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Abstract. Digital breast tomosynthesis (DBT) provides a pseudo-3D
reconstruction which addresses the limitation of superimposition of dense
fibro-glandular tissue associated with conventional mammography. Reg-
istration of temporal DBT volumes searches for the optimum deforma-
tion to transform two observed images of the same object into a common
reference frame. This aligns the two images via minimising an objective
function that calculates the similarity between the two datasets.

In this paper, we present a novel algorithm which combines recon-
struction of a pair of temporal DBT acquisitions with their simultaneous
registration. We approach this nonlinear inverse problem using a generic
unconstrained optimisation scheme. To evaluate the performance of our
method we use 2D and 3D software phantoms and demonstrate that this
simultaneous approach has comparable results to performing these tasks
sequentially or iteratively w.r.t both the reconstruction fidelity and the
registration accuracy.

1 Introduction

DBT is an X-ray modality using a small number of low dose X-ray images, which
are acquired over a limited angle and reconstructed into a 3D volume. Although
reconstructed 3D DBT images possess a high in-plane resolution, they exhibit a
lower out-of-plane resolution [1]. The premise is that this coarse depth resolution
is sufficient to alleviate some of the problems of overlapping tissue structures that
degrades the sensitivity and specificity of cancer detection and characterisation
using conventional mammography. One significant aspect of DBT is the perfor-
mance of the reconstruction algorithms, which have been extensively investigated
over the last decade. Comprehensive reviews on the comparison of various ap-
proaches have been published by Dobbins III, Godfrey [2] and Zhang et al. [3]. A
recent investigation by Candès, Romberg and Tao [4] into compressed sensing,
indicates that it is possible to recover the original signal exactly, using a linear
measurement model with incomplete data. This theoretical derivation is appli-
cable to DBT reconstructions which are computed given incomplete forward
projections. Therefore, mathematically, we can solve the DBT reconstruction
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problem perfectly, with a limited-angle set of projections, given judicious choice
of appropriate constraints such as regularisation.

Early breast cancer detection requires the recognition of subtle pathological
changes, such as those due to tumour growth, over time. These abnormal changes
and deformations of the breast tissue must be distinguished from normal defor-
mations caused by differences in breast position, compression and other imaging
acquisition parameters between the two time-points. In the high throughput
breast screening context [5], the additional depth information provided by DBT
must be integrated into the workflow in a way that enhances performance but
does not increase the workload of the clinicians involved. In this respect, image
registration could play an important role in eliminating differences between the
temporal DBT datasets due to patient position, allowing the observer to focus
on identifying those changes which might be indicative of disease.

Previous work on DBT image registration is limited. Sinha et al. [6] describe
application of a thin-plate spline registration of corresponding manually selected
control points, using mutual information as the cost function. They applied this
method to seven subjects’ datasets which were acquired between one year and
a few minutes apart and estimate the registration accuracy to be 1.8mm ±1.4.
Zhang and Brady [7] describe a method for feature point extraction and use the
resulting landmarks to drive a polyaffine registration of a single pair of DBT
datasets.

Whilst combined registration and reconstruction algorithms have been ap-
plied to other modalities (e.g. PET and MRI), little has been published on ap-
plying these techniques to DBT. Yang et al. [8] [9] proposed an iterative method,
which partially coupled the two tasks by alternating between optimising image in-
tensity and deformation parameters to obtain a reduced cost functional. Rather
than registering the images after reconstruction or partially coupling them, we
advocate a method which combines the two tasks simultaneously (fully coupled)
in order to avoid the assumptions of missing data being equal to zero (implicit
in algorithms such as FBP). The aim of this work is to show that reconstruc-
tion and registration are not independent, and that combining these tasks will
enhance the performance of each process as a result.

2 Methods

Based on the motivation and hypothesis above, we have developed an algorithm,
which outputs one unified result for the reconstruction and registration. However,
the introduction of registration introduces nonlinearity of the transformation pa-
rameters making solution of the inverse problem more complex. Although the
following experiments were performed using an affine transformation and sum of
squared differences, as the cost function, other higher order non-rigid transfor-
mations and alternative similarity measurements can naturally be substituted
into our simultaneous framework. Before presenting our simultaneous method,
we first describe the conventional method of performing registration after both
volumes have been successfully reconstructed. Then we paraphrase the itera-



tive method proposed by Yang et al. [8] [9], and subsequently we propose our
simultaneous algorithm.

2.1 Conventional Sequential Method

A 3D object, x ∈ RN3 , two sets of (in our case simulated) temporal data,
y1, y2 ∈ Rκ·N2 , (acquired using limited angle DBT geometry with κ = 11
projections covering ±25◦), the parametric transformation matrix, Rζp , and the
system matrix, A ∈ Rκ·N2×N3 : RN3 7→ RN2 , can be related via

y1 = Ax, (1)

and
y2 = Ax∗ = ARζpx. (2)

A describes the forward model to mimic the X-ray attenuation, scattering or
absorption properties. The reconstruction of equations 1 and 2 can be solved by
minimising

x1
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Following reconstruction, volumes x1
† and x2

†, i.e. the fixed and moving images,
are registered w.r.t the registration parameters ζp:
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)
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2.2 Partially Coupled Iterative Method

According to the previous investigations of the partially coupled iterative method [8,
9], the equations 1 and 2 can be solved by alternating an incomplete optimisa-
tion, i.e. n iterations, of the reconstructed volumes x1 and x2
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with registration of the current estimates x1
‡ and x2

‡ w.r.t the registration
parameters ζp:

ζp
‡ = arg min
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)
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This method is summarised in Algorithm 1. The reconstruction-registration loop
repeats m times and outputs x1 = x1

‡, x2 = x2
‡ and Rζpx2

‡



Algorithm 1: Partially Coupled Iterative Reconstruction and Registration

Input: y1, y2.
Output: x1, x2, Rζpx2.

begin
% Initialization of x1 and x2

x1
0,0 := 0; x2

0,0 := 0; ζp
0 := 0;

% Outer loop for the registration
for (i = 0; i < m; i+ +) do

% Inner loop for the reconstruction
for (j = 0; j < n; j + +) do

% Ψx is the analytical gradient of the x
% for the CG or L-BFGS solver
Ψx1

i,j := AT (Ax1
i,j − y1);

Ψx2
i,j := AT (Ax2

i,j − y2);
x1

i,j+1 := x1
i,j + (ATA)−1Ψx1

i,j ;
x2

i,j+1 := x2
i,j + (ATA)−1Ψx2

i,j ;

% Run a simple hill-climbing optimisation

ζp
i+1 := arg minζpi

1
2

∥∥Rζpixi,j+1
2 − xi,j+1

1

∥∥2
2
;

x1
i+1,j+1 := Rζpi+1xi,j+1

2 ;

x2
i+1,j+1 := xi,j+1

2 ;

% Output x1, x2, and Rζpx2

x1 := xi,j+1
1 ;

x2 := x2
i+1,j+1;

Rζpx2 := x1
i+1,j+1 := Rζpi+1xi,j+1

2 .

end

2.3 Our Simultaneous Method

The ultimate goal of our simultaneous method is to obtain an enhanced recon-
struction and more accurate registration of both volumes, to aid the reading
process and improve the detection of malignant tissue change. Therefore, we
propose a simultaneous method using an unconstrained reconstruction and reg-
istration framework expressed mathematically as in Algorithm 2. Firstly, the
objective function is described as

min
x,ζp∈Rn

ΦRR =
1

2

(
||Ax− y1||2 + ||ARζpx− y2||2

)
, (9)

in which, y1 and y2 are the two input X-ray acquisitions, and x denotes the
unknown estimated volume. We combine the two sets of reconstructions ||Ax−
y1||2 and ||ARζpx−y2||2 with an affine registration with 12 degrees of freedom
ζp, (p = 1, 2, . . . , 12), which globally describes the translation, scaling, rotation
and shearing in 3D, or ζp, (p = 1, 2, . . . , 6) denotes 6 degrees of freedom in 2D.

A minimiser x, ζp ∈ Rn of ΦRR is characterised by the necessary condition
that the partial derivative w.r.t x and ζp equals 0, denoted by ∇ΦRR = 0. The
partial derivative w.r.t x is straightforward, and is given by

gx =
∂ΦRR
∂x

= AT (Ax− y1) +RTζpA
T (ARζpx− y2), (10)



in which, ∂ΦRR

∂x is the gradient. Similarly the Hessian can be expressed as

Hx =
∂ΦRR
∂2x

= ATA+RTζpA
TARζp . (11)

To derive the partial derivative w.r.t ζp, we apply a small perturbation to
the objective function,

ΦRR

(
x, ζp +∆ζp

)
=

1

2

(
||Ax− y1||2 + ||ARζp+∆ζpx− y2||2

)
(12)

≈ 1

2

(
||Ax− y1||2 + ||ARζpx+A

∂Rζp
∂ζp

x∆ζp − y2||2
)
.

(13)

By taking the derivative w.r.t ∆ζp, we obtain that(
A
∂Rζp
∂ζp

x
)T(

ARζpx+A
∂Rζp
∂ζp

x∆ζp − y2
)

= 0; (14)

and if gζp and Hζp denote the gradient and Hessian respectively then we have,(
A
∂Rζp
∂ζp

x
)T(

A
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∂ζp

x
)
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x
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)
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and therefore,
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x
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x
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x
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in which,
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∂ζp
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x
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and
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x
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In order to apply a generic non-linear conjugate gradient optimiser, we ex-
tract the gradients of the objective function w.r.t x and ζp below

∇ΦRR =

(
∂ΦRR

∂x
∂ΦRR

∂ζp

)
=

AT (Ax− y1) +RTζpA
T (ARζpx− y2)(

AR
′

ζp
x
)T(

ARζpx− y2
)  . (19)

3 Experiments and Results

3.1 2D Shepp-Logan Phantom

For a first test, a 2D Shepp-Logan phantom is used to demonstrate the feasibility
and performance of our new simultaneous approach. The fixed and moving im-
ages are of size 642 pixel, with a simulated affine transformation between them.



We test with 10 different sets of deformations, which contain 6 affine parame-
ters p1 to p6 as seen in Table 1, and we calculate the mean error and standard
deviation between the recovered parameters and the ground truth. Fig. 1 shows
the result of the test case number 5 using our simultaneous method.

Algorithm 2: Simultaneous Reconstruction and Registration

Input: y1, y2.
Output: x, ζp.

begin
% Initialization of x and ζp
x 0 := 0; ζp

0 := 0;

% Simultaneous registration and reconstruction
for (i = 0; i < m; i+ +) do

% Ψx and Ψζp are the analytical gradients
% of the x and ζp for the CG or L-BFGS solver

Ψxi1 := AT (Axi − y1);
Ψxi2 := RTζpA

T (ARζpx
i − y2);

Ψxi := Ψxi1 + Ψxi2;

Ψζpi := (AR′ζpx
i)T (ARζpx

i − y2);

xi+1 := xi + (ATA)−1Ψxi1 + (ATRTζpRζpA)−1Ψxi2;

ζp
i+1 := ζp

i + (xTATAx)−1Ψζpi ;

% Output the x and ζp
x := xi+1;
ζp := ζp

i+1.
end

Table 1. Deformation parameters scenarios for 2D experiments. Column 2-4: Ground
truth; Column 5: Initial guess; Column 6-8: Recovered parameters; Column 9: Mean
error & standard deviation of 10 tests. Only the results of test no. 1, 5 and 8 are shown.

G1 G5 G8 Initial R1 R5 R8 Mean Error and S.D.
p1 1.0677 1.1885 0.7794 1 1.0791 1.1872 0.9132 0.1287±0.1102
p2 0.2796 0.1843 -0.4500 0 0.2482 0.1841 -0.2650 0.2157±0.2388

p3(tx) 2.0000 2.0000 3.0000 0 1.9753 1.9890 2.8537 0.1847±0.2114
p4 -0.0480 0.1694 0.4779 0 -0.0057 0.1680 0.1068 0.3140±0.2278
p5 0.9054 0.8179 0.6478 1 0.9031 0.8173 1.1935 0.4062±0.5178

p6(ty) -1.0000 -4.0000 -1.0000 0 -1.0502 -3.9546 -0.8106 0.8050±1.1044

3.2 3D Toroid Phantom (Comparing outputs of the three methods)

In this second experiment we compare the performance of (a) the sequential
reconstruction and registration, in which n = 100 iterations of the reconstruction
of projection images, y1 and y2, are followed by a single registration of the
reconstructed volumes x1 and x2 (m = 1); (b) the partially coupled iterative
approach, in which n = 10 iterations of the reconstruction are followed by a
registration and the process repeated m = 10 times and (c) our simultaneous
method. A 70 × 70 × 70mm3 3D toroid phantom image (resolution 1mm) is
created for this purpose. Fig. 2 shows the comparison results using these three
different methods.



Fig. 1. Column 1-3: The fixed image (a) and the moving image (b); the result of the
simultaneous method (c), and transformation of the moving image using the recovered
parameters (d); Error image (e) by subtracting (c) from (a), and error image (f) by
subtracting (d) from (b).

Fig. 2. Column 1-4: Original test volume (fixed image); Its affine transformations
(moving image); Reconstruction of the fixed image without registration; Reconstruc-
tion of the moving image without registration; Column 5-7: Sequential method result
(transformed moving image reconstruction); Iterative method result (transformed mov-
ing image reconstruction); Our simultaneous method result (no cutting-off artefacts as
shown in the colored boxes).

4 Discussion

We have found for the first time to our knowledge that the simultaneous recon-
struction and registration of DBT datasets using a generic optimisation frame-
work is feasible. The approach jointly considers the registration and reconstruc-
tion components of the breast cancer CAD problem, and is capable of recovering
both the deformation parameters, and an enhanced, reconstructed image. The
performance of the new approach is demonstrated using a numerical phantom in
2D followed by a simple 3D test case. The 2D result is shown in Fig. 1, and indi-
cates that significant reconstruction artifacts are still present. We attribute this
to the fact that the unconstrained optimisation is a näıve approach, and could
be improved by the addition of regularization and nonnegativity constraints.



However, the results in Table 1 demonstrate that we have obtained reasonable
recovery of the deformation parameters. These parameters are initialised using
an identical transformation, in which, p3 and p6 are the translations tx and ty
along each 2D direction. The mean error in ty is relatively large because in test
case no. 10 we give a large translation which translates the moving image outside
of the field of view. Furthermore, the 3D test results in Fig. 2 also show that our
simultaneous method is promising, and the result of our approach is compact
and there is no cutting-off artefacts) when compared to the other two methods.

5 Conclusion and Perspectives

In this paper, we have presented a novel simultaneous method to fully couple
reconstruction and registration for DBT, which is inspired by the motivation
of detecting changes between the two sets of temporal data. SSD is employed
as the registration metric, which formulates the cost criterion by the compari-
son between the volume estimation x and the original two sets of acquisitions
y1 and y2. From the results on the 3D toroidal phantom images, this approach
is found to reduce the misregistration artifacts with comparable reconstruction
fidelity when compared to the sequential or iterative methods. There are nu-
merous points to explore in future work. First, we would like to apply GPU
acceleration for some components of our implementation, e.g. forward and back-
ward projectors. Second, we also intend to extend the registration to incorporate
non-rigid transformations. Finally, we would like to perform experiments on real
DBT data, and tackle the large data size problem using multi-scale and multi-
resolution techniques.
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