REGISTRATION DBT Reconstruction and Registration



5.2. PROBLEM OUTLINE 124 of 248

volume, and a DBT volume simulated from an in-vivo compressed breast MR image. Therefore, we

need a 3D to 2D forward projector, which is capable of creating limited angle projections of the

tested volumes. Furthermore, in the reconstruction process, both forward (3D to 2D) and backward

(2D to 3D) projectors are used.

z

xy

Object

Rotation Centre

Detector

SRDL

X-ray Source

Lx

Lz

L SID = 66cm

L = 21.7cm

R = 44.3cm

R
=
4
4
.
3
c
m

DxL

Figure 5.3: A 2D schematic illustration of the DBT geometry. Firstly, we define the X-ray source to detector

distance LSID to 66cm, and the length of the rotation arm R is 44.3cm and the distance L between the rotation

centre of the X-ray source and the detector is 21.7cm. Lz is the depth of the object, which is around 3cm to

8cm in real applications. In addition, LDx is the width of the forward projection images, which depends on

the width Lx of the object, and LSRD defines the X-ray source to its rotation centre distance.

In this set-up, we have defined the geometry the same as a typical DBT employed (details is

described in this patent by Wu et al. [324]). The X-ray source rotates in a limited angle arc, and

11 projections are produced covering ±25 degrees. The rotation arm R is 44.3cm in length, and L

is 21.7cm from the rotation centre to the detector (Figure 5.3). The initial X-ray source to detector

distance LSID is 66cm when the X-ray source moves to ϕ =0 degree1.

1Draw a line from the X-ray source to the centre of the detector, and ϕ is the complementary angle of the inclination
between this line and the detector plane (Figure 5.3). In real simulation, we use eleven angles [−25 −20.32 −15.59 −
10.82 − 5.99 − 1.09 3.9 8.99 14.19 19.52 24.98] in degree, which are [−0.4363 − 0.3547 − 0.2721 − 0.1888 − 0.1045 −
0.0190 0.0681 0.1569 0.2477 0.3407 0.4360] in radian.
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In our task, we do not need to obtain the full range of projections. Therefore, rather than form

the 3D forward Radon transform and the corresponding backward projection, we use a ray-casting

based method, which is a discrete representation of the continuous formula of the Radon transform

and the backprojection.

Rotation Centre

X-ray Source

LSID =66cm

R =44.3cm

L =21.7cm

SRD
L

Dy
L

Dx
L

y

z

x

Figure 5.4: Schematic illustration of the ray-casting method.

Ray-casting is an image order algorithm [9] [80], which can render 3D scenes to 2D screens, i.e., 2D

forward projections. It integrates rays of a light from observer or detector point to the light source

(Figure 5.4). It consists of four components, viz., rays generation, line integrals, interpolations, and

a perspective transformation, which is necessary for a cone-beam based geometry.

In particular, there are many line-integration schemes associated with various interpolation

schemes (Figure 5.5). First, Siddons method calculates the length of intersection between two slices in

the x-y plane, and the length defines the contribution of a voxel to the line-integral. Second, Josephs

method finds the intersections between a ray and the slices of the x-y plane, and only bilinear in-

terpolation is required to calculate the points on the ray, which will contribute to the line-integral.

Furthermore, both equal sampling approach and Köhler’s method use trilinear interpolation. The
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equal sampling approach calculates the interpolated points with equidistance h. In contrast, Köhler’s

method only interpolates once between two slices of the x-y plane. According to Turbell’s research

[293], Joseph’s method with bilinear interpolation performs similarly as Köhler’s method, and they

are both better than Siddon’s method. The performance of the equal sampling approach depends on

the oversampling factor. Similar results are produced by the equal sampling approach and Köhler’s

method when the oversampling factor is large enough. However, the computing time is dramatically

increased when this factor becomes large. Therefore, Joseph’s method with bilinear interpolation

can produce an efficient line-integration with accurate results for our ray-casting implementation.

Details of interpolation schemes are discussed in Section 4.1.1.

Length of Intersection

a. Siddon's Method

h

c. Equal Sampling Approach

Voxels

Bilinear Interpolation

Trilinear Interpolationb. Joseph's Method

d. Kohler's Method..

Figure 5.5: Different line-integration schemes of the ray-casting method. Vertical dash lines are slices of the

x-y plane. Siddon’s method is only defined by the length of intersection between two adjacent slices; In Josephs

method, only bilinear interpolation is required on the x-y plane; Equal sampling approach employs trilinear

Interpolation with equidistance along the line and there might be more than one interpolations between two

adjacent slices; Köhler’s method finds the bilinear interpolations on both x-y and x-z planes, and then applies

the trilinear interpolation according to the position of the bilinear interpolations.

For the implementation of the backprojection, the integrated voxel values are smeared back to the

volumes along each ray. We also use Joseph’s method with bilinear interpolation for the backward

projector. Essentially, the backprojection process reverses the forward projection process using ray-

casting. Firstly, according to the DBT geometry, we define the rays between the X-ray source and

each pixel on the forward projection plane. Secondly, we find the intersections between a ray and

slices of x-y plane. Then we equally divide the pixel value by the number of intersections, and we
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use this average value to increment the four voxels surrounding each intersection according to its

bilinear coefficients. In this way back-projection is the exact inverse of forward projection, subject

to errors introduced by discretisation/interpolation process. The backprojection process is repeated

11 times and the value for a voxel is accumulated.

In summary, the ray-casting algorithm is an efficient discrete implementation for the forward

Radon transform and backprojection process under limited-angle DBT settings. It implements the

forward projectors for particular DBT geometries, and has been modified to implement the comple-

mentary backward projectors.

5.3 Materials

5.3.1 DBT Simulation Using Synthetic Toroid Phantom

A toroid phantom volume has been created for our first experiment. The toroid is a doughnut-shaped

object visually. Topologically, the toroid is a closed surface defined as the product of two circles [316].

24mm

10m
m

Figure 5.6: Red circle: Define the major radius of the toroid (24mm). Blue circle: Define the minor radius

of the toroid (10mm).

The toroid (Figure 5.6) is embedded in a volume of 70×70×70mm3 with 1mm resolution in each

dimension. The original toroid is our fixed image and its affine transformed volume is the moving

image (Figure 5.7). In addition, we can perform the forward projection for both of our fixed and

moving image in order to generate simulated X-ray acquisitions (Figure 5.8).

We assign intensities from 1 to 999 to the digital toroid phantom, in which the background is

assigned to 1 and the highest intensity 999 is assigned in the centre of minor radius of the toroid

object. The intensities of the cross section with minor radius, is a bell-shaped function that is

determined by (999− τ1k2
mr), in which τ1 is a coefficient describing the sharpness of the changes of

intensities. In addition, kmr are integers from 1 to the value of the minor radius, and we apply linear

interpolation for various minor radius.
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Figure 5.7: Left: Fixed (target) image; Right: Moving image. The transformations Rζ between the target

and the moving images contain a translation of Ttranslation = [10, 0,−20]mm and a rotation about the y axis

of −30 degrees. Intensities have been normalised into the range of 0 to 1.

Figure 5.8: Left: Projection of the fixed image. Right: Projection of the moving image.

5.3.2 DBT Simulation Using Uncompressed MRI

The uncompressed MRI volume is 140 × 128 × 60 in voxels with 1.328 × 1.328 × 2.5mm resolution

in each dimension. The original MRI volume is our fixed image and its affine transformed volume is

the moving image (Figure 5.9), and the forward projections of them are shown in Figure 5.10. The

original MRI data is provided by UK MR Breast Screening Study (MARIBS) by Leach et al. [165].
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Figure 5.9: Left: Fixed (Target) Image; Right: Moving Image. The transformations Rζ between the target

and the moving images contain a translation of Ttranslation = [10, 0,−20]mm and a rotation about the y axis

of −30 degrees.

Figure 5.10: Left: Projection of the fixed image. Right: Projection of the moving image.

5.3.3 DBT Simulation Using In-Vivo Compressed Breast MRI

We use in-vivo compressed breast MRI to simulate our DBT data set. The simulated DBT volume

is 160×80×160 in voxels, and the resolution is 1×2.5×1mm in each dimension. The two sets of the

DBT simulation are segmented using an Expectation-Maximization (EM) algorithm, with a Markov

Random Field (MRF) regularisation, namely EM-MRF based breast tissue classification [198]. There

is an unknown non-rigid deformation between fixed and moving images, which we try to recover

using affine transformation, and the forward projections of the fixed and moving images are shown

in Figure 5.11.
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Figure 5.11: Left: Projection of the fixed image. Right: Projection of the moving image.

5.4 Sequential Method versus Iterative Method

A 3D image, R(x) ∈ RD3 , two sets of temporal data, p1, p2 ∈ Rpnum×D2 , the parametric transfor-

mations, Tζ , and the system matrix, A ∈ Rpnum×D2×D3 : RD3 7→ RD2 , can be related via

p1 = AR(x) = Afg
1 , (5.6)

p2 = AT[Tζ(x)] = Afg
2 . (5.7)

In particular, R and T represent the interpolation operation I in Equation 4.1, and x is the regular

coordinate in lexicographical ordering. Additionally, fg
1 and fg

2 are the intensities of the ground truth

of our fixed and moving images.

5.4.1 Sequential Method

Forward projections, i.e., p1, p2, are acquired using a limited angle DBT geometry with pnum = 11

projections covering ±25◦. The forward model is described by the system matrix A, which can mimic

the X-ray attenuation or absorption properties of the breast. In the conventional sequential method,

the reconstruction of equations 5.6 and 5.7 can be solved by minimising

f?1 = arg min
f1

(
f(f1) =

1

2

∥∥Af1 − p1

∥∥2
)

; (5.8)

f?2 = arg min
f2

(
f(f2) =

1

2

∥∥Af2 − p2

∥∥2
)
. (5.9)

Following reconstruction, volumes f?1 and f?2 , i.e., the fixed and moving images, are registered
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with respect to the registration parameters ζ:

ζ? = arg min
ζ

(
f(ζ) =

1

2

∥∥Tζ(f?2 )− f?1
∥∥2
)

(5.10)

= arg min
ζ

(
f(ζ) =

1

2

∥∥T?[Tζ(x)]− R?(x)
∥∥2
)
. (5.11)

5.4.2 Iterative Method

In our novel iterative reconstruction and registration method, we solve equations 5.6 and 5.7 with

respect to estimates f1 and f2 of f and the registration parameters ζ, by alternating an incomplete

optimisation (i.e. j iterations) of the reconstructed volumes f̂1 and f̂2:

f̂1 = j STEPS of arg min
f1

(
f(f1) =

1

2

∥∥Af1 − p1

∥∥2
)

(5.12)

f̂2 = j STEPS of arg min
f2

(
f(f2) =

1

2

∥∥Af2 − p2

∥∥2
)

(5.13)

with the registration of the current estimates f̂1 and f̂2 with respect to the registration parameters

ζ:

ζ̂ = arg min
ζ

(
f(ζ) =

1

2

∥∥Tζ (̂f2)− f̂1
∥∥2
)

(5.14)

= arg min
ζ

(
f(ζ) =

1

2

∥∥T̂[Tζ(x)]− R̂(x)
∥∥2
)
. (5.15)

After each registration iteration (Equation 5.15), and prior to the next iteration of the reconstructions

(Equations 5.12 and 5.13), the reconstruction estimates are updated as follows (Equations 5.16 and

5.17).

f1 = T̂ζ (̂f2) = T̂[T̂ζ(x)] (5.16)

f2 = f̂2. (5.17)

This “outer loop” of reconstruction followed by registration is repeated k times. The last iteration

outputs f?1 = f̂1, f?2 = f̂2 and T̂ζ f̂2.

In addition, the following analytical gradients are used to calculate f̂1 and f̂2 for the reconstruction
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part

g(f1) = AT (Af1 − p1) (5.18)

g(f2) = AT (Af2 − p2). (5.19)

Similarly, by the chain rule, the analytical gradient for the registration part is

g(ζ) =
(
f̂1 − Tζ (̂f2)

)∂Tζ (̂f2)

∂ζ
=
(
R̂(x)− T̂[Tζ(x)]

)∂T̂[Tζ(x)]

∂ζ
(5.20)

=
(
R̂(x)− T̂[Tζ(x)]

)∂T̂[Tζ(x)]

∂Tζ(x)

∂Tζ(x)

∂ζ
. (5.21)

It consist of three parts, i.e., image difference
(
R̂(x) − T̂[Tζ(x)]

)
, the partial derivative of the

moving image
∂T̂[Tζ(x)]
∂Tζ(x) evaluated at location Tζ(x), and the partial derivative of the transformation

∂Tζ(x)
∂ζ . As we use the gradient information to get the updated parameters ζ, the moving image we

used to calculate the partial derivative is the original moving image (not the updated or transformed

moving image). In addition, this partial derivative, i.e., spatial derivative, of the original moving

image is calculated using the image gradient that is defined by

∇T̂(yζ) =
∂T̂[Tζ(x)]

∂Tζ(x)
=
(∂T̂

∂x
yζ ,

∂T̂

∂y
yζ ,

∂T̂

∂z
yζ

)T
, (5.22)

in which yζ = Tζ(x) = (x, y, z)T .
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The preceding combined reconstruction and registration method is summarised by

Algorithm 1: Iteratively Combined Reconstruction and Registration

Input: p1, p2.

Output: f?1 , f?2 , T̂ζ f̂2.

begin

% Initialise f1 and f2 to vectors with all zero entries

% Initialise ζ to a vector of the reshaped identity matrix I

f1 := 0; f2 := 0;

ζ := I;

% Calculate matrix A for the forward projection

% Matrix AT represents the backward projection

A := RAYCASTING(SIZE(f1));

% Outer loop for the registration runs k times

for k iterations do

% Inner loop for the reconstruction runs j times

for j iterations do

f̂1 = j STEPS of arg minf1

(
f(f1) = 1

2

∥∥Af1 − p1

∥∥2 )
;

f̂2 = j STEPS of arg minf2

(
f(f2) = 1

2

∥∥Af2 − p2

∥∥2 )
;

ζ̂ = arg minζ
(
f(ζ) = 1

2

∥∥Tζ f̂2 − f̂1
∥∥2 )

;

f1 = T̂ζ f̂2;

f2 = f̂2;

% Output f?1 , f?2 , and T̂ζ f̂2
f?1 = f̂1;

f?2 = f̂2;

T̂ζ f̂2.

At each update of the volumes after the outer loop registration, we use the transformation of f2

to correct f1 that is

f1 = T̂ζ f̂2; (5.23)

however, an alternative method is updating f1 using the average of the transformed f̂2 and recon-
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structed f̂1 that is

f1 =
1

2
(T̂ζ f̂2 + f̂1), (5.24)

in which we gather information of both f̂1 and f̂2. Furthermore, we can also incorporate the inverse

transformation of f1 in the correction of f2, but not all transformations have an analytical inverse.

To sum up, our iterative method alternately performs incomplete reconstructions for two temporal

data sets, followed by a registration.

5.4.3 Validation

In order to validate the efficacy of our iterative method, we contrast the results of the sequential

method and our iterative method using the image appearance, the SSD error and the TRE. Firstly,

we compare the final transformed moving image T̂ζ f̂2 with the original fix image fg
1 , which is the

ground truth of the reconstruction, to analyse the accuracy of our iterative method. Secondly, the

difference image between T̂ζ f̂2 and fg
1 is also compared with the difference image of the conventional

sequential method, i.e., differences between T ?ζ f?2 and fg
1 , in which T ? is calculated using ζ? from

Equation 5.11, and f?2 is obtained from Equation 5.9. In addition, as we used both simulated data

and simulation with real compression, the TRE is either obtained by calculating the mean error (and

standard deviation) for each voxel in the simulated volume or by calculating the distance between the

corresponding landmarks, which are manually predefined in the simulated data with real compression

(Equation 4.28).

5.4.4 Implementation

We developed a software that integrates the iterative reconstruction and registration schemes for

DBT. First, we implemented both the sequential method and our iterative method in Matlab envi-

ronment, which is straightforward to test with different digital phantom images, various optimisers,

and Tikhonov regularisation. Second, the implementation has been done using UCLToolkit, which is

an ITK based toolbox developed by our group at the Centre for Medical Image Computing (CMIC)

of University College London (UCL). In addition, we can choose to use various optimisation schemes,

e.g., nonlinear conjugate gradient or L-BFGS, for our application. In the experimental sections of

this Chapter, we display the results using our UCLToolkit implementation. In particular, we use

the conjugate gradient search engine for the reconstruction, and the L-BFGS method is chosen for

the registration part of our problem. Although we have implemented both updating schemes for f1

described in Equations 5.16 and 5.24, we use the former because there is no significant improvement
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when we average the transformed f̂2 and f̂1.

5.5 Experiments and Results using Affine Model

In this thesis, we address the problem of comparing temporal DBT volumes via registration. This

is a challenging task due to the significant artefacts associated with DBT reconstructions. These

are generated by the limited field of view of the acquired images and the correspondingly large

null-space in the frequency domain. Rather than registering the images after reconstruction, we

investigate the benefits of combining both reconstruction and registration, and test the hypothesis

that the performance of each task will be enhanced as a result. There are two possible reasons that

our iterative method could obtain satisfied results in both reconstruction and registration at least

as good as the sequential method: first, the random noise can be averaged out when we have more

2D projection data even the 2D projection data have been taken from identical geometric settings;

second, due to moving between two time points, there is a potentially enlarged angular range of data

acquisition that can alleviate the null-space problem. Therefore, we performed two hypothetical

experiments in order to confirm the rationalisation of our iterative method. In addition, we have

performed four experiments to compare the sequential and iterative reconstruction and registration

using three sets of simulated data with increased realism introduced before, and the results are shown

as follows.

5.5.1 Hypothetical Experiment HA1: Test on the Identity Registration

Transformations with the Same Projections

Hypothesis 1: The random noise can be averaged out when we have more 2D projection data even

the 2D projection data have been taken from identical geometric settings.

Experiment: We test on identity registration transformations with the same forward projections,

i.e., there is no moving between two time points and the forward projections are taken from exactly

the same position for both two data sets. However, we simulate different random noise for these

two forward projections, and we test with our three DBT simulation data sets with different noise

levels (details of the noise, which follows a normal distribution, are described later in Section 5.5.6).

Eventually, we compare the signal to noise ratio (SNR) of the results of the sequential and iterative

methods. The SNR can be calculated using Equations 5.25 and 5.26, in which
Asignal

Anoise
is the amplitude

ratio in digital signal processing context, and we can use the maximum, minimum and standard
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deviation of the image to calculate the SNR in decibel (dB) of a given image.

SNRdB = 20 log10

(
Asignal

Anoise

)
(5.25)

= 20 log10

(
max (Image)−min (Image)

std(Image)

)
(5.26)

Results: Figure 5.19 (a)-(c) shows the noisy forward projections of the fixed images with different

levels of added noise. In this experiment the fixed and moving images are identical; however, there

are different random noise has been added. In Table 5.1, we compare the SNR of the reconstructed

moving image (T̂ζ f̂2) using the sequential and iterative methods. The results of SNR consistently

show that our iterative method obtained larger SNR than the sequential method at the same noise

level. As the added noise increased, the SNR of both methods converged to similar values.

Table 5.1: Comparison of the signal to noise ratio using identity registration transformations with the same

forward projections. We test on four different noise levels, i.e., 0.1%, 1%, 10%, and 100% of the maximum

intensity of the forward projections. Iter: iterative method; Seqn: sequential method.

DBT Simulations \ SNR 0.1% noise 1% noise 10% noise 100% noise

Toroid Phantom (Iter) 41.61 27.98 18.06 7.34

Toroid Phantom (Seqn) 29.51 20.71 14.63 6.90

Uncompressed Breast MRI (Iter) 29.45 24.37 19.90 12.86

Uncompressed Breast MRI (Seqn) 25.75 22.51 18.14 12.37

In-vivo DBT simulation (Iter) 29.61 20.03 9.30 8.12

In-vivo DBT simulation (Seqn) 26.30 14.87 8.48 6.73

Conclusion: The results suggest that for more forward projection data with random noise our

iterative method is capable of increasing the SNR combining all the data acquired at different time

points.

5.5.2 Hypothetical Experiment HA2: Test on the Different Forward Pro-

jections with Known Registration Parameters

Hypothesis 2: Due to moving between two time points, there is a potentially enlarged angular

range of data acquisition that can alleviate the null-space problem.
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Experiment: In this experiment, we test on the digital toroid phantom images. We simulate a

simple affine transformation, which has been applied to the fixed image to create the ground truth

moving image, with a translation of Ttranslation = [10, 0,−20]mm and a rotation about the y axis of

−30 degree. Instead of running registration after finish reconstruction in the sequential method or

iteratively performing registration and reconstruction in our iterative method, we provide the correct

ground truth of the transformation for the registration step. Therefore, in this experimental setting,

the reconstruction quality is only depending on the angular range of data acquisition, and it will not

be degraded due to any registration error.

Results: Figure 5.12 shows that the image appearance of the results of our iterative method with cor-

rect registration transformations is superior than the results produced using the sequential method.

(a) (b) (c)

(d) (e) (f)

Figure 5.12: Results of the sequential method and the iterative method when the correct registration trans-

formations have been provided. (a)-(c): Results of the sequential method; (d)-(f): Results of the iterative

method. (Left: Coronal view; Middle: Transverse view; Right: Sagittal view. Original ground truth of the

fixed and moving images are shown below in Figure 5.13 (a) and (e))

Conclusion: There are many possible reasons of enlarging the view angles, e.g., rotation, shearing,

and compression of the object; however, most of the enlargement is gained from the rotation of the
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object imaged between two time points. The potentially enlarged angular range of data acquisi-

tion can reduce the null-space, and therefore reduce the out-of-plane artefacts and produce a more

compact reconstruction.

5.5.3 Experiment IA1: Test on the DBT Simulation Using Synthetic

Toroid

In the first set of two experiments a 3D toroidal phantom image was created and rigidly transformed

via parameters Rζ using a translation of Ttranslation = [10, 0,−20]mm and a rotation about the y

axis of −30 degree (Figure 5.13). As seen in Figure 5.13. (f) and (h), the iterative results are more

compact and accurate than the sequential results Figure 5.13. (b) and (d), and the out of plane

blurring is reduced (coloured squares). The sum of squared differences (SSD) ‖f?1 − fg
1‖2 is decreased

by an order of magnitude (1011 to 109); however, for the iterative method this value of 4.32 × 109

is superior to the sequential result of 6.89 × 109. Plot of the cost function f(f1) = 1
2

∥∥Af1 − p1

∥∥2

represented in Equation 5.12 for both sequential and combined methods are shown in Figure 5.14.

(a)                                          (b)                             (c)                              (d)

(e)                                          (f)                              (g)                              (h)

Figure 5.13: (a) Original test volume fg1 ; (e) Transformed test volume fg2 ; Sequential results (b)-(d): (b)

reconstruction f?1 , (c) reconstruction f?2 , and (d) transformed reconstruction T ?ζ f?2 ; Iterative results (f)-(h):

(f) reconstruction f?1 , (g) reconstruction f?2 , and (h) transformed reconstruction T̂ζ f̂2.
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Figure 5.14: Plot of the cost function f(f1) = 1
2

∥∥Af1 − p1

∥∥2
for the 3D toroid experiment. In this graph,

we plot the cost function value with respect to the iteration number for both sequential and iterative methods.

There are 100 iterations in total and the cost function values are the same for both methods at the first

iteration. For the sequential method, we have got a cost function with is decreasing smoothly. In contrast,

the iterative method updates f1 with the transformation of f̂2, i.e., T̂ζ f̂2, after 10 iterations of the reconstruction

and a single registration. This results in the increasing and peaks in the cost function plot of the iterative

method (including the initial first iteration).
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5.5.4 Experiment IA2: Test on the DBT Simulation Using Uncompressed

MRI

In the second set of two experiments the same transformation was applied to a 3D breast MR

image that obtained similar behaviour (the SSD comparison gives iterative 1.25× 108 vs. sequential

1.42× 108 decreased from 1.71× 1011) illustrated in Figure 5.15. There is a black region with sharp

edge at the bottom of both Figure 5.15 (h) and (d) due to the transformed image Figure 5.15 (e)

falling outside of the field of view. However, a better reconstruction for the missing data in Figure

5.15 (f) is obtained due to our incorporation of all the X-ray acquisitions into the reconstruction of

x1. The corresponding cost functions are shown in Figure 5.16.

(a)                                          (b)                             (c)                              (d)

(e)                                          (f)                              (g)                              (h)

Figure 5.15: As Figure 5.13 but for a 3D uncompressed breast MR image.
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Figure 5.16: As Figure 5.14 but for the 3D uncompressed breast MR image.
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5.5.5 Experiment IA3: Test on the DBT Simulation with In-Vivo Com-

pression

In this set of two experiments we tested the methods using two MRI acquisitions obtained before

and after application of a lateral-to-medial plate compression of the breast (Figure 5.17). The

SSD between reconstruction, f?1 , and the original volume, fg
1 , indicates that the iterative method

produces a more accurate reconstruction of the data (the SSD comparison gives iterative 5.90× 109

vs. sequential 7.60× 109 decreased from 6.91× 1011). In addition, the affine transformation model is

insufficient for the compression deformation, which may degrade the reconstructed results; however,

measurement of the target registration error for a set of 12 user defined landmarks, indicates that

the iterative method also produces a more accurate registration result (4.6mm vs. 8.6mm, given an

initial misregistration of 23.6mm). The corresponding cost functions are shown in Figure 5.18.

(e)                                          (f)                              (g)                              (h)

(a)                                          (b)                             (c)                              (d)

Figure 5.17: As Figure 5.13 but applied to in-vivo MRI acquisition of a breast before and after plate com-

pression (Images have been segmented and mapped to effective X-ray attenuation).
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Figure 5.18: As Figure 5.14 but for the in-vivo compressed DBT simulation experiment.
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All the numerical results (SSD and TRE described in the validation Section 5.4.3) of the three

experiments above are shown in the Table 5.2 below. In addition, Table 5.3 shows the corresponding

relative error.

Table 5.2: Numerical results of the three experiments. (SSD = ‖f?1 − fg1‖2)

Initial Sequential Method Iterative Method

Toroid Phantom 4.51× 1011 6.89× 109 4.32× 109

Misregistration TRE (mm) 19.6 8.6 5.1

Uncompressed Breast MRI 1.71× 1011 1.42× 108 1.25× 108

Misregistration TRE (mm) 31.2 17.4 15.2

In-vivo DBT simulation 6.91× 1011 7.60× 109 5.90× 109

Misregistration TRE (mm) 23.6 8.6 4.6

Table 5.3: Comparison of the relative error, which is defined by
‖f?1−f

g
1‖

2

‖fg1‖2
.

Initial Sequential Method Iterative Method

Toroid Phantom 1 0.0153 0.0096

Uncompressed Breast MRI 1 0.0008 0.0007

In-vivo DBT simulation 1 0.0110 0.0085
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5.5.6 Experiment IA4: Test on the Noisy Data

In X-ray radiography, image quality is not only determined by spatial resolution but also affected

by image contrast and hence noise. Noise is generated by many random processes in X-ray imaging.

Firstly, X-ray photons leave the source in a random pattern that follows a Poisson distribution.

This is generally designated quantum noise, and the Poisson distribution can be approximated using

a Normal distribution if there are a large number of detected photons per pixel. Secondly, the

number of photons captured by the detector creates the detector noise, which may follow a Normal

distribution [35]. Furthermore, there are many other sources of noise such as the number of photons

passing unaffected through the object. The difference between noise and artefacts is that the latter

can be reproduced if the same scan is repeated. In addition, we can analyse the noise using contrast

to noise ratio, or image signal to noise ratio.

A discrete random vector X has a Poisson distribution with independent components if its mul-

tivariate PDF is

M(x; η) =


∏N
n=1

e−ηnηxnn
xn! , for xn > 0

0, otherwise
, (5.27)

in which the mean is η and the variance is also η, and the Poisson distribution is denoted by

X ∼ NPoisson(η). (5.28)

A continuous random vector X has a Normal distribution, or Gaussian distribution if its multi-

variate probability density function (PDF) is

M(x;ψ, σ2) =
1√

2πσ2
e−

(x−ψ)2

2σ2 , (5.29)

in which the mean is ψ and the variance is σ2, and the Normal distribution is denoted by

X ∼ NNormal(ψ, σ
2). (5.30)

Instead of simulating a complex noise model, we simply add noise, which follows a normal distribu-

tion, for both forward projections of the temporal data sets, i.e., p1 and p2 in Equations 5.6 and 5.7.

We defined four different noise levels, i.e., 0.1%, 1%, 10%, and 100% of the maximum intensity of the

forward projections (examples of noisy forward projections in Figure 5.19). Finally, we performed

our iterative method on these four pair of noise data sets, and compared to the sequential alterna-
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tive. Results from the noisy forward projections show that our iterative method has consistently

outperformed the sequential method as seen in Figures 5.20, 5.21, and 5.22, in which we plot the

relative error against four different noise levels. The relative error is defined by
‖f?1−fg1‖

2

‖fg1‖2
as before.

(a)                                 (b)                                  (c)

(d)                                 (e)                                  (f)

0.1 % level noise                          10% level noise                            100% level noise

Figure 5.19: Noisy forward projections. (a)-(c): Forward projections of the fixed images. (d)-(f): Forward
projections of the corresponding moving images. The images present different noise levels.
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Figure 5.20: Plot of the relative error against different levels of noise using the toroid phantom.

From the comparison of relative errors against different levels of noises, we have confirmed that

our iterative method performed at least as well as the sequential method using three various DBT
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Figure 5.21: As Figure 5.20 but for the uncompressed breast MRI experiment.
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Figure 5.22: As Figure 5.20 but for the in-vivo compressed DBT simulation experiment.
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simulations (Figures 5.21 and 5.22). Both iterative and sequential methods possess a certain level

of noise tolerance. From the experiments on the toroid phantom images (as seen in Figure 5.20),

the relative errors of the iterative method increased much more rapidly compared to the sequential

method. Surprisingly, a possible argument is that the sequential method provides a more stable

result than the iterative method under noisy environment that is not as we anticipated. However,

we believe another rationalisation for this is that when the initial noise level is high, e.g., 100% of the

maximum intensity, we actually reconstruct random noise in both sequential and iterative methods,

and there is a convergence of the relative error for both methods. In addition, as mentioned in

Section 3.2.3 before, the DBT systems obtain highly incomplete projection data with low noise.

Therefore, our test with noise level of 10% and 100% of the maximum intensity are far more crucial

than the real case, and they can be considered as the extreme tests.

5.5.7 Experiment IA4: Test on Different Displacements

The objective of this experiment is to test the correlations of the reconstruction preciseness and

registration accuracy with respect to various initial displacements. Based on the two hypothetical

experiments in Sections 5.5.1 and 5.5.2, our hypothesis of this experiment is that the large initial

displacement introduced by the rotation of the subject can improve the reconstruction quality by

reducing the null-space problem, but the final TRE will be increased.

The main reduction of the null-space problem between two time points is introduced by the rota-

tion of the subject; therefore, we have fixed the translation displacements (Ttranslation = [10, 0,−20]mm)

in this experiment but vary the differences by rotation angles of the subject. In addition, consider

of the real case of DBT scan, there are 45 degrees rotation difference between the standard CC

and MLO views. As we simulated the scans taken at different time points but with one view DBT;

thus, we set the rotation angles in this experiment from -19 to 19 degrees, which is sufficiently large

compared to the real situation that the breast subject need to be placed within two compress plates

and calibrated before scanning.

Furthermore, we have divided the range of rotation angles into three levels, i.e., low (-7 to 0 and

0 to 7 degrees), medium (-13 to -8 and 8 to 13 degrees), and high displacement (-19 to -14 and 14 to

19 degrees) levels. Also, we perform the experiments with different noise level described in Section

5.5.6 before, where there are two levels of noise has been added (1% and 10%) and compared to

the situation without any noise. Results are shown in Figure 5.23, which we plot the initial and

final TRE with respect to the three different initial rotation levels. Essentially, the TREs have been

reduced when the initial displacement levels are decreasing in both data sets.
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Figure 5.23: Experiment on different initial displacements (rotation levels) and TRE (on log2 scale). (a),

(c), and (e): Test on the toroid phantom image showing initial and final TRE with respect to the various

initial rotation levels; (b), (d), and (f): The same test on the breast MRI images.

In addition, we compared the final SSD errors with respect to the initial displacement (Figure

5.23), i.e., different rotation levels. Results on the toroid phantom (Figure 5.23 (a), (c), and (e))

shows that the final SSD errors have been increased in both sequential and iterative methods as dis-

placement level decreasing, but the iterative method has always outperformed the sequential method.

According to the SSD error, firstly, we can demonstrate that the iterative method has obtained better

reconstruction fidelity; secondly, even though the larger deformation has degraded the recovery of

the registration parameters (Figure 5.23), its less null-space has improved the reconstruction results.

However, the situation of the experiments on the breast MR images (Figure 5.23 (b), (d), and (f))
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show that the smaller initial displacement produced superior reconstruction regarding to the SSD

error. We attribute this to the fact that the transformation has moved the breast MR images to

the out of FOV; therefore, smaller initial displacement retains the breast volume inside FOV and

consequently outputs lower SSD. In other words, the SSD error due to out of FOV has dominated

the final SSD comparison.
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Figure 5.24: Experiment on different initial displacements (rotation levels) and SSD error (on log2 scale).

(a), (c), and (e): Test on the toroid phantom image showing initial and final SSD with respect to the various

initial rotation levels; (b), (d), and (f): The same test on the breast MRI images.
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5.6 Conclusions and Discussion

Our iterative method has been found to produce superior results in optimised cost function value,

registration accuracy and reconstructed image appearance. This is illustrated in Figure 5.25. We

attribute this to the fact that the iterative approach uses all the X-ray acquisition data (both p1

and p2) to reconstruct volume f1. This leads to an improvement in the reconstruction of f1 which in

turn enables a more accurate registration to reconstructed volume f2 to be achieved.

An implicit assumption in this approach is that there is no change in the breast (such as the

growth of a tumour or due to the differences in image acquisition parameters) between the two time-

points being reconstructed and registered, justifying the use of SSD as the registration similarity

metric. Given this approach, we could envisage a subsequent step where we compare reconstruction

volume f1 with the original acquisitions, p1 and p2, to detect change.

The iterative method updates f1 with the transformation of f̂2, i.e., T̂ζ f̂2, after 10 iterations of

the reconstruction and a single registration. This results in the peaks in the cost function plot for

the iterative method when compared to the smooth plot for the sequential method, Figures 5.14,

5.16 and 5.18. In Figure 5.16, the final cost function value of the sequential method is less than

our iterative method because the MR volume has been transformed beyond the field of view (fg
2 in

Figure 5.15). This region is visible in the simulated projection images, p1. The result is that the

sequential method produces a lower value of the cost function, f(f1) = 1
2

∥∥Af1− p1

∥∥2
, due to greater

image overlap despite the reconstruction (and registration) being less successful.

To sum up, firstly, we have developed a method to iteratively reconstruct and register temporal

DBT data sets and tested it using various DBT simulations, i.e., digital toroid phantom images,

breast MRI volume, and DBT simulation with real compressions. According to the test results on

these DBT simulations, we can conclude that our iterative method could retain the registration ac-

curacy while producing successful reconstruction. From the digital synthesised phantom images to

DBT simulations with in-vivo plate compressions, we perform our tests on a case that is closer and

closer to a real situation. Secondly, compared to the conventional sequential method, our method

always produced more compact results, which significantly reduced the out-of-plane artefacts caused

by the nature of the null-space problem of the limited-angle reconstruction. Our findings of compar-

ison between our iterative method and the sequential method is consistent with all the simulation

data, and they are also in accordance with the results under simulated noisy environment and various

initial displacements (quantified using different rotation levels). In addition, the evidence from the

study on the hypothetical experiments, i.e., testing on identity registration transformations with
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the same forward projections and different forward projections with known registration parameters,

suggests that the iterative method should obtain superior results because of two reasons. First, more

2D forward projection data can average out random noise. Second, potentially larger angular range

of data capture can alleviate the null-space problem.

However, we are aware that our research on the iterative method may have three limitations.

First, the results of the combined iterative method is dependent on the original moving or overlapping

between the captured data in two time points. Very small moving (large overlapping) between two

time points will not be sufficient to reduce the null-space artefacts, but very small overlapping will

degrade the registration accuracy. To find an optimised overlapping rate is beyond the scope of the

thesis, but it is an interesting topic to explore. Moreover, currently there is no examining protocol

to control the overlapping ratio in clinical environment; therefore, the effectiveness of our iterative

method in real clinical case could be arbitrarily dependent on the position of breast placed on the

compression plate. Second, both sequential and iterative methods produced the reconstruction of

the fixed image and transformed moving image reconstruction, which could confuse the comparison

in real clinical case, e.g., the registration might not be perfect and there are certain differences

between the fixed image reconstruction and the transformed moving image reconstruction. Third,

the updating of the iterative method is not symmetric. The symmetrical attribute of similarity

measurement is crucial to image registration. The symmetrical property states that the obtained

transformation should be the inverse of the transformation obtained when the order of the fixed and

moving images is reversed [43]. Otherwise, if the obtained transformation is asymmetrical, there are

differences, which is known as the inverse inconsistency, between registration results obtained when

registering images in different registration directions [238]. There are some investigations have solved

the asymmetrical problem by altering the cost function to include an inverse transformation term for

the registration procedure; however, it will severely increase the computational complexity especially

for an iterative method as we proposed. The last two concerns of our iterative method have arisen

and urged us to develop a simultaneous method of combining reconstruction and registration. In

spite of the shortcomings of our iterative method, it provides a springboard for a new way to perform

reconstruction and registration in DBT applications.
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Figure 5.25: Magnified results of the three tests above. (a), (b) and (f) of figures 5.13, 5.15 and 5.17. Left
to right: Original fixed image fg1 ; Results of the sequential method f?1 ; Results of the iterative method f?1 . Only
one of the out-of-plane slices have been shown accordingly.
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Chapter 6

Simultaneous Reconstruction and Registration

In this chapter, we present a new model for combining reconstruction and registration tasks using

DBT geometry setting. Rather than perform these two tasks sequentially or iteratively, we propose

an innovative model, which combines reconstruction of a pair of temporal DBT acquisitions with their

simultaneous registration. In addition, we approach this nonlinear inverse problem using a decoupled

optimisation scheme, and explore the suitability of the model for estimating the transformations with

the image intensities. To evaluate the performance of our method we also use 3D software synthetic

images, breast MR images, and DBT simulations from MRI with in-vivo breast compressions. Both

affine and B-spline transformation models are studied. We show that, compared to the conventional

sequential method, jointly estimating image intensities and transformations gives superior results

with respect to both the reconstruction fidelity and the registration accuracy. Work from this

chapter is based on and extends [334] [335] [336] [337].

6.1 Motivation

In Chapter 5, we presented a method that can find the affine registration parameters with the

reconstruction iteratively. We now direct our interest more specifically towards a simultaneous

method to combine these two tasks. In the conventional sequential method and our iterative method,

we have two reconstructed volumes, i.e., the fixed image reconstruction f?1 and the transformed

moving image reconstruction T̂ζ f̂2. We can compare both of these volumes to the original fixed

image fg
1 ; however, this will result in ambiguity. Moreover, if we only compare the transformed

moving image reconstruction to the original fixed image, the other reconstruction f?1 is a waste.

The workflow in which DBT would be used clinically, involves two key tasks: reconstruction,

to generate a 3D image of the breast, and registration, to enable images from different visits to
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be compared as is routinely performed by radiologists working with conventional mammograms.

Rather than separate these two tasks and perform them sequentially or iteratively, we investigate

the technique of combining them simultaneously, and test the hypothesis that the performance of

the joint estimation with a unified reconstruction will be of benefit to each task.

6.2 Problem Outline

Based on the motivation and hypothesis above, we have developed an algorithm, which outputs one

unified result (i.e., image) for the reconstruction and registration. However, the introduction of reg-

istration introduces nonlinearity of the transformation parameters making the solution of the inverse

problem more complex. Although the following experiments were performed using both affine and

B-spline transformation models and SSD as the objective function, other non-rigid transformations

and alternative similarity measurements can naturally be substituted into our simultaneous frame-

work. The remainder of this chapter will be organised as follows. We describe a general framework

for our simultaneous algorithm in the context of forward and inverse problems. Subsequently, we

propose a decoupled approach to solve this simultaneous reconstruction and registration problem.

In addition, we also investigate previous research into combining reconstruction and registration

in other applications. We devote the rest of this chapter to explaining our experiment materials,

solution of the simultaneous method, and testing results with discussions.

6.2.1 Forward and Inverse Problems

According to the discussions in Chapters 3 and 4, we form the general forward and inverse models

for the reconstruction and registration problems in Equations 3.58 and 4.22. The forward problem

remains the same in our simultaneous framework, i.e., the forward projected imaging for the recon-

struction part and image warping with ground truth transformation parameters or deformation field

for the registration part. Furthermore, in Chapter 5, we propose an iterative method to solve these

equations. Instead of combining the two tasks iteratively, we can also create a joint functional to

combine them simultaneously that is

{f?, ζ?} = arg min
f,ζ∈Rn

(
f(f, ζ) = D(Af,p1) +D(ATζ f,p2) + λR(f)

)
, (6.1)

in which f represents the unknown intensities we want to reconstruct, and ζ is the unknown transfor-

mation parameters or deformation field. The equation is optimised for a given p1 and p2, which are
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two temporal data sets with DBT settings. A denotes the forward projection matrix that is defined

by both volume size and projection size. R is an optional regularisation term with weights λ. Tζ is

a nonlinear operator, which is used to describe the transformations between the temporal data sets.

6.2.2 Decoupled Approach

In Chapters 3 and 4, we have discussed tomographic reconstruction and registration with their appli-

cations in DBT separately. In this section, we give a general overview of past-to-present literatures

on combining these two tasks in various applications.

Table 6.1: Comparison of different applications of simultaneous inverse problem. (SR: super-resolution;

LR: low resolution; fwdProjs: forward projections; Recon.+Regn.: reconstruction and registration; “–”: not

mentioned).

Publications Application Dimension Optimisation Optimiser Data

Chung et al. 2006 SR 2D Affine Decoupled Gauss-Newton 32 LR images

He et al. 2007 SR 2D Rigid Decoupled Conjugate Gradient 5 LR images

Yap et al. 2009 SR 2D Rigid Decoupled Linear Interior Point 5 LR images

Jacobson and Fessler 2003 PET 3D Affine Decoupled Gradient Descent 64 fwdProjs 180o

Fessler 2010 PET 3D – Decoupled Conjugate Gradient –

Odille et al. 2008 MRI 3D Affine Decoupled GMRES –

Schumacher et al. 2009 SPECT 3D Rigid Decoupled Gauss-Newton 60 to 64 fwdProjs 360o

Yang et al. 2005 Cryo-EM 3D Rotation Decoupled Quasi-Newton (L-BFGS) 84 fwdProjs

Chung et al. 2010 Cryo-EM 3D Rigid Decoupled Quasi-Newton (L-BFGS) 799 fwdProjs

Our Recon.+Regn. Model DBT 3D Affine &

B-spline

Decoupled Conjugate Gradient or

L-BFGS

22 fwdProjs 50o (±25o)

So far, to the best of our knowledge there are little previous research have combined the recon-

struction and registration (Table 6.1). There are mainly three types of applications, i.e., super-

resolution, motion-correction for medical imaging modalities like PET, SPECT and MRI, and 3D

density map reconstruction from 2D cryo-electron microscopy (Cryo-EM) images.

First, the process of combining a set of low resolution images into a single high-resolution image

is often referred to as super-resolution (SR). The SR problem involves registration and restoration

(a.k.a reconstruction, but we avoid using this term in order to prevent confusion with the tomographic

reconstruction of our DBT problem). Most of the previous research separated these two tasks for

the SR problem. Chung et al. [45] elucidated a simultaneous mathematical framework that enabled

us to combine the problem of estimating the displacements with restoring the high-resolution image.
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He et al. [104] and Yap et al. [340] also proposed algorithms to integrate 2D rigid image registration

into the image SR problem.

Second, due to the long acquisition times in medical imaging modalities such as PET, SPECT

and MRI, patient motion is inevitable and constitutes a serious problem for any reconstruction

algorithm. Many algorithms use a gating system or even breath-holding to mitigate the motion

effect. In [125] Jacobson and Fessler reported a method to jointly estimate image and deformation

parameters in motion-corrected PET imaging. Odille et al. [218] presented a coupled system to

perform a motion-compensated reconstruction, and subsequently optimised the motion model for

MRI. In 2009, Schumacher et al. [254] used the combined reconstruction and motion correction

method in SPECT imaging. Recently, Fessler [75] proposed the novel idea of using an optimisation

transfer, a.k.a., majorise-minimise method, to find a surrogate objective function to simplify the

original simultaneous functional for motion-compensated PET reconstruction.

For the Cryo-EM imaging application, Yang et al. [330] described a simultaneous method to

refine a 3D density map and the orientation parameters of the 2D projections, which were used to

reconstruct this map. And Chung et al. [46] furthered this idea using parallel computing to speed

up the application.

There are a few difficulties when using a generic optimisation method to solve the simultaneous

inverse problem directly. First, we do not take the algorithmic advantage of the fact that the

reconstruction part of the inverse problem is linear and strongly convex in f. Subsequently, the

obstacle is that, besides applying small step length due to the nonlinearity induced by ζ, it can be

hard to find appropriate preconditioners for the simultaneous system which will make the solution

even more computational expensive.

We therefore look at alternative techniques, e.g., the decoupled approach, to solve this kind of

simultaneous inverse problem. However, as far as we are aware, this is the first time that this

technique has been applied to temporal DBT data sets. We test our algorithm with both affine and

B-spline transformation models using nonlinear conjugate gradient or L-BFGS optimisers (Table

6.1).

6.3 Materials

Under the experimental settings, we test our algorithm with both affine and B-spline transformation

models. Firstly, we use the same synthetic toroid phantom, uncompressed breast MRI, and DBT

simulation with in-vivo compression with increased realism for the affine model (as seen in Section
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5.3). Secondly, we opted for a 3D Shepp-Logan phantom to test our algorithm with the B-spline

model (Figure 6.22). The 3D Shepp-Logan has been chosen because: first, it is a widely used

3D phantom image, which can be easily generated in different resolutions, to test tomographic

reconstruction algorithms; second, simple but distinct structures of this 3D phantom image could

demonstrate the efficacy of our simultaneous method clearly. In addition, a 3D breast phantom image

was also tailored for use with the B-spline model because it is more realistic to test our algorithm

under the breast imaging context (Figure 6.31).
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6.4 Simultaneous Method

6.4.1 Simultaneous Method

In this section, we elaborate on our simultaneous algorithm using a decoupled approach to solve

the inverse problem of combining reconstruction and registration. The framework can be outlined

algorithmically as seen in Algorithm 2.

Algorithm 2: Simultaneous Reconstruction and Registration

Input: p1, p2.

Output: f?, ζ?.

begin

% Initialise f to a vector with all zero entries

% Initialise ζ to a vector of the reshaped identity matrix I

f := 0;

ζ := I;

% Calculate matrix A for the forward projection

% Matrix AT represents the backward projection

A := RAYCASTING(SIZE(f));

% Simultaneous reconstruction and registration loop

for k iterations do

{f?, ζ?} = arg minf,ζ

(
f(f, ζ) = 1

2

(∥∥Af − p1

∥∥2
+
∥∥ATζ f − p2

∥∥2))
% Output f? and ζ?

f?;

ζ?.

Firstly, according to Equation 6.1, the objective function is described as

{f?, ζ?} = arg min
f,ζ

(
f(f, ζ) =

1

2

(∥∥Af − p1

∥∥2
+
∥∥ATζ f − p2

∥∥2))
, (6.2)
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in which p1 and p2 are the two input X-ray (DBT) acquisitions, i.e., forward projections. In

addition, f denotes the estimation of the unknown volume, and ζ is the estimation of the parametric

transformations.

A minimiser {f, ζ} ∈ Rn of f(f, ζ) is characterised by the necessary condition that the partial

derivative with respect to f and ζ equals zero. The partial derivative with respect to f is straight-

forward, and is given by

g(f) =
∂f(f, ζ)

∂f
= AT (Af − p1) + T ∗ζ AT (ATζ f − p2), (6.3)

in which g(f) is the gradient with respect to f, and T ∗ζ is the adjoint operator of Tζ (Section 6.4.2.1).

Similarly, the corresponding Hessian can be expressed as

H(f) =
∂f(f, ζ)

∂2f
= ATA+ T ∗ζ ATATζ . (6.4)

To derive the partial derivative with respect to ζ, we apply a small perturbation to the objective

function and the linearisation under the norm yields,

f
(

f, ζ + ∆ζ
)

=
1

2

(∥∥Af − p1

∥∥2
+
∥∥ATζ + ∆ζf − p2

∥∥2
)

(6.5)

≈ 1

2

(∥∥Af − p1

∥∥2
+
∥∥ATζ f +A

∂Tζ
∂ζ

f∆ζ − p2

∥∥2
)
. (6.6)

By taking the derivative with respect to ∆ζ, and equating the result to zero, we obtain that

(
A
∂Tζ
∂ζ

f
)T(

ATζ f +A
∂Tζ
∂ζ

f∆ζ − p2

)
= 0; (6.7)

and if g(ζ) and H(ζ) denote the gradient and Hessian with respect to ζ respectively then we have,

(
A
∂Tζ
∂ζ

f
)T(

A
∂Tζ
∂ζ

f
)

∆ζ = −
(
A
∂Tζ
∂ζ

f
)T(

ATζ f − p2

)
, (6.8)

and therefore, we can derive

∆ζ = −

[(
A
∂Tζ
∂ζ

f
)T(

A
∂Tζ
∂ζ

f
)

+ λI

]−1(
A
∂Tζ
∂ζ

f
)T(

ATζ f − p2

)
, (6.9)
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in which,

g(ζ) =
∂f(f, ζ)

∂ζ
=
(
A
∂Tζ
∂ζ

f
)T(

ATζ f − p2

)
=
(
AT

′

ζ f
)T(

ATζ f − p2

)
,

and

H(ζ) =
(
A
∂Tζ
∂ζ

f
)T(

A
∂Tζ
∂ζ

f
)

=
(
AT

′

ζ f
)T(

AT
′

ζ f
)
.

In order to apply a generic non-linear conjugate gradient or L-BFGS optimiser, we extract the

gradients of the objective function with respect to f and ζ below

∇f(f, ζ) = g(f, ζ) =

 ∂f(f,ζ)
∂f

∂f(f,ζ)
∂ζ

 (6.10)

=

 AT (Af − p1) + T ∗ζ AT (ATζ f − p2)(
AT ′ζ f

)T(
ATζ f − p2

)
 .

Diagnosing the problem is one thing, solving it is another. From previous research, we find

that none of these published studies solved the simultaneous reconstruction and registration directly

(Table 6.1 shows). Therefore, we also opt for a decoupled approach to solve our combined problem.

The reason for this approach is because the objective function in Equation 6.2 is a nonconvex function

of the transformation parameters ζ and therefore very challenging to minimise. As in these previous

studies we can simplify the simultaneous optimisation using the decoupled alternating minimisation

technique, where we update f holding ζ fixed and vice versa, i.e., the n + 1-th estimation can be

represented by the n-th estimation that are

fn+1 = arg min
f

f
(

f, ζn
)
, (6.11)

ζn+1 = arg min
ζ

f
(

fn+1, ζ
)
, (6.12)

and the gradients become

g(f)n+1 = AT (Af − p1) + T ∗ζnAT (ATζn f − p2), (6.13)

g(ζ)n+1 =
(
AT

′

ζ fn+1
)T(

ATζ fn+1 − p2

)
. (6.14)

Solving the simultaneous inverse problem using the decoupled optimisation is totally different

from the sequential method or the iterative method described in [332] and [333]. First, the gradient
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with respect to the image intensities is not a simple addition of the derivative in equations 5.8

and 5.9 because here we estimate only one volume rather than two as in the sequential or iterative

methods. Accordingly, we have one unified result instead of two reconstructions, which need to be

registered in a further step. More significantly, because of the presence of the system matrix A in the

gradient formulation in equation 6.14, the simultaneous concept is more challenging than a typical

image registration problem described in equation 5.11, i.e., registering two complete reconstructions

in the sequential method or current estimates of the two incomplete reconstructions in the iterative

method.

6.4.2 Transformation Operator

6.4.2.1 Adjoint Operator

The adjoint operator of the transformation, which is denoted by T ∗, is used in solving our inverse

problem. The definition of adjoint operator in the context of linear transformations on finite dimen-

sional vector spaces is straightforward. As we can access the matrices of the linear transformations,

the adjoint of such a matrix is the same as its transpose.

Original fwdInterp2D (0.0082 secs) interp2 (0.0577 secs) diffImage1

Original transposeInterp2D (0.00424 secs) linterp (0.0193 secs) diffImage2

Figure 6.1: 2D results of the interpolation operation and its transpose. First row: Forward interpolation

with deformed grid on; Second row: transpose of the interpolation. From left to right: Original image; Im-

plementation using C with Matlab MEX interfaces; Implementation using Matlab; Difference images between

two implementations. The results have shown that our C implementation is faster and accurate.
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More generally, the adjoint operator, which is also known as the Hermitian conjugate, can be

defined by

〈T (f1), f2〉 = 〈f1, T ∗(f2)〉 (6.15)

in which 〈·, ·〉 is the inner product. In addition, f1 and f2 are arbitrary vectors such that ∀f1, f2 ∈ Hs,

and Hs denotes the Hilbert space that is a vector space with an inner product with respect to the

associated norm. Although T is nonlinear with respect to the transformations ζ, it is linear with

respect to the image intensities f. Because Tζ f = T[Tζ(x)], and therefore

T ∗ζ f = T Tζ f = TT [Tζ(x)], (6.16)

in other words, the transpose of an image transformation is the transpose of an interpolation op-

eration. We implemented both the image interpolation (bilinear interpolation) and its transpose

operation using C with Matlab MEX interfaces (2D example in Figure 6.1 and 3D example in Figure

6.2). Additionally, we validated our implementation using Equation 6.15, in which we use an arbi-

trary image to test various transformations, and we have always obtained the same inner product

results.
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Figure 6.2: 3D results of the interpolation operation (Left) and its transpose (Right).
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6.4.2.2 Derivative Operator

The derivative of the transformation is a crucial component of this method and has great impact on

the result of optimisation. The analytical derivative of the transformation is fast, yet its implemen-

tation is difficult because we must first formulate the derivative of the underlying interpolation. In

addition, many interpolation schemes have no analytical derivative; therefore, we can choose to use

the Finite Difference Method (FDM) to approximate the derivative operation. Similarly to Equation

5.21, we can derive that the gradient with respect to the transformations is

g(ζ) =
(
AT

′

ζ f
)T(

ATζ f − p2

)
(6.17)

=
(∂T[Tζ(x)]

∂Tζ(x)

∗)∂Tζ(x)

∂ζ
AT
(
ATζ f − p2

)
. (6.18)

In addition, we summarise the gradient information we used for the iterative and simultaneous

methods in Table 6.2. Alternatively, instead of implementing the gradient using this analytical form,

we can also use FDM with central difference to calculate T ′ζ that is

T
′

ζ ≈
Tζ+ε + Tζ−ε

2ε
(6.19)

given a small number ε.

Table 6.2: Comparison of the gradient information used in the iterative and simultaneous methods.

Reconstruction Part Registration Part

Iterative Method g(f1) = AT (Af1 − p1) g(ζ) =
(
R̂(x)− T̂[Tζ(x)]

)∂T̂[Tζ(x)]
∂Tζ(x)

∂Tζ(x)
∂ζ

g(f2) = AT (Af2 − p2)

Intensity Part Transformation Part

Simultaneous Method g(f) = AT (Af − p1) + T ∗ζ AT (ATζ f − p2) g(ζ) =
(
∂T[Tζ(x)]
∂Tζ(x)

∗)∂Tζ(x)
∂ζ AT

(
ATζ f − p2

)

6.4.2.3 Implementation and Experimental Settings

Our simultaneous reconstruction and registration method is implemented in the Matlab environ-

ment with several C based routines with MEX interfaces in order to speed up the application. In

particular, we test with both affine and B-spline transformation models in this chapter. The affine

transformation model has been described in Section 4.1.2 with 12 parameters, which globally describe

the translation, scaling, rotation and shearing between the two time points. We compare the results

of our simultaneous method with the sequential alternative. In addition, we opt for a transformation
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depicted by uniform cubic B-splines, which are based on tensor B-spline modelling and have the

uniform knot-vector, to investigate the efficacy of our method with non-rigid transformations. One

of the principal merits of using the B-spline transformation model is the local support property, i.e.,

a single span of a B-spline curve is only controlled by a limited number of control points. For the

uniform cubic B-spline model, the blending function, or basis function, can be expressed by

β(x) =


|x|3

2 − |x|
2 + 2

3 , for 0 ≤ |x| ≤ 1

−(|x|−2)3

6 , for 1 ≤ |x| ≤ 2

0, otherwise

. (6.20)

Additionally, in a real implementation, we can use the Kronecker product to compute the 3D

tensor product of a 1D uniform cubic B-spline, which is defined by three sets of knots. Furthermore,

the knots are placed equidistantly along each dimension, and the cubic B-spline basis function

extends over 4 knot intervals in one dimension. Essentially, there are several methods to handle the

boundary conditions, e.g., placing 3 additional knots on top of the boundary knot or extending the

knots evenly to the outside of the image. we have chosen the second method, which possesses a free

boundary. Thus, we can define the displacement u = (u1, u2, u3) as

u1(x) = u1(x, y, z) =

l∑
i=1

m∑
j=1

n∑
k=1

β1
i (x)β2

j (y)β3
k(z)q1

ijk (6.21)

u2(x) = u2(x, y, z) =

l∑
i=1

m∑
j=1

n∑
k=1

β1
i (x)β2

j (y)β3
k(z)q2

ijk (6.22)

u3(x) = u3(x, y, z) =

l∑
i=1

m∑
j=1

n∑
k=1

β1
i (x)β2

j (y)β3
k(z)q3

ijk (6.23)

We use matrices to store the basis function values that are

{Q1}i = β1
i (x); {Q2}j = β2

j (y); {Q3}k = β3
k(z), (6.24)

and the displacement can be written in vector-matrix form by the Knonecker product as

u(q) = Q1 ~Q2 ~Q3q, (6.25)
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in which q is a vector containing all the B-spline weights, and the Knonecker product ~ calculates the

matrix of matrices of quantities obtained by multiplying each component of Q1 with each component

of Q2. An example of B-spline transformation and the deformed grid has shown in Figure 6.3. In

addition, we also contrast the results of the sequential method and our simultaneous method using

the image appearance, the SSD error and the TRE (Section 5.4.3).
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Figure 6.3: B-spline transformation example. Top Row: Regular grid (Left) and B-spline transformed grid

(Right) of the x-y plane centre slice; Bottom Row: Original mesh (Left) with control points and its B-spline

transformation (Right). The original 3D Shepp-Logan phantom image has 65× 65× 65 voxels, and there are

9× 9× 9 control points (red points) placed equidistantly along each dimension.
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6.5 Experiments and Results using the Affine Model

6.5.1 Experiment SA1: Test on the DBT Simulation Using Synthetic

Toroid

Figure 6.4 (a)-(c) shows a toroid phantom (as seen in Section 5.5.3), which was created for all the tests

in this experiment. We performed 20 different sets of affine transformations to test the robustness

of our simultaneous method. Affine test case 1 is presented here as an example (Figure 6.4 (d)-(f)).

The results of the two different methods, i.e., sequential vs. simultaneous, were compared. We found

that there were much less artefacts in the results of our simultaneous method than the results of the

sequential method (Figure 6.4 (g)-(i) vs. Figure 6.4 (j)-(l)); however, from the difference images in

Figure 6.6 (g)-(i), we could still find small radial artefacts. From Figure 6.7 we can also compare our

unified simultaneous result to the reconstruction results without registration, and it shows that our

result has got benefit from using both temporal data sets. The absolute errors between the recovered

parameters and the ground truth of the transformations were calculated. The results showed that

the recovery of the parameters was accurate and persistent for all the 20 tests (Figure 6.5).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.4: Toroid phantom test case 1. (a)-(c): Fixed image; (d)-(f): Moving image; (g)-(i): Sequential

result, i.e., transformed moving image reconstruction T ?ζ f?2 ; (j)-(l): Simultaneous result. (Left: Coronal view;

Middle: Transverse view; Right: Sagittal view.)
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Figure 6.5: Plot of the mean and standard deviation of the absolute error between the recovered and the

ground truth transformation parameters for 20 different randomly generated affine transformations. The 12

parameters are calculated using Equation 4.10, which combines rotation, scaling, shearing and translation.

In other words, these 12 parameters are the 12 entries of the affine transformation matrix. In the plot,

parameters number 4, 8, 12 are the translations along each direction, and other parameters are obtained from

the multiplication of the rotation matrix and matrices of the scaling and shearing.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.6: Difference images. (a)-(c): Differences between the fixed and the moving images; (d)-(f):

Differences between the fixed image and the sequential result; (g)-(i): Differences between the fixed image and

the simultaneous result.
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(a) (b) (c)

(d) (e) (f)

Figure 6.7: Reconstruction using two acquisitions p1 and p2 without registration. (a)-(c): Fixed image

reconstruction; (d)-(f): Moving image reconstruction.

Ch.6: SIMULTANEOUS RECONSTRUCTION AND REGISTRATION DBT Reconstruction and Registration



6.5. EXPERIMENTS AND RESULTS USING THE AFFINE MODEL 172 of 248

6.5.2 Experiment SA2: Test on the DBT Simulation Using Uncompressed

MRI

The results of the experiment on the breast MR image suggest that our simultaneous method is

promising (Figure 6.8 (g)-(i) vs. Figure 6.8 (j)-(l)). One 128× 140× 60mm3 breast MR image with

0.48 × 0.48 × 0.48mm3 resolution (Figure 6.8 (a)-(c)) was used for all the 15 tests (Test case 8 in

Figure 6.8 (d)-(f)). Fewer out-of-plane artefacts (Refer to Section 3.2.1.1 and Hu et al. [122]) were

found in the results of our simultaneous method than the results of the sequential method (Figure

6.9 (g)-(i) vs. Figure 6.9 (j)-(l)). Figure 6.10 shows the recovery of the transformation parameters.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.8: Breast MRI test case 8. (a)-(c): Fixed image; (d)-(f): Moving image; (g)-(i): Sequential result,

i.e., transformed moving image reconstruction T ?ζ f?2 ; (j)-(l): Simultaneous result. The transverse view has

been rotated 90o clockwise for the purpose of better display. (Left: Coronal view; Middle: Transverse view;

Right: Sagittal view.)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.9: Difference images. (a)-(c): Differences between the fixed and the moving images; (d)-(f):

Differences between the fixed image and the sequential result; (g)-(i): Differences between the fixed image and

the simultaneous result.
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Figure 6.10: As Figure 6.5, plot of the mean and standard deviation of the absolute error between the

recovered and the ground truth transformation parameters of 15 different affine transformations.
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Cross-sectional line profiles in each view were plotted (Figure 6.11), i.e., intensities of a horizontal

line through the coronal view and intensities of a vertical line through the sagittal and transverse

views respectively. By comparing the reconstruction and registration results to the original fixed

image, we found that our simultaneous method produced a more accurate intensity estimation than

the sequential method. In addition, the results of our simultaneous method were compared with

the reconstruction results without registration using plots of the line profiles as well (Figure 6.12).

From Figure 6.11, we find that the line profiles of the sequential method always have higher values

than the line profiles of the simultaneous method. The reason is that we plot the line profiles of the

transformation of the reconstructed moving image in the sequential method, and the original moving

image has higher intensity values (Figure 6.12) and also produces higher intensities in its forward

projection. In addition, the simultaneous method using the forward projections of both the fixed

and the moving images that average the intensities and therefore have lower values of line profiles.
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Figure 6.11: Line profiles of the three views of the breast MRI test case 8. (The line profiles were drawn

between the two arrows of each view as seen in Figure 6.8 (a)-(c) as an example, and they were at the same

positions for other corresponding images.)
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Figure 6.12: Line profiles of the reconstruction results without registration. (The line profiles were drawn

at the same positions as Figure 6.11 showed.)

6.5.3 Experiment SA3: Test on Different Displacements

In this experiment, we again demonstrate the correlations between final TRE and SSD error with

respect to the initial displacement. We use the same transformation settings as Section 5.5.7, and

divide the initial displacement to low (-7 to 0 and 0 to 7 degrees), medium (-13 to -8 and 8 to 13
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degrees), and high displacement (-19 to -14 and 14 to 19 degrees) levels; however, all the experiments

in this section have not considered about any noise. Results are shown in Figure 6.13, from which we

can conclude that the larger view angles enable better reconstruction quality; however, they increase

the final TRE values, which represent the registration accuracy.
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Figure 6.13: Experiment on different initial displacements (rotation levels) with final TRE and SSD error

(on log2 scale). (a), (c), and (e): Test on the toroid phantom image showing initial and final TRE and SSD

with respect to the various initial rotation levels; (b), (d), and (f): The same test on the breast MRI images.
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6.5.4 Experiment SA4: Test on the DBT Simulation with In-Vivo Com-

pression

Two temporal DBT simulations (511×208×208 voxels with a spatial resolution 0.215mm in each di-

rection) were created for this experiment, i.e., two MRI acquisitions obtained with two different real

medio-lateral plate compressions of the breast (Figure 6.14 (a)-(f)). The method of DBT simulation

is briefly described in Section 5.5.5, and we choose a larger data set in this experiment. From the

comparison of the results (Figure 6.14 (g)-(i) vs. Figure 6.14 (j)-(l)), our simultaneous method out-

performed the sequential method. First, the blurring effect of the sequential method was mitigated.

Second, the out-of-plane structure was more compact with much less radial artefacts. Third, there

was no black cutting-off artefacts near the edges. In other words, there was a recovery of the data

lost due to part of the moving image falling outside of the volume field of view. There was no ground

truth of the deformation because this pair of data was acquired in vivo. Additionally, we tried to use

our affine transformation based simultaneous framework to capture the real non-rigid deformation.

In practice, the affine transformation model will be insufficient to recover the real compressions,

which could degrade the reconstructed results; however, the difference images in Figure 6.15 shows a

fair reconstruction with appropriate registration using both methods. Accordingly, about half of the

line profile (Figure 6.16) illustrated that the results of our simultaneous method fitted the original

fixed image quite well, and it was superior to the sequential method. However, the other half of the

line profile did not show good agreement, this can be attributed, at least in part, to the fact that the

affine transformation, which is a global parametric model, is insufficient to capture such a non-rigid

transformation.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.14: Two DBT simulations were created using in-vivo MR acquisitions of a breast with two different

real plate compressions to mimic the temporal imaging (Images have been segmented and mapped to effective

X-ray attenuation). (a)-(c): Fixed image; (d)-(f): Moving image; (g)-(i): Sequential result, i.e., transformed

moving image reconstruction T ?ζ f?2 ; (j)-(l): Simultaneous result. (Left: Transverse view; Middle: Coronal

view; Right: Sagittal view.)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.15: Difference images. (a)-(c): Differences between the fixed and the moving images; (d)-(f):

Differences between the fixed image and the sequential result; (g)-(i): Differences between the fixed image and

the simultaneous result.
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Figure 6.16: Line profiles of the transverse view of the DBT simulations experiment. The line profiles were

drawn between the two arrows of the transverse view as seen in Figure 6.14 (a) as an example.)
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6.6 Experiments and Results using the B-spline Model

6.6.1 Experiment SB1: Test on the DBT Simulation using 3D Shepp-

Logan

For the B-spline transformation model, we use a 3D Shepp-Logan phantom to test our simultaneous

method initially. Although the 3D Shepp-Logan phantom may not be a perfect simulation for breast

structures, it is a widely used phantom image in tomographic reconstruction. Figure 6.18 shows

the 3D Shepp-Logan phantom (65 × 65 × 65 in voxels), and it also shows the central slice of each

plane and the regular B-spline control point grid for the central slice of the transverse plane. The

transformed phantom is shown in Figure 6.19, and illustrates the ground truth of the transformation.

This ground truth deformation is randomly simulated using 9 control points in each dimension with

the B-spline transformation model (Figure 6.17). A random perturbation, which was created using

Matlab build-in subroutine (rand) and implemented continuous uniform distribution, was applied to

each control point. The subroutine generates a pseudo-random value on the open interval (0, 1), and

random values RV from the uniform distribution on the interval [Rangea,Rangeb] can be created by

RV = Rangea + (Rangeb − Rangea)× rand(number of control points, 1).
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Figure 6.17: Displacement field. (a) Original regular grid for the central slice; (b) Deformed grid for

the central slice; (c) Displacement field of the whole 3D volume. (Red cross: control points; Green arrow:

displacement vector in 2D; Coloured quiver: displacement vector in 3D.)

In this experiment, we set different ranges of perturbation for each direction (x-, y- and z-axis),
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e.g., [Rangea,Rangeb] = [−8, 8], = [−4, 4], and = [−2, 2] have been used respectively. Therefore,

there are larger deformations for the in-plane slices and smaller ones for the out-of-plane. From the

results in Figures 6.20 and 6.21, we can conclude that our simultaneous method has obtained an

accurate reconstruction with a reasonable recovery of non-rigid deformations. The montage views of

the fixed, transformed, recovered, and difference images are shown in Figures 6.22, 6.23, 6.24, and

6.25.

Ground Truth (GT)

Figure 6.18: Original fixed 3D Shepp-Logan phantom and its regular grid for the central slice.

Transformed

Figure 6.19: Transformed 3D Shepp-Logan phantom and its deformed grid for the central slice, i.e., ground

truth of the transformation.
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Recovered

Figure 6.20: Simultaneous reconstruction and registration result and the registered control point grid for the

central slice.

Grid:GT−Recovered

Figure 6.21: Difference image between the simultaneous result (Figure 6.20) and the original fixed phantom

(Figure 6.18). The registered control point grid is superimposed on the ground truth transformation and

indicates that the ground truth transformation has been recovered well for the majority of control points.

(Figure 6.19).
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Figure 6.22: A montage view of the original fixed 3D Shepp-Logan phantom.
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Transformed
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Figure 6.23: A montage view of the transformed 3D Shepp-Logan phantom.
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Recovered
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Figure 6.24: A montage view of the simultaneous reconstruction and registration result.
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Grid:GT−Recovered
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Figure 6.25: A montage view of the difference image between the simultaneous result (Figure 6.24) and the

original fixed phantom (Figure 6.22).
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6.6.2 Experiment SB2: Test on the DBT Simulation using 3D Breast

Phantom

Additionally, we also create a 3D breast phantom image to test our simultaneous method. We

use different intensities to simulate different parts of the breast phantom image, e.g., calcifications

possess higher intensity than fat and glandular tissue, i.e., air = 1, adipose = 2, glandular = 3,

lesion = 4, skin = 5, muscle = 6, and calcification = 7 (these values are simulated intensities as

seen in Figure 6.26, and the original software to simulate the 3D breast phantom image [175] [176] is

provided by Duke University Medical Center1). Figure 6.27 shows a simulated 3D breast phantom

image with 65 × 65 × 65 voxels, in which the central slice of each plane and the regular grid for

the central slice of the transverse plane are shown. The transformed phantom is shown in Figure

6.28, where we can see the ground truth of the transformation. This ground truth deformation is

also randomly simulated using 9× 9× 9 control points with the B-spline transformation model (the

displacement field was randomly simulated and it was different from the last experiment).

(a) (b)

Figure 6.26: The 3D breast phantom images. (a) In higher resolution with 260× 260× 260 voxels; (b) The

down-sampled version of (a) in lower resolution with 65× 65× 65 voxels.

From the results in Figures 6.29 and 6.30, we can conclude that our simultaneous method has

obtained an accurate reconstruction with a reasonable recovery of non-rigid deformations. In addi-

1The 3D breast phantom simulation software is provided by Dr. Christina M. Li and Dr. Paul Segars from Duke
University Medical Center. However, it is an executable binary file without source files. Also, it is a simplified version
with some adjustable configurations, which may not exactly follow their publications in [175] [176].
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tion, the registration appears to be most accurate along the breast edge, and this is a strong feature

and hence it has a significant influence on value of the cost function in this region. The montage

views of the fixed, transformed, recovered, and difference images are shown in Figures 6.31, 6.32,

6.33, and 6.34.

Ground Truth (GT)

Figure 6.27: Original fixed 3D breast phantom image and its regular grid for the central slice.

Transformed

Figure 6.28: Transformed 3D breast phantom image and its deformed grid for the central slice, i.e., ground

truth of the transformation.
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Recovered

Figure 6.29: Simultaneous reconstruction and registration result and the registered control point grid for the

central slice.

Grid:GT−Recovered

Figure 6.30: Difference image between the simultaneous result (Figure 6.29) and the original fixed phantom

(Figure 6.27). The registered control point grid is superimposed on the ground truth transformation and

indicates that the ground truth transformation has been recovered well for the majority of control points.

(Figure 6.28).
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Ground Truth (GT)
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Figure 6.31: A montage view of the original fixed 3D breast phantom image.

Ch.6: SIMULTANEOUS RECONSTRUCTION AND REGISTRATION DBT Reconstruction and Registration



6.6. EXPERIMENTS AND RESULTS USING THE B-SPLINE MODEL 194 of 248

Transformed
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Figure 6.32: A montage view of the transformed 3D breast phantom image.
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Recovered
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Figure 6.33: A montage view of the simultaneous reconstruction and registration result.
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Grid:GT−Recovered
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Figure 6.34: A montage view of the difference image between the simultaneous result (Figure 6.33) and the

original fixed phantom (Figure 6.31).

6.6.3 Experiment SB3: Test on Different Initial TRE

In order to demonstrate the relationship between initial TRE (initial displacement) and final TRE

and SSD error, we present this set of experiment using various initial TRE levels. Similar to Sections

5.5.7 and 6.5.3, we define three levels of initial displacement. However, because we apply the B-spline

transformation model here, the displacement level is measured using initial TRE rather than different

simulated rotations. Thus, the three levels of initial displacement are defined as low (1mm to 10mm

initial TRE with 5 data sets), medium (11mm to 20mm initial TRE with 5 data sets), and high
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displacement (21mm to 30mm initial TRE with 5 data sets) levels, and all the experiments in this

section consider no noise environment. Results (as seen in Figure 6.35) also confirm that superior

reconstruction can be obtained using larger initial displacement, but it has associated with lower

registration accuracy. In addition, due to the initial displacement here is not dominated by rotation

angles; therefore, the null-space problem has not been mitigated as our affine simulation, and the

SSD error has not been reduced significantly.
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Figure 6.35: Experiment on different initial displacements (TRE levels) with final TRE and SSD error (on

log2 scale). (a), (c), and (e): Test on the toroid phantom image showing initial and final TRE and SSD

with respect to the various initial TRE levels; (b), (d), and (f): The same test on the breast MRI images.
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6.7 Conclusions and Discussion

As far as we aware this is the first time that the simultaneous reconstruction and registration of DBT

data sets using a decoupled optimisation approach has been found to be superior to the conventional

sequential method. This approach jointly considers reconstruction and registration components of

DBT, and it is capable of recovering both the deformation parameters, and an enhanced, recon-

structed image. By integrating the registration directly into the framework of the reconstruction

problem, we are able to fully explore the interdependence between the transformation parameters

and the 3D volume to be reconstructed.

Significantly, compared to the previous research on combining reconstruction and registration

(or motion correction), our combined limited angle DBT problem has a much larger null space and

is severely ill-posed, which makes the inverse problem more intriguing and more challenging. From

Table 6.1, we can see that for a typical 2D super-resolution problem previous studies used 5 low

resolution images to restore a high resolution image recovering only rotations and translations, and

32 low resolution images for the affine registration. In general 3D problems, the authors used at least

60 and up to 799 forward projections covering a full-range of views, i.e., 180o or 360o, to perform the

joint estimations. However, for our DBT application, we have two sets of data, which are observed

at two time-points. Each of the data is acquired using only 11 forward projections covering just

50o (±25o), and the two data sets overlap to a certain degree according to the original unknown

deformations.

We analysed our simultaneous method with various data sets using an affine transformation

model, and the simultaneous method has made achieved clearly superior results compared to the

conventional sequential method. First, the experiment on the 3D toroid image clearly revealed that

this approach has an advantage over the conventional method. Second, the results of the breast

MR image have further strengthened our confidence in the hypothesis that the reconstruction and

registration have a reciprocal relationship. Importantly, plots of the cross-sectional line profiles

confirmed that our combined method produced a superior reconstruction than the conventional

method. In addition, the recovery of the transformation parameters was consistently accurate for

both the 3D toroid and the breast MR data sets. Next, we attempted to reconstruct and register

simulated DBT data sets created from real medio-lateral compressions of a breast imaged using MRI.

As anticipated, the simultaneous approach still outperformed the conventional sequential method as

demonstrated by the image appearance and SSD comparison (Figure 6.14 and Table 6.3). Although

the improvements were limited in this experiment, this can be attributed, at least in part, to the fact
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that the affine transformation, which is a global parametric model, is insufficient to capture such a

non-rigid breast deformation.
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Figure 6.36: The 3D toroid test case 1. Comparison of the objective function of the fixed image reconstruction
using the sequential method f(f1) = 1

2

∥∥Af1 − p1

∥∥2
, and the objective function of the simultaneous method

f(f, ζ) = 1
2

(∥∥Af − p1

∥∥2
+

∥∥ATζ f − p2

∥∥2
)

.

Figure 6.36 and Figure 6.37 show that the objective function decreases smoothly using our si-

multaneous method, but the convergence rate is slow. The total number of the reconstruction and

registration iterations was set to be 1000 for both the simultaneous and sequential methods. Figure

6.36 shows that our simultaneous method obtained a better convergence than the sequential method,

but nevertheless Figure 6.37 shows a lower convergent value using the sequential method. In fact,

contrary to the objective function of the simultaneous method, we only displayed the f(f1) part

which is the reconstruction of the fixed image of the sequential method. Additionally, the trend of

the objective function was still downwards using the simultaneous method.

A different number of inner iterations of the two decoupled optimisation steps would affect con-

vergence. A common way to compare the convergence rate of optimisation algorithms is to plot the

objective function value as a function of the iteration. Since each method in this study optimised a

different objective function, direct comparison of the individual objective function values might not
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Figure 6.37: The breast MRI test case 8. Comparison of the objective function of the fixed image recon-
struction using the sequential method f(f1) = 1

2

∥∥Af1 − p1

∥∥2
, and the objective function of the simultaneous

method f(f, ζ) = 1
2

(∥∥Af − p1

∥∥2
+

∥∥ATζ f − p2

∥∥2
)

.

be strictly sensible. Despite this, the plot of the objective function of each method might still reflect

the convergence rate and the magnitude of reconstruction and registration accuracy.

As was mentioned, we also calculated the SSD error and the relative error between the reconstruc-

tion and registration results and the original fixed image, i.e., ground truth, for the two methods

(Table 6.3 and 6.4). These comparison of the SSD and the relative error indicate that our simultane-

ous method has always produced a better result, and it is in line with our hypothesis that combining

the two tasks leads to an improvement in the reconstruction which in turn enables a more accurate

registration.

Furthermore, we have also incorporated a non-rigid transformation model into our combined

framework. In particular, we employed the B-spline transformation model and tested it with our

simultaneous method. Results generated using a 3D Shepp-Logan phantom image offer compelling

evidence that our simultaneous method has successfully reconstructed the volume with accurate

recovery of the non-rigid deformations. Further experiments on a 3D breast phantom image also

show promising results.
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Table 6.3: Comparison of the SSD error and the TRE. The SSD error of the sequential method is ‖f?1 − fg1‖2

(Difference between the result of the transformed moving image reconstruction and the original fixed image),

and the SSD error of the simultaneous method is given by ‖f? − fg1‖2.

Initial Sequential Method Simultaneous Method

Toroid Phantom 4.51× 1011 2.56× 109 8.23× 107

Misregistration TRE (mm) 11.9 8.1 2.6

Uncompressed Breast MRI 1.40× 1011 7.18× 108 3.58× 108

Misregistration TRE (mm) 24.6 12.1 9.8

In-vivo DBT simulation 1.18× 1014 8.14× 1011 7.12× 1011

Misregistration TRE (mm) 32.7 9.6 8.8

Table 6.4: Comparison of the relative error, which is defined by
‖f?1−f

g
1‖

2

‖fg1‖2
and

‖f?−f
g
1‖

2

‖fg1‖2
for the sequential

and simultaneous method respectively.

Initial Sequential Method Simultaneous Method

Toroid Phantom 1 0.0057 0.0002

Uncompressed Breast MRI 1 0.0051 0.0026

In-vivo DBT simulation 1 0.0058 0.0051

In conclusion, we have presented a novel simultaneous method to combine reconstruction and

registration using limited angle DBT settings. Additionally, we employ a decoupled approach to

solve this problem. Our work has led us to conclude that our simultaneous approach improves both

the registration accuracy and the quality of the reconstruction when compared to the conventional

sequential method using an affine transformation model. Furthermore, our investigation into the B-

spline transformation model shows that our combined framework is generic and sufficiently flexible

to allow this non-rigid transformation models to be incorporated with success in both reconstruction

fidelity and registration accuracy.

Ch.6: SIMULTANEOUS RECONSTRUCTION AND REGISTRATION DBT Reconstruction and Registration



Numerical Approaches for Solving
the Combined Reconstruction and Registration of DBT

Guang Yang
Final Submitted Version 1.18, Feb., 2012

Chapter 7

Conclusion

A new trend in non-invasive breast cancer radiology is tomographic imaging of soft tissue for tumour

detection and diagnosis, therapy planning, and outcome analysis. DBT is a noteworthy option, and

there are substantial potential benefits offered by its 3D reconstructions and its comparable X-ray

dose to 2D mammography. There are two main techniques available for aiding the human observer

to process breast images using DBT, i.e., reconstruction and registration. The reconstructed 3D

information addresses the limitation of superimposition of dense fibro-glandular tissue associated

with conventional mammography. In addition, the registration of temporal DBT volumes searches

for the optimum transformation to align two observed images of the same breast object into a common

reference frame. We hypothesise that the registration results will ultimately aid the reading process.

The objective of this thesis is to develop new algorithms to combine reconstruction and regis-

tration tasks applied to DBT data and geometry. Conventional studies proposed in the literature

separate these steps, solving each task independently. This can be effective if reconstructing using a

complete set of data, e.g., in cone beam CT, assuming that only simple deformations exist. However,

for the ill-posed problem of limited-angle DBT, estimating the deformations is difficult because of

significant artefacts associated with DBT reconstructions, leading to severe inaccuracies in the reg-

istration. Rather than separate these two tasks and perform them sequentially, we investigate the

techniques of combining them, and test the hypothesis that the performance of the joint estimation

will be of benefit to each task.

Firstly, we have presented a method to iteratively reconstruct and register temporal DBT data

sets. We have compared this approach with performing the two tasks sequentially. Secondly, we

also present an innovative algorithm, which combines reconstruction of a pair of temporal DBT

acquisitions with their simultaneous registration. Both affine and B-spline transformation models can

be plugged-in and have been tested. We approach this nonlinear inverse problem using a decoupled
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optimisation scheme. Interestingly, the decoupled approach has been applied in various applications

involving fully coupled simultaneous optimisation; however, to our knowledge, this is the first time

this approach has been applied to the reconstruction and registration of limited angle DBT.

These methods ultimately aim to address the problem of detecting changes between the two sets

of temporal DBT data. Essentially, the embedding of registration provides more information for the

reconstruction; however, it does not simply increase the number of forward projections because of

the overlapping of the temporal data sets. SSD was employed as the registration metric, to formulate

the cost criterion. This metric calculated the differences between the volume estimation f and the

original two sets of acquisitions p1 and p2. To evaluate the performance of our two methods, we

use 3D software synthetic images, breast MR images, and DBT simulations from MRI with in-vivo

breast compressions. Taken together, the evidence from this study intimates that both iterative

and simultaneous methods reduce misregistration artefacts and offer superior reconstruction fidelity

when compared to the conventional sequential method.

This research has also raised many interesting points to explore in future work. First, we would

like to implement GPU acceleration for some components of our framework, e.g., forward and back-

ward projectors. If this method is to be used in a clinical environment manipulating real DBT

data, the algorithms need to run as close to real-time as possible. Second, we could also tackle this

large-scale optimisation problem using multi-scale and multi-resolution techniques to speed up the

application and avoid possible local minima. Constrained optimisation can provide an alternative

method to formulate the simultaneous reconstruction and registration problem (See Appendix E).

Furthermore, our framework should be straightforward to incorporate other non-rigid transformation

models and priors to regularise the solution. Also, registration offers considerable value when used

to combine images acquired from different views, e.g., registration of supine and prone CT colonog-

raphy scans. This method has application for the detection of changes in temporal DBT data sets.

It may be applied to the combined reconstruction and registration of two view (CC and MLO views)

DBT data sets, to overcome the null-space limitation of the individual views and produce a single

reconstructed volume with improved depth resolution. In addition, finding an appropriate balance

between the convergent rate and the image fidelity will be an interesting task.

Finally, all the work completed makes vital progress towards addressing the research objective of

improving both the reconstruction quality and registration accuracy of combined methods. There-

fore, we believe that our combined methods offer great potential benefits for further applications in

the field of breast cancer detection and diagnosis, therapy planning, and outcome analysis.
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Appendix A

Forward and Inverse Radon Transform

Firstly, we try to derive the forward Radon transform with Dirac delta function, which is a mathe-

matical construct introduced by the British theoretical physicist Paul Dirac (Figure 3.3). Informally,

it represents an infinitely sharp peak bounding unit area. In other words, a function δ(x) that has

the value zero everywhere except at x = 0 where its value is infinitely large, and its total integral is

1. Thus, we can prove Equation 3.11 as follows.

Proof. I. The Equation 3.7 of L can be rewritten as

(
x

y

)
=

(
cos θ − sin θ

sin θ cos θ

)
·

(
ρ

σ

)
=

(
ρ cos θ − σ sin θ

σ cos θ + ρ sin θ

)
, (A.1)

and its affine transform is

(
ρ

σ

)
=

(
cos θ sin θ

− sin θ cos θ

)
·

(
x

y

)
=

(
x cos θ + y sin θ

y cos θ − x sin θ

)
. (A.2)

Therefore, Equation 3.11 can be rewritten as

P (ρ, θ) =

∫ ∞
−∞

f((ρ cos θ − σ sin θ), (ρ sin θ + σ cos θ))dσ

=

∫ ∞
−∞

∫ ∞
−∞

f((ρ cos θ − σ sin θ), (ρ sin θ + σ cos θ))δ(ρ− ρ)dρdσ

=

∫ ∞
−∞

∫ ∞
−∞

f(·)δ(ρ− (ρ(cos2 θ + sin2 θ) + σ cos θ sin θ − σ cos θ sin θ))dρdσ

=

∫ ∞
−∞

∫ ∞
−∞

f(·)δ(ρ− ((ρ cos θ − σ sin θ) cos θ + (ρ sin θ + σ cos θ) sin θ))dρdσ. (A.3)
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From Equations 3.7 and A.1 we know that x = ρ cos θ − σ sin θ, and y = ρ sin θ + σ cos θ. In

addition, we can get the Jacobian determinant J of the Equation A.2 as follows.

dρdσ = J · dxdy

=

∣∣∣∣∣
∂ρ
∂x

∂σ
∂x

∂ρ
∂y

∂σ
∂y

∣∣∣∣∣ · dxdy
=

∣∣∣∣∣ − sin θ − cos θ

cos θ − sin θ

∣∣∣∣∣ · dxdy
= (sin2 θ − (− cos2 θ)) · dxdy

= dxdy. (A.4)

Thus, we can prove the Equation 3.11 by substituting x, y and dxdy into the Equation A.3

P (ρ, θ) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(ρ− (x cos θ + y sin θ))dxdy. (A.5)

o

Proof. II. Furthermore, we can also derive the Equation 3.11 as follows.

P (ρ, θ) =

∫ ∞
−∞

f((ρ cos θ − σ sin θ), (ρ sin θ + σ cos θ))dσ

=
1

| sin θ|
·
∫ ∞
−∞

f(x, y)dx, (A.6)

and it is obvious that

1

| sin θ|
dx =

1

| sin θ|
d(ρ cos θ − σ sin θ) =

1

| sin θ|
(− sin θ)dσ. (A.7)

When sin θ < 0 there is
1

| sin θ|
dx = dσ. (A.8)
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From the Equation A.1 we know that

σ sin θ = ρ cos θ − x, (A.9)

σ cos θ = −ρ sin θ + y, (A.10)

−ρ sin θ + y = ρ cos θ cot θ − x cot θ. (A.11)

Therefore,

y = ρ cos θ cot θ − x cot θ + ρ sin θ

= ρ(cos θ cot θ + sin θ)− x cot θ

= ρ(cos θ · cos θ

sin θ
+ sin θ)− x cot θ

= ρ(
cos2 θ + sin2 θ

sin θ
)− x cot θ

=
ρ

sin θ
− x cot θ, (A.12)

and we can rewrite the Equation A.6 as

P (ρ, θ) =
1

| sin θ|
·
∫ ∞
−∞

f(x, y)dx

=
1

| sin θ|
·
∫ ∞
−∞

f(x,
ρ

sin θ
− x cot θ)dx. (A.13)

By introducing the concept of the Dirac delta function into the Equation A.13, and assuming

that sin θ < 0, we have

P (ρ, θ) =
1

| sin θ|
·
∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(y − ρ

sin θ
+ x cot θ)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(ρ− x cos θ − y sin θ)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(ρ− (x cos θ + y sin θ))dxdy (A.14)

o

Secondly, we can derive the inverse Radon transform, i.e., the formula of the FBP algorithm.
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Proof. Firstly, the inverse Fourier Transform is expressed as follows

f(x, y) =

∫ ∞
−∞

∫ ∞
−∞

F (µ, υ)ei2π(µx+υy)dµdυ. (A.15)

If we change it from the Cartesian coordinates into the polar coordinates using (ω, θ) instead of

(µ, υ). In addition, we change the dµdυ into ω · dωdθ using the Jacobian determinant. The polar

form of the inverse Fourier Transform can be expressed as

f(x, y) =

∫ 2π

0

∫ ∞
0

F (ω, θ)ei2πω(x cos θ+y sin θ)ωdωdθ. (A.16)

Thus, in the Equation A.16 there is

dµdυ = J · dωdθ

=

∣∣∣∣∣
∂µ
∂ω

∂υ
∂ω

∂µ
∂θ

∂υ
∂θ

∣∣∣∣∣ · dωdθ
=

∣∣∣∣∣ cos θ sin θ

− sin θ · ω cos θ · ω

∣∣∣∣∣ · dωdθ
= (cos2 θ · ω − (− sin2 θ · ω)) · dωdθ

= ωdωdθ. (A.17)

Furthermore, if θ separates into two parts 0o to 180o and 180o to 360o, and the Equation A.16

can be rewritten as

f(x, y) =

∫ π

0

∫ ∞
0

F (ω, θ)ei2πω(x cos θ+y sin θ)ωdωdθ

+

∫ π

0

∫ ∞
0

F (ω, θ + π)ei2πω(x cos(θ+π)+y sin(θ+π))ωdωdθ. (A.18)

Substitute the property of F (ω, θ + π) = F (−ω, θ), we can rewritten the Equation A.18 as

f(x, y) =

∫ π

0

[ ∫ ∞
0

F (ω, θ)|ω|ei2πωρdω
]
dθ (A.19)

in which

ρ = x cos θ + y sin θ. (A.20)
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If we use the Fourier Transform of the projection data at view angle θ, which is Sθ(ω) in the

Equation 3.17 instead of the 2D Fourier Transform F (µ, υ) that is

f(x, y) =

∫ π

0

[ ∫ ∞
0

Sθ(ω)|ω|ei2πωρdω
]
dθ, (A.21)

and it can be rewritten as

f(x, y) =

∫ π

0

Qθ(x cos θ + y sin θ)dθ (A.22)

in which

Qθ(ρ) =

∫ ∞
−∞

Sθ(ω)|ω|ei2πωρdω (A.23)

If we set Sθ(ω)|ω| = Sθ(ω)ω · sgn(ω), and Qθ(ρ) can be expressed using the convolution method

as follows

Qθ(ρ) = F−1[Sθ(ω)|ω|] = F−1[Sθ(ω)ω]⊗ F−1[sgn(ω)]

=
[ 1

i2π
· ∂P (ρ, θ)

∂ρ

]
⊗
[−1

iπρ

]
=

1

2π2

∫ ∞
−∞

[∂P (σ, θ)

∂σ

] 1

ρ− σ
dσ. (A.24)

Therefore, we can derive the classical form of the FBP algorithm as Equation 3.25 denoted

f(x, y) =

∫ π

0

Qθ(ρ)dθ

=

∫ π

0

[ ∫ ∞
0

Sθ(ω)|ω|ei2πωρdω
]
dθ

=

∫ π

0

F−1[Sθ(ω)|ω|]dθ

=

∫ π

0

F−1[Sθ(ω)ω · sgn(ω)]dθ =

∫ π

0

F−1[Sθ(ω)ω]⊗ F−1[sgn(ω)]︸ ︷︷ ︸
Filtering

dθ

︸ ︷︷ ︸
Backprojection

=

∫ π

0

[ 1

i2π
· ∂P (ρ, θ)

∂ρ

]
⊗
[−1

iπρ

]
dθ

=

∫ π

0

1

2π2

∫ ∞
−∞

[∂P (σ, θ)

∂σ

] 1

ρ− σ
dσdθ

=
1

2π2

∫ π

0

∫ ∞
−∞

[∂P (σ, θ)

∂σ

] 1

x cos θ + y sin θ − σ
dσdθ, (A.25)

which includes a filtering and a backprojection procedure, and sgn is the sign function. o
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Appendix B

Optimality Conditions

B.1 Taylor’s Theorem

We now state an important theorem, which forms the fundamental of optimisation theories.

Theorem B.1.1. (Taylor’s Theorem)

Suppose that f : Rn 7→ R is nth continuously differentiable which is a single-valued function of

x ∈ Rn and a ≤ x ≤ b. Then we have that

f(x) = f(a) +
(x− a)

1!
f ′(a) +

(x− a)2

2!
f
′′
(a) + · · ·+ (x− a)n

n!
fn(a) + εn(x), (B.1)

where εn(x) is the remainder in Lagrange form as follows

εn(x) =
(x− a)n+1

(n+ 1)!
fn+1(ξ). (B.2)

or the Cauchy form of the remainder term states that

εn(x) =
(x− ξ)n(x− a)

n!
fn+1(ξ), (B.3)

and a < ξ < x. An significant alternative form of Equation B.1 may be obtained by changing x to

a+ x. Then

f(a+ x) = f(a) +
x

1!
f ′(a) +

x2

2!
f
′′
(a) + · · ·+ xn

n!
fn(a) + εn(x), (B.4)

and if we change the notation of a in Equation B.4 into x and define a small neighbourhood ∆x of

x; Thus

f(x+ ∆x) = f(x) +
∆x

1!
f ′(x) +

∆x2

2!
f
′′
(x) + · · ·+ ∆xn

n!
fn(x) + εn(∆x), (B.5)
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where now, from Equation B.2,

εn(∆x) =
∆xn+1

(n+ 1)!
fn+1(x+ τ∆x), (B.6)

and 0 < τ < 1.

B.2 Local Minimum

Definition B.2.1. (Local Minimum)

Given a scalar δ > 0, and f : Rn 7→ R. We have the strict local minimiser x? of f(x) satisfied by

all the neighbourhood ∆x that

f(x?) < f(x? + ∆x) for 0 < |∆x| ≤ δ. (B.7)

B.3 First-Order Necessary Conditions

Theorem B.3.1. (First-Order Necessary Conditions)

If x? is a local minimum and f : Rn 7→ R is continuously differentiable in an open neighbourhood

of x?, then f ′(x?) = 0.

Proof. Suppose for contradiction that f ′(x?) 6= 0. According to the Taylor’s Theorem B.1.1, if the

neighbourhood ∆x of x? is small enough to neglect the terms with ∆x2 or the higher orders and the

remainder then Equation B.5 is approximated by

f(x+ ∆x) = f(x) +
∆x

1!
f ′(x). (B.8)

By substitute x with x? we have

f(x? + ∆x) = f(x?) + ∆xf ′(x?) (B.9)

and  f(x?) ≤ f(x? + ∆x) iff ∆x > 0, when f ′(x?) > 0;

f(x?) < f(x? + ∆x) iff ∆x < 0, when f ′(x?) < 0.
(B.10)
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We have a contradiction with Definition B.2.1. Therefore, f ′(x?) = 0 is a necessary condition of

finding the local minimum. o

Here x? is known as a stationary point of f(x) if f ′(x?) = 0 which could be a maximum, a

minimum, an inflexion or a saddle point.

B.4 Second-Order Necessary Conditions

Theorem B.4.1. (Second-Order Necessary Conditions)

If x? is a local minimum and f : Rn 7→ R is twice continuously differentiable in an open neigh-

bourhood of x?, then f ′(x?) = 0 and f
′′
(x?) is positive semidefinite.

Proof. According to the Taylor’s Theorem B.1.1, if the neighbourhood ∆x of x? is small enough to

neglect the terms with ∆x3 or the higher orders and the remainder then Equation B.5 is approximated

by

f(x+ ∆x) = f(x) +
∆x

1!
f ′(x) +

∆x2

2!
f
′′
(x). (B.11)

By substitute x with x? we have

f(x? + ∆x) = f(x?) + ∆xf ′(x?) +
∆x2

2!
f
′′
(x?), (B.12)

where f ′(x?) = 0 and

f(x? + ∆x) = f(x?) +
∆x2

2!
f
′′
(x?) (B.13)

= f(x?) +
∆xT f

′′
(x?)∆x

2!
(B.14)

Therefore, x? is the local minimum iff f
′′
(x?) � 0 in which � 0 denotes positive semidefinite. o

B.5 Second-Order Sufficient Conditions

Theorem B.5.1. (Second-Order Sufficient Conditions)

If f : Rn 7→ R is twice continuously differentiable in an open neighbourhood of x? and that

f ′(x?) = 0 and f
′′
(x?) is positive definite. x? is a strict local minimiser of the function f(x).

Proof. Abridged. o
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Appendix C

Conditioning of Least Squares Problem

Here we discuss the conditioning of a linear least squares problem. Suppose the data p defined in

Section 3.2.3 is

p = pexact + ∆p, (C.1)

where ∆p represents the measurement error. Then the minimum norm solution of

arg min
f
f(f) =

1

2
‖Af − (pexact + ∆p)‖22 (C.2)

is

f? = A†p (C.3)

=

r∑
i=1

uTi p

ςi
vi (C.4)

=

r∑
i=1

(uTi pexact

ςi
+

uTi ∆p

ςi

)
vi (C.5)

where A = UΣV T =
∑r
i=1 uiςiv

T
i and r is the rank of matrix A, and A† is the pseudo-inverse of

A; hence a large
uTi ∆p
ςi

even if uTi ∆p is small when a singular value ςi is small. This shows that the

error ∆p of the data is magnified by small singular values.
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Appendix D

Nonlinear Optimisation Algorithms

There are many optimisation algorithms. In this section, we provide a brief overview on some

classical and widely used nonlinear optimisation methods, which we have applied for our problem

of combining reconstruction and registration. Firstly, we introduce the nonlinear steepest descents

and conjugate gradient algorithms. There are two main differences between these two nonlinear

algorithms with their linear alternatives: First, a line search step is necessary to determine the step

length; Second, we need to define a termination criterion. In general, we consider a nonlinear least

squares as an example in this section that is

f? = arg min
f

(
f(f) =

1

2
‖T f − p‖2

)
, (D.1)

in which T is a nonlinear operator. In addition, p represents the data and f denotes the unknown.

The nonlinear steepest descent algorithm is summarised as follows.

Algorithm 3: Nonlinear Steepest Descent Method

Input: k, finitial.

Output: foptimised.

begin

while stopping criterion unfulfilled do

dk := −g(fk);

τk := arg minτ>0 f(fk + τdk); % Line Search

fk+1 := fk + τkdk; % Update the f

k := k + 1;

foptimised := fk+1;
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For the non-linear least squares problem in Equation D.1, the descent direction is

− g(fk) = −T ∗(T f − p), (D.2)

in which T ∗ is the adjoint operator of T .

Furthermore, a general form of the non-linear conjugate gradient algorithm is summarised as

follows.

Algorithm 4: Nonlinear Conjugate Gradient Method

Input: k, finitial.

Output: foptimised.

begin

dinitial := −g(finitial); % Initial search direction is the negative gradient

rinitial := dinitial; % Initialise rinitial

while stopping criterion unfulfilled do

τk := arg minτ>0 f(fk + τdk); % Line Search

fk+1 := fk + τkdk; % Update the f

rk+1 := −g(fk+1);

βk := ‖rk+1‖2
‖rk‖2 ; % Fletcher-Reeves Method

Or

βk := 〈rk+1−rk,rk+1〉
〈rk+1−rk,dk〉 ; % Polak-Ribière Method

dk+1 := rk+1 + βkdk;

k := k + 1;

foptimised := fk+1;

In both algorithms, there is a line search sub-problem, which contains a one-dimensional optimi-

sation that is

fk+1 := fk + τkdk, (D.3)

where dk is the search direction and we solve the step length τ . The search direction should satisfy

〈g(fk),dk〉 < 0 (D.4)
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to be a descent direction. Therefore, the negative gradient direction is suitable because

〈g(fk), g(fk)〉 = ‖g(fk)‖2 < 0. (D.5)

More generally, the step length must fulfil the Wolfe conditions, which guarantee the sufficient

decrease and satisfy the curvature condition.
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In addition, we give a brief description of the nonlinear Newton method as

Algorithm 5: Nonlinear Newton Method

Input: k, finitial.

Output: foptimised.

Hinitial := I; % Initialise the inverse Hessian matrix as identity matrix

begin

while stopping criterion unfulfilled do

dk := −Hkg(fk); % If Hk ≈ JTk Jk is used, it is called Gauss-Newton Method

τk := arg minτ>0 f(fk + τdk); % Line Search

fk+1 := fk + τkdk; % Update the f

k := k + 1;

foptimised := fk+1;
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Similarly, its alternative quasi-Newton method using DFP and BFGS approximations is described

as follows.

Algorithm 6: quasi-Newton Method

Input: k, finitial.

Output: foptimised.

Hinitial := I; % Initialise the inverse Hessian matrix as identity matrix

dinitial := −Hinitialg(finitial); % Initial search direction is the negative gradient

begin

while stopping criterion unfulfilled do

τk := arg minτ>0 f(fk + τdk); % Line Search

fk+1 := fk + τkdk; % Update the f

sk := fk+1 − fk;

zk := g(fk+1)− g(fk);

Hk+1 := Hk − HkzkzTkHk
zTkHkzk

+
sksTk
zTk sk

; % DFP

Or

Hk+1 := Hk + 1
sTk zk

[(
1 +

zTkHkzk
sTk zk

)
sksTk −HkzksTk − skzTkHk

]
; % BFGS

dk+1 := −Hk+1g(fk+1); % Update the search direction

k := k + 1;

foptimised := fk+1;
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Next, we introduce the Levenberg-Marquardt method as follows.

Algorithm 7: Levenberg-Marquardt Method

Input: k, finitial, λinitial, Cscale.

Output: foptimised.

Hinitial := I; % Initialise the inverse Hessian matrix as identity matrix

λinitial := A large value

Cscale := Scaling constant > 1

begin

while stopping criterion unfulfilled do

Here: dk := −(H−1
k + λI)−1g(fk);

if f(fk + dk) < f(fk) then

λ = λ
Cscale

else
λ = λ× Cscale

Goto Here

fk+1 := fk + dk; % Update the f

k := k + 1;

foptimised := fk+1;

Lastly, there are several stopping criteria (threshold ε). For instance,

(a) Functional reduction is sufficient

f(fk)

f(fInitial)
≤ ε; (D.6)

(b) Relative change of the functional is less than a threshold

f(fk+1)− f(fk)

f(fk+1)
≤ ε; (D.7)

(c) The gradient of the functional is less than a threshold

‖g(fk+1)‖ ≤ ε. (D.8)
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Appendix E

Constrained Reconstruction and Registration

Constrained optimisation provides an alternative formulation to tackle the simultaneous reconstruc-

tion and registration problem. We propose an algorithm that minimises the total variation (TV) of

the deformed image subject to constraints that the estimated projections are within specified toler-

ances of a pair of temporal DBT acquisitions and that the values of the intensities are non-negative.

The TV regularisation term has been used in iterative image reconstruction algorithms for both

cone beam CT and DBT applications, [260] [143]. Generally, the TV term denoises the image with an

edge-preserving smoothing. In our DBT application, there is no unique solution for our simultaneous

reconstruction and registration objective functional because of the incompleteness of the data. The

TV term, which tunes the trade-off between reconstruction fidelity and regularity, is able to select a

unique solution for our joint objective functional (lower TV means worse data fidelity). Therefore, we

believe a constrained model, in which the TV term forms the objective function with reconstruction

fidelity as constraints, is a natural choice to solve our combined problem. In addition, we can maintain

the data fidelity while the image TV is lowered, and it is also straightforward to incorporate the

non-negativity constraint. Consequently, we form our constrained model using the TV term and

three additional constraints as follows

(f?, ζ?) = arg min
f,ζ

(
f(f, ζ) = ‖Tζ f‖TV

)
(E.1)

s.t. Af − p1 = 0 (E.2)

ATζ f − p2 = 0 (E.3)

f ≥ 0 (E.4)
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Furthermore, the Lagrangian L(f, ζ, λ, χ, ξ) is

L(f, ζ, λ, χ, ξ) = ‖Tζ f‖TV + λ(Af − p1)T + χ(ATζ f − p2)T − ξfT , (E.5)

in which f and ζ are primary variables, and λ, χ and ξ are vectors representing dual variables.

For a constrained minimisation problem the necessary conditions for a solution (f?, ζ?, λ?, χ?, ξ?)

to be the optimal one are called the Karush-Kuhn-Tucker (KKT) conditions. These are

(a) Non-negativity

ξ? ≥ 0 (E.6)

(b) Complementarity

λ?c1(f?, ζ?) = 0, χ?c1(f?, ζ?) = 0 (E.7)

in which i = 1, 2, . . .N+ 2 and N is equal to the number of voxels, and

c1(f?, ζ?) = Af? − p1 = 0 (E.8)

c2(f?, ζ?) = AT ?ζ f? − p2 = 0 (E.9)

ci(f
?, ζ?) = −f? ≤ 0 i ∈ [3,N+ 2] (E.10)

The conditions for optimality of potential solutions are therefore equations E.8, E.9, and E.10

together with

∇L(f, ζ, λ, χ, ξ) = 0 (E.11)
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The above equation E.11 could be written as

∇fL = ∇f‖Tζ f‖TV − λ∇fc1(f, ζ)− χ∇fc2(f, ζ) +

N+2∑
i=3

ξ∇fci(f, ζ)

= ∇f‖Tζ f‖TV −ATλ− T ∗ζ ATχ− ξ (E.12)

∇ζL = ∇ζ‖Tζ f‖TV − λ∇ζc1(f, ζ)− χ∇ζc2(f, ζ) +

N+2∑
i=3

ξ∇ζci(f, ζ)

= fTT
′∗
ζ ATχ (E.13)

∇λL = ∇λ‖Tζ f‖TV − λ∇λc1(f, ζ)− χ∇λc2(f, ζ) +

N+2∑
i=3

ξ∇λci(f, ζ)

= p1 −Af (E.14)

∇χL = ∇χ‖Tζ f‖TV − λ∇χc1(f, ζ)− χ∇χc2(f, ζ) +

N+2∑
i=3

ξ∇χci(f, ζ)

= p2 −ATζ f (E.15)

∇ξL = ∇ξ‖Tζ f‖TV − λ∇ξc1(f, ζ)− χ∇ξc2(f, ζ) +

N+2∑
i=3

ξ∇ξci(f, ζ)

= −f (E.16)

Therefore,

∇L(f, ζ, λ, χ, ξ) =



∇f‖Tζ f‖TV −ATλ− T ∗ζ ATχ− ξ

fTT ′∗ζ ATχ

p1 −Af

p2 −ATζ f

−f


= 0 (E.17)

Here the cost function and the relevant gradient with respect to f, ζ, λ, χ, and λ for our con-

strained optimisation problem are shown in E.5 and E.17 above respectively. We have not imple-

mented and tested this constrained framework; however, we hope this method will be investigated

in future work.
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[111] Heywang-Köbrunner, S. Contrast-enhanced magnetic resonance imaging of the breast. Investigative Radiol-

ogy, vol. 29(1) (1994), pp. 94–104. URL http://journals.lww.com/investigativeradiology/Fulltext/1994/

01000/Contrast_Enhanced_Magnetic_Resonance_Imaging_of.19.aspx. [Cited on page 45.]
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Sächsische Akademie der Wissenschaften (Reports on the proceedings of the Royal Saxonian Society of Physical

and Mathematical Sciences), vol. 69 (1917), pp. 262–277. [Cited on page 58.]

[233] ——. On the determination of functions from their integral values along certain manifolds. Medical Imaging,

IEEE Transactions on, vol. 5(4) (1986), pp. 170 –176. [Cited on page 58.]

[234] Reiser, I., et al. Computerized mass detection for digital breast tomosynthesis directly from the projection

images. Medical Physics, vol. 33(2) (2006), pp. 482–491. URL http://link.aip.org/link/?MPH/33/482/1.

[Cited on page 116.]

[235] Ren, B., et al. Design and performance of the prototype full field breast tomosynthesis system with selenium

based flat panel detector. vol. 5745. SPIE (2005), pp. 550–561. URL http://link.aip.org/link/?PSI/5745/

550/1. [Cited on page 75.]

[236] Ren, L., et al. Automatic registration between reference and on-board digital tomosynthesis images for posi-

tioning verification. Medical Physics, vol. 35(2) (2008), pp. 664–672. URL http://link.aip.org/link/?MPH/

35/664/1. [Cited on page 116.]

[237] Richard, F. J. and Cohen, L. D. A new image registration technique with free boundary constraints: ap-

plication to mammography. Computer Vision and Image Understanding, vol. 89(2-3) (2003), pp. 166 – 196.

URL http://www.sciencedirect.com/science/article/pii/S1077314203000067. Nonrigid Image Registration.

[Cited on page 115.]

[238] Rogelj, P. and Kovac̆ic̆, S. Symmetric image registration. Medical Image Analysis, vol. 10(3) (2006), pp.

484–493. URL http://www.sciencedirect.com/science/article/pii/S1361841505000472. Special Issue on

The Second International Workshop on Biomedical Image Registration (WBIR03). [Cited on page 152.]

[239] Rohlfing, T., et al. Volume-preserving nonrigid registration of mr breast images using free-form deformation

with an incompressibility constraint. Medical Imaging, IEEE Transactions on, vol. 22(6) (2003), pp. 730 –741.

[Cited on page 114.]

[240] Rohling, R. N., Gee, A., and Berman, L. Automatic registration of 3D ultrasound images. Ultrasound in

Medicine & Biology, vol. 24(6) (1998), pp. 841 – 854. URL http://www.sciencedirect.com/science/article/

pii/S030156299700210X. [Cited on page 48.]

BIBLIOGRAPHY DBT Reconstruction and Registration

http://www.nejm.org/doi/full/10.1056/NEJMoa052911
http://www.nejm.org/doi/full/10.1056/NEJMoa052911
http://www.ajronline.org/content/189/3/616.abstract
http://www.ajronline.org/content/189/3/616.abstract
http://link.aip.org/link/?MPH/33/482/1
http://link.aip.org/link/?PSI/5745/550/1
http://link.aip.org/link/?PSI/5745/550/1
http://link.aip.org/link/?MPH/35/664/1
http://link.aip.org/link/?MPH/35/664/1
http://www.sciencedirect.com/science/article/pii/S1077314203000067
http://www.sciencedirect.com/science/article/pii/S1361841505000472
http://www.sciencedirect.com/science/article/pii/S030156299700210X
http://www.sciencedirect.com/science/article/pii/S030156299700210X


BIBLIOGRAPHY 239 of 248

[241] Ross, R. J., et al. Nuclear magnetic resonance imaging and evaluation of human breast tissue: preliminary

clinical trials. Radiology, vol. 143(1) (1982), pp. 195–205. URL http://radiology.rsna.org/content/143/1/

195.abstract. [Cited on page 44.]

[242] Rotten, D., Levaillant, J. M., and Zerat, L. Analysis of normal breast tissue and of solid breast masses

using three-dimensional ultrasound mammography. Ultrasound in Obstetrics and Gynecology, vol. 14(2) (1999),

pp. 114–124. URL http://dx.doi.org/10.1046/j.1469-0705.1999.14020114.x. [Cited on page 48.]

[243] Rueckert, D. and Schnabel, J. Biomedical Image Processing, chap. 5. Springer, 1st edn. (2011), pp. 131–154.

[Cited on page 108.]

[244] Rueckert, D., et al. Comparison and evaluation of rigid and nonrigid registration of breast mr images.

vol. 3661. SPIE (1999), pp. 78–88. URL http://link.aip.org/link/?PSI/3661/78/1. [Cited on pages 109

and 110.]

[245] ——. Nonrigid registration using free-form deformations: application to breast mr images. Medical Imaging,

IEEE Transactions on, vol. 18(8) (1999), pp. 712 –721. [Cited on pages 45, 105, and 113.]

[246] Ruiter, N. V., et al. Registration of X-ray mammograms and MR-volumes of the female breast based on

simulated mammographic deformation. In IWDM’04: Proceedings of the 7th International Workshop on Digital

Mammography. Lecture Notes in Computer Science, Springer-Verlag Berlin Heidelberg (2004), pp. 498–503.

[Cited on page 115.]

[247] Sabin, M. Tutorials on Multiresolution in Geometric Modelling. Mathematics and Visualization Summer School

Lecture Notes. Springer (2002), pp. 4–6. [Cited on page 102.]

[248] Sallam, M. Y. and Bowyer, K. W. Registration and difference analysis of corresponding mammogram im-

ages. Medical Image Analysis, vol. 3(2) (1999), pp. 103 – 118. URL http://www.sciencedirect.com/science/

article/pii/S1361841599800012. [Cited on page 114.]

[249] Salomon, A. Beitrage zur pathologie und klinik der mammacarcinome. Arch Kein Chir, vol. 110 (1913), pp.

573–568. [Cited on page 54.]

[250] Samani, A., et al. Biomechanical 3-D finite element modeling of the human breast using mri data. Medical

Imaging, IEEE Transactions on, vol. 20(4) (2001), pp. 271 –279. [Cited on page 45.]

[251] Sanjay-Gopal, S., et al. A regional registration technique for automated interval change analysis of breast

lesions on mammograms. Medical Physics, vol. 26(12) (1999), pp. 2669–2679. URL http://link.aip.org/

link/?MPH/26/2669/1. [Cited on page 114.]

[252] Saslow, D., et al. American cancer society guidelines for breast screening with MRI as an adjunct to mam-

mography. CA: A Cancer Journal for Clinicians, vol. 57(2) (2007), pp. 75–89. URL http://dx.doi.org/10.

3322/canjclin.57.2.75. [Cited on page 45.]

[253] Schnabel, J., et al. Validation of nonrigid image registration using finite-element methods: application to

breast mr images. Medical Imaging, IEEE Transactions on, vol. 22(2) (2003), pp. 238 –247. [Cited on page

46.]

[254] Schumacher, H., Modersitzki, J., and Fischer, B. Combined reconstruction and motion correction in

SPECT imaging. Nuclear Science, IEEE Transactions on, vol. 56(1) (2009), pp. 73 –80. [Cited on page 157.]

[255] Shanks, S. C., Kerley, P., and Twining, E. W. A Textbook of X-Ray Diagnosis. Lewis, London (1938).

[Cited on page 59.]

BIBLIOGRAPHY DBT Reconstruction and Registration

http://radiology.rsna.org/content/143/1/195.abstract
http://radiology.rsna.org/content/143/1/195.abstract
http://dx.doi.org/10.1046/j.1469-0705.1999.14020114.x
http://link.aip.org/link/?PSI/3661/78/1
http://www.sciencedirect.com/science/article/pii/S1361841599800012
http://www.sciencedirect.com/science/article/pii/S1361841599800012
http://link.aip.org/link/?MPH/26/2669/1
http://link.aip.org/link/?MPH/26/2669/1
http://dx.doi.org/10.3322/canjclin.57.2.75
http://dx.doi.org/10.3322/canjclin.57.2.75


BIBLIOGRAPHY 240 of 248

[256] Sharp, P. F., Gemmell, H. G., and Murray, A. D. Practical Nuclear Medicine. Springer–Verlag London

Limited, 3rd edn. (2005), pp. 28–30. [Cited on page 94.]

[257] Shattuck-Eidens, D., et al. BRCA1 sequence analysis in women at high risk for susceptibility mutations.

JAMA: The Journal of the American Medical Association, vol. 278(15) (1997), pp. 1242–1250. URL http:

//jama.ama-assn.org/content/278/15/1242.abstract. [Cited on page 37.]

[258] Shi, J., et al. Treatment response assessment of breast masses on dynamic contrast-enhanced magnetic reso-

nance scans using fuzzy c-means clustering and level set segmentation. Medical Physics, vol. 36(11) (2009), pp.

5052–5063. URL http://link.aip.org/link/?MPH/36/5052/1. [Cited on page 45.]

[259] Sickles, E. A., et al. Performance benchmarks for diagnostic mammography. Radiology, vol. 235(3) (2005),

pp. 775–790. URL http://radiology.rsna.org/content/235/3/775.abstract. [Cited on page 117.]

[260] Sidky, E. Y. and Pan, X. Image reconstruction in circular cone-beam computed tomography by constrained,

total-variation minimization. Physics in Medicine and Biology, vol. 53(17) (2008), p. 4777. URL http://stacks.

iop.org/0031-9155/53/i=17/a=021. [Cited on pages 97 and 219.]

[261] Sidky, E. Y., et al. Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved

image-reconstruction algorithms. Medical Physics, vol. 36(11) (2009), pp. 4920–4932. URL http://link.aip.

org/link/?MPH/36/4920/1. [Cited on pages 90 and 97.]

[262] Sinha, S. P., et al. Image registration for detection and quantification of change on digital tomosynthesis

mammographic volumes. American Journal of Roentgenology, vol. 192(2) (2009), pp. 384–387. URL http:

//www.ajronline.org/content/192/2/384.full.pdf+html. [Cited on page 116.]

[263] Sivaramakrishna, R. 3D breast image registration - a review. Technology in Cancer Research & Treatment,

vol. 4(1) (2005), pp. 39–48. Workshop on Alternatives to Mammography. [Cited on page 113.]

[264] Skaane, P., Hofvind, S., and Skjennald, A. Randomized trial of screen-film versus full-field digital mammog-

raphy with soft-copy reading in population-based screening program: Follow-up and final results of Oslo II study.

Radiology, vol. 244(3) (2007), pp. 708–717. URL http://radiology.rsna.org/content/244/3/708.abstract.

[Cited on page 55.]

[265] Skaane, P. and Skjennald, A. Screen-film mammography versus full-field digital mammography with soft-copy

reading: Randomized trial in a population-based screening program-the Oslo II study. Radiology, vol. 232(1)

(2004), pp. 197–204. URL http://radiology.rsna.org/content/232/1/197.abstract. [Cited on page 55.]

[266] Skaane, P., Young, K., and Skjennald, A. Population-based mammography screening: Comparison of screen-

film and full-field digital mammography with soft-copy reading-Oslo I study. Radiology, vol. 229(3) (2003), pp.

877–884. URL http://radiology.rsna.org/content/229/3/877.abstract. [Cited on page 55.]

[267] Skaane, P., et al. Breast lesion detection and classification: Comparison of screen-film mammography and

full-field digital mammography with soft-copy readingobserver performance study. Radiology, vol. 237(1) (2005),

pp. 37–44. URL http://radiology.rsna.org/content/237/1/37.abstract. [Cited on page 55.]

[268] Smith, S. W. The Scientist and Engineers Guide to Digital Signal Processing. California Technical, 1st edn.

(1997), pp. 423–450. URL http://www.dspguide.com/CH25.PDF. [Cited on pages 24, 78, 82, and 83.]

[269] Sone, S., et al. Development of a high-resolution digital tomosynthesis system and its clinical applica-

tion. Radiographics, vol. 11(5) (1991), pp. 807–822. URL http://radiographics.rsna.org/content/11/5/

807.abstract. [Cited on page 59.]

BIBLIOGRAPHY DBT Reconstruction and Registration

http://jama.ama-assn.org/content/278/15/1242.abstract
http://jama.ama-assn.org/content/278/15/1242.abstract
http://link.aip.org/link/?MPH/36/5052/1
http://radiology.rsna.org/content/235/3/775.abstract
http://stacks.iop.org/0031-9155/53/i=17/a=021
http://stacks.iop.org/0031-9155/53/i=17/a=021
http://link.aip.org/link/?MPH/36/4920/1
http://link.aip.org/link/?MPH/36/4920/1
http://www.ajronline.org/content/192/2/384.full.pdf+html
http://www.ajronline.org/content/192/2/384.full.pdf+html
http://radiology.rsna.org/content/244/3/708.abstract
http://radiology.rsna.org/content/232/1/197.abstract
http://radiology.rsna.org/content/229/3/877.abstract
http://radiology.rsna.org/content/237/1/37.abstract
http://www.dspguide.com/CH25.PDF
http://radiographics.rsna.org/content/11/5/807.abstract
http://radiographics.rsna.org/content/11/5/807.abstract


BIBLIOGRAPHY 241 of 248

[270] ——. Chest imaging with dual-energy subtraction digital tomosynthesis. Acta Radiologica, vol. 34(4) (1993),

pp. 346–350. URL http://informahealthcare.com/doi/abs/10.1080/02841859309173255. [Cited on page

59.]

[271] ——. Image processing in the digital tomosynthesis for pulmonary imaging. European Radiology, vol. 5 (1995),

pp. 96–101. URL http://dx.doi.org/10.1007/BF00178089. 10.1007/BF00178089. [Cited on pages 59

and 68.]

[272] Sprawls, P. Mammography physics and technology for effective clinical imaging. http://www.sprawls.org/

resources/MAMMO/module.htm#11 (2011). [Cited on pages 23 and 62.]

[273] Stack, J. P., et al. Breast disease: tissue characterization with Gd-DTPA enhancement profiles. Radiology,

vol. 174(2) (1990), pp. 491–494. URL http://radiology.rsna.org/content/174/2/491.abstract. [Cited on

page 45.]

[274] Stavros, A. T., et al. Solid breast nodules: use of sonography to distinguish between benign and malignant

lesions. Radiology, vol. 196(1) (1995), pp. 123–134. URL http://radiology.rsna.org/content/196/1/123.

abstract. [Cited on page 47.]

[275] Sternberg, S. S. Histology for Pathologists. Lippincott Williams and Wilkins, 2ed edn. (1997). [Cited on

page 36.]

[276] Stevens, G. M., Fahrig, R., and Pelc, N. J. Filtered backprojection for modifying the impulse response of

circular tomosynthesis. Medical Physics, vol. 28(3) (2001), pp. 372–380. URL http://link.aip.org/link/

?MPH/28/372/1. [Cited on page 76.]

[277] Studholme, C. Measures of 3d medical image alignment. Phd thesis, University of London, London, UK

(1997). [Cited on pages 99 and 110.]

[278] Studholme, C., Hill, D., and Hawkes, D. An overlap invariant entropy measure of 3d medical image

alignment. Pattern Recognition, vol. 32(1) (1999), pp. 71 – 86. URL http://www.sciencedirect.com/science/

article/pii/S0031320398000910. [Cited on page 110.]

[279] Su, B., et al. The use of simultaneous iterative reconstruction technique for electrical capacitance tomography.

Chemical Engineering Journal, vol. 77(1-2) (2000), pp. 37 – 41. URL http://www.sciencedirect.com/science/

article/pii/S1385894799001345. [Cited on page 85.]

[280] Suetens, P. Fundamentals of Medical Imaging. Cambridge University Press, 2nd edn. (2009). [Cited on

pages 49 and 50.]

[281] Suri, J. S., Wilson, D., and Laxminarayan, S. Handbook of Biomedical Image Analysis-Volume 3: Registra-

tion Models. Springer, 1st edn. (2005). [Cited on pages 99 and 106.]

[282] Suri, J. S., et al. (Editors). Advances in Diagnostic and Therapeutic Ultrasound Imaging. Artech House

Publishers, 1st edn. (2008). [Cited on page 47.]

[283] Suryanarayanan, S., et al. Evaluation of linear and nonlinear tomosynthetic reconstruction methods in

digital mammography. Academic Radiology, vol. 8(3) (2001), pp. 219 – 224. URL http://www.sciencedirect.

com/science/article/pii/S1076633203805305. [Cited on page 61.]

[284] Svahn, T., et al. The diagnostic accuracy of dual-view digital mammography, single-view breast tomosynthesis

and a dual-view combination of breast tomosynthesis and digital mammography in a free-response observer

BIBLIOGRAPHY DBT Reconstruction and Registration

http://informahealthcare.com/doi/abs/10.1080/02841859309173255
http://dx.doi.org/10.1007/BF00178089
http://www.sprawls.org/resources/MAMMO/module.htm#11
http://www.sprawls.org/resources/MAMMO/module.htm#11
http://radiology.rsna.org/content/174/2/491.abstract
http://radiology.rsna.org/content/196/1/123.abstract
http://radiology.rsna.org/content/196/1/123.abstract
http://link.aip.org/link/?MPH/28/372/1
http://link.aip.org/link/?MPH/28/372/1
http://www.sciencedirect.com/science/article/pii/S0031320398000910
http://www.sciencedirect.com/science/article/pii/S0031320398000910
http://www.sciencedirect.com/science/article/pii/S1385894799001345
http://www.sciencedirect.com/science/article/pii/S1385894799001345
http://www.sciencedirect.com/science/article/pii/S1076633203805305
http://www.sciencedirect.com/science/article/pii/S1076633203805305


BIBLIOGRAPHY 242 of 248

performance study. Radiation Protection Dosimetry, vol. 139(1-3) (2010), pp. 113–117. URL http://rpd.

oxfordjournals.org/content/139/1-3/113.abstract. [Cited on page 64.]

[285] Tabar, L., Akerlund, E., and Gad, A. Five-year experience with single-view mammography randomized

controlled screening in sweden recent results. Cancer Research, vol. 90 (1984), pp. 105–113. [Cited on page

54.]

[286] Taillefer, R., et al. Technetium-99m-Sestamibi prone scintimammography to detect primary breast cancer

and axillary lymph node involvement. Journal of Nuclear Medicine, vol. 36(10) (1995), pp. 1758–1765. URL

http://jnm.snmjournals.org/content/36/10/1758.short. [Cited on page 57.]

[287] Tang, A., et al. Simultaneous ultrasound and MRI system for breast biopsy: Compatibility assessment and

demonstration in a dual modality phantom. Medical Imaging, IEEE Transactions on, vol. 27(2) (2008), pp. 247

–254. [Cited on page 48.]

[288] Tanner, C., et al. Volume and shape preservation of enhancing lesions when applying non-rigid registration

to a time series of contrast enhancing MR breast images. In Delp, S., DiGoia, A., and Jaramaz, B. (Editors),

Medical Image Computing and Computer-Assisted Intervention MICCAI 2000, vol. 1935 of Lecture Notes in

Computer Science. Springer Berlin / Heidelberg (2000), pp. CH371–CH371. URL http://dx.doi.org/10.1007/

978-3-540-40899-4_33. [Cited on page 113.]

[289] ——. A method for the comparison of biomechanical breast models. In Mathematical Methods in Biomedical

Image Analysis, 2001. MMBIA 2001. IEEE Workshop on (2001), pp. 11 –18. [Cited on page 113.]

[290] ——. Large breast compressions: Observations and evaluation of simulations. Medical Physics, vol. 38(2)

(2011), pp. 682–690. URL http://link.aip.org/link/?MPH/38/682/1. [Cited on page 46.]

[291] Thevenaz, P., Blu, T., and Unser, M. Interpolation revisited [medical images application]. Medical Imaging,

IEEE Transactions on, vol. 19(7) (2000), pp. 739–758. [Cited on page 100.]

[292] Timoner, S. J. Compact representations for fast nonrigid registration of medical images. Phd thesis, Mas-

sachusetts Institute of Technology, Cambridge, MA, USA (2003). [Cited on page 99.]

[293] Turbell, H. Cone-beam reconstruction using filtered backprojection. Ph.D. thesis, Linköping University, Swe-
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